* breakpoint.c:
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
197e01b6 3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
0fd88904 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
7aea86e6 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
c44ca51c
AC
62#include "reggroups.h"
63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Breakpoint shadows for the single step instructions will be kept here. */
113
c5aa993b 114static struct sstep_breaks
50fd1280
AC
115{
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120}
c5aa993b 121stepBreaks[2];
c906108c
SS
122
123/* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
7a78ae4e
ND
127CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129/* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
133
134/* Static function prototypes */
135
a14ed312
KB
136static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
077276e8
KB
138static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
c906108c 140
64b84175
KB
141/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142int
143altivec_register_p (int regno)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150}
151
383f0f5b 152
867e2dc5
JB
153/* Return true if REGNO is an SPE register, false otherwise. */
154int
155spe_register_p (int regno)
156{
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
6ced10dd
JB
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
867e2dc5
JB
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183}
184
185
383f0f5b
JB
186/* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
188int
189ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190{
383f0f5b
JB
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
0a613259 195}
9f643768 196
09991fa0
JB
197
198/* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
9f643768
JB
205static void
206set_sim_regno (int *table, int gdb_regno, int sim_regno)
207{
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212}
213
09991fa0
JB
214
215/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
218static void
219init_sim_regno_table (struct gdbarch *arch)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
6ced10dd
JB
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
9f643768
JB
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296}
297
09991fa0
JB
298
299/* Given a GDB register number REG, return the corresponding SIM
300 register number. */
9f643768
JB
301static int
302rs6000_register_sim_regno (int reg)
303{
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314}
315
d195bc9f
MK
316\f
317
318/* Register set support functions. */
319
320static void
321ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 322 const gdb_byte *regs, size_t offset)
d195bc9f
MK
323{
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326}
327
328static void
329ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 330 gdb_byte *regs, size_t offset)
d195bc9f
MK
331{
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334}
335
336/* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340void
341ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343{
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
cdf2c5f5 350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 352 i++, offset += 4)
d195bc9f
MK
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377}
378
379/* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383void
384ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386{
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
383f0f5b
JB
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
d195bc9f 395 offset = offsets->f0_offset;
366f009f
JB
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 398 i++, offset += 8)
d195bc9f
MK
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407}
408
409/* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414void
415ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418{
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
cdf2c5f5 426 for (i = tdep->ppc_gp0_regnum;
063715bf 427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 428 i++, offset += 4)
d195bc9f
MK
429 {
430 if (regnum == -1 || regnum == i)
2e56e9c1 431 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454}
455
456/* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461void
462ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465{
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
383f0f5b
JB
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
d195bc9f 474 offset = offsets->f0_offset;
366f009f
JB
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 477 i++, offset += 8)
d195bc9f
MK
478 {
479 if (regnum == -1 || regnum == i)
bdbcb8b4 480 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486}
487\f
0a613259 488
7a78ae4e 489/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 490
7a78ae4e
ND
491static CORE_ADDR
492read_memory_addr (CORE_ADDR memaddr, int len)
493{
494 return read_memory_unsigned_integer (memaddr, len);
495}
c906108c 496
7a78ae4e
ND
497static CORE_ADDR
498rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
499{
500 struct rs6000_framedata frame;
077276e8 501 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
502 return pc;
503}
504
505
c906108c
SS
506/* Fill in fi->saved_regs */
507
508struct frame_extra_info
509{
510 /* Functions calling alloca() change the value of the stack
511 pointer. We need to use initial stack pointer (which is saved in
512 r31 by gcc) in such cases. If a compiler emits traceback table,
513 then we should use the alloca register specified in traceback
514 table. FIXME. */
c5aa993b 515 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
516};
517
143985b7 518/* Get the ith function argument for the current function. */
b9362cc7 519static CORE_ADDR
143985b7
AF
520rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
521 struct type *type)
522{
50fd1280 523 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
524}
525
c906108c
SS
526/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528static CORE_ADDR
7a78ae4e 529branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
530{
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
c5aa993b
JM
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
2188cbdd 561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
8b36eed8 573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 574 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
2188cbdd 580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
587 }
588 else
589 return -1;
590 break;
c906108c 591
c5aa993b
JM
592 default:
593 return -1;
594 }
c906108c
SS
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596}
597
598
599/* Sequence of bytes for breakpoint instruction. */
600
f4f9705a 601const static unsigned char *
7a78ae4e 602rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 603{
aaab4dba
AC
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 606 *bp_size = 4;
d7449b42 607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611}
612
613
614/* AIX does not support PT_STEP. Simulate it. */
615
616void
379d08a1
AC
617rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
c906108c 619{
7c40d541
KB
620 CORE_ADDR dummy;
621 int breakp_sz;
50fd1280 622 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
c5aa993b
JM
628 if (insert_breakpoints_p)
629 {
c906108c 630
c5aa993b 631 loc = read_pc ();
c906108c 632
c5aa993b 633 insn = read_memory_integer (loc, 4);
c906108c 634
7c40d541 635 breaks[0] = loc + breakp_sz;
c5aa993b
JM
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 638
c5aa993b
JM
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
c906108c 642
c5aa993b 643 stepBreaks[1].address = 0;
c906108c 644
c5aa993b
JM
645 for (ii = 0; ii < 2; ++ii)
646 {
c906108c 647
c5aa993b
JM
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
7c40d541 651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
652 stepBreaks[ii].address = breaks[ii];
653 }
c906108c 654
c5aa993b
JM
655 }
656 else
657 {
c906108c 658
c5aa993b
JM
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
7c40d541
KB
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
c5aa993b 664 }
c906108c 665 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 666 /* What errors? {read,write}_memory call error(). */
c906108c
SS
667}
668
669
670/* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
c5aa993b
JM
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
6be8bc0c 680 - saved_vr is the number of the first saved vr.
96ff0de4 681 - saved_ev is the number of the first saved ev.
c5aa993b
JM
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 686 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 687 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
6be8bc0c 690 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 691 */
c906108c
SS
692
693#define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
55d05f3b
KB
700/* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702static int max_skip_non_prologue_insns = 10;
703
704/* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
634aa483
AC
710
711/* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
55d05f3b
KB
714static CORE_ADDR
715refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716{
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753}
754
773df3e5
JB
755/* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760static int
761store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762{
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824}
55d05f3b 825
7a78ae4e 826static CORE_ADDR
077276e8 827skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
828{
829 CORE_ADDR orig_pc = pc;
55d05f3b 830 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 831 CORE_ADDR li_found_pc = 0;
50fd1280 832 gdb_byte buf[4];
c906108c
SS
833 unsigned long op;
834 long offset = 0;
6be8bc0c 835 long vr_saved_offset = 0;
482ca3f5
KB
836 int lr_reg = -1;
837 int cr_reg = -1;
6be8bc0c 838 int vr_reg = -1;
96ff0de4
EZ
839 int ev_reg = -1;
840 long ev_offset = 0;
6be8bc0c 841 int vrsave_reg = -1;
c906108c
SS
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
ddb20c56 845 int prev_insn_was_prologue_insn = 1;
55d05f3b 846 int num_skip_non_prologue_insns = 0;
773df3e5 847 int r0_contains_arg = 0;
96ff0de4 848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 850
55d05f3b
KB
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 865
ddb20c56 866 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
6be8bc0c 869 fdata->saved_vr = -1;
96ff0de4 870 fdata->saved_ev = -1;
c906108c
SS
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
55d05f3b 875 for (;; pc += 4)
c906108c 876 {
ddb20c56
KB
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
55d05f3b
KB
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
ddb20c56
KB
888 prev_insn_was_prologue_insn = 1;
889
55d05f3b 890 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
c906108c 894
c5aa993b
JM
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
43b1ab88
AC
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
773df3e5
JB
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
c5aa993b 918 continue;
c5aa993b
JM
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
98f08d3d 922 cr_reg = (op & 0x03e00000);
773df3e5
JB
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
c5aa993b 925 continue;
c906108c 926
c906108c 927 }
c5aa993b
JM
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
c906108c 937
c5aa993b
JM
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
7a78ae4e 949 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 950 op &= ~3UL;
c5aa993b
JM
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
c906108c 954
ddb20c56
KB
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
96ff0de4 958 /* nop */
ddb20c56
KB
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
c906108c 965 }
c5aa993b
JM
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
773df3e5 971 r0_contains_arg = 0;
c5aa993b
JM
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
773df3e5 980 r0_contains_arg = 0;
c5aa993b
JM
981 continue;
982
983 }
be723e22 984 else if (lr_reg >= 0 &&
98f08d3d
KB
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
c5aa993b 993 fdata->nosavedpc = 0;
be723e22
MS
994 /* Invalidate lr_reg, but don't set it to -1.
995 That would mean that it had never been set. */
996 lr_reg = -2;
98f08d3d
KB
997 if ((op & 0xfc000003) == 0xf8000000 || /* std */
998 (op & 0xfc000000) == 0x90000000) /* stw */
999 {
1000 /* Does not update r1, so add displacement to lr_offset. */
1001 fdata->lr_offset += SIGNED_SHORT (op);
1002 }
c5aa993b
JM
1003 continue;
1004
1005 }
be723e22 1006 else if (cr_reg >= 0 &&
98f08d3d
KB
1007 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1008 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1009 /* stw Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1011 /* stwu Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1013 { /* where Rx == cr */
1014 fdata->cr_offset = offset;
be723e22
MS
1015 /* Invalidate cr_reg, but don't set it to -1.
1016 That would mean that it had never been set. */
1017 cr_reg = -2;
98f08d3d
KB
1018 if ((op & 0xfc000003) == 0xf8000000 ||
1019 (op & 0xfc000000) == 0x90000000)
1020 {
1021 /* Does not update r1, so add displacement to cr_offset. */
1022 fdata->cr_offset += SIGNED_SHORT (op);
1023 }
c5aa993b
JM
1024 continue;
1025
1026 }
1027 else if (op == 0x48000005)
1028 { /* bl .+4 used in
1029 -mrelocatable */
1030 continue;
1031
1032 }
1033 else if (op == 0x48000004)
1034 { /* b .+4 (xlc) */
1035 break;
1036
c5aa993b 1037 }
6be8bc0c
EZ
1038 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1039 in V.4 -mminimal-toc */
c5aa993b
JM
1040 (op & 0xffff0000) == 0x3bde0000)
1041 { /* addi 30,30,foo@l */
1042 continue;
c906108c 1043
c5aa993b
JM
1044 }
1045 else if ((op & 0xfc000001) == 0x48000001)
1046 { /* bl foo,
1047 to save fprs??? */
c906108c 1048
c5aa993b 1049 fdata->frameless = 0;
6be8bc0c 1050 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1051 the first three instructions of the prologue and either
1052 we have no line table information or the line info tells
1053 us that the subroutine call is not part of the line
1054 associated with the prologue. */
c5aa993b 1055 if ((pc - orig_pc) > 8)
ebd98106
FF
1056 {
1057 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1058 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1059
1060 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1061 break;
1062 }
c5aa993b
JM
1063
1064 op = read_memory_integer (pc + 4, 4);
1065
6be8bc0c
EZ
1066 /* At this point, make sure this is not a trampoline
1067 function (a function that simply calls another functions,
1068 and nothing else). If the next is not a nop, this branch
1069 was part of the function prologue. */
c5aa993b
JM
1070
1071 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1072 break; /* don't skip over
1073 this branch */
1074 continue;
1075
c5aa993b 1076 }
98f08d3d
KB
1077 /* update stack pointer */
1078 else if ((op & 0xfc1f0000) == 0x94010000)
1079 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1080 fdata->frameless = 0;
1081 fdata->offset = SIGNED_SHORT (op);
1082 offset = fdata->offset;
1083 continue;
c5aa993b 1084 }
98f08d3d
KB
1085 else if ((op & 0xfc1f016a) == 0x7c01016e)
1086 { /* stwux rX,r1,rY */
1087 /* no way to figure out what r1 is going to be */
1088 fdata->frameless = 0;
1089 offset = fdata->offset;
1090 continue;
1091 }
1092 else if ((op & 0xfc1f0003) == 0xf8010001)
1093 { /* stdu rX,NUM(r1) */
1094 fdata->frameless = 0;
1095 fdata->offset = SIGNED_SHORT (op & ~3UL);
1096 offset = fdata->offset;
1097 continue;
1098 }
1099 else if ((op & 0xfc1f016a) == 0x7c01016a)
1100 { /* stdux rX,r1,rY */
1101 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1102 fdata->frameless = 0;
1103 offset = fdata->offset;
1104 continue;
c5aa993b 1105 }
98f08d3d
KB
1106 /* Load up minimal toc pointer */
1107 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1108 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1109 && !minimal_toc_loaded)
98f08d3d 1110 {
c5aa993b
JM
1111 minimal_toc_loaded = 1;
1112 continue;
1113
f6077098
KB
1114 /* move parameters from argument registers to local variable
1115 registers */
1116 }
1117 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1118 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1119 (((op >> 21) & 31) <= 10) &&
96ff0de4 1120 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1121 {
1122 continue;
1123
c5aa993b
JM
1124 /* store parameters in stack */
1125 }
e802b915 1126 /* Move parameters from argument registers to temporary register. */
773df3e5 1127 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1128 {
c5aa993b
JM
1129 continue;
1130
1131 /* Set up frame pointer */
1132 }
1133 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1134 || op == 0x7c3f0b78)
1135 { /* mr r31, r1 */
1136 fdata->frameless = 0;
1137 framep = 1;
6f99cb26 1138 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1139 continue;
1140
1141 /* Another way to set up the frame pointer. */
1142 }
1143 else if ((op & 0xfc1fffff) == 0x38010000)
1144 { /* addi rX, r1, 0x0 */
1145 fdata->frameless = 0;
1146 framep = 1;
6f99cb26
AC
1147 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1148 + ((op & ~0x38010000) >> 21));
c5aa993b 1149 continue;
c5aa993b 1150 }
6be8bc0c
EZ
1151 /* AltiVec related instructions. */
1152 /* Store the vrsave register (spr 256) in another register for
1153 later manipulation, or load a register into the vrsave
1154 register. 2 instructions are used: mfvrsave and
1155 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1156 and mtspr SPR256, Rn. */
1157 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1158 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1159 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1160 {
1161 vrsave_reg = GET_SRC_REG (op);
1162 continue;
1163 }
1164 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1165 {
1166 continue;
1167 }
1168 /* Store the register where vrsave was saved to onto the stack:
1169 rS is the register where vrsave was stored in a previous
1170 instruction. */
1171 /* 100100 sssss 00001 dddddddd dddddddd */
1172 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1173 {
1174 if (vrsave_reg == GET_SRC_REG (op))
1175 {
1176 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1177 vrsave_reg = -1;
1178 }
1179 continue;
1180 }
1181 /* Compute the new value of vrsave, by modifying the register
1182 where vrsave was saved to. */
1183 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1184 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1185 {
1186 continue;
1187 }
1188 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1189 in a pair of insns to save the vector registers on the
1190 stack. */
1191 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1192 /* 001110 01110 00000 iiii iiii iiii iiii */
1193 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1194 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1195 {
773df3e5
JB
1196 if ((op & 0xffff0000) == 0x38000000)
1197 r0_contains_arg = 0;
6be8bc0c
EZ
1198 li_found_pc = pc;
1199 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1200
1201 /* This insn by itself is not part of the prologue, unless
1202 if part of the pair of insns mentioned above. So do not
1203 record this insn as part of the prologue yet. */
1204 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1205 }
1206 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1207 /* 011111 sssss 11111 00000 00111001110 */
1208 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1209 {
1210 if (pc == (li_found_pc + 4))
1211 {
1212 vr_reg = GET_SRC_REG (op);
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1217 {
1218 fdata->saved_vr = vr_reg;
1219 fdata->vr_offset = vr_saved_offset + offset;
1220 }
1221 vr_saved_offset = -1;
1222 vr_reg = -1;
1223 li_found_pc = 0;
1224 }
1225 }
1226 /* End AltiVec related instructions. */
96ff0de4
EZ
1227
1228 /* Start BookE related instructions. */
1229 /* Store gen register S at (r31+uimm).
1230 Any register less than r13 is volatile, so we don't care. */
1231 /* 000100 sssss 11111 iiiii 01100100001 */
1232 else if (arch_info->mach == bfd_mach_ppc_e500
1233 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1234 {
1235 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1236 {
1237 unsigned int imm;
1238 ev_reg = GET_SRC_REG (op);
1239 imm = (op >> 11) & 0x1f;
1240 ev_offset = imm * 8;
1241 /* If this is the first vector reg to be saved, or if
1242 it has a lower number than others previously seen,
1243 reupdate the frame info. */
1244 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1245 {
1246 fdata->saved_ev = ev_reg;
1247 fdata->ev_offset = ev_offset + offset;
1248 }
1249 }
1250 continue;
1251 }
1252 /* Store gen register rS at (r1+rB). */
1253 /* 000100 sssss 00001 bbbbb 01100100000 */
1254 else if (arch_info->mach == bfd_mach_ppc_e500
1255 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1256 {
1257 if (pc == (li_found_pc + 4))
1258 {
1259 ev_reg = GET_SRC_REG (op);
1260 /* If this is the first vector reg to be saved, or if
1261 it has a lower number than others previously seen,
1262 reupdate the frame info. */
1263 /* We know the contents of rB from the previous instruction. */
1264 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1265 {
1266 fdata->saved_ev = ev_reg;
1267 fdata->ev_offset = vr_saved_offset + offset;
1268 }
1269 vr_saved_offset = -1;
1270 ev_reg = -1;
1271 li_found_pc = 0;
1272 }
1273 continue;
1274 }
1275 /* Store gen register r31 at (rA+uimm). */
1276 /* 000100 11111 aaaaa iiiii 01100100001 */
1277 else if (arch_info->mach == bfd_mach_ppc_e500
1278 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1279 {
1280 /* Wwe know that the source register is 31 already, but
1281 it can't hurt to compute it. */
1282 ev_reg = GET_SRC_REG (op);
1283 ev_offset = ((op >> 11) & 0x1f) * 8;
1284 /* If this is the first vector reg to be saved, or if
1285 it has a lower number than others previously seen,
1286 reupdate the frame info. */
1287 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1288 {
1289 fdata->saved_ev = ev_reg;
1290 fdata->ev_offset = ev_offset + offset;
1291 }
1292
1293 continue;
1294 }
1295 /* Store gen register S at (r31+r0).
1296 Store param on stack when offset from SP bigger than 4 bytes. */
1297 /* 000100 sssss 11111 00000 01100100000 */
1298 else if (arch_info->mach == bfd_mach_ppc_e500
1299 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1300 {
1301 if (pc == (li_found_pc + 4))
1302 {
1303 if ((op & 0x03e00000) >= 0x01a00000)
1304 {
1305 ev_reg = GET_SRC_REG (op);
1306 /* If this is the first vector reg to be saved, or if
1307 it has a lower number than others previously seen,
1308 reupdate the frame info. */
1309 /* We know the contents of r0 from the previous
1310 instruction. */
1311 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1312 {
1313 fdata->saved_ev = ev_reg;
1314 fdata->ev_offset = vr_saved_offset + offset;
1315 }
1316 ev_reg = -1;
1317 }
1318 vr_saved_offset = -1;
1319 li_found_pc = 0;
1320 continue;
1321 }
1322 }
1323 /* End BookE related instructions. */
1324
c5aa993b
JM
1325 else
1326 {
55d05f3b
KB
1327 /* Not a recognized prologue instruction.
1328 Handle optimizer code motions into the prologue by continuing
1329 the search if we have no valid frame yet or if the return
1330 address is not yet saved in the frame. */
1331 if (fdata->frameless == 0
1332 && (lr_reg == -1 || fdata->nosavedpc == 0))
1333 break;
1334
1335 if (op == 0x4e800020 /* blr */
1336 || op == 0x4e800420) /* bctr */
1337 /* Do not scan past epilogue in frameless functions or
1338 trampolines. */
1339 break;
1340 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1341 /* Never skip branches. */
55d05f3b
KB
1342 break;
1343
1344 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1345 /* Do not scan too many insns, scanning insns is expensive with
1346 remote targets. */
1347 break;
1348
1349 /* Continue scanning. */
1350 prev_insn_was_prologue_insn = 0;
1351 continue;
c5aa993b 1352 }
c906108c
SS
1353 }
1354
1355#if 0
1356/* I have problems with skipping over __main() that I need to address
1357 * sometime. Previously, I used to use misc_function_vector which
1358 * didn't work as well as I wanted to be. -MGO */
1359
1360 /* If the first thing after skipping a prolog is a branch to a function,
1361 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1362 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1363 work before calling a function right after a prologue, thus we can
64366f1c 1364 single out such gcc2 behaviour. */
c906108c 1365
c906108c 1366
c5aa993b
JM
1367 if ((op & 0xfc000001) == 0x48000001)
1368 { /* bl foo, an initializer function? */
1369 op = read_memory_integer (pc + 4, 4);
1370
1371 if (op == 0x4def7b82)
1372 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1373
64366f1c
EZ
1374 /* Check and see if we are in main. If so, skip over this
1375 initializer function as well. */
c906108c 1376
c5aa993b 1377 tmp = find_pc_misc_function (pc);
6314a349
AC
1378 if (tmp >= 0
1379 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1380 return pc + 8;
1381 }
c906108c 1382 }
c906108c 1383#endif /* 0 */
c5aa993b
JM
1384
1385 fdata->offset = -fdata->offset;
ddb20c56 1386 return last_prologue_pc;
c906108c
SS
1387}
1388
1389
1390/*************************************************************************
f6077098 1391 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1392 frames, etc.
1393*************************************************************************/
1394
c906108c 1395
11269d7e
AC
1396/* All the ABI's require 16 byte alignment. */
1397static CORE_ADDR
1398rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1399{
1400 return (addr & -16);
1401}
1402
7a78ae4e 1403/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1404 the first eight words of the argument list (that might be less than
1405 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1406 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1407 passed in fpr's, in addition to that. Rest of the parameters if any
1408 are passed in user stack. There might be cases in which half of the
c906108c
SS
1409 parameter is copied into registers, the other half is pushed into
1410 stack.
1411
7a78ae4e
ND
1412 Stack must be aligned on 64-bit boundaries when synthesizing
1413 function calls.
1414
c906108c
SS
1415 If the function is returning a structure, then the return address is passed
1416 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1417 starting from r4. */
c906108c 1418
7a78ae4e 1419static CORE_ADDR
7d9b040b 1420rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1421 struct regcache *regcache, CORE_ADDR bp_addr,
1422 int nargs, struct value **args, CORE_ADDR sp,
1423 int struct_return, CORE_ADDR struct_addr)
c906108c 1424{
7a41266b 1425 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1426 int ii;
1427 int len = 0;
c5aa993b
JM
1428 int argno; /* current argument number */
1429 int argbytes; /* current argument byte */
50fd1280 1430 gdb_byte tmp_buffer[50];
c5aa993b 1431 int f_argno = 0; /* current floating point argno */
21283beb 1432 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1433 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1434
ea7c478f 1435 struct value *arg = 0;
c906108c
SS
1436 struct type *type;
1437
1438 CORE_ADDR saved_sp;
1439
383f0f5b
JB
1440 /* The calling convention this function implements assumes the
1441 processor has floating-point registers. We shouldn't be using it
1442 on PPC variants that lack them. */
1443 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1444
64366f1c 1445 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1446 Copy them appropriately. */
1447 ii = 0;
1448
1449 /* If the function is returning a `struct', then the first word
1450 (which will be passed in r3) is used for struct return address.
1451 In that case we should advance one word and start from r4
1452 register to copy parameters. */
1453 if (struct_return)
1454 {
1455 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1456 struct_addr);
1457 ii++;
1458 }
c906108c
SS
1459
1460/*
c5aa993b
JM
1461 effectively indirect call... gcc does...
1462
1463 return_val example( float, int);
1464
1465 eabi:
1466 float in fp0, int in r3
1467 offset of stack on overflow 8/16
1468 for varargs, must go by type.
1469 power open:
1470 float in r3&r4, int in r5
1471 offset of stack on overflow different
1472 both:
1473 return in r3 or f0. If no float, must study how gcc emulates floats;
1474 pay attention to arg promotion.
1475 User may have to cast\args to handle promotion correctly
1476 since gdb won't know if prototype supplied or not.
1477 */
c906108c 1478
c5aa993b
JM
1479 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1480 {
3acba339 1481 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1482
1483 arg = args[argno];
df407dfe 1484 type = check_typedef (value_type (arg));
c5aa993b
JM
1485 len = TYPE_LENGTH (type);
1486
1487 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1488 {
1489
64366f1c 1490 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1491 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1492 there is no way we would run out of them. */
c5aa993b 1493
9f335945
KB
1494 gdb_assert (len <= 8);
1495
1496 regcache_cooked_write (regcache,
1497 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1498 value_contents (arg));
c5aa993b
JM
1499 ++f_argno;
1500 }
1501
f6077098 1502 if (len > reg_size)
c5aa993b
JM
1503 {
1504
64366f1c 1505 /* Argument takes more than one register. */
c5aa993b
JM
1506 while (argbytes < len)
1507 {
50fd1280 1508 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1509 memset (word, 0, reg_size);
1510 memcpy (word,
0fd88904 1511 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1512 (len - argbytes) > reg_size
1513 ? reg_size : len - argbytes);
9f335945
KB
1514 regcache_cooked_write (regcache,
1515 tdep->ppc_gp0_regnum + 3 + ii,
1516 word);
f6077098 1517 ++ii, argbytes += reg_size;
c5aa993b
JM
1518
1519 if (ii >= 8)
1520 goto ran_out_of_registers_for_arguments;
1521 }
1522 argbytes = 0;
1523 --ii;
1524 }
1525 else
64366f1c
EZ
1526 {
1527 /* Argument can fit in one register. No problem. */
d7449b42 1528 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1529 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1530
1531 memset (word, 0, reg_size);
0fd88904 1532 memcpy (word, value_contents (arg), len);
9f335945 1533 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1534 }
1535 ++argno;
c906108c 1536 }
c906108c
SS
1537
1538ran_out_of_registers_for_arguments:
1539
7a78ae4e 1540 saved_sp = read_sp ();
cc9836a8 1541
64366f1c 1542 /* Location for 8 parameters are always reserved. */
7a78ae4e 1543 sp -= wordsize * 8;
f6077098 1544
64366f1c 1545 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1546 sp -= wordsize * 6;
f6077098 1547
64366f1c 1548 /* Stack pointer must be quadword aligned. */
7a78ae4e 1549 sp &= -16;
c906108c 1550
64366f1c
EZ
1551 /* If there are more arguments, allocate space for them in
1552 the stack, then push them starting from the ninth one. */
c906108c 1553
c5aa993b
JM
1554 if ((argno < nargs) || argbytes)
1555 {
1556 int space = 0, jj;
c906108c 1557
c5aa993b
JM
1558 if (argbytes)
1559 {
1560 space += ((len - argbytes + 3) & -4);
1561 jj = argno + 1;
1562 }
1563 else
1564 jj = argno;
c906108c 1565
c5aa993b
JM
1566 for (; jj < nargs; ++jj)
1567 {
ea7c478f 1568 struct value *val = args[jj];
df407dfe 1569 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1570 }
c906108c 1571
64366f1c 1572 /* Add location required for the rest of the parameters. */
f6077098 1573 space = (space + 15) & -16;
c5aa993b 1574 sp -= space;
c906108c 1575
7aea86e6
AC
1576 /* This is another instance we need to be concerned about
1577 securing our stack space. If we write anything underneath %sp
1578 (r1), we might conflict with the kernel who thinks he is free
1579 to use this area. So, update %sp first before doing anything
1580 else. */
1581
1582 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1583
64366f1c
EZ
1584 /* If the last argument copied into the registers didn't fit there
1585 completely, push the rest of it into stack. */
c906108c 1586
c5aa993b
JM
1587 if (argbytes)
1588 {
1589 write_memory (sp + 24 + (ii * 4),
50fd1280 1590 value_contents (arg) + argbytes,
c5aa993b
JM
1591 len - argbytes);
1592 ++argno;
1593 ii += ((len - argbytes + 3) & -4) / 4;
1594 }
c906108c 1595
64366f1c 1596 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1597 for (; argno < nargs; ++argno)
1598 {
c906108c 1599
c5aa993b 1600 arg = args[argno];
df407dfe 1601 type = check_typedef (value_type (arg));
c5aa993b 1602 len = TYPE_LENGTH (type);
c906108c
SS
1603
1604
64366f1c
EZ
1605 /* Float types should be passed in fpr's, as well as in the
1606 stack. */
c5aa993b
JM
1607 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1608 {
c906108c 1609
9f335945 1610 gdb_assert (len <= 8);
c906108c 1611
9f335945
KB
1612 regcache_cooked_write (regcache,
1613 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1614 value_contents (arg));
c5aa993b
JM
1615 ++f_argno;
1616 }
c906108c 1617
50fd1280 1618 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1619 ii += ((len + 3) & -4) / 4;
1620 }
c906108c 1621 }
c906108c 1622
69517000 1623 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1624 be set _before_ the corresponding stack space is used. On AIX,
1625 this even applies when the target has been completely stopped!
1626 Not doing this can lead to conflicts with the kernel which thinks
1627 that it still has control over this not-yet-allocated stack
1628 region. */
33a7c2fc
AC
1629 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1630
7aea86e6 1631 /* Set back chain properly. */
8ba0209f
AM
1632 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1633 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1634
e56a0ecc
AC
1635 /* Point the inferior function call's return address at the dummy's
1636 breakpoint. */
1637 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1638
794a477a
AC
1639 /* Set the TOC register, get the value from the objfile reader
1640 which, in turn, gets it from the VMAP table. */
1641 if (rs6000_find_toc_address_hook != NULL)
1642 {
1643 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1644 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1645 }
1646
c906108c
SS
1647 target_store_registers (-1);
1648 return sp;
1649}
c906108c 1650
b9ff3018
AC
1651/* PowerOpen always puts structures in memory. Vectors, which were
1652 added later, do get returned in a register though. */
1653
1654static int
1655rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1656{
1657 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1658 && TYPE_VECTOR (value_type))
1659 return 0;
1660 return 1;
1661}
1662
7a78ae4e 1663static void
50fd1280
AC
1664rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1665 gdb_byte *valbuf)
c906108c
SS
1666{
1667 int offset = 0;
ace1378a 1668 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1669
383f0f5b
JB
1670 /* The calling convention this function implements assumes the
1671 processor has floating-point registers. We shouldn't be using it
1672 on PPC variants that lack them. */
1673 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1674
c5aa993b
JM
1675 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1676 {
c906108c 1677
c5aa993b
JM
1678 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1679 We need to truncate the return value into float size (4 byte) if
64366f1c 1680 necessary. */
c906108c 1681
65951cd9 1682 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1683 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1684 builtin_type_double,
1685 valbuf,
1686 valtype);
c5aa993b 1687 }
ace1378a
EZ
1688 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1689 && TYPE_LENGTH (valtype) == 16
1690 && TYPE_VECTOR (valtype))
1691 {
62700349 1692 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1693 TYPE_LENGTH (valtype));
1694 }
c5aa993b
JM
1695 else
1696 {
1697 /* return value is copied starting from r3. */
d7449b42 1698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1699 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1700 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1701
1702 memcpy (valbuf,
62700349 1703 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1704 TYPE_LENGTH (valtype));
c906108c 1705 }
c906108c
SS
1706}
1707
977adac5
ND
1708/* Return whether handle_inferior_event() should proceed through code
1709 starting at PC in function NAME when stepping.
1710
1711 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1712 handle memory references that are too distant to fit in instructions
1713 generated by the compiler. For example, if 'foo' in the following
1714 instruction:
1715
1716 lwz r9,foo(r2)
1717
1718 is greater than 32767, the linker might replace the lwz with a branch to
1719 somewhere in @FIX1 that does the load in 2 instructions and then branches
1720 back to where execution should continue.
1721
1722 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1723 Unfortunately, the linker uses the "b" instruction for the
1724 branches, meaning that the link register doesn't get set.
1725 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1726
2ec664f5
MS
1727 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1728 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1729 @FIX code. */
977adac5
ND
1730
1731int
1732rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1733{
1734 return name && !strncmp (name, "@FIX", 4);
1735}
1736
1737/* Skip code that the user doesn't want to see when stepping:
1738
1739 1. Indirect function calls use a piece of trampoline code to do context
1740 switching, i.e. to set the new TOC table. Skip such code if we are on
1741 its first instruction (as when we have single-stepped to here).
1742
1743 2. Skip shared library trampoline code (which is different from
c906108c 1744 indirect function call trampolines).
977adac5
ND
1745
1746 3. Skip bigtoc fixup code.
1747
c906108c 1748 Result is desired PC to step until, or NULL if we are not in
977adac5 1749 code that should be skipped. */
c906108c
SS
1750
1751CORE_ADDR
7a78ae4e 1752rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1753{
52f0bd74 1754 unsigned int ii, op;
977adac5 1755 int rel;
c906108c 1756 CORE_ADDR solib_target_pc;
977adac5 1757 struct minimal_symbol *msymbol;
c906108c 1758
c5aa993b
JM
1759 static unsigned trampoline_code[] =
1760 {
1761 0x800b0000, /* l r0,0x0(r11) */
1762 0x90410014, /* st r2,0x14(r1) */
1763 0x7c0903a6, /* mtctr r0 */
1764 0x804b0004, /* l r2,0x4(r11) */
1765 0x816b0008, /* l r11,0x8(r11) */
1766 0x4e800420, /* bctr */
1767 0x4e800020, /* br */
1768 0
c906108c
SS
1769 };
1770
977adac5
ND
1771 /* Check for bigtoc fixup code. */
1772 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1773 if (msymbol
1774 && rs6000_in_solib_return_trampoline (pc,
1775 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1776 {
1777 /* Double-check that the third instruction from PC is relative "b". */
1778 op = read_memory_integer (pc + 8, 4);
1779 if ((op & 0xfc000003) == 0x48000000)
1780 {
1781 /* Extract bits 6-29 as a signed 24-bit relative word address and
1782 add it to the containing PC. */
1783 rel = ((int)(op << 6) >> 6);
1784 return pc + 8 + rel;
1785 }
1786 }
1787
c906108c
SS
1788 /* If pc is in a shared library trampoline, return its target. */
1789 solib_target_pc = find_solib_trampoline_target (pc);
1790 if (solib_target_pc)
1791 return solib_target_pc;
1792
c5aa993b
JM
1793 for (ii = 0; trampoline_code[ii]; ++ii)
1794 {
1795 op = read_memory_integer (pc + (ii * 4), 4);
1796 if (op != trampoline_code[ii])
1797 return 0;
1798 }
1799 ii = read_register (11); /* r11 holds destination addr */
21283beb 1800 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1801 return pc;
1802}
1803
7a78ae4e 1804/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1805 isn't available with that word size, return 0. */
7a78ae4e
ND
1806
1807static int
1808regsize (const struct reg *reg, int wordsize)
1809{
1810 return wordsize == 8 ? reg->sz64 : reg->sz32;
1811}
1812
1813/* Return the name of register number N, or null if no such register exists
64366f1c 1814 in the current architecture. */
7a78ae4e 1815
fa88f677 1816static const char *
7a78ae4e
ND
1817rs6000_register_name (int n)
1818{
21283beb 1819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1820 const struct reg *reg = tdep->regs + n;
1821
1822 if (!regsize (reg, tdep->wordsize))
1823 return NULL;
1824 return reg->name;
1825}
1826
7a78ae4e
ND
1827/* Return the GDB type object for the "standard" data type
1828 of data in register N. */
1829
1830static struct type *
691d145a 1831rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1832{
691d145a 1833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1834 const struct reg *reg = tdep->regs + n;
1835
1fcc0bb8
EZ
1836 if (reg->fpr)
1837 return builtin_type_double;
1838 else
1839 {
1840 int size = regsize (reg, tdep->wordsize);
1841 switch (size)
1842 {
449a5da4
AC
1843 case 0:
1844 return builtin_type_int0;
1845 case 4:
ed6edd9b 1846 return builtin_type_uint32;
1fcc0bb8 1847 case 8:
c8001721
EZ
1848 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1849 return builtin_type_vec64;
1850 else
ed6edd9b 1851 return builtin_type_uint64;
1fcc0bb8
EZ
1852 break;
1853 case 16:
08cf96df 1854 return builtin_type_vec128;
1fcc0bb8
EZ
1855 break;
1856 default:
e2e0b3e5 1857 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1858 n, size);
1fcc0bb8
EZ
1859 }
1860 }
7a78ae4e
ND
1861}
1862
c44ca51c
AC
1863/* Is REGNUM a member of REGGROUP? */
1864static int
1865rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1866 struct reggroup *group)
1867{
1868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1869 int float_p;
1870 int vector_p;
1871 int general_p;
1872
1873 if (REGISTER_NAME (regnum) == NULL
1874 || *REGISTER_NAME (regnum) == '\0')
1875 return 0;
1876 if (group == all_reggroup)
1877 return 1;
1878
1879 float_p = (regnum == tdep->ppc_fpscr_regnum
1880 || (regnum >= tdep->ppc_fp0_regnum
1881 && regnum < tdep->ppc_fp0_regnum + 32));
1882 if (group == float_reggroup)
1883 return float_p;
1884
826d5376
PG
1885 vector_p = ((tdep->ppc_vr0_regnum >= 0
1886 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 1887 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
1888 || (tdep->ppc_ev0_regnum >= 0
1889 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 1890 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 1891 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
1892 || regnum == tdep->ppc_vrsave_regnum
1893 || regnum == tdep->ppc_acc_regnum
1894 || regnum == tdep->ppc_spefscr_regnum);
1895 if (group == vector_reggroup)
1896 return vector_p;
1897
1898 /* Note that PS aka MSR isn't included - it's a system register (and
1899 besides, due to GCC's CFI foobar you do not want to restore
1900 it). */
1901 general_p = ((regnum >= tdep->ppc_gp0_regnum
1902 && regnum < tdep->ppc_gp0_regnum + 32)
1903 || regnum == tdep->ppc_toc_regnum
1904 || regnum == tdep->ppc_cr_regnum
1905 || regnum == tdep->ppc_lr_regnum
1906 || regnum == tdep->ppc_ctr_regnum
1907 || regnum == tdep->ppc_xer_regnum
1908 || regnum == PC_REGNUM);
1909 if (group == general_reggroup)
1910 return general_p;
1911
1912 if (group == save_reggroup || group == restore_reggroup)
1913 return general_p || vector_p || float_p;
1914
1915 return 0;
1916}
1917
691d145a 1918/* The register format for RS/6000 floating point registers is always
64366f1c 1919 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1920
1921static int
691d145a 1922rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 1923{
691d145a
JB
1924 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1925
1926 return (reg->fpr
1927 && TYPE_CODE (type) == TYPE_CODE_FLT
1928 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
1929}
1930
7a78ae4e 1931static void
691d145a
JB
1932rs6000_register_to_value (struct frame_info *frame,
1933 int regnum,
1934 struct type *type,
50fd1280 1935 gdb_byte *to)
7a78ae4e 1936{
691d145a 1937 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 1938 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
1939
1940 gdb_assert (reg->fpr);
1941 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 1942
691d145a
JB
1943 get_frame_register (frame, regnum, from);
1944 convert_typed_floating (from, builtin_type_double, to, type);
1945}
7a292a7a 1946
7a78ae4e 1947static void
691d145a
JB
1948rs6000_value_to_register (struct frame_info *frame,
1949 int regnum,
1950 struct type *type,
50fd1280 1951 const gdb_byte *from)
7a78ae4e 1952{
691d145a 1953 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 1954 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
1955
1956 gdb_assert (reg->fpr);
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1958
1959 convert_typed_floating (from, type, to, builtin_type_double);
1960 put_frame_register (frame, regnum, to);
7a78ae4e 1961}
c906108c 1962
6ced10dd
JB
1963/* Move SPE vector register values between a 64-bit buffer and the two
1964 32-bit raw register halves in a regcache. This function handles
1965 both splitting a 64-bit value into two 32-bit halves, and joining
1966 two halves into a whole 64-bit value, depending on the function
1967 passed as the MOVE argument.
1968
1969 EV_REG must be the number of an SPE evN vector register --- a
1970 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1971 64-bit buffer.
1972
1973 Call MOVE once for each 32-bit half of that register, passing
1974 REGCACHE, the number of the raw register corresponding to that
1975 half, and the address of the appropriate half of BUFFER.
1976
1977 For example, passing 'regcache_raw_read' as the MOVE function will
1978 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1979 'regcache_raw_supply' will supply the contents of BUFFER to the
1980 appropriate pair of raw registers in REGCACHE.
1981
1982 You may need to cast away some 'const' qualifiers when passing
1983 MOVE, since this function can't tell at compile-time which of
1984 REGCACHE or BUFFER is acting as the source of the data. If C had
1985 co-variant type qualifiers, ... */
1986static void
1987e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 1988 int regnum, gdb_byte *buf),
6ced10dd 1989 struct regcache *regcache, int ev_reg,
50fd1280 1990 gdb_byte *buffer)
6ced10dd
JB
1991{
1992 struct gdbarch *arch = get_regcache_arch (regcache);
1993 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1994 int reg_index;
50fd1280 1995 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
1996
1997 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1998 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1999
2000 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2001
2002 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2003 {
2004 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2005 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2006 }
2007 else
2008 {
2009 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2010 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2011 }
2012}
2013
c8001721
EZ
2014static void
2015e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2016 int reg_nr, gdb_byte *buffer)
c8001721 2017{
6ced10dd 2018 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2020
6ced10dd
JB
2021 gdb_assert (regcache_arch == gdbarch);
2022
2023 if (tdep->ppc_ev0_regnum <= reg_nr
2024 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2025 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2026 else
a44bddec 2027 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2028 _("e500_pseudo_register_read: "
2029 "called on unexpected register '%s' (%d)"),
a44bddec 2030 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2031}
2032
2033static void
2034e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2035 int reg_nr, const gdb_byte *buffer)
c8001721 2036{
6ced10dd 2037 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2038 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2039
6ced10dd
JB
2040 gdb_assert (regcache_arch == gdbarch);
2041
2042 if (tdep->ppc_ev0_regnum <= reg_nr
2043 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2044 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2045 regcache_raw_write,
50fd1280 2046 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2047 else
a44bddec 2048 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2049 _("e500_pseudo_register_read: "
2050 "called on unexpected register '%s' (%d)"),
a44bddec 2051 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2052}
2053
2054/* The E500 needs a custom reggroup function: it has anonymous raw
2055 registers, and default_register_reggroup_p assumes that anonymous
2056 registers are not members of any reggroup. */
2057static int
2058e500_register_reggroup_p (struct gdbarch *gdbarch,
2059 int regnum,
2060 struct reggroup *group)
2061{
2062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2063
2064 /* The save and restore register groups need to include the
2065 upper-half registers, even though they're anonymous. */
2066 if ((group == save_reggroup
2067 || group == restore_reggroup)
2068 && (tdep->ppc_ev0_upper_regnum <= regnum
2069 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2070 return 1;
2071
2072 /* In all other regards, the default reggroup definition is fine. */
2073 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2074}
2075
18ed0c4e 2076/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2077static int
18ed0c4e 2078rs6000_stab_reg_to_regnum (int num)
c8001721 2079{
9f744501 2080 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2081
9f744501
JB
2082 if (0 <= num && num <= 31)
2083 return tdep->ppc_gp0_regnum + num;
2084 else if (32 <= num && num <= 63)
383f0f5b
JB
2085 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2086 specifies registers the architecture doesn't have? Our
2087 callers don't check the value we return. */
366f009f 2088 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2089 else if (77 <= num && num <= 108)
2090 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2091 else if (1200 <= num && num < 1200 + 32)
2092 return tdep->ppc_ev0_regnum + (num - 1200);
2093 else
2094 switch (num)
2095 {
2096 case 64:
2097 return tdep->ppc_mq_regnum;
2098 case 65:
2099 return tdep->ppc_lr_regnum;
2100 case 66:
2101 return tdep->ppc_ctr_regnum;
2102 case 76:
2103 return tdep->ppc_xer_regnum;
2104 case 109:
2105 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2106 case 110:
2107 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2108 case 111:
18ed0c4e 2109 return tdep->ppc_acc_regnum;
867e2dc5 2110 case 112:
18ed0c4e 2111 return tdep->ppc_spefscr_regnum;
9f744501
JB
2112 default:
2113 return num;
2114 }
18ed0c4e 2115}
9f744501 2116
9f744501 2117
18ed0c4e
JB
2118/* Convert a Dwarf 2 register number to a GDB register number. */
2119static int
2120rs6000_dwarf2_reg_to_regnum (int num)
2121{
2122 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2123
18ed0c4e
JB
2124 if (0 <= num && num <= 31)
2125 return tdep->ppc_gp0_regnum + num;
2126 else if (32 <= num && num <= 63)
2127 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2128 specifies registers the architecture doesn't have? Our
2129 callers don't check the value we return. */
2130 return tdep->ppc_fp0_regnum + (num - 32);
2131 else if (1124 <= num && num < 1124 + 32)
2132 return tdep->ppc_vr0_regnum + (num - 1124);
2133 else if (1200 <= num && num < 1200 + 32)
2134 return tdep->ppc_ev0_regnum + (num - 1200);
2135 else
2136 switch (num)
2137 {
2138 case 67:
2139 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2140 case 99:
2141 return tdep->ppc_acc_regnum;
2142 case 100:
2143 return tdep->ppc_mq_regnum;
2144 case 101:
2145 return tdep->ppc_xer_regnum;
2146 case 108:
2147 return tdep->ppc_lr_regnum;
2148 case 109:
2149 return tdep->ppc_ctr_regnum;
2150 case 356:
2151 return tdep->ppc_vrsave_regnum;
2152 case 612:
2153 return tdep->ppc_spefscr_regnum;
2154 default:
2155 return num;
2156 }
2188cbdd
EZ
2157}
2158
18ed0c4e 2159
7a78ae4e 2160static void
a3c001ce
JB
2161rs6000_store_return_value (struct type *type,
2162 struct regcache *regcache,
50fd1280 2163 const gdb_byte *valbuf)
7a78ae4e 2164{
a3c001ce
JB
2165 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 int regnum = -1;
ace1378a 2168
383f0f5b
JB
2169 /* The calling convention this function implements assumes the
2170 processor has floating-point registers. We shouldn't be using it
2171 on PPC variants that lack them. */
a3c001ce 2172 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2173
7a78ae4e 2174 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2175 /* Floating point values are returned starting from FPR1 and up.
2176 Say a double_double_double type could be returned in
64366f1c 2177 FPR1/FPR2/FPR3 triple. */
a3c001ce 2178 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2179 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2180 {
2181 if (TYPE_LENGTH (type) == 16
2182 && TYPE_VECTOR (type))
a3c001ce
JB
2183 regnum = tdep->ppc_vr0_regnum + 2;
2184 else
a44bddec 2185 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2186 _("rs6000_store_return_value: "
2187 "unexpected array return type"));
ace1378a 2188 }
7a78ae4e 2189 else
64366f1c 2190 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2191 regnum = tdep->ppc_gp0_regnum + 3;
2192
2193 {
2194 size_t bytes_written = 0;
2195
2196 while (bytes_written < TYPE_LENGTH (type))
2197 {
2198 /* How much of this value can we write to this register? */
2199 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2200 register_size (gdbarch, regnum));
2201 regcache_cooked_write_part (regcache, regnum,
2202 0, bytes_to_write,
50fd1280 2203 valbuf + bytes_written);
a3c001ce
JB
2204 regnum++;
2205 bytes_written += bytes_to_write;
2206 }
2207 }
7a78ae4e
ND
2208}
2209
a3c001ce 2210
7a78ae4e
ND
2211/* Extract from an array REGBUF containing the (raw) register state
2212 the address in which a function should return its structure value,
2213 as a CORE_ADDR (or an expression that can be used as one). */
2214
2215static CORE_ADDR
11269d7e
AC
2216rs6000_extract_struct_value_address (struct regcache *regcache)
2217{
2218 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2219 function call GDB knows the address of the struct return value
2220 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2221 the current call_function_by_hand() code only saves the most
2222 recent struct address leading to occasional calls. The code
2223 should instead maintain a stack of such addresses (in the dummy
2224 frame object). */
11269d7e
AC
2225 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2226 really got no idea where the return value is being stored. While
2227 r3, on function entry, contained the address it will have since
2228 been reused (scratch) and hence wouldn't be valid */
2229 return 0;
7a78ae4e
ND
2230}
2231
64366f1c 2232/* Hook called when a new child process is started. */
7a78ae4e
ND
2233
2234void
2235rs6000_create_inferior (int pid)
2236{
2237 if (rs6000_set_host_arch_hook)
2238 rs6000_set_host_arch_hook (pid);
c906108c
SS
2239}
2240\f
e2d0e7eb 2241/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2242
2243 Usually a function pointer's representation is simply the address
2244 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2245 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2246 three words, the first word is the address of the function, the
2247 second word is the TOC pointer (r2), and the third word is the
2248 static chain value. Throughout GDB it is currently assumed that a
2249 function pointer contains the address of the function, which is not
2250 easy to fix. In addition, the conversion of a function address to
8ba0209f 2251 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2252 inferior's memory space, with all its drawbacks. To be able to
2253 call C++ virtual methods in the inferior (which are called via
f517ea4e 2254 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2255 function address from a function pointer. */
2256
f517ea4e
PS
2257/* Return real function address if ADDR (a function pointer) is in the data
2258 space and is therefore a special function pointer. */
c906108c 2259
b9362cc7 2260static CORE_ADDR
e2d0e7eb
AC
2261rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2262 CORE_ADDR addr,
2263 struct target_ops *targ)
c906108c
SS
2264{
2265 struct obj_section *s;
2266
2267 s = find_pc_section (addr);
2268 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2269 return addr;
c906108c 2270
7a78ae4e 2271 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2272 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2273}
c906108c 2274\f
c5aa993b 2275
7a78ae4e 2276/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2277
2278
7a78ae4e
ND
2279/* The arrays here called registers_MUMBLE hold information about available
2280 registers.
c906108c
SS
2281
2282 For each family of PPC variants, I've tried to isolate out the
2283 common registers and put them up front, so that as long as you get
2284 the general family right, GDB will correctly identify the registers
2285 common to that family. The common register sets are:
2286
2287 For the 60x family: hid0 hid1 iabr dabr pir
2288
2289 For the 505 and 860 family: eie eid nri
2290
2291 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2292 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2293 pbu1 pbl2 pbu2
c906108c
SS
2294
2295 Most of these register groups aren't anything formal. I arrived at
2296 them by looking at the registers that occurred in more than one
6f5987a6
KB
2297 processor.
2298
2299 Note: kevinb/2002-04-30: Support for the fpscr register was added
2300 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2301 for Power. For PowerPC, slot 70 was unused and was already in the
2302 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2303 slot 70 was being used for "mq", so the next available slot (71)
2304 was chosen. It would have been nice to be able to make the
2305 register numbers the same across processor cores, but this wasn't
2306 possible without either 1) renumbering some registers for some
2307 processors or 2) assigning fpscr to a really high slot that's
2308 larger than any current register number. Doing (1) is bad because
2309 existing stubs would break. Doing (2) is undesirable because it
2310 would introduce a really large gap between fpscr and the rest of
2311 the registers for most processors. */
7a78ae4e 2312
64366f1c 2313/* Convenience macros for populating register arrays. */
7a78ae4e 2314
64366f1c 2315/* Within another macro, convert S to a string. */
7a78ae4e
ND
2316
2317#define STR(s) #s
2318
2319/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2320 and 64 bits on 64-bit systems. */
13ac140c 2321#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2322
2323/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2324 systems. */
13ac140c 2325#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2326
2327/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2328 systems. */
13ac140c 2329#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2330
1fcc0bb8 2331/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2332 systems. */
13ac140c 2333#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2334
64366f1c 2335/* Return a struct reg defining floating-point register NAME. */
13ac140c 2336#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2337
6ced10dd
JB
2338/* Return a struct reg defining a pseudo register NAME that is 64 bits
2339 long on all systems. */
2340#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2341
2342/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2343 systems and that doesn't exist on 64-bit systems. */
13ac140c 2344#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2345
2346/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2347 systems and that doesn't exist on 32-bit systems. */
13ac140c 2348#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2349
64366f1c 2350/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2351#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2352
6ced10dd
JB
2353/* Return a struct reg defining an anonymous raw register that's 32
2354 bits on all systems. */
2355#define A4 { 0, 4, 4, 0, 0, -1 }
2356
13ac140c
JB
2357/* Return a struct reg defining an SPR named NAME that is 32 bits on
2358 32-bit systems and 64 bits on 64-bit systems. */
2359#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2360
2361/* Return a struct reg defining an SPR named NAME that is 32 bits on
2362 all systems. */
2363#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2364
2365/* Return a struct reg defining an SPR named NAME that is 32 bits on
2366 all systems, and whose SPR number is NUMBER. */
2367#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2368
2369/* Return a struct reg defining an SPR named NAME that's 64 bits on
2370 64-bit systems and that doesn't exist on 32-bit systems. */
2371#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2372
7a78ae4e
ND
2373/* UISA registers common across all architectures, including POWER. */
2374
2375#define COMMON_UISA_REGS \
2376 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2377 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2378 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2379 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2380 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2381 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2382 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2383 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2384 /* 64 */ R(pc), R(ps)
2385
2386/* UISA-level SPRs for PowerPC. */
2387#define PPC_UISA_SPRS \
13ac140c 2388 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2389
c8001721
EZ
2390/* UISA-level SPRs for PowerPC without floating point support. */
2391#define PPC_UISA_NOFP_SPRS \
13ac140c 2392 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2393
7a78ae4e
ND
2394/* Segment registers, for PowerPC. */
2395#define PPC_SEGMENT_REGS \
2396 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2397 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2398 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2399 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2400
2401/* OEA SPRs for PowerPC. */
2402#define PPC_OEA_SPRS \
13ac140c
JB
2403 /* 87 */ S4(pvr), \
2404 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2405 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2406 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2407 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2408 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2409 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2410 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2411 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2412
64366f1c 2413/* AltiVec registers. */
1fcc0bb8
EZ
2414#define PPC_ALTIVEC_REGS \
2415 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2416 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2417 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2418 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2419 /*151*/R4(vscr), R4(vrsave)
2420
c8001721 2421
6ced10dd
JB
2422/* On machines supporting the SPE APU, the general-purpose registers
2423 are 64 bits long. There are SIMD vector instructions to treat them
2424 as pairs of floats, but the rest of the instruction set treats them
2425 as 32-bit registers, and only operates on their lower halves.
2426
2427 In the GDB regcache, we treat their high and low halves as separate
2428 registers. The low halves we present as the general-purpose
2429 registers, and then we have pseudo-registers that stitch together
2430 the upper and lower halves and present them as pseudo-registers. */
2431
2432/* SPE GPR lower halves --- raw registers. */
2433#define PPC_SPE_GP_REGS \
2434 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2435 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2436 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2437 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2438
2439/* SPE GPR upper halves --- anonymous raw registers. */
2440#define PPC_SPE_UPPER_GP_REGS \
2441 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2442 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2443 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2444 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2445
2446/* SPE GPR vector registers --- pseudo registers based on underlying
2447 gprs and the anonymous upper half raw registers. */
2448#define PPC_EV_PSEUDO_REGS \
2449/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2450/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2451/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2452/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2453
7a78ae4e 2454/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2455 user-level SPR's. */
7a78ae4e 2456static const struct reg registers_power[] =
c906108c 2457{
7a78ae4e 2458 COMMON_UISA_REGS,
13ac140c 2459 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2460 /* 71 */ R4(fpscr)
c906108c
SS
2461};
2462
7a78ae4e 2463/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2464 view of the PowerPC. */
7a78ae4e 2465static const struct reg registers_powerpc[] =
c906108c 2466{
7a78ae4e 2467 COMMON_UISA_REGS,
1fcc0bb8
EZ
2468 PPC_UISA_SPRS,
2469 PPC_ALTIVEC_REGS
c906108c
SS
2470};
2471
13ac140c
JB
2472/* IBM PowerPC 403.
2473
2474 Some notes about the "tcr" special-purpose register:
2475 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2476 403's programmable interval timer, fixed interval timer, and
2477 watchdog timer.
2478 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2479 watchdog timer, and nothing else.
2480
2481 Some of the fields are similar between the two, but they're not
2482 compatible with each other. Since the two variants have different
2483 registers, with different numbers, but the same name, we can't
2484 splice the register name to get the SPR number. */
7a78ae4e 2485static const struct reg registers_403[] =
c5aa993b 2486{
7a78ae4e
ND
2487 COMMON_UISA_REGS,
2488 PPC_UISA_SPRS,
2489 PPC_SEGMENT_REGS,
2490 PPC_OEA_SPRS,
13ac140c
JB
2491 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2492 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2493 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2494 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2495 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2496 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2497};
2498
13ac140c
JB
2499/* IBM PowerPC 403GC.
2500 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2501static const struct reg registers_403GC[] =
c5aa993b 2502{
7a78ae4e
ND
2503 COMMON_UISA_REGS,
2504 PPC_UISA_SPRS,
2505 PPC_SEGMENT_REGS,
2506 PPC_OEA_SPRS,
13ac140c
JB
2507 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2508 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2509 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2510 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2511 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2512 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2513 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2514 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2515};
2516
64366f1c 2517/* Motorola PowerPC 505. */
7a78ae4e 2518static const struct reg registers_505[] =
c5aa993b 2519{
7a78ae4e
ND
2520 COMMON_UISA_REGS,
2521 PPC_UISA_SPRS,
2522 PPC_SEGMENT_REGS,
2523 PPC_OEA_SPRS,
13ac140c 2524 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2525};
2526
64366f1c 2527/* Motorola PowerPC 860 or 850. */
7a78ae4e 2528static const struct reg registers_860[] =
c5aa993b 2529{
7a78ae4e
ND
2530 COMMON_UISA_REGS,
2531 PPC_UISA_SPRS,
2532 PPC_SEGMENT_REGS,
2533 PPC_OEA_SPRS,
13ac140c
JB
2534 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2535 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2536 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2537 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2538 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2539 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2540 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2541 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2542 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2543 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2544 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2545 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2546};
2547
7a78ae4e
ND
2548/* Motorola PowerPC 601. Note that the 601 has different register numbers
2549 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2550 register is the stub's problem. */
7a78ae4e 2551static const struct reg registers_601[] =
c5aa993b 2552{
7a78ae4e
ND
2553 COMMON_UISA_REGS,
2554 PPC_UISA_SPRS,
2555 PPC_SEGMENT_REGS,
2556 PPC_OEA_SPRS,
13ac140c
JB
2557 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2558 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2559};
2560
13ac140c
JB
2561/* Motorola PowerPC 602.
2562 See the notes under the 403 about 'tcr'. */
7a78ae4e 2563static const struct reg registers_602[] =
c5aa993b 2564{
7a78ae4e
ND
2565 COMMON_UISA_REGS,
2566 PPC_UISA_SPRS,
2567 PPC_SEGMENT_REGS,
2568 PPC_OEA_SPRS,
13ac140c
JB
2569 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2570 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2571 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2572};
2573
64366f1c 2574/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2575static const struct reg registers_603[] =
c5aa993b 2576{
7a78ae4e
ND
2577 COMMON_UISA_REGS,
2578 PPC_UISA_SPRS,
2579 PPC_SEGMENT_REGS,
2580 PPC_OEA_SPRS,
13ac140c
JB
2581 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2582 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2583 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2584};
2585
64366f1c 2586/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2587static const struct reg registers_604[] =
c5aa993b 2588{
7a78ae4e
ND
2589 COMMON_UISA_REGS,
2590 PPC_UISA_SPRS,
2591 PPC_SEGMENT_REGS,
2592 PPC_OEA_SPRS,
13ac140c
JB
2593 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2594 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2595 /* 127 */ S(sia), S(sda)
c906108c
SS
2596};
2597
64366f1c 2598/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2599static const struct reg registers_750[] =
c5aa993b 2600{
7a78ae4e
ND
2601 COMMON_UISA_REGS,
2602 PPC_UISA_SPRS,
2603 PPC_SEGMENT_REGS,
2604 PPC_OEA_SPRS,
13ac140c
JB
2605 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2606 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2607 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2608 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2609 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2610 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2611};
2612
2613
64366f1c 2614/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2615static const struct reg registers_7400[] =
2616{
2617 /* gpr0-gpr31, fpr0-fpr31 */
2618 COMMON_UISA_REGS,
13c7b1ca 2619 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2620 PPC_UISA_SPRS,
2621 /* sr0-sr15 */
2622 PPC_SEGMENT_REGS,
2623 PPC_OEA_SPRS,
2624 /* vr0-vr31, vrsave, vscr */
2625 PPC_ALTIVEC_REGS
2626 /* FIXME? Add more registers? */
2627};
2628
c8001721
EZ
2629/* Motorola e500. */
2630static const struct reg registers_e500[] =
2631{
6ced10dd
JB
2632 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2633 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2634 /* 64 .. 65 */ R(pc), R(ps),
2635 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2636 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2637 /* NOTE: Add new registers here the end of the raw register
2638 list and just before the first pseudo register. */
6ced10dd 2639 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2640};
2641
c906108c 2642/* Information about a particular processor variant. */
7a78ae4e 2643
c906108c 2644struct variant
c5aa993b
JM
2645 {
2646 /* Name of this variant. */
2647 char *name;
c906108c 2648
c5aa993b
JM
2649 /* English description of the variant. */
2650 char *description;
c906108c 2651
64366f1c 2652 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2653 enum bfd_architecture arch;
2654
64366f1c 2655 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2656 unsigned long mach;
2657
489461e2
EZ
2658 /* Number of real registers. */
2659 int nregs;
2660
2661 /* Number of pseudo registers. */
2662 int npregs;
2663
2664 /* Number of total registers (the sum of nregs and npregs). */
2665 int num_tot_regs;
2666
c5aa993b
JM
2667 /* Table of register names; registers[R] is the name of the register
2668 number R. */
7a78ae4e 2669 const struct reg *regs;
c5aa993b 2670 };
c906108c 2671
489461e2
EZ
2672#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2673
2674static int
2675num_registers (const struct reg *reg_list, int num_tot_regs)
2676{
2677 int i;
2678 int nregs = 0;
2679
2680 for (i = 0; i < num_tot_regs; i++)
2681 if (!reg_list[i].pseudo)
2682 nregs++;
2683
2684 return nregs;
2685}
2686
2687static int
2688num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2689{
2690 int i;
2691 int npregs = 0;
2692
2693 for (i = 0; i < num_tot_regs; i++)
2694 if (reg_list[i].pseudo)
2695 npregs ++;
2696
2697 return npregs;
2698}
c906108c 2699
c906108c
SS
2700/* Information in this table comes from the following web sites:
2701 IBM: http://www.chips.ibm.com:80/products/embedded/
2702 Motorola: http://www.mot.com/SPS/PowerPC/
2703
2704 I'm sure I've got some of the variant descriptions not quite right.
2705 Please report any inaccuracies you find to GDB's maintainer.
2706
2707 If you add entries to this table, please be sure to allow the new
2708 value as an argument to the --with-cpu flag, in configure.in. */
2709
489461e2 2710static struct variant variants[] =
c906108c 2711{
489461e2 2712
7a78ae4e 2713 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2714 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2715 registers_powerpc},
7a78ae4e 2716 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2717 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2718 registers_power},
7a78ae4e 2719 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2720 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2721 registers_403},
7a78ae4e 2722 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2723 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2724 registers_601},
7a78ae4e 2725 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2726 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2727 registers_602},
7a78ae4e 2728 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2729 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2730 registers_603},
7a78ae4e 2731 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2732 604, -1, -1, tot_num_registers (registers_604),
2733 registers_604},
7a78ae4e 2734 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2735 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2736 registers_403GC},
7a78ae4e 2737 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2738 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2739 registers_505},
7a78ae4e 2740 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2741 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2742 registers_860},
7a78ae4e 2743 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2744 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2745 registers_750},
1fcc0bb8 2746 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2747 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2748 registers_7400},
c8001721
EZ
2749 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2750 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2751 registers_e500},
7a78ae4e 2752
5d57ee30
KB
2753 /* 64-bit */
2754 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2755 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2756 registers_powerpc},
7a78ae4e 2757 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2758 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2759 registers_powerpc},
5d57ee30 2760 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2761 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2762 registers_powerpc},
7a78ae4e 2763 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2764 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2765 registers_powerpc},
5d57ee30 2766 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2767 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2768 registers_powerpc},
5d57ee30 2769 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2770 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2771 registers_powerpc},
5d57ee30 2772
64366f1c 2773 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2774 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2775 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2776 registers_power},
7a78ae4e 2777 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2778 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2779 registers_power},
7a78ae4e 2780 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2781 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2782 registers_power},
7a78ae4e 2783
489461e2 2784 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2785};
2786
64366f1c 2787/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2788
2789static void
2790init_variants (void)
2791{
2792 struct variant *v;
2793
2794 for (v = variants; v->name; v++)
2795 {
2796 if (v->nregs == -1)
2797 v->nregs = num_registers (v->regs, v->num_tot_regs);
2798 if (v->npregs == -1)
2799 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2800 }
2801}
c906108c 2802
7a78ae4e 2803/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2804 MACH. If no such variant exists, return null. */
c906108c 2805
7a78ae4e
ND
2806static const struct variant *
2807find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2808{
7a78ae4e 2809 const struct variant *v;
c5aa993b 2810
7a78ae4e
ND
2811 for (v = variants; v->name; v++)
2812 if (arch == v->arch && mach == v->mach)
2813 return v;
c906108c 2814
7a78ae4e 2815 return NULL;
c906108c 2816}
9364a0ef
EZ
2817
2818static int
2819gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2820{
2821 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2822 return print_insn_big_powerpc (memaddr, info);
2823 else
2824 return print_insn_little_powerpc (memaddr, info);
2825}
7a78ae4e 2826\f
61a65099
KB
2827static CORE_ADDR
2828rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2829{
2830 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2831}
2832
2833static struct frame_id
2834rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2835{
2836 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2837 SP_REGNUM),
2838 frame_pc_unwind (next_frame));
2839}
2840
2841struct rs6000_frame_cache
2842{
2843 CORE_ADDR base;
2844 CORE_ADDR initial_sp;
2845 struct trad_frame_saved_reg *saved_regs;
2846};
2847
2848static struct rs6000_frame_cache *
2849rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2850{
2851 struct rs6000_frame_cache *cache;
2852 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2854 struct rs6000_framedata fdata;
2855 int wordsize = tdep->wordsize;
e10b1c4c 2856 CORE_ADDR func, pc;
61a65099
KB
2857
2858 if ((*this_cache) != NULL)
2859 return (*this_cache);
2860 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2861 (*this_cache) = cache;
2862 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2863
e10b1c4c
DJ
2864 func = frame_func_unwind (next_frame);
2865 pc = frame_pc_unwind (next_frame);
2866 skip_prologue (func, pc, &fdata);
2867
2868 /* Figure out the parent's stack pointer. */
2869
2870 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2871 address of the current frame. Things might be easier if the
2872 ->frame pointed to the outer-most address of the frame. In
2873 the mean time, the address of the prev frame is used as the
2874 base address of this frame. */
2875 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2876
2877 /* If the function appears to be frameless, check a couple of likely
2878 indicators that we have simply failed to find the frame setup.
2879 Two common cases of this are missing symbols (i.e.
2880 frame_func_unwind returns the wrong address or 0), and assembly
2881 stubs which have a fast exit path but set up a frame on the slow
2882 path.
2883
2884 If the LR appears to return to this function, then presume that
2885 we have an ABI compliant frame that we failed to find. */
2886 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2887 {
e10b1c4c
DJ
2888 CORE_ADDR saved_lr;
2889 int make_frame = 0;
2890
2891 saved_lr = frame_unwind_register_unsigned (next_frame,
2892 tdep->ppc_lr_regnum);
2893 if (func == 0 && saved_lr == pc)
2894 make_frame = 1;
2895 else if (func != 0)
2896 {
2897 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2898 if (func == saved_func)
2899 make_frame = 1;
2900 }
2901
2902 if (make_frame)
2903 {
2904 fdata.frameless = 0;
2905 fdata.lr_offset = wordsize;
2906 }
61a65099 2907 }
e10b1c4c
DJ
2908
2909 if (!fdata.frameless)
2910 /* Frameless really means stackless. */
2911 cache->base = read_memory_addr (cache->base, wordsize);
2912
61a65099
KB
2913 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2914
2915 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2916 All fpr's from saved_fpr to fp31 are saved. */
2917
2918 if (fdata.saved_fpr >= 0)
2919 {
2920 int i;
2921 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2922
2923 /* If skip_prologue says floating-point registers were saved,
2924 but the current architecture has no floating-point registers,
2925 then that's strange. But we have no indices to even record
2926 the addresses under, so we just ignore it. */
2927 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2928 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2929 {
2930 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2931 fpr_addr += 8;
2932 }
61a65099
KB
2933 }
2934
2935 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2936 All gpr's from saved_gpr to gpr31 are saved. */
2937
2938 if (fdata.saved_gpr >= 0)
2939 {
2940 int i;
2941 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2942 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2943 {
2944 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2945 gpr_addr += wordsize;
2946 }
2947 }
2948
2949 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2950 All vr's from saved_vr to vr31 are saved. */
2951 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2952 {
2953 if (fdata.saved_vr >= 0)
2954 {
2955 int i;
2956 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2957 for (i = fdata.saved_vr; i < 32; i++)
2958 {
2959 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2960 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2961 }
2962 }
2963 }
2964
2965 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2966 All vr's from saved_ev to ev31 are saved. ????? */
2967 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2968 {
2969 if (fdata.saved_ev >= 0)
2970 {
2971 int i;
2972 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2973 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2974 {
2975 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2976 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2977 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2978 }
2979 }
2980 }
2981
2982 /* If != 0, fdata.cr_offset is the offset from the frame that
2983 holds the CR. */
2984 if (fdata.cr_offset != 0)
2985 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2986
2987 /* If != 0, fdata.lr_offset is the offset from the frame that
2988 holds the LR. */
2989 if (fdata.lr_offset != 0)
2990 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2991 /* The PC is found in the link register. */
2992 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2993
2994 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2995 holds the VRSAVE. */
2996 if (fdata.vrsave_offset != 0)
2997 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2998
2999 if (fdata.alloca_reg < 0)
3000 /* If no alloca register used, then fi->frame is the value of the
3001 %sp for this frame, and it is good enough. */
3002 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3003 else
3004 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3005 fdata.alloca_reg);
3006
3007 return cache;
3008}
3009
3010static void
3011rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3012 struct frame_id *this_id)
3013{
3014 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3015 this_cache);
3016 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3017}
3018
3019static void
3020rs6000_frame_prev_register (struct frame_info *next_frame,
3021 void **this_cache,
3022 int regnum, int *optimizedp,
3023 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3024 int *realnump, gdb_byte *valuep)
61a65099
KB
3025{
3026 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3027 this_cache);
1f67027d
AC
3028 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3029 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3030}
3031
3032static const struct frame_unwind rs6000_frame_unwind =
3033{
3034 NORMAL_FRAME,
3035 rs6000_frame_this_id,
3036 rs6000_frame_prev_register
3037};
3038
3039static const struct frame_unwind *
3040rs6000_frame_sniffer (struct frame_info *next_frame)
3041{
3042 return &rs6000_frame_unwind;
3043}
3044
3045\f
3046
3047static CORE_ADDR
3048rs6000_frame_base_address (struct frame_info *next_frame,
3049 void **this_cache)
3050{
3051 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3052 this_cache);
3053 return info->initial_sp;
3054}
3055
3056static const struct frame_base rs6000_frame_base = {
3057 &rs6000_frame_unwind,
3058 rs6000_frame_base_address,
3059 rs6000_frame_base_address,
3060 rs6000_frame_base_address
3061};
3062
3063static const struct frame_base *
3064rs6000_frame_base_sniffer (struct frame_info *next_frame)
3065{
3066 return &rs6000_frame_base;
3067}
3068
7a78ae4e
ND
3069/* Initialize the current architecture based on INFO. If possible, re-use an
3070 architecture from ARCHES, which is a list of architectures already created
3071 during this debugging session.
c906108c 3072
7a78ae4e 3073 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3074 a binary file. */
c906108c 3075
7a78ae4e
ND
3076static struct gdbarch *
3077rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3078{
3079 struct gdbarch *gdbarch;
3080 struct gdbarch_tdep *tdep;
708ff411 3081 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3082 struct reg *regs;
3083 const struct variant *v;
3084 enum bfd_architecture arch;
3085 unsigned long mach;
3086 bfd abfd;
7b112f9c 3087 int sysv_abi;
5bf1c677 3088 asection *sect;
7a78ae4e 3089
9aa1e687 3090 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3091 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3092
9aa1e687
KB
3093 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3094 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3095
3096 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3097
e712c1cf 3098 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3099 that, else choose a likely default. */
9aa1e687 3100 if (from_xcoff_exec)
c906108c 3101 {
11ed25ac 3102 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3103 wordsize = 8;
3104 else
3105 wordsize = 4;
c906108c 3106 }
9aa1e687
KB
3107 else if (from_elf_exec)
3108 {
3109 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3110 wordsize = 8;
3111 else
3112 wordsize = 4;
3113 }
c906108c 3114 else
7a78ae4e 3115 {
27b15785
KB
3116 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3117 wordsize = info.bfd_arch_info->bits_per_word /
3118 info.bfd_arch_info->bits_per_byte;
3119 else
3120 wordsize = 4;
7a78ae4e 3121 }
c906108c 3122
64366f1c 3123 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3124 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3125 arches != NULL;
3126 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3127 {
3128 /* Word size in the various PowerPC bfd_arch_info structs isn't
3129 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3130 separate word size check. */
7a78ae4e 3131 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3132 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3133 return arches->gdbarch;
3134 }
c906108c 3135
7a78ae4e
ND
3136 /* None found, create a new architecture from INFO, whose bfd_arch_info
3137 validity depends on the source:
3138 - executable useless
3139 - rs6000_host_arch() good
3140 - core file good
3141 - "set arch" trust blindly
3142 - GDB startup useless but harmless */
c906108c 3143
9aa1e687 3144 if (!from_xcoff_exec)
c906108c 3145 {
b732d07d 3146 arch = info.bfd_arch_info->arch;
7a78ae4e 3147 mach = info.bfd_arch_info->mach;
c906108c 3148 }
7a78ae4e 3149 else
c906108c 3150 {
7a78ae4e 3151 arch = bfd_arch_powerpc;
35cec841 3152 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3153 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3154 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3155 }
3156 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3157 tdep->wordsize = wordsize;
5bf1c677
EZ
3158
3159 /* For e500 executables, the apuinfo section is of help here. Such
3160 section contains the identifier and revision number of each
3161 Application-specific Processing Unit that is present on the
3162 chip. The content of the section is determined by the assembler
3163 which looks at each instruction and determines which unit (and
3164 which version of it) can execute it. In our case we just look for
3165 the existance of the section. */
3166
3167 if (info.abfd)
3168 {
3169 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3170 if (sect)
3171 {
3172 arch = info.bfd_arch_info->arch;
3173 mach = bfd_mach_ppc_e500;
3174 bfd_default_set_arch_mach (&abfd, arch, mach);
3175 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3176 }
3177 }
3178
7a78ae4e 3179 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3180
489461e2
EZ
3181 /* Initialize the number of real and pseudo registers in each variant. */
3182 init_variants ();
3183
64366f1c 3184 /* Choose variant. */
7a78ae4e
ND
3185 v = find_variant_by_arch (arch, mach);
3186 if (!v)
dd47e6fd
EZ
3187 return NULL;
3188
7a78ae4e
ND
3189 tdep->regs = v->regs;
3190
2188cbdd 3191 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3192 tdep->ppc_toc_regnum = 2;
3193 tdep->ppc_ps_regnum = 65;
3194 tdep->ppc_cr_regnum = 66;
3195 tdep->ppc_lr_regnum = 67;
3196 tdep->ppc_ctr_regnum = 68;
3197 tdep->ppc_xer_regnum = 69;
3198 if (v->mach == bfd_mach_ppc_601)
3199 tdep->ppc_mq_regnum = 124;
708ff411 3200 else if (arch == bfd_arch_rs6000)
2188cbdd 3201 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3202 else
3203 tdep->ppc_mq_regnum = -1;
366f009f 3204 tdep->ppc_fp0_regnum = 32;
708ff411 3205 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3206 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3207 tdep->ppc_vr0_regnum = -1;
3208 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3209 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3210 tdep->ppc_ev0_regnum = -1;
3211 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3212 tdep->ppc_acc_regnum = -1;
3213 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3214
c8001721
EZ
3215 set_gdbarch_pc_regnum (gdbarch, 64);
3216 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3217 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3218 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3219 if (sysv_abi && wordsize == 8)
05580c65 3220 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3221 else if (sysv_abi && wordsize == 4)
05580c65 3222 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3223 else
3224 {
3225 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3226 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3227 }
c8001721 3228
baffbae0
JB
3229 /* Set lr_frame_offset. */
3230 if (wordsize == 8)
3231 tdep->lr_frame_offset = 16;
3232 else if (sysv_abi)
3233 tdep->lr_frame_offset = 4;
3234 else
3235 tdep->lr_frame_offset = 8;
3236
f86a7158
JB
3237 if (v->arch == bfd_arch_rs6000)
3238 tdep->ppc_sr0_regnum = -1;
3239 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3240 switch (v->mach)
3241 {
3242 case bfd_mach_ppc:
412b3060 3243 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3244 tdep->ppc_vr0_regnum = 71;
3245 tdep->ppc_vrsave_regnum = 104;
3246 break;
3247 case bfd_mach_ppc_7400:
3248 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3249 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3250 break;
3251 case bfd_mach_ppc_e500:
c8001721 3252 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3253 tdep->ppc_ev0_upper_regnum = 32;
3254 tdep->ppc_ev0_regnum = 73;
3255 tdep->ppc_ev31_regnum = 104;
3256 tdep->ppc_acc_regnum = 71;
3257 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3258 tdep->ppc_fp0_regnum = -1;
3259 tdep->ppc_fpscr_regnum = -1;
f86a7158 3260 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3261 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3262 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3263 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3264 break;
f86a7158
JB
3265
3266 case bfd_mach_ppc64:
3267 case bfd_mach_ppc_620:
3268 case bfd_mach_ppc_630:
3269 case bfd_mach_ppc_a35:
3270 case bfd_mach_ppc_rs64ii:
3271 case bfd_mach_ppc_rs64iii:
3272 /* These processor's register sets don't have segment registers. */
3273 tdep->ppc_sr0_regnum = -1;
3274 break;
1fcc0bb8 3275 }
f86a7158
JB
3276 else
3277 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3278 _("rs6000_gdbarch_init: "
3279 "received unexpected BFD 'arch' value"));
1fcc0bb8 3280
338ef23d
AC
3281 /* Sanity check on registers. */
3282 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3283
56a6dfb9 3284 /* Select instruction printer. */
708ff411 3285 if (arch == bfd_arch_rs6000)
9364a0ef 3286 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3287 else
9364a0ef 3288 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3289
7a78ae4e 3290 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3291
3292 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3293 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3294 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3295 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3296 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3297
3298 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3299 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3300 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3301 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3302 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3303 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3304 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3305 if (sysv_abi)
3306 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3307 else
3308 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3309 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3310
11269d7e 3311 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3312 if (sysv_abi && wordsize == 8)
3313 /* PPC64 SYSV. */
3314 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3315 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3316 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3317 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3318 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3319 224. */
3320 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3321
691d145a
JB
3322 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3323 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3324 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3325
18ed0c4e
JB
3326 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3327 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3328 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3329 is correct for the SysV ABI when the wordsize is 8, but I'm also
3330 fairly certain that ppc_sysv_abi_push_arguments() will give even
3331 worse results since it only works for 32-bit code. So, for the moment,
3332 we're better off calling rs6000_push_arguments() since it works for
3333 64-bit code. At some point in the future, this matter needs to be
3334 revisited. */
3335 if (sysv_abi && wordsize == 4)
77b2b6d4 3336 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3337 else if (sysv_abi && wordsize == 8)
3338 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3339 else
77b2b6d4 3340 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3341
74055713 3342 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3343
3344 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3345 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3346 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3347
6066c3de
AC
3348 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3349 for the descriptor and ".FN" for the entry-point -- a user
3350 specifying "break FN" will unexpectedly end up with a breakpoint
3351 on the descriptor and not the function. This architecture method
3352 transforms any breakpoints on descriptors into breakpoints on the
3353 corresponding entry point. */
3354 if (sysv_abi && wordsize == 8)
3355 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3356
7a78ae4e
ND
3357 /* Not sure on this. FIXMEmgo */
3358 set_gdbarch_frame_args_skip (gdbarch, 8);
3359
05580c65 3360 if (!sysv_abi)
b5622e8d 3361 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3362
15813d3f
AC
3363 if (!sysv_abi)
3364 {
3365 /* Handle RS/6000 function pointers (which are really function
3366 descriptors). */
f517ea4e
PS
3367 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3368 rs6000_convert_from_func_ptr_addr);
9aa1e687 3369 }
7a78ae4e 3370
143985b7
AF
3371 /* Helpers for function argument information. */
3372 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3373
7b112f9c 3374 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3375 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3376
61a65099
KB
3377 switch (info.osabi)
3378 {
f5aecab8
PG
3379 case GDB_OSABI_LINUX:
3380 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3381 have altivec registers. If not, ptrace will fail the first time it's
3382 called to access one and will not be called again. This wart will
3383 be removed when Daniel Jacobowitz's proposal for autodetecting target
3384 registers is implemented. */
3385 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3386 {
3387 tdep->ppc_vr0_regnum = 71;
3388 tdep->ppc_vrsave_regnum = 104;
3389 }
3390 /* Fall Thru */
61a65099
KB
3391 case GDB_OSABI_NETBSD_AOUT:
3392 case GDB_OSABI_NETBSD_ELF:
3393 case GDB_OSABI_UNKNOWN:
61a65099
KB
3394 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3395 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3396 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3397 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3398 break;
3399 default:
61a65099 3400 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3401
3402 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3403 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3404 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3405 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3406 }
3407
ef5200c1
AC
3408 if (from_xcoff_exec)
3409 {
3410 /* NOTE: jimix/2003-06-09: This test should really check for
3411 GDB_OSABI_AIX when that is defined and becomes
3412 available. (Actually, once things are properly split apart,
3413 the test goes away.) */
3414 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3415 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3416 }
3417
9f643768
JB
3418 init_sim_regno_table (gdbarch);
3419
7a78ae4e 3420 return gdbarch;
c906108c
SS
3421}
3422
7b112f9c
JT
3423static void
3424rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3425{
3426 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3427
3428 if (tdep == NULL)
3429 return;
3430
4be87837 3431 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3432}
3433
c906108c
SS
3434/* Initialization code. */
3435
a78f21af 3436extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3437
c906108c 3438void
fba45db2 3439_initialize_rs6000_tdep (void)
c906108c 3440{
7b112f9c
JT
3441 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3442 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3443}
This page took 0.758116 seconds and 4 git commands to generate.