Introduce assign_operation
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
3666a048 3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
3b2ca824 32#include "target-float.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6f072a10 39#include "reggroups.h"
82ca8957 40#include "dwarf2/frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
cd453cd0 53#include "elf/ppc64.h"
7a78ae4e 54
6ded7999 55#include "solib-svr4.h"
9aa1e687 56#include "ppc-tdep.h"
debb1f09 57#include "ppc-ravenscar-thread.h"
7a78ae4e 58
a89aa300 59#include "dis-asm.h"
338ef23d 60
61a65099
KB
61#include "trad-frame.h"
62#include "frame-unwind.h"
63#include "frame-base.h"
64
a67914de
MK
65#include "ax.h"
66#include "ax-gdb.h"
325fac50 67#include <algorithm>
a67914de 68
7cc46491 69#include "features/rs6000/powerpc-32.c"
7284e1be 70#include "features/rs6000/powerpc-altivec32.c"
604c2f83 71#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-403.c"
73#include "features/rs6000/powerpc-403gc.c"
4d09ffea 74#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
75#include "features/rs6000/powerpc-505.c"
76#include "features/rs6000/powerpc-601.c"
77#include "features/rs6000/powerpc-602.c"
78#include "features/rs6000/powerpc-603.c"
79#include "features/rs6000/powerpc-604.c"
80#include "features/rs6000/powerpc-64.c"
7284e1be 81#include "features/rs6000/powerpc-altivec64.c"
604c2f83 82#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
83#include "features/rs6000/powerpc-7400.c"
84#include "features/rs6000/powerpc-750.c"
85#include "features/rs6000/powerpc-860.c"
86#include "features/rs6000/powerpc-e500.c"
87#include "features/rs6000/rs6000.c"
88
5a9e69ba
TJB
89/* Determine if regnum is an SPE pseudo-register. */
90#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
f949c649
TJB
94/* Determine if regnum is a decimal float pseudo-register. */
95#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
6f072a10
PFC
99/* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101#define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
604c2f83
LM
106/* Determine if regnum is a POWER7 VSX register. */
107#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111/* Determine if regnum is a POWER7 Extended FP register. */
112#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 115
8d619c01
EBM
116/* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118#define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122/* Determine if regnum is a Checkpointed POWER7 VSX register. */
123#define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127/* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128#define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
65b48a81
PB
132/* Holds the current set of options to be passed to the disassembler. */
133static char *powerpc_disassembler_options;
134
55eddb0f
DJ
135/* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137static struct cmd_list_element *setpowerpccmdlist = NULL;
138static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 143static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
144{
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150};
151
152/* A variable that can be configured by the user. */
153static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154static const char *powerpc_vector_abi_string = "auto";
155
187b041e
SM
156/* PowerPC-related per-inferior data. */
157
158struct ppc_inferior_data
159{
160 /* This is an optional in case we add more fields to ppc_inferior_data, we
161 don't want it instantiated as soon as we get the ppc_inferior_data for an
162 inferior. */
480af54c 163 gdb::optional<displaced_step_buffers> disp_step_buf;
187b041e
SM
164};
165
166static inferior_key<ppc_inferior_data> ppc_inferior_data_key;
167
168/* Get the per-inferior PowerPC data for INF. */
169
170static ppc_inferior_data *
171get_ppc_per_inferior (inferior *inf)
172{
173 ppc_inferior_data *per_inf = ppc_inferior_data_key.get (inf);
174
175 if (per_inf == nullptr)
176 per_inf = ppc_inferior_data_key.emplace (inf);
177
178 return per_inf;
179}
180
0df8b418 181/* To be used by skip_prologue. */
7a78ae4e
ND
182
183struct rs6000_framedata
184 {
185 int offset; /* total size of frame --- the distance
186 by which we decrement sp to allocate
187 the frame */
188 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 189 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 190 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 191 int saved_vr; /* smallest # of saved vr */
96ff0de4 192 int saved_ev; /* smallest # of saved ev */
7a78ae4e 193 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
194 char frameless; /* true if frameless functions. */
195 char nosavedpc; /* true if pc not saved. */
46a9b8ed 196 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
197 int gpr_offset; /* offset of saved gprs from prev sp */
198 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 199 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 200 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 201 int lr_offset; /* offset of saved lr */
46a9b8ed 202 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 203 int cr_offset; /* offset of saved cr */
6be8bc0c 204 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
205 };
206
c906108c 207
604c2f83
LM
208/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
209int
210vsx_register_p (struct gdbarch *gdbarch, int regno)
211{
212 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
213 if (tdep->ppc_vsr0_regnum < 0)
214 return 0;
215 else
216 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
217 <= tdep->ppc_vsr0_upper_regnum + 31);
218}
219
64b84175
KB
220/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
221int
be8626e0 222altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 223{
be8626e0 224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
225 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
226 return 0;
227 else
228 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
229}
230
383f0f5b 231
867e2dc5
JB
232/* Return true if REGNO is an SPE register, false otherwise. */
233int
be8626e0 234spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 235{
be8626e0 236 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
237
238 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 239 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
240 return 1;
241
6ced10dd
JB
242 /* Is it a reference to one of the raw upper GPR halves? */
243 if (tdep->ppc_ev0_upper_regnum >= 0
244 && tdep->ppc_ev0_upper_regnum <= regno
245 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
246 return 1;
247
867e2dc5
JB
248 /* Is it a reference to the 64-bit accumulator, and do we have that? */
249 if (tdep->ppc_acc_regnum >= 0
250 && tdep->ppc_acc_regnum == regno)
251 return 1;
252
253 /* Is it a reference to the SPE floating-point status and control register,
254 and do we have that? */
255 if (tdep->ppc_spefscr_regnum >= 0
256 && tdep->ppc_spefscr_regnum == regno)
257 return 1;
258
259 return 0;
260}
261
262
383f0f5b
JB
263/* Return non-zero if the architecture described by GDBARCH has
264 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
265int
266ppc_floating_point_unit_p (struct gdbarch *gdbarch)
267{
383f0f5b
JB
268 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
269
270 return (tdep->ppc_fp0_regnum >= 0
dda83cd7 271 && tdep->ppc_fpscr_regnum >= 0);
0a613259 272}
9f643768 273
06caf7d2
CES
274/* Return non-zero if the architecture described by GDBARCH has
275 Altivec registers (vr0 --- vr31, vrsave and vscr). */
276int
277ppc_altivec_support_p (struct gdbarch *gdbarch)
278{
279 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
280
281 return (tdep->ppc_vr0_regnum >= 0
dda83cd7 282 && tdep->ppc_vrsave_regnum >= 0);
06caf7d2 283}
09991fa0
JB
284
285/* Check that TABLE[GDB_REGNO] is not already initialized, and then
286 set it to SIM_REGNO.
287
288 This is a helper function for init_sim_regno_table, constructing
289 the table mapping GDB register numbers to sim register numbers; we
290 initialize every element in that table to -1 before we start
291 filling it in. */
9f643768
JB
292static void
293set_sim_regno (int *table, int gdb_regno, int sim_regno)
294{
295 /* Make sure we don't try to assign any given GDB register a sim
296 register number more than once. */
297 gdb_assert (table[gdb_regno] == -1);
298 table[gdb_regno] = sim_regno;
299}
300
09991fa0
JB
301
302/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
303 numbers to simulator register numbers, based on the values placed
304 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
305static void
306init_sim_regno_table (struct gdbarch *arch)
307{
308 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 309 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
310 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
311 int i;
7cc46491
DJ
312 static const char *const segment_regs[] = {
313 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
314 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
315 };
9f643768
JB
316
317 /* Presume that all registers not explicitly mentioned below are
318 unavailable from the sim. */
319 for (i = 0; i < total_regs; i++)
320 sim_regno[i] = -1;
321
322 /* General-purpose registers. */
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
325
326 /* Floating-point registers. */
327 if (tdep->ppc_fp0_regnum >= 0)
328 for (i = 0; i < ppc_num_fprs; i++)
329 set_sim_regno (sim_regno,
dda83cd7
SM
330 tdep->ppc_fp0_regnum + i,
331 sim_ppc_f0_regnum + i);
9f643768
JB
332 if (tdep->ppc_fpscr_regnum >= 0)
333 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
334
335 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
336 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
337 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
338
339 /* Segment registers. */
7cc46491
DJ
340 for (i = 0; i < ppc_num_srs; i++)
341 {
342 int gdb_regno;
343
344 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
345 if (gdb_regno >= 0)
346 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
347 }
9f643768
JB
348
349 /* Altivec registers. */
350 if (tdep->ppc_vr0_regnum >= 0)
351 {
352 for (i = 0; i < ppc_num_vrs; i++)
dda83cd7
SM
353 set_sim_regno (sim_regno,
354 tdep->ppc_vr0_regnum + i,
355 sim_ppc_vr0_regnum + i);
9f643768
JB
356
357 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
dda83cd7 358 we can treat this more like the other cases. */
9f643768 359 set_sim_regno (sim_regno,
dda83cd7
SM
360 tdep->ppc_vr0_regnum + ppc_num_vrs,
361 sim_ppc_vscr_regnum);
9f643768
JB
362 }
363 /* vsave is a special-purpose register, so the code below handles it. */
364
365 /* SPE APU (E500) registers. */
6ced10dd
JB
366 if (tdep->ppc_ev0_upper_regnum >= 0)
367 for (i = 0; i < ppc_num_gprs; i++)
368 set_sim_regno (sim_regno,
dda83cd7
SM
369 tdep->ppc_ev0_upper_regnum + i,
370 sim_ppc_rh0_regnum + i);
9f643768
JB
371 if (tdep->ppc_acc_regnum >= 0)
372 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
373 /* spefscr is a special-purpose register, so the code below handles it. */
374
976102cd 375#ifdef WITH_PPC_SIM
9f643768
JB
376 /* Now handle all special-purpose registers. Verify that they
377 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
378 code. */
379 for (i = 0; i < sim_ppc_num_sprs; i++)
380 {
381 const char *spr_name = sim_spr_register_name (i);
382 int gdb_regno = -1;
383
384 if (spr_name != NULL)
385 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
386
387 if (gdb_regno != -1)
388 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
389 }
390#endif
9f643768
JB
391
392 /* Drop the initialized array into place. */
393 tdep->sim_regno = sim_regno;
394}
395
09991fa0
JB
396
397/* Given a GDB register number REG, return the corresponding SIM
398 register number. */
9f643768 399static int
e7faf938 400rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 401{
e7faf938 402 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
403 int sim_regno;
404
7cc46491 405 if (tdep->sim_regno == NULL)
e7faf938 406 init_sim_regno_table (gdbarch);
7cc46491 407
f6efe3f8 408 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
9f643768
JB
409 sim_regno = tdep->sim_regno[reg];
410
411 if (sim_regno >= 0)
412 return sim_regno;
413 else
414 return LEGACY_SIM_REGNO_IGNORE;
415}
416
d195bc9f
MK
417\f
418
419/* Register set support functions. */
420
f2db237a
AM
421/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
422 Write the register to REGCACHE. */
423
7284e1be 424void
d195bc9f 425ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 426 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
427{
428 if (regnum != -1 && offset != -1)
f2db237a
AM
429 {
430 if (regsize > 4)
431 {
ac7936df 432 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
433 int gdb_regsize = register_size (gdbarch, regnum);
434 if (gdb_regsize < regsize
435 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
436 offset += regsize - gdb_regsize;
437 }
73e1c03f 438 regcache->raw_supply (regnum, regs + offset);
f2db237a 439 }
d195bc9f
MK
440}
441
f2db237a
AM
442/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
443 in a field REGSIZE wide. Zero pad as necessary. */
444
7284e1be 445void
d195bc9f 446ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 447 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
448{
449 if (regnum != -1 && offset != -1)
f2db237a
AM
450 {
451 if (regsize > 4)
452 {
ac7936df 453 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
454 int gdb_regsize = register_size (gdbarch, regnum);
455 if (gdb_regsize < regsize)
456 {
457 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
458 {
459 memset (regs + offset, 0, regsize - gdb_regsize);
460 offset += regsize - gdb_regsize;
461 }
462 else
463 memset (regs + offset + regsize - gdb_regsize, 0,
464 regsize - gdb_regsize);
465 }
466 }
34a79281 467 regcache->raw_collect (regnum, regs + offset);
f2db237a 468 }
d195bc9f
MK
469}
470
f2db237a
AM
471static int
472ppc_greg_offset (struct gdbarch *gdbarch,
473 struct gdbarch_tdep *tdep,
474 const struct ppc_reg_offsets *offsets,
475 int regnum,
476 int *regsize)
477{
478 *regsize = offsets->gpr_size;
479 if (regnum >= tdep->ppc_gp0_regnum
480 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
481 return (offsets->r0_offset
482 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
483
484 if (regnum == gdbarch_pc_regnum (gdbarch))
485 return offsets->pc_offset;
486
487 if (regnum == tdep->ppc_ps_regnum)
488 return offsets->ps_offset;
489
490 if (regnum == tdep->ppc_lr_regnum)
491 return offsets->lr_offset;
492
493 if (regnum == tdep->ppc_ctr_regnum)
494 return offsets->ctr_offset;
495
496 *regsize = offsets->xr_size;
497 if (regnum == tdep->ppc_cr_regnum)
498 return offsets->cr_offset;
499
500 if (regnum == tdep->ppc_xer_regnum)
501 return offsets->xer_offset;
502
503 if (regnum == tdep->ppc_mq_regnum)
504 return offsets->mq_offset;
505
506 return -1;
507}
508
509static int
510ppc_fpreg_offset (struct gdbarch_tdep *tdep,
511 const struct ppc_reg_offsets *offsets,
512 int regnum)
513{
514 if (regnum >= tdep->ppc_fp0_regnum
515 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
516 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
517
518 if (regnum == tdep->ppc_fpscr_regnum)
519 return offsets->fpscr_offset;
520
521 return -1;
522}
523
d195bc9f
MK
524/* Supply register REGNUM in the general-purpose register set REGSET
525 from the buffer specified by GREGS and LEN to register cache
526 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
527
528void
529ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
530 int regnum, const void *gregs, size_t len)
531{
ac7936df 532 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
534 const struct ppc_reg_offsets *offsets
535 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 536 size_t offset;
f2db237a 537 int regsize;
d195bc9f 538
f2db237a 539 if (regnum == -1)
d195bc9f 540 {
f2db237a
AM
541 int i;
542 int gpr_size = offsets->gpr_size;
543
544 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
545 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
546 i++, offset += gpr_size)
19ba03f4
SM
547 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
548 gpr_size);
f2db237a
AM
549
550 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 551 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 552 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 553 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 554 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 555 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 556 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 557 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 558 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
559 (const gdb_byte *) gregs, offsets->cr_offset,
560 offsets->xr_size);
f2db237a 561 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
562 (const gdb_byte *) gregs, offsets->xer_offset,
563 offsets->xr_size);
f2db237a 564 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
565 (const gdb_byte *) gregs, offsets->mq_offset,
566 offsets->xr_size);
f2db237a 567 return;
d195bc9f
MK
568 }
569
f2db237a 570 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 571 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
572}
573
574/* Supply register REGNUM in the floating-point register set REGSET
575 from the buffer specified by FPREGS and LEN to register cache
576 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
577
578void
579ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
580 int regnum, const void *fpregs, size_t len)
581{
ac7936df 582 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
583 struct gdbarch_tdep *tdep;
584 const struct ppc_reg_offsets *offsets;
d195bc9f 585 size_t offset;
d195bc9f 586
f2db237a
AM
587 if (!ppc_floating_point_unit_p (gdbarch))
588 return;
383f0f5b 589
f2db237a 590 tdep = gdbarch_tdep (gdbarch);
19ba03f4 591 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 592 if (regnum == -1)
d195bc9f 593 {
f2db237a
AM
594 int i;
595
596 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
597 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
598 i++, offset += 8)
19ba03f4 599 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
600
601 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
602 (const gdb_byte *) fpregs, offsets->fpscr_offset,
603 offsets->fpscr_size);
f2db237a 604 return;
d195bc9f
MK
605 }
606
f2db237a 607 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 608 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 609 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
610}
611
612/* Collect register REGNUM in the general-purpose register set
f2db237a 613 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
614 GREGS and LEN. If REGNUM is -1, do this for all registers in
615 REGSET. */
616
617void
618ppc_collect_gregset (const struct regset *regset,
619 const struct regcache *regcache,
620 int regnum, void *gregs, size_t len)
621{
ac7936df 622 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
624 const struct ppc_reg_offsets *offsets
625 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 626 size_t offset;
f2db237a 627 int regsize;
d195bc9f 628
f2db237a 629 if (regnum == -1)
d195bc9f 630 {
f2db237a
AM
631 int i;
632 int gpr_size = offsets->gpr_size;
633
634 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
635 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
636 i++, offset += gpr_size)
19ba03f4 637 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
638
639 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 640 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 641 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 642 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 643 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 644 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 645 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 646 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 647 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
648 (gdb_byte *) gregs, offsets->cr_offset,
649 offsets->xr_size);
f2db237a 650 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
651 (gdb_byte *) gregs, offsets->xer_offset,
652 offsets->xr_size);
f2db237a 653 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
654 (gdb_byte *) gregs, offsets->mq_offset,
655 offsets->xr_size);
f2db237a 656 return;
d195bc9f
MK
657 }
658
f2db237a 659 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 660 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
661}
662
663/* Collect register REGNUM in the floating-point register set
f2db237a 664 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
665 FPREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668void
669ppc_collect_fpregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *fpregs, size_t len)
672{
ac7936df 673 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
674 struct gdbarch_tdep *tdep;
675 const struct ppc_reg_offsets *offsets;
d195bc9f 676 size_t offset;
d195bc9f 677
f2db237a
AM
678 if (!ppc_floating_point_unit_p (gdbarch))
679 return;
383f0f5b 680
f2db237a 681 tdep = gdbarch_tdep (gdbarch);
19ba03f4 682 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 683 if (regnum == -1)
d195bc9f 684 {
f2db237a
AM
685 int i;
686
687 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
688 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
689 i++, offset += 8)
19ba03f4 690 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
691
692 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
693 (gdb_byte *) fpregs, offsets->fpscr_offset,
694 offsets->fpscr_size);
f2db237a 695 return;
d195bc9f
MK
696 }
697
f2db237a 698 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 699 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 700 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 701}
06caf7d2 702
0d1243d9
PG
703static int
704insn_changes_sp_or_jumps (unsigned long insn)
705{
706 int opcode = (insn >> 26) & 0x03f;
707 int sd = (insn >> 21) & 0x01f;
708 int a = (insn >> 16) & 0x01f;
709 int subcode = (insn >> 1) & 0x3ff;
710
711 /* Changes the stack pointer. */
712
713 /* NOTE: There are many ways to change the value of a given register.
dda83cd7
SM
714 The ways below are those used when the register is R1, the SP,
715 in a funtion's epilogue. */
0d1243d9
PG
716
717 if (opcode == 31 && subcode == 444 && a == 1)
718 return 1; /* mr R1,Rn */
719 if (opcode == 14 && sd == 1)
720 return 1; /* addi R1,Rn,simm */
721 if (opcode == 58 && sd == 1)
722 return 1; /* ld R1,ds(Rn) */
723
724 /* Transfers control. */
725
726 if (opcode == 18)
727 return 1; /* b */
728 if (opcode == 16)
729 return 1; /* bc */
730 if (opcode == 19 && subcode == 16)
731 return 1; /* bclr */
732 if (opcode == 19 && subcode == 528)
733 return 1; /* bcctr */
734
735 return 0;
736}
737
738/* Return true if we are in the function's epilogue, i.e. after the
739 instruction that destroyed the function's stack frame.
740
741 1) scan forward from the point of execution:
742 a) If you find an instruction that modifies the stack pointer
dda83cd7
SM
743 or transfers control (except a return), execution is not in
744 an epilogue, return.
0d1243d9 745 b) Stop scanning if you find a return instruction or reach the
dda83cd7
SM
746 end of the function or reach the hard limit for the size of
747 an epilogue.
0d1243d9 748 2) scan backward from the point of execution:
dda83cd7
SM
749 a) If you find an instruction that modifies the stack pointer,
750 execution *is* in an epilogue, return.
751 b) Stop scanning if you reach an instruction that transfers
752 control or the beginning of the function or reach the hard
753 limit for the size of an epilogue. */
0d1243d9
PG
754
755static int
2608dbf8
WW
756rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
757 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 758{
46a9b8ed 759 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 760 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
761 bfd_byte insn_buf[PPC_INSN_SIZE];
762 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
763 unsigned long insn;
0d1243d9
PG
764
765 /* Find the search limits based on function boundaries and hard limit. */
766
767 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
768 return 0;
769
770 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
771 if (epilogue_start < func_start) epilogue_start = func_start;
772
773 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
774 if (epilogue_end > func_end) epilogue_end = func_end;
775
0d1243d9
PG
776 /* Scan forward until next 'blr'. */
777
778 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
779 {
bdec2917
LM
780 if (!safe_frame_unwind_memory (curfrm, scan_pc,
781 {insn_buf, PPC_INSN_SIZE}))
dda83cd7 782 return 0;
e17a4113 783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9 784 if (insn == 0x4e800020)
dda83cd7 785 break;
46a9b8ed
DJ
786 /* Assume a bctr is a tail call unless it points strictly within
787 this function. */
788 if (insn == 0x4e800420)
789 {
790 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
791 tdep->ppc_ctr_regnum);
792 if (ctr > func_start && ctr < func_end)
793 return 0;
794 else
795 break;
796 }
0d1243d9 797 if (insn_changes_sp_or_jumps (insn))
dda83cd7 798 return 0;
0d1243d9
PG
799 }
800
801 /* Scan backward until adjustment to stack pointer (R1). */
802
803 for (scan_pc = pc - PPC_INSN_SIZE;
804 scan_pc >= epilogue_start;
805 scan_pc -= PPC_INSN_SIZE)
806 {
bdec2917
LM
807 if (!safe_frame_unwind_memory (curfrm, scan_pc,
808 {insn_buf, PPC_INSN_SIZE}))
dda83cd7 809 return 0;
e17a4113 810 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9 811 if (insn_changes_sp_or_jumps (insn))
dda83cd7 812 return 1;
0d1243d9
PG
813 }
814
815 return 0;
816}
817
c9cf6e20 818/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
819
820static int
c9cf6e20 821rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
822{
823 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
824 gdbarch, pc);
825}
826
143985b7 827/* Get the ith function argument for the current function. */
b9362cc7 828static CORE_ADDR
143985b7
AF
829rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
830 struct type *type)
831{
50fd1280 832 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
833}
834
c906108c
SS
835/* Sequence of bytes for breakpoint instruction. */
836
04180708
YQ
837constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
838constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
d19280ad 839
04180708
YQ
840typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
841 rs6000_breakpoint;
c906108c 842
f74c6cad
LM
843/* Instruction masks for displaced stepping. */
844#define BRANCH_MASK 0xfc000000
845#define BP_MASK 0xFC0007FE
846#define B_INSN 0x48000000
847#define BC_INSN 0x40000000
848#define BXL_INSN 0x4c000000
849#define BP_INSN 0x7C000008
850
7f03bd92
PA
851/* Instruction masks used during single-stepping of atomic
852 sequences. */
2039d74e 853#define LOAD_AND_RESERVE_MASK 0xfc0007fe
7f03bd92
PA
854#define LWARX_INSTRUCTION 0x7c000028
855#define LDARX_INSTRUCTION 0x7c0000A8
2039d74e
EBM
856#define LBARX_INSTRUCTION 0x7c000068
857#define LHARX_INSTRUCTION 0x7c0000e8
858#define LQARX_INSTRUCTION 0x7c000228
859#define STORE_CONDITIONAL_MASK 0xfc0007ff
7f03bd92
PA
860#define STWCX_INSTRUCTION 0x7c00012d
861#define STDCX_INSTRUCTION 0x7c0001ad
2039d74e
EBM
862#define STBCX_INSTRUCTION 0x7c00056d
863#define STHCX_INSTRUCTION 0x7c0005ad
864#define STQCX_INSTRUCTION 0x7c00016d
865
866/* Check if insn is one of the Load And Reserve instructions used for atomic
867 sequences. */
868#define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
869 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
870 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
871 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
872 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
873/* Check if insn is one of the Store Conditional instructions used for atomic
874 sequences. */
875#define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
876 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
877 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
878 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
879 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
7f03bd92 880
1152d984
SM
881typedef buf_displaced_step_copy_insn_closure
882 ppc_displaced_step_copy_insn_closure;
cfba9872 883
c2508e90 884/* We can't displaced step atomic sequences. */
7f03bd92 885
1152d984 886static displaced_step_copy_insn_closure_up
7f03bd92
PA
887ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
888 CORE_ADDR from, CORE_ADDR to,
889 struct regcache *regs)
890{
891 size_t len = gdbarch_max_insn_length (gdbarch);
1152d984
SM
892 std::unique_ptr<ppc_displaced_step_copy_insn_closure> closure
893 (new ppc_displaced_step_copy_insn_closure (len));
cfba9872 894 gdb_byte *buf = closure->buf.data ();
7f03bd92
PA
895 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
896 int insn;
897
898 read_memory (from, buf, len);
899
900 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
901
2039d74e
EBM
902 /* Assume all atomic sequences start with a Load and Reserve instruction. */
903 if (IS_LOAD_AND_RESERVE_INSN (insn))
7f03bd92 904 {
136821d9 905 displaced_debug_printf ("can't displaced step atomic sequence at %s",
7f03bd92 906 paddress (gdbarch, from));
cfba9872 907
7f03bd92
PA
908 return NULL;
909 }
910
911 write_memory (to, buf, len);
912
136821d9 913 displaced_debug_printf ("copy %s->%s: %s",
dda83cd7 914 paddress (gdbarch, from), paddress (gdbarch, to),
136821d9 915 displaced_step_dump_bytes (buf, len).c_str ());;
7f03bd92 916
6d0cf446 917 /* This is a work around for a problem with g++ 4.8. */
1152d984 918 return displaced_step_copy_insn_closure_up (closure.release ());
7f03bd92
PA
919}
920
f74c6cad
LM
921/* Fix up the state of registers and memory after having single-stepped
922 a displaced instruction. */
63807e1d 923static void
f74c6cad 924ppc_displaced_step_fixup (struct gdbarch *gdbarch,
1152d984 925 struct displaced_step_copy_insn_closure *closure_,
63807e1d
PA
926 CORE_ADDR from, CORE_ADDR to,
927 struct regcache *regs)
f74c6cad 928{
e17a4113 929 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 930 /* Our closure is a copy of the instruction. */
1152d984
SM
931 ppc_displaced_step_copy_insn_closure *closure
932 = (ppc_displaced_step_copy_insn_closure *) closure_;
cfba9872
SM
933 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
934 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
935 ULONGEST opcode = 0;
936 /* Offset for non PC-relative instructions. */
937 LONGEST offset = PPC_INSN_SIZE;
938
939 opcode = insn & BRANCH_MASK;
940
136821d9
SM
941 displaced_debug_printf ("(ppc) fixup (%s, %s)",
942 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
943
944 /* Handle PC-relative branch instructions. */
945 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
946 {
a4fafde3 947 ULONGEST current_pc;
f74c6cad
LM
948
949 /* Read the current PC value after the instruction has been executed
950 in a displaced location. Calculate the offset to be applied to the
951 original PC value before the displaced stepping. */
952 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
953 &current_pc);
954 offset = current_pc - to;
955
956 if (opcode != BXL_INSN)
957 {
958 /* Check for AA bit indicating whether this is an absolute
959 addressing or PC-relative (1: absolute, 0: relative). */
960 if (!(insn & 0x2))
961 {
962 /* PC-relative addressing is being used in the branch. */
136821d9
SM
963 displaced_debug_printf ("(ppc) branch instruction: %s",
964 paddress (gdbarch, insn));
965 displaced_debug_printf ("(ppc) adjusted PC from %s to %s",
966 paddress (gdbarch, current_pc),
967 paddress (gdbarch, from + offset));
f74c6cad 968
0df8b418
MS
969 regcache_cooked_write_unsigned (regs,
970 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
971 from + offset);
972 }
973 }
974 else
975 {
976 /* If we're here, it means we have a branch to LR or CTR. If the
977 branch was taken, the offset is probably greater than 4 (the next
978 instruction), so it's safe to assume that an offset of 4 means we
979 did not take the branch. */
980 if (offset == PPC_INSN_SIZE)
981 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
982 from + PPC_INSN_SIZE);
983 }
984
985 /* Check for LK bit indicating whether we should set the link
986 register to point to the next instruction
987 (1: Set, 0: Don't set). */
988 if (insn & 0x1)
989 {
990 /* Link register needs to be set to the next instruction's PC. */
991 regcache_cooked_write_unsigned (regs,
992 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
993 from + PPC_INSN_SIZE);
136821d9
SM
994 displaced_debug_printf ("(ppc) adjusted LR to %s",
995 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
996
997 }
998 }
999 /* Check for breakpoints in the inferior. If we've found one, place the PC
1000 right at the breakpoint instruction. */
1001 else if ((insn & BP_MASK) == BP_INSN)
1002 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1003 else
1004 /* Handle any other instructions that do not fit in the categories above. */
1005 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1006 from + offset);
1007}
c906108c 1008
187b041e
SM
1009/* Implementation of gdbarch_displaced_step_prepare. */
1010
1011static displaced_step_prepare_status
1012ppc_displaced_step_prepare (gdbarch *arch, thread_info *thread,
1013 CORE_ADDR &displaced_pc)
1014{
1015 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1016
1017 if (!per_inferior->disp_step_buf.has_value ())
1018 {
1019 /* Figure out where the displaced step buffer is. */
1020 CORE_ADDR disp_step_buf_addr
1021 = displaced_step_at_entry_point (thread->inf->gdbarch);
1022
1023 per_inferior->disp_step_buf.emplace (disp_step_buf_addr);
1024 }
1025
1026 return per_inferior->disp_step_buf->prepare (thread, displaced_pc);
1027}
1028
1029/* Implementation of gdbarch_displaced_step_finish. */
1030
1031static displaced_step_finish_status
1032ppc_displaced_step_finish (gdbarch *arch, thread_info *thread,
1033 gdb_signal sig)
1034{
1035 ppc_inferior_data *per_inferior = get_ppc_per_inferior (thread->inf);
1036
1037 gdb_assert (per_inferior->disp_step_buf.has_value ());
1038
1039 return per_inferior->disp_step_buf->finish (arch, thread, sig);
1040}
1041
1042/* Implementation of gdbarch_displaced_step_restore_all_in_ptid. */
1043
1044static void
1045ppc_displaced_step_restore_all_in_ptid (inferior *parent_inf, ptid_t ptid)
1046{
1047 ppc_inferior_data *per_inferior = ppc_inferior_data_key.get (parent_inf);
1048
1049 if (per_inferior == nullptr
1050 || !per_inferior->disp_step_buf.has_value ())
1051 return;
1052
1053 per_inferior->disp_step_buf->restore_in_ptid (ptid);
1054}
1055
99e40580
UW
1056/* Always use hardware single-stepping to execute the
1057 displaced instruction. */
07fbbd01 1058static bool
40a53766 1059ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch)
99e40580 1060{
07fbbd01 1061 return true;
99e40580
UW
1062}
1063
2039d74e
EBM
1064/* Checks for an atomic sequence of instructions beginning with a
1065 Load And Reserve instruction and ending with a Store Conditional
1066 instruction. If such a sequence is found, attempt to step through it.
1067 A breakpoint is placed at the end of the sequence. */
a0ff9e1a 1068std::vector<CORE_ADDR>
f5ea389a 1069ppc_deal_with_atomic_sequence (struct regcache *regcache)
ce5eab59 1070{
ac7936df 1071 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1072 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
41e26ad3 1073 CORE_ADDR pc = regcache_read_pc (regcache);
70ab8ccd 1074 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
ce5eab59 1075 CORE_ADDR loc = pc;
24d45690 1076 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 1077 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1078 int insn_count;
1079 int index;
1080 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1081 const int atomic_sequence_length = 16; /* Instruction sequence length. */
ce5eab59
UW
1082 int bc_insn_count = 0; /* Conditional branch instruction count. */
1083
2039d74e
EBM
1084 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1085 if (!IS_LOAD_AND_RESERVE_INSN (insn))
a0ff9e1a 1086 return {};
ce5eab59
UW
1087
1088 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1089 instructions. */
1090 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1091 {
1092 loc += PPC_INSN_SIZE;
e17a4113 1093 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1094
1095 /* Assume that there is at most one conditional branch in the atomic
dda83cd7
SM
1096 sequence. If a conditional branch is found, put a breakpoint in
1097 its destination address. */
f74c6cad 1098 if ((insn & BRANCH_MASK) == BC_INSN)
dda83cd7
SM
1099 {
1100 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1101 int absolute = insn & 2;
4a7622d1 1102
dda83cd7
SM
1103 if (bc_insn_count >= 1)
1104 return {}; /* More than one conditional branch found, fallback
1105 to the standard single-step code. */
4a7622d1
UW
1106
1107 if (absolute)
1108 breaks[1] = immediate;
1109 else
a3769e0c 1110 breaks[1] = loc + immediate;
4a7622d1
UW
1111
1112 bc_insn_count++;
1113 last_breakpoint++;
dda83cd7 1114 }
ce5eab59 1115
2039d74e 1116 if (IS_STORE_CONDITIONAL_INSN (insn))
dda83cd7 1117 break;
ce5eab59
UW
1118 }
1119
2039d74e
EBM
1120 /* Assume that the atomic sequence ends with a Store Conditional
1121 instruction. */
1122 if (!IS_STORE_CONDITIONAL_INSN (insn))
a0ff9e1a 1123 return {};
ce5eab59 1124
24d45690 1125 closing_insn = loc;
ce5eab59 1126 loc += PPC_INSN_SIZE;
ce5eab59
UW
1127
1128 /* Insert a breakpoint right after the end of the atomic sequence. */
1129 breaks[0] = loc;
1130
24d45690 1131 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1132 placed (branch instruction's destination) anywhere in sequence. */
1133 if (last_breakpoint
1134 && (breaks[1] == breaks[0]
1135 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1136 last_breakpoint = 0;
1137
a0ff9e1a
SM
1138 std::vector<CORE_ADDR> next_pcs;
1139
ce5eab59 1140 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 1141 next_pcs.push_back (breaks[index]);
ce5eab59 1142
93f9a11f 1143 return next_pcs;
ce5eab59
UW
1144}
1145
c906108c 1146
c906108c
SS
1147#define SIGNED_SHORT(x) \
1148 ((sizeof (short) == 2) \
1149 ? ((int)(short)(x)) \
1150 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1151
1152#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1153
55d05f3b
KB
1154/* Limit the number of skipped non-prologue instructions, as the examining
1155 of the prologue is expensive. */
1156static int max_skip_non_prologue_insns = 10;
1157
773df3e5
JB
1158/* Return nonzero if the given instruction OP can be part of the prologue
1159 of a function and saves a parameter on the stack. FRAMEP should be
1160 set if one of the previous instructions in the function has set the
1161 Frame Pointer. */
1162
1163static int
1164store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1165{
1166 /* Move parameters from argument registers to temporary register. */
1167 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1168 {
1169 /* Rx must be scratch register r0. */
1170 const int rx_regno = (op >> 16) & 31;
1171 /* Ry: Only r3 - r10 are used for parameter passing. */
1172 const int ry_regno = GET_SRC_REG (op);
1173
1174 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
dda83cd7
SM
1175 {
1176 *r0_contains_arg = 1;
1177 return 1;
1178 }
773df3e5 1179 else
dda83cd7 1180 return 0;
773df3e5
JB
1181 }
1182
1183 /* Save a General Purpose Register on stack. */
1184
1185 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1186 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1187 {
1188 /* Rx: Only r3 - r10 are used for parameter passing. */
1189 const int rx_regno = GET_SRC_REG (op);
1190
1191 return (rx_regno >= 3 && rx_regno <= 10);
1192 }
dda83cd7 1193
773df3e5
JB
1194 /* Save a General Purpose Register on stack via the Frame Pointer. */
1195
1196 if (framep &&
1197 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1198 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1199 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1200 {
1201 /* Rx: Usually, only r3 - r10 are used for parameter passing.
dda83cd7 1202 However, the compiler sometimes uses r0 to hold an argument. */
773df3e5
JB
1203 const int rx_regno = GET_SRC_REG (op);
1204
1205 return ((rx_regno >= 3 && rx_regno <= 10)
dda83cd7 1206 || (rx_regno == 0 && *r0_contains_arg));
773df3e5
JB
1207 }
1208
1209 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1210 {
1211 /* Only f2 - f8 are used for parameter passing. */
1212 const int src_regno = GET_SRC_REG (op);
1213
1214 return (src_regno >= 2 && src_regno <= 8);
1215 }
1216
1217 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1218 {
1219 /* Only f2 - f8 are used for parameter passing. */
1220 const int src_regno = GET_SRC_REG (op);
1221
1222 return (src_regno >= 2 && src_regno <= 8);
1223 }
1224
1225 /* Not an insn that saves a parameter on stack. */
1226 return 0;
1227}
55d05f3b 1228
3c77c82a
DJ
1229/* Assuming that INSN is a "bl" instruction located at PC, return
1230 nonzero if the destination of the branch is a "blrl" instruction.
1231
1232 This sequence is sometimes found in certain function prologues.
1233 It allows the function to load the LR register with a value that
1234 they can use to access PIC data using PC-relative offsets. */
1235
1236static int
e17a4113 1237bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1238{
0b1b3e42
UW
1239 CORE_ADDR dest;
1240 int immediate;
1241 int absolute;
3c77c82a
DJ
1242 int dest_insn;
1243
0b1b3e42
UW
1244 absolute = (int) ((insn >> 1) & 1);
1245 immediate = ((insn & ~3) << 6) >> 6;
1246 if (absolute)
1247 dest = immediate;
1248 else
1249 dest = pc + immediate;
1250
e17a4113 1251 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1252 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1253 return 1;
1254
1255 return 0;
1256}
1257
dd6d677f
PFC
1258/* Return true if OP is a stw or std instruction with
1259 register operands RS and RA and any immediate offset.
1260
1261 If WITH_UPDATE is true, also return true if OP is
1262 a stwu or stdu instruction with the same operands.
1263
1264 Return false otherwise.
1265 */
1266static bool
1267store_insn_p (unsigned long op, unsigned long rs,
1268 unsigned long ra, bool with_update)
1269{
1270 rs = rs << 21;
1271 ra = ra << 16;
1272
1273 if (/* std RS, SIMM(RA) */
1274 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1275 /* stw RS, SIMM(RA) */
1276 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1277 return true;
1278
1279 if (with_update)
1280 {
1281 if (/* stdu RS, SIMM(RA) */
1282 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1283 /* stwu RS, SIMM(RA) */
1284 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1285 return true;
1286 }
1287
1288 return false;
1289}
1290
0df8b418 1291/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1292
1293 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1294 The former is anded with the opcode in question; if the result of
1295 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1296 question is a ``bl'' instruction.
1297
85102364 1298 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
8ab3d180
KB
1299 the branch displacement. */
1300
1301#define BL_MASK 0xfc000001
1302#define BL_INSTRUCTION 0x48000001
1303#define BL_DISPLACEMENT_MASK 0x03fffffc
1304
de9f48f0 1305static unsigned long
e17a4113 1306rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1307{
e17a4113 1308 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1309 gdb_byte buf[4];
1310 unsigned long op;
1311
1312 /* Fetch the instruction and convert it to an integer. */
1313 if (target_read_memory (pc, buf, 4))
1314 return 0;
e17a4113 1315 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1316
1317 return op;
1318}
1319
1320/* GCC generates several well-known sequences of instructions at the begining
1321 of each function prologue when compiling with -fstack-check. If one of
1322 such sequences starts at START_PC, then return the address of the
1323 instruction immediately past this sequence. Otherwise, return START_PC. */
1324
1325static CORE_ADDR
e17a4113 1326rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1327{
1328 CORE_ADDR pc = start_pc;
e17a4113 1329 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1330
1331 /* First possible sequence: A small number of probes.
dda83cd7
SM
1332 stw 0, -<some immediate>(1)
1333 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1334
1335 if ((op & 0xffff0000) == 0x90010000)
1336 {
1337 while ((op & 0xffff0000) == 0x90010000)
dda83cd7
SM
1338 {
1339 pc = pc + 4;
1340 op = rs6000_fetch_instruction (gdbarch, pc);
1341 }
de9f48f0
JG
1342 return pc;
1343 }
1344
1345 /* Second sequence: A probing loop.
dda83cd7
SM
1346 addi 12,1,-<some immediate>
1347 lis 0,-<some immediate>
1348 [possibly ori 0,0,<some immediate>]
1349 add 0,12,0
1350 cmpw 0,12,0
1351 beq 0,<disp>
1352 addi 12,12,-<some immediate>
1353 stw 0,0(12)
1354 b <disp>
1355 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1356
1357 while (1)
1358 {
1359 /* addi 12,1,-<some immediate> */
1360 if ((op & 0xffff0000) != 0x39810000)
dda83cd7 1361 break;
de9f48f0
JG
1362
1363 /* lis 0,-<some immediate> */
1364 pc = pc + 4;
e17a4113 1365 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1366 if ((op & 0xffff0000) != 0x3c000000)
dda83cd7 1367 break;
de9f48f0
JG
1368
1369 pc = pc + 4;
e17a4113 1370 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1371 /* [possibly ori 0,0,<some immediate>] */
1372 if ((op & 0xffff0000) == 0x60000000)
dda83cd7
SM
1373 {
1374 pc = pc + 4;
1375 op = rs6000_fetch_instruction (gdbarch, pc);
1376 }
de9f48f0
JG
1377 /* add 0,12,0 */
1378 if (op != 0x7c0c0214)
dda83cd7 1379 break;
de9f48f0
JG
1380
1381 /* cmpw 0,12,0 */
1382 pc = pc + 4;
e17a4113 1383 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1384 if (op != 0x7c0c0000)
dda83cd7 1385 break;
de9f48f0
JG
1386
1387 /* beq 0,<disp> */
1388 pc = pc + 4;
e17a4113 1389 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1390 if ((op & 0xff9f0001) != 0x41820000)
dda83cd7 1391 break;
de9f48f0
JG
1392
1393 /* addi 12,12,-<some immediate> */
1394 pc = pc + 4;
e17a4113 1395 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1396 if ((op & 0xffff0000) != 0x398c0000)
dda83cd7 1397 break;
de9f48f0
JG
1398
1399 /* stw 0,0(12) */
1400 pc = pc + 4;
e17a4113 1401 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1402 if (op != 0x900c0000)
dda83cd7 1403 break;
de9f48f0
JG
1404
1405 /* b <disp> */
1406 pc = pc + 4;
e17a4113 1407 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1408 if ((op & 0xfc000001) != 0x48000000)
dda83cd7 1409 break;
de9f48f0 1410
0df8b418 1411 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1412 pc = pc + 4;
e17a4113 1413 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1414 if ((op & 0xffff0000) == 0x900c0000)
dda83cd7
SM
1415 {
1416 pc = pc + 4;
1417 op = rs6000_fetch_instruction (gdbarch, pc);
1418 }
de9f48f0
JG
1419
1420 /* We found a valid stack-check sequence, return the new PC. */
1421 return pc;
1422 }
1423
30baf67b 1424 /* Third sequence: No probe; instead, a comparison between the stack size
de9f48f0
JG
1425 limit (saved in a run-time global variable) and the current stack
1426 pointer:
1427
dda83cd7
SM
1428 addi 0,1,-<some immediate>
1429 lis 12,__gnat_stack_limit@ha
1430 lwz 12,__gnat_stack_limit@l(12)
1431 twllt 0,12
de9f48f0
JG
1432
1433 or, with a small variant in the case of a bigger stack frame:
dda83cd7
SM
1434 addis 0,1,<some immediate>
1435 addic 0,0,-<some immediate>
1436 lis 12,__gnat_stack_limit@ha
1437 lwz 12,__gnat_stack_limit@l(12)
1438 twllt 0,12
de9f48f0
JG
1439 */
1440 while (1)
1441 {
1442 /* addi 0,1,-<some immediate> */
1443 if ((op & 0xffff0000) != 0x38010000)
dda83cd7
SM
1444 {
1445 /* small stack frame variant not recognized; try the
1446 big stack frame variant: */
de9f48f0 1447
dda83cd7
SM
1448 /* addis 0,1,<some immediate> */
1449 if ((op & 0xffff0000) != 0x3c010000)
1450 break;
de9f48f0 1451
dda83cd7
SM
1452 /* addic 0,0,-<some immediate> */
1453 pc = pc + 4;
1454 op = rs6000_fetch_instruction (gdbarch, pc);
1455 if ((op & 0xffff0000) != 0x30000000)
1456 break;
1457 }
de9f48f0
JG
1458
1459 /* lis 12,<some immediate> */
1460 pc = pc + 4;
e17a4113 1461 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1462 if ((op & 0xffff0000) != 0x3d800000)
dda83cd7 1463 break;
de9f48f0
JG
1464
1465 /* lwz 12,<some immediate>(12) */
1466 pc = pc + 4;
e17a4113 1467 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1468 if ((op & 0xffff0000) != 0x818c0000)
dda83cd7 1469 break;
de9f48f0
JG
1470
1471 /* twllt 0,12 */
1472 pc = pc + 4;
e17a4113 1473 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0 1474 if ((op & 0xfffffffe) != 0x7c406008)
dda83cd7 1475 break;
de9f48f0
JG
1476
1477 /* We found a valid stack-check sequence, return the new PC. */
1478 return pc;
1479 }
1480
1481 /* No stack check code in our prologue, return the start_pc. */
1482 return start_pc;
1483}
1484
6a16c029
TJB
1485/* return pc value after skipping a function prologue and also return
1486 information about a function frame.
1487
1488 in struct rs6000_framedata fdata:
1489 - frameless is TRUE, if function does not have a frame.
1490 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1491 - offset is the initial size of this stack frame --- the amount by
1492 which we decrement the sp to allocate the frame.
1493 - saved_gpr is the number of the first saved gpr.
1494 - saved_fpr is the number of the first saved fpr.
1495 - saved_vr is the number of the first saved vr.
1496 - saved_ev is the number of the first saved ev.
1497 - alloca_reg is the number of the register used for alloca() handling.
1498 Otherwise -1.
1499 - gpr_offset is the offset of the first saved gpr from the previous frame.
1500 - fpr_offset is the offset of the first saved fpr from the previous frame.
1501 - vr_offset is the offset of the first saved vr from the previous frame.
1502 - ev_offset is the offset of the first saved ev from the previous frame.
1503 - lr_offset is the offset of the saved lr
1504 - cr_offset is the offset of the saved cr
0df8b418 1505 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1506
7a78ae4e 1507static CORE_ADDR
be8626e0
MD
1508skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1509 struct rs6000_framedata *fdata)
c906108c
SS
1510{
1511 CORE_ADDR orig_pc = pc;
55d05f3b 1512 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1513 CORE_ADDR li_found_pc = 0;
50fd1280 1514 gdb_byte buf[4];
c906108c
SS
1515 unsigned long op;
1516 long offset = 0;
dd6d677f 1517 long alloca_reg_offset = 0;
6be8bc0c 1518 long vr_saved_offset = 0;
482ca3f5
KB
1519 int lr_reg = -1;
1520 int cr_reg = -1;
6be8bc0c 1521 int vr_reg = -1;
96ff0de4
EZ
1522 int ev_reg = -1;
1523 long ev_offset = 0;
6be8bc0c 1524 int vrsave_reg = -1;
c906108c
SS
1525 int reg;
1526 int framep = 0;
1527 int minimal_toc_loaded = 0;
ddb20c56 1528 int prev_insn_was_prologue_insn = 1;
55d05f3b 1529 int num_skip_non_prologue_insns = 0;
773df3e5 1530 int r0_contains_arg = 0;
be8626e0
MD
1531 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1532 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1533 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1534
ddb20c56 1535 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1536 fdata->saved_gpr = -1;
1537 fdata->saved_fpr = -1;
6be8bc0c 1538 fdata->saved_vr = -1;
96ff0de4 1539 fdata->saved_ev = -1;
c906108c
SS
1540 fdata->alloca_reg = -1;
1541 fdata->frameless = 1;
1542 fdata->nosavedpc = 1;
46a9b8ed 1543 fdata->lr_register = -1;
c906108c 1544
e17a4113 1545 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1546 if (pc >= lim_pc)
1547 pc = lim_pc;
1548
55d05f3b 1549 for (;; pc += 4)
c906108c 1550 {
ddb20c56 1551 /* Sometimes it isn't clear if an instruction is a prologue
dda83cd7 1552 instruction or not. When we encounter one of these ambiguous
ddb20c56 1553 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1554 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1555 if (prev_insn_was_prologue_insn)
1556 last_prologue_pc = pc;
55d05f3b
KB
1557
1558 /* Stop scanning if we've hit the limit. */
4e463ff5 1559 if (pc >= lim_pc)
55d05f3b
KB
1560 break;
1561
ddb20c56
KB
1562 prev_insn_was_prologue_insn = 1;
1563
55d05f3b 1564 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1565 if (target_read_memory (pc, buf, 4))
1566 break;
e17a4113 1567 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1568
c5aa993b
JM
1569 if ((op & 0xfc1fffff) == 0x7c0802a6)
1570 { /* mflr Rx */
43b1ab88
AC
1571 /* Since shared library / PIC code, which needs to get its
1572 address at runtime, can appear to save more than one link
1573 register vis:
1574
1575 *INDENT-OFF*
1576 stwu r1,-304(r1)
1577 mflr r3
1578 bl 0xff570d0 (blrl)
1579 stw r30,296(r1)
1580 mflr r30
1581 stw r31,300(r1)
1582 stw r3,308(r1);
1583 ...
1584 *INDENT-ON*
1585
1586 remember just the first one, but skip over additional
1587 ones. */
721d14ba 1588 if (lr_reg == -1)
dd6d677f 1589 lr_reg = (op & 0x03e00000) >> 21;
dda83cd7
SM
1590 if (lr_reg == 0)
1591 r0_contains_arg = 0;
c5aa993b 1592 continue;
c5aa993b
JM
1593 }
1594 else if ((op & 0xfc1fffff) == 0x7c000026)
1595 { /* mfcr Rx */
dd6d677f 1596 cr_reg = (op & 0x03e00000) >> 21;
dda83cd7
SM
1597 if (cr_reg == 0)
1598 r0_contains_arg = 0;
c5aa993b 1599 continue;
c906108c 1600
c906108c 1601 }
c5aa993b
JM
1602 else if ((op & 0xfc1f0000) == 0xd8010000)
1603 { /* stfd Rx,NUM(r1) */
1604 reg = GET_SRC_REG (op);
1605 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1606 {
1607 fdata->saved_fpr = reg;
1608 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1609 }
1610 continue;
c906108c 1611
c5aa993b
JM
1612 }
1613 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1614 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1615 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1616 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1617 {
1618
1619 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1620 if ((op & 0xfc1f0000) == 0xbc010000)
1621 fdata->gpr_mask |= ~((1U << reg) - 1);
1622 else
1623 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1624 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1625 {
1626 fdata->saved_gpr = reg;
7a78ae4e 1627 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1628 op &= ~3UL;
c5aa993b
JM
1629 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1630 }
1631 continue;
c906108c 1632
ddb20c56 1633 }
ef1bc9e7
AM
1634 else if ((op & 0xffff0000) == 0x3c4c0000
1635 || (op & 0xffff0000) == 0x3c400000
1636 || (op & 0xffff0000) == 0x38420000)
1637 {
1638 /* . 0: addis 2,12,.TOC.-0b@ha
1639 . addi 2,2,.TOC.-0b@l
1640 or
1641 . lis 2,.TOC.@ha
1642 . addi 2,2,.TOC.@l
1643 used by ELFv2 global entry points to set up r2. */
1644 continue;
1645 }
1646 else if (op == 0x60000000)
dda83cd7 1647 {
96ff0de4 1648 /* nop */
ddb20c56
KB
1649 /* Allow nops in the prologue, but do not consider them to
1650 be part of the prologue unless followed by other prologue
0df8b418 1651 instructions. */
ddb20c56
KB
1652 prev_insn_was_prologue_insn = 0;
1653 continue;
1654
c906108c 1655 }
c5aa993b 1656 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1657 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1658 fdata->offset = (op & 0x0000ffff) << 16;
1659 fdata->frameless = 0;
dda83cd7 1660 r0_contains_arg = 0;
c5aa993b
JM
1661 continue;
1662
1663 }
1664 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1665 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1666 fdata->offset |= (op & 0x0000ffff);
1667 fdata->frameless = 0;
dda83cd7 1668 r0_contains_arg = 0;
c5aa993b
JM
1669 continue;
1670
1671 }
be723e22 1672 else if (lr_reg >= 0 &&
dd6d677f
PFC
1673 ((store_insn_p (op, lr_reg, 1, true)) ||
1674 (framep &&
1675 (store_insn_p (op, lr_reg,
1676 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1677 false)))))
1678 {
1679 if (store_insn_p (op, lr_reg, 1, true))
1680 fdata->lr_offset = offset;
1681 else /* LR save through frame pointer. */
1682 fdata->lr_offset = alloca_reg_offset;
1683
c5aa993b 1684 fdata->nosavedpc = 0;
be723e22
MS
1685 /* Invalidate lr_reg, but don't set it to -1.
1686 That would mean that it had never been set. */
1687 lr_reg = -2;
98f08d3d
KB
1688 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1689 (op & 0xfc000000) == 0x90000000) /* stw */
1690 {
1691 /* Does not update r1, so add displacement to lr_offset. */
1692 fdata->lr_offset += SIGNED_SHORT (op);
1693 }
c5aa993b
JM
1694 continue;
1695
1696 }
be723e22 1697 else if (cr_reg >= 0 &&
dd6d677f
PFC
1698 (store_insn_p (op, cr_reg, 1, true)))
1699 {
98f08d3d 1700 fdata->cr_offset = offset;
be723e22
MS
1701 /* Invalidate cr_reg, but don't set it to -1.
1702 That would mean that it had never been set. */
1703 cr_reg = -2;
98f08d3d
KB
1704 if ((op & 0xfc000003) == 0xf8000000 ||
1705 (op & 0xfc000000) == 0x90000000)
1706 {
1707 /* Does not update r1, so add displacement to cr_offset. */
1708 fdata->cr_offset += SIGNED_SHORT (op);
1709 }
c5aa993b
JM
1710 continue;
1711
1712 }
721d14ba
DJ
1713 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1714 {
1715 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1716 prediction bits. If the LR has already been saved, we can
1717 skip it. */
1718 continue;
1719 }
c5aa993b
JM
1720 else if (op == 0x48000005)
1721 { /* bl .+4 used in
1722 -mrelocatable */
46a9b8ed 1723 fdata->used_bl = 1;
c5aa993b
JM
1724 continue;
1725
1726 }
1727 else if (op == 0x48000004)
1728 { /* b .+4 (xlc) */
1729 break;
1730
c5aa993b 1731 }
6be8bc0c
EZ
1732 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1733 in V.4 -mminimal-toc */
c5aa993b
JM
1734 (op & 0xffff0000) == 0x3bde0000)
1735 { /* addi 30,30,foo@l */
1736 continue;
c906108c 1737
c5aa993b
JM
1738 }
1739 else if ((op & 0xfc000001) == 0x48000001)
1740 { /* bl foo,
0df8b418 1741 to save fprs??? */
c906108c 1742
c5aa993b 1743 fdata->frameless = 0;
3c77c82a
DJ
1744
1745 /* If the return address has already been saved, we can skip
1746 calls to blrl (for PIC). */
dda83cd7 1747 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1748 {
1749 fdata->used_bl = 1;
1750 continue;
1751 }
3c77c82a 1752
6be8bc0c 1753 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1754 the first three instructions of the prologue and either
1755 we have no line table information or the line info tells
1756 us that the subroutine call is not part of the line
1757 associated with the prologue. */
c5aa993b 1758 if ((pc - orig_pc) > 8)
ebd98106
FF
1759 {
1760 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1761 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1762
0df8b418
MS
1763 if ((prologue_sal.line == 0)
1764 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1765 break;
1766 }
c5aa993b 1767
e17a4113 1768 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1769
6be8bc0c
EZ
1770 /* At this point, make sure this is not a trampoline
1771 function (a function that simply calls another functions,
1772 and nothing else). If the next is not a nop, this branch
0df8b418 1773 was part of the function prologue. */
c5aa993b
JM
1774
1775 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1776 break; /* Don't skip over
1777 this branch. */
c5aa993b 1778
46a9b8ed
DJ
1779 fdata->used_bl = 1;
1780 continue;
c5aa993b 1781 }
98f08d3d
KB
1782 /* update stack pointer */
1783 else if ((op & 0xfc1f0000) == 0x94010000)
1784 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1785 fdata->frameless = 0;
1786 fdata->offset = SIGNED_SHORT (op);
1787 offset = fdata->offset;
1788 continue;
c5aa993b 1789 }
7a8f494c
PFC
1790 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1791 { /* stwux rX,r1,rY || stdux rX,r1,rY */
0df8b418 1792 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1793 fdata->frameless = 0;
1794 offset = fdata->offset;
1795 continue;
1796 }
1797 else if ((op & 0xfc1f0003) == 0xf8010001)
1798 { /* stdu rX,NUM(r1) */
1799 fdata->frameless = 0;
1800 fdata->offset = SIGNED_SHORT (op & ~3UL);
1801 offset = fdata->offset;
1802 continue;
1803 }
7313566f
FF
1804 else if ((op & 0xffff0000) == 0x38210000)
1805 { /* addi r1,r1,SIMM */
1806 fdata->frameless = 0;
1807 fdata->offset += SIGNED_SHORT (op);
1808 offset = fdata->offset;
1809 continue;
1810 }
4e463ff5
DJ
1811 /* Load up minimal toc pointer. Do not treat an epilogue restore
1812 of r31 as a minimal TOC load. */
0df8b418
MS
1813 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1814 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1815 && !framep
c5aa993b 1816 && !minimal_toc_loaded)
98f08d3d 1817 {
c5aa993b
JM
1818 minimal_toc_loaded = 1;
1819 continue;
1820
f6077098 1821 /* move parameters from argument registers to local variable
dda83cd7 1822 registers */
f6077098
KB
1823 }
1824 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
dda83cd7
SM
1825 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1826 (((op >> 21) & 31) <= 10) &&
1827 ((long) ((op >> 16) & 31)
0df8b418 1828 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1829 {
1830 continue;
1831
c5aa993b
JM
1832 /* store parameters in stack */
1833 }
e802b915 1834 /* Move parameters from argument registers to temporary register. */
773df3e5 1835 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
dda83cd7 1836 {
c5aa993b
JM
1837 continue;
1838
1839 /* Set up frame pointer */
1840 }
76219d77
JB
1841 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1842 {
1843 fdata->frameless = 0;
1844 framep = 1;
1845 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
dd6d677f 1846 alloca_reg_offset = offset;
76219d77
JB
1847 continue;
1848
1849 /* Another way to set up the frame pointer. */
1850 }
c5aa993b
JM
1851 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1852 || op == 0x7c3f0b78)
1853 { /* mr r31, r1 */
1854 fdata->frameless = 0;
1855 framep = 1;
6f99cb26 1856 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
dd6d677f 1857 alloca_reg_offset = offset;
c5aa993b
JM
1858 continue;
1859
1860 /* Another way to set up the frame pointer. */
1861 }
1862 else if ((op & 0xfc1fffff) == 0x38010000)
1863 { /* addi rX, r1, 0x0 */
1864 fdata->frameless = 0;
1865 framep = 1;
6f99cb26
AC
1866 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1867 + ((op & ~0x38010000) >> 21));
dd6d677f 1868 alloca_reg_offset = offset;
c5aa993b 1869 continue;
c5aa993b 1870 }
6be8bc0c
EZ
1871 /* AltiVec related instructions. */
1872 /* Store the vrsave register (spr 256) in another register for
1873 later manipulation, or load a register into the vrsave
1874 register. 2 instructions are used: mfvrsave and
1875 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1876 and mtspr SPR256, Rn. */
1877 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1878 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1879 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1880 {
dda83cd7 1881 vrsave_reg = GET_SRC_REG (op);
6be8bc0c
EZ
1882 continue;
1883 }
1884 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
dda83cd7
SM
1885 {
1886 continue;
1887 }
6be8bc0c 1888 /* Store the register where vrsave was saved to onto the stack:
dda83cd7 1889 rS is the register where vrsave was stored in a previous
6be8bc0c
EZ
1890 instruction. */
1891 /* 100100 sssss 00001 dddddddd dddddddd */
1892 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
dda83cd7
SM
1893 {
1894 if (vrsave_reg == GET_SRC_REG (op))
6be8bc0c
EZ
1895 {
1896 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1897 vrsave_reg = -1;
1898 }
dda83cd7
SM
1899 continue;
1900 }
6be8bc0c 1901 /* Compute the new value of vrsave, by modifying the register
dda83cd7 1902 where vrsave was saved to. */
6be8bc0c
EZ
1903 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1904 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1905 {
1906 continue;
1907 }
1908 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1909 in a pair of insns to save the vector registers on the
1910 stack. */
1911 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1912 /* 001110 01110 00000 iiii iiii iiii iiii */
1913 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
dda83cd7 1914 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1915 {
dda83cd7
SM
1916 if ((op & 0xffff0000) == 0x38000000)
1917 r0_contains_arg = 0;
6be8bc0c
EZ
1918 li_found_pc = pc;
1919 vr_saved_offset = SIGNED_SHORT (op);
773df3e5 1920
dda83cd7
SM
1921 /* This insn by itself is not part of the prologue, unless
1922 if part of the pair of insns mentioned above. So do not
1923 record this insn as part of the prologue yet. */
1924 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1925 }
1926 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1927 /* 011111 sssss 11111 00000 00111001110 */
1928 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
dda83cd7 1929 {
6be8bc0c
EZ
1930 if (pc == (li_found_pc + 4))
1931 {
1932 vr_reg = GET_SRC_REG (op);
1933 /* If this is the first vector reg to be saved, or if
1934 it has a lower number than others previously seen,
1935 reupdate the frame info. */
1936 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1937 {
1938 fdata->saved_vr = vr_reg;
1939 fdata->vr_offset = vr_saved_offset + offset;
1940 }
1941 vr_saved_offset = -1;
1942 vr_reg = -1;
1943 li_found_pc = 0;
1944 }
1945 }
1946 /* End AltiVec related instructions. */
96ff0de4
EZ
1947
1948 /* Start BookE related instructions. */
1949 /* Store gen register S at (r31+uimm).
dda83cd7 1950 Any register less than r13 is volatile, so we don't care. */
96ff0de4
EZ
1951 /* 000100 sssss 11111 iiiii 01100100001 */
1952 else if (arch_info->mach == bfd_mach_ppc_e500
1953 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1954 {
dda83cd7 1955 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
96ff0de4 1956 {
dda83cd7 1957 unsigned int imm;
96ff0de4 1958 ev_reg = GET_SRC_REG (op);
dda83cd7 1959 imm = (op >> 11) & 0x1f;
96ff0de4
EZ
1960 ev_offset = imm * 8;
1961 /* If this is the first vector reg to be saved, or if
1962 it has a lower number than others previously seen,
1963 reupdate the frame info. */
1964 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1965 {
1966 fdata->saved_ev = ev_reg;
1967 fdata->ev_offset = ev_offset + offset;
1968 }
1969 }
dda83cd7
SM
1970 continue;
1971 }
96ff0de4
EZ
1972 /* Store gen register rS at (r1+rB). */
1973 /* 000100 sssss 00001 bbbbb 01100100000 */
1974 else if (arch_info->mach == bfd_mach_ppc_e500
1975 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1976 {
dda83cd7
SM
1977 if (pc == (li_found_pc + 4))
1978 {
1979 ev_reg = GET_SRC_REG (op);
96ff0de4 1980 /* If this is the first vector reg to be saved, or if
dda83cd7
SM
1981 it has a lower number than others previously seen,
1982 reupdate the frame info. */
1983 /* We know the contents of rB from the previous instruction. */
96ff0de4
EZ
1984 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1985 {
dda83cd7
SM
1986 fdata->saved_ev = ev_reg;
1987 fdata->ev_offset = vr_saved_offset + offset;
96ff0de4
EZ
1988 }
1989 vr_saved_offset = -1;
1990 ev_reg = -1;
1991 li_found_pc = 0;
dda83cd7
SM
1992 }
1993 continue;
1994 }
96ff0de4
EZ
1995 /* Store gen register r31 at (rA+uimm). */
1996 /* 000100 11111 aaaaa iiiii 01100100001 */
1997 else if (arch_info->mach == bfd_mach_ppc_e500
1998 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
dda83cd7
SM
1999 {
2000 /* Wwe know that the source register is 31 already, but
2001 it can't hurt to compute it. */
96ff0de4 2002 ev_reg = GET_SRC_REG (op);
dda83cd7 2003 ev_offset = ((op >> 11) & 0x1f) * 8;
96ff0de4
EZ
2004 /* If this is the first vector reg to be saved, or if
2005 it has a lower number than others previously seen,
2006 reupdate the frame info. */
2007 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2008 {
2009 fdata->saved_ev = ev_reg;
2010 fdata->ev_offset = ev_offset + offset;
2011 }
2012
2013 continue;
2014 }
2015 /* Store gen register S at (r31+r0).
dda83cd7 2016 Store param on stack when offset from SP bigger than 4 bytes. */
96ff0de4
EZ
2017 /* 000100 sssss 11111 00000 01100100000 */
2018 else if (arch_info->mach == bfd_mach_ppc_e500
2019 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2020 {
dda83cd7
SM
2021 if (pc == (li_found_pc + 4))
2022 {
2023 if ((op & 0x03e00000) >= 0x01a00000)
96ff0de4
EZ
2024 {
2025 ev_reg = GET_SRC_REG (op);
2026 /* If this is the first vector reg to be saved, or if
2027 it has a lower number than others previously seen,
2028 reupdate the frame info. */
dda83cd7
SM
2029 /* We know the contents of r0 from the previous
2030 instruction. */
96ff0de4
EZ
2031 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2032 {
2033 fdata->saved_ev = ev_reg;
2034 fdata->ev_offset = vr_saved_offset + offset;
2035 }
2036 ev_reg = -1;
2037 }
2038 vr_saved_offset = -1;
2039 li_found_pc = 0;
2040 continue;
dda83cd7 2041 }
96ff0de4
EZ
2042 }
2043 /* End BookE related instructions. */
2044
c5aa993b
JM
2045 else
2046 {
55d05f3b
KB
2047 /* Not a recognized prologue instruction.
2048 Handle optimizer code motions into the prologue by continuing
2049 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
2050 address is not yet saved in the frame. Also skip instructions
2051 if some of the GPRs expected to be saved are not yet saved. */
2052 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1cc62f2e
JB
2053 && fdata->saved_gpr != -1)
2054 {
2055 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2056
2057 if ((fdata->gpr_mask & all_mask) == all_mask)
2058 break;
2059 }
55d05f3b
KB
2060
2061 if (op == 0x4e800020 /* blr */
2062 || op == 0x4e800420) /* bctr */
2063 /* Do not scan past epilogue in frameless functions or
2064 trampolines. */
2065 break;
2066 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 2067 /* Never skip branches. */
55d05f3b
KB
2068 break;
2069
2070 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2071 /* Do not scan too many insns, scanning insns is expensive with
2072 remote targets. */
2073 break;
2074
2075 /* Continue scanning. */
2076 prev_insn_was_prologue_insn = 0;
2077 continue;
c5aa993b 2078 }
c906108c
SS
2079 }
2080
2081#if 0
2082/* I have problems with skipping over __main() that I need to address
0df8b418 2083 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
2084 * didn't work as well as I wanted to be. -MGO */
2085
2086 /* If the first thing after skipping a prolog is a branch to a function,
2087 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2088 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2089 work before calling a function right after a prologue, thus we can
64366f1c 2090 single out such gcc2 behaviour. */
c906108c 2091
c906108c 2092
c5aa993b 2093 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2094 { /* bl foo, an initializer function? */
e17a4113 2095 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2096
2097 if (op == 0x4def7b82)
2098 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2099
64366f1c
EZ
2100 /* Check and see if we are in main. If so, skip over this
2101 initializer function as well. */
c906108c 2102
c5aa993b 2103 tmp = find_pc_misc_function (pc);
6314a349
AC
2104 if (tmp >= 0
2105 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2106 return pc + 8;
2107 }
c906108c 2108 }
c906108c 2109#endif /* 0 */
c5aa993b 2110
46a9b8ed 2111 if (pc == lim_pc && lr_reg >= 0)
dd6d677f 2112 fdata->lr_register = lr_reg;
46a9b8ed 2113
c5aa993b 2114 fdata->offset = -fdata->offset;
ddb20c56 2115 return last_prologue_pc;
c906108c
SS
2116}
2117
7a78ae4e 2118static CORE_ADDR
4a7622d1 2119rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2120{
4a7622d1 2121 struct rs6000_framedata frame;
e3acb115 2122 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2123
4a7622d1
UW
2124 /* See if we can determine the end of the prologue via the symbol table.
2125 If so, then return either PC, or the PC after the prologue, whichever
2126 is greater. */
e3acb115 2127 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2128 {
d80b854b
UW
2129 CORE_ADDR post_prologue_pc
2130 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1 2131 if (post_prologue_pc != 0)
325fac50 2132 return std::max (pc, post_prologue_pc);
c906108c 2133 }
c906108c 2134
4a7622d1
UW
2135 /* Can't determine prologue from the symbol table, need to examine
2136 instructions. */
c906108c 2137
4a7622d1
UW
2138 /* Find an upper limit on the function prologue using the debug
2139 information. If the debug information could not be used to provide
2140 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2141 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2142 if (limit_pc == 0)
2143 limit_pc = pc + 100; /* Magic. */
794a477a 2144
e3acb115
JB
2145 /* Do not allow limit_pc to be past the function end, if we know
2146 where that end is... */
2147 if (func_end_addr && limit_pc > func_end_addr)
2148 limit_pc = func_end_addr;
2149
4a7622d1
UW
2150 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2151 return pc;
c906108c 2152}
c906108c 2153
8ab3d180
KB
2154/* When compiling for EABI, some versions of GCC emit a call to __eabi
2155 in the prologue of main().
2156
2157 The function below examines the code pointed at by PC and checks to
2158 see if it corresponds to a call to __eabi. If so, it returns the
2159 address of the instruction following that call. Otherwise, it simply
2160 returns PC. */
2161
63807e1d 2162static CORE_ADDR
8ab3d180
KB
2163rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2164{
e17a4113 2165 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2166 gdb_byte buf[4];
2167 unsigned long op;
2168
2169 if (target_read_memory (pc, buf, 4))
2170 return pc;
e17a4113 2171 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2172
2173 if ((op & BL_MASK) == BL_INSTRUCTION)
2174 {
2175 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2176 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2177 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2178
2179 /* We check for ___eabi (three leading underscores) in addition
dda83cd7 2180 to __eabi in case the GCC option "-fleading-underscore" was
8ab3d180 2181 used to compile the program. */
7cbd4a93 2182 if (s.minsym != NULL
dda83cd7 2183 && s.minsym->linkage_name () != NULL
c9d95fa3
CB
2184 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2185 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
8ab3d180
KB
2186 pc += 4;
2187 }
2188 return pc;
2189}
383f0f5b 2190
4a7622d1
UW
2191/* All the ABI's require 16 byte alignment. */
2192static CORE_ADDR
2193rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2194{
2195 return (addr & -16);
c906108c
SS
2196}
2197
977adac5
ND
2198/* Return whether handle_inferior_event() should proceed through code
2199 starting at PC in function NAME when stepping.
2200
2201 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2202 handle memory references that are too distant to fit in instructions
2203 generated by the compiler. For example, if 'foo' in the following
2204 instruction:
2205
2206 lwz r9,foo(r2)
2207
2208 is greater than 32767, the linker might replace the lwz with a branch to
2209 somewhere in @FIX1 that does the load in 2 instructions and then branches
2210 back to where execution should continue.
2211
2212 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2213 Unfortunately, the linker uses the "b" instruction for the
2214 branches, meaning that the link register doesn't get set.
2215 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2216
e76f05fa
UW
2217 Instead, use the gdbarch_skip_trampoline_code and
2218 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2219 @FIX code. */
977adac5 2220
63807e1d 2221static int
e17a4113 2222rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2223 CORE_ADDR pc, const char *name)
977adac5 2224{
61012eef 2225 return name && startswith (name, "@FIX");
977adac5
ND
2226}
2227
2228/* Skip code that the user doesn't want to see when stepping:
2229
2230 1. Indirect function calls use a piece of trampoline code to do context
2231 switching, i.e. to set the new TOC table. Skip such code if we are on
2232 its first instruction (as when we have single-stepped to here).
2233
2234 2. Skip shared library trampoline code (which is different from
c906108c 2235 indirect function call trampolines).
977adac5
ND
2236
2237 3. Skip bigtoc fixup code.
2238
c906108c 2239 Result is desired PC to step until, or NULL if we are not in
977adac5 2240 code that should be skipped. */
c906108c 2241
63807e1d 2242static CORE_ADDR
52f729a7 2243rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2244{
e17a4113
UW
2245 struct gdbarch *gdbarch = get_frame_arch (frame);
2246 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2248 unsigned int ii, op;
977adac5 2249 int rel;
c906108c 2250 CORE_ADDR solib_target_pc;
7cbd4a93 2251 struct bound_minimal_symbol msymbol;
c906108c 2252
c5aa993b
JM
2253 static unsigned trampoline_code[] =
2254 {
2255 0x800b0000, /* l r0,0x0(r11) */
2256 0x90410014, /* st r2,0x14(r1) */
2257 0x7c0903a6, /* mtctr r0 */
2258 0x804b0004, /* l r2,0x4(r11) */
2259 0x816b0008, /* l r11,0x8(r11) */
2260 0x4e800420, /* bctr */
2261 0x4e800020, /* br */
2262 0
c906108c
SS
2263 };
2264
977adac5
ND
2265 /* Check for bigtoc fixup code. */
2266 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2267 if (msymbol.minsym
e17a4113 2268 && rs6000_in_solib_return_trampoline (gdbarch, pc,
c9d95fa3 2269 msymbol.minsym->linkage_name ()))
977adac5
ND
2270 {
2271 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2272 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2273 if ((op & 0xfc000003) == 0x48000000)
2274 {
2275 /* Extract bits 6-29 as a signed 24-bit relative word address and
2276 add it to the containing PC. */
2277 rel = ((int)(op << 6) >> 6);
2278 return pc + 8 + rel;
2279 }
2280 }
2281
c906108c 2282 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2283 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2284 if (solib_target_pc)
2285 return solib_target_pc;
2286
c5aa993b
JM
2287 for (ii = 0; trampoline_code[ii]; ++ii)
2288 {
e17a4113 2289 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2290 if (op != trampoline_code[ii])
2291 return 0;
2292 }
0df8b418
MS
2293 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2294 addr. */
e17a4113 2295 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2296 return pc;
2297}
2298
794ac428
UW
2299/* ISA-specific vector types. */
2300
2301static struct type *
2302rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2303{
2304 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2305
2306 if (!tdep->ppc_builtin_type_vec64)
2307 {
df4df182
UW
2308 const struct builtin_type *bt = builtin_type (gdbarch);
2309
794ac428
UW
2310 /* The type we're building is this: */
2311#if 0
2312 union __gdb_builtin_type_vec64
2313 {
2314 int64_t uint64;
2315 float v2_float[2];
2316 int32_t v2_int32[2];
2317 int16_t v4_int16[4];
2318 int8_t v8_int8[8];
2319 };
2320#endif
2321
2322 struct type *t;
2323
e9bb382b
UW
2324 t = arch_composite_type (gdbarch,
2325 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2326 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2327 append_composite_type_field (t, "v2_float",
df4df182 2328 init_vector_type (bt->builtin_float, 2));
794ac428 2329 append_composite_type_field (t, "v2_int32",
df4df182 2330 init_vector_type (bt->builtin_int32, 2));
794ac428 2331 append_composite_type_field (t, "v4_int16",
df4df182 2332 init_vector_type (bt->builtin_int16, 4));
794ac428 2333 append_composite_type_field (t, "v8_int8",
df4df182 2334 init_vector_type (bt->builtin_int8, 8));
794ac428 2335
2062087b 2336 t->set_is_vector (true);
d0e39ea2 2337 t->set_name ("ppc_builtin_type_vec64");
794ac428
UW
2338 tdep->ppc_builtin_type_vec64 = t;
2339 }
2340
2341 return tdep->ppc_builtin_type_vec64;
2342}
2343
604c2f83
LM
2344/* Vector 128 type. */
2345
2346static struct type *
2347rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2348{
2349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2350
2351 if (!tdep->ppc_builtin_type_vec128)
2352 {
df4df182
UW
2353 const struct builtin_type *bt = builtin_type (gdbarch);
2354
604c2f83
LM
2355 /* The type we're building is this
2356
2357 type = union __ppc_builtin_type_vec128 {
2358 uint128_t uint128;
db9f5df8 2359 double v2_double[2];
604c2f83
LM
2360 float v4_float[4];
2361 int32_t v4_int32[4];
2362 int16_t v8_int16[8];
2363 int8_t v16_int8[16];
2364 }
2365 */
2366
2367 struct type *t;
2368
e9bb382b
UW
2369 t = arch_composite_type (gdbarch,
2370 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 2371 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2372 append_composite_type_field (t, "v2_double",
2373 init_vector_type (bt->builtin_double, 2));
604c2f83 2374 append_composite_type_field (t, "v4_float",
df4df182 2375 init_vector_type (bt->builtin_float, 4));
604c2f83 2376 append_composite_type_field (t, "v4_int32",
df4df182 2377 init_vector_type (bt->builtin_int32, 4));
604c2f83 2378 append_composite_type_field (t, "v8_int16",
df4df182 2379 init_vector_type (bt->builtin_int16, 8));
604c2f83 2380 append_composite_type_field (t, "v16_int8",
df4df182 2381 init_vector_type (bt->builtin_int8, 16));
604c2f83 2382
2062087b 2383 t->set_is_vector (true);
d0e39ea2 2384 t->set_name ("ppc_builtin_type_vec128");
604c2f83
LM
2385 tdep->ppc_builtin_type_vec128 = t;
2386 }
2387
2388 return tdep->ppc_builtin_type_vec128;
2389}
2390
7cc46491
DJ
2391/* Return the name of register number REGNO, or the empty string if it
2392 is an anonymous register. */
7a78ae4e 2393
fa88f677 2394static const char *
d93859e2 2395rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2396{
d93859e2 2397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2398
7cc46491
DJ
2399 /* The upper half "registers" have names in the XML description,
2400 but we present only the low GPRs and the full 64-bit registers
2401 to the user. */
2402 if (tdep->ppc_ev0_upper_regnum >= 0
2403 && tdep->ppc_ev0_upper_regnum <= regno
2404 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2405 return "";
2406
604c2f83
LM
2407 /* Hide the upper halves of the vs0~vs31 registers. */
2408 if (tdep->ppc_vsr0_regnum >= 0
2409 && tdep->ppc_vsr0_upper_regnum <= regno
2410 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2411 return "";
2412
8d619c01
EBM
2413 /* Hide the upper halves of the cvs0~cvs31 registers. */
2414 if (PPC_CVSR0_UPPER_REGNUM <= regno
2415 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2416 return "";
2417
7cc46491 2418 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2419 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2420 {
2421 static const char *const spe_regnames[] = {
2422 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2423 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2424 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2425 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2426 };
2427 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2428 }
2429
f949c649
TJB
2430 /* Check if the decimal128 pseudo-registers are available. */
2431 if (IS_DFP_PSEUDOREG (tdep, regno))
2432 {
2433 static const char *const dfp128_regnames[] = {
2434 "dl0", "dl1", "dl2", "dl3",
2435 "dl4", "dl5", "dl6", "dl7",
2436 "dl8", "dl9", "dl10", "dl11",
2437 "dl12", "dl13", "dl14", "dl15"
2438 };
2439 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2440 }
2441
6f072a10
PFC
2442 /* Check if this is a vX alias for a raw vrX vector register. */
2443 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2444 {
2445 static const char *const vector_alias_regnames[] = {
2446 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2447 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2448 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2449 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2450 };
2451 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2452 }
2453
604c2f83
LM
2454 /* Check if this is a VSX pseudo-register. */
2455 if (IS_VSX_PSEUDOREG (tdep, regno))
2456 {
2457 static const char *const vsx_regnames[] = {
2458 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2459 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2460 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2461 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2462 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2463 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2464 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2465 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2466 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2467 };
2468 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2469 }
2470
2471 /* Check if the this is a Extended FP pseudo-register. */
2472 if (IS_EFP_PSEUDOREG (tdep, regno))
2473 {
2474 static const char *const efpr_regnames[] = {
2475 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2476 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2477 "f46", "f47", "f48", "f49", "f50", "f51",
2478 "f52", "f53", "f54", "f55", "f56", "f57",
2479 "f58", "f59", "f60", "f61", "f62", "f63"
2480 };
2481 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2482 }
2483
8d619c01
EBM
2484 /* Check if this is a Checkpointed DFP pseudo-register. */
2485 if (IS_CDFP_PSEUDOREG (tdep, regno))
2486 {
2487 static const char *const cdfp128_regnames[] = {
2488 "cdl0", "cdl1", "cdl2", "cdl3",
2489 "cdl4", "cdl5", "cdl6", "cdl7",
2490 "cdl8", "cdl9", "cdl10", "cdl11",
2491 "cdl12", "cdl13", "cdl14", "cdl15"
2492 };
2493 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2494 }
2495
2496 /* Check if this is a Checkpointed VSX pseudo-register. */
2497 if (IS_CVSX_PSEUDOREG (tdep, regno))
2498 {
2499 static const char *const cvsx_regnames[] = {
2500 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2501 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2502 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2503 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2504 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2505 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2506 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2507 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2508 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2509 };
2510 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2511 }
2512
2513 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2514 if (IS_CEFP_PSEUDOREG (tdep, regno))
2515 {
2516 static const char *const cefpr_regnames[] = {
2517 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2518 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2519 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2520 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2521 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2522 };
2523 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2524 }
2525
d93859e2 2526 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2527}
2528
7cc46491
DJ
2529/* Return the GDB type object for the "standard" data type of data in
2530 register N. */
7a78ae4e
ND
2531
2532static struct type *
7cc46491 2533rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2534{
691d145a 2535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2536
f949c649
TJB
2537 /* These are the e500 pseudo-registers. */
2538 if (IS_SPE_PSEUDOREG (tdep, regnum))
2539 return rs6000_builtin_type_vec64 (gdbarch);
8d619c01
EBM
2540 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2541 || IS_CDFP_PSEUDOREG (tdep, regnum))
604c2f83 2542 /* PPC decimal128 pseudo-registers. */
f949c649 2543 return builtin_type (gdbarch)->builtin_declong;
6f072a10
PFC
2544 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2545 return gdbarch_register_type (gdbarch,
2546 tdep->ppc_vr0_regnum
2547 + (regnum
2548 - tdep->ppc_v0_alias_regnum));
8d619c01
EBM
2549 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2550 || IS_CVSX_PSEUDOREG (tdep, regnum))
604c2f83
LM
2551 /* POWER7 VSX pseudo-registers. */
2552 return rs6000_builtin_type_vec128 (gdbarch);
8d619c01
EBM
2553 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2554 || IS_CEFP_PSEUDOREG (tdep, regnum))
604c2f83
LM
2555 /* POWER7 Extended FP pseudo-registers. */
2556 return builtin_type (gdbarch)->builtin_double;
8d619c01
EBM
2557 else
2558 internal_error (__FILE__, __LINE__,
2559 _("rs6000_pseudo_register_type: "
2560 "called on unexpected register '%s' (%d)"),
2561 gdbarch_register_name (gdbarch, regnum), regnum);
7a78ae4e
ND
2562}
2563
6f072a10
PFC
2564/* Check if REGNUM is a member of REGGROUP. We only need to handle
2565 the vX aliases for the vector registers by always returning false
2566 to avoid duplicated information in "info register vector/all",
2567 since the raw vrX registers will already show in these cases. For
2568 other pseudo-registers we use the default membership function. */
2569
2570static int
2571rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2572 struct reggroup *group)
2573{
2574 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2575
2576 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2577 return 0;
2578 else
2579 return default_register_reggroup_p (gdbarch, regnum, group);
2580}
2581
691d145a 2582/* The register format for RS/6000 floating point registers is always
64366f1c 2583 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2584
2585static int
0abe36f5
MD
2586rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2587 struct type *type)
7a78ae4e 2588{
0abe36f5 2589 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2590
2591 return (tdep->ppc_fp0_regnum >= 0
2592 && regnum >= tdep->ppc_fp0_regnum
2593 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
78134374 2594 && type->code () == TYPE_CODE_FLT
0dfff4cb
UW
2595 && TYPE_LENGTH (type)
2596 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2597}
2598
8dccd430 2599static int
691d145a 2600rs6000_register_to_value (struct frame_info *frame,
dda83cd7
SM
2601 int regnum,
2602 struct type *type,
2603 gdb_byte *to,
8dccd430 2604 int *optimizedp, int *unavailablep)
7a78ae4e 2605{
0dfff4cb 2606 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2607 gdb_byte from[PPC_MAX_REGISTER_SIZE];
691d145a 2608
78134374 2609 gdb_assert (type->code () == TYPE_CODE_FLT);
7a78ae4e 2610
8dccd430 2611 if (!get_frame_register_bytes (frame, regnum, 0,
bdec2917
LM
2612 gdb::make_array_view (from,
2613 register_size (gdbarch,
2614 regnum)),
2615 optimizedp, unavailablep))
8dccd430
PA
2616 return 0;
2617
3b2ca824
UW
2618 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2619 to, type);
8dccd430
PA
2620 *optimizedp = *unavailablep = 0;
2621 return 1;
691d145a 2622}
7a292a7a 2623
7a78ae4e 2624static void
691d145a 2625rs6000_value_to_register (struct frame_info *frame,
dda83cd7
SM
2626 int regnum,
2627 struct type *type,
2628 const gdb_byte *from)
7a78ae4e 2629{
0dfff4cb 2630 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2631 gdb_byte to[PPC_MAX_REGISTER_SIZE];
691d145a 2632
78134374 2633 gdb_assert (type->code () == TYPE_CODE_FLT);
691d145a 2634
3b2ca824
UW
2635 target_float_convert (from, type,
2636 to, builtin_type (gdbarch)->builtin_double);
691d145a 2637 put_frame_register (frame, regnum, to);
7a78ae4e 2638}
c906108c 2639
05d1431c
PA
2640 /* The type of a function that moves the value of REG between CACHE
2641 or BUF --- in either direction. */
2642typedef enum register_status (*move_ev_register_func) (struct regcache *,
2643 int, void *);
2644
6ced10dd
JB
2645/* Move SPE vector register values between a 64-bit buffer and the two
2646 32-bit raw register halves in a regcache. This function handles
2647 both splitting a 64-bit value into two 32-bit halves, and joining
2648 two halves into a whole 64-bit value, depending on the function
2649 passed as the MOVE argument.
2650
2651 EV_REG must be the number of an SPE evN vector register --- a
2652 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2653 64-bit buffer.
2654
2655 Call MOVE once for each 32-bit half of that register, passing
2656 REGCACHE, the number of the raw register corresponding to that
2657 half, and the address of the appropriate half of BUFFER.
2658
2659 For example, passing 'regcache_raw_read' as the MOVE function will
2660 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2661 'regcache_raw_supply' will supply the contents of BUFFER to the
2662 appropriate pair of raw registers in REGCACHE.
2663
2664 You may need to cast away some 'const' qualifiers when passing
2665 MOVE, since this function can't tell at compile-time which of
2666 REGCACHE or BUFFER is acting as the source of the data. If C had
2667 co-variant type qualifiers, ... */
05d1431c
PA
2668
2669static enum register_status
2670e500_move_ev_register (move_ev_register_func move,
2671 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd 2672{
ac7936df 2673 struct gdbarch *arch = regcache->arch ();
6ced10dd
JB
2674 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2675 int reg_index;
19ba03f4 2676 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2677 enum register_status status;
6ced10dd 2678
5a9e69ba 2679 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2680
2681 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2682
8b164abb 2683 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2684 {
05d1431c
PA
2685 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2686 byte_buffer);
2687 if (status == REG_VALID)
2688 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2689 byte_buffer + 4);
6ced10dd
JB
2690 }
2691 else
2692 {
05d1431c
PA
2693 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2694 if (status == REG_VALID)
2695 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2696 byte_buffer + 4);
6ced10dd 2697 }
05d1431c
PA
2698
2699 return status;
6ced10dd
JB
2700}
2701
05d1431c
PA
2702static enum register_status
2703do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2704{
10eaee5f 2705 regcache->raw_write (regnum, (const gdb_byte *) buffer);
05d1431c
PA
2706
2707 return REG_VALID;
2708}
2709
2710static enum register_status
849d0ba8
YQ
2711e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2712 int ev_reg, gdb_byte *buffer)
f949c649 2713{
849d0ba8
YQ
2714 struct gdbarch *arch = regcache->arch ();
2715 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2716 int reg_index;
2717 enum register_status status;
2718
2719 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2720
2721 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2722
2723 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2724 {
2725 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2726 buffer);
2727 if (status == REG_VALID)
2728 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2729 buffer + 4);
2730 }
2731 else
2732 {
2733 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2734 if (status == REG_VALID)
2735 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2736 buffer + 4);
2737 }
2738
2739 return status;
2740
f949c649
TJB
2741}
2742
2743static void
2744e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2745 int reg_nr, const gdb_byte *buffer)
2746{
05d1431c
PA
2747 e500_move_ev_register (do_regcache_raw_write, regcache,
2748 reg_nr, (void *) buffer);
f949c649
TJB
2749}
2750
604c2f83 2751/* Read method for DFP pseudo-registers. */
05d1431c 2752static enum register_status
849d0ba8 2753dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
f949c649
TJB
2754 int reg_nr, gdb_byte *buffer)
2755{
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2757 int reg_index, fp0;
05d1431c 2758 enum register_status status;
f949c649 2759
8d619c01
EBM
2760 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2761 {
2762 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2763 fp0 = PPC_F0_REGNUM;
2764 }
2765 else
2766 {
2767 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2768
2769 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2770 fp0 = PPC_CF0_REGNUM;
2771 }
2772
f949c649
TJB
2773 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2774 {
2775 /* Read two FP registers to form a whole dl register. */
8d619c01 2776 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
05d1431c 2777 if (status == REG_VALID)
8d619c01
EBM
2778 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2779 buffer + 8);
f949c649
TJB
2780 }
2781 else
2782 {
8d619c01 2783 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
05d1431c 2784 if (status == REG_VALID)
8d619c01 2785 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
f949c649 2786 }
05d1431c
PA
2787
2788 return status;
f949c649
TJB
2789}
2790
604c2f83 2791/* Write method for DFP pseudo-registers. */
f949c649 2792static void
604c2f83 2793dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2794 int reg_nr, const gdb_byte *buffer)
2795{
2796 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2797 int reg_index, fp0;
2798
2799 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2800 {
2801 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2802 fp0 = PPC_F0_REGNUM;
2803 }
2804 else
2805 {
2806 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2807
2808 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2809 fp0 = PPC_CF0_REGNUM;
2810 }
f949c649
TJB
2811
2812 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2813 {
2814 /* Write each half of the dl register into a separate
8d619c01
EBM
2815 FP register. */
2816 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2817 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2818 }
2819 else
2820 {
8d619c01
EBM
2821 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2822 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
f949c649
TJB
2823 }
2824}
2825
6f072a10
PFC
2826/* Read method for the vX aliases for the raw vrX registers. */
2827
2828static enum register_status
2829v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2830 readable_regcache *regcache, int reg_nr,
2831 gdb_byte *buffer)
2832{
2833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2834 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2835
2836 return regcache->raw_read (tdep->ppc_vr0_regnum
2837 + (reg_nr - tdep->ppc_v0_alias_regnum),
2838 buffer);
2839}
2840
2841/* Write method for the vX aliases for the raw vrX registers. */
2842
2843static void
2844v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2845 struct regcache *regcache,
2846 int reg_nr, const gdb_byte *buffer)
2847{
2848 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2849 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2850
2851 regcache->raw_write (tdep->ppc_vr0_regnum
2852 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2853}
2854
604c2f83 2855/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2856static enum register_status
849d0ba8 2857vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2858 int reg_nr, gdb_byte *buffer)
2859{
2860 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2861 int reg_index, vr0, fp0, vsr0_upper;
05d1431c 2862 enum register_status status;
604c2f83 2863
8d619c01
EBM
2864 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2865 {
2866 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2867 vr0 = PPC_VR0_REGNUM;
2868 fp0 = PPC_F0_REGNUM;
2869 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2870 }
2871 else
2872 {
2873 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2874
2875 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2876 vr0 = PPC_CVR0_REGNUM;
2877 fp0 = PPC_CF0_REGNUM;
2878 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2879 }
2880
604c2f83
LM
2881 /* Read the portion that overlaps the VMX registers. */
2882 if (reg_index > 31)
8d619c01 2883 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
604c2f83
LM
2884 else
2885 /* Read the portion that overlaps the FPR registers. */
2886 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2887 {
8d619c01 2888 status = regcache->raw_read (fp0 + reg_index, buffer);
05d1431c 2889 if (status == REG_VALID)
8d619c01
EBM
2890 status = regcache->raw_read (vsr0_upper + reg_index,
2891 buffer + 8);
604c2f83
LM
2892 }
2893 else
2894 {
8d619c01 2895 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
05d1431c 2896 if (status == REG_VALID)
8d619c01 2897 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
604c2f83 2898 }
05d1431c
PA
2899
2900 return status;
604c2f83
LM
2901}
2902
2903/* Write method for POWER7 VSX pseudo-registers. */
2904static void
2905vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2906 int reg_nr, const gdb_byte *buffer)
2907{
2908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2909 int reg_index, vr0, fp0, vsr0_upper;
2910
2911 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2912 {
2913 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2914 vr0 = PPC_VR0_REGNUM;
2915 fp0 = PPC_F0_REGNUM;
2916 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2917 }
2918 else
2919 {
2920 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2921
2922 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2923 vr0 = PPC_CVR0_REGNUM;
2924 fp0 = PPC_CF0_REGNUM;
2925 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2926 }
604c2f83
LM
2927
2928 /* Write the portion that overlaps the VMX registers. */
2929 if (reg_index > 31)
8d619c01 2930 regcache->raw_write (vr0 + reg_index - 32, buffer);
604c2f83
LM
2931 else
2932 /* Write the portion that overlaps the FPR registers. */
2933 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2934 {
8d619c01
EBM
2935 regcache->raw_write (fp0 + reg_index, buffer);
2936 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
604c2f83
LM
2937 }
2938 else
2939 {
8d619c01
EBM
2940 regcache->raw_write (fp0 + reg_index, buffer + 8);
2941 regcache->raw_write (vsr0_upper + reg_index, buffer);
604c2f83
LM
2942 }
2943}
2944
2945/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2946static enum register_status
8d619c01 2947efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2948 int reg_nr, gdb_byte *buffer)
2949{
2950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2951 int reg_index, vr0;
2952
2953 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2954 {
2955 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2956 vr0 = PPC_VR0_REGNUM;
2957 }
2958 else
2959 {
2960 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2961
2962 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2963 vr0 = PPC_CVR0_REGNUM;
2964 }
2965
084ee545 2966 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2967
d9492458 2968 /* Read the portion that overlaps the VMX register. */
8d619c01
EBM
2969 return regcache->raw_read_part (vr0 + reg_index, offset,
2970 register_size (gdbarch, reg_nr),
849d0ba8 2971 buffer);
604c2f83
LM
2972}
2973
2974/* Write method for POWER7 Extended FP pseudo-registers. */
2975static void
8d619c01 2976efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
604c2f83
LM
2977 int reg_nr, const gdb_byte *buffer)
2978{
2979 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2980 int reg_index, vr0;
084ee545 2981 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2982
8d619c01
EBM
2983 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2984 {
2985 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2986 vr0 = PPC_VR0_REGNUM;
2987 }
2988 else
2989 {
2990 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2991
2992 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2993 vr0 = PPC_CVR0_REGNUM;
2994
2995 /* The call to raw_write_part fails silently if the initial read
2996 of the read-update-write sequence returns an invalid status,
2997 so we check this manually and throw an error if needed. */
2998 regcache->raw_update (vr0 + reg_index);
2999 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
3000 error (_("Cannot write to the checkpointed EFP register, "
3001 "the corresponding vector register is unavailable."));
3002 }
3003
d9492458 3004 /* Write the portion that overlaps the VMX register. */
8d619c01 3005 regcache->raw_write_part (vr0 + reg_index, offset,
4f0420fd 3006 register_size (gdbarch, reg_nr), buffer);
604c2f83
LM
3007}
3008
05d1431c 3009static enum register_status
0df8b418 3010rs6000_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 3011 readable_regcache *regcache,
f949c649 3012 int reg_nr, gdb_byte *buffer)
c8001721 3013{
ac7936df 3014 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
3015 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3016
6ced10dd 3017 gdb_assert (regcache_arch == gdbarch);
f949c649 3018
5a9e69ba 3019 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 3020 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3021 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3022 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
05d1431c 3023 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
3024 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3025 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
3026 buffer);
8d619c01
EBM
3027 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3028 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
05d1431c 3029 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3030 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3031 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3032 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 3033 else
a44bddec 3034 internal_error (__FILE__, __LINE__,
f949c649
TJB
3035 _("rs6000_pseudo_register_read: "
3036 "called on unexpected register '%s' (%d)"),
3037 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
3038}
3039
3040static void
f949c649
TJB
3041rs6000_pseudo_register_write (struct gdbarch *gdbarch,
3042 struct regcache *regcache,
3043 int reg_nr, const gdb_byte *buffer)
c8001721 3044{
ac7936df 3045 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
3046 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3047
6ced10dd 3048 gdb_assert (regcache_arch == gdbarch);
f949c649 3049
5a9e69ba 3050 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649 3051 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3052 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3053 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
604c2f83 3054 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
3055 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3056 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3057 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3058 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
604c2f83 3059 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
3060 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3061 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
3062 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 3063 else
a44bddec 3064 internal_error (__FILE__, __LINE__,
f949c649
TJB
3065 _("rs6000_pseudo_register_write: "
3066 "called on unexpected register '%s' (%d)"),
3067 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
3068}
3069
8d619c01
EBM
3070/* Set the register mask in AX with the registers that form the DFP or
3071 checkpointed DFP pseudo-register REG_NR. */
3072
3073static void
3074dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3075 struct agent_expr *ax, int reg_nr)
3076{
3077 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3078 int reg_index, fp0;
3079
3080 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3081 {
3082 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3083 fp0 = PPC_F0_REGNUM;
3084 }
3085 else
3086 {
3087 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3088
3089 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3090 fp0 = PPC_CF0_REGNUM;
3091 }
3092
3093 ax_reg_mask (ax, fp0 + 2 * reg_index);
3094 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3095}
3096
6f072a10
PFC
3097/* Set the register mask in AX with the raw vector register that
3098 corresponds to its REG_NR alias. */
3099
3100static void
3101v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3102 struct agent_expr *ax, int reg_nr)
3103{
3104 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3105 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3106
3107 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3108 + (reg_nr - tdep->ppc_v0_alias_regnum));
3109}
3110
8d619c01
EBM
3111/* Set the register mask in AX with the registers that form the VSX or
3112 checkpointed VSX pseudo-register REG_NR. */
3113
3114static void
3115vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3116 struct agent_expr *ax, int reg_nr)
3117{
3118 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3119 int reg_index, vr0, fp0, vsr0_upper;
3120
3121 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3122 {
3123 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3124 vr0 = PPC_VR0_REGNUM;
3125 fp0 = PPC_F0_REGNUM;
3126 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3127 }
3128 else
3129 {
3130 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3131
3132 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3133 vr0 = PPC_CVR0_REGNUM;
3134 fp0 = PPC_CF0_REGNUM;
3135 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3136 }
3137
3138 if (reg_index > 31)
3139 {
3140 ax_reg_mask (ax, vr0 + reg_index - 32);
3141 }
3142 else
3143 {
3144 ax_reg_mask (ax, fp0 + reg_index);
3145 ax_reg_mask (ax, vsr0_upper + reg_index);
3146 }
3147}
3148
3149/* Set the register mask in AX with the register that corresponds to
3150 the EFP or checkpointed EFP pseudo-register REG_NR. */
3151
3152static void
3153efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3154 struct agent_expr *ax, int reg_nr)
3155{
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157 int reg_index, vr0;
3158
3159 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3160 {
3161 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3162 vr0 = PPC_VR0_REGNUM;
3163 }
3164 else
3165 {
3166 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3167
3168 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3169 vr0 = PPC_CVR0_REGNUM;
3170 }
3171
3172 ax_reg_mask (ax, vr0 + reg_index);
3173}
3174
2a2fa07b
MK
3175static int
3176rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3177 struct agent_expr *ax, int reg_nr)
3178{
3179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3180 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3181 {
3182 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3183 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3184 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3185 }
8d619c01
EBM
3186 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3187 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3188 {
8d619c01 3189 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3190 }
6f072a10
PFC
3191 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3192 {
3193 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3194 }
8d619c01
EBM
3195 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3196 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3197 {
8d619c01 3198 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3199 }
8d619c01
EBM
3200 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3201 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3202 {
8d619c01 3203 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b
MK
3204 }
3205 else
3206 internal_error (__FILE__, __LINE__,
3207 _("rs6000_pseudo_register_collect: "
3208 "called on unexpected register '%s' (%d)"),
3209 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3210 return 0;
3211}
3212
3213
a67914de
MK
3214static void
3215rs6000_gen_return_address (struct gdbarch *gdbarch,
3216 struct agent_expr *ax, struct axs_value *value,
3217 CORE_ADDR scope)
3218{
3219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3220 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3221 value->kind = axs_lvalue_register;
3222 value->u.reg = tdep->ppc_lr_regnum;
3223}
3224
3225
18ed0c4e 3226/* Convert a DBX STABS register number to a GDB register number. */
c8001721 3227static int
d3f73121 3228rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 3229{
d3f73121 3230 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 3231
9f744501
JB
3232 if (0 <= num && num <= 31)
3233 return tdep->ppc_gp0_regnum + num;
3234 else if (32 <= num && num <= 63)
383f0f5b
JB
3235 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3236 specifies registers the architecture doesn't have? Our
3237 callers don't check the value we return. */
366f009f 3238 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
3239 else if (77 <= num && num <= 108)
3240 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 3241 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3242 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
3243 else
3244 switch (num)
3245 {
3246 case 64:
dda83cd7 3247 return tdep->ppc_mq_regnum;
9f744501 3248 case 65:
dda83cd7 3249 return tdep->ppc_lr_regnum;
9f744501 3250 case 66:
dda83cd7 3251 return tdep->ppc_ctr_regnum;
9f744501 3252 case 76:
dda83cd7 3253 return tdep->ppc_xer_regnum;
9f744501 3254 case 109:
dda83cd7 3255 return tdep->ppc_vrsave_regnum;
18ed0c4e 3256 case 110:
dda83cd7 3257 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 3258 case 111:
dda83cd7 3259 return tdep->ppc_acc_regnum;
867e2dc5 3260 case 112:
dda83cd7 3261 return tdep->ppc_spefscr_regnum;
9f744501 3262 default:
dda83cd7 3263 return num;
9f744501 3264 }
18ed0c4e 3265}
9f744501 3266
9f744501 3267
18ed0c4e
JB
3268/* Convert a Dwarf 2 register number to a GDB register number. */
3269static int
d3f73121 3270rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 3271{
d3f73121 3272 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 3273
18ed0c4e
JB
3274 if (0 <= num && num <= 31)
3275 return tdep->ppc_gp0_regnum + num;
3276 else if (32 <= num && num <= 63)
3277 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3278 specifies registers the architecture doesn't have? Our
3279 callers don't check the value we return. */
3280 return tdep->ppc_fp0_regnum + (num - 32);
3281 else if (1124 <= num && num < 1124 + 32)
3282 return tdep->ppc_vr0_regnum + (num - 1124);
3283 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3284 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
3285 else
3286 switch (num)
3287 {
a489f789
AS
3288 case 64:
3289 return tdep->ppc_cr_regnum;
18ed0c4e 3290 case 67:
dda83cd7 3291 return tdep->ppc_vrsave_regnum - 1; /* vscr */
18ed0c4e 3292 case 99:
dda83cd7 3293 return tdep->ppc_acc_regnum;
18ed0c4e 3294 case 100:
dda83cd7 3295 return tdep->ppc_mq_regnum;
18ed0c4e 3296 case 101:
dda83cd7 3297 return tdep->ppc_xer_regnum;
18ed0c4e 3298 case 108:
dda83cd7 3299 return tdep->ppc_lr_regnum;
18ed0c4e 3300 case 109:
dda83cd7 3301 return tdep->ppc_ctr_regnum;
18ed0c4e 3302 case 356:
dda83cd7 3303 return tdep->ppc_vrsave_regnum;
18ed0c4e 3304 case 612:
dda83cd7 3305 return tdep->ppc_spefscr_regnum;
18ed0c4e 3306 }
aa2045e7
SM
3307
3308 /* Unknown DWARF register number. */
3309 return -1;
2188cbdd
EZ
3310}
3311
4fc771b8
DJ
3312/* Translate a .eh_frame register to DWARF register, or adjust a
3313 .debug_frame register. */
3314
3315static int
3316rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3317{
3318 /* GCC releases before 3.4 use GCC internal register numbering in
3319 .debug_frame (and .debug_info, et cetera). The numbering is
3320 different from the standard SysV numbering for everything except
3321 for GPRs and FPRs. We can not detect this problem in most cases
3322 - to get accurate debug info for variables living in lr, ctr, v0,
3323 et cetera, use a newer version of GCC. But we must detect
3324 one important case - lr is in column 65 in .debug_frame output,
3325 instead of 108.
3326
3327 GCC 3.4, and the "hammer" branch, have a related problem. They
3328 record lr register saves in .debug_frame as 108, but still record
3329 the return column as 65. We fix that up too.
3330
3331 We can do this because 65 is assigned to fpsr, and GCC never
3332 generates debug info referring to it. To add support for
3333 handwritten debug info that restores fpsr, we would need to add a
3334 producer version check to this. */
3335 if (!eh_frame_p)
3336 {
3337 if (num == 65)
3338 return 108;
3339 else
3340 return num;
3341 }
3342
3343 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3344 internal register numbering; translate that to the standard DWARF2
3345 register numbering. */
3346 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3347 return num;
3348 else if (68 <= num && num <= 75) /* cr0-cr8 */
3349 return num - 68 + 86;
3350 else if (77 <= num && num <= 108) /* vr0-vr31 */
3351 return num - 77 + 1124;
3352 else
3353 switch (num)
3354 {
3355 case 64: /* mq */
3356 return 100;
3357 case 65: /* lr */
3358 return 108;
3359 case 66: /* ctr */
3360 return 109;
3361 case 76: /* xer */
3362 return 101;
3363 case 109: /* vrsave */
3364 return 356;
3365 case 110: /* vscr */
3366 return 67;
3367 case 111: /* spe_acc */
3368 return 99;
3369 case 112: /* spefscr */
3370 return 612;
3371 default:
3372 return num;
3373 }
3374}
c906108c 3375\f
c5aa993b 3376
7a78ae4e 3377/* Handling the various POWER/PowerPC variants. */
c906108c 3378
c906108c 3379/* Information about a particular processor variant. */
7a78ae4e 3380
675127ec 3381struct ppc_variant
c5aa993b
JM
3382 {
3383 /* Name of this variant. */
a121b7c1 3384 const char *name;
c906108c 3385
c5aa993b 3386 /* English description of the variant. */
a121b7c1 3387 const char *description;
c906108c 3388
64366f1c 3389 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3390 enum bfd_architecture arch;
3391
64366f1c 3392 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3393 unsigned long mach;
3394
7cc46491
DJ
3395 /* Target description for this variant. */
3396 struct target_desc **tdesc;
c5aa993b 3397 };
c906108c 3398
675127ec 3399static struct ppc_variant variants[] =
c906108c 3400{
7a78ae4e 3401 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3402 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3403 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3404 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3405 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3406 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3407 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3408 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3409 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3410 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3411 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3412 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3413 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3414 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3415 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3416 604, &tdesc_powerpc_604},
7a78ae4e 3417 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3418 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3419 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3420 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3421 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3422 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3423 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3424 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3425 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3426 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3427 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3428 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3429
5d57ee30
KB
3430 /* 64-bit */
3431 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3432 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3433 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3434 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3435 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3436 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3437 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3438 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3439 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3440 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3441 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3442 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3443
64366f1c 3444 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3445 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3446 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3447 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3448 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3449 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3450 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3451
3e45d68b 3452 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3453};
3454
7a78ae4e 3455/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3456 MACH. If no such variant exists, return null. */
c906108c 3457
675127ec 3458static const struct ppc_variant *
7a78ae4e 3459find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3460{
675127ec 3461 const struct ppc_variant *v;
c5aa993b 3462
7a78ae4e
ND
3463 for (v = variants; v->name; v++)
3464 if (arch == v->arch && mach == v->mach)
3465 return v;
c906108c 3466
7a78ae4e 3467 return NULL;
c906108c 3468}
9364a0ef 3469
7a78ae4e 3470\f
61a65099
KB
3471
3472struct rs6000_frame_cache
3473{
3474 CORE_ADDR base;
3475 CORE_ADDR initial_sp;
098caef4 3476 trad_frame_saved_reg *saved_regs;
50ae56ec
WW
3477
3478 /* Set BASE_P to true if this frame cache is properly initialized.
3479 Otherwise set to false because some registers or memory cannot
3480 collected. */
3481 int base_p;
3482 /* Cache PC for building unavailable frame. */
3483 CORE_ADDR pc;
61a65099
KB
3484};
3485
3486static struct rs6000_frame_cache *
1af5d7ce 3487rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3488{
3489 struct rs6000_frame_cache *cache;
1af5d7ce 3490 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3491 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3492 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3493 struct rs6000_framedata fdata;
3494 int wordsize = tdep->wordsize;
338435ef 3495 CORE_ADDR func = 0, pc = 0;
61a65099
KB
3496
3497 if ((*this_cache) != NULL)
19ba03f4 3498 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3499 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3500 (*this_cache) = cache;
50ae56ec 3501 cache->pc = 0;
1af5d7ce 3502 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3503
a70b8144 3504 try
50ae56ec
WW
3505 {
3506 func = get_frame_func (this_frame);
3507 cache->pc = func;
3508 pc = get_frame_pc (this_frame);
3509 skip_prologue (gdbarch, func, pc, &fdata);
3510
3511 /* Figure out the parent's stack pointer. */
3512
3513 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3514 address of the current frame. Things might be easier if the
3515 ->frame pointed to the outer-most address of the frame. In
3516 the mean time, the address of the prev frame is used as the
3517 base address of this frame. */
3518 cache->base = get_frame_register_unsigned
3519 (this_frame, gdbarch_sp_regnum (gdbarch));
3520 }
230d2906 3521 catch (const gdb_exception_error &ex)
50ae56ec
WW
3522 {
3523 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3524 throw;
1ed0c2a4 3525 return (struct rs6000_frame_cache *) (*this_cache);
50ae56ec 3526 }
e10b1c4c
DJ
3527
3528 /* If the function appears to be frameless, check a couple of likely
3529 indicators that we have simply failed to find the frame setup.
3530 Two common cases of this are missing symbols (i.e.
ef02daa9 3531 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3532 stubs which have a fast exit path but set up a frame on the slow
3533 path.
3534
3535 If the LR appears to return to this function, then presume that
3536 we have an ABI compliant frame that we failed to find. */
3537 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3538 {
e10b1c4c
DJ
3539 CORE_ADDR saved_lr;
3540 int make_frame = 0;
3541
1af5d7ce 3542 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3543 if (func == 0 && saved_lr == pc)
3544 make_frame = 1;
3545 else if (func != 0)
3546 {
3547 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3548 if (func == saved_func)
3549 make_frame = 1;
3550 }
3551
3552 if (make_frame)
3553 {
3554 fdata.frameless = 0;
de6a76fd 3555 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3556 }
61a65099 3557 }
e10b1c4c
DJ
3558
3559 if (!fdata.frameless)
9d9bf2df
EBM
3560 {
3561 /* Frameless really means stackless. */
cc2c4da8 3562 ULONGEST backchain;
9d9bf2df 3563
cc2c4da8
MK
3564 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3565 byte_order, &backchain))
dda83cd7 3566 cache->base = (CORE_ADDR) backchain;
9d9bf2df 3567 }
e10b1c4c 3568
a9a87d35 3569 cache->saved_regs[gdbarch_sp_regnum (gdbarch)].set_value (cache->base);
61a65099
KB
3570
3571 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3572 All fpr's from saved_fpr to fp31 are saved. */
3573
3574 if (fdata.saved_fpr >= 0)
3575 {
3576 int i;
3577 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3578
3579 /* If skip_prologue says floating-point registers were saved,
dda83cd7
SM
3580 but the current architecture has no floating-point registers,
3581 then that's strange. But we have no indices to even record
3582 the addresses under, so we just ignore it. */
383f0f5b 3583 if (ppc_floating_point_unit_p (gdbarch))
dda83cd7
SM
3584 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
3585 {
098caef4 3586 cache->saved_regs[tdep->ppc_fp0_regnum + i].set_addr (fpr_addr);
dda83cd7
SM
3587 fpr_addr += 8;
3588 }
61a65099
KB
3589 }
3590
3591 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3592 All gpr's from saved_gpr to gpr31 are saved (except during the
3593 prologue). */
61a65099
KB
3594
3595 if (fdata.saved_gpr >= 0)
3596 {
3597 int i;
3598 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3599 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3600 {
46a9b8ed 3601 if (fdata.gpr_mask & (1U << i))
098caef4 3602 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (gpr_addr);
61a65099
KB
3603 gpr_addr += wordsize;
3604 }
3605 }
3606
3607 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3608 All vr's from saved_vr to vr31 are saved. */
3609 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3610 {
3611 if (fdata.saved_vr >= 0)
3612 {
3613 int i;
3614 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3615 for (i = fdata.saved_vr; i < 32; i++)
3616 {
098caef4 3617 cache->saved_regs[tdep->ppc_vr0_regnum + i].set_addr (vr_addr);
61a65099
KB
3618 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3619 }
3620 }
3621 }
3622
3623 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3624 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3625 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3626 {
3627 if (fdata.saved_ev >= 0)
3628 {
3629 int i;
3630 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3631 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3632
063715bf 3633 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099 3634 {
098caef4
LM
3635 cache->saved_regs[tdep->ppc_ev0_regnum + i].set_addr (ev_addr);
3636 cache->saved_regs[tdep->ppc_gp0_regnum + i].set_addr (ev_addr
3637 + off);
61a65099 3638 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3639 }
61a65099
KB
3640 }
3641 }
3642
3643 /* If != 0, fdata.cr_offset is the offset from the frame that
3644 holds the CR. */
3645 if (fdata.cr_offset != 0)
098caef4
LM
3646 cache->saved_regs[tdep->ppc_cr_regnum].set_addr (cache->base
3647 + fdata.cr_offset);
61a65099
KB
3648
3649 /* If != 0, fdata.lr_offset is the offset from the frame that
3650 holds the LR. */
3651 if (fdata.lr_offset != 0)
098caef4
LM
3652 cache->saved_regs[tdep->ppc_lr_regnum].set_addr (cache->base
3653 + fdata.lr_offset);
46a9b8ed 3654 else if (fdata.lr_register != -1)
098caef4 3655 cache->saved_regs[tdep->ppc_lr_regnum].set_realreg (fdata.lr_register);
61a65099 3656 /* The PC is found in the link register. */
8b164abb 3657 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3658 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3659
3660 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3661 holds the VRSAVE. */
3662 if (fdata.vrsave_offset != 0)
098caef4
LM
3663 cache->saved_regs[tdep->ppc_vrsave_regnum].set_addr (cache->base
3664 + fdata.vrsave_offset);
61a65099
KB
3665
3666 if (fdata.alloca_reg < 0)
3667 /* If no alloca register used, then fi->frame is the value of the
3668 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3669 cache->initial_sp
3670 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3671 else
1af5d7ce
UW
3672 cache->initial_sp
3673 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099 3674
50ae56ec 3675 cache->base_p = 1;
61a65099
KB
3676 return cache;
3677}
3678
3679static void
1af5d7ce 3680rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3681 struct frame_id *this_id)
3682{
1af5d7ce 3683 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3684 this_cache);
50ae56ec
WW
3685
3686 if (!info->base_p)
3687 {
3688 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3689 return;
3690 }
3691
5b197912
UW
3692 /* This marks the outermost frame. */
3693 if (info->base == 0)
3694 return;
3695
1af5d7ce 3696 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3697}
3698
1af5d7ce
UW
3699static struct value *
3700rs6000_frame_prev_register (struct frame_info *this_frame,
3701 void **this_cache, int regnum)
61a65099 3702{
1af5d7ce 3703 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3704 this_cache);
1af5d7ce 3705 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3706}
3707
3708static const struct frame_unwind rs6000_frame_unwind =
3709{
3710 NORMAL_FRAME,
8fbca658 3711 default_frame_unwind_stop_reason,
61a65099 3712 rs6000_frame_this_id,
1af5d7ce
UW
3713 rs6000_frame_prev_register,
3714 NULL,
3715 default_frame_sniffer
61a65099 3716};
2608dbf8 3717
ddeca1df
WW
3718/* Allocate and initialize a frame cache for an epilogue frame.
3719 SP is restored and prev-PC is stored in LR. */
3720
2608dbf8
WW
3721static struct rs6000_frame_cache *
3722rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3723{
2608dbf8
WW
3724 struct rs6000_frame_cache *cache;
3725 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3727
3728 if (*this_cache)
19ba03f4 3729 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3730
3731 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3732 (*this_cache) = cache;
3733 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3734
a70b8144 3735 try
2608dbf8
WW
3736 {
3737 /* At this point the stack looks as if we just entered the
3738 function, and the return address is stored in LR. */
3739 CORE_ADDR sp, lr;
3740
3741 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3742 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3743
3744 cache->base = sp;
3745 cache->initial_sp = sp;
3746
a9a87d35 3747 cache->saved_regs[gdbarch_pc_regnum (gdbarch)].set_value (lr);
2608dbf8 3748 }
230d2906 3749 catch (const gdb_exception_error &ex)
7556d4a4
PA
3750 {
3751 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3752 throw;
7556d4a4 3753 }
2608dbf8
WW
3754
3755 return cache;
3756}
3757
ddeca1df
WW
3758/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3759 Return the frame ID of an epilogue frame. */
3760
2608dbf8
WW
3761static void
3762rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3763 void **this_cache, struct frame_id *this_id)
3764{
3765 CORE_ADDR pc;
3766 struct rs6000_frame_cache *info =
3767 rs6000_epilogue_frame_cache (this_frame, this_cache);
3768
3769 pc = get_frame_func (this_frame);
3770 if (info->base == 0)
3771 (*this_id) = frame_id_build_unavailable_stack (pc);
3772 else
3773 (*this_id) = frame_id_build (info->base, pc);
3774}
3775
ddeca1df
WW
3776/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3777 Return the register value of REGNUM in previous frame. */
3778
2608dbf8
WW
3779static struct value *
3780rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3781 void **this_cache, int regnum)
3782{
3783 struct rs6000_frame_cache *info =
3784 rs6000_epilogue_frame_cache (this_frame, this_cache);
3785 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3786}
3787
ddeca1df
WW
3788/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3789 Check whether this an epilogue frame. */
3790
2608dbf8
WW
3791static int
3792rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3793 struct frame_info *this_frame,
3794 void **this_prologue_cache)
3795{
3796 if (frame_relative_level (this_frame) == 0)
3797 return rs6000_in_function_epilogue_frame_p (this_frame,
3798 get_frame_arch (this_frame),
3799 get_frame_pc (this_frame));
3800 else
3801 return 0;
3802}
3803
ddeca1df
WW
3804/* Frame unwinder for epilogue frame. This is required for reverse step-over
3805 a function without debug information. */
3806
2608dbf8
WW
3807static const struct frame_unwind rs6000_epilogue_frame_unwind =
3808{
3809 NORMAL_FRAME,
3810 default_frame_unwind_stop_reason,
3811 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3812 NULL,
3813 rs6000_epilogue_frame_sniffer
3814};
61a65099
KB
3815\f
3816
3817static CORE_ADDR
1af5d7ce 3818rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3819{
1af5d7ce 3820 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3821 this_cache);
3822 return info->initial_sp;
3823}
3824
3825static const struct frame_base rs6000_frame_base = {
3826 &rs6000_frame_unwind,
3827 rs6000_frame_base_address,
3828 rs6000_frame_base_address,
3829 rs6000_frame_base_address
3830};
3831
3832static const struct frame_base *
1af5d7ce 3833rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3834{
3835 return &rs6000_frame_base;
3836}
3837
9274a07c
LM
3838/* DWARF-2 frame support. Used to handle the detection of
3839 clobbered registers during function calls. */
3840
3841static void
3842ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3843 struct dwarf2_frame_state_reg *reg,
4a4e5149 3844 struct frame_info *this_frame)
9274a07c
LM
3845{
3846 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3847
3848 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3849 non-volatile registers. We will use the same code for both. */
3850
3851 /* Call-saved GP registers. */
3852 if ((regnum >= tdep->ppc_gp0_regnum + 14
3853 && regnum <= tdep->ppc_gp0_regnum + 31)
3854 || (regnum == tdep->ppc_gp0_regnum + 1))
3855 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3856
3857 /* Call-clobbered GP registers. */
3858 if ((regnum >= tdep->ppc_gp0_regnum + 3
3859 && regnum <= tdep->ppc_gp0_regnum + 12)
3860 || (regnum == tdep->ppc_gp0_regnum))
3861 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3862
3863 /* Deal with FP registers, if supported. */
3864 if (tdep->ppc_fp0_regnum >= 0)
3865 {
3866 /* Call-saved FP registers. */
3867 if ((regnum >= tdep->ppc_fp0_regnum + 14
3868 && regnum <= tdep->ppc_fp0_regnum + 31))
3869 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3870
3871 /* Call-clobbered FP registers. */
3872 if ((regnum >= tdep->ppc_fp0_regnum
3873 && regnum <= tdep->ppc_fp0_regnum + 13))
3874 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3875 }
3876
3877 /* Deal with ALTIVEC registers, if supported. */
3878 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3879 {
3880 /* Call-saved Altivec registers. */
3881 if ((regnum >= tdep->ppc_vr0_regnum + 20
3882 && regnum <= tdep->ppc_vr0_regnum + 31)
3883 || regnum == tdep->ppc_vrsave_regnum)
3884 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3885
3886 /* Call-clobbered Altivec registers. */
3887 if ((regnum >= tdep->ppc_vr0_regnum
3888 && regnum <= tdep->ppc_vr0_regnum + 19))
3889 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3890 }
3891
3892 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3893 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3894 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3895 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3896 reg->how = DWARF2_FRAME_REG_CFA;
3897}
3898
3899
74af9197
NF
3900/* Return true if a .gnu_attributes section exists in BFD and it
3901 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3902 section exists in BFD and it indicates that SPE extensions are in
3903 use. Check the .gnu.attributes section first, as the binary might be
3904 compiled for SPE, but not actually using SPE instructions. */
3905
3906static int
3907bfd_uses_spe_extensions (bfd *abfd)
3908{
3909 asection *sect;
3910 gdb_byte *contents = NULL;
3911 bfd_size_type size;
3912 gdb_byte *ptr;
3913 int success = 0;
74af9197
NF
3914
3915 if (!abfd)
3916 return 0;
3917
50a99728 3918#ifdef HAVE_ELF
74af9197
NF
3919 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3920 could be using the SPE vector abi without actually using any spe
3921 bits whatsoever. But it's close enough for now. */
17cbafdb
SM
3922 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3923 Tag_GNU_Power_ABI_Vector);
74af9197
NF
3924 if (vector_abi == 3)
3925 return 1;
50a99728 3926#endif
74af9197
NF
3927
3928 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3929 if (!sect)
3930 return 0;
3931
fd361982 3932 size = bfd_section_size (sect);
224c3ddb 3933 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3934 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3935 {
3936 xfree (contents);
3937 return 0;
3938 }
3939
3940 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3941
3942 struct {
3943 uint32 name_len;
3944 uint32 data_len;
3945 uint32 type;
3946 char name[name_len rounded up to 4-byte alignment];
3947 char data[data_len];
3948 };
3949
3950 Technically, there's only supposed to be one such structure in a
3951 given apuinfo section, but the linker is not always vigilant about
3952 merging apuinfo sections from input files. Just go ahead and parse
3953 them all, exiting early when we discover the binary uses SPE
3954 insns.
3955
3956 It's not specified in what endianness the information in this
3957 section is stored. Assume that it's the endianness of the BFD. */
3958 ptr = contents;
3959 while (1)
3960 {
3961 unsigned int name_len;
3962 unsigned int data_len;
3963 unsigned int type;
3964
3965 /* If we can't read the first three fields, we're done. */
3966 if (size < 12)
3967 break;
3968
3969 name_len = bfd_get_32 (abfd, ptr);
3970 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3971 data_len = bfd_get_32 (abfd, ptr + 4);
3972 type = bfd_get_32 (abfd, ptr + 8);
3973 ptr += 12;
3974
3975 /* The name must be "APUinfo\0". */
3976 if (name_len != 8
3977 && strcmp ((const char *) ptr, "APUinfo") != 0)
3978 break;
3979 ptr += name_len;
3980
3981 /* The type must be 2. */
3982 if (type != 2)
3983 break;
3984
3985 /* The data is stored as a series of uint32. The upper half of
3986 each uint32 indicates the particular APU used and the lower
3987 half indicates the revision of that APU. We just care about
3988 the upper half. */
3989
3990 /* Not 4-byte quantities. */
3991 if (data_len & 3U)
3992 break;
3993
3994 while (data_len)
3995 {
3996 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3997 unsigned int apu = apuinfo >> 16;
3998 ptr += 4;
3999 data_len -= 4;
4000
4001 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
4002 either. */
4003 if (apu == 0x100 || apu == 0x101)
4004 {
4005 success = 1;
4006 data_len = 0;
4007 }
4008 }
4009
4010 if (success)
4011 break;
4012 }
4013
4014 xfree (contents);
4015 return success;
4016}
4017
b4cdae6f
WW
4018/* These are macros for parsing instruction fields (I.1.6.28) */
4019
4020#define PPC_FIELD(value, from, len) \
4021 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
4022#define PPC_SEXT(v, bs) \
4023 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
4024 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
4025 - ((CORE_ADDR) 1 << ((bs) - 1)))
4026#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
4027#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
4028#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
4029#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
4030#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
4031#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
4032#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
4033#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
4034#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
4035#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
4036 | (PPC_FIELD (insn, 16, 5) << 5))
4037#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
4038#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
4039#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
4040#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
6ec2b213 4041#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
b4cdae6f
WW
4042#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
4043#define PPC_OE(insn) PPC_BIT (insn, 21)
4044#define PPC_RC(insn) PPC_BIT (insn, 31)
4045#define PPC_Rc(insn) PPC_BIT (insn, 21)
4046#define PPC_LK(insn) PPC_BIT (insn, 31)
4047#define PPC_TX(insn) PPC_BIT (insn, 31)
4048#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
4049
4050#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
4051#define PPC_XER_NB(xer) (xer & 0x7f)
4052
ddeca1df
WW
4053/* Record Vector-Scalar Registers.
4054 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
4055 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
4056
4057static int
4058ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
4059{
4060 if (vsr < 0 || vsr >= 64)
4061 return -1;
4062
4063 if (vsr >= 32)
4064 {
4065 if (tdep->ppc_vr0_regnum >= 0)
4066 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4067 }
4068 else
4069 {
4070 if (tdep->ppc_fp0_regnum >= 0)
4071 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4072 if (tdep->ppc_vsr0_upper_regnum >= 0)
4073 record_full_arch_list_add_reg (regcache,
4074 tdep->ppc_vsr0_upper_regnum + vsr);
4075 }
4076
4077 return 0;
4078}
4079
ddeca1df
WW
4080/* Parse and record instructions primary opcode-4 at ADDR.
4081 Return 0 if successful. */
b4cdae6f
WW
4082
4083static int
4084ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 4085 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
4086{
4087 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4088 int ext = PPC_FIELD (insn, 21, 11);
6ec2b213 4089 int vra = PPC_FIELD (insn, 11, 5);
b4cdae6f
WW
4090
4091 switch (ext & 0x3f)
4092 {
4093 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4094 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4095 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4096 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4097 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4098 /* FALL-THROUGH */
4099 case 42: /* Vector Select */
4100 case 43: /* Vector Permute */
6ec2b213 4101 case 59: /* Vector Permute Right-indexed */
b4cdae6f
WW
4102 case 44: /* Vector Shift Left Double by Octet Immediate */
4103 case 45: /* Vector Permute and Exclusive-OR */
4104 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4105 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4106 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4107 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4108 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
6ec2b213 4109 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
b4cdae6f
WW
4110 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4111 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4112 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4113 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4114 case 46: /* Vector Multiply-Add Single-Precision */
4115 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4116 record_full_arch_list_add_reg (regcache,
4117 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4118 return 0;
6ec2b213
EBM
4119
4120 case 48: /* Multiply-Add High Doubleword */
4121 case 49: /* Multiply-Add High Doubleword Unsigned */
4122 case 51: /* Multiply-Add Low Doubleword */
4123 record_full_arch_list_add_reg (regcache,
4124 tdep->ppc_gp0_regnum + PPC_RT (insn));
4125 return 0;
b4cdae6f
WW
4126 }
4127
4128 switch ((ext & 0x1ff))
4129 {
6ec2b213
EBM
4130 case 385:
4131 if (vra != 0 /* Decimal Convert To Signed Quadword */
4132 && vra != 2 /* Decimal Convert From Signed Quadword */
4133 && vra != 4 /* Decimal Convert To Zoned */
4134 && vra != 5 /* Decimal Convert To National */
4135 && vra != 6 /* Decimal Convert From Zoned */
4136 && vra != 7 /* Decimal Convert From National */
4137 && vra != 31) /* Decimal Set Sign */
4138 break;
e3829d13 4139 /* Fall through. */
b4cdae6f
WW
4140 /* 5.16 Decimal Integer Arithmetic Instructions */
4141 case 1: /* Decimal Add Modulo */
4142 case 65: /* Decimal Subtract Modulo */
4143
6ec2b213
EBM
4144 case 193: /* Decimal Shift */
4145 case 129: /* Decimal Unsigned Shift */
4146 case 449: /* Decimal Shift and Round */
4147
4148 case 257: /* Decimal Truncate */
4149 case 321: /* Decimal Unsigned Truncate */
4150
b4cdae6f
WW
4151 /* Bit-21 should be set. */
4152 if (!PPC_BIT (insn, 21))
4153 break;
4154
4155 record_full_arch_list_add_reg (regcache,
4156 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4157 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4158 return 0;
4159 }
4160
4161 /* Bit-21 is used for RC */
4162 switch (ext & 0x3ff)
4163 {
4164 case 6: /* Vector Compare Equal To Unsigned Byte */
4165 case 70: /* Vector Compare Equal To Unsigned Halfword */
4166 case 134: /* Vector Compare Equal To Unsigned Word */
4167 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4168 case 774: /* Vector Compare Greater Than Signed Byte */
4169 case 838: /* Vector Compare Greater Than Signed Halfword */
4170 case 902: /* Vector Compare Greater Than Signed Word */
4171 case 967: /* Vector Compare Greater Than Signed Doubleword */
4172 case 518: /* Vector Compare Greater Than Unsigned Byte */
4173 case 646: /* Vector Compare Greater Than Unsigned Word */
4174 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4175 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4176 case 966: /* Vector Compare Bounds Single-Precision */
4177 case 198: /* Vector Compare Equal To Single-Precision */
4178 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4179 case 710: /* Vector Compare Greater Than Single-Precision */
6ec2b213
EBM
4180 case 7: /* Vector Compare Not Equal Byte */
4181 case 71: /* Vector Compare Not Equal Halfword */
4182 case 135: /* Vector Compare Not Equal Word */
4183 case 263: /* Vector Compare Not Equal or Zero Byte */
4184 case 327: /* Vector Compare Not Equal or Zero Halfword */
4185 case 391: /* Vector Compare Not Equal or Zero Word */
b4cdae6f
WW
4186 if (PPC_Rc (insn))
4187 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4188 record_full_arch_list_add_reg (regcache,
4189 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4190 return 0;
4191 }
4192
6ec2b213
EBM
4193 if (ext == 1538)
4194 {
4195 switch (vra)
4196 {
4197 case 0: /* Vector Count Leading Zero Least-Significant Bits
4198 Byte */
4199 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4200 Byte */
4201 record_full_arch_list_add_reg (regcache,
4202 tdep->ppc_gp0_regnum + PPC_RT (insn));
4203 return 0;
4204
4205 case 6: /* Vector Negate Word */
4206 case 7: /* Vector Negate Doubleword */
4207 case 8: /* Vector Parity Byte Word */
4208 case 9: /* Vector Parity Byte Doubleword */
4209 case 10: /* Vector Parity Byte Quadword */
4210 case 16: /* Vector Extend Sign Byte To Word */
4211 case 17: /* Vector Extend Sign Halfword To Word */
4212 case 24: /* Vector Extend Sign Byte To Doubleword */
4213 case 25: /* Vector Extend Sign Halfword To Doubleword */
4214 case 26: /* Vector Extend Sign Word To Doubleword */
4215 case 28: /* Vector Count Trailing Zeros Byte */
4216 case 29: /* Vector Count Trailing Zeros Halfword */
4217 case 30: /* Vector Count Trailing Zeros Word */
4218 case 31: /* Vector Count Trailing Zeros Doubleword */
4219 record_full_arch_list_add_reg (regcache,
4220 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4221 return 0;
4222 }
4223 }
4224
b4cdae6f
WW
4225 switch (ext)
4226 {
4227 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4228 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4229 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4230 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4231 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4232 case 462: /* Vector Pack Signed Word Signed Saturate */
4233 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4234 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4235 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4236 case 512: /* Vector Add Unsigned Byte Saturate */
4237 case 576: /* Vector Add Unsigned Halfword Saturate */
4238 case 640: /* Vector Add Unsigned Word Saturate */
4239 case 768: /* Vector Add Signed Byte Saturate */
4240 case 832: /* Vector Add Signed Halfword Saturate */
4241 case 896: /* Vector Add Signed Word Saturate */
4242 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4243 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4244 case 1664: /* Vector Subtract Unsigned Word Saturate */
4245 case 1792: /* Vector Subtract Signed Byte Saturate */
4246 case 1856: /* Vector Subtract Signed Halfword Saturate */
4247 case 1920: /* Vector Subtract Signed Word Saturate */
4248
4249 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4250 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4251 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4252 case 1672: /* Vector Sum across Half Signed Word Saturate */
4253 case 1928: /* Vector Sum across Signed Word Saturate */
4254 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4255 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4256 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4257 /* FALL-THROUGH */
4258 case 12: /* Vector Merge High Byte */
4259 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4260 case 76: /* Vector Merge High Halfword */
4261 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4262 case 140: /* Vector Merge High Word */
4263 case 268: /* Vector Merge Low Byte */
4264 case 332: /* Vector Merge Low Halfword */
4265 case 396: /* Vector Merge Low Word */
4266 case 526: /* Vector Unpack High Signed Byte */
4267 case 590: /* Vector Unpack High Signed Halfword */
4268 case 654: /* Vector Unpack Low Signed Byte */
4269 case 718: /* Vector Unpack Low Signed Halfword */
4270 case 782: /* Vector Pack Pixel */
4271 case 846: /* Vector Unpack High Pixel */
4272 case 974: /* Vector Unpack Low Pixel */
4273 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4274 case 1614: /* Vector Unpack High Signed Word */
4275 case 1676: /* Vector Merge Odd Word */
4276 case 1742: /* Vector Unpack Low Signed Word */
4277 case 1932: /* Vector Merge Even Word */
4278 case 524: /* Vector Splat Byte */
4279 case 588: /* Vector Splat Halfword */
4280 case 652: /* Vector Splat Word */
4281 case 780: /* Vector Splat Immediate Signed Byte */
4282 case 844: /* Vector Splat Immediate Signed Halfword */
4283 case 908: /* Vector Splat Immediate Signed Word */
4284 case 452: /* Vector Shift Left */
4285 case 708: /* Vector Shift Right */
4286 case 1036: /* Vector Shift Left by Octet */
4287 case 1100: /* Vector Shift Right by Octet */
4288 case 0: /* Vector Add Unsigned Byte Modulo */
4289 case 64: /* Vector Add Unsigned Halfword Modulo */
4290 case 128: /* Vector Add Unsigned Word Modulo */
4291 case 192: /* Vector Add Unsigned Doubleword Modulo */
4292 case 256: /* Vector Add Unsigned Quadword Modulo */
4293 case 320: /* Vector Add & write Carry Unsigned Quadword */
4294 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4295 case 8: /* Vector Multiply Odd Unsigned Byte */
4296 case 72: /* Vector Multiply Odd Unsigned Halfword */
4297 case 136: /* Vector Multiply Odd Unsigned Word */
4298 case 264: /* Vector Multiply Odd Signed Byte */
4299 case 328: /* Vector Multiply Odd Signed Halfword */
4300 case 392: /* Vector Multiply Odd Signed Word */
4301 case 520: /* Vector Multiply Even Unsigned Byte */
4302 case 584: /* Vector Multiply Even Unsigned Halfword */
4303 case 648: /* Vector Multiply Even Unsigned Word */
4304 case 776: /* Vector Multiply Even Signed Byte */
4305 case 840: /* Vector Multiply Even Signed Halfword */
4306 case 904: /* Vector Multiply Even Signed Word */
4307 case 137: /* Vector Multiply Unsigned Word Modulo */
4308 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4309 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4310 case 1152: /* Vector Subtract Unsigned Word Modulo */
4311 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4312 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4313 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4314 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4315 case 1282: /* Vector Average Signed Byte */
4316 case 1346: /* Vector Average Signed Halfword */
4317 case 1410: /* Vector Average Signed Word */
4318 case 1026: /* Vector Average Unsigned Byte */
4319 case 1090: /* Vector Average Unsigned Halfword */
4320 case 1154: /* Vector Average Unsigned Word */
4321 case 258: /* Vector Maximum Signed Byte */
4322 case 322: /* Vector Maximum Signed Halfword */
4323 case 386: /* Vector Maximum Signed Word */
4324 case 450: /* Vector Maximum Signed Doubleword */
4325 case 2: /* Vector Maximum Unsigned Byte */
4326 case 66: /* Vector Maximum Unsigned Halfword */
4327 case 130: /* Vector Maximum Unsigned Word */
4328 case 194: /* Vector Maximum Unsigned Doubleword */
4329 case 770: /* Vector Minimum Signed Byte */
4330 case 834: /* Vector Minimum Signed Halfword */
4331 case 898: /* Vector Minimum Signed Word */
4332 case 962: /* Vector Minimum Signed Doubleword */
4333 case 514: /* Vector Minimum Unsigned Byte */
4334 case 578: /* Vector Minimum Unsigned Halfword */
4335 case 642: /* Vector Minimum Unsigned Word */
4336 case 706: /* Vector Minimum Unsigned Doubleword */
4337 case 1028: /* Vector Logical AND */
4338 case 1668: /* Vector Logical Equivalent */
4339 case 1092: /* Vector Logical AND with Complement */
4340 case 1412: /* Vector Logical NAND */
4341 case 1348: /* Vector Logical OR with Complement */
4342 case 1156: /* Vector Logical OR */
4343 case 1284: /* Vector Logical NOR */
4344 case 1220: /* Vector Logical XOR */
4345 case 4: /* Vector Rotate Left Byte */
4346 case 132: /* Vector Rotate Left Word VX-form */
4347 case 68: /* Vector Rotate Left Halfword */
4348 case 196: /* Vector Rotate Left Doubleword */
4349 case 260: /* Vector Shift Left Byte */
4350 case 388: /* Vector Shift Left Word */
4351 case 324: /* Vector Shift Left Halfword */
4352 case 1476: /* Vector Shift Left Doubleword */
4353 case 516: /* Vector Shift Right Byte */
4354 case 644: /* Vector Shift Right Word */
4355 case 580: /* Vector Shift Right Halfword */
4356 case 1732: /* Vector Shift Right Doubleword */
4357 case 772: /* Vector Shift Right Algebraic Byte */
4358 case 900: /* Vector Shift Right Algebraic Word */
4359 case 836: /* Vector Shift Right Algebraic Halfword */
4360 case 964: /* Vector Shift Right Algebraic Doubleword */
4361 case 10: /* Vector Add Single-Precision */
4362 case 74: /* Vector Subtract Single-Precision */
4363 case 1034: /* Vector Maximum Single-Precision */
4364 case 1098: /* Vector Minimum Single-Precision */
4365 case 842: /* Vector Convert From Signed Fixed-Point Word */
4366 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4367 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4368 case 522: /* Vector Round to Single-Precision Integer Nearest */
4369 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4370 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4371 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4372 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4373 case 266: /* Vector Reciprocal Estimate Single-Precision */
4374 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4375 case 1288: /* Vector AES Cipher */
4376 case 1289: /* Vector AES Cipher Last */
4377 case 1352: /* Vector AES Inverse Cipher */
4378 case 1353: /* Vector AES Inverse Cipher Last */
4379 case 1480: /* Vector AES SubBytes */
4380 case 1730: /* Vector SHA-512 Sigma Doubleword */
4381 case 1666: /* Vector SHA-256 Sigma Word */
4382 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4383 case 1160: /* Vector Polynomial Multiply-Sum Word */
4384 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4385 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4386 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4387 case 1794: /* Vector Count Leading Zeros Byte */
4388 case 1858: /* Vector Count Leading Zeros Halfword */
4389 case 1922: /* Vector Count Leading Zeros Word */
4390 case 1986: /* Vector Count Leading Zeros Doubleword */
4391 case 1795: /* Vector Population Count Byte */
4392 case 1859: /* Vector Population Count Halfword */
4393 case 1923: /* Vector Population Count Word */
4394 case 1987: /* Vector Population Count Doubleword */
4395 case 1356: /* Vector Bit Permute Quadword */
6ec2b213
EBM
4396 case 1484: /* Vector Bit Permute Doubleword */
4397 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4398 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4399 Quadword */
4400 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4401 case 65: /* Vector Multiply-by-10 Extended & write Carry
4402 Unsigned Quadword */
4403 case 1027: /* Vector Absolute Difference Unsigned Byte */
4404 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4405 case 1155: /* Vector Absolute Difference Unsigned Word */
4406 case 1796: /* Vector Shift Right Variable */
4407 case 1860: /* Vector Shift Left Variable */
4408 case 133: /* Vector Rotate Left Word then Mask Insert */
4409 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4410 case 389: /* Vector Rotate Left Word then AND with Mask */
4411 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4412 case 525: /* Vector Extract Unsigned Byte */
4413 case 589: /* Vector Extract Unsigned Halfword */
4414 case 653: /* Vector Extract Unsigned Word */
4415 case 717: /* Vector Extract Doubleword */
4416 case 781: /* Vector Insert Byte */
4417 case 845: /* Vector Insert Halfword */
4418 case 909: /* Vector Insert Word */
4419 case 973: /* Vector Insert Doubleword */
b4cdae6f
WW
4420 record_full_arch_list_add_reg (regcache,
4421 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4422 return 0;
4423
6ec2b213
EBM
4424 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4425 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4426 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4427 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4428 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4429 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4430 record_full_arch_list_add_reg (regcache,
4431 tdep->ppc_gp0_regnum + PPC_RT (insn));
4432 return 0;
4433
b4cdae6f
WW
4434 case 1604: /* Move To Vector Status and Control Register */
4435 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4436 return 0;
4437 case 1540: /* Move From Vector Status and Control Register */
4438 record_full_arch_list_add_reg (regcache,
4439 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4440 return 0;
6ec2b213
EBM
4441 case 833: /* Decimal Copy Sign */
4442 record_full_arch_list_add_reg (regcache,
4443 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4444 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4445 return 0;
b4cdae6f
WW
4446 }
4447
810c1026
WW
4448 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4449 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4450 return -1;
4451}
4452
ddeca1df
WW
4453/* Parse and record instructions of primary opcode-19 at ADDR.
4454 Return 0 if successful. */
b4cdae6f
WW
4455
4456static int
4457ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4458 CORE_ADDR addr, uint32_t insn)
4459{
4460 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4461 int ext = PPC_EXTOP (insn);
4462
6ec2b213
EBM
4463 switch (ext & 0x01f)
4464 {
4465 case 2: /* Add PC Immediate Shifted */
4466 record_full_arch_list_add_reg (regcache,
4467 tdep->ppc_gp0_regnum + PPC_RT (insn));
4468 return 0;
4469 }
4470
b4cdae6f
WW
4471 switch (ext)
4472 {
4473 case 0: /* Move Condition Register Field */
4474 case 33: /* Condition Register NOR */
4475 case 129: /* Condition Register AND with Complement */
4476 case 193: /* Condition Register XOR */
4477 case 225: /* Condition Register NAND */
4478 case 257: /* Condition Register AND */
4479 case 289: /* Condition Register Equivalent */
4480 case 417: /* Condition Register OR with Complement */
4481 case 449: /* Condition Register OR */
4482 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4483 return 0;
4484
4485 case 16: /* Branch Conditional */
4486 case 560: /* Branch Conditional to Branch Target Address Register */
4487 if ((PPC_BO (insn) & 0x4) == 0)
4488 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4489 /* FALL-THROUGH */
4490 case 528: /* Branch Conditional to Count Register */
4491 if (PPC_LK (insn))
4492 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4493 return 0;
4494
4495 case 150: /* Instruction Synchronize */
4496 /* Do nothing. */
4497 return 0;
4498 }
4499
810c1026
WW
4500 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4501 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4502 return -1;
4503}
4504
ddeca1df
WW
4505/* Parse and record instructions of primary opcode-31 at ADDR.
4506 Return 0 if successful. */
b4cdae6f
WW
4507
4508static int
4509ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4510 CORE_ADDR addr, uint32_t insn)
4511{
4512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4513 int ext = PPC_EXTOP (insn);
4514 int tmp, nr, nb, i;
4515 CORE_ADDR at_dcsz, ea = 0;
4516 ULONGEST rb, ra, xer;
4517 int size = 0;
4518
4519 /* These instructions have OE bit. */
4520 switch (ext & 0x1ff)
4521 {
4522 /* These write RT and XER. Update CR if RC is set. */
4523 case 8: /* Subtract from carrying */
4524 case 10: /* Add carrying */
4525 case 136: /* Subtract from extended */
4526 case 138: /* Add extended */
4527 case 200: /* Subtract from zero extended */
4528 case 202: /* Add to zero extended */
4529 case 232: /* Subtract from minus one extended */
4530 case 234: /* Add to minus one extended */
4531 /* CA is always altered, but SO/OV are only altered when OE=1.
4532 In any case, XER is always altered. */
4533 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4534 if (PPC_RC (insn))
4535 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4536 record_full_arch_list_add_reg (regcache,
4537 tdep->ppc_gp0_regnum + PPC_RT (insn));
4538 return 0;
4539
4540 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4541 case 40: /* Subtract from */
4542 case 104: /* Negate */
4543 case 233: /* Multiply low doubleword */
4544 case 235: /* Multiply low word */
4545 case 266: /* Add */
4546 case 393: /* Divide Doubleword Extended Unsigned */
4547 case 395: /* Divide Word Extended Unsigned */
4548 case 425: /* Divide Doubleword Extended */
4549 case 427: /* Divide Word Extended */
4550 case 457: /* Divide Doubleword Unsigned */
4551 case 459: /* Divide Word Unsigned */
4552 case 489: /* Divide Doubleword */
4553 case 491: /* Divide Word */
4554 if (PPC_OE (insn))
4555 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4556 /* FALL-THROUGH */
4557 case 9: /* Multiply High Doubleword Unsigned */
4558 case 11: /* Multiply High Word Unsigned */
4559 case 73: /* Multiply High Doubleword */
4560 case 75: /* Multiply High Word */
4561 if (PPC_RC (insn))
4562 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4563 record_full_arch_list_add_reg (regcache,
4564 tdep->ppc_gp0_regnum + PPC_RT (insn));
4565 return 0;
4566 }
4567
4568 if ((ext & 0x1f) == 15)
4569 {
4570 /* Integer Select. bit[16:20] is used for BC. */
4571 record_full_arch_list_add_reg (regcache,
4572 tdep->ppc_gp0_regnum + PPC_RT (insn));
4573 return 0;
4574 }
4575
6ec2b213
EBM
4576 if ((ext & 0xff) == 170)
4577 {
4578 /* Add Extended using alternate carry bits */
4579 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4580 record_full_arch_list_add_reg (regcache,
4581 tdep->ppc_gp0_regnum + PPC_RT (insn));
4582 return 0;
4583 }
4584
b4cdae6f
WW
4585 switch (ext)
4586 {
4587 case 78: /* Determine Leftmost Zero Byte */
4588 if (PPC_RC (insn))
4589 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4590 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4591 record_full_arch_list_add_reg (regcache,
4592 tdep->ppc_gp0_regnum + PPC_RT (insn));
4593 return 0;
4594
4595 /* These only write RT. */
4596 case 19: /* Move from condition register */
4597 /* Move From One Condition Register Field */
4598 case 74: /* Add and Generate Sixes */
4599 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4600 case 302: /* Move From Branch History Rolling Buffer */
4601 case 339: /* Move From Special Purpose Register */
4602 case 371: /* Move From Time Base [Phased-Out] */
6ec2b213
EBM
4603 case 309: /* Load Doubleword Monitored Indexed */
4604 case 128: /* Set Boolean */
4605 case 755: /* Deliver A Random Number */
b4cdae6f
WW
4606 record_full_arch_list_add_reg (regcache,
4607 tdep->ppc_gp0_regnum + PPC_RT (insn));
4608 return 0;
4609
4610 /* These only write to RA. */
4611 case 51: /* Move From VSR Doubleword */
4612 case 115: /* Move From VSR Word and Zero */
4613 case 122: /* Population count bytes */
4614 case 378: /* Population count words */
4615 case 506: /* Population count doublewords */
4616 case 154: /* Parity Word */
4617 case 186: /* Parity Doubleword */
4618 case 252: /* Bit Permute Doubleword */
4619 case 282: /* Convert Declets To Binary Coded Decimal */
4620 case 314: /* Convert Binary Coded Decimal To Declets */
4621 case 508: /* Compare bytes */
6ec2b213 4622 case 307: /* Move From VSR Lower Doubleword */
b4cdae6f
WW
4623 record_full_arch_list_add_reg (regcache,
4624 tdep->ppc_gp0_regnum + PPC_RA (insn));
4625 return 0;
4626
4627 /* These write CR and optional RA. */
4628 case 792: /* Shift Right Algebraic Word */
4629 case 794: /* Shift Right Algebraic Doubleword */
4630 case 824: /* Shift Right Algebraic Word Immediate */
4631 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4632 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4633 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4634 record_full_arch_list_add_reg (regcache,
4635 tdep->ppc_gp0_regnum + PPC_RA (insn));
4636 /* FALL-THROUGH */
4637 case 0: /* Compare */
4638 case 32: /* Compare logical */
4639 case 144: /* Move To Condition Register Fields */
4640 /* Move To One Condition Register Field */
6ec2b213
EBM
4641 case 192: /* Compare Ranged Byte */
4642 case 224: /* Compare Equal Byte */
4643 case 576: /* Move XER to CR Extended */
4644 case 902: /* Paste (should always fail due to single-stepping and
4645 the memory location might not be accessible, so
4646 record only CR) */
b4cdae6f
WW
4647 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4648 return 0;
4649
4650 /* These write to RT. Update RA if 'update indexed.' */
4651 case 53: /* Load Doubleword with Update Indexed */
4652 case 119: /* Load Byte and Zero with Update Indexed */
4653 case 311: /* Load Halfword and Zero with Update Indexed */
4654 case 55: /* Load Word and Zero with Update Indexed */
4655 case 375: /* Load Halfword Algebraic with Update Indexed */
4656 case 373: /* Load Word Algebraic with Update Indexed */
4657 record_full_arch_list_add_reg (regcache,
4658 tdep->ppc_gp0_regnum + PPC_RA (insn));
4659 /* FALL-THROUGH */
4660 case 21: /* Load Doubleword Indexed */
4661 case 52: /* Load Byte And Reserve Indexed */
4662 case 116: /* Load Halfword And Reserve Indexed */
4663 case 20: /* Load Word And Reserve Indexed */
4664 case 84: /* Load Doubleword And Reserve Indexed */
4665 case 87: /* Load Byte and Zero Indexed */
4666 case 279: /* Load Halfword and Zero Indexed */
4667 case 23: /* Load Word and Zero Indexed */
4668 case 343: /* Load Halfword Algebraic Indexed */
4669 case 341: /* Load Word Algebraic Indexed */
4670 case 790: /* Load Halfword Byte-Reverse Indexed */
4671 case 534: /* Load Word Byte-Reverse Indexed */
4672 case 532: /* Load Doubleword Byte-Reverse Indexed */
6ec2b213
EBM
4673 case 582: /* Load Word Atomic */
4674 case 614: /* Load Doubleword Atomic */
4675 case 265: /* Modulo Unsigned Doubleword */
4676 case 777: /* Modulo Signed Doubleword */
4677 case 267: /* Modulo Unsigned Word */
4678 case 779: /* Modulo Signed Word */
b4cdae6f
WW
4679 record_full_arch_list_add_reg (regcache,
4680 tdep->ppc_gp0_regnum + PPC_RT (insn));
4681 return 0;
4682
4683 case 597: /* Load String Word Immediate */
4684 case 533: /* Load String Word Indexed */
4685 if (ext == 597)
4686 {
4687 nr = PPC_NB (insn);
4688 if (nr == 0)
4689 nr = 32;
4690 }
4691 else
4692 {
4693 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4694 nr = PPC_XER_NB (xer);
4695 }
4696
4697 nr = (nr + 3) >> 2;
4698
4699 /* If n=0, the contents of register RT are undefined. */
4700 if (nr == 0)
4701 nr = 1;
4702
4703 for (i = 0; i < nr; i++)
4704 record_full_arch_list_add_reg (regcache,
4705 tdep->ppc_gp0_regnum
4706 + ((PPC_RT (insn) + i) & 0x1f));
4707 return 0;
4708
4709 case 276: /* Load Quadword And Reserve Indexed */
4710 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4711 record_full_arch_list_add_reg (regcache, tmp);
4712 record_full_arch_list_add_reg (regcache, tmp + 1);
4713 return 0;
4714
4715 /* These write VRT. */
4716 case 6: /* Load Vector for Shift Left Indexed */
4717 case 38: /* Load Vector for Shift Right Indexed */
4718 case 7: /* Load Vector Element Byte Indexed */
4719 case 39: /* Load Vector Element Halfword Indexed */
4720 case 71: /* Load Vector Element Word Indexed */
4721 case 103: /* Load Vector Indexed */
4722 case 359: /* Load Vector Indexed LRU */
4723 record_full_arch_list_add_reg (regcache,
4724 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4725 return 0;
4726
4727 /* These write FRT. Update RA if 'update indexed.' */
4728 case 567: /* Load Floating-Point Single with Update Indexed */
4729 case 631: /* Load Floating-Point Double with Update Indexed */
4730 record_full_arch_list_add_reg (regcache,
4731 tdep->ppc_gp0_regnum + PPC_RA (insn));
4732 /* FALL-THROUGH */
4733 case 535: /* Load Floating-Point Single Indexed */
4734 case 599: /* Load Floating-Point Double Indexed */
4735 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4736 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4737 record_full_arch_list_add_reg (regcache,
4738 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4739 return 0;
4740
4741 case 791: /* Load Floating-Point Double Pair Indexed */
4742 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4743 record_full_arch_list_add_reg (regcache, tmp);
4744 record_full_arch_list_add_reg (regcache, tmp + 1);
4745 return 0;
4746
4747 case 179: /* Move To VSR Doubleword */
4748 case 211: /* Move To VSR Word Algebraic */
4749 case 243: /* Move To VSR Word and Zero */
4750 case 588: /* Load VSX Scalar Doubleword Indexed */
4751 case 524: /* Load VSX Scalar Single-Precision Indexed */
4752 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4753 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4754 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4755 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4756 case 780: /* Load VSX Vector Word*4 Indexed */
6ec2b213
EBM
4757 case 268: /* Load VSX Vector Indexed */
4758 case 364: /* Load VSX Vector Word & Splat Indexed */
4759 case 812: /* Load VSX Vector Halfword*8 Indexed */
4760 case 876: /* Load VSX Vector Byte*16 Indexed */
4761 case 269: /* Load VSX Vector with Length */
4762 case 301: /* Load VSX Vector Left-justified with Length */
4763 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4764 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4765 case 403: /* Move To VSR Word & Splat */
4766 case 435: /* Move To VSR Double Doubleword */
b4cdae6f
WW
4767 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4768 return 0;
4769
4770 /* These write RA. Update CR if RC is set. */
4771 case 24: /* Shift Left Word */
4772 case 26: /* Count Leading Zeros Word */
4773 case 27: /* Shift Left Doubleword */
4774 case 28: /* AND */
4775 case 58: /* Count Leading Zeros Doubleword */
4776 case 60: /* AND with Complement */
4777 case 124: /* NOR */
4778 case 284: /* Equivalent */
4779 case 316: /* XOR */
4780 case 476: /* NAND */
4781 case 412: /* OR with Complement */
4782 case 444: /* OR */
4783 case 536: /* Shift Right Word */
4784 case 539: /* Shift Right Doubleword */
4785 case 922: /* Extend Sign Halfword */
4786 case 954: /* Extend Sign Byte */
4787 case 986: /* Extend Sign Word */
6ec2b213
EBM
4788 case 538: /* Count Trailing Zeros Word */
4789 case 570: /* Count Trailing Zeros Doubleword */
4790 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4791 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
7ca18ed6
EBM
4792
4793 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4794 && (PPC_RS (insn) == PPC_RA (insn))
4795 && (PPC_RA (insn) == PPC_RB (insn))
4796 && !PPC_RC (insn))
4797 {
4798 /* or Rx,Rx,Rx alters PRI in PPR. */
4799 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4800 return 0;
4801 }
4802
b4cdae6f
WW
4803 if (PPC_RC (insn))
4804 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4805 record_full_arch_list_add_reg (regcache,
4806 tdep->ppc_gp0_regnum + PPC_RA (insn));
4807 return 0;
4808
4809 /* Store memory. */
4810 case 181: /* Store Doubleword with Update Indexed */
4811 case 183: /* Store Word with Update Indexed */
4812 case 247: /* Store Byte with Update Indexed */
4813 case 439: /* Store Half Word with Update Indexed */
4814 case 695: /* Store Floating-Point Single with Update Indexed */
4815 case 759: /* Store Floating-Point Double with Update Indexed */
4816 record_full_arch_list_add_reg (regcache,
4817 tdep->ppc_gp0_regnum + PPC_RA (insn));
4818 /* FALL-THROUGH */
4819 case 135: /* Store Vector Element Byte Indexed */
4820 case 167: /* Store Vector Element Halfword Indexed */
4821 case 199: /* Store Vector Element Word Indexed */
4822 case 231: /* Store Vector Indexed */
4823 case 487: /* Store Vector Indexed LRU */
4824 case 716: /* Store VSX Scalar Doubleword Indexed */
4825 case 140: /* Store VSX Scalar as Integer Word Indexed */
4826 case 652: /* Store VSX Scalar Single-Precision Indexed */
4827 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4828 case 908: /* Store VSX Vector Word*4 Indexed */
4829 case 149: /* Store Doubleword Indexed */
4830 case 151: /* Store Word Indexed */
4831 case 215: /* Store Byte Indexed */
4832 case 407: /* Store Half Word Indexed */
4833 case 694: /* Store Byte Conditional Indexed */
4834 case 726: /* Store Halfword Conditional Indexed */
4835 case 150: /* Store Word Conditional Indexed */
4836 case 214: /* Store Doubleword Conditional Indexed */
4837 case 182: /* Store Quadword Conditional Indexed */
4838 case 662: /* Store Word Byte-Reverse Indexed */
4839 case 918: /* Store Halfword Byte-Reverse Indexed */
4840 case 660: /* Store Doubleword Byte-Reverse Indexed */
4841 case 663: /* Store Floating-Point Single Indexed */
4842 case 727: /* Store Floating-Point Double Indexed */
4843 case 919: /* Store Floating-Point Double Pair Indexed */
4844 case 983: /* Store Floating-Point as Integer Word Indexed */
6ec2b213
EBM
4845 case 396: /* Store VSX Vector Indexed */
4846 case 940: /* Store VSX Vector Halfword*8 Indexed */
4847 case 1004: /* Store VSX Vector Byte*16 Indexed */
4848 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4849 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4850 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4851 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4852
4853 ra = 0;
4854 if (PPC_RA (insn) != 0)
4855 regcache_raw_read_unsigned (regcache,
4856 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4857 regcache_raw_read_unsigned (regcache,
4858 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4859 ea = ra + rb;
4860
4861 switch (ext)
4862 {
4863 case 183: /* Store Word with Update Indexed */
4864 case 199: /* Store Vector Element Word Indexed */
4865 case 140: /* Store VSX Scalar as Integer Word Indexed */
4866 case 652: /* Store VSX Scalar Single-Precision Indexed */
4867 case 151: /* Store Word Indexed */
4868 case 150: /* Store Word Conditional Indexed */
4869 case 662: /* Store Word Byte-Reverse Indexed */
4870 case 663: /* Store Floating-Point Single Indexed */
4871 case 695: /* Store Floating-Point Single with Update Indexed */
4872 case 983: /* Store Floating-Point as Integer Word Indexed */
4873 size = 4;
4874 break;
4875 case 247: /* Store Byte with Update Indexed */
4876 case 135: /* Store Vector Element Byte Indexed */
4877 case 215: /* Store Byte Indexed */
4878 case 694: /* Store Byte Conditional Indexed */
6ec2b213 4879 case 909: /* Store VSX Scalar as Integer Byte Indexed */
b4cdae6f
WW
4880 size = 1;
4881 break;
4882 case 439: /* Store Halfword with Update Indexed */
4883 case 167: /* Store Vector Element Halfword Indexed */
4884 case 407: /* Store Halfword Indexed */
4885 case 726: /* Store Halfword Conditional Indexed */
4886 case 918: /* Store Halfword Byte-Reverse Indexed */
6ec2b213 4887 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4888 size = 2;
4889 break;
4890 case 181: /* Store Doubleword with Update Indexed */
4891 case 716: /* Store VSX Scalar Doubleword Indexed */
4892 case 149: /* Store Doubleword Indexed */
4893 case 214: /* Store Doubleword Conditional Indexed */
4894 case 660: /* Store Doubleword Byte-Reverse Indexed */
4895 case 727: /* Store Floating-Point Double Indexed */
4896 case 759: /* Store Floating-Point Double with Update Indexed */
4897 size = 8;
4898 break;
4899 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4900 case 908: /* Store VSX Vector Word*4 Indexed */
4901 case 182: /* Store Quadword Conditional Indexed */
4902 case 231: /* Store Vector Indexed */
4903 case 487: /* Store Vector Indexed LRU */
4904 case 919: /* Store Floating-Point Double Pair Indexed */
6ec2b213
EBM
4905 case 396: /* Store VSX Vector Indexed */
4906 case 940: /* Store VSX Vector Halfword*8 Indexed */
4907 case 1004: /* Store VSX Vector Byte*16 Indexed */
b4cdae6f
WW
4908 size = 16;
4909 break;
4910 default:
4911 gdb_assert (0);
4912 }
4913
4914 /* Align address for Store Vector instructions. */
4915 switch (ext)
4916 {
4917 case 167: /* Store Vector Element Halfword Indexed */
4918 addr = addr & ~0x1ULL;
4919 break;
4920
4921 case 199: /* Store Vector Element Word Indexed */
4922 addr = addr & ~0x3ULL;
4923 break;
4924
4925 case 231: /* Store Vector Indexed */
4926 case 487: /* Store Vector Indexed LRU */
4927 addr = addr & ~0xfULL;
4928 break;
4929 }
4930
4931 record_full_arch_list_add_mem (addr, size);
4932 return 0;
4933
6ec2b213
EBM
4934 case 397: /* Store VSX Vector with Length */
4935 case 429: /* Store VSX Vector Left-justified with Length */
de678454 4936 ra = 0;
6ec2b213
EBM
4937 if (PPC_RA (insn) != 0)
4938 regcache_raw_read_unsigned (regcache,
de678454
EBM
4939 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4940 ea = ra;
6ec2b213
EBM
4941 regcache_raw_read_unsigned (regcache,
4942 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4943 /* Store up to 16 bytes. */
4944 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4945 if (nb > 0)
4946 record_full_arch_list_add_mem (ea, nb);
4947 return 0;
4948
4949 case 710: /* Store Word Atomic */
4950 case 742: /* Store Doubleword Atomic */
de678454 4951 ra = 0;
6ec2b213
EBM
4952 if (PPC_RA (insn) != 0)
4953 regcache_raw_read_unsigned (regcache,
de678454
EBM
4954 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4955 ea = ra;
6ec2b213
EBM
4956 switch (ext)
4957 {
4958 case 710: /* Store Word Atomic */
4959 size = 8;
4960 break;
4961 case 742: /* Store Doubleword Atomic */
4962 size = 16;
4963 break;
4964 default:
4965 gdb_assert (0);
4966 }
4967 record_full_arch_list_add_mem (ea, size);
4968 return 0;
4969
b4cdae6f
WW
4970 case 725: /* Store String Word Immediate */
4971 ra = 0;
4972 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4973 regcache_raw_read_unsigned (regcache,
4974 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4975 ea += ra;
4976
4977 nb = PPC_NB (insn);
4978 if (nb == 0)
4979 nb = 32;
4980
4981 record_full_arch_list_add_mem (ea, nb);
4982
4983 return 0;
4984
4985 case 661: /* Store String Word Indexed */
4986 ra = 0;
4987 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4988 regcache_raw_read_unsigned (regcache,
4989 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4990 ea += ra;
4991
4992 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4993 nb = PPC_XER_NB (xer);
4994
4995 if (nb != 0)
4996 {
9f7efd5b
EBM
4997 regcache_raw_read_unsigned (regcache,
4998 tdep->ppc_gp0_regnum + PPC_RB (insn),
4999 &rb);
b4cdae6f
WW
5000 ea += rb;
5001 record_full_arch_list_add_mem (ea, nb);
5002 }
5003
5004 return 0;
5005
5006 case 467: /* Move To Special Purpose Register */
5007 switch (PPC_SPR (insn))
5008 {
5009 case 1: /* XER */
5010 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5011 return 0;
7ca18ed6
EBM
5012 case 3: /* DSCR */
5013 if (tdep->ppc_dscr_regnum >= 0)
5014 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
5015 return 0;
b4cdae6f
WW
5016 case 8: /* LR */
5017 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5018 return 0;
5019 case 9: /* CTR */
5020 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5021 return 0;
5022 case 256: /* VRSAVE */
5023 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
5024 return 0;
f2cf6173
EBM
5025 case 815: /* TAR */
5026 if (tdep->ppc_tar_regnum >= 0)
5027 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
5028 return 0;
7ca18ed6
EBM
5029 case 896:
5030 case 898: /* PPR */
5031 if (tdep->ppc_ppr_regnum >= 0)
5032 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
5033 return 0;
b4cdae6f
WW
5034 }
5035
5036 goto UNKNOWN_OP;
5037
5038 case 147: /* Move To Split Little Endian */
5039 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5040 return 0;
5041
5042 case 512: /* Move to Condition Register from XER */
5043 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5044 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5045 return 0;
5046
5047 case 4: /* Trap Word */
5048 case 68: /* Trap Doubleword */
5049 case 430: /* Clear BHRB */
5050 case 598: /* Synchronize */
5051 case 62: /* Wait for Interrupt */
6ec2b213 5052 case 30: /* Wait */
b4cdae6f
WW
5053 case 22: /* Instruction Cache Block Touch */
5054 case 854: /* Enforce In-order Execution of I/O */
5055 case 246: /* Data Cache Block Touch for Store */
5056 case 54: /* Data Cache Block Store */
5057 case 86: /* Data Cache Block Flush */
5058 case 278: /* Data Cache Block Touch */
5059 case 758: /* Data Cache Block Allocate */
5060 case 982: /* Instruction Cache Block Invalidate */
6ec2b213
EBM
5061 case 774: /* Copy */
5062 case 838: /* CP_Abort */
b4cdae6f
WW
5063 return 0;
5064
5065 case 654: /* Transaction Begin */
5066 case 686: /* Transaction End */
b4cdae6f
WW
5067 case 750: /* Transaction Suspend or Resume */
5068 case 782: /* Transaction Abort Word Conditional */
5069 case 814: /* Transaction Abort Doubleword Conditional */
5070 case 846: /* Transaction Abort Word Conditional Immediate */
5071 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5072 case 910: /* Transaction Abort */
d44c67f3
EBM
5073 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5074 /* FALL-THROUGH */
5075 case 718: /* Transaction Check */
5076 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5077 return 0;
b4cdae6f
WW
5078
5079 case 1014: /* Data Cache Block set to Zero */
8b88a78e 5080 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
b4cdae6f
WW
5081 || at_dcsz == 0)
5082 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5083
bec734b2 5084 ra = 0;
b4cdae6f
WW
5085 if (PPC_RA (insn) != 0)
5086 regcache_raw_read_unsigned (regcache,
5087 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5088 regcache_raw_read_unsigned (regcache,
5089 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5090 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5091 record_full_arch_list_add_mem (ea, at_dcsz);
5092 return 0;
5093 }
5094
5095UNKNOWN_OP:
810c1026
WW
5096 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5097 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5098 return -1;
5099}
5100
ddeca1df
WW
5101/* Parse and record instructions of primary opcode-59 at ADDR.
5102 Return 0 if successful. */
b4cdae6f
WW
5103
5104static int
5105ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5106 CORE_ADDR addr, uint32_t insn)
5107{
5108 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5109 int ext = PPC_EXTOP (insn);
5110
5111 switch (ext & 0x1f)
5112 {
5113 case 18: /* Floating Divide */
5114 case 20: /* Floating Subtract */
5115 case 21: /* Floating Add */
5116 case 22: /* Floating Square Root */
5117 case 24: /* Floating Reciprocal Estimate */
5118 case 25: /* Floating Multiply */
5119 case 26: /* Floating Reciprocal Square Root Estimate */
5120 case 28: /* Floating Multiply-Subtract */
5121 case 29: /* Floating Multiply-Add */
5122 case 30: /* Floating Negative Multiply-Subtract */
5123 case 31: /* Floating Negative Multiply-Add */
5124 record_full_arch_list_add_reg (regcache,
5125 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5126 if (PPC_RC (insn))
5127 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5128 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5129
5130 return 0;
5131 }
5132
5133 switch (ext)
5134 {
5135 case 2: /* DFP Add */
5136 case 3: /* DFP Quantize */
5137 case 34: /* DFP Multiply */
5138 case 35: /* DFP Reround */
5139 case 67: /* DFP Quantize Immediate */
5140 case 99: /* DFP Round To FP Integer With Inexact */
5141 case 227: /* DFP Round To FP Integer Without Inexact */
5142 case 258: /* DFP Convert To DFP Long! */
5143 case 290: /* DFP Convert To Fixed */
5144 case 514: /* DFP Subtract */
5145 case 546: /* DFP Divide */
5146 case 770: /* DFP Round To DFP Short! */
5147 case 802: /* DFP Convert From Fixed */
5148 case 834: /* DFP Encode BCD To DPD */
5149 if (PPC_RC (insn))
5150 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5151 record_full_arch_list_add_reg (regcache,
5152 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5153 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5154 return 0;
5155
5156 case 130: /* DFP Compare Ordered */
5157 case 162: /* DFP Test Exponent */
5158 case 194: /* DFP Test Data Class */
5159 case 226: /* DFP Test Data Group */
5160 case 642: /* DFP Compare Unordered */
5161 case 674: /* DFP Test Significance */
6ec2b213 5162 case 675: /* DFP Test Significance Immediate */
b4cdae6f
WW
5163 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5164 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5165 return 0;
5166
5167 case 66: /* DFP Shift Significand Left Immediate */
5168 case 98: /* DFP Shift Significand Right Immediate */
5169 case 322: /* DFP Decode DPD To BCD */
5170 case 354: /* DFP Extract Biased Exponent */
5171 case 866: /* DFP Insert Biased Exponent */
5172 record_full_arch_list_add_reg (regcache,
5173 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5174 if (PPC_RC (insn))
5175 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5176 return 0;
5177
5178 case 846: /* Floating Convert From Integer Doubleword Single */
5179 case 974: /* Floating Convert From Integer Doubleword Unsigned
5180 Single */
5181 record_full_arch_list_add_reg (regcache,
5182 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5183 if (PPC_RC (insn))
5184 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5185 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5186
5187 return 0;
5188 }
5189
810c1026
WW
5190 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5191 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5192 return -1;
5193}
5194
ddeca1df
WW
5195/* Parse and record instructions of primary opcode-60 at ADDR.
5196 Return 0 if successful. */
b4cdae6f
WW
5197
5198static int
5199ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5200 CORE_ADDR addr, uint32_t insn)
5201{
5202 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5203 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
5204
5205 switch (ext >> 2)
5206 {
5207 case 0: /* VSX Scalar Add Single-Precision */
5208 case 32: /* VSX Scalar Add Double-Precision */
5209 case 24: /* VSX Scalar Divide Single-Precision */
5210 case 56: /* VSX Scalar Divide Double-Precision */
5211 case 176: /* VSX Scalar Copy Sign Double-Precision */
5212 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5213 case 41: /* ditto */
5214 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5215 case 9: /* ditto */
5216 case 160: /* VSX Scalar Maximum Double-Precision */
5217 case 168: /* VSX Scalar Minimum Double-Precision */
5218 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5219 case 57: /* ditto */
5220 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5221 case 25: /* ditto */
5222 case 48: /* VSX Scalar Multiply Double-Precision */
5223 case 16: /* VSX Scalar Multiply Single-Precision */
5224 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5225 case 169: /* ditto */
5226 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5227 case 137: /* ditto */
5228 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5229 case 185: /* ditto */
5230 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5231 case 153: /* ditto */
5232 case 40: /* VSX Scalar Subtract Double-Precision */
5233 case 8: /* VSX Scalar Subtract Single-Precision */
5234 case 96: /* VSX Vector Add Double-Precision */
5235 case 64: /* VSX Vector Add Single-Precision */
5236 case 120: /* VSX Vector Divide Double-Precision */
5237 case 88: /* VSX Vector Divide Single-Precision */
5238 case 97: /* VSX Vector Multiply-Add Double-Precision */
5239 case 105: /* ditto */
5240 case 65: /* VSX Vector Multiply-Add Single-Precision */
5241 case 73: /* ditto */
5242 case 224: /* VSX Vector Maximum Double-Precision */
5243 case 192: /* VSX Vector Maximum Single-Precision */
5244 case 232: /* VSX Vector Minimum Double-Precision */
5245 case 200: /* VSX Vector Minimum Single-Precision */
5246 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5247 case 121: /* ditto */
5248 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5249 case 89: /* ditto */
5250 case 112: /* VSX Vector Multiply Double-Precision */
5251 case 80: /* VSX Vector Multiply Single-Precision */
5252 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5253 case 233: /* ditto */
5254 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5255 case 201: /* ditto */
5256 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5257 case 249: /* ditto */
5258 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5259 case 217: /* ditto */
5260 case 104: /* VSX Vector Subtract Double-Precision */
5261 case 72: /* VSX Vector Subtract Single-Precision */
6ec2b213
EBM
5262 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5263 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5264 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5265 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5266 case 3: /* VSX Scalar Compare Equal Double-Precision */
5267 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5268 case 19: /* VSX Scalar Compare Greater Than or Equal
5269 Double-Precision */
b4cdae6f 5270 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5271 /* FALL-THROUGH */
b4cdae6f
WW
5272 case 240: /* VSX Vector Copy Sign Double-Precision */
5273 case 208: /* VSX Vector Copy Sign Single-Precision */
5274 case 130: /* VSX Logical AND */
5275 case 138: /* VSX Logical AND with Complement */
5276 case 186: /* VSX Logical Equivalence */
5277 case 178: /* VSX Logical NAND */
5278 case 170: /* VSX Logical OR with Complement */
5279 case 162: /* VSX Logical NOR */
5280 case 146: /* VSX Logical OR */
5281 case 154: /* VSX Logical XOR */
5282 case 18: /* VSX Merge High Word */
5283 case 50: /* VSX Merge Low Word */
5284 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5285 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5286 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5287 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5288 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5289 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5290 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5291 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
6ec2b213
EBM
5292 case 216: /* VSX Vector Insert Exponent Single-Precision */
5293 case 248: /* VSX Vector Insert Exponent Double-Precision */
5294 case 26: /* VSX Vector Permute */
5295 case 58: /* VSX Vector Permute Right-indexed */
5296 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5297 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5298 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5299 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
b4cdae6f
WW
5300 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5301 return 0;
5302
5303 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5304 case 125: /* VSX Vector Test for software Divide Double-Precision */
5305 case 93: /* VSX Vector Test for software Divide Single-Precision */
5306 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5307 return 0;
5308
5309 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5310 case 43: /* VSX Scalar Compare Ordered Double-Precision */
6ec2b213 5311 case 59: /* VSX Scalar Compare Exponents Double-Precision */
b4cdae6f
WW
5312 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5313 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5314 return 0;
5315 }
5316
5317 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5318 {
5319 case 99: /* VSX Vector Compare Equal To Double-Precision */
5320 case 67: /* VSX Vector Compare Equal To Single-Precision */
5321 case 115: /* VSX Vector Compare Greater Than or
5322 Equal To Double-Precision */
5323 case 83: /* VSX Vector Compare Greater Than or
5324 Equal To Single-Precision */
5325 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5326 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5327 if (PPC_Rc (insn))
5328 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5329 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5330 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5331 return 0;
5332 }
5333
5334 switch (ext >> 1)
5335 {
5336 case 265: /* VSX Scalar round Double-Precision to
5337 Single-Precision and Convert to
5338 Single-Precision format */
5339 case 344: /* VSX Scalar truncate Double-Precision to
5340 Integer and Convert to Signed Integer
5341 Doubleword format with Saturate */
5342 case 88: /* VSX Scalar truncate Double-Precision to
5343 Integer and Convert to Signed Integer Word
5344 Format with Saturate */
5345 case 328: /* VSX Scalar truncate Double-Precision integer
5346 and Convert to Unsigned Integer Doubleword
5347 Format with Saturate */
5348 case 72: /* VSX Scalar truncate Double-Precision to
5349 Integer and Convert to Unsigned Integer Word
5350 Format with Saturate */
5351 case 329: /* VSX Scalar Convert Single-Precision to
5352 Double-Precision format */
5353 case 376: /* VSX Scalar Convert Signed Integer
5354 Doubleword to floating-point format and
5355 Round to Double-Precision format */
5356 case 312: /* VSX Scalar Convert Signed Integer
5357 Doubleword to floating-point format and
5358 round to Single-Precision */
5359 case 360: /* VSX Scalar Convert Unsigned Integer
5360 Doubleword to floating-point format and
5361 Round to Double-Precision format */
5362 case 296: /* VSX Scalar Convert Unsigned Integer
5363 Doubleword to floating-point format and
5364 Round to Single-Precision */
5365 case 73: /* VSX Scalar Round to Double-Precision Integer
5366 Using Round to Nearest Away */
5367 case 107: /* VSX Scalar Round to Double-Precision Integer
5368 Exact using Current rounding mode */
5369 case 121: /* VSX Scalar Round to Double-Precision Integer
5370 Using Round toward -Infinity */
5371 case 105: /* VSX Scalar Round to Double-Precision Integer
5372 Using Round toward +Infinity */
5373 case 89: /* VSX Scalar Round to Double-Precision Integer
5374 Using Round toward Zero */
5375 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5376 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5377 case 281: /* VSX Scalar Round to Single-Precision */
5378 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5379 Double-Precision */
5380 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5381 Single-Precision */
5382 case 75: /* VSX Scalar Square Root Double-Precision */
5383 case 11: /* VSX Scalar Square Root Single-Precision */
5384 case 393: /* VSX Vector round Double-Precision to
5385 Single-Precision and Convert to
5386 Single-Precision format */
5387 case 472: /* VSX Vector truncate Double-Precision to
5388 Integer and Convert to Signed Integer
5389 Doubleword format with Saturate */
5390 case 216: /* VSX Vector truncate Double-Precision to
5391 Integer and Convert to Signed Integer Word
5392 Format with Saturate */
5393 case 456: /* VSX Vector truncate Double-Precision to
5394 Integer and Convert to Unsigned Integer
5395 Doubleword format with Saturate */
5396 case 200: /* VSX Vector truncate Double-Precision to
5397 Integer and Convert to Unsigned Integer Word
5398 Format with Saturate */
5399 case 457: /* VSX Vector Convert Single-Precision to
5400 Double-Precision format */
5401 case 408: /* VSX Vector truncate Single-Precision to
5402 Integer and Convert to Signed Integer
5403 Doubleword format with Saturate */
5404 case 152: /* VSX Vector truncate Single-Precision to
5405 Integer and Convert to Signed Integer Word
5406 Format with Saturate */
5407 case 392: /* VSX Vector truncate Single-Precision to
5408 Integer and Convert to Unsigned Integer
5409 Doubleword format with Saturate */
5410 case 136: /* VSX Vector truncate Single-Precision to
5411 Integer and Convert to Unsigned Integer Word
5412 Format with Saturate */
5413 case 504: /* VSX Vector Convert and round Signed Integer
5414 Doubleword to Double-Precision format */
5415 case 440: /* VSX Vector Convert and round Signed Integer
5416 Doubleword to Single-Precision format */
5417 case 248: /* VSX Vector Convert Signed Integer Word to
5418 Double-Precision format */
5419 case 184: /* VSX Vector Convert and round Signed Integer
5420 Word to Single-Precision format */
5421 case 488: /* VSX Vector Convert and round Unsigned
5422 Integer Doubleword to Double-Precision format */
5423 case 424: /* VSX Vector Convert and round Unsigned
5424 Integer Doubleword to Single-Precision format */
5425 case 232: /* VSX Vector Convert and round Unsigned
5426 Integer Word to Double-Precision format */
5427 case 168: /* VSX Vector Convert and round Unsigned
5428 Integer Word to Single-Precision format */
5429 case 201: /* VSX Vector Round to Double-Precision
5430 Integer using round to Nearest Away */
5431 case 235: /* VSX Vector Round to Double-Precision
5432 Integer Exact using Current rounding mode */
5433 case 249: /* VSX Vector Round to Double-Precision
5434 Integer using round toward -Infinity */
5435 case 233: /* VSX Vector Round to Double-Precision
5436 Integer using round toward +Infinity */
5437 case 217: /* VSX Vector Round to Double-Precision
5438 Integer using round toward Zero */
5439 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5440 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5441 case 137: /* VSX Vector Round to Single-Precision Integer
5442 Using Round to Nearest Away */
5443 case 171: /* VSX Vector Round to Single-Precision Integer
5444 Exact Using Current rounding mode */
5445 case 185: /* VSX Vector Round to Single-Precision Integer
5446 Using Round toward -Infinity */
5447 case 169: /* VSX Vector Round to Single-Precision Integer
5448 Using Round toward +Infinity */
5449 case 153: /* VSX Vector Round to Single-Precision Integer
5450 Using round toward Zero */
5451 case 202: /* VSX Vector Reciprocal Square Root Estimate
5452 Double-Precision */
5453 case 138: /* VSX Vector Reciprocal Square Root Estimate
5454 Single-Precision */
5455 case 203: /* VSX Vector Square Root Double-Precision */
5456 case 139: /* VSX Vector Square Root Single-Precision */
5457 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5458 /* FALL-THROUGH */
b4cdae6f
WW
5459 case 345: /* VSX Scalar Absolute Value Double-Precision */
5460 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5461 Vector Single-Precision format Non-signalling */
5462 case 331: /* VSX Scalar Convert Single-Precision to
5463 Double-Precision format Non-signalling */
5464 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5465 case 377: /* VSX Scalar Negate Double-Precision */
5466 case 473: /* VSX Vector Absolute Value Double-Precision */
5467 case 409: /* VSX Vector Absolute Value Single-Precision */
5468 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5469 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5470 case 505: /* VSX Vector Negate Double-Precision */
5471 case 441: /* VSX Vector Negate Single-Precision */
5472 case 164: /* VSX Splat Word */
6ec2b213
EBM
5473 case 165: /* VSX Vector Extract Unsigned Word */
5474 case 181: /* VSX Vector Insert Word */
b4cdae6f
WW
5475 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5476 return 0;
5477
6ec2b213
EBM
5478 case 298: /* VSX Scalar Test Data Class Single-Precision */
5479 case 362: /* VSX Scalar Test Data Class Double-Precision */
5480 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5481 /* FALL-THROUGH */
b4cdae6f
WW
5482 case 106: /* VSX Scalar Test for software Square Root
5483 Double-Precision */
5484 case 234: /* VSX Vector Test for software Square Root
5485 Double-Precision */
5486 case 170: /* VSX Vector Test for software Square Root
5487 Single-Precision */
5488 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5489 return 0;
6ec2b213
EBM
5490
5491 case 347:
5492 switch (PPC_FIELD (insn, 11, 5))
5493 {
5494 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5495 case 1: /* VSX Scalar Extract Significand Double-Precision */
dda83cd7 5496 record_full_arch_list_add_reg (regcache,
6ec2b213
EBM
5497 tdep->ppc_gp0_regnum + PPC_RT (insn));
5498 return 0;
5499 case 16: /* VSX Scalar Convert Half-Precision format to
5500 Double-Precision format */
5501 case 17: /* VSX Scalar round & Convert Double-Precision format
5502 to Half-Precision format */
5503 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5504 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5505 return 0;
5506 }
5507 break;
5508
5509 case 475:
5510 switch (PPC_FIELD (insn, 11, 5))
5511 {
5512 case 24: /* VSX Vector Convert Half-Precision format to
5513 Single-Precision format */
5514 case 25: /* VSX Vector round and Convert Single-Precision format
5515 to Half-Precision format */
5516 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5517 /* FALL-THROUGH */
5518 case 0: /* VSX Vector Extract Exponent Double-Precision */
5519 case 1: /* VSX Vector Extract Significand Double-Precision */
5520 case 7: /* VSX Vector Byte-Reverse Halfword */
5521 case 8: /* VSX Vector Extract Exponent Single-Precision */
5522 case 9: /* VSX Vector Extract Significand Single-Precision */
5523 case 15: /* VSX Vector Byte-Reverse Word */
5524 case 23: /* VSX Vector Byte-Reverse Doubleword */
5525 case 31: /* VSX Vector Byte-Reverse Quadword */
5526 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5527 return 0;
5528 }
5529 break;
5530 }
5531
5532 switch (ext)
5533 {
5534 case 360: /* VSX Vector Splat Immediate Byte */
5535 if (PPC_FIELD (insn, 11, 2) == 0)
5536 {
5537 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5538 return 0;
5539 }
5540 break;
5541 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5542 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5543 return 0;
b4cdae6f
WW
5544 }
5545
5546 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5547 {
5548 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5549 return 0;
5550 }
5551
810c1026
WW
5552 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5553 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5554 return -1;
5555}
5556
6ec2b213
EBM
5557/* Parse and record instructions of primary opcode-61 at ADDR.
5558 Return 0 if successful. */
5559
5560static int
5561ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5562 CORE_ADDR addr, uint32_t insn)
5563{
5564 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5565 ULONGEST ea = 0;
5566 int size;
5567
5568 switch (insn & 0x3)
5569 {
5570 case 0: /* Store Floating-Point Double Pair */
5571 case 2: /* Store VSX Scalar Doubleword */
5572 case 3: /* Store VSX Scalar Single */
5573 if (PPC_RA (insn) != 0)
5574 regcache_raw_read_unsigned (regcache,
5575 tdep->ppc_gp0_regnum + PPC_RA (insn),
5576 &ea);
5577 ea += PPC_DS (insn) << 2;
5578 switch (insn & 0x3)
5579 {
5580 case 0: /* Store Floating-Point Double Pair */
5581 size = 16;
5582 break;
5583 case 2: /* Store VSX Scalar Doubleword */
5584 size = 8;
5585 break;
5586 case 3: /* Store VSX Scalar Single */
5587 size = 4;
5588 break;
5589 default:
5590 gdb_assert (0);
5591 }
5592 record_full_arch_list_add_mem (ea, size);
5593 return 0;
5594 }
5595
5596 switch (insn & 0x7)
5597 {
5598 case 1: /* Load VSX Vector */
5599 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5600 return 0;
5601 case 5: /* Store VSX Vector */
5602 if (PPC_RA (insn) != 0)
5603 regcache_raw_read_unsigned (regcache,
5604 tdep->ppc_gp0_regnum + PPC_RA (insn),
5605 &ea);
5606 ea += PPC_DQ (insn) << 4;
5607 record_full_arch_list_add_mem (ea, 16);
5608 return 0;
5609 }
5610
5611 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5612 "at %s.\n", insn, paddress (gdbarch, addr));
5613 return -1;
5614}
5615
ddeca1df
WW
5616/* Parse and record instructions of primary opcode-63 at ADDR.
5617 Return 0 if successful. */
b4cdae6f
WW
5618
5619static int
5620ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5621 CORE_ADDR addr, uint32_t insn)
5622{
5623 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5624 int ext = PPC_EXTOP (insn);
5625 int tmp;
5626
5627 switch (ext & 0x1f)
5628 {
5629 case 18: /* Floating Divide */
5630 case 20: /* Floating Subtract */
5631 case 21: /* Floating Add */
5632 case 22: /* Floating Square Root */
5633 case 24: /* Floating Reciprocal Estimate */
5634 case 25: /* Floating Multiply */
5635 case 26: /* Floating Reciprocal Square Root Estimate */
5636 case 28: /* Floating Multiply-Subtract */
5637 case 29: /* Floating Multiply-Add */
5638 case 30: /* Floating Negative Multiply-Subtract */
5639 case 31: /* Floating Negative Multiply-Add */
5640 record_full_arch_list_add_reg (regcache,
5641 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5642 if (PPC_RC (insn))
5643 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5644 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5645 return 0;
5646
5647 case 23: /* Floating Select */
5648 record_full_arch_list_add_reg (regcache,
5649 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5650 if (PPC_RC (insn))
5651 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
8aabe2e2 5652 return 0;
b4cdae6f
WW
5653 }
5654
6ec2b213
EBM
5655 switch (ext & 0xff)
5656 {
5657 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5658 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5659 Precision */
5660 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5661 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5662 return 0;
5663 }
5664
b4cdae6f
WW
5665 switch (ext)
5666 {
5667 case 2: /* DFP Add Quad */
5668 case 3: /* DFP Quantize Quad */
5669 case 34: /* DFP Multiply Quad */
5670 case 35: /* DFP Reround Quad */
5671 case 67: /* DFP Quantize Immediate Quad */
5672 case 99: /* DFP Round To FP Integer With Inexact Quad */
5673 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5674 case 258: /* DFP Convert To DFP Extended Quad */
5675 case 514: /* DFP Subtract Quad */
5676 case 546: /* DFP Divide Quad */
5677 case 770: /* DFP Round To DFP Long Quad */
5678 case 802: /* DFP Convert From Fixed Quad */
5679 case 834: /* DFP Encode BCD To DPD Quad */
5680 if (PPC_RC (insn))
5681 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5682 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5683 record_full_arch_list_add_reg (regcache, tmp);
5684 record_full_arch_list_add_reg (regcache, tmp + 1);
5685 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5686 return 0;
5687
5688 case 130: /* DFP Compare Ordered Quad */
5689 case 162: /* DFP Test Exponent Quad */
5690 case 194: /* DFP Test Data Class Quad */
5691 case 226: /* DFP Test Data Group Quad */
5692 case 642: /* DFP Compare Unordered Quad */
5693 case 674: /* DFP Test Significance Quad */
6ec2b213 5694 case 675: /* DFP Test Significance Immediate Quad */
b4cdae6f
WW
5695 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5696 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5697 return 0;
5698
5699 case 66: /* DFP Shift Significand Left Immediate Quad */
5700 case 98: /* DFP Shift Significand Right Immediate Quad */
5701 case 322: /* DFP Decode DPD To BCD Quad */
5702 case 866: /* DFP Insert Biased Exponent Quad */
5703 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5704 record_full_arch_list_add_reg (regcache, tmp);
5705 record_full_arch_list_add_reg (regcache, tmp + 1);
5706 if (PPC_RC (insn))
5707 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5708 return 0;
5709
5710 case 290: /* DFP Convert To Fixed Quad */
5711 record_full_arch_list_add_reg (regcache,
5712 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5713 if (PPC_RC (insn))
5714 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5715 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5716 return 0;
b4cdae6f
WW
5717
5718 case 354: /* DFP Extract Biased Exponent Quad */
5719 record_full_arch_list_add_reg (regcache,
5720 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5721 if (PPC_RC (insn))
5722 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5723 return 0;
5724
5725 case 12: /* Floating Round to Single-Precision */
5726 case 14: /* Floating Convert To Integer Word */
5727 case 15: /* Floating Convert To Integer Word
5728 with round toward Zero */
5729 case 142: /* Floating Convert To Integer Word Unsigned */
5730 case 143: /* Floating Convert To Integer Word Unsigned
5731 with round toward Zero */
5732 case 392: /* Floating Round to Integer Nearest */
5733 case 424: /* Floating Round to Integer Toward Zero */
5734 case 456: /* Floating Round to Integer Plus */
5735 case 488: /* Floating Round to Integer Minus */
5736 case 814: /* Floating Convert To Integer Doubleword */
5737 case 815: /* Floating Convert To Integer Doubleword
5738 with round toward Zero */
5739 case 846: /* Floating Convert From Integer Doubleword */
5740 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5741 case 943: /* Floating Convert To Integer Doubleword Unsigned
5742 with round toward Zero */
5743 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5744 record_full_arch_list_add_reg (regcache,
5745 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5746 if (PPC_RC (insn))
5747 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5748 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5749 return 0;
5750
6ec2b213
EBM
5751 case 583:
5752 switch (PPC_FIELD (insn, 11, 5))
dda83cd7 5753 {
6ec2b213
EBM
5754 case 1: /* Move From FPSCR & Clear Enables */
5755 case 20: /* Move From FPSCR Control & set DRN */
5756 case 21: /* Move From FPSCR Control & set DRN Immediate */
5757 case 22: /* Move From FPSCR Control & set RN */
5758 case 23: /* Move From FPSCR Control & set RN Immediate */
5759 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
e3829d13 5760 /* Fall through. */
6ec2b213
EBM
5761 case 0: /* Move From FPSCR */
5762 case 24: /* Move From FPSCR Lightweight */
5763 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5764 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5765 record_full_arch_list_add_reg (regcache,
5766 tdep->ppc_fp0_regnum
5767 + PPC_FRT (insn));
5768 return 0;
dda83cd7 5769 }
6ec2b213
EBM
5770 break;
5771
b4cdae6f
WW
5772 case 8: /* Floating Copy Sign */
5773 case 40: /* Floating Negate */
5774 case 72: /* Floating Move Register */
5775 case 136: /* Floating Negative Absolute Value */
5776 case 264: /* Floating Absolute Value */
5777 record_full_arch_list_add_reg (regcache,
5778 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5779 if (PPC_RC (insn))
5780 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5781 return 0;
5782
5783 case 838: /* Floating Merge Odd Word */
5784 case 966: /* Floating Merge Even Word */
5785 record_full_arch_list_add_reg (regcache,
5786 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5787 return 0;
5788
5789 case 38: /* Move To FPSCR Bit 1 */
5790 case 70: /* Move To FPSCR Bit 0 */
5791 case 134: /* Move To FPSCR Field Immediate */
5792 case 711: /* Move To FPSCR Fields */
5793 if (PPC_RC (insn))
5794 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5795 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5796 return 0;
b4cdae6f
WW
5797
5798 case 0: /* Floating Compare Unordered */
5799 case 32: /* Floating Compare Ordered */
5800 case 64: /* Move to Condition Register from FPSCR */
6ec2b213
EBM
5801 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5802 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5803 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5804 case 708: /* VSX Scalar Test Data Class Quad-Precision */
b4cdae6f
WW
5805 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5806 /* FALL-THROUGH */
5807 case 128: /* Floating Test for software Divide */
5808 case 160: /* Floating Test for software Square Root */
5809 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5810 return 0;
5811
6ec2b213
EBM
5812 case 4: /* VSX Scalar Add Quad-Precision */
5813 case 36: /* VSX Scalar Multiply Quad-Precision */
5814 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5815 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5816 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5817 case 484: /* VSX Scalar Negative Multiply-Subtract
5818 Quad-Precision */
5819 case 516: /* VSX Scalar Subtract Quad-Precision */
5820 case 548: /* VSX Scalar Divide Quad-Precision */
5821 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5822 /* FALL-THROUGH */
5823 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5824 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5825 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5826 return 0;
5827
5828 case 804:
5829 switch (PPC_FIELD (insn, 11, 5))
5830 {
5831 case 27: /* VSX Scalar Square Root Quad-Precision */
5832 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5833 /* FALL-THROUGH */
5834 case 0: /* VSX Scalar Absolute Quad-Precision */
5835 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5836 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5837 case 16: /* VSX Scalar Negate Quad-Precision */
5838 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5839 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5840 return 0;
5841 }
5842 break;
5843
5844 case 836:
5845 switch (PPC_FIELD (insn, 11, 5))
5846 {
5847 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5848 to Unsigned Word format */
5849 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5850 Quad-Precision format */
5851 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5852 to Signed Word format */
5853 case 10: /* VSX Scalar Convert Signed Doubleword format to
5854 Quad-Precision format */
5855 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5856 to Unsigned Doubleword format */
5857 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5858 Double-Precision format */
5859 case 22: /* VSX Scalar Convert Double-Precision format to
5860 Quad-Precision format */
5861 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5862 to Signed Doubleword format */
5863 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5864 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5865 return 0;
5866 }
b4cdae6f
WW
5867 }
5868
810c1026 5869 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6ec2b213 5870 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5871 return -1;
5872}
5873
5874/* Parse the current instruction and record the values of the registers and
5875 memory that will be changed in current instruction to "record_arch_list".
5876 Return -1 if something wrong. */
5877
5878int
5879ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5880 CORE_ADDR addr)
5881{
5882 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5883 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5884 uint32_t insn;
5885 int op6, tmp, i;
5886
5887 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5888 op6 = PPC_OP6 (insn);
5889
5890 switch (op6)
5891 {
5892 case 2: /* Trap Doubleword Immediate */
5893 case 3: /* Trap Word Immediate */
5894 /* Do nothing. */
5895 break;
5896
5897 case 4:
5898 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5899 return -1;
5900 break;
5901
5902 case 17: /* System call */
5903 if (PPC_LEV (insn) != 0)
5904 goto UNKNOWN_OP;
5905
5906 if (tdep->ppc_syscall_record != NULL)
5907 {
5908 if (tdep->ppc_syscall_record (regcache) != 0)
5909 return -1;
5910 }
5911 else
5912 {
5913 printf_unfiltered (_("no syscall record support\n"));
5914 return -1;
5915 }
5916 break;
5917
5918 case 7: /* Multiply Low Immediate */
5919 record_full_arch_list_add_reg (regcache,
5920 tdep->ppc_gp0_regnum + PPC_RT (insn));
5921 break;
5922
5923 case 8: /* Subtract From Immediate Carrying */
5924 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5925 record_full_arch_list_add_reg (regcache,
5926 tdep->ppc_gp0_regnum + PPC_RT (insn));
5927 break;
5928
5929 case 10: /* Compare Logical Immediate */
5930 case 11: /* Compare Immediate */
5931 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5932 break;
5933
5934 case 13: /* Add Immediate Carrying and Record */
5935 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5936 /* FALL-THROUGH */
5937 case 12: /* Add Immediate Carrying */
5938 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5939 /* FALL-THROUGH */
5940 case 14: /* Add Immediate */
5941 case 15: /* Add Immediate Shifted */
5942 record_full_arch_list_add_reg (regcache,
5943 tdep->ppc_gp0_regnum + PPC_RT (insn));
5944 break;
5945
5946 case 16: /* Branch Conditional */
5947 if ((PPC_BO (insn) & 0x4) == 0)
5948 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5949 /* FALL-THROUGH */
5950 case 18: /* Branch */
5951 if (PPC_LK (insn))
5952 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5953 break;
5954
5955 case 19:
5956 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5957 return -1;
5958 break;
5959
5960 case 20: /* Rotate Left Word Immediate then Mask Insert */
5961 case 21: /* Rotate Left Word Immediate then AND with Mask */
5962 case 23: /* Rotate Left Word then AND with Mask */
5963 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5964 /* Rotate Left Doubleword Immediate then Clear Right */
5965 /* Rotate Left Doubleword Immediate then Clear */
5966 /* Rotate Left Doubleword then Clear Left */
5967 /* Rotate Left Doubleword then Clear Right */
5968 /* Rotate Left Doubleword Immediate then Mask Insert */
5969 if (PPC_RC (insn))
5970 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5971 record_full_arch_list_add_reg (regcache,
5972 tdep->ppc_gp0_regnum + PPC_RA (insn));
5973 break;
5974
5975 case 28: /* AND Immediate */
5976 case 29: /* AND Immediate Shifted */
5977 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5978 /* FALL-THROUGH */
5979 case 24: /* OR Immediate */
5980 case 25: /* OR Immediate Shifted */
5981 case 26: /* XOR Immediate */
5982 case 27: /* XOR Immediate Shifted */
5983 record_full_arch_list_add_reg (regcache,
5984 tdep->ppc_gp0_regnum + PPC_RA (insn));
5985 break;
5986
5987 case 31:
5988 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5989 return -1;
5990 break;
5991
5992 case 33: /* Load Word and Zero with Update */
5993 case 35: /* Load Byte and Zero with Update */
5994 case 41: /* Load Halfword and Zero with Update */
5995 case 43: /* Load Halfword Algebraic with Update */
5996 record_full_arch_list_add_reg (regcache,
5997 tdep->ppc_gp0_regnum + PPC_RA (insn));
5998 /* FALL-THROUGH */
5999 case 32: /* Load Word and Zero */
6000 case 34: /* Load Byte and Zero */
6001 case 40: /* Load Halfword and Zero */
6002 case 42: /* Load Halfword Algebraic */
6003 record_full_arch_list_add_reg (regcache,
6004 tdep->ppc_gp0_regnum + PPC_RT (insn));
6005 break;
6006
6007 case 46: /* Load Multiple Word */
6008 for (i = PPC_RT (insn); i < 32; i++)
6009 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
6010 break;
6011
6012 case 56: /* Load Quadword */
6013 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
6014 record_full_arch_list_add_reg (regcache, tmp);
6015 record_full_arch_list_add_reg (regcache, tmp + 1);
6016 break;
6017
6018 case 49: /* Load Floating-Point Single with Update */
6019 case 51: /* Load Floating-Point Double with Update */
6020 record_full_arch_list_add_reg (regcache,
6021 tdep->ppc_gp0_regnum + PPC_RA (insn));
6022 /* FALL-THROUGH */
6023 case 48: /* Load Floating-Point Single */
6024 case 50: /* Load Floating-Point Double */
6025 record_full_arch_list_add_reg (regcache,
6026 tdep->ppc_fp0_regnum + PPC_FRT (insn));
6027 break;
6028
6029 case 47: /* Store Multiple Word */
6030 {
b926417a 6031 ULONGEST iaddr = 0;
b4cdae6f
WW
6032
6033 if (PPC_RA (insn) != 0)
6034 regcache_raw_read_unsigned (regcache,
6035 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 6036 &iaddr);
b4cdae6f 6037
b926417a
TT
6038 iaddr += PPC_D (insn);
6039 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
b4cdae6f
WW
6040 }
6041 break;
6042
6043 case 37: /* Store Word with Update */
6044 case 39: /* Store Byte with Update */
6045 case 45: /* Store Halfword with Update */
6046 case 53: /* Store Floating-Point Single with Update */
6047 case 55: /* Store Floating-Point Double with Update */
6048 record_full_arch_list_add_reg (regcache,
6049 tdep->ppc_gp0_regnum + PPC_RA (insn));
6050 /* FALL-THROUGH */
6051 case 36: /* Store Word */
6052 case 38: /* Store Byte */
6053 case 44: /* Store Halfword */
6054 case 52: /* Store Floating-Point Single */
6055 case 54: /* Store Floating-Point Double */
6056 {
b926417a 6057 ULONGEST iaddr = 0;
b4cdae6f
WW
6058 int size = -1;
6059
6060 if (PPC_RA (insn) != 0)
6061 regcache_raw_read_unsigned (regcache,
6062 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a
TT
6063 &iaddr);
6064 iaddr += PPC_D (insn);
b4cdae6f
WW
6065
6066 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6067 size = 4;
6068 else if (op6 == 54 || op6 == 55)
6069 size = 8;
6070 else if (op6 == 44 || op6 == 45)
6071 size = 2;
6072 else if (op6 == 38 || op6 == 39)
6073 size = 1;
6074 else
6075 gdb_assert (0);
6076
b926417a 6077 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6078 }
6079 break;
6080
6ec2b213
EBM
6081 case 57:
6082 switch (insn & 0x3)
dda83cd7 6083 {
6ec2b213
EBM
6084 case 0: /* Load Floating-Point Double Pair */
6085 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6086 record_full_arch_list_add_reg (regcache, tmp);
6087 record_full_arch_list_add_reg (regcache, tmp + 1);
6088 break;
6089 case 2: /* Load VSX Scalar Doubleword */
6090 case 3: /* Load VSX Scalar Single */
6091 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6092 break;
6093 default:
6094 goto UNKNOWN_OP;
6095 }
b4cdae6f
WW
6096 break;
6097
6098 case 58: /* Load Doubleword */
6099 /* Load Doubleword with Update */
6100 /* Load Word Algebraic */
6101 if (PPC_FIELD (insn, 30, 2) > 2)
6102 goto UNKNOWN_OP;
6103
6104 record_full_arch_list_add_reg (regcache,
6105 tdep->ppc_gp0_regnum + PPC_RT (insn));
6106 if (PPC_BIT (insn, 31))
6107 record_full_arch_list_add_reg (regcache,
6108 tdep->ppc_gp0_regnum + PPC_RA (insn));
6109 break;
6110
6111 case 59:
6112 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6113 return -1;
6114 break;
6115
6116 case 60:
6117 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6118 return -1;
6119 break;
6120
6ec2b213
EBM
6121 case 61:
6122 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6123 return -1;
6124 break;
6125
b4cdae6f
WW
6126 case 62: /* Store Doubleword */
6127 /* Store Doubleword with Update */
6128 /* Store Quadword with Update */
6129 {
b926417a 6130 ULONGEST iaddr = 0;
b4cdae6f
WW
6131 int size;
6132 int sub2 = PPC_FIELD (insn, 30, 2);
6133
6ec2b213 6134 if (sub2 > 2)
b4cdae6f
WW
6135 goto UNKNOWN_OP;
6136
6137 if (PPC_RA (insn) != 0)
6138 regcache_raw_read_unsigned (regcache,
6139 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 6140 &iaddr);
b4cdae6f 6141
6ec2b213 6142 size = (sub2 == 2) ? 16 : 8;
b4cdae6f 6143
b926417a
TT
6144 iaddr += PPC_DS (insn) << 2;
6145 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6146
6147 if (op6 == 62 && sub2 == 1)
6148 record_full_arch_list_add_reg (regcache,
6149 tdep->ppc_gp0_regnum +
6150 PPC_RA (insn));
6151
6152 break;
6153 }
6154
6155 case 63:
6156 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6157 return -1;
6158 break;
6159
6160 default:
6161UNKNOWN_OP:
810c1026
WW
6162 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6163 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
6164 return -1;
6165 }
6166
6167 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6168 return -1;
6169 if (record_full_arch_list_add_end ())
6170 return -1;
6171 return 0;
6172}
6173
7a78ae4e
ND
6174/* Initialize the current architecture based on INFO. If possible, re-use an
6175 architecture from ARCHES, which is a list of architectures already created
6176 during this debugging session.
c906108c 6177
7a78ae4e 6178 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 6179 a binary file. */
c906108c 6180
7a78ae4e
ND
6181static struct gdbarch *
6182rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6183{
6184 struct gdbarch *gdbarch;
6185 struct gdbarch_tdep *tdep;
7cc46491 6186 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
6187 enum bfd_architecture arch;
6188 unsigned long mach;
6189 bfd abfd;
55eddb0f
DJ
6190 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6191 int soft_float;
ed0f4273 6192 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
55eddb0f 6193 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 6194 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
93b4691f 6195 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
7ca18ed6 6196 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
8d619c01
EBM
6197 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6198 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6199 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6200 int have_htm_tar = 0;
7cc46491
DJ
6201 int tdesc_wordsize = -1;
6202 const struct target_desc *tdesc = info.target_desc;
c1e1314d 6203 tdesc_arch_data_up tdesc_data;
f949c649 6204 int num_pseudoregs = 0;
604c2f83 6205 int cur_reg;
7a78ae4e 6206
9aa1e687 6207 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
6208 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6209
9aa1e687
KB
6210 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6211 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6212
e712c1cf 6213 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 6214 that, else choose a likely default. */
9aa1e687 6215 if (from_xcoff_exec)
c906108c 6216 {
11ed25ac 6217 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
6218 wordsize = 8;
6219 else
6220 wordsize = 4;
c906108c 6221 }
9aa1e687
KB
6222 else if (from_elf_exec)
6223 {
6224 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6225 wordsize = 8;
6226 else
6227 wordsize = 4;
6228 }
7cc46491
DJ
6229 else if (tdesc_has_registers (tdesc))
6230 wordsize = -1;
c906108c 6231 else
7a78ae4e 6232 {
27b15785 6233 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
6234 wordsize = (info.bfd_arch_info->bits_per_word
6235 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
6236 else
6237 wordsize = 4;
7a78ae4e 6238 }
c906108c 6239
475bbd17
JB
6240 /* Get the architecture and machine from the BFD. */
6241 arch = info.bfd_arch_info->arch;
6242 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
6243
6244 /* For e500 executables, the apuinfo section is of help here. Such
6245 section contains the identifier and revision number of each
6246 Application-specific Processing Unit that is present on the
6247 chip. The content of the section is determined by the assembler
6248 which looks at each instruction and determines which unit (and
74af9197
NF
6249 which version of it) can execute it. Grovel through the section
6250 looking for relevant e500 APUs. */
5bf1c677 6251
74af9197 6252 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 6253 {
74af9197
NF
6254 arch = info.bfd_arch_info->arch;
6255 mach = bfd_mach_ppc_e500;
6256 bfd_default_set_arch_mach (&abfd, arch, mach);
6257 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
6258 }
6259
7cc46491
DJ
6260 /* Find a default target description which describes our register
6261 layout, if we do not already have one. */
6262 if (! tdesc_has_registers (tdesc))
6263 {
675127ec 6264 const struct ppc_variant *v;
7cc46491
DJ
6265
6266 /* Choose variant. */
6267 v = find_variant_by_arch (arch, mach);
6268 if (!v)
6269 return NULL;
6270
6271 tdesc = *v->tdesc;
6272 }
6273
6274 gdb_assert (tdesc_has_registers (tdesc));
6275
6276 /* Check any target description for validity. */
6277 if (tdesc_has_registers (tdesc))
6278 {
6279 static const char *const gprs[] = {
6280 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6281 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6282 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6283 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6284 };
7cc46491
DJ
6285 const struct tdesc_feature *feature;
6286 int i, valid_p;
6287 static const char *const msr_names[] = { "msr", "ps" };
6288 static const char *const cr_names[] = { "cr", "cnd" };
6289 static const char *const ctr_names[] = { "ctr", "cnt" };
6290
6291 feature = tdesc_find_feature (tdesc,
6292 "org.gnu.gdb.power.core");
6293 if (feature == NULL)
6294 return NULL;
6295
6296 tdesc_data = tdesc_data_alloc ();
6297
6298 valid_p = 1;
6299 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d
TT
6300 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6301 i, gprs[i]);
6302 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6303 PPC_PC_REGNUM, "pc");
6304 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6305 PPC_LR_REGNUM, "lr");
6306 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
6307 PPC_XER_REGNUM, "xer");
7cc46491
DJ
6308
6309 /* Allow alternate names for these registers, to accomodate GDB's
6310 historic naming. */
c1e1314d 6311 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491 6312 PPC_MSR_REGNUM, msr_names);
c1e1314d 6313 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491 6314 PPC_CR_REGNUM, cr_names);
c1e1314d 6315 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data.get (),
7cc46491
DJ
6316 PPC_CTR_REGNUM, ctr_names);
6317
6318 if (!valid_p)
c1e1314d 6319 return NULL;
7cc46491 6320
c1e1314d
TT
6321 have_mq = tdesc_numbered_register (feature, tdesc_data.get (),
6322 PPC_MQ_REGNUM, "mq");
7cc46491 6323
12863263 6324 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
7cc46491
DJ
6325 if (wordsize == -1)
6326 wordsize = tdesc_wordsize;
6327
6328 feature = tdesc_find_feature (tdesc,
6329 "org.gnu.gdb.power.fpu");
6330 if (feature != NULL)
6331 {
6332 static const char *const fprs[] = {
6333 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6334 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6335 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6336 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6337 };
6338 valid_p = 1;
6339 for (i = 0; i < ppc_num_fprs; i++)
c1e1314d 6340 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6341 PPC_F0_REGNUM + i, fprs[i]);
c1e1314d 6342 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6343 PPC_FPSCR_REGNUM, "fpscr");
6344
6345 if (!valid_p)
c1e1314d 6346 return NULL;
7cc46491 6347 have_fpu = 1;
0fb2aaa1
PFC
6348
6349 /* The fpscr register was expanded in isa 2.05 to 64 bits
6350 along with the addition of the decimal floating point
6351 facility. */
12863263 6352 if (tdesc_register_bitsize (feature, "fpscr") > 32)
0fb2aaa1 6353 have_dfp = 1;
7cc46491
DJ
6354 }
6355 else
6356 have_fpu = 0;
6357
6358 feature = tdesc_find_feature (tdesc,
6359 "org.gnu.gdb.power.altivec");
6360 if (feature != NULL)
6361 {
6362 static const char *const vector_regs[] = {
6363 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6364 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6365 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6366 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6367 };
6368
6369 valid_p = 1;
6370 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d 6371 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6372 PPC_VR0_REGNUM + i,
6373 vector_regs[i]);
c1e1314d 6374 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6375 PPC_VSCR_REGNUM, "vscr");
c1e1314d 6376 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6377 PPC_VRSAVE_REGNUM, "vrsave");
6378
6379 if (have_spe || !valid_p)
c1e1314d 6380 return NULL;
7cc46491
DJ
6381 have_altivec = 1;
6382 }
6383 else
6384 have_altivec = 0;
6385
604c2f83
LM
6386 /* Check for POWER7 VSX registers support. */
6387 feature = tdesc_find_feature (tdesc,
6388 "org.gnu.gdb.power.vsx");
6389
6390 if (feature != NULL)
6391 {
6392 static const char *const vsx_regs[] = {
6393 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6394 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6395 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6396 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6397 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6398 "vs30h", "vs31h"
6399 };
6400
6401 valid_p = 1;
6402
6403 for (i = 0; i < ppc_num_vshrs; i++)
c1e1314d 6404 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
604c2f83
LM
6405 PPC_VSR0_UPPER_REGNUM + i,
6406 vsx_regs[i]);
81ab84fd
PFC
6407
6408 if (!valid_p || !have_fpu || !have_altivec)
c1e1314d 6409 return NULL;
604c2f83
LM
6410
6411 have_vsx = 1;
6412 }
6413 else
6414 have_vsx = 0;
6415
7cc46491
DJ
6416 /* On machines supporting the SPE APU, the general-purpose registers
6417 are 64 bits long. There are SIMD vector instructions to treat them
6418 as pairs of floats, but the rest of the instruction set treats them
6419 as 32-bit registers, and only operates on their lower halves.
6420
6421 In the GDB regcache, we treat their high and low halves as separate
6422 registers. The low halves we present as the general-purpose
6423 registers, and then we have pseudo-registers that stitch together
6424 the upper and lower halves and present them as pseudo-registers.
6425
6426 Thus, the target description is expected to supply the upper
6427 halves separately. */
6428
6429 feature = tdesc_find_feature (tdesc,
6430 "org.gnu.gdb.power.spe");
6431 if (feature != NULL)
6432 {
6433 static const char *const upper_spe[] = {
6434 "ev0h", "ev1h", "ev2h", "ev3h",
6435 "ev4h", "ev5h", "ev6h", "ev7h",
6436 "ev8h", "ev9h", "ev10h", "ev11h",
6437 "ev12h", "ev13h", "ev14h", "ev15h",
6438 "ev16h", "ev17h", "ev18h", "ev19h",
6439 "ev20h", "ev21h", "ev22h", "ev23h",
6440 "ev24h", "ev25h", "ev26h", "ev27h",
6441 "ev28h", "ev29h", "ev30h", "ev31h"
6442 };
6443
6444 valid_p = 1;
6445 for (i = 0; i < ppc_num_gprs; i++)
c1e1314d 6446 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6447 PPC_SPE_UPPER_GP0_REGNUM + i,
6448 upper_spe[i]);
c1e1314d 6449 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491 6450 PPC_SPE_ACC_REGNUM, "acc");
c1e1314d 6451 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7cc46491
DJ
6452 PPC_SPE_FSCR_REGNUM, "spefscr");
6453
6454 if (have_mq || have_fpu || !valid_p)
c1e1314d 6455 return NULL;
7cc46491
DJ
6456 have_spe = 1;
6457 }
6458 else
6459 have_spe = 0;
7ca18ed6
EBM
6460
6461 /* Program Priority Register. */
6462 feature = tdesc_find_feature (tdesc,
6463 "org.gnu.gdb.power.ppr");
6464 if (feature != NULL)
6465 {
6466 valid_p = 1;
c1e1314d 6467 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7ca18ed6
EBM
6468 PPC_PPR_REGNUM, "ppr");
6469
6470 if (!valid_p)
c1e1314d 6471 return NULL;
7ca18ed6
EBM
6472 have_ppr = 1;
6473 }
6474 else
6475 have_ppr = 0;
6476
6477 /* Data Stream Control Register. */
6478 feature = tdesc_find_feature (tdesc,
6479 "org.gnu.gdb.power.dscr");
6480 if (feature != NULL)
6481 {
6482 valid_p = 1;
c1e1314d 6483 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
7ca18ed6
EBM
6484 PPC_DSCR_REGNUM, "dscr");
6485
6486 if (!valid_p)
c1e1314d 6487 return NULL;
7ca18ed6
EBM
6488 have_dscr = 1;
6489 }
6490 else
6491 have_dscr = 0;
f2cf6173
EBM
6492
6493 /* Target Address Register. */
6494 feature = tdesc_find_feature (tdesc,
6495 "org.gnu.gdb.power.tar");
6496 if (feature != NULL)
6497 {
6498 valid_p = 1;
c1e1314d 6499 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
f2cf6173
EBM
6500 PPC_TAR_REGNUM, "tar");
6501
6502 if (!valid_p)
c1e1314d 6503 return NULL;
f2cf6173
EBM
6504 have_tar = 1;
6505 }
6506 else
6507 have_tar = 0;
232bfb86
EBM
6508
6509 /* Event-based Branching Registers. */
6510 feature = tdesc_find_feature (tdesc,
6511 "org.gnu.gdb.power.ebb");
6512 if (feature != NULL)
6513 {
6514 static const char *const ebb_regs[] = {
6515 "bescr", "ebbhr", "ebbrr"
6516 };
6517
6518 valid_p = 1;
6519 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
c1e1314d 6520 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6521 PPC_BESCR_REGNUM + i,
6522 ebb_regs[i]);
6523 if (!valid_p)
c1e1314d 6524 return NULL;
232bfb86
EBM
6525 have_ebb = 1;
6526 }
6527 else
6528 have_ebb = 0;
6529
6530 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6531 by Linux. */
6532 feature = tdesc_find_feature (tdesc,
6533 "org.gnu.gdb.power.linux.pmu");
6534 if (feature != NULL)
6535 {
6536 valid_p = 1;
6537
c1e1314d 6538 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6539 PPC_MMCR0_REGNUM,
6540 "mmcr0");
c1e1314d 6541 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6542 PPC_MMCR2_REGNUM,
6543 "mmcr2");
c1e1314d 6544 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6545 PPC_SIAR_REGNUM,
6546 "siar");
c1e1314d 6547 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6548 PPC_SDAR_REGNUM,
6549 "sdar");
c1e1314d 6550 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
232bfb86
EBM
6551 PPC_SIER_REGNUM,
6552 "sier");
6553
6554 if (!valid_p)
c1e1314d 6555 return NULL;
232bfb86
EBM
6556 have_pmu = 1;
6557 }
6558 else
6559 have_pmu = 0;
8d619c01
EBM
6560
6561 /* Hardware Transactional Memory Registers. */
6562 feature = tdesc_find_feature (tdesc,
6563 "org.gnu.gdb.power.htm.spr");
6564 if (feature != NULL)
6565 {
6566 static const char *const tm_spr_regs[] = {
6567 "tfhar", "texasr", "tfiar"
6568 };
6569
6570 valid_p = 1;
6571 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
c1e1314d 6572 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6573 PPC_TFHAR_REGNUM + i,
6574 tm_spr_regs[i]);
6575 if (!valid_p)
c1e1314d 6576 return NULL;
8d619c01
EBM
6577
6578 have_htm_spr = 1;
6579 }
6580 else
6581 have_htm_spr = 0;
6582
6583 feature = tdesc_find_feature (tdesc,
6584 "org.gnu.gdb.power.htm.core");
6585 if (feature != NULL)
6586 {
6587 static const char *const cgprs[] = {
6588 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6589 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6590 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6591 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6592 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6593 };
6594
6595 valid_p = 1;
6596
6597 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
c1e1314d 6598 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6599 PPC_CR0_REGNUM + i,
6600 cgprs[i]);
6601 if (!valid_p)
c1e1314d 6602 return NULL;
8d619c01
EBM
6603
6604 have_htm_core = 1;
6605 }
6606 else
6607 have_htm_core = 0;
6608
6609 feature = tdesc_find_feature (tdesc,
6610 "org.gnu.gdb.power.htm.fpu");
6611 if (feature != NULL)
6612 {
6613 valid_p = 1;
6614
6615 static const char *const cfprs[] = {
6616 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6617 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6618 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6619 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6620 "cf30", "cf31", "cfpscr"
6621 };
6622
6623 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
c1e1314d 6624 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6625 PPC_CF0_REGNUM + i,
6626 cfprs[i]);
6627
6628 if (!valid_p)
c1e1314d 6629 return NULL;
8d619c01
EBM
6630 have_htm_fpu = 1;
6631 }
6632 else
6633 have_htm_fpu = 0;
6634
6635 feature = tdesc_find_feature (tdesc,
6636 "org.gnu.gdb.power.htm.altivec");
6637 if (feature != NULL)
6638 {
6639 valid_p = 1;
6640
6641 static const char *const cvmx[] = {
6642 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6643 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6644 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6645 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6646 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6647 "cvrsave"
6648 };
6649
6650 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
c1e1314d 6651 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6652 PPC_CVR0_REGNUM + i,
6653 cvmx[i]);
6654
6655 if (!valid_p)
c1e1314d 6656 return NULL;
8d619c01
EBM
6657 have_htm_altivec = 1;
6658 }
6659 else
6660 have_htm_altivec = 0;
6661
6662 feature = tdesc_find_feature (tdesc,
6663 "org.gnu.gdb.power.htm.vsx");
6664 if (feature != NULL)
6665 {
6666 valid_p = 1;
6667
6668 static const char *const cvsx[] = {
6669 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6670 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6671 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6672 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6673 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6674 "cvs30h", "cvs31h"
6675 };
6676
6677 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
c1e1314d 6678 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6679 (PPC_CVSR0_UPPER_REGNUM
6680 + i),
6681 cvsx[i]);
6682
6683 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
c1e1314d 6684 return NULL;
8d619c01
EBM
6685 have_htm_vsx = 1;
6686 }
6687 else
6688 have_htm_vsx = 0;
6689
6690 feature = tdesc_find_feature (tdesc,
6691 "org.gnu.gdb.power.htm.ppr");
6692 if (feature != NULL)
6693 {
c1e1314d 6694 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6695 PPC_CPPR_REGNUM, "cppr");
6696
6697 if (!valid_p)
c1e1314d 6698 return NULL;
8d619c01
EBM
6699 have_htm_ppr = 1;
6700 }
6701 else
6702 have_htm_ppr = 0;
6703
6704 feature = tdesc_find_feature (tdesc,
6705 "org.gnu.gdb.power.htm.dscr");
6706 if (feature != NULL)
6707 {
c1e1314d 6708 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6709 PPC_CDSCR_REGNUM, "cdscr");
6710
6711 if (!valid_p)
c1e1314d 6712 return NULL;
8d619c01
EBM
6713 have_htm_dscr = 1;
6714 }
6715 else
6716 have_htm_dscr = 0;
6717
6718 feature = tdesc_find_feature (tdesc,
6719 "org.gnu.gdb.power.htm.tar");
6720 if (feature != NULL)
6721 {
c1e1314d 6722 valid_p = tdesc_numbered_register (feature, tdesc_data.get (),
8d619c01
EBM
6723 PPC_CTAR_REGNUM, "ctar");
6724
6725 if (!valid_p)
c1e1314d 6726 return NULL;
8d619c01
EBM
6727 have_htm_tar = 1;
6728 }
6729 else
6730 have_htm_tar = 0;
7cc46491
DJ
6731 }
6732
6733 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6734 complain for a 32-bit binary on a 64-bit target; we do not yet
6735 support that. For instance, the 32-bit ABI routines expect
6736 32-bit GPRs.
6737
6738 As long as there isn't an explicit target description, we'll
6739 choose one based on the BFD architecture and get a word size
6740 matching the binary (probably powerpc:common or
6741 powerpc:common64). So there is only trouble if a 64-bit target
6742 supplies a 64-bit description while debugging a 32-bit
6743 binary. */
6744 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
c1e1314d 6745 return NULL;
7cc46491 6746
55eddb0f 6747#ifdef HAVE_ELF
cd453cd0
UW
6748 if (from_elf_exec)
6749 {
6750 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6751 {
6752 case 1:
6753 elf_abi = POWERPC_ELF_V1;
6754 break;
6755 case 2:
6756 elf_abi = POWERPC_ELF_V2;
6757 break;
6758 default:
6759 break;
6760 }
6761 }
6762
55eddb0f
DJ
6763 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6764 {
6765 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
ed0f4273 6766 Tag_GNU_Power_ABI_FP) & 3)
55eddb0f
DJ
6767 {
6768 case 1:
6769 soft_float_flag = AUTO_BOOLEAN_FALSE;
6770 break;
6771 case 2:
6772 soft_float_flag = AUTO_BOOLEAN_TRUE;
6773 break;
6774 default:
6775 break;
6776 }
6777 }
6778
ed0f4273
UW
6779 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6780 {
6781 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6782 Tag_GNU_Power_ABI_FP) >> 2)
6783 {
6784 case 1:
6785 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6786 break;
6787 case 3:
6788 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6789 break;
6790 default:
6791 break;
6792 }
6793 }
6794
55eddb0f
DJ
6795 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6796 {
6797 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6798 Tag_GNU_Power_ABI_Vector))
6799 {
6800 case 1:
6801 vector_abi = POWERPC_VEC_GENERIC;
6802 break;
6803 case 2:
6804 vector_abi = POWERPC_VEC_ALTIVEC;
6805 break;
6806 case 3:
6807 vector_abi = POWERPC_VEC_SPE;
6808 break;
6809 default:
6810 break;
6811 }
6812 }
6813#endif
6814
cd453cd0
UW
6815 /* At this point, the only supported ELF-based 64-bit little-endian
6816 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6817 default. All other supported ELF-based operating systems use the
6818 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6819 e.g. because we run a legacy binary, or have attached to a process
6820 and have not found any associated binary file, set the default
6821 according to this heuristic. */
6822 if (elf_abi == POWERPC_ELF_AUTO)
6823 {
6824 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
dda83cd7 6825 elf_abi = POWERPC_ELF_V2;
cd453cd0 6826 else
dda83cd7 6827 elf_abi = POWERPC_ELF_V1;
cd453cd0
UW
6828 }
6829
55eddb0f
DJ
6830 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6831 soft_float = 1;
6832 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6833 soft_float = 0;
6834 else
6835 soft_float = !have_fpu;
6836
6837 /* If we have a hard float binary or setting but no floating point
6838 registers, downgrade to soft float anyway. We're still somewhat
6839 useful in this scenario. */
6840 if (!soft_float && !have_fpu)
6841 soft_float = 1;
6842
6843 /* Similarly for vector registers. */
6844 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6845 vector_abi = POWERPC_VEC_GENERIC;
6846
6847 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6848 vector_abi = POWERPC_VEC_GENERIC;
6849
6850 if (vector_abi == POWERPC_VEC_AUTO)
6851 {
6852 if (have_altivec)
6853 vector_abi = POWERPC_VEC_ALTIVEC;
6854 else if (have_spe)
6855 vector_abi = POWERPC_VEC_SPE;
6856 else
6857 vector_abi = POWERPC_VEC_GENERIC;
6858 }
6859
6860 /* Do not limit the vector ABI based on available hardware, since we
6861 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6862
7cc46491
DJ
6863 /* Find a candidate among extant architectures. */
6864 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6865 arches != NULL;
6866 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6867 {
6868 /* Word size in the various PowerPC bfd_arch_info structs isn't
dda83cd7
SM
6869 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6870 separate word size check. */
7cc46491 6871 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
6872 if (tdep && tdep->elf_abi != elf_abi)
6873 continue;
55eddb0f
DJ
6874 if (tdep && tdep->soft_float != soft_float)
6875 continue;
ed0f4273
UW
6876 if (tdep && tdep->long_double_abi != long_double_abi)
6877 continue;
55eddb0f
DJ
6878 if (tdep && tdep->vector_abi != vector_abi)
6879 continue;
7cc46491 6880 if (tdep && tdep->wordsize == wordsize)
c1e1314d 6881 return arches->gdbarch;
7cc46491
DJ
6882 }
6883
6884 /* None found, create a new architecture from INFO, whose bfd_arch_info
6885 validity depends on the source:
6886 - executable useless
6887 - rs6000_host_arch() good
6888 - core file good
6889 - "set arch" trust blindly
6890 - GDB startup useless but harmless */
6891
fc270c35 6892 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 6893 tdep->wordsize = wordsize;
cd453cd0 6894 tdep->elf_abi = elf_abi;
55eddb0f 6895 tdep->soft_float = soft_float;
ed0f4273 6896 tdep->long_double_abi = long_double_abi;
55eddb0f 6897 tdep->vector_abi = vector_abi;
7cc46491 6898
7a78ae4e 6899 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 6900
7cc46491
DJ
6901 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6902 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6903 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6904 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6905 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6906 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6907 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6908 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6909
6910 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6911 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 6912 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
6913 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6914 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6915 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6916 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6917 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
7ca18ed6
EBM
6918 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6919 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
f2cf6173 6920 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
232bfb86
EBM
6921 tdep->have_ebb = have_ebb;
6922
6923 /* If additional pmu registers are added, care must be taken when
6924 setting new fields in the tdep below, to maintain compatibility
6925 with features that only provide some of the registers. Currently
6926 gdb access to the pmu registers is only supported in linux, and
6927 linux only provides a subset of the pmu registers defined in the
6928 architecture. */
6929
6930 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6931 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6932 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6933 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6934 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
7cc46491 6935
8d619c01
EBM
6936 tdep->have_htm_spr = have_htm_spr;
6937 tdep->have_htm_core = have_htm_core;
6938 tdep->have_htm_fpu = have_htm_fpu;
6939 tdep->have_htm_altivec = have_htm_altivec;
6940 tdep->have_htm_vsx = have_htm_vsx;
6941 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6942 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6943 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6944
7cc46491
DJ
6945 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6946 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7cc46491 6947 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 6948 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
6949
6950 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6951 GDB traditionally called it "ps", though, so let GDB add an
6952 alias. */
6953 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6954
4a7622d1 6955 if (wordsize == 8)
05580c65 6956 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 6957 else
4a7622d1 6958 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 6959
baffbae0
JB
6960 /* Set lr_frame_offset. */
6961 if (wordsize == 8)
6962 tdep->lr_frame_offset = 16;
baffbae0 6963 else
4a7622d1 6964 tdep->lr_frame_offset = 4;
baffbae0 6965
6f072a10
PFC
6966 if (have_spe || have_dfp || have_altivec
6967 || have_vsx || have_htm_fpu || have_htm_vsx)
7cc46491 6968 {
f949c649 6969 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
6970 set_gdbarch_pseudo_register_write (gdbarch,
6971 rs6000_pseudo_register_write);
2a2fa07b
MK
6972 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6973 rs6000_ax_pseudo_register_collect);
7cc46491 6974 }
1fcc0bb8 6975
a67914de
MK
6976 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6977
e0d24f8d
WZ
6978 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6979
5a9e69ba 6980 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
6981
6982 if (have_spe)
6983 num_pseudoregs += 32;
6984 if (have_dfp)
6985 num_pseudoregs += 16;
6f072a10
PFC
6986 if (have_altivec)
6987 num_pseudoregs += 32;
604c2f83
LM
6988 if (have_vsx)
6989 /* Include both VSX and Extended FP registers. */
6990 num_pseudoregs += 96;
8d619c01
EBM
6991 if (have_htm_fpu)
6992 num_pseudoregs += 16;
6993 /* Include both checkpointed VSX and EFP registers. */
6994 if (have_htm_vsx)
6995 num_pseudoregs += 64 + 32;
f949c649
TJB
6996
6997 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
6998
6999 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7000 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
7001 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7002 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7003 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7004 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7005 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 7006 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 7007 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 7008
11269d7e 7009 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 7010 if (wordsize == 8)
8b148df9
AC
7011 /* PPC64 SYSV. */
7012 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 7013
691d145a
JB
7014 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7015 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7016 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7017
18ed0c4e
JB
7018 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7019 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 7020
4a7622d1 7021 if (wordsize == 4)
77b2b6d4 7022 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 7023 else if (wordsize == 8)
8be9034a 7024 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 7025
7a78ae4e 7026 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 7027 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 7028 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 7029
7a78ae4e 7030 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
7031
7032 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7033 rs6000_breakpoint::kind_from_pc);
7034 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7035 rs6000_breakpoint::bp_from_kind);
7a78ae4e 7036
203c3895 7037 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 7038 it shouldn't be. */
203c3895
UW
7039 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7040
ce5eab59 7041 /* Handles single stepping of atomic sequences. */
4a7622d1 7042 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 7043
0df8b418 7044 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
7045 set_gdbarch_frame_args_skip (gdbarch, 8);
7046
143985b7
AF
7047 /* Helpers for function argument information. */
7048 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7049
6f7f3f0d
UW
7050 /* Trampoline. */
7051 set_gdbarch_in_solib_return_trampoline
7052 (gdbarch, rs6000_in_solib_return_trampoline);
7053 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7054
4fc771b8 7055 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 7056 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
7057 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7058
9274a07c
LM
7059 /* Frame handling. */
7060 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7061
2454a024
UW
7062 /* Setup displaced stepping. */
7063 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 7064 ppc_displaced_step_copy_insn);
99e40580
UW
7065 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7066 ppc_displaced_step_hw_singlestep);
2454a024 7067 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
187b041e
SM
7068 set_gdbarch_displaced_step_prepare (gdbarch, ppc_displaced_step_prepare);
7069 set_gdbarch_displaced_step_finish (gdbarch, ppc_displaced_step_finish);
7070 set_gdbarch_displaced_step_restore_all_in_ptid
7071 (gdbarch, ppc_displaced_step_restore_all_in_ptid);
2454a024
UW
7072
7073 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7074
7b112f9c 7075 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 7076 info.target_desc = tdesc;
c1e1314d 7077 info.tdesc_data = tdesc_data.get ();
4be87837 7078 gdbarch_init_osabi (info, gdbarch);
7b112f9c 7079
61a65099
KB
7080 switch (info.osabi)
7081 {
f5aecab8 7082 case GDB_OSABI_LINUX:
1736a7bd 7083 case GDB_OSABI_NETBSD:
61a65099 7084 case GDB_OSABI_UNKNOWN:
2608dbf8 7085 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7086 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
61a65099
KB
7087 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7088 break;
7089 default:
61a65099 7090 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287 7091
2608dbf8 7092 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7093 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
81332287 7094 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
7095 }
7096
7cc46491 7097 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6f072a10
PFC
7098 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7099 rs6000_pseudo_register_reggroup_p);
c1e1314d 7100 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
7cc46491
DJ
7101
7102 /* Override the normal target description method to make the SPE upper
7103 halves anonymous. */
7104 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7105
604c2f83
LM
7106 /* Choose register numbers for all supported pseudo-registers. */
7107 tdep->ppc_ev0_regnum = -1;
7108 tdep->ppc_dl0_regnum = -1;
6f072a10 7109 tdep->ppc_v0_alias_regnum = -1;
604c2f83
LM
7110 tdep->ppc_vsr0_regnum = -1;
7111 tdep->ppc_efpr0_regnum = -1;
8d619c01
EBM
7112 tdep->ppc_cdl0_regnum = -1;
7113 tdep->ppc_cvsr0_regnum = -1;
7114 tdep->ppc_cefpr0_regnum = -1;
9f643768 7115
604c2f83
LM
7116 cur_reg = gdbarch_num_regs (gdbarch);
7117
7118 if (have_spe)
7119 {
7120 tdep->ppc_ev0_regnum = cur_reg;
7121 cur_reg += 32;
7122 }
7123 if (have_dfp)
7124 {
7125 tdep->ppc_dl0_regnum = cur_reg;
7126 cur_reg += 16;
7127 }
6f072a10
PFC
7128 if (have_altivec)
7129 {
7130 tdep->ppc_v0_alias_regnum = cur_reg;
7131 cur_reg += 32;
7132 }
604c2f83
LM
7133 if (have_vsx)
7134 {
7135 tdep->ppc_vsr0_regnum = cur_reg;
7136 cur_reg += 64;
7137 tdep->ppc_efpr0_regnum = cur_reg;
7138 cur_reg += 32;
7139 }
8d619c01
EBM
7140 if (have_htm_fpu)
7141 {
7142 tdep->ppc_cdl0_regnum = cur_reg;
7143 cur_reg += 16;
7144 }
7145 if (have_htm_vsx)
7146 {
7147 tdep->ppc_cvsr0_regnum = cur_reg;
7148 cur_reg += 64;
7149 tdep->ppc_cefpr0_regnum = cur_reg;
7150 cur_reg += 32;
7151 }
f949c649 7152
f6efe3f8 7153 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
f949c649 7154
debb1f09
JB
7155 /* Register the ravenscar_arch_ops. */
7156 if (mach == bfd_mach_ppc_e500)
7157 register_e500_ravenscar_ops (gdbarch);
7158 else
7159 register_ppc_ravenscar_ops (gdbarch);
7160
65b48a81
PB
7161 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7162 set_gdbarch_valid_disassembler_options (gdbarch,
7163 disassembler_options_powerpc ());
7164
7a78ae4e 7165 return gdbarch;
c906108c
SS
7166}
7167
7b112f9c 7168static void
8b164abb 7169rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 7170{
8b164abb 7171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
7172
7173 if (tdep == NULL)
7174 return;
7175
4be87837 7176 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
7177}
7178
55eddb0f 7179static void
eb4c3f4a 7180powerpc_set_soft_float (const char *args, int from_tty,
55eddb0f
DJ
7181 struct cmd_list_element *c)
7182{
7183 struct gdbarch_info info;
7184
7185 /* Update the architecture. */
7186 gdbarch_info_init (&info);
7187 if (!gdbarch_update_p (info))
9b20d036 7188 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7189}
7190
7191static void
eb4c3f4a 7192powerpc_set_vector_abi (const char *args, int from_tty,
55eddb0f
DJ
7193 struct cmd_list_element *c)
7194{
7195 struct gdbarch_info info;
570dc176 7196 int vector_abi;
55eddb0f
DJ
7197
7198 for (vector_abi = POWERPC_VEC_AUTO;
7199 vector_abi != POWERPC_VEC_LAST;
7200 vector_abi++)
7201 if (strcmp (powerpc_vector_abi_string,
7202 powerpc_vector_strings[vector_abi]) == 0)
7203 {
aead7601 7204 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
7205 break;
7206 }
7207
7208 if (vector_abi == POWERPC_VEC_LAST)
7209 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7210 powerpc_vector_abi_string);
7211
7212 /* Update the architecture. */
7213 gdbarch_info_init (&info);
7214 if (!gdbarch_update_p (info))
9b20d036 7215 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7216}
7217
e09342b5
TJB
7218/* Show the current setting of the exact watchpoints flag. */
7219
7220static void
7221show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7222 struct cmd_list_element *c,
7223 const char *value)
7224{
7225 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7226}
7227
845d4708 7228/* Read a PPC instruction from memory. */
d78489bf
AT
7229
7230static unsigned int
845d4708 7231read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 7232{
845d4708
AM
7233 struct gdbarch *gdbarch = get_frame_arch (frame);
7234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7235
7236 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
7237}
7238
7239/* Return non-zero if the instructions at PC match the series
7240 described in PATTERN, or zero otherwise. PATTERN is an array of
7241 'struct ppc_insn_pattern' objects, terminated by an entry whose
7242 mask is zero.
7243
7433498b 7244 When the match is successful, fill INSNS[i] with what PATTERN[i]
d78489bf 7245 matched. If PATTERN[i] is optional, and the instruction wasn't
7433498b
AM
7246 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7247 INSNS should have as many elements as PATTERN, minus the terminator.
7248 Note that, if PATTERN contains optional instructions which aren't
7249 present in memory, then INSNS will have holes, so INSNS[i] isn't
7250 necessarily the i'th instruction in memory. */
d78489bf
AT
7251
7252int
845d4708 7253ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7433498b 7254 const struct ppc_insn_pattern *pattern,
845d4708 7255 unsigned int *insns)
d78489bf
AT
7256{
7257 int i;
845d4708 7258 unsigned int insn;
d78489bf 7259
845d4708 7260 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 7261 {
845d4708
AM
7262 if (insn == 0)
7263 insn = read_insn (frame, pc);
7264 insns[i] = 0;
7265 if ((insn & pattern[i].mask) == pattern[i].data)
7266 {
7267 insns[i] = insn;
7268 pc += 4;
7269 insn = 0;
7270 }
7271 else if (!pattern[i].optional)
d78489bf
AT
7272 return 0;
7273 }
7274
7275 return 1;
7276}
7277
7278/* Return the 'd' field of the d-form instruction INSN, properly
7279 sign-extended. */
7280
7281CORE_ADDR
7282ppc_insn_d_field (unsigned int insn)
7283{
7284 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7285}
7286
7287/* Return the 'ds' field of the ds-form instruction INSN, with the two
7288 zero bits concatenated at the right, and properly
7289 sign-extended. */
7290
7291CORE_ADDR
7292ppc_insn_ds_field (unsigned int insn)
7293{
7294 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7295}
7296
c906108c
SS
7297/* Initialization code. */
7298
6c265988 7299void _initialize_rs6000_tdep ();
c906108c 7300void
6c265988 7301_initialize_rs6000_tdep ()
c906108c 7302{
7b112f9c
JT
7303 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7304 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
7305
7306 /* Initialize the standard target descriptions. */
7307 initialize_tdesc_powerpc_32 ();
7284e1be 7308 initialize_tdesc_powerpc_altivec32 ();
604c2f83 7309 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
7310 initialize_tdesc_powerpc_403 ();
7311 initialize_tdesc_powerpc_403gc ();
4d09ffea 7312 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
7313 initialize_tdesc_powerpc_505 ();
7314 initialize_tdesc_powerpc_601 ();
7315 initialize_tdesc_powerpc_602 ();
7316 initialize_tdesc_powerpc_603 ();
7317 initialize_tdesc_powerpc_604 ();
7318 initialize_tdesc_powerpc_64 ();
7284e1be 7319 initialize_tdesc_powerpc_altivec64 ();
604c2f83 7320 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
7321 initialize_tdesc_powerpc_7400 ();
7322 initialize_tdesc_powerpc_750 ();
7323 initialize_tdesc_powerpc_860 ();
7324 initialize_tdesc_powerpc_e500 ();
7325 initialize_tdesc_rs6000 ();
55eddb0f
DJ
7326
7327 /* Add root prefix command for all "set powerpc"/"show powerpc"
7328 commands. */
0743fc83
TT
7329 add_basic_prefix_cmd ("powerpc", no_class,
7330 _("Various PowerPC-specific commands."),
7331 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
55eddb0f 7332
0743fc83
TT
7333 add_show_prefix_cmd ("powerpc", no_class,
7334 _("Various PowerPC-specific commands."),
7335 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
55eddb0f
DJ
7336
7337 /* Add a command to allow the user to force the ABI. */
7338 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7339 &powerpc_soft_float_global,
7340 _("Set whether to use a soft-float ABI."),
7341 _("Show whether to use a soft-float ABI."),
7342 NULL,
7343 powerpc_set_soft_float, NULL,
7344 &setpowerpccmdlist, &showpowerpccmdlist);
7345
7346 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7347 &powerpc_vector_abi_string,
7348 _("Set the vector ABI."),
7349 _("Show the vector ABI."),
7350 NULL, powerpc_set_vector_abi, NULL,
7351 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
7352
7353 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7354 &target_exact_watchpoints,
7355 _("\
7356Set whether to use just one debug register for watchpoints on scalars."),
7357 _("\
7358Show whether to use just one debug register for watchpoints on scalars."),
7359 _("\
7360If true, GDB will use only one debug register when watching a variable of\n\
7361scalar type, thus assuming that the variable is accessed through the address\n\
7362of its first byte."),
7363 NULL, show_powerpc_exact_watchpoints,
7364 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 7365}
This page took 2.633121 seconds and 4 git commands to generate.