Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Target-dependent code for GDB, the GNU debugger. |
7aea86e6 | 2 | |
b811d2c2 | 3 | Copyright (C) 1986-2020 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
21 | #include "frame.h" | |
22 | #include "inferior.h" | |
45741a9c | 23 | #include "infrun.h" |
c906108c SS |
24 | #include "symtab.h" |
25 | #include "target.h" | |
26 | #include "gdbcore.h" | |
27 | #include "gdbcmd.h" | |
c906108c | 28 | #include "objfiles.h" |
7a78ae4e | 29 | #include "arch-utils.h" |
4e052eda | 30 | #include "regcache.h" |
d195bc9f | 31 | #include "regset.h" |
3b2ca824 | 32 | #include "target-float.h" |
fd0407d6 | 33 | #include "value.h" |
1fcc0bb8 | 34 | #include "parser-defs.h" |
4be87837 | 35 | #include "osabi.h" |
7d9b040b | 36 | #include "infcall.h" |
9f643768 JB |
37 | #include "sim-regno.h" |
38 | #include "gdb/sim-ppc.h" | |
6f072a10 | 39 | #include "reggroups.h" |
4fc771b8 | 40 | #include "dwarf2-frame.h" |
7cc46491 DJ |
41 | #include "target-descriptions.h" |
42 | #include "user-regs.h" | |
b4cdae6f WW |
43 | #include "record-full.h" |
44 | #include "auxv.h" | |
7a78ae4e | 45 | |
7a78ae4e | 46 | #include "coff/internal.h" /* for libcoff.h */ |
2fccf04a | 47 | #include "libcoff.h" /* for xcoff_data */ |
11ed25ac KB |
48 | #include "coff/xcoff.h" |
49 | #include "libxcoff.h" | |
7a78ae4e | 50 | |
9aa1e687 | 51 | #include "elf-bfd.h" |
55eddb0f | 52 | #include "elf/ppc.h" |
cd453cd0 | 53 | #include "elf/ppc64.h" |
7a78ae4e | 54 | |
6ded7999 | 55 | #include "solib-svr4.h" |
9aa1e687 | 56 | #include "ppc-tdep.h" |
debb1f09 | 57 | #include "ppc-ravenscar-thread.h" |
7a78ae4e | 58 | |
a89aa300 | 59 | #include "dis-asm.h" |
338ef23d | 60 | |
61a65099 KB |
61 | #include "trad-frame.h" |
62 | #include "frame-unwind.h" | |
63 | #include "frame-base.h" | |
64 | ||
a67914de MK |
65 | #include "ax.h" |
66 | #include "ax-gdb.h" | |
325fac50 | 67 | #include <algorithm> |
a67914de | 68 | |
7cc46491 | 69 | #include "features/rs6000/powerpc-32.c" |
7284e1be | 70 | #include "features/rs6000/powerpc-altivec32.c" |
604c2f83 | 71 | #include "features/rs6000/powerpc-vsx32.c" |
7cc46491 DJ |
72 | #include "features/rs6000/powerpc-403.c" |
73 | #include "features/rs6000/powerpc-403gc.c" | |
4d09ffea | 74 | #include "features/rs6000/powerpc-405.c" |
7cc46491 DJ |
75 | #include "features/rs6000/powerpc-505.c" |
76 | #include "features/rs6000/powerpc-601.c" | |
77 | #include "features/rs6000/powerpc-602.c" | |
78 | #include "features/rs6000/powerpc-603.c" | |
79 | #include "features/rs6000/powerpc-604.c" | |
80 | #include "features/rs6000/powerpc-64.c" | |
7284e1be | 81 | #include "features/rs6000/powerpc-altivec64.c" |
604c2f83 | 82 | #include "features/rs6000/powerpc-vsx64.c" |
7cc46491 DJ |
83 | #include "features/rs6000/powerpc-7400.c" |
84 | #include "features/rs6000/powerpc-750.c" | |
85 | #include "features/rs6000/powerpc-860.c" | |
86 | #include "features/rs6000/powerpc-e500.c" | |
87 | #include "features/rs6000/rs6000.c" | |
88 | ||
5a9e69ba TJB |
89 | /* Determine if regnum is an SPE pseudo-register. */ |
90 | #define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \ | |
91 | && (regnum) >= (tdep)->ppc_ev0_regnum \ | |
92 | && (regnum) < (tdep)->ppc_ev0_regnum + 32) | |
93 | ||
f949c649 TJB |
94 | /* Determine if regnum is a decimal float pseudo-register. */ |
95 | #define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \ | |
96 | && (regnum) >= (tdep)->ppc_dl0_regnum \ | |
97 | && (regnum) < (tdep)->ppc_dl0_regnum + 16) | |
98 | ||
6f072a10 PFC |
99 | /* Determine if regnum is a "vX" alias for the raw "vrX" vector |
100 | registers. */ | |
101 | #define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\ | |
102 | (tdep)->ppc_v0_alias_regnum >= 0 \ | |
103 | && (regnum) >= (tdep)->ppc_v0_alias_regnum \ | |
104 | && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs) | |
105 | ||
604c2f83 LM |
106 | /* Determine if regnum is a POWER7 VSX register. */ |
107 | #define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \ | |
108 | && (regnum) >= (tdep)->ppc_vsr0_regnum \ | |
109 | && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs) | |
110 | ||
111 | /* Determine if regnum is a POWER7 Extended FP register. */ | |
112 | #define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \ | |
113 | && (regnum) >= (tdep)->ppc_efpr0_regnum \ | |
d9492458 | 114 | && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs) |
604c2f83 | 115 | |
8d619c01 EBM |
116 | /* Determine if regnum is a checkpointed decimal float |
117 | pseudo-register. */ | |
118 | #define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \ | |
119 | && (regnum) >= (tdep)->ppc_cdl0_regnum \ | |
120 | && (regnum) < (tdep)->ppc_cdl0_regnum + 16) | |
121 | ||
122 | /* Determine if regnum is a Checkpointed POWER7 VSX register. */ | |
123 | #define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \ | |
124 | && (regnum) >= (tdep)->ppc_cvsr0_regnum \ | |
125 | && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs) | |
126 | ||
127 | /* Determine if regnum is a Checkpointed POWER7 Extended FP register. */ | |
128 | #define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \ | |
129 | && (regnum) >= (tdep)->ppc_cefpr0_regnum \ | |
130 | && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs) | |
131 | ||
65b48a81 PB |
132 | /* Holds the current set of options to be passed to the disassembler. */ |
133 | static char *powerpc_disassembler_options; | |
134 | ||
55eddb0f DJ |
135 | /* The list of available "set powerpc ..." and "show powerpc ..." |
136 | commands. */ | |
137 | static struct cmd_list_element *setpowerpccmdlist = NULL; | |
138 | static struct cmd_list_element *showpowerpccmdlist = NULL; | |
139 | ||
140 | static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO; | |
141 | ||
142 | /* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */ | |
40478521 | 143 | static const char *const powerpc_vector_strings[] = |
55eddb0f DJ |
144 | { |
145 | "auto", | |
146 | "generic", | |
147 | "altivec", | |
148 | "spe", | |
149 | NULL | |
150 | }; | |
151 | ||
152 | /* A variable that can be configured by the user. */ | |
153 | static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO; | |
154 | static const char *powerpc_vector_abi_string = "auto"; | |
155 | ||
0df8b418 | 156 | /* To be used by skip_prologue. */ |
7a78ae4e ND |
157 | |
158 | struct rs6000_framedata | |
159 | { | |
160 | int offset; /* total size of frame --- the distance | |
161 | by which we decrement sp to allocate | |
162 | the frame */ | |
163 | int saved_gpr; /* smallest # of saved gpr */ | |
46a9b8ed | 164 | unsigned int gpr_mask; /* Each bit is an individual saved GPR. */ |
7a78ae4e | 165 | int saved_fpr; /* smallest # of saved fpr */ |
6be8bc0c | 166 | int saved_vr; /* smallest # of saved vr */ |
96ff0de4 | 167 | int saved_ev; /* smallest # of saved ev */ |
7a78ae4e | 168 | int alloca_reg; /* alloca register number (frame ptr) */ |
0df8b418 MS |
169 | char frameless; /* true if frameless functions. */ |
170 | char nosavedpc; /* true if pc not saved. */ | |
46a9b8ed | 171 | char used_bl; /* true if link register clobbered */ |
7a78ae4e ND |
172 | int gpr_offset; /* offset of saved gprs from prev sp */ |
173 | int fpr_offset; /* offset of saved fprs from prev sp */ | |
6be8bc0c | 174 | int vr_offset; /* offset of saved vrs from prev sp */ |
96ff0de4 | 175 | int ev_offset; /* offset of saved evs from prev sp */ |
7a78ae4e | 176 | int lr_offset; /* offset of saved lr */ |
46a9b8ed | 177 | int lr_register; /* register of saved lr, if trustworthy */ |
7a78ae4e | 178 | int cr_offset; /* offset of saved cr */ |
6be8bc0c | 179 | int vrsave_offset; /* offset of saved vrsave register */ |
7a78ae4e ND |
180 | }; |
181 | ||
c906108c | 182 | |
604c2f83 LM |
183 | /* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */ |
184 | int | |
185 | vsx_register_p (struct gdbarch *gdbarch, int regno) | |
186 | { | |
187 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
188 | if (tdep->ppc_vsr0_regnum < 0) | |
189 | return 0; | |
190 | else | |
191 | return (regno >= tdep->ppc_vsr0_upper_regnum && regno | |
192 | <= tdep->ppc_vsr0_upper_regnum + 31); | |
193 | } | |
194 | ||
64b84175 KB |
195 | /* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */ |
196 | int | |
be8626e0 | 197 | altivec_register_p (struct gdbarch *gdbarch, int regno) |
64b84175 | 198 | { |
be8626e0 | 199 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
64b84175 KB |
200 | if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0) |
201 | return 0; | |
202 | else | |
203 | return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum); | |
204 | } | |
205 | ||
383f0f5b | 206 | |
867e2dc5 JB |
207 | /* Return true if REGNO is an SPE register, false otherwise. */ |
208 | int | |
be8626e0 | 209 | spe_register_p (struct gdbarch *gdbarch, int regno) |
867e2dc5 | 210 | { |
be8626e0 | 211 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
867e2dc5 JB |
212 | |
213 | /* Is it a reference to EV0 -- EV31, and do we have those? */ | |
5a9e69ba | 214 | if (IS_SPE_PSEUDOREG (tdep, regno)) |
867e2dc5 JB |
215 | return 1; |
216 | ||
6ced10dd JB |
217 | /* Is it a reference to one of the raw upper GPR halves? */ |
218 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
219 | && tdep->ppc_ev0_upper_regnum <= regno | |
220 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
221 | return 1; | |
222 | ||
867e2dc5 JB |
223 | /* Is it a reference to the 64-bit accumulator, and do we have that? */ |
224 | if (tdep->ppc_acc_regnum >= 0 | |
225 | && tdep->ppc_acc_regnum == regno) | |
226 | return 1; | |
227 | ||
228 | /* Is it a reference to the SPE floating-point status and control register, | |
229 | and do we have that? */ | |
230 | if (tdep->ppc_spefscr_regnum >= 0 | |
231 | && tdep->ppc_spefscr_regnum == regno) | |
232 | return 1; | |
233 | ||
234 | return 0; | |
235 | } | |
236 | ||
237 | ||
383f0f5b JB |
238 | /* Return non-zero if the architecture described by GDBARCH has |
239 | floating-point registers (f0 --- f31 and fpscr). */ | |
0a613259 AC |
240 | int |
241 | ppc_floating_point_unit_p (struct gdbarch *gdbarch) | |
242 | { | |
383f0f5b JB |
243 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
244 | ||
245 | return (tdep->ppc_fp0_regnum >= 0 | |
246 | && tdep->ppc_fpscr_regnum >= 0); | |
0a613259 | 247 | } |
9f643768 | 248 | |
06caf7d2 CES |
249 | /* Return non-zero if the architecture described by GDBARCH has |
250 | Altivec registers (vr0 --- vr31, vrsave and vscr). */ | |
251 | int | |
252 | ppc_altivec_support_p (struct gdbarch *gdbarch) | |
253 | { | |
254 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
255 | ||
256 | return (tdep->ppc_vr0_regnum >= 0 | |
257 | && tdep->ppc_vrsave_regnum >= 0); | |
258 | } | |
09991fa0 JB |
259 | |
260 | /* Check that TABLE[GDB_REGNO] is not already initialized, and then | |
261 | set it to SIM_REGNO. | |
262 | ||
263 | This is a helper function for init_sim_regno_table, constructing | |
264 | the table mapping GDB register numbers to sim register numbers; we | |
265 | initialize every element in that table to -1 before we start | |
266 | filling it in. */ | |
9f643768 JB |
267 | static void |
268 | set_sim_regno (int *table, int gdb_regno, int sim_regno) | |
269 | { | |
270 | /* Make sure we don't try to assign any given GDB register a sim | |
271 | register number more than once. */ | |
272 | gdb_assert (table[gdb_regno] == -1); | |
273 | table[gdb_regno] = sim_regno; | |
274 | } | |
275 | ||
09991fa0 JB |
276 | |
277 | /* Initialize ARCH->tdep->sim_regno, the table mapping GDB register | |
278 | numbers to simulator register numbers, based on the values placed | |
279 | in the ARCH->tdep->ppc_foo_regnum members. */ | |
9f643768 JB |
280 | static void |
281 | init_sim_regno_table (struct gdbarch *arch) | |
282 | { | |
283 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
7cc46491 | 284 | int total_regs = gdbarch_num_regs (arch); |
9f643768 JB |
285 | int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int); |
286 | int i; | |
7cc46491 DJ |
287 | static const char *const segment_regs[] = { |
288 | "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7", | |
289 | "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15" | |
290 | }; | |
9f643768 JB |
291 | |
292 | /* Presume that all registers not explicitly mentioned below are | |
293 | unavailable from the sim. */ | |
294 | for (i = 0; i < total_regs; i++) | |
295 | sim_regno[i] = -1; | |
296 | ||
297 | /* General-purpose registers. */ | |
298 | for (i = 0; i < ppc_num_gprs; i++) | |
299 | set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i); | |
300 | ||
301 | /* Floating-point registers. */ | |
302 | if (tdep->ppc_fp0_regnum >= 0) | |
303 | for (i = 0; i < ppc_num_fprs; i++) | |
304 | set_sim_regno (sim_regno, | |
305 | tdep->ppc_fp0_regnum + i, | |
306 | sim_ppc_f0_regnum + i); | |
307 | if (tdep->ppc_fpscr_regnum >= 0) | |
308 | set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum); | |
309 | ||
310 | set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum); | |
311 | set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum); | |
312 | set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum); | |
313 | ||
314 | /* Segment registers. */ | |
7cc46491 DJ |
315 | for (i = 0; i < ppc_num_srs; i++) |
316 | { | |
317 | int gdb_regno; | |
318 | ||
319 | gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1); | |
320 | if (gdb_regno >= 0) | |
321 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i); | |
322 | } | |
9f643768 JB |
323 | |
324 | /* Altivec registers. */ | |
325 | if (tdep->ppc_vr0_regnum >= 0) | |
326 | { | |
327 | for (i = 0; i < ppc_num_vrs; i++) | |
328 | set_sim_regno (sim_regno, | |
329 | tdep->ppc_vr0_regnum + i, | |
330 | sim_ppc_vr0_regnum + i); | |
331 | ||
332 | /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum, | |
333 | we can treat this more like the other cases. */ | |
334 | set_sim_regno (sim_regno, | |
335 | tdep->ppc_vr0_regnum + ppc_num_vrs, | |
336 | sim_ppc_vscr_regnum); | |
337 | } | |
338 | /* vsave is a special-purpose register, so the code below handles it. */ | |
339 | ||
340 | /* SPE APU (E500) registers. */ | |
6ced10dd JB |
341 | if (tdep->ppc_ev0_upper_regnum >= 0) |
342 | for (i = 0; i < ppc_num_gprs; i++) | |
343 | set_sim_regno (sim_regno, | |
344 | tdep->ppc_ev0_upper_regnum + i, | |
345 | sim_ppc_rh0_regnum + i); | |
9f643768 JB |
346 | if (tdep->ppc_acc_regnum >= 0) |
347 | set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum); | |
348 | /* spefscr is a special-purpose register, so the code below handles it. */ | |
349 | ||
976102cd | 350 | #ifdef WITH_PPC_SIM |
9f643768 JB |
351 | /* Now handle all special-purpose registers. Verify that they |
352 | haven't mistakenly been assigned numbers by any of the above | |
7cc46491 DJ |
353 | code. */ |
354 | for (i = 0; i < sim_ppc_num_sprs; i++) | |
355 | { | |
356 | const char *spr_name = sim_spr_register_name (i); | |
357 | int gdb_regno = -1; | |
358 | ||
359 | if (spr_name != NULL) | |
360 | gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1); | |
361 | ||
362 | if (gdb_regno != -1) | |
363 | set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i); | |
364 | } | |
365 | #endif | |
9f643768 JB |
366 | |
367 | /* Drop the initialized array into place. */ | |
368 | tdep->sim_regno = sim_regno; | |
369 | } | |
370 | ||
09991fa0 JB |
371 | |
372 | /* Given a GDB register number REG, return the corresponding SIM | |
373 | register number. */ | |
9f643768 | 374 | static int |
e7faf938 | 375 | rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg) |
9f643768 | 376 | { |
e7faf938 | 377 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9f643768 JB |
378 | int sim_regno; |
379 | ||
7cc46491 | 380 | if (tdep->sim_regno == NULL) |
e7faf938 | 381 | init_sim_regno_table (gdbarch); |
7cc46491 | 382 | |
f6efe3f8 | 383 | gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch)); |
9f643768 JB |
384 | sim_regno = tdep->sim_regno[reg]; |
385 | ||
386 | if (sim_regno >= 0) | |
387 | return sim_regno; | |
388 | else | |
389 | return LEGACY_SIM_REGNO_IGNORE; | |
390 | } | |
391 | ||
d195bc9f MK |
392 | \f |
393 | ||
394 | /* Register set support functions. */ | |
395 | ||
f2db237a AM |
396 | /* REGS + OFFSET contains register REGNUM in a field REGSIZE wide. |
397 | Write the register to REGCACHE. */ | |
398 | ||
7284e1be | 399 | void |
d195bc9f | 400 | ppc_supply_reg (struct regcache *regcache, int regnum, |
f2db237a | 401 | const gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
402 | { |
403 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
404 | { |
405 | if (regsize > 4) | |
406 | { | |
ac7936df | 407 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
408 | int gdb_regsize = register_size (gdbarch, regnum); |
409 | if (gdb_regsize < regsize | |
410 | && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
411 | offset += regsize - gdb_regsize; | |
412 | } | |
73e1c03f | 413 | regcache->raw_supply (regnum, regs + offset); |
f2db237a | 414 | } |
d195bc9f MK |
415 | } |
416 | ||
f2db237a AM |
417 | /* Read register REGNUM from REGCACHE and store to REGS + OFFSET |
418 | in a field REGSIZE wide. Zero pad as necessary. */ | |
419 | ||
7284e1be | 420 | void |
d195bc9f | 421 | ppc_collect_reg (const struct regcache *regcache, int regnum, |
f2db237a | 422 | gdb_byte *regs, size_t offset, int regsize) |
d195bc9f MK |
423 | { |
424 | if (regnum != -1 && offset != -1) | |
f2db237a AM |
425 | { |
426 | if (regsize > 4) | |
427 | { | |
ac7936df | 428 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
429 | int gdb_regsize = register_size (gdbarch, regnum); |
430 | if (gdb_regsize < regsize) | |
431 | { | |
432 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
433 | { | |
434 | memset (regs + offset, 0, regsize - gdb_regsize); | |
435 | offset += regsize - gdb_regsize; | |
436 | } | |
437 | else | |
438 | memset (regs + offset + regsize - gdb_regsize, 0, | |
439 | regsize - gdb_regsize); | |
440 | } | |
441 | } | |
34a79281 | 442 | regcache->raw_collect (regnum, regs + offset); |
f2db237a | 443 | } |
d195bc9f MK |
444 | } |
445 | ||
f2db237a AM |
446 | static int |
447 | ppc_greg_offset (struct gdbarch *gdbarch, | |
448 | struct gdbarch_tdep *tdep, | |
449 | const struct ppc_reg_offsets *offsets, | |
450 | int regnum, | |
451 | int *regsize) | |
452 | { | |
453 | *regsize = offsets->gpr_size; | |
454 | if (regnum >= tdep->ppc_gp0_regnum | |
455 | && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs) | |
456 | return (offsets->r0_offset | |
457 | + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size); | |
458 | ||
459 | if (regnum == gdbarch_pc_regnum (gdbarch)) | |
460 | return offsets->pc_offset; | |
461 | ||
462 | if (regnum == tdep->ppc_ps_regnum) | |
463 | return offsets->ps_offset; | |
464 | ||
465 | if (regnum == tdep->ppc_lr_regnum) | |
466 | return offsets->lr_offset; | |
467 | ||
468 | if (regnum == tdep->ppc_ctr_regnum) | |
469 | return offsets->ctr_offset; | |
470 | ||
471 | *regsize = offsets->xr_size; | |
472 | if (regnum == tdep->ppc_cr_regnum) | |
473 | return offsets->cr_offset; | |
474 | ||
475 | if (regnum == tdep->ppc_xer_regnum) | |
476 | return offsets->xer_offset; | |
477 | ||
478 | if (regnum == tdep->ppc_mq_regnum) | |
479 | return offsets->mq_offset; | |
480 | ||
481 | return -1; | |
482 | } | |
483 | ||
484 | static int | |
485 | ppc_fpreg_offset (struct gdbarch_tdep *tdep, | |
486 | const struct ppc_reg_offsets *offsets, | |
487 | int regnum) | |
488 | { | |
489 | if (regnum >= tdep->ppc_fp0_regnum | |
490 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs) | |
491 | return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8; | |
492 | ||
493 | if (regnum == tdep->ppc_fpscr_regnum) | |
494 | return offsets->fpscr_offset; | |
495 | ||
496 | return -1; | |
497 | } | |
498 | ||
d195bc9f MK |
499 | /* Supply register REGNUM in the general-purpose register set REGSET |
500 | from the buffer specified by GREGS and LEN to register cache | |
501 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
502 | ||
503 | void | |
504 | ppc_supply_gregset (const struct regset *regset, struct regcache *regcache, | |
505 | int regnum, const void *gregs, size_t len) | |
506 | { | |
ac7936df | 507 | struct gdbarch *gdbarch = regcache->arch (); |
d195bc9f | 508 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
19ba03f4 SM |
509 | const struct ppc_reg_offsets *offsets |
510 | = (const struct ppc_reg_offsets *) regset->regmap; | |
d195bc9f | 511 | size_t offset; |
f2db237a | 512 | int regsize; |
d195bc9f | 513 | |
f2db237a | 514 | if (regnum == -1) |
d195bc9f | 515 | { |
f2db237a AM |
516 | int i; |
517 | int gpr_size = offsets->gpr_size; | |
518 | ||
519 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
520 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
521 | i++, offset += gpr_size) | |
19ba03f4 SM |
522 | ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset, |
523 | gpr_size); | |
f2db237a AM |
524 | |
525 | ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
19ba03f4 | 526 | (const gdb_byte *) gregs, offsets->pc_offset, gpr_size); |
f2db237a | 527 | ppc_supply_reg (regcache, tdep->ppc_ps_regnum, |
19ba03f4 | 528 | (const gdb_byte *) gregs, offsets->ps_offset, gpr_size); |
f2db237a | 529 | ppc_supply_reg (regcache, tdep->ppc_lr_regnum, |
19ba03f4 | 530 | (const gdb_byte *) gregs, offsets->lr_offset, gpr_size); |
f2db237a | 531 | ppc_supply_reg (regcache, tdep->ppc_ctr_regnum, |
19ba03f4 | 532 | (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size); |
f2db237a | 533 | ppc_supply_reg (regcache, tdep->ppc_cr_regnum, |
19ba03f4 SM |
534 | (const gdb_byte *) gregs, offsets->cr_offset, |
535 | offsets->xr_size); | |
f2db237a | 536 | ppc_supply_reg (regcache, tdep->ppc_xer_regnum, |
19ba03f4 SM |
537 | (const gdb_byte *) gregs, offsets->xer_offset, |
538 | offsets->xr_size); | |
f2db237a | 539 | ppc_supply_reg (regcache, tdep->ppc_mq_regnum, |
19ba03f4 SM |
540 | (const gdb_byte *) gregs, offsets->mq_offset, |
541 | offsets->xr_size); | |
f2db237a | 542 | return; |
d195bc9f MK |
543 | } |
544 | ||
f2db237a | 545 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
19ba03f4 | 546 | ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize); |
d195bc9f MK |
547 | } |
548 | ||
549 | /* Supply register REGNUM in the floating-point register set REGSET | |
550 | from the buffer specified by FPREGS and LEN to register cache | |
551 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
552 | ||
553 | void | |
554 | ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache, | |
555 | int regnum, const void *fpregs, size_t len) | |
556 | { | |
ac7936df | 557 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
558 | struct gdbarch_tdep *tdep; |
559 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 560 | size_t offset; |
d195bc9f | 561 | |
f2db237a AM |
562 | if (!ppc_floating_point_unit_p (gdbarch)) |
563 | return; | |
383f0f5b | 564 | |
f2db237a | 565 | tdep = gdbarch_tdep (gdbarch); |
19ba03f4 | 566 | offsets = (const struct ppc_reg_offsets *) regset->regmap; |
f2db237a | 567 | if (regnum == -1) |
d195bc9f | 568 | { |
f2db237a AM |
569 | int i; |
570 | ||
571 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
572 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
573 | i++, offset += 8) | |
19ba03f4 | 574 | ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8); |
f2db237a AM |
575 | |
576 | ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum, | |
19ba03f4 SM |
577 | (const gdb_byte *) fpregs, offsets->fpscr_offset, |
578 | offsets->fpscr_size); | |
f2db237a | 579 | return; |
d195bc9f MK |
580 | } |
581 | ||
f2db237a | 582 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
19ba03f4 | 583 | ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset, |
f2db237a | 584 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); |
d195bc9f MK |
585 | } |
586 | ||
587 | /* Collect register REGNUM in the general-purpose register set | |
f2db237a | 588 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
589 | GREGS and LEN. If REGNUM is -1, do this for all registers in |
590 | REGSET. */ | |
591 | ||
592 | void | |
593 | ppc_collect_gregset (const struct regset *regset, | |
594 | const struct regcache *regcache, | |
595 | int regnum, void *gregs, size_t len) | |
596 | { | |
ac7936df | 597 | struct gdbarch *gdbarch = regcache->arch (); |
d195bc9f | 598 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
19ba03f4 SM |
599 | const struct ppc_reg_offsets *offsets |
600 | = (const struct ppc_reg_offsets *) regset->regmap; | |
d195bc9f | 601 | size_t offset; |
f2db237a | 602 | int regsize; |
d195bc9f | 603 | |
f2db237a | 604 | if (regnum == -1) |
d195bc9f | 605 | { |
f2db237a AM |
606 | int i; |
607 | int gpr_size = offsets->gpr_size; | |
608 | ||
609 | for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset; | |
610 | i < tdep->ppc_gp0_regnum + ppc_num_gprs; | |
611 | i++, offset += gpr_size) | |
19ba03f4 | 612 | ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size); |
f2db237a AM |
613 | |
614 | ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch), | |
19ba03f4 | 615 | (gdb_byte *) gregs, offsets->pc_offset, gpr_size); |
f2db237a | 616 | ppc_collect_reg (regcache, tdep->ppc_ps_regnum, |
19ba03f4 | 617 | (gdb_byte *) gregs, offsets->ps_offset, gpr_size); |
f2db237a | 618 | ppc_collect_reg (regcache, tdep->ppc_lr_regnum, |
19ba03f4 | 619 | (gdb_byte *) gregs, offsets->lr_offset, gpr_size); |
f2db237a | 620 | ppc_collect_reg (regcache, tdep->ppc_ctr_regnum, |
19ba03f4 | 621 | (gdb_byte *) gregs, offsets->ctr_offset, gpr_size); |
f2db237a | 622 | ppc_collect_reg (regcache, tdep->ppc_cr_regnum, |
19ba03f4 SM |
623 | (gdb_byte *) gregs, offsets->cr_offset, |
624 | offsets->xr_size); | |
f2db237a | 625 | ppc_collect_reg (regcache, tdep->ppc_xer_regnum, |
19ba03f4 SM |
626 | (gdb_byte *) gregs, offsets->xer_offset, |
627 | offsets->xr_size); | |
f2db237a | 628 | ppc_collect_reg (regcache, tdep->ppc_mq_regnum, |
19ba03f4 SM |
629 | (gdb_byte *) gregs, offsets->mq_offset, |
630 | offsets->xr_size); | |
f2db237a | 631 | return; |
d195bc9f MK |
632 | } |
633 | ||
f2db237a | 634 | offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, ®size); |
19ba03f4 | 635 | ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize); |
d195bc9f MK |
636 | } |
637 | ||
638 | /* Collect register REGNUM in the floating-point register set | |
f2db237a | 639 | REGSET from register cache REGCACHE into the buffer specified by |
d195bc9f MK |
640 | FPREGS and LEN. If REGNUM is -1, do this for all registers in |
641 | REGSET. */ | |
642 | ||
643 | void | |
644 | ppc_collect_fpregset (const struct regset *regset, | |
645 | const struct regcache *regcache, | |
646 | int regnum, void *fpregs, size_t len) | |
647 | { | |
ac7936df | 648 | struct gdbarch *gdbarch = regcache->arch (); |
f2db237a AM |
649 | struct gdbarch_tdep *tdep; |
650 | const struct ppc_reg_offsets *offsets; | |
d195bc9f | 651 | size_t offset; |
d195bc9f | 652 | |
f2db237a AM |
653 | if (!ppc_floating_point_unit_p (gdbarch)) |
654 | return; | |
383f0f5b | 655 | |
f2db237a | 656 | tdep = gdbarch_tdep (gdbarch); |
19ba03f4 | 657 | offsets = (const struct ppc_reg_offsets *) regset->regmap; |
f2db237a | 658 | if (regnum == -1) |
d195bc9f | 659 | { |
f2db237a AM |
660 | int i; |
661 | ||
662 | for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset; | |
663 | i < tdep->ppc_fp0_regnum + ppc_num_fprs; | |
664 | i++, offset += 8) | |
19ba03f4 | 665 | ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8); |
f2db237a AM |
666 | |
667 | ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum, | |
19ba03f4 SM |
668 | (gdb_byte *) fpregs, offsets->fpscr_offset, |
669 | offsets->fpscr_size); | |
f2db237a | 670 | return; |
d195bc9f MK |
671 | } |
672 | ||
f2db237a | 673 | offset = ppc_fpreg_offset (tdep, offsets, regnum); |
19ba03f4 | 674 | ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset, |
f2db237a | 675 | regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8); |
d195bc9f | 676 | } |
06caf7d2 | 677 | |
0d1243d9 PG |
678 | static int |
679 | insn_changes_sp_or_jumps (unsigned long insn) | |
680 | { | |
681 | int opcode = (insn >> 26) & 0x03f; | |
682 | int sd = (insn >> 21) & 0x01f; | |
683 | int a = (insn >> 16) & 0x01f; | |
684 | int subcode = (insn >> 1) & 0x3ff; | |
685 | ||
686 | /* Changes the stack pointer. */ | |
687 | ||
688 | /* NOTE: There are many ways to change the value of a given register. | |
689 | The ways below are those used when the register is R1, the SP, | |
690 | in a funtion's epilogue. */ | |
691 | ||
692 | if (opcode == 31 && subcode == 444 && a == 1) | |
693 | return 1; /* mr R1,Rn */ | |
694 | if (opcode == 14 && sd == 1) | |
695 | return 1; /* addi R1,Rn,simm */ | |
696 | if (opcode == 58 && sd == 1) | |
697 | return 1; /* ld R1,ds(Rn) */ | |
698 | ||
699 | /* Transfers control. */ | |
700 | ||
701 | if (opcode == 18) | |
702 | return 1; /* b */ | |
703 | if (opcode == 16) | |
704 | return 1; /* bc */ | |
705 | if (opcode == 19 && subcode == 16) | |
706 | return 1; /* bclr */ | |
707 | if (opcode == 19 && subcode == 528) | |
708 | return 1; /* bcctr */ | |
709 | ||
710 | return 0; | |
711 | } | |
712 | ||
713 | /* Return true if we are in the function's epilogue, i.e. after the | |
714 | instruction that destroyed the function's stack frame. | |
715 | ||
716 | 1) scan forward from the point of execution: | |
717 | a) If you find an instruction that modifies the stack pointer | |
718 | or transfers control (except a return), execution is not in | |
719 | an epilogue, return. | |
720 | b) Stop scanning if you find a return instruction or reach the | |
721 | end of the function or reach the hard limit for the size of | |
722 | an epilogue. | |
723 | 2) scan backward from the point of execution: | |
724 | a) If you find an instruction that modifies the stack pointer, | |
725 | execution *is* in an epilogue, return. | |
726 | b) Stop scanning if you reach an instruction that transfers | |
727 | control or the beginning of the function or reach the hard | |
728 | limit for the size of an epilogue. */ | |
729 | ||
730 | static int | |
2608dbf8 WW |
731 | rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm, |
732 | struct gdbarch *gdbarch, CORE_ADDR pc) | |
0d1243d9 | 733 | { |
46a9b8ed | 734 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 735 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
0d1243d9 PG |
736 | bfd_byte insn_buf[PPC_INSN_SIZE]; |
737 | CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end; | |
738 | unsigned long insn; | |
0d1243d9 PG |
739 | |
740 | /* Find the search limits based on function boundaries and hard limit. */ | |
741 | ||
742 | if (!find_pc_partial_function (pc, NULL, &func_start, &func_end)) | |
743 | return 0; | |
744 | ||
745 | epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
746 | if (epilogue_start < func_start) epilogue_start = func_start; | |
747 | ||
748 | epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE; | |
749 | if (epilogue_end > func_end) epilogue_end = func_end; | |
750 | ||
0d1243d9 PG |
751 | /* Scan forward until next 'blr'. */ |
752 | ||
753 | for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE) | |
754 | { | |
755 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
756 | return 0; | |
e17a4113 | 757 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order); |
0d1243d9 PG |
758 | if (insn == 0x4e800020) |
759 | break; | |
46a9b8ed DJ |
760 | /* Assume a bctr is a tail call unless it points strictly within |
761 | this function. */ | |
762 | if (insn == 0x4e800420) | |
763 | { | |
764 | CORE_ADDR ctr = get_frame_register_unsigned (curfrm, | |
765 | tdep->ppc_ctr_regnum); | |
766 | if (ctr > func_start && ctr < func_end) | |
767 | return 0; | |
768 | else | |
769 | break; | |
770 | } | |
0d1243d9 PG |
771 | if (insn_changes_sp_or_jumps (insn)) |
772 | return 0; | |
773 | } | |
774 | ||
775 | /* Scan backward until adjustment to stack pointer (R1). */ | |
776 | ||
777 | for (scan_pc = pc - PPC_INSN_SIZE; | |
778 | scan_pc >= epilogue_start; | |
779 | scan_pc -= PPC_INSN_SIZE) | |
780 | { | |
781 | if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE)) | |
782 | return 0; | |
e17a4113 | 783 | insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order); |
0d1243d9 PG |
784 | if (insn_changes_sp_or_jumps (insn)) |
785 | return 1; | |
786 | } | |
787 | ||
788 | return 0; | |
789 | } | |
790 | ||
c9cf6e20 | 791 | /* Implement the stack_frame_destroyed_p gdbarch method. */ |
2608dbf8 WW |
792 | |
793 | static int | |
c9cf6e20 | 794 | rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc) |
2608dbf8 WW |
795 | { |
796 | return rs6000_in_function_epilogue_frame_p (get_current_frame (), | |
797 | gdbarch, pc); | |
798 | } | |
799 | ||
143985b7 | 800 | /* Get the ith function argument for the current function. */ |
b9362cc7 | 801 | static CORE_ADDR |
143985b7 AF |
802 | rs6000_fetch_pointer_argument (struct frame_info *frame, int argi, |
803 | struct type *type) | |
804 | { | |
50fd1280 | 805 | return get_frame_register_unsigned (frame, 3 + argi); |
143985b7 AF |
806 | } |
807 | ||
c906108c SS |
808 | /* Sequence of bytes for breakpoint instruction. */ |
809 | ||
04180708 YQ |
810 | constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 }; |
811 | constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d }; | |
d19280ad | 812 | |
04180708 YQ |
813 | typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint) |
814 | rs6000_breakpoint; | |
c906108c | 815 | |
f74c6cad LM |
816 | /* Instruction masks for displaced stepping. */ |
817 | #define BRANCH_MASK 0xfc000000 | |
818 | #define BP_MASK 0xFC0007FE | |
819 | #define B_INSN 0x48000000 | |
820 | #define BC_INSN 0x40000000 | |
821 | #define BXL_INSN 0x4c000000 | |
822 | #define BP_INSN 0x7C000008 | |
823 | ||
7f03bd92 PA |
824 | /* Instruction masks used during single-stepping of atomic |
825 | sequences. */ | |
2039d74e | 826 | #define LOAD_AND_RESERVE_MASK 0xfc0007fe |
7f03bd92 PA |
827 | #define LWARX_INSTRUCTION 0x7c000028 |
828 | #define LDARX_INSTRUCTION 0x7c0000A8 | |
2039d74e EBM |
829 | #define LBARX_INSTRUCTION 0x7c000068 |
830 | #define LHARX_INSTRUCTION 0x7c0000e8 | |
831 | #define LQARX_INSTRUCTION 0x7c000228 | |
832 | #define STORE_CONDITIONAL_MASK 0xfc0007ff | |
7f03bd92 PA |
833 | #define STWCX_INSTRUCTION 0x7c00012d |
834 | #define STDCX_INSTRUCTION 0x7c0001ad | |
2039d74e EBM |
835 | #define STBCX_INSTRUCTION 0x7c00056d |
836 | #define STHCX_INSTRUCTION 0x7c0005ad | |
837 | #define STQCX_INSTRUCTION 0x7c00016d | |
838 | ||
839 | /* Check if insn is one of the Load And Reserve instructions used for atomic | |
840 | sequences. */ | |
841 | #define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \ | |
842 | || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \ | |
843 | || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \ | |
844 | || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \ | |
845 | || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION) | |
846 | /* Check if insn is one of the Store Conditional instructions used for atomic | |
847 | sequences. */ | |
848 | #define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \ | |
849 | || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \ | |
850 | || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \ | |
851 | || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \ | |
852 | || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION) | |
7f03bd92 | 853 | |
cfba9872 SM |
854 | typedef buf_displaced_step_closure ppc_displaced_step_closure; |
855 | ||
c2508e90 | 856 | /* We can't displaced step atomic sequences. */ |
7f03bd92 PA |
857 | |
858 | static struct displaced_step_closure * | |
859 | ppc_displaced_step_copy_insn (struct gdbarch *gdbarch, | |
860 | CORE_ADDR from, CORE_ADDR to, | |
861 | struct regcache *regs) | |
862 | { | |
863 | size_t len = gdbarch_max_insn_length (gdbarch); | |
cfba9872 SM |
864 | std::unique_ptr<ppc_displaced_step_closure> closure |
865 | (new ppc_displaced_step_closure (len)); | |
866 | gdb_byte *buf = closure->buf.data (); | |
7f03bd92 PA |
867 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
868 | int insn; | |
869 | ||
870 | read_memory (from, buf, len); | |
871 | ||
872 | insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order); | |
873 | ||
2039d74e EBM |
874 | /* Assume all atomic sequences start with a Load and Reserve instruction. */ |
875 | if (IS_LOAD_AND_RESERVE_INSN (insn)) | |
7f03bd92 PA |
876 | { |
877 | if (debug_displaced) | |
878 | { | |
879 | fprintf_unfiltered (gdb_stdlog, | |
880 | "displaced: can't displaced step " | |
881 | "atomic sequence at %s\n", | |
882 | paddress (gdbarch, from)); | |
883 | } | |
cfba9872 | 884 | |
7f03bd92 PA |
885 | return NULL; |
886 | } | |
887 | ||
888 | write_memory (to, buf, len); | |
889 | ||
890 | if (debug_displaced) | |
891 | { | |
892 | fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ", | |
893 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
894 | displaced_step_dump_bytes (gdb_stdlog, buf, len); | |
895 | } | |
896 | ||
cfba9872 | 897 | return closure.release (); |
7f03bd92 PA |
898 | } |
899 | ||
f74c6cad LM |
900 | /* Fix up the state of registers and memory after having single-stepped |
901 | a displaced instruction. */ | |
63807e1d | 902 | static void |
f74c6cad | 903 | ppc_displaced_step_fixup (struct gdbarch *gdbarch, |
cfba9872 | 904 | struct displaced_step_closure *closure_, |
63807e1d PA |
905 | CORE_ADDR from, CORE_ADDR to, |
906 | struct regcache *regs) | |
f74c6cad | 907 | { |
e17a4113 | 908 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
7f03bd92 | 909 | /* Our closure is a copy of the instruction. */ |
cfba9872 SM |
910 | ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_; |
911 | ULONGEST insn = extract_unsigned_integer (closure->buf.data (), | |
912 | PPC_INSN_SIZE, byte_order); | |
f74c6cad LM |
913 | ULONGEST opcode = 0; |
914 | /* Offset for non PC-relative instructions. */ | |
915 | LONGEST offset = PPC_INSN_SIZE; | |
916 | ||
917 | opcode = insn & BRANCH_MASK; | |
918 | ||
919 | if (debug_displaced) | |
920 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
921 | "displaced: (ppc) fixup (%s, %s)\n", |
922 | paddress (gdbarch, from), paddress (gdbarch, to)); | |
f74c6cad LM |
923 | |
924 | ||
925 | /* Handle PC-relative branch instructions. */ | |
926 | if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN) | |
927 | { | |
a4fafde3 | 928 | ULONGEST current_pc; |
f74c6cad LM |
929 | |
930 | /* Read the current PC value after the instruction has been executed | |
931 | in a displaced location. Calculate the offset to be applied to the | |
932 | original PC value before the displaced stepping. */ | |
933 | regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch), | |
934 | ¤t_pc); | |
935 | offset = current_pc - to; | |
936 | ||
937 | if (opcode != BXL_INSN) | |
938 | { | |
939 | /* Check for AA bit indicating whether this is an absolute | |
940 | addressing or PC-relative (1: absolute, 0: relative). */ | |
941 | if (!(insn & 0x2)) | |
942 | { | |
943 | /* PC-relative addressing is being used in the branch. */ | |
944 | if (debug_displaced) | |
945 | fprintf_unfiltered | |
946 | (gdb_stdlog, | |
5af949e3 UW |
947 | "displaced: (ppc) branch instruction: %s\n" |
948 | "displaced: (ppc) adjusted PC from %s to %s\n", | |
949 | paddress (gdbarch, insn), paddress (gdbarch, current_pc), | |
950 | paddress (gdbarch, from + offset)); | |
f74c6cad | 951 | |
0df8b418 MS |
952 | regcache_cooked_write_unsigned (regs, |
953 | gdbarch_pc_regnum (gdbarch), | |
f74c6cad LM |
954 | from + offset); |
955 | } | |
956 | } | |
957 | else | |
958 | { | |
959 | /* If we're here, it means we have a branch to LR or CTR. If the | |
960 | branch was taken, the offset is probably greater than 4 (the next | |
961 | instruction), so it's safe to assume that an offset of 4 means we | |
962 | did not take the branch. */ | |
963 | if (offset == PPC_INSN_SIZE) | |
964 | regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), | |
965 | from + PPC_INSN_SIZE); | |
966 | } | |
967 | ||
968 | /* Check for LK bit indicating whether we should set the link | |
969 | register to point to the next instruction | |
970 | (1: Set, 0: Don't set). */ | |
971 | if (insn & 0x1) | |
972 | { | |
973 | /* Link register needs to be set to the next instruction's PC. */ | |
974 | regcache_cooked_write_unsigned (regs, | |
975 | gdbarch_tdep (gdbarch)->ppc_lr_regnum, | |
976 | from + PPC_INSN_SIZE); | |
977 | if (debug_displaced) | |
978 | fprintf_unfiltered (gdb_stdlog, | |
5af949e3 UW |
979 | "displaced: (ppc) adjusted LR to %s\n", |
980 | paddress (gdbarch, from + PPC_INSN_SIZE)); | |
f74c6cad LM |
981 | |
982 | } | |
983 | } | |
984 | /* Check for breakpoints in the inferior. If we've found one, place the PC | |
985 | right at the breakpoint instruction. */ | |
986 | else if ((insn & BP_MASK) == BP_INSN) | |
987 | regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from); | |
988 | else | |
989 | /* Handle any other instructions that do not fit in the categories above. */ | |
990 | regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), | |
991 | from + offset); | |
992 | } | |
c906108c | 993 | |
99e40580 UW |
994 | /* Always use hardware single-stepping to execute the |
995 | displaced instruction. */ | |
996 | static int | |
997 | ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch, | |
998 | struct displaced_step_closure *closure) | |
999 | { | |
1000 | return 1; | |
1001 | } | |
1002 | ||
2039d74e EBM |
1003 | /* Checks for an atomic sequence of instructions beginning with a |
1004 | Load And Reserve instruction and ending with a Store Conditional | |
1005 | instruction. If such a sequence is found, attempt to step through it. | |
1006 | A breakpoint is placed at the end of the sequence. */ | |
a0ff9e1a | 1007 | std::vector<CORE_ADDR> |
f5ea389a | 1008 | ppc_deal_with_atomic_sequence (struct regcache *regcache) |
ce5eab59 | 1009 | { |
ac7936df | 1010 | struct gdbarch *gdbarch = regcache->arch (); |
e17a4113 | 1011 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
41e26ad3 | 1012 | CORE_ADDR pc = regcache_read_pc (regcache); |
70ab8ccd | 1013 | CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX}; |
ce5eab59 | 1014 | CORE_ADDR loc = pc; |
24d45690 | 1015 | CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */ |
e17a4113 | 1016 | int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order); |
ce5eab59 UW |
1017 | int insn_count; |
1018 | int index; | |
1019 | int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */ | |
1020 | const int atomic_sequence_length = 16; /* Instruction sequence length. */ | |
ce5eab59 UW |
1021 | int bc_insn_count = 0; /* Conditional branch instruction count. */ |
1022 | ||
2039d74e EBM |
1023 | /* Assume all atomic sequences start with a Load And Reserve instruction. */ |
1024 | if (!IS_LOAD_AND_RESERVE_INSN (insn)) | |
a0ff9e1a | 1025 | return {}; |
ce5eab59 UW |
1026 | |
1027 | /* Assume that no atomic sequence is longer than "atomic_sequence_length" | |
1028 | instructions. */ | |
1029 | for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count) | |
1030 | { | |
1031 | loc += PPC_INSN_SIZE; | |
e17a4113 | 1032 | insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order); |
ce5eab59 UW |
1033 | |
1034 | /* Assume that there is at most one conditional branch in the atomic | |
1035 | sequence. If a conditional branch is found, put a breakpoint in | |
1036 | its destination address. */ | |
f74c6cad | 1037 | if ((insn & BRANCH_MASK) == BC_INSN) |
ce5eab59 | 1038 | { |
a3769e0c AM |
1039 | int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000; |
1040 | int absolute = insn & 2; | |
4a7622d1 | 1041 | |
ce5eab59 | 1042 | if (bc_insn_count >= 1) |
a0ff9e1a SM |
1043 | return {}; /* More than one conditional branch found, fallback |
1044 | to the standard single-step code. */ | |
4a7622d1 UW |
1045 | |
1046 | if (absolute) | |
1047 | breaks[1] = immediate; | |
1048 | else | |
a3769e0c | 1049 | breaks[1] = loc + immediate; |
4a7622d1 UW |
1050 | |
1051 | bc_insn_count++; | |
1052 | last_breakpoint++; | |
ce5eab59 UW |
1053 | } |
1054 | ||
2039d74e | 1055 | if (IS_STORE_CONDITIONAL_INSN (insn)) |
ce5eab59 UW |
1056 | break; |
1057 | } | |
1058 | ||
2039d74e EBM |
1059 | /* Assume that the atomic sequence ends with a Store Conditional |
1060 | instruction. */ | |
1061 | if (!IS_STORE_CONDITIONAL_INSN (insn)) | |
a0ff9e1a | 1062 | return {}; |
ce5eab59 | 1063 | |
24d45690 | 1064 | closing_insn = loc; |
ce5eab59 | 1065 | loc += PPC_INSN_SIZE; |
ce5eab59 UW |
1066 | |
1067 | /* Insert a breakpoint right after the end of the atomic sequence. */ | |
1068 | breaks[0] = loc; | |
1069 | ||
24d45690 | 1070 | /* Check for duplicated breakpoints. Check also for a breakpoint |
a3769e0c AM |
1071 | placed (branch instruction's destination) anywhere in sequence. */ |
1072 | if (last_breakpoint | |
1073 | && (breaks[1] == breaks[0] | |
1074 | || (breaks[1] >= pc && breaks[1] <= closing_insn))) | |
ce5eab59 UW |
1075 | last_breakpoint = 0; |
1076 | ||
a0ff9e1a SM |
1077 | std::vector<CORE_ADDR> next_pcs; |
1078 | ||
ce5eab59 | 1079 | for (index = 0; index <= last_breakpoint; index++) |
a0ff9e1a | 1080 | next_pcs.push_back (breaks[index]); |
ce5eab59 | 1081 | |
93f9a11f | 1082 | return next_pcs; |
ce5eab59 UW |
1083 | } |
1084 | ||
c906108c | 1085 | |
c906108c SS |
1086 | #define SIGNED_SHORT(x) \ |
1087 | ((sizeof (short) == 2) \ | |
1088 | ? ((int)(short)(x)) \ | |
1089 | : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000))) | |
1090 | ||
1091 | #define GET_SRC_REG(x) (((x) >> 21) & 0x1f) | |
1092 | ||
55d05f3b KB |
1093 | /* Limit the number of skipped non-prologue instructions, as the examining |
1094 | of the prologue is expensive. */ | |
1095 | static int max_skip_non_prologue_insns = 10; | |
1096 | ||
773df3e5 JB |
1097 | /* Return nonzero if the given instruction OP can be part of the prologue |
1098 | of a function and saves a parameter on the stack. FRAMEP should be | |
1099 | set if one of the previous instructions in the function has set the | |
1100 | Frame Pointer. */ | |
1101 | ||
1102 | static int | |
1103 | store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg) | |
1104 | { | |
1105 | /* Move parameters from argument registers to temporary register. */ | |
1106 | if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */ | |
1107 | { | |
1108 | /* Rx must be scratch register r0. */ | |
1109 | const int rx_regno = (op >> 16) & 31; | |
1110 | /* Ry: Only r3 - r10 are used for parameter passing. */ | |
1111 | const int ry_regno = GET_SRC_REG (op); | |
1112 | ||
1113 | if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10) | |
1114 | { | |
1115 | *r0_contains_arg = 1; | |
1116 | return 1; | |
1117 | } | |
1118 | else | |
1119 | return 0; | |
1120 | } | |
1121 | ||
1122 | /* Save a General Purpose Register on stack. */ | |
1123 | ||
1124 | if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */ | |
1125 | (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */ | |
1126 | { | |
1127 | /* Rx: Only r3 - r10 are used for parameter passing. */ | |
1128 | const int rx_regno = GET_SRC_REG (op); | |
1129 | ||
1130 | return (rx_regno >= 3 && rx_regno <= 10); | |
1131 | } | |
1132 | ||
1133 | /* Save a General Purpose Register on stack via the Frame Pointer. */ | |
1134 | ||
1135 | if (framep && | |
1136 | ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */ | |
1137 | (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */ | |
1138 | (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */ | |
1139 | { | |
1140 | /* Rx: Usually, only r3 - r10 are used for parameter passing. | |
1141 | However, the compiler sometimes uses r0 to hold an argument. */ | |
1142 | const int rx_regno = GET_SRC_REG (op); | |
1143 | ||
1144 | return ((rx_regno >= 3 && rx_regno <= 10) | |
1145 | || (rx_regno == 0 && *r0_contains_arg)); | |
1146 | } | |
1147 | ||
1148 | if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */ | |
1149 | { | |
1150 | /* Only f2 - f8 are used for parameter passing. */ | |
1151 | const int src_regno = GET_SRC_REG (op); | |
1152 | ||
1153 | return (src_regno >= 2 && src_regno <= 8); | |
1154 | } | |
1155 | ||
1156 | if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */ | |
1157 | { | |
1158 | /* Only f2 - f8 are used for parameter passing. */ | |
1159 | const int src_regno = GET_SRC_REG (op); | |
1160 | ||
1161 | return (src_regno >= 2 && src_regno <= 8); | |
1162 | } | |
1163 | ||
1164 | /* Not an insn that saves a parameter on stack. */ | |
1165 | return 0; | |
1166 | } | |
55d05f3b | 1167 | |
3c77c82a DJ |
1168 | /* Assuming that INSN is a "bl" instruction located at PC, return |
1169 | nonzero if the destination of the branch is a "blrl" instruction. | |
1170 | ||
1171 | This sequence is sometimes found in certain function prologues. | |
1172 | It allows the function to load the LR register with a value that | |
1173 | they can use to access PIC data using PC-relative offsets. */ | |
1174 | ||
1175 | static int | |
e17a4113 | 1176 | bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order) |
3c77c82a | 1177 | { |
0b1b3e42 UW |
1178 | CORE_ADDR dest; |
1179 | int immediate; | |
1180 | int absolute; | |
3c77c82a DJ |
1181 | int dest_insn; |
1182 | ||
0b1b3e42 UW |
1183 | absolute = (int) ((insn >> 1) & 1); |
1184 | immediate = ((insn & ~3) << 6) >> 6; | |
1185 | if (absolute) | |
1186 | dest = immediate; | |
1187 | else | |
1188 | dest = pc + immediate; | |
1189 | ||
e17a4113 | 1190 | dest_insn = read_memory_integer (dest, 4, byte_order); |
3c77c82a DJ |
1191 | if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */ |
1192 | return 1; | |
1193 | ||
1194 | return 0; | |
1195 | } | |
1196 | ||
dd6d677f PFC |
1197 | /* Return true if OP is a stw or std instruction with |
1198 | register operands RS and RA and any immediate offset. | |
1199 | ||
1200 | If WITH_UPDATE is true, also return true if OP is | |
1201 | a stwu or stdu instruction with the same operands. | |
1202 | ||
1203 | Return false otherwise. | |
1204 | */ | |
1205 | static bool | |
1206 | store_insn_p (unsigned long op, unsigned long rs, | |
1207 | unsigned long ra, bool with_update) | |
1208 | { | |
1209 | rs = rs << 21; | |
1210 | ra = ra << 16; | |
1211 | ||
1212 | if (/* std RS, SIMM(RA) */ | |
1213 | ((op & 0xffff0003) == (rs | ra | 0xf8000000)) || | |
1214 | /* stw RS, SIMM(RA) */ | |
1215 | ((op & 0xffff0000) == (rs | ra | 0x90000000))) | |
1216 | return true; | |
1217 | ||
1218 | if (with_update) | |
1219 | { | |
1220 | if (/* stdu RS, SIMM(RA) */ | |
1221 | ((op & 0xffff0003) == (rs | ra | 0xf8000001)) || | |
1222 | /* stwu RS, SIMM(RA) */ | |
1223 | ((op & 0xffff0000) == (rs | ra | 0x94000000))) | |
1224 | return true; | |
1225 | } | |
1226 | ||
1227 | return false; | |
1228 | } | |
1229 | ||
0df8b418 | 1230 | /* Masks for decoding a branch-and-link (bl) instruction. |
8ab3d180 KB |
1231 | |
1232 | BL_MASK and BL_INSTRUCTION are used in combination with each other. | |
1233 | The former is anded with the opcode in question; if the result of | |
1234 | this masking operation is equal to BL_INSTRUCTION, then the opcode in | |
1235 | question is a ``bl'' instruction. | |
1236 | ||
85102364 | 1237 | BL_DISPLACEMENT_MASK is anded with the opcode in order to extract |
8ab3d180 KB |
1238 | the branch displacement. */ |
1239 | ||
1240 | #define BL_MASK 0xfc000001 | |
1241 | #define BL_INSTRUCTION 0x48000001 | |
1242 | #define BL_DISPLACEMENT_MASK 0x03fffffc | |
1243 | ||
de9f48f0 | 1244 | static unsigned long |
e17a4113 | 1245 | rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc) |
de9f48f0 | 1246 | { |
e17a4113 | 1247 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
de9f48f0 JG |
1248 | gdb_byte buf[4]; |
1249 | unsigned long op; | |
1250 | ||
1251 | /* Fetch the instruction and convert it to an integer. */ | |
1252 | if (target_read_memory (pc, buf, 4)) | |
1253 | return 0; | |
e17a4113 | 1254 | op = extract_unsigned_integer (buf, 4, byte_order); |
de9f48f0 JG |
1255 | |
1256 | return op; | |
1257 | } | |
1258 | ||
1259 | /* GCC generates several well-known sequences of instructions at the begining | |
1260 | of each function prologue when compiling with -fstack-check. If one of | |
1261 | such sequences starts at START_PC, then return the address of the | |
1262 | instruction immediately past this sequence. Otherwise, return START_PC. */ | |
1263 | ||
1264 | static CORE_ADDR | |
e17a4113 | 1265 | rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc) |
de9f48f0 JG |
1266 | { |
1267 | CORE_ADDR pc = start_pc; | |
e17a4113 | 1268 | unsigned long op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1269 | |
1270 | /* First possible sequence: A small number of probes. | |
1271 | stw 0, -<some immediate>(1) | |
0df8b418 | 1272 | [repeat this instruction any (small) number of times]. */ |
de9f48f0 JG |
1273 | |
1274 | if ((op & 0xffff0000) == 0x90010000) | |
1275 | { | |
1276 | while ((op & 0xffff0000) == 0x90010000) | |
1277 | { | |
1278 | pc = pc + 4; | |
e17a4113 | 1279 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1280 | } |
1281 | return pc; | |
1282 | } | |
1283 | ||
1284 | /* Second sequence: A probing loop. | |
1285 | addi 12,1,-<some immediate> | |
1286 | lis 0,-<some immediate> | |
1287 | [possibly ori 0,0,<some immediate>] | |
1288 | add 0,12,0 | |
1289 | cmpw 0,12,0 | |
1290 | beq 0,<disp> | |
1291 | addi 12,12,-<some immediate> | |
1292 | stw 0,0(12) | |
1293 | b <disp> | |
0df8b418 | 1294 | [possibly one last probe: stw 0,<some immediate>(12)]. */ |
de9f48f0 JG |
1295 | |
1296 | while (1) | |
1297 | { | |
1298 | /* addi 12,1,-<some immediate> */ | |
1299 | if ((op & 0xffff0000) != 0x39810000) | |
1300 | break; | |
1301 | ||
1302 | /* lis 0,-<some immediate> */ | |
1303 | pc = pc + 4; | |
e17a4113 | 1304 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1305 | if ((op & 0xffff0000) != 0x3c000000) |
1306 | break; | |
1307 | ||
1308 | pc = pc + 4; | |
e17a4113 | 1309 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1310 | /* [possibly ori 0,0,<some immediate>] */ |
1311 | if ((op & 0xffff0000) == 0x60000000) | |
1312 | { | |
1313 | pc = pc + 4; | |
e17a4113 | 1314 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1315 | } |
1316 | /* add 0,12,0 */ | |
1317 | if (op != 0x7c0c0214) | |
1318 | break; | |
1319 | ||
1320 | /* cmpw 0,12,0 */ | |
1321 | pc = pc + 4; | |
e17a4113 | 1322 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1323 | if (op != 0x7c0c0000) |
1324 | break; | |
1325 | ||
1326 | /* beq 0,<disp> */ | |
1327 | pc = pc + 4; | |
e17a4113 | 1328 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1329 | if ((op & 0xff9f0001) != 0x41820000) |
1330 | break; | |
1331 | ||
1332 | /* addi 12,12,-<some immediate> */ | |
1333 | pc = pc + 4; | |
e17a4113 | 1334 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1335 | if ((op & 0xffff0000) != 0x398c0000) |
1336 | break; | |
1337 | ||
1338 | /* stw 0,0(12) */ | |
1339 | pc = pc + 4; | |
e17a4113 | 1340 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1341 | if (op != 0x900c0000) |
1342 | break; | |
1343 | ||
1344 | /* b <disp> */ | |
1345 | pc = pc + 4; | |
e17a4113 | 1346 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1347 | if ((op & 0xfc000001) != 0x48000000) |
1348 | break; | |
1349 | ||
0df8b418 | 1350 | /* [possibly one last probe: stw 0,<some immediate>(12)]. */ |
de9f48f0 | 1351 | pc = pc + 4; |
e17a4113 | 1352 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1353 | if ((op & 0xffff0000) == 0x900c0000) |
1354 | { | |
1355 | pc = pc + 4; | |
e17a4113 | 1356 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1357 | } |
1358 | ||
1359 | /* We found a valid stack-check sequence, return the new PC. */ | |
1360 | return pc; | |
1361 | } | |
1362 | ||
30baf67b | 1363 | /* Third sequence: No probe; instead, a comparison between the stack size |
de9f48f0 JG |
1364 | limit (saved in a run-time global variable) and the current stack |
1365 | pointer: | |
1366 | ||
1367 | addi 0,1,-<some immediate> | |
1368 | lis 12,__gnat_stack_limit@ha | |
1369 | lwz 12,__gnat_stack_limit@l(12) | |
1370 | twllt 0,12 | |
1371 | ||
1372 | or, with a small variant in the case of a bigger stack frame: | |
1373 | addis 0,1,<some immediate> | |
1374 | addic 0,0,-<some immediate> | |
1375 | lis 12,__gnat_stack_limit@ha | |
1376 | lwz 12,__gnat_stack_limit@l(12) | |
1377 | twllt 0,12 | |
1378 | */ | |
1379 | while (1) | |
1380 | { | |
1381 | /* addi 0,1,-<some immediate> */ | |
1382 | if ((op & 0xffff0000) != 0x38010000) | |
1383 | { | |
1384 | /* small stack frame variant not recognized; try the | |
1385 | big stack frame variant: */ | |
1386 | ||
1387 | /* addis 0,1,<some immediate> */ | |
1388 | if ((op & 0xffff0000) != 0x3c010000) | |
1389 | break; | |
1390 | ||
1391 | /* addic 0,0,-<some immediate> */ | |
1392 | pc = pc + 4; | |
e17a4113 | 1393 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1394 | if ((op & 0xffff0000) != 0x30000000) |
1395 | break; | |
1396 | } | |
1397 | ||
1398 | /* lis 12,<some immediate> */ | |
1399 | pc = pc + 4; | |
e17a4113 | 1400 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1401 | if ((op & 0xffff0000) != 0x3d800000) |
1402 | break; | |
1403 | ||
1404 | /* lwz 12,<some immediate>(12) */ | |
1405 | pc = pc + 4; | |
e17a4113 | 1406 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1407 | if ((op & 0xffff0000) != 0x818c0000) |
1408 | break; | |
1409 | ||
1410 | /* twllt 0,12 */ | |
1411 | pc = pc + 4; | |
e17a4113 | 1412 | op = rs6000_fetch_instruction (gdbarch, pc); |
de9f48f0 JG |
1413 | if ((op & 0xfffffffe) != 0x7c406008) |
1414 | break; | |
1415 | ||
1416 | /* We found a valid stack-check sequence, return the new PC. */ | |
1417 | return pc; | |
1418 | } | |
1419 | ||
1420 | /* No stack check code in our prologue, return the start_pc. */ | |
1421 | return start_pc; | |
1422 | } | |
1423 | ||
6a16c029 TJB |
1424 | /* return pc value after skipping a function prologue and also return |
1425 | information about a function frame. | |
1426 | ||
1427 | in struct rs6000_framedata fdata: | |
1428 | - frameless is TRUE, if function does not have a frame. | |
1429 | - nosavedpc is TRUE, if function does not save %pc value in its frame. | |
1430 | - offset is the initial size of this stack frame --- the amount by | |
1431 | which we decrement the sp to allocate the frame. | |
1432 | - saved_gpr is the number of the first saved gpr. | |
1433 | - saved_fpr is the number of the first saved fpr. | |
1434 | - saved_vr is the number of the first saved vr. | |
1435 | - saved_ev is the number of the first saved ev. | |
1436 | - alloca_reg is the number of the register used for alloca() handling. | |
1437 | Otherwise -1. | |
1438 | - gpr_offset is the offset of the first saved gpr from the previous frame. | |
1439 | - fpr_offset is the offset of the first saved fpr from the previous frame. | |
1440 | - vr_offset is the offset of the first saved vr from the previous frame. | |
1441 | - ev_offset is the offset of the first saved ev from the previous frame. | |
1442 | - lr_offset is the offset of the saved lr | |
1443 | - cr_offset is the offset of the saved cr | |
0df8b418 | 1444 | - vrsave_offset is the offset of the saved vrsave register. */ |
6a16c029 | 1445 | |
7a78ae4e | 1446 | static CORE_ADDR |
be8626e0 MD |
1447 | skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc, |
1448 | struct rs6000_framedata *fdata) | |
c906108c SS |
1449 | { |
1450 | CORE_ADDR orig_pc = pc; | |
55d05f3b | 1451 | CORE_ADDR last_prologue_pc = pc; |
6be8bc0c | 1452 | CORE_ADDR li_found_pc = 0; |
50fd1280 | 1453 | gdb_byte buf[4]; |
c906108c SS |
1454 | unsigned long op; |
1455 | long offset = 0; | |
dd6d677f | 1456 | long alloca_reg_offset = 0; |
6be8bc0c | 1457 | long vr_saved_offset = 0; |
482ca3f5 KB |
1458 | int lr_reg = -1; |
1459 | int cr_reg = -1; | |
6be8bc0c | 1460 | int vr_reg = -1; |
96ff0de4 EZ |
1461 | int ev_reg = -1; |
1462 | long ev_offset = 0; | |
6be8bc0c | 1463 | int vrsave_reg = -1; |
c906108c SS |
1464 | int reg; |
1465 | int framep = 0; | |
1466 | int minimal_toc_loaded = 0; | |
ddb20c56 | 1467 | int prev_insn_was_prologue_insn = 1; |
55d05f3b | 1468 | int num_skip_non_prologue_insns = 0; |
773df3e5 | 1469 | int r0_contains_arg = 0; |
be8626e0 MD |
1470 | const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch); |
1471 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
e17a4113 | 1472 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
c906108c | 1473 | |
ddb20c56 | 1474 | memset (fdata, 0, sizeof (struct rs6000_framedata)); |
c906108c SS |
1475 | fdata->saved_gpr = -1; |
1476 | fdata->saved_fpr = -1; | |
6be8bc0c | 1477 | fdata->saved_vr = -1; |
96ff0de4 | 1478 | fdata->saved_ev = -1; |
c906108c SS |
1479 | fdata->alloca_reg = -1; |
1480 | fdata->frameless = 1; | |
1481 | fdata->nosavedpc = 1; | |
46a9b8ed | 1482 | fdata->lr_register = -1; |
c906108c | 1483 | |
e17a4113 | 1484 | pc = rs6000_skip_stack_check (gdbarch, pc); |
de9f48f0 JG |
1485 | if (pc >= lim_pc) |
1486 | pc = lim_pc; | |
1487 | ||
55d05f3b | 1488 | for (;; pc += 4) |
c906108c | 1489 | { |
ddb20c56 KB |
1490 | /* Sometimes it isn't clear if an instruction is a prologue |
1491 | instruction or not. When we encounter one of these ambiguous | |
1492 | cases, we'll set prev_insn_was_prologue_insn to 0 (false). | |
0df8b418 | 1493 | Otherwise, we'll assume that it really is a prologue instruction. */ |
ddb20c56 KB |
1494 | if (prev_insn_was_prologue_insn) |
1495 | last_prologue_pc = pc; | |
55d05f3b KB |
1496 | |
1497 | /* Stop scanning if we've hit the limit. */ | |
4e463ff5 | 1498 | if (pc >= lim_pc) |
55d05f3b KB |
1499 | break; |
1500 | ||
ddb20c56 KB |
1501 | prev_insn_was_prologue_insn = 1; |
1502 | ||
55d05f3b | 1503 | /* Fetch the instruction and convert it to an integer. */ |
ddb20c56 KB |
1504 | if (target_read_memory (pc, buf, 4)) |
1505 | break; | |
e17a4113 | 1506 | op = extract_unsigned_integer (buf, 4, byte_order); |
c906108c | 1507 | |
c5aa993b JM |
1508 | if ((op & 0xfc1fffff) == 0x7c0802a6) |
1509 | { /* mflr Rx */ | |
43b1ab88 AC |
1510 | /* Since shared library / PIC code, which needs to get its |
1511 | address at runtime, can appear to save more than one link | |
1512 | register vis: | |
1513 | ||
1514 | *INDENT-OFF* | |
1515 | stwu r1,-304(r1) | |
1516 | mflr r3 | |
1517 | bl 0xff570d0 (blrl) | |
1518 | stw r30,296(r1) | |
1519 | mflr r30 | |
1520 | stw r31,300(r1) | |
1521 | stw r3,308(r1); | |
1522 | ... | |
1523 | *INDENT-ON* | |
1524 | ||
1525 | remember just the first one, but skip over additional | |
1526 | ones. */ | |
721d14ba | 1527 | if (lr_reg == -1) |
dd6d677f | 1528 | lr_reg = (op & 0x03e00000) >> 21; |
773df3e5 JB |
1529 | if (lr_reg == 0) |
1530 | r0_contains_arg = 0; | |
c5aa993b | 1531 | continue; |
c5aa993b JM |
1532 | } |
1533 | else if ((op & 0xfc1fffff) == 0x7c000026) | |
1534 | { /* mfcr Rx */ | |
dd6d677f | 1535 | cr_reg = (op & 0x03e00000) >> 21; |
773df3e5 JB |
1536 | if (cr_reg == 0) |
1537 | r0_contains_arg = 0; | |
c5aa993b | 1538 | continue; |
c906108c | 1539 | |
c906108c | 1540 | } |
c5aa993b JM |
1541 | else if ((op & 0xfc1f0000) == 0xd8010000) |
1542 | { /* stfd Rx,NUM(r1) */ | |
1543 | reg = GET_SRC_REG (op); | |
1544 | if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg) | |
1545 | { | |
1546 | fdata->saved_fpr = reg; | |
1547 | fdata->fpr_offset = SIGNED_SHORT (op) + offset; | |
1548 | } | |
1549 | continue; | |
c906108c | 1550 | |
c5aa993b JM |
1551 | } |
1552 | else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */ | |
7a78ae4e ND |
1553 | (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */ |
1554 | (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */ | |
1555 | (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */ | |
c5aa993b JM |
1556 | { |
1557 | ||
1558 | reg = GET_SRC_REG (op); | |
46a9b8ed DJ |
1559 | if ((op & 0xfc1f0000) == 0xbc010000) |
1560 | fdata->gpr_mask |= ~((1U << reg) - 1); | |
1561 | else | |
1562 | fdata->gpr_mask |= 1U << reg; | |
c5aa993b JM |
1563 | if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg) |
1564 | { | |
1565 | fdata->saved_gpr = reg; | |
7a78ae4e | 1566 | if ((op & 0xfc1f0003) == 0xf8010000) |
98f08d3d | 1567 | op &= ~3UL; |
c5aa993b JM |
1568 | fdata->gpr_offset = SIGNED_SHORT (op) + offset; |
1569 | } | |
1570 | continue; | |
c906108c | 1571 | |
ddb20c56 | 1572 | } |
ef1bc9e7 AM |
1573 | else if ((op & 0xffff0000) == 0x3c4c0000 |
1574 | || (op & 0xffff0000) == 0x3c400000 | |
1575 | || (op & 0xffff0000) == 0x38420000) | |
1576 | { | |
1577 | /* . 0: addis 2,12,.TOC.-0b@ha | |
1578 | . addi 2,2,.TOC.-0b@l | |
1579 | or | |
1580 | . lis 2,.TOC.@ha | |
1581 | . addi 2,2,.TOC.@l | |
1582 | used by ELFv2 global entry points to set up r2. */ | |
1583 | continue; | |
1584 | } | |
1585 | else if (op == 0x60000000) | |
ddb20c56 | 1586 | { |
96ff0de4 | 1587 | /* nop */ |
ddb20c56 KB |
1588 | /* Allow nops in the prologue, but do not consider them to |
1589 | be part of the prologue unless followed by other prologue | |
0df8b418 | 1590 | instructions. */ |
ddb20c56 KB |
1591 | prev_insn_was_prologue_insn = 0; |
1592 | continue; | |
1593 | ||
c906108c | 1594 | } |
c5aa993b | 1595 | else if ((op & 0xffff0000) == 0x3c000000) |
ef1bc9e7 | 1596 | { /* addis 0,0,NUM, used for >= 32k frames */ |
c5aa993b JM |
1597 | fdata->offset = (op & 0x0000ffff) << 16; |
1598 | fdata->frameless = 0; | |
773df3e5 | 1599 | r0_contains_arg = 0; |
c5aa993b JM |
1600 | continue; |
1601 | ||
1602 | } | |
1603 | else if ((op & 0xffff0000) == 0x60000000) | |
ef1bc9e7 | 1604 | { /* ori 0,0,NUM, 2nd half of >= 32k frames */ |
c5aa993b JM |
1605 | fdata->offset |= (op & 0x0000ffff); |
1606 | fdata->frameless = 0; | |
773df3e5 | 1607 | r0_contains_arg = 0; |
c5aa993b JM |
1608 | continue; |
1609 | ||
1610 | } | |
be723e22 | 1611 | else if (lr_reg >= 0 && |
dd6d677f PFC |
1612 | ((store_insn_p (op, lr_reg, 1, true)) || |
1613 | (framep && | |
1614 | (store_insn_p (op, lr_reg, | |
1615 | fdata->alloca_reg - tdep->ppc_gp0_regnum, | |
1616 | false))))) | |
1617 | { | |
1618 | if (store_insn_p (op, lr_reg, 1, true)) | |
1619 | fdata->lr_offset = offset; | |
1620 | else /* LR save through frame pointer. */ | |
1621 | fdata->lr_offset = alloca_reg_offset; | |
1622 | ||
c5aa993b | 1623 | fdata->nosavedpc = 0; |
be723e22 MS |
1624 | /* Invalidate lr_reg, but don't set it to -1. |
1625 | That would mean that it had never been set. */ | |
1626 | lr_reg = -2; | |
98f08d3d KB |
1627 | if ((op & 0xfc000003) == 0xf8000000 || /* std */ |
1628 | (op & 0xfc000000) == 0x90000000) /* stw */ | |
1629 | { | |
1630 | /* Does not update r1, so add displacement to lr_offset. */ | |
1631 | fdata->lr_offset += SIGNED_SHORT (op); | |
1632 | } | |
c5aa993b JM |
1633 | continue; |
1634 | ||
1635 | } | |
be723e22 | 1636 | else if (cr_reg >= 0 && |
dd6d677f PFC |
1637 | (store_insn_p (op, cr_reg, 1, true))) |
1638 | { | |
98f08d3d | 1639 | fdata->cr_offset = offset; |
be723e22 MS |
1640 | /* Invalidate cr_reg, but don't set it to -1. |
1641 | That would mean that it had never been set. */ | |
1642 | cr_reg = -2; | |
98f08d3d KB |
1643 | if ((op & 0xfc000003) == 0xf8000000 || |
1644 | (op & 0xfc000000) == 0x90000000) | |
1645 | { | |
1646 | /* Does not update r1, so add displacement to cr_offset. */ | |
1647 | fdata->cr_offset += SIGNED_SHORT (op); | |
1648 | } | |
c5aa993b JM |
1649 | continue; |
1650 | ||
1651 | } | |
721d14ba DJ |
1652 | else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1) |
1653 | { | |
1654 | /* bcl 20,xx,.+4 is used to get the current PC, with or without | |
1655 | prediction bits. If the LR has already been saved, we can | |
1656 | skip it. */ | |
1657 | continue; | |
1658 | } | |
c5aa993b JM |
1659 | else if (op == 0x48000005) |
1660 | { /* bl .+4 used in | |
1661 | -mrelocatable */ | |
46a9b8ed | 1662 | fdata->used_bl = 1; |
c5aa993b JM |
1663 | continue; |
1664 | ||
1665 | } | |
1666 | else if (op == 0x48000004) | |
1667 | { /* b .+4 (xlc) */ | |
1668 | break; | |
1669 | ||
c5aa993b | 1670 | } |
6be8bc0c EZ |
1671 | else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used |
1672 | in V.4 -mminimal-toc */ | |
c5aa993b JM |
1673 | (op & 0xffff0000) == 0x3bde0000) |
1674 | { /* addi 30,30,foo@l */ | |
1675 | continue; | |
c906108c | 1676 | |
c5aa993b JM |
1677 | } |
1678 | else if ((op & 0xfc000001) == 0x48000001) | |
1679 | { /* bl foo, | |
0df8b418 | 1680 | to save fprs??? */ |
c906108c | 1681 | |
c5aa993b | 1682 | fdata->frameless = 0; |
3c77c82a DJ |
1683 | |
1684 | /* If the return address has already been saved, we can skip | |
1685 | calls to blrl (for PIC). */ | |
e17a4113 | 1686 | if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order)) |
46a9b8ed DJ |
1687 | { |
1688 | fdata->used_bl = 1; | |
1689 | continue; | |
1690 | } | |
3c77c82a | 1691 | |
6be8bc0c | 1692 | /* Don't skip over the subroutine call if it is not within |
ebd98106 FF |
1693 | the first three instructions of the prologue and either |
1694 | we have no line table information or the line info tells | |
1695 | us that the subroutine call is not part of the line | |
1696 | associated with the prologue. */ | |
c5aa993b | 1697 | if ((pc - orig_pc) > 8) |
ebd98106 FF |
1698 | { |
1699 | struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0); | |
1700 | struct symtab_and_line this_sal = find_pc_line (pc, 0); | |
1701 | ||
0df8b418 MS |
1702 | if ((prologue_sal.line == 0) |
1703 | || (prologue_sal.line != this_sal.line)) | |
ebd98106 FF |
1704 | break; |
1705 | } | |
c5aa993b | 1706 | |
e17a4113 | 1707 | op = read_memory_integer (pc + 4, 4, byte_order); |
c5aa993b | 1708 | |
6be8bc0c EZ |
1709 | /* At this point, make sure this is not a trampoline |
1710 | function (a function that simply calls another functions, | |
1711 | and nothing else). If the next is not a nop, this branch | |
0df8b418 | 1712 | was part of the function prologue. */ |
c5aa993b JM |
1713 | |
1714 | if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */ | |
0df8b418 MS |
1715 | break; /* Don't skip over |
1716 | this branch. */ | |
c5aa993b | 1717 | |
46a9b8ed DJ |
1718 | fdata->used_bl = 1; |
1719 | continue; | |
c5aa993b | 1720 | } |
98f08d3d KB |
1721 | /* update stack pointer */ |
1722 | else if ((op & 0xfc1f0000) == 0x94010000) | |
1723 | { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */ | |
c5aa993b JM |
1724 | fdata->frameless = 0; |
1725 | fdata->offset = SIGNED_SHORT (op); | |
1726 | offset = fdata->offset; | |
1727 | continue; | |
c5aa993b | 1728 | } |
7a8f494c PFC |
1729 | else if ((op & 0xfc1f07fa) == 0x7c01016a) |
1730 | { /* stwux rX,r1,rY || stdux rX,r1,rY */ | |
0df8b418 | 1731 | /* No way to figure out what r1 is going to be. */ |
98f08d3d KB |
1732 | fdata->frameless = 0; |
1733 | offset = fdata->offset; | |
1734 | continue; | |
1735 | } | |
1736 | else if ((op & 0xfc1f0003) == 0xf8010001) | |
1737 | { /* stdu rX,NUM(r1) */ | |
1738 | fdata->frameless = 0; | |
1739 | fdata->offset = SIGNED_SHORT (op & ~3UL); | |
1740 | offset = fdata->offset; | |
1741 | continue; | |
1742 | } | |
7313566f FF |
1743 | else if ((op & 0xffff0000) == 0x38210000) |
1744 | { /* addi r1,r1,SIMM */ | |
1745 | fdata->frameless = 0; | |
1746 | fdata->offset += SIGNED_SHORT (op); | |
1747 | offset = fdata->offset; | |
1748 | continue; | |
1749 | } | |
4e463ff5 DJ |
1750 | /* Load up minimal toc pointer. Do not treat an epilogue restore |
1751 | of r31 as a minimal TOC load. */ | |
0df8b418 MS |
1752 | else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */ |
1753 | (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */ | |
4e463ff5 | 1754 | && !framep |
c5aa993b | 1755 | && !minimal_toc_loaded) |
98f08d3d | 1756 | { |
c5aa993b JM |
1757 | minimal_toc_loaded = 1; |
1758 | continue; | |
1759 | ||
f6077098 KB |
1760 | /* move parameters from argument registers to local variable |
1761 | registers */ | |
1762 | } | |
1763 | else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */ | |
1764 | (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */ | |
1765 | (((op >> 21) & 31) <= 10) && | |
0df8b418 MS |
1766 | ((long) ((op >> 16) & 31) |
1767 | >= fdata->saved_gpr)) /* Rx: local var reg */ | |
f6077098 KB |
1768 | { |
1769 | continue; | |
1770 | ||
c5aa993b JM |
1771 | /* store parameters in stack */ |
1772 | } | |
e802b915 | 1773 | /* Move parameters from argument registers to temporary register. */ |
773df3e5 | 1774 | else if (store_param_on_stack_p (op, framep, &r0_contains_arg)) |
e802b915 | 1775 | { |
c5aa993b JM |
1776 | continue; |
1777 | ||
1778 | /* Set up frame pointer */ | |
1779 | } | |
76219d77 JB |
1780 | else if (op == 0x603d0000) /* oril r29, r1, 0x0 */ |
1781 | { | |
1782 | fdata->frameless = 0; | |
1783 | framep = 1; | |
1784 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29); | |
dd6d677f | 1785 | alloca_reg_offset = offset; |
76219d77 JB |
1786 | continue; |
1787 | ||
1788 | /* Another way to set up the frame pointer. */ | |
1789 | } | |
c5aa993b JM |
1790 | else if (op == 0x603f0000 /* oril r31, r1, 0x0 */ |
1791 | || op == 0x7c3f0b78) | |
1792 | { /* mr r31, r1 */ | |
1793 | fdata->frameless = 0; | |
1794 | framep = 1; | |
6f99cb26 | 1795 | fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31); |
dd6d677f | 1796 | alloca_reg_offset = offset; |
c5aa993b JM |
1797 | continue; |
1798 | ||
1799 | /* Another way to set up the frame pointer. */ | |
1800 | } | |
1801 | else if ((op & 0xfc1fffff) == 0x38010000) | |
1802 | { /* addi rX, r1, 0x0 */ | |
1803 | fdata->frameless = 0; | |
1804 | framep = 1; | |
6f99cb26 AC |
1805 | fdata->alloca_reg = (tdep->ppc_gp0_regnum |
1806 | + ((op & ~0x38010000) >> 21)); | |
dd6d677f | 1807 | alloca_reg_offset = offset; |
c5aa993b | 1808 | continue; |
c5aa993b | 1809 | } |
6be8bc0c EZ |
1810 | /* AltiVec related instructions. */ |
1811 | /* Store the vrsave register (spr 256) in another register for | |
1812 | later manipulation, or load a register into the vrsave | |
1813 | register. 2 instructions are used: mfvrsave and | |
1814 | mtvrsave. They are shorthand notation for mfspr Rn, SPR256 | |
1815 | and mtspr SPR256, Rn. */ | |
1816 | /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110 | |
1817 | mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */ | |
1818 | else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */ | |
1819 | { | |
1820 | vrsave_reg = GET_SRC_REG (op); | |
1821 | continue; | |
1822 | } | |
1823 | else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */ | |
1824 | { | |
1825 | continue; | |
1826 | } | |
1827 | /* Store the register where vrsave was saved to onto the stack: | |
1828 | rS is the register where vrsave was stored in a previous | |
1829 | instruction. */ | |
1830 | /* 100100 sssss 00001 dddddddd dddddddd */ | |
1831 | else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */ | |
1832 | { | |
1833 | if (vrsave_reg == GET_SRC_REG (op)) | |
1834 | { | |
1835 | fdata->vrsave_offset = SIGNED_SHORT (op) + offset; | |
1836 | vrsave_reg = -1; | |
1837 | } | |
1838 | continue; | |
1839 | } | |
1840 | /* Compute the new value of vrsave, by modifying the register | |
1841 | where vrsave was saved to. */ | |
1842 | else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */ | |
1843 | || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */ | |
1844 | { | |
1845 | continue; | |
1846 | } | |
1847 | /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first | |
1848 | in a pair of insns to save the vector registers on the | |
1849 | stack. */ | |
1850 | /* 001110 00000 00000 iiii iiii iiii iiii */ | |
96ff0de4 EZ |
1851 | /* 001110 01110 00000 iiii iiii iiii iiii */ |
1852 | else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */ | |
1853 | || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */ | |
6be8bc0c | 1854 | { |
773df3e5 JB |
1855 | if ((op & 0xffff0000) == 0x38000000) |
1856 | r0_contains_arg = 0; | |
6be8bc0c EZ |
1857 | li_found_pc = pc; |
1858 | vr_saved_offset = SIGNED_SHORT (op); | |
773df3e5 JB |
1859 | |
1860 | /* This insn by itself is not part of the prologue, unless | |
0df8b418 | 1861 | if part of the pair of insns mentioned above. So do not |
773df3e5 JB |
1862 | record this insn as part of the prologue yet. */ |
1863 | prev_insn_was_prologue_insn = 0; | |
6be8bc0c EZ |
1864 | } |
1865 | /* Store vector register S at (r31+r0) aligned to 16 bytes. */ | |
1866 | /* 011111 sssss 11111 00000 00111001110 */ | |
1867 | else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */ | |
1868 | { | |
1869 | if (pc == (li_found_pc + 4)) | |
1870 | { | |
1871 | vr_reg = GET_SRC_REG (op); | |
1872 | /* If this is the first vector reg to be saved, or if | |
1873 | it has a lower number than others previously seen, | |
1874 | reupdate the frame info. */ | |
1875 | if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg) | |
1876 | { | |
1877 | fdata->saved_vr = vr_reg; | |
1878 | fdata->vr_offset = vr_saved_offset + offset; | |
1879 | } | |
1880 | vr_saved_offset = -1; | |
1881 | vr_reg = -1; | |
1882 | li_found_pc = 0; | |
1883 | } | |
1884 | } | |
1885 | /* End AltiVec related instructions. */ | |
96ff0de4 EZ |
1886 | |
1887 | /* Start BookE related instructions. */ | |
1888 | /* Store gen register S at (r31+uimm). | |
1889 | Any register less than r13 is volatile, so we don't care. */ | |
1890 | /* 000100 sssss 11111 iiiii 01100100001 */ | |
1891 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1892 | && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */ | |
1893 | { | |
1894 | if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */ | |
1895 | { | |
1896 | unsigned int imm; | |
1897 | ev_reg = GET_SRC_REG (op); | |
1898 | imm = (op >> 11) & 0x1f; | |
1899 | ev_offset = imm * 8; | |
1900 | /* If this is the first vector reg to be saved, or if | |
1901 | it has a lower number than others previously seen, | |
1902 | reupdate the frame info. */ | |
1903 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1904 | { | |
1905 | fdata->saved_ev = ev_reg; | |
1906 | fdata->ev_offset = ev_offset + offset; | |
1907 | } | |
1908 | } | |
1909 | continue; | |
1910 | } | |
1911 | /* Store gen register rS at (r1+rB). */ | |
1912 | /* 000100 sssss 00001 bbbbb 01100100000 */ | |
1913 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1914 | && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */ | |
1915 | { | |
1916 | if (pc == (li_found_pc + 4)) | |
1917 | { | |
1918 | ev_reg = GET_SRC_REG (op); | |
1919 | /* If this is the first vector reg to be saved, or if | |
1920 | it has a lower number than others previously seen, | |
1921 | reupdate the frame info. */ | |
1922 | /* We know the contents of rB from the previous instruction. */ | |
1923 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1924 | { | |
1925 | fdata->saved_ev = ev_reg; | |
1926 | fdata->ev_offset = vr_saved_offset + offset; | |
1927 | } | |
1928 | vr_saved_offset = -1; | |
1929 | ev_reg = -1; | |
1930 | li_found_pc = 0; | |
1931 | } | |
1932 | continue; | |
1933 | } | |
1934 | /* Store gen register r31 at (rA+uimm). */ | |
1935 | /* 000100 11111 aaaaa iiiii 01100100001 */ | |
1936 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1937 | && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */ | |
1938 | { | |
1939 | /* Wwe know that the source register is 31 already, but | |
1940 | it can't hurt to compute it. */ | |
1941 | ev_reg = GET_SRC_REG (op); | |
1942 | ev_offset = ((op >> 11) & 0x1f) * 8; | |
1943 | /* If this is the first vector reg to be saved, or if | |
1944 | it has a lower number than others previously seen, | |
1945 | reupdate the frame info. */ | |
1946 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1947 | { | |
1948 | fdata->saved_ev = ev_reg; | |
1949 | fdata->ev_offset = ev_offset + offset; | |
1950 | } | |
1951 | ||
1952 | continue; | |
1953 | } | |
1954 | /* Store gen register S at (r31+r0). | |
1955 | Store param on stack when offset from SP bigger than 4 bytes. */ | |
1956 | /* 000100 sssss 11111 00000 01100100000 */ | |
1957 | else if (arch_info->mach == bfd_mach_ppc_e500 | |
1958 | && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */ | |
1959 | { | |
1960 | if (pc == (li_found_pc + 4)) | |
1961 | { | |
1962 | if ((op & 0x03e00000) >= 0x01a00000) | |
1963 | { | |
1964 | ev_reg = GET_SRC_REG (op); | |
1965 | /* If this is the first vector reg to be saved, or if | |
1966 | it has a lower number than others previously seen, | |
1967 | reupdate the frame info. */ | |
1968 | /* We know the contents of r0 from the previous | |
1969 | instruction. */ | |
1970 | if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg) | |
1971 | { | |
1972 | fdata->saved_ev = ev_reg; | |
1973 | fdata->ev_offset = vr_saved_offset + offset; | |
1974 | } | |
1975 | ev_reg = -1; | |
1976 | } | |
1977 | vr_saved_offset = -1; | |
1978 | li_found_pc = 0; | |
1979 | continue; | |
1980 | } | |
1981 | } | |
1982 | /* End BookE related instructions. */ | |
1983 | ||
c5aa993b JM |
1984 | else |
1985 | { | |
55d05f3b KB |
1986 | /* Not a recognized prologue instruction. |
1987 | Handle optimizer code motions into the prologue by continuing | |
1988 | the search if we have no valid frame yet or if the return | |
46a9b8ed DJ |
1989 | address is not yet saved in the frame. Also skip instructions |
1990 | if some of the GPRs expected to be saved are not yet saved. */ | |
1991 | if (fdata->frameless == 0 && fdata->nosavedpc == 0 | |
1cc62f2e JB |
1992 | && fdata->saved_gpr != -1) |
1993 | { | |
1994 | unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1); | |
1995 | ||
1996 | if ((fdata->gpr_mask & all_mask) == all_mask) | |
1997 | break; | |
1998 | } | |
55d05f3b KB |
1999 | |
2000 | if (op == 0x4e800020 /* blr */ | |
2001 | || op == 0x4e800420) /* bctr */ | |
2002 | /* Do not scan past epilogue in frameless functions or | |
2003 | trampolines. */ | |
2004 | break; | |
2005 | if ((op & 0xf4000000) == 0x40000000) /* bxx */ | |
64366f1c | 2006 | /* Never skip branches. */ |
55d05f3b KB |
2007 | break; |
2008 | ||
2009 | if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns) | |
2010 | /* Do not scan too many insns, scanning insns is expensive with | |
2011 | remote targets. */ | |
2012 | break; | |
2013 | ||
2014 | /* Continue scanning. */ | |
2015 | prev_insn_was_prologue_insn = 0; | |
2016 | continue; | |
c5aa993b | 2017 | } |
c906108c SS |
2018 | } |
2019 | ||
2020 | #if 0 | |
2021 | /* I have problems with skipping over __main() that I need to address | |
0df8b418 | 2022 | * sometime. Previously, I used to use misc_function_vector which |
c906108c SS |
2023 | * didn't work as well as I wanted to be. -MGO */ |
2024 | ||
2025 | /* If the first thing after skipping a prolog is a branch to a function, | |
2026 | this might be a call to an initializer in main(), introduced by gcc2. | |
64366f1c | 2027 | We'd like to skip over it as well. Fortunately, xlc does some extra |
c906108c | 2028 | work before calling a function right after a prologue, thus we can |
64366f1c | 2029 | single out such gcc2 behaviour. */ |
c906108c | 2030 | |
c906108c | 2031 | |
c5aa993b | 2032 | if ((op & 0xfc000001) == 0x48000001) |
0df8b418 | 2033 | { /* bl foo, an initializer function? */ |
e17a4113 | 2034 | op = read_memory_integer (pc + 4, 4, byte_order); |
c5aa993b JM |
2035 | |
2036 | if (op == 0x4def7b82) | |
2037 | { /* cror 0xf, 0xf, 0xf (nop) */ | |
c906108c | 2038 | |
64366f1c EZ |
2039 | /* Check and see if we are in main. If so, skip over this |
2040 | initializer function as well. */ | |
c906108c | 2041 | |
c5aa993b | 2042 | tmp = find_pc_misc_function (pc); |
6314a349 AC |
2043 | if (tmp >= 0 |
2044 | && strcmp (misc_function_vector[tmp].name, main_name ()) == 0) | |
c5aa993b JM |
2045 | return pc + 8; |
2046 | } | |
c906108c | 2047 | } |
c906108c | 2048 | #endif /* 0 */ |
c5aa993b | 2049 | |
46a9b8ed | 2050 | if (pc == lim_pc && lr_reg >= 0) |
dd6d677f | 2051 | fdata->lr_register = lr_reg; |
46a9b8ed | 2052 | |
c5aa993b | 2053 | fdata->offset = -fdata->offset; |
ddb20c56 | 2054 | return last_prologue_pc; |
c906108c SS |
2055 | } |
2056 | ||
7a78ae4e | 2057 | static CORE_ADDR |
4a7622d1 | 2058 | rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
c906108c | 2059 | { |
4a7622d1 | 2060 | struct rs6000_framedata frame; |
e3acb115 | 2061 | CORE_ADDR limit_pc, func_addr, func_end_addr = 0; |
c906108c | 2062 | |
4a7622d1 UW |
2063 | /* See if we can determine the end of the prologue via the symbol table. |
2064 | If so, then return either PC, or the PC after the prologue, whichever | |
2065 | is greater. */ | |
e3acb115 | 2066 | if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr)) |
c5aa993b | 2067 | { |
d80b854b UW |
2068 | CORE_ADDR post_prologue_pc |
2069 | = skip_prologue_using_sal (gdbarch, func_addr); | |
4a7622d1 | 2070 | if (post_prologue_pc != 0) |
325fac50 | 2071 | return std::max (pc, post_prologue_pc); |
c906108c | 2072 | } |
c906108c | 2073 | |
4a7622d1 UW |
2074 | /* Can't determine prologue from the symbol table, need to examine |
2075 | instructions. */ | |
c906108c | 2076 | |
4a7622d1 UW |
2077 | /* Find an upper limit on the function prologue using the debug |
2078 | information. If the debug information could not be used to provide | |
2079 | that bound, then use an arbitrary large number as the upper bound. */ | |
d80b854b | 2080 | limit_pc = skip_prologue_using_sal (gdbarch, pc); |
4a7622d1 UW |
2081 | if (limit_pc == 0) |
2082 | limit_pc = pc + 100; /* Magic. */ | |
794a477a | 2083 | |
e3acb115 JB |
2084 | /* Do not allow limit_pc to be past the function end, if we know |
2085 | where that end is... */ | |
2086 | if (func_end_addr && limit_pc > func_end_addr) | |
2087 | limit_pc = func_end_addr; | |
2088 | ||
4a7622d1 UW |
2089 | pc = skip_prologue (gdbarch, pc, limit_pc, &frame); |
2090 | return pc; | |
c906108c | 2091 | } |
c906108c | 2092 | |
8ab3d180 KB |
2093 | /* When compiling for EABI, some versions of GCC emit a call to __eabi |
2094 | in the prologue of main(). | |
2095 | ||
2096 | The function below examines the code pointed at by PC and checks to | |
2097 | see if it corresponds to a call to __eabi. If so, it returns the | |
2098 | address of the instruction following that call. Otherwise, it simply | |
2099 | returns PC. */ | |
2100 | ||
63807e1d | 2101 | static CORE_ADDR |
8ab3d180 KB |
2102 | rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) |
2103 | { | |
e17a4113 | 2104 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
8ab3d180 KB |
2105 | gdb_byte buf[4]; |
2106 | unsigned long op; | |
2107 | ||
2108 | if (target_read_memory (pc, buf, 4)) | |
2109 | return pc; | |
e17a4113 | 2110 | op = extract_unsigned_integer (buf, 4, byte_order); |
8ab3d180 KB |
2111 | |
2112 | if ((op & BL_MASK) == BL_INSTRUCTION) | |
2113 | { | |
2114 | CORE_ADDR displ = op & BL_DISPLACEMENT_MASK; | |
2115 | CORE_ADDR call_dest = pc + 4 + displ; | |
7cbd4a93 | 2116 | struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest); |
8ab3d180 KB |
2117 | |
2118 | /* We check for ___eabi (three leading underscores) in addition | |
2119 | to __eabi in case the GCC option "-fleading-underscore" was | |
2120 | used to compile the program. */ | |
7cbd4a93 | 2121 | if (s.minsym != NULL |
c9d95fa3 CB |
2122 | && s.minsym->linkage_name () != NULL |
2123 | && (strcmp (s.minsym->linkage_name (), "__eabi") == 0 | |
2124 | || strcmp (s.minsym->linkage_name (), "___eabi") == 0)) | |
8ab3d180 KB |
2125 | pc += 4; |
2126 | } | |
2127 | return pc; | |
2128 | } | |
383f0f5b | 2129 | |
4a7622d1 UW |
2130 | /* All the ABI's require 16 byte alignment. */ |
2131 | static CORE_ADDR | |
2132 | rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2133 | { | |
2134 | return (addr & -16); | |
c906108c SS |
2135 | } |
2136 | ||
977adac5 ND |
2137 | /* Return whether handle_inferior_event() should proceed through code |
2138 | starting at PC in function NAME when stepping. | |
2139 | ||
2140 | The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to | |
2141 | handle memory references that are too distant to fit in instructions | |
2142 | generated by the compiler. For example, if 'foo' in the following | |
2143 | instruction: | |
2144 | ||
2145 | lwz r9,foo(r2) | |
2146 | ||
2147 | is greater than 32767, the linker might replace the lwz with a branch to | |
2148 | somewhere in @FIX1 that does the load in 2 instructions and then branches | |
2149 | back to where execution should continue. | |
2150 | ||
2151 | GDB should silently step over @FIX code, just like AIX dbx does. | |
2ec664f5 MS |
2152 | Unfortunately, the linker uses the "b" instruction for the |
2153 | branches, meaning that the link register doesn't get set. | |
2154 | Therefore, GDB's usual step_over_function () mechanism won't work. | |
977adac5 | 2155 | |
e76f05fa UW |
2156 | Instead, use the gdbarch_skip_trampoline_code and |
2157 | gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past | |
2ec664f5 | 2158 | @FIX code. */ |
977adac5 | 2159 | |
63807e1d | 2160 | static int |
e17a4113 | 2161 | rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch, |
2c02bd72 | 2162 | CORE_ADDR pc, const char *name) |
977adac5 | 2163 | { |
61012eef | 2164 | return name && startswith (name, "@FIX"); |
977adac5 ND |
2165 | } |
2166 | ||
2167 | /* Skip code that the user doesn't want to see when stepping: | |
2168 | ||
2169 | 1. Indirect function calls use a piece of trampoline code to do context | |
2170 | switching, i.e. to set the new TOC table. Skip such code if we are on | |
2171 | its first instruction (as when we have single-stepped to here). | |
2172 | ||
2173 | 2. Skip shared library trampoline code (which is different from | |
c906108c | 2174 | indirect function call trampolines). |
977adac5 ND |
2175 | |
2176 | 3. Skip bigtoc fixup code. | |
2177 | ||
c906108c | 2178 | Result is desired PC to step until, or NULL if we are not in |
977adac5 | 2179 | code that should be skipped. */ |
c906108c | 2180 | |
63807e1d | 2181 | static CORE_ADDR |
52f729a7 | 2182 | rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc) |
c906108c | 2183 | { |
e17a4113 UW |
2184 | struct gdbarch *gdbarch = get_frame_arch (frame); |
2185 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2186 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
52f0bd74 | 2187 | unsigned int ii, op; |
977adac5 | 2188 | int rel; |
c906108c | 2189 | CORE_ADDR solib_target_pc; |
7cbd4a93 | 2190 | struct bound_minimal_symbol msymbol; |
c906108c | 2191 | |
c5aa993b JM |
2192 | static unsigned trampoline_code[] = |
2193 | { | |
2194 | 0x800b0000, /* l r0,0x0(r11) */ | |
2195 | 0x90410014, /* st r2,0x14(r1) */ | |
2196 | 0x7c0903a6, /* mtctr r0 */ | |
2197 | 0x804b0004, /* l r2,0x4(r11) */ | |
2198 | 0x816b0008, /* l r11,0x8(r11) */ | |
2199 | 0x4e800420, /* bctr */ | |
2200 | 0x4e800020, /* br */ | |
2201 | 0 | |
c906108c SS |
2202 | }; |
2203 | ||
977adac5 ND |
2204 | /* Check for bigtoc fixup code. */ |
2205 | msymbol = lookup_minimal_symbol_by_pc (pc); | |
7cbd4a93 | 2206 | if (msymbol.minsym |
e17a4113 | 2207 | && rs6000_in_solib_return_trampoline (gdbarch, pc, |
c9d95fa3 | 2208 | msymbol.minsym->linkage_name ())) |
977adac5 ND |
2209 | { |
2210 | /* Double-check that the third instruction from PC is relative "b". */ | |
e17a4113 | 2211 | op = read_memory_integer (pc + 8, 4, byte_order); |
977adac5 ND |
2212 | if ((op & 0xfc000003) == 0x48000000) |
2213 | { | |
2214 | /* Extract bits 6-29 as a signed 24-bit relative word address and | |
2215 | add it to the containing PC. */ | |
2216 | rel = ((int)(op << 6) >> 6); | |
2217 | return pc + 8 + rel; | |
2218 | } | |
2219 | } | |
2220 | ||
c906108c | 2221 | /* If pc is in a shared library trampoline, return its target. */ |
52f729a7 | 2222 | solib_target_pc = find_solib_trampoline_target (frame, pc); |
c906108c SS |
2223 | if (solib_target_pc) |
2224 | return solib_target_pc; | |
2225 | ||
c5aa993b JM |
2226 | for (ii = 0; trampoline_code[ii]; ++ii) |
2227 | { | |
e17a4113 | 2228 | op = read_memory_integer (pc + (ii * 4), 4, byte_order); |
c5aa993b JM |
2229 | if (op != trampoline_code[ii]) |
2230 | return 0; | |
2231 | } | |
0df8b418 MS |
2232 | ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination |
2233 | addr. */ | |
e17a4113 | 2234 | pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order); |
c906108c SS |
2235 | return pc; |
2236 | } | |
2237 | ||
794ac428 UW |
2238 | /* ISA-specific vector types. */ |
2239 | ||
2240 | static struct type * | |
2241 | rs6000_builtin_type_vec64 (struct gdbarch *gdbarch) | |
2242 | { | |
2243 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2244 | ||
2245 | if (!tdep->ppc_builtin_type_vec64) | |
2246 | { | |
df4df182 UW |
2247 | const struct builtin_type *bt = builtin_type (gdbarch); |
2248 | ||
794ac428 UW |
2249 | /* The type we're building is this: */ |
2250 | #if 0 | |
2251 | union __gdb_builtin_type_vec64 | |
2252 | { | |
2253 | int64_t uint64; | |
2254 | float v2_float[2]; | |
2255 | int32_t v2_int32[2]; | |
2256 | int16_t v4_int16[4]; | |
2257 | int8_t v8_int8[8]; | |
2258 | }; | |
2259 | #endif | |
2260 | ||
2261 | struct type *t; | |
2262 | ||
e9bb382b UW |
2263 | t = arch_composite_type (gdbarch, |
2264 | "__ppc_builtin_type_vec64", TYPE_CODE_UNION); | |
df4df182 | 2265 | append_composite_type_field (t, "uint64", bt->builtin_int64); |
794ac428 | 2266 | append_composite_type_field (t, "v2_float", |
df4df182 | 2267 | init_vector_type (bt->builtin_float, 2)); |
794ac428 | 2268 | append_composite_type_field (t, "v2_int32", |
df4df182 | 2269 | init_vector_type (bt->builtin_int32, 2)); |
794ac428 | 2270 | append_composite_type_field (t, "v4_int16", |
df4df182 | 2271 | init_vector_type (bt->builtin_int16, 4)); |
794ac428 | 2272 | append_composite_type_field (t, "v8_int8", |
df4df182 | 2273 | init_vector_type (bt->builtin_int8, 8)); |
794ac428 | 2274 | |
876cecd0 | 2275 | TYPE_VECTOR (t) = 1; |
794ac428 UW |
2276 | TYPE_NAME (t) = "ppc_builtin_type_vec64"; |
2277 | tdep->ppc_builtin_type_vec64 = t; | |
2278 | } | |
2279 | ||
2280 | return tdep->ppc_builtin_type_vec64; | |
2281 | } | |
2282 | ||
604c2f83 LM |
2283 | /* Vector 128 type. */ |
2284 | ||
2285 | static struct type * | |
2286 | rs6000_builtin_type_vec128 (struct gdbarch *gdbarch) | |
2287 | { | |
2288 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2289 | ||
2290 | if (!tdep->ppc_builtin_type_vec128) | |
2291 | { | |
df4df182 UW |
2292 | const struct builtin_type *bt = builtin_type (gdbarch); |
2293 | ||
604c2f83 LM |
2294 | /* The type we're building is this |
2295 | ||
2296 | type = union __ppc_builtin_type_vec128 { | |
2297 | uint128_t uint128; | |
db9f5df8 | 2298 | double v2_double[2]; |
604c2f83 LM |
2299 | float v4_float[4]; |
2300 | int32_t v4_int32[4]; | |
2301 | int16_t v8_int16[8]; | |
2302 | int8_t v16_int8[16]; | |
2303 | } | |
2304 | */ | |
2305 | ||
2306 | struct type *t; | |
2307 | ||
e9bb382b UW |
2308 | t = arch_composite_type (gdbarch, |
2309 | "__ppc_builtin_type_vec128", TYPE_CODE_UNION); | |
df4df182 | 2310 | append_composite_type_field (t, "uint128", bt->builtin_uint128); |
db9f5df8 UW |
2311 | append_composite_type_field (t, "v2_double", |
2312 | init_vector_type (bt->builtin_double, 2)); | |
604c2f83 | 2313 | append_composite_type_field (t, "v4_float", |
df4df182 | 2314 | init_vector_type (bt->builtin_float, 4)); |
604c2f83 | 2315 | append_composite_type_field (t, "v4_int32", |
df4df182 | 2316 | init_vector_type (bt->builtin_int32, 4)); |
604c2f83 | 2317 | append_composite_type_field (t, "v8_int16", |
df4df182 | 2318 | init_vector_type (bt->builtin_int16, 8)); |
604c2f83 | 2319 | append_composite_type_field (t, "v16_int8", |
df4df182 | 2320 | init_vector_type (bt->builtin_int8, 16)); |
604c2f83 | 2321 | |
803e1097 | 2322 | TYPE_VECTOR (t) = 1; |
604c2f83 LM |
2323 | TYPE_NAME (t) = "ppc_builtin_type_vec128"; |
2324 | tdep->ppc_builtin_type_vec128 = t; | |
2325 | } | |
2326 | ||
2327 | return tdep->ppc_builtin_type_vec128; | |
2328 | } | |
2329 | ||
7cc46491 DJ |
2330 | /* Return the name of register number REGNO, or the empty string if it |
2331 | is an anonymous register. */ | |
7a78ae4e | 2332 | |
fa88f677 | 2333 | static const char * |
d93859e2 | 2334 | rs6000_register_name (struct gdbarch *gdbarch, int regno) |
7a78ae4e | 2335 | { |
d93859e2 | 2336 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2337 | |
7cc46491 DJ |
2338 | /* The upper half "registers" have names in the XML description, |
2339 | but we present only the low GPRs and the full 64-bit registers | |
2340 | to the user. */ | |
2341 | if (tdep->ppc_ev0_upper_regnum >= 0 | |
2342 | && tdep->ppc_ev0_upper_regnum <= regno | |
2343 | && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs) | |
2344 | return ""; | |
2345 | ||
604c2f83 LM |
2346 | /* Hide the upper halves of the vs0~vs31 registers. */ |
2347 | if (tdep->ppc_vsr0_regnum >= 0 | |
2348 | && tdep->ppc_vsr0_upper_regnum <= regno | |
2349 | && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs) | |
2350 | return ""; | |
2351 | ||
8d619c01 EBM |
2352 | /* Hide the upper halves of the cvs0~cvs31 registers. */ |
2353 | if (PPC_CVSR0_UPPER_REGNUM <= regno | |
2354 | && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs) | |
2355 | return ""; | |
2356 | ||
7cc46491 | 2357 | /* Check if the SPE pseudo registers are available. */ |
5a9e69ba | 2358 | if (IS_SPE_PSEUDOREG (tdep, regno)) |
7cc46491 DJ |
2359 | { |
2360 | static const char *const spe_regnames[] = { | |
2361 | "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7", | |
2362 | "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15", | |
2363 | "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23", | |
2364 | "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31", | |
2365 | }; | |
2366 | return spe_regnames[regno - tdep->ppc_ev0_regnum]; | |
2367 | } | |
2368 | ||
f949c649 TJB |
2369 | /* Check if the decimal128 pseudo-registers are available. */ |
2370 | if (IS_DFP_PSEUDOREG (tdep, regno)) | |
2371 | { | |
2372 | static const char *const dfp128_regnames[] = { | |
2373 | "dl0", "dl1", "dl2", "dl3", | |
2374 | "dl4", "dl5", "dl6", "dl7", | |
2375 | "dl8", "dl9", "dl10", "dl11", | |
2376 | "dl12", "dl13", "dl14", "dl15" | |
2377 | }; | |
2378 | return dfp128_regnames[regno - tdep->ppc_dl0_regnum]; | |
2379 | } | |
2380 | ||
6f072a10 PFC |
2381 | /* Check if this is a vX alias for a raw vrX vector register. */ |
2382 | if (IS_V_ALIAS_PSEUDOREG (tdep, regno)) | |
2383 | { | |
2384 | static const char *const vector_alias_regnames[] = { | |
2385 | "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", | |
2386 | "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15", | |
2387 | "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23", | |
2388 | "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31" | |
2389 | }; | |
2390 | return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum]; | |
2391 | } | |
2392 | ||
604c2f83 LM |
2393 | /* Check if this is a VSX pseudo-register. */ |
2394 | if (IS_VSX_PSEUDOREG (tdep, regno)) | |
2395 | { | |
2396 | static const char *const vsx_regnames[] = { | |
2397 | "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7", | |
2398 | "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14", | |
2399 | "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21", | |
2400 | "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28", | |
2401 | "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35", | |
2402 | "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42", | |
2403 | "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49", | |
2404 | "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56", | |
2405 | "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63" | |
2406 | }; | |
2407 | return vsx_regnames[regno - tdep->ppc_vsr0_regnum]; | |
2408 | } | |
2409 | ||
2410 | /* Check if the this is a Extended FP pseudo-register. */ | |
2411 | if (IS_EFP_PSEUDOREG (tdep, regno)) | |
2412 | { | |
2413 | static const char *const efpr_regnames[] = { | |
2414 | "f32", "f33", "f34", "f35", "f36", "f37", "f38", | |
2415 | "f39", "f40", "f41", "f42", "f43", "f44", "f45", | |
2416 | "f46", "f47", "f48", "f49", "f50", "f51", | |
2417 | "f52", "f53", "f54", "f55", "f56", "f57", | |
2418 | "f58", "f59", "f60", "f61", "f62", "f63" | |
2419 | }; | |
2420 | return efpr_regnames[regno - tdep->ppc_efpr0_regnum]; | |
2421 | } | |
2422 | ||
8d619c01 EBM |
2423 | /* Check if this is a Checkpointed DFP pseudo-register. */ |
2424 | if (IS_CDFP_PSEUDOREG (tdep, regno)) | |
2425 | { | |
2426 | static const char *const cdfp128_regnames[] = { | |
2427 | "cdl0", "cdl1", "cdl2", "cdl3", | |
2428 | "cdl4", "cdl5", "cdl6", "cdl7", | |
2429 | "cdl8", "cdl9", "cdl10", "cdl11", | |
2430 | "cdl12", "cdl13", "cdl14", "cdl15" | |
2431 | }; | |
2432 | return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum]; | |
2433 | } | |
2434 | ||
2435 | /* Check if this is a Checkpointed VSX pseudo-register. */ | |
2436 | if (IS_CVSX_PSEUDOREG (tdep, regno)) | |
2437 | { | |
2438 | static const char *const cvsx_regnames[] = { | |
2439 | "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7", | |
2440 | "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14", | |
2441 | "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21", | |
2442 | "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28", | |
2443 | "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35", | |
2444 | "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42", | |
2445 | "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49", | |
2446 | "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56", | |
2447 | "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63" | |
2448 | }; | |
2449 | return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum]; | |
2450 | } | |
2451 | ||
2452 | /* Check if the this is a Checkpointed Extended FP pseudo-register. */ | |
2453 | if (IS_CEFP_PSEUDOREG (tdep, regno)) | |
2454 | { | |
2455 | static const char *const cefpr_regnames[] = { | |
2456 | "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38", | |
2457 | "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45", | |
2458 | "cf46", "cf47", "cf48", "cf49", "cf50", "cf51", | |
2459 | "cf52", "cf53", "cf54", "cf55", "cf56", "cf57", | |
2460 | "cf58", "cf59", "cf60", "cf61", "cf62", "cf63" | |
2461 | }; | |
2462 | return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum]; | |
2463 | } | |
2464 | ||
d93859e2 | 2465 | return tdesc_register_name (gdbarch, regno); |
7a78ae4e ND |
2466 | } |
2467 | ||
7cc46491 DJ |
2468 | /* Return the GDB type object for the "standard" data type of data in |
2469 | register N. */ | |
7a78ae4e ND |
2470 | |
2471 | static struct type * | |
7cc46491 | 2472 | rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum) |
7a78ae4e | 2473 | { |
691d145a | 2474 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7a78ae4e | 2475 | |
f949c649 TJB |
2476 | /* These are the e500 pseudo-registers. */ |
2477 | if (IS_SPE_PSEUDOREG (tdep, regnum)) | |
2478 | return rs6000_builtin_type_vec64 (gdbarch); | |
8d619c01 EBM |
2479 | else if (IS_DFP_PSEUDOREG (tdep, regnum) |
2480 | || IS_CDFP_PSEUDOREG (tdep, regnum)) | |
604c2f83 | 2481 | /* PPC decimal128 pseudo-registers. */ |
f949c649 | 2482 | return builtin_type (gdbarch)->builtin_declong; |
6f072a10 PFC |
2483 | else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum)) |
2484 | return gdbarch_register_type (gdbarch, | |
2485 | tdep->ppc_vr0_regnum | |
2486 | + (regnum | |
2487 | - tdep->ppc_v0_alias_regnum)); | |
8d619c01 EBM |
2488 | else if (IS_VSX_PSEUDOREG (tdep, regnum) |
2489 | || IS_CVSX_PSEUDOREG (tdep, regnum)) | |
604c2f83 LM |
2490 | /* POWER7 VSX pseudo-registers. */ |
2491 | return rs6000_builtin_type_vec128 (gdbarch); | |
8d619c01 EBM |
2492 | else if (IS_EFP_PSEUDOREG (tdep, regnum) |
2493 | || IS_CEFP_PSEUDOREG (tdep, regnum)) | |
604c2f83 LM |
2494 | /* POWER7 Extended FP pseudo-registers. */ |
2495 | return builtin_type (gdbarch)->builtin_double; | |
8d619c01 EBM |
2496 | else |
2497 | internal_error (__FILE__, __LINE__, | |
2498 | _("rs6000_pseudo_register_type: " | |
2499 | "called on unexpected register '%s' (%d)"), | |
2500 | gdbarch_register_name (gdbarch, regnum), regnum); | |
7a78ae4e ND |
2501 | } |
2502 | ||
6f072a10 PFC |
2503 | /* Check if REGNUM is a member of REGGROUP. We only need to handle |
2504 | the vX aliases for the vector registers by always returning false | |
2505 | to avoid duplicated information in "info register vector/all", | |
2506 | since the raw vrX registers will already show in these cases. For | |
2507 | other pseudo-registers we use the default membership function. */ | |
2508 | ||
2509 | static int | |
2510 | rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum, | |
2511 | struct reggroup *group) | |
2512 | { | |
2513 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2514 | ||
2515 | if (IS_V_ALIAS_PSEUDOREG (tdep, regnum)) | |
2516 | return 0; | |
2517 | else | |
2518 | return default_register_reggroup_p (gdbarch, regnum, group); | |
2519 | } | |
2520 | ||
691d145a | 2521 | /* The register format for RS/6000 floating point registers is always |
64366f1c | 2522 | double, we need a conversion if the memory format is float. */ |
7a78ae4e ND |
2523 | |
2524 | static int | |
0abe36f5 MD |
2525 | rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum, |
2526 | struct type *type) | |
7a78ae4e | 2527 | { |
0abe36f5 | 2528 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7cc46491 DJ |
2529 | |
2530 | return (tdep->ppc_fp0_regnum >= 0 | |
2531 | && regnum >= tdep->ppc_fp0_regnum | |
2532 | && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs | |
2533 | && TYPE_CODE (type) == TYPE_CODE_FLT | |
0dfff4cb UW |
2534 | && TYPE_LENGTH (type) |
2535 | != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double)); | |
7a78ae4e ND |
2536 | } |
2537 | ||
8dccd430 | 2538 | static int |
691d145a JB |
2539 | rs6000_register_to_value (struct frame_info *frame, |
2540 | int regnum, | |
2541 | struct type *type, | |
8dccd430 PA |
2542 | gdb_byte *to, |
2543 | int *optimizedp, int *unavailablep) | |
7a78ae4e | 2544 | { |
0dfff4cb | 2545 | struct gdbarch *gdbarch = get_frame_arch (frame); |
0f068fb5 | 2546 | gdb_byte from[PPC_MAX_REGISTER_SIZE]; |
691d145a | 2547 | |
691d145a | 2548 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
7a78ae4e | 2549 | |
8dccd430 PA |
2550 | if (!get_frame_register_bytes (frame, regnum, 0, |
2551 | register_size (gdbarch, regnum), | |
2552 | from, optimizedp, unavailablep)) | |
2553 | return 0; | |
2554 | ||
3b2ca824 UW |
2555 | target_float_convert (from, builtin_type (gdbarch)->builtin_double, |
2556 | to, type); | |
8dccd430 PA |
2557 | *optimizedp = *unavailablep = 0; |
2558 | return 1; | |
691d145a | 2559 | } |
7a292a7a | 2560 | |
7a78ae4e | 2561 | static void |
691d145a JB |
2562 | rs6000_value_to_register (struct frame_info *frame, |
2563 | int regnum, | |
2564 | struct type *type, | |
50fd1280 | 2565 | const gdb_byte *from) |
7a78ae4e | 2566 | { |
0dfff4cb | 2567 | struct gdbarch *gdbarch = get_frame_arch (frame); |
0f068fb5 | 2568 | gdb_byte to[PPC_MAX_REGISTER_SIZE]; |
691d145a | 2569 | |
691d145a JB |
2570 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT); |
2571 | ||
3b2ca824 UW |
2572 | target_float_convert (from, type, |
2573 | to, builtin_type (gdbarch)->builtin_double); | |
691d145a | 2574 | put_frame_register (frame, regnum, to); |
7a78ae4e | 2575 | } |
c906108c | 2576 | |
05d1431c PA |
2577 | /* The type of a function that moves the value of REG between CACHE |
2578 | or BUF --- in either direction. */ | |
2579 | typedef enum register_status (*move_ev_register_func) (struct regcache *, | |
2580 | int, void *); | |
2581 | ||
6ced10dd JB |
2582 | /* Move SPE vector register values between a 64-bit buffer and the two |
2583 | 32-bit raw register halves in a regcache. This function handles | |
2584 | both splitting a 64-bit value into two 32-bit halves, and joining | |
2585 | two halves into a whole 64-bit value, depending on the function | |
2586 | passed as the MOVE argument. | |
2587 | ||
2588 | EV_REG must be the number of an SPE evN vector register --- a | |
2589 | pseudoregister. REGCACHE must be a regcache, and BUFFER must be a | |
2590 | 64-bit buffer. | |
2591 | ||
2592 | Call MOVE once for each 32-bit half of that register, passing | |
2593 | REGCACHE, the number of the raw register corresponding to that | |
2594 | half, and the address of the appropriate half of BUFFER. | |
2595 | ||
2596 | For example, passing 'regcache_raw_read' as the MOVE function will | |
2597 | fill BUFFER with the full 64-bit contents of EV_REG. Or, passing | |
2598 | 'regcache_raw_supply' will supply the contents of BUFFER to the | |
2599 | appropriate pair of raw registers in REGCACHE. | |
2600 | ||
2601 | You may need to cast away some 'const' qualifiers when passing | |
2602 | MOVE, since this function can't tell at compile-time which of | |
2603 | REGCACHE or BUFFER is acting as the source of the data. If C had | |
2604 | co-variant type qualifiers, ... */ | |
05d1431c PA |
2605 | |
2606 | static enum register_status | |
2607 | e500_move_ev_register (move_ev_register_func move, | |
2608 | struct regcache *regcache, int ev_reg, void *buffer) | |
6ced10dd | 2609 | { |
ac7936df | 2610 | struct gdbarch *arch = regcache->arch (); |
6ced10dd JB |
2611 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); |
2612 | int reg_index; | |
19ba03f4 | 2613 | gdb_byte *byte_buffer = (gdb_byte *) buffer; |
05d1431c | 2614 | enum register_status status; |
6ced10dd | 2615 | |
5a9e69ba | 2616 | gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg)); |
6ced10dd JB |
2617 | |
2618 | reg_index = ev_reg - tdep->ppc_ev0_regnum; | |
2619 | ||
8b164abb | 2620 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) |
6ced10dd | 2621 | { |
05d1431c PA |
2622 | status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, |
2623 | byte_buffer); | |
2624 | if (status == REG_VALID) | |
2625 | status = move (regcache, tdep->ppc_gp0_regnum + reg_index, | |
2626 | byte_buffer + 4); | |
6ced10dd JB |
2627 | } |
2628 | else | |
2629 | { | |
05d1431c PA |
2630 | status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer); |
2631 | if (status == REG_VALID) | |
2632 | status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, | |
2633 | byte_buffer + 4); | |
6ced10dd | 2634 | } |
05d1431c PA |
2635 | |
2636 | return status; | |
6ced10dd JB |
2637 | } |
2638 | ||
05d1431c PA |
2639 | static enum register_status |
2640 | do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer) | |
2641 | { | |
10eaee5f | 2642 | regcache->raw_write (regnum, (const gdb_byte *) buffer); |
05d1431c PA |
2643 | |
2644 | return REG_VALID; | |
2645 | } | |
2646 | ||
2647 | static enum register_status | |
849d0ba8 YQ |
2648 | e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
2649 | int ev_reg, gdb_byte *buffer) | |
f949c649 | 2650 | { |
849d0ba8 YQ |
2651 | struct gdbarch *arch = regcache->arch (); |
2652 | struct gdbarch_tdep *tdep = gdbarch_tdep (arch); | |
2653 | int reg_index; | |
2654 | enum register_status status; | |
2655 | ||
2656 | gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg)); | |
2657 | ||
2658 | reg_index = ev_reg - tdep->ppc_ev0_regnum; | |
2659 | ||
2660 | if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG) | |
2661 | { | |
2662 | status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index, | |
2663 | buffer); | |
2664 | if (status == REG_VALID) | |
2665 | status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, | |
2666 | buffer + 4); | |
2667 | } | |
2668 | else | |
2669 | { | |
2670 | status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer); | |
2671 | if (status == REG_VALID) | |
2672 | status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index, | |
2673 | buffer + 4); | |
2674 | } | |
2675 | ||
2676 | return status; | |
2677 | ||
f949c649 TJB |
2678 | } |
2679 | ||
2680 | static void | |
2681 | e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2682 | int reg_nr, const gdb_byte *buffer) | |
2683 | { | |
05d1431c PA |
2684 | e500_move_ev_register (do_regcache_raw_write, regcache, |
2685 | reg_nr, (void *) buffer); | |
f949c649 TJB |
2686 | } |
2687 | ||
604c2f83 | 2688 | /* Read method for DFP pseudo-registers. */ |
05d1431c | 2689 | static enum register_status |
849d0ba8 | 2690 | dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
f949c649 TJB |
2691 | int reg_nr, gdb_byte *buffer) |
2692 | { | |
2693 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 | 2694 | int reg_index, fp0; |
05d1431c | 2695 | enum register_status status; |
f949c649 | 2696 | |
8d619c01 EBM |
2697 | if (IS_DFP_PSEUDOREG (tdep, reg_nr)) |
2698 | { | |
2699 | reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
2700 | fp0 = PPC_F0_REGNUM; | |
2701 | } | |
2702 | else | |
2703 | { | |
2704 | gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr)); | |
2705 | ||
2706 | reg_index = reg_nr - tdep->ppc_cdl0_regnum; | |
2707 | fp0 = PPC_CF0_REGNUM; | |
2708 | } | |
2709 | ||
f949c649 TJB |
2710 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) |
2711 | { | |
2712 | /* Read two FP registers to form a whole dl register. */ | |
8d619c01 | 2713 | status = regcache->raw_read (fp0 + 2 * reg_index, buffer); |
05d1431c | 2714 | if (status == REG_VALID) |
8d619c01 EBM |
2715 | status = regcache->raw_read (fp0 + 2 * reg_index + 1, |
2716 | buffer + 8); | |
f949c649 TJB |
2717 | } |
2718 | else | |
2719 | { | |
8d619c01 | 2720 | status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer); |
05d1431c | 2721 | if (status == REG_VALID) |
8d619c01 | 2722 | status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8); |
f949c649 | 2723 | } |
05d1431c PA |
2724 | |
2725 | return status; | |
f949c649 TJB |
2726 | } |
2727 | ||
604c2f83 | 2728 | /* Write method for DFP pseudo-registers. */ |
f949c649 | 2729 | static void |
604c2f83 | 2730 | dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
f949c649 TJB |
2731 | int reg_nr, const gdb_byte *buffer) |
2732 | { | |
2733 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 EBM |
2734 | int reg_index, fp0; |
2735 | ||
2736 | if (IS_DFP_PSEUDOREG (tdep, reg_nr)) | |
2737 | { | |
2738 | reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
2739 | fp0 = PPC_F0_REGNUM; | |
2740 | } | |
2741 | else | |
2742 | { | |
2743 | gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr)); | |
2744 | ||
2745 | reg_index = reg_nr - tdep->ppc_cdl0_regnum; | |
2746 | fp0 = PPC_CF0_REGNUM; | |
2747 | } | |
f949c649 TJB |
2748 | |
2749 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2750 | { | |
2751 | /* Write each half of the dl register into a separate | |
8d619c01 EBM |
2752 | FP register. */ |
2753 | regcache->raw_write (fp0 + 2 * reg_index, buffer); | |
2754 | regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8); | |
f949c649 TJB |
2755 | } |
2756 | else | |
2757 | { | |
8d619c01 EBM |
2758 | regcache->raw_write (fp0 + 2 * reg_index + 1, buffer); |
2759 | regcache->raw_write (fp0 + 2 * reg_index, buffer + 8); | |
f949c649 TJB |
2760 | } |
2761 | } | |
2762 | ||
6f072a10 PFC |
2763 | /* Read method for the vX aliases for the raw vrX registers. */ |
2764 | ||
2765 | static enum register_status | |
2766 | v_alias_pseudo_register_read (struct gdbarch *gdbarch, | |
2767 | readable_regcache *regcache, int reg_nr, | |
2768 | gdb_byte *buffer) | |
2769 | { | |
2770 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2771 | gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)); | |
2772 | ||
2773 | return regcache->raw_read (tdep->ppc_vr0_regnum | |
2774 | + (reg_nr - tdep->ppc_v0_alias_regnum), | |
2775 | buffer); | |
2776 | } | |
2777 | ||
2778 | /* Write method for the vX aliases for the raw vrX registers. */ | |
2779 | ||
2780 | static void | |
2781 | v_alias_pseudo_register_write (struct gdbarch *gdbarch, | |
2782 | struct regcache *regcache, | |
2783 | int reg_nr, const gdb_byte *buffer) | |
2784 | { | |
2785 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2786 | gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)); | |
2787 | ||
2788 | regcache->raw_write (tdep->ppc_vr0_regnum | |
2789 | + (reg_nr - tdep->ppc_v0_alias_regnum), buffer); | |
2790 | } | |
2791 | ||
604c2f83 | 2792 | /* Read method for POWER7 VSX pseudo-registers. */ |
05d1431c | 2793 | static enum register_status |
849d0ba8 | 2794 | vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
604c2f83 LM |
2795 | int reg_nr, gdb_byte *buffer) |
2796 | { | |
2797 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 | 2798 | int reg_index, vr0, fp0, vsr0_upper; |
05d1431c | 2799 | enum register_status status; |
604c2f83 | 2800 | |
8d619c01 EBM |
2801 | if (IS_VSX_PSEUDOREG (tdep, reg_nr)) |
2802 | { | |
2803 | reg_index = reg_nr - tdep->ppc_vsr0_regnum; | |
2804 | vr0 = PPC_VR0_REGNUM; | |
2805 | fp0 = PPC_F0_REGNUM; | |
2806 | vsr0_upper = PPC_VSR0_UPPER_REGNUM; | |
2807 | } | |
2808 | else | |
2809 | { | |
2810 | gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr)); | |
2811 | ||
2812 | reg_index = reg_nr - tdep->ppc_cvsr0_regnum; | |
2813 | vr0 = PPC_CVR0_REGNUM; | |
2814 | fp0 = PPC_CF0_REGNUM; | |
2815 | vsr0_upper = PPC_CVSR0_UPPER_REGNUM; | |
2816 | } | |
2817 | ||
604c2f83 LM |
2818 | /* Read the portion that overlaps the VMX registers. */ |
2819 | if (reg_index > 31) | |
8d619c01 | 2820 | status = regcache->raw_read (vr0 + reg_index - 32, buffer); |
604c2f83 LM |
2821 | else |
2822 | /* Read the portion that overlaps the FPR registers. */ | |
2823 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2824 | { | |
8d619c01 | 2825 | status = regcache->raw_read (fp0 + reg_index, buffer); |
05d1431c | 2826 | if (status == REG_VALID) |
8d619c01 EBM |
2827 | status = regcache->raw_read (vsr0_upper + reg_index, |
2828 | buffer + 8); | |
604c2f83 LM |
2829 | } |
2830 | else | |
2831 | { | |
8d619c01 | 2832 | status = regcache->raw_read (fp0 + reg_index, buffer + 8); |
05d1431c | 2833 | if (status == REG_VALID) |
8d619c01 | 2834 | status = regcache->raw_read (vsr0_upper + reg_index, buffer); |
604c2f83 | 2835 | } |
05d1431c PA |
2836 | |
2837 | return status; | |
604c2f83 LM |
2838 | } |
2839 | ||
2840 | /* Write method for POWER7 VSX pseudo-registers. */ | |
2841 | static void | |
2842 | vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2843 | int reg_nr, const gdb_byte *buffer) | |
2844 | { | |
2845 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 EBM |
2846 | int reg_index, vr0, fp0, vsr0_upper; |
2847 | ||
2848 | if (IS_VSX_PSEUDOREG (tdep, reg_nr)) | |
2849 | { | |
2850 | reg_index = reg_nr - tdep->ppc_vsr0_regnum; | |
2851 | vr0 = PPC_VR0_REGNUM; | |
2852 | fp0 = PPC_F0_REGNUM; | |
2853 | vsr0_upper = PPC_VSR0_UPPER_REGNUM; | |
2854 | } | |
2855 | else | |
2856 | { | |
2857 | gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr)); | |
2858 | ||
2859 | reg_index = reg_nr - tdep->ppc_cvsr0_regnum; | |
2860 | vr0 = PPC_CVR0_REGNUM; | |
2861 | fp0 = PPC_CF0_REGNUM; | |
2862 | vsr0_upper = PPC_CVSR0_UPPER_REGNUM; | |
2863 | } | |
604c2f83 LM |
2864 | |
2865 | /* Write the portion that overlaps the VMX registers. */ | |
2866 | if (reg_index > 31) | |
8d619c01 | 2867 | regcache->raw_write (vr0 + reg_index - 32, buffer); |
604c2f83 LM |
2868 | else |
2869 | /* Write the portion that overlaps the FPR registers. */ | |
2870 | if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) | |
2871 | { | |
8d619c01 EBM |
2872 | regcache->raw_write (fp0 + reg_index, buffer); |
2873 | regcache->raw_write (vsr0_upper + reg_index, buffer + 8); | |
604c2f83 LM |
2874 | } |
2875 | else | |
2876 | { | |
8d619c01 EBM |
2877 | regcache->raw_write (fp0 + reg_index, buffer + 8); |
2878 | regcache->raw_write (vsr0_upper + reg_index, buffer); | |
604c2f83 LM |
2879 | } |
2880 | } | |
2881 | ||
2882 | /* Read method for POWER7 Extended FP pseudo-registers. */ | |
05d1431c | 2883 | static enum register_status |
8d619c01 | 2884 | efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache, |
604c2f83 LM |
2885 | int reg_nr, gdb_byte *buffer) |
2886 | { | |
2887 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 EBM |
2888 | int reg_index, vr0; |
2889 | ||
2890 | if (IS_EFP_PSEUDOREG (tdep, reg_nr)) | |
2891 | { | |
2892 | reg_index = reg_nr - tdep->ppc_efpr0_regnum; | |
2893 | vr0 = PPC_VR0_REGNUM; | |
2894 | } | |
2895 | else | |
2896 | { | |
2897 | gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr)); | |
2898 | ||
2899 | reg_index = reg_nr - tdep->ppc_cefpr0_regnum; | |
2900 | vr0 = PPC_CVR0_REGNUM; | |
2901 | } | |
2902 | ||
084ee545 | 2903 | int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8; |
604c2f83 | 2904 | |
d9492458 | 2905 | /* Read the portion that overlaps the VMX register. */ |
8d619c01 EBM |
2906 | return regcache->raw_read_part (vr0 + reg_index, offset, |
2907 | register_size (gdbarch, reg_nr), | |
849d0ba8 | 2908 | buffer); |
604c2f83 LM |
2909 | } |
2910 | ||
2911 | /* Write method for POWER7 Extended FP pseudo-registers. */ | |
2912 | static void | |
8d619c01 | 2913 | efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, |
604c2f83 LM |
2914 | int reg_nr, const gdb_byte *buffer) |
2915 | { | |
2916 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
8d619c01 | 2917 | int reg_index, vr0; |
084ee545 | 2918 | int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8; |
604c2f83 | 2919 | |
8d619c01 EBM |
2920 | if (IS_EFP_PSEUDOREG (tdep, reg_nr)) |
2921 | { | |
2922 | reg_index = reg_nr - tdep->ppc_efpr0_regnum; | |
2923 | vr0 = PPC_VR0_REGNUM; | |
2924 | } | |
2925 | else | |
2926 | { | |
2927 | gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr)); | |
2928 | ||
2929 | reg_index = reg_nr - tdep->ppc_cefpr0_regnum; | |
2930 | vr0 = PPC_CVR0_REGNUM; | |
2931 | ||
2932 | /* The call to raw_write_part fails silently if the initial read | |
2933 | of the read-update-write sequence returns an invalid status, | |
2934 | so we check this manually and throw an error if needed. */ | |
2935 | regcache->raw_update (vr0 + reg_index); | |
2936 | if (regcache->get_register_status (vr0 + reg_index) != REG_VALID) | |
2937 | error (_("Cannot write to the checkpointed EFP register, " | |
2938 | "the corresponding vector register is unavailable.")); | |
2939 | } | |
2940 | ||
d9492458 | 2941 | /* Write the portion that overlaps the VMX register. */ |
8d619c01 | 2942 | regcache->raw_write_part (vr0 + reg_index, offset, |
4f0420fd | 2943 | register_size (gdbarch, reg_nr), buffer); |
604c2f83 LM |
2944 | } |
2945 | ||
05d1431c | 2946 | static enum register_status |
0df8b418 | 2947 | rs6000_pseudo_register_read (struct gdbarch *gdbarch, |
849d0ba8 | 2948 | readable_regcache *regcache, |
f949c649 | 2949 | int reg_nr, gdb_byte *buffer) |
c8001721 | 2950 | { |
ac7936df | 2951 | struct gdbarch *regcache_arch = regcache->arch (); |
c8001721 EZ |
2952 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2953 | ||
6ced10dd | 2954 | gdb_assert (regcache_arch == gdbarch); |
f949c649 | 2955 | |
5a9e69ba | 2956 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) |
05d1431c | 2957 | return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2958 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr) |
2959 | || IS_CDFP_PSEUDOREG (tdep, reg_nr)) | |
05d1431c | 2960 | return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); |
6f072a10 PFC |
2961 | else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)) |
2962 | return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr, | |
2963 | buffer); | |
8d619c01 EBM |
2964 | else if (IS_VSX_PSEUDOREG (tdep, reg_nr) |
2965 | || IS_CVSX_PSEUDOREG (tdep, reg_nr)) | |
05d1431c | 2966 | return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2967 | else if (IS_EFP_PSEUDOREG (tdep, reg_nr) |
2968 | || IS_CEFP_PSEUDOREG (tdep, reg_nr)) | |
2969 | return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer); | |
6ced10dd | 2970 | else |
a44bddec | 2971 | internal_error (__FILE__, __LINE__, |
f949c649 TJB |
2972 | _("rs6000_pseudo_register_read: " |
2973 | "called on unexpected register '%s' (%d)"), | |
2974 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
c8001721 EZ |
2975 | } |
2976 | ||
2977 | static void | |
f949c649 TJB |
2978 | rs6000_pseudo_register_write (struct gdbarch *gdbarch, |
2979 | struct regcache *regcache, | |
2980 | int reg_nr, const gdb_byte *buffer) | |
c8001721 | 2981 | { |
ac7936df | 2982 | struct gdbarch *regcache_arch = regcache->arch (); |
c8001721 EZ |
2983 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2984 | ||
6ced10dd | 2985 | gdb_assert (regcache_arch == gdbarch); |
f949c649 | 2986 | |
5a9e69ba | 2987 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) |
f949c649 | 2988 | e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2989 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr) |
2990 | || IS_CDFP_PSEUDOREG (tdep, reg_nr)) | |
604c2f83 | 2991 | dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); |
6f072a10 PFC |
2992 | else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)) |
2993 | v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); | |
8d619c01 EBM |
2994 | else if (IS_VSX_PSEUDOREG (tdep, reg_nr) |
2995 | || IS_CVSX_PSEUDOREG (tdep, reg_nr)) | |
604c2f83 | 2996 | vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); |
8d619c01 EBM |
2997 | else if (IS_EFP_PSEUDOREG (tdep, reg_nr) |
2998 | || IS_CEFP_PSEUDOREG (tdep, reg_nr)) | |
2999 | efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer); | |
6ced10dd | 3000 | else |
a44bddec | 3001 | internal_error (__FILE__, __LINE__, |
f949c649 TJB |
3002 | _("rs6000_pseudo_register_write: " |
3003 | "called on unexpected register '%s' (%d)"), | |
3004 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
6ced10dd JB |
3005 | } |
3006 | ||
8d619c01 EBM |
3007 | /* Set the register mask in AX with the registers that form the DFP or |
3008 | checkpointed DFP pseudo-register REG_NR. */ | |
3009 | ||
3010 | static void | |
3011 | dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3012 | struct agent_expr *ax, int reg_nr) | |
3013 | { | |
3014 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3015 | int reg_index, fp0; | |
3016 | ||
3017 | if (IS_DFP_PSEUDOREG (tdep, reg_nr)) | |
3018 | { | |
3019 | reg_index = reg_nr - tdep->ppc_dl0_regnum; | |
3020 | fp0 = PPC_F0_REGNUM; | |
3021 | } | |
3022 | else | |
3023 | { | |
3024 | gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr)); | |
3025 | ||
3026 | reg_index = reg_nr - tdep->ppc_cdl0_regnum; | |
3027 | fp0 = PPC_CF0_REGNUM; | |
3028 | } | |
3029 | ||
3030 | ax_reg_mask (ax, fp0 + 2 * reg_index); | |
3031 | ax_reg_mask (ax, fp0 + 2 * reg_index + 1); | |
3032 | } | |
3033 | ||
6f072a10 PFC |
3034 | /* Set the register mask in AX with the raw vector register that |
3035 | corresponds to its REG_NR alias. */ | |
3036 | ||
3037 | static void | |
3038 | v_alias_pseudo_register_collect (struct gdbarch *gdbarch, | |
3039 | struct agent_expr *ax, int reg_nr) | |
3040 | { | |
3041 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3042 | gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)); | |
3043 | ||
3044 | ax_reg_mask (ax, tdep->ppc_vr0_regnum | |
3045 | + (reg_nr - tdep->ppc_v0_alias_regnum)); | |
3046 | } | |
3047 | ||
8d619c01 EBM |
3048 | /* Set the register mask in AX with the registers that form the VSX or |
3049 | checkpointed VSX pseudo-register REG_NR. */ | |
3050 | ||
3051 | static void | |
3052 | vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3053 | struct agent_expr *ax, int reg_nr) | |
3054 | { | |
3055 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3056 | int reg_index, vr0, fp0, vsr0_upper; | |
3057 | ||
3058 | if (IS_VSX_PSEUDOREG (tdep, reg_nr)) | |
3059 | { | |
3060 | reg_index = reg_nr - tdep->ppc_vsr0_regnum; | |
3061 | vr0 = PPC_VR0_REGNUM; | |
3062 | fp0 = PPC_F0_REGNUM; | |
3063 | vsr0_upper = PPC_VSR0_UPPER_REGNUM; | |
3064 | } | |
3065 | else | |
3066 | { | |
3067 | gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr)); | |
3068 | ||
3069 | reg_index = reg_nr - tdep->ppc_cvsr0_regnum; | |
3070 | vr0 = PPC_CVR0_REGNUM; | |
3071 | fp0 = PPC_CF0_REGNUM; | |
3072 | vsr0_upper = PPC_CVSR0_UPPER_REGNUM; | |
3073 | } | |
3074 | ||
3075 | if (reg_index > 31) | |
3076 | { | |
3077 | ax_reg_mask (ax, vr0 + reg_index - 32); | |
3078 | } | |
3079 | else | |
3080 | { | |
3081 | ax_reg_mask (ax, fp0 + reg_index); | |
3082 | ax_reg_mask (ax, vsr0_upper + reg_index); | |
3083 | } | |
3084 | } | |
3085 | ||
3086 | /* Set the register mask in AX with the register that corresponds to | |
3087 | the EFP or checkpointed EFP pseudo-register REG_NR. */ | |
3088 | ||
3089 | static void | |
3090 | efp_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3091 | struct agent_expr *ax, int reg_nr) | |
3092 | { | |
3093 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3094 | int reg_index, vr0; | |
3095 | ||
3096 | if (IS_EFP_PSEUDOREG (tdep, reg_nr)) | |
3097 | { | |
3098 | reg_index = reg_nr - tdep->ppc_efpr0_regnum; | |
3099 | vr0 = PPC_VR0_REGNUM; | |
3100 | } | |
3101 | else | |
3102 | { | |
3103 | gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr)); | |
3104 | ||
3105 | reg_index = reg_nr - tdep->ppc_cefpr0_regnum; | |
3106 | vr0 = PPC_CVR0_REGNUM; | |
3107 | } | |
3108 | ||
3109 | ax_reg_mask (ax, vr0 + reg_index); | |
3110 | } | |
3111 | ||
2a2fa07b MK |
3112 | static int |
3113 | rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch, | |
3114 | struct agent_expr *ax, int reg_nr) | |
3115 | { | |
3116 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3117 | if (IS_SPE_PSEUDOREG (tdep, reg_nr)) | |
3118 | { | |
3119 | int reg_index = reg_nr - tdep->ppc_ev0_regnum; | |
3120 | ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index); | |
3121 | ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index); | |
3122 | } | |
8d619c01 EBM |
3123 | else if (IS_DFP_PSEUDOREG (tdep, reg_nr) |
3124 | || IS_CDFP_PSEUDOREG (tdep, reg_nr)) | |
2a2fa07b | 3125 | { |
8d619c01 | 3126 | dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr); |
2a2fa07b | 3127 | } |
6f072a10 PFC |
3128 | else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr)) |
3129 | { | |
3130 | v_alias_pseudo_register_collect (gdbarch, ax, reg_nr); | |
3131 | } | |
8d619c01 EBM |
3132 | else if (IS_VSX_PSEUDOREG (tdep, reg_nr) |
3133 | || IS_CVSX_PSEUDOREG (tdep, reg_nr)) | |
2a2fa07b | 3134 | { |
8d619c01 | 3135 | vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr); |
2a2fa07b | 3136 | } |
8d619c01 EBM |
3137 | else if (IS_EFP_PSEUDOREG (tdep, reg_nr) |
3138 | || IS_CEFP_PSEUDOREG (tdep, reg_nr)) | |
2a2fa07b | 3139 | { |
8d619c01 | 3140 | efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr); |
2a2fa07b MK |
3141 | } |
3142 | else | |
3143 | internal_error (__FILE__, __LINE__, | |
3144 | _("rs6000_pseudo_register_collect: " | |
3145 | "called on unexpected register '%s' (%d)"), | |
3146 | gdbarch_register_name (gdbarch, reg_nr), reg_nr); | |
3147 | return 0; | |
3148 | } | |
3149 | ||
3150 | ||
a67914de MK |
3151 | static void |
3152 | rs6000_gen_return_address (struct gdbarch *gdbarch, | |
3153 | struct agent_expr *ax, struct axs_value *value, | |
3154 | CORE_ADDR scope) | |
3155 | { | |
3156 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3157 | value->type = register_type (gdbarch, tdep->ppc_lr_regnum); | |
3158 | value->kind = axs_lvalue_register; | |
3159 | value->u.reg = tdep->ppc_lr_regnum; | |
3160 | } | |
3161 | ||
3162 | ||
18ed0c4e | 3163 | /* Convert a DBX STABS register number to a GDB register number. */ |
c8001721 | 3164 | static int |
d3f73121 | 3165 | rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num) |
c8001721 | 3166 | { |
d3f73121 | 3167 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
c8001721 | 3168 | |
9f744501 JB |
3169 | if (0 <= num && num <= 31) |
3170 | return tdep->ppc_gp0_regnum + num; | |
3171 | else if (32 <= num && num <= 63) | |
383f0f5b JB |
3172 | /* FIXME: jimb/2004-05-05: What should we do when the debug info |
3173 | specifies registers the architecture doesn't have? Our | |
3174 | callers don't check the value we return. */ | |
366f009f | 3175 | return tdep->ppc_fp0_regnum + (num - 32); |
18ed0c4e JB |
3176 | else if (77 <= num && num <= 108) |
3177 | return tdep->ppc_vr0_regnum + (num - 77); | |
9f744501 | 3178 | else if (1200 <= num && num < 1200 + 32) |
e1ec1b42 | 3179 | return tdep->ppc_ev0_upper_regnum + (num - 1200); |
9f744501 JB |
3180 | else |
3181 | switch (num) | |
3182 | { | |
3183 | case 64: | |
3184 | return tdep->ppc_mq_regnum; | |
3185 | case 65: | |
3186 | return tdep->ppc_lr_regnum; | |
3187 | case 66: | |
3188 | return tdep->ppc_ctr_regnum; | |
3189 | case 76: | |
3190 | return tdep->ppc_xer_regnum; | |
3191 | case 109: | |
3192 | return tdep->ppc_vrsave_regnum; | |
18ed0c4e JB |
3193 | case 110: |
3194 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
867e2dc5 | 3195 | case 111: |
18ed0c4e | 3196 | return tdep->ppc_acc_regnum; |
867e2dc5 | 3197 | case 112: |
18ed0c4e | 3198 | return tdep->ppc_spefscr_regnum; |
9f744501 JB |
3199 | default: |
3200 | return num; | |
3201 | } | |
18ed0c4e | 3202 | } |
9f744501 | 3203 | |
9f744501 | 3204 | |
18ed0c4e JB |
3205 | /* Convert a Dwarf 2 register number to a GDB register number. */ |
3206 | static int | |
d3f73121 | 3207 | rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num) |
18ed0c4e | 3208 | { |
d3f73121 | 3209 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
9f744501 | 3210 | |
18ed0c4e JB |
3211 | if (0 <= num && num <= 31) |
3212 | return tdep->ppc_gp0_regnum + num; | |
3213 | else if (32 <= num && num <= 63) | |
3214 | /* FIXME: jimb/2004-05-05: What should we do when the debug info | |
3215 | specifies registers the architecture doesn't have? Our | |
3216 | callers don't check the value we return. */ | |
3217 | return tdep->ppc_fp0_regnum + (num - 32); | |
3218 | else if (1124 <= num && num < 1124 + 32) | |
3219 | return tdep->ppc_vr0_regnum + (num - 1124); | |
3220 | else if (1200 <= num && num < 1200 + 32) | |
e1ec1b42 | 3221 | return tdep->ppc_ev0_upper_regnum + (num - 1200); |
18ed0c4e JB |
3222 | else |
3223 | switch (num) | |
3224 | { | |
a489f789 AS |
3225 | case 64: |
3226 | return tdep->ppc_cr_regnum; | |
18ed0c4e JB |
3227 | case 67: |
3228 | return tdep->ppc_vrsave_regnum - 1; /* vscr */ | |
3229 | case 99: | |
3230 | return tdep->ppc_acc_regnum; | |
3231 | case 100: | |
3232 | return tdep->ppc_mq_regnum; | |
3233 | case 101: | |
3234 | return tdep->ppc_xer_regnum; | |
3235 | case 108: | |
3236 | return tdep->ppc_lr_regnum; | |
3237 | case 109: | |
3238 | return tdep->ppc_ctr_regnum; | |
3239 | case 356: | |
3240 | return tdep->ppc_vrsave_regnum; | |
3241 | case 612: | |
3242 | return tdep->ppc_spefscr_regnum; | |
3243 | default: | |
3244 | return num; | |
3245 | } | |
2188cbdd EZ |
3246 | } |
3247 | ||
4fc771b8 DJ |
3248 | /* Translate a .eh_frame register to DWARF register, or adjust a |
3249 | .debug_frame register. */ | |
3250 | ||
3251 | static int | |
3252 | rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p) | |
3253 | { | |
3254 | /* GCC releases before 3.4 use GCC internal register numbering in | |
3255 | .debug_frame (and .debug_info, et cetera). The numbering is | |
3256 | different from the standard SysV numbering for everything except | |
3257 | for GPRs and FPRs. We can not detect this problem in most cases | |
3258 | - to get accurate debug info for variables living in lr, ctr, v0, | |
3259 | et cetera, use a newer version of GCC. But we must detect | |
3260 | one important case - lr is in column 65 in .debug_frame output, | |
3261 | instead of 108. | |
3262 | ||
3263 | GCC 3.4, and the "hammer" branch, have a related problem. They | |
3264 | record lr register saves in .debug_frame as 108, but still record | |
3265 | the return column as 65. We fix that up too. | |
3266 | ||
3267 | We can do this because 65 is assigned to fpsr, and GCC never | |
3268 | generates debug info referring to it. To add support for | |
3269 | handwritten debug info that restores fpsr, we would need to add a | |
3270 | producer version check to this. */ | |
3271 | if (!eh_frame_p) | |
3272 | { | |
3273 | if (num == 65) | |
3274 | return 108; | |
3275 | else | |
3276 | return num; | |
3277 | } | |
3278 | ||
3279 | /* .eh_frame is GCC specific. For binary compatibility, it uses GCC | |
3280 | internal register numbering; translate that to the standard DWARF2 | |
3281 | register numbering. */ | |
3282 | if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */ | |
3283 | return num; | |
3284 | else if (68 <= num && num <= 75) /* cr0-cr8 */ | |
3285 | return num - 68 + 86; | |
3286 | else if (77 <= num && num <= 108) /* vr0-vr31 */ | |
3287 | return num - 77 + 1124; | |
3288 | else | |
3289 | switch (num) | |
3290 | { | |
3291 | case 64: /* mq */ | |
3292 | return 100; | |
3293 | case 65: /* lr */ | |
3294 | return 108; | |
3295 | case 66: /* ctr */ | |
3296 | return 109; | |
3297 | case 76: /* xer */ | |
3298 | return 101; | |
3299 | case 109: /* vrsave */ | |
3300 | return 356; | |
3301 | case 110: /* vscr */ | |
3302 | return 67; | |
3303 | case 111: /* spe_acc */ | |
3304 | return 99; | |
3305 | case 112: /* spefscr */ | |
3306 | return 612; | |
3307 | default: | |
3308 | return num; | |
3309 | } | |
3310 | } | |
c906108c | 3311 | \f |
c5aa993b | 3312 | |
7a78ae4e | 3313 | /* Handling the various POWER/PowerPC variants. */ |
c906108c | 3314 | |
c906108c | 3315 | /* Information about a particular processor variant. */ |
7a78ae4e | 3316 | |
c906108c | 3317 | struct variant |
c5aa993b JM |
3318 | { |
3319 | /* Name of this variant. */ | |
a121b7c1 | 3320 | const char *name; |
c906108c | 3321 | |
c5aa993b | 3322 | /* English description of the variant. */ |
a121b7c1 | 3323 | const char *description; |
c906108c | 3324 | |
64366f1c | 3325 | /* bfd_arch_info.arch corresponding to variant. */ |
7a78ae4e ND |
3326 | enum bfd_architecture arch; |
3327 | ||
64366f1c | 3328 | /* bfd_arch_info.mach corresponding to variant. */ |
7a78ae4e ND |
3329 | unsigned long mach; |
3330 | ||
7cc46491 DJ |
3331 | /* Target description for this variant. */ |
3332 | struct target_desc **tdesc; | |
c5aa993b | 3333 | }; |
c906108c | 3334 | |
489461e2 | 3335 | static struct variant variants[] = |
c906108c | 3336 | { |
7a78ae4e | 3337 | {"powerpc", "PowerPC user-level", bfd_arch_powerpc, |
7284e1be | 3338 | bfd_mach_ppc, &tdesc_powerpc_altivec32}, |
7a78ae4e | 3339 | {"power", "POWER user-level", bfd_arch_rs6000, |
7cc46491 | 3340 | bfd_mach_rs6k, &tdesc_rs6000}, |
7a78ae4e | 3341 | {"403", "IBM PowerPC 403", bfd_arch_powerpc, |
7cc46491 | 3342 | bfd_mach_ppc_403, &tdesc_powerpc_403}, |
4d09ffea MS |
3343 | {"405", "IBM PowerPC 405", bfd_arch_powerpc, |
3344 | bfd_mach_ppc_405, &tdesc_powerpc_405}, | |
7a78ae4e | 3345 | {"601", "Motorola PowerPC 601", bfd_arch_powerpc, |
7cc46491 | 3346 | bfd_mach_ppc_601, &tdesc_powerpc_601}, |
7a78ae4e | 3347 | {"602", "Motorola PowerPC 602", bfd_arch_powerpc, |
7cc46491 | 3348 | bfd_mach_ppc_602, &tdesc_powerpc_602}, |
7a78ae4e | 3349 | {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc, |
7cc46491 | 3350 | bfd_mach_ppc_603, &tdesc_powerpc_603}, |
7a78ae4e | 3351 | {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc, |
7cc46491 | 3352 | 604, &tdesc_powerpc_604}, |
7a78ae4e | 3353 | {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc, |
7cc46491 | 3354 | bfd_mach_ppc_403gc, &tdesc_powerpc_403gc}, |
7a78ae4e | 3355 | {"505", "Motorola PowerPC 505", bfd_arch_powerpc, |
7cc46491 | 3356 | bfd_mach_ppc_505, &tdesc_powerpc_505}, |
7a78ae4e | 3357 | {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc, |
7cc46491 | 3358 | bfd_mach_ppc_860, &tdesc_powerpc_860}, |
7a78ae4e | 3359 | {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc, |
7cc46491 | 3360 | bfd_mach_ppc_750, &tdesc_powerpc_750}, |
1fcc0bb8 | 3361 | {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc, |
7cc46491 | 3362 | bfd_mach_ppc_7400, &tdesc_powerpc_7400}, |
c8001721 | 3363 | {"e500", "Motorola PowerPC e500", bfd_arch_powerpc, |
7cc46491 | 3364 | bfd_mach_ppc_e500, &tdesc_powerpc_e500}, |
7a78ae4e | 3365 | |
5d57ee30 KB |
3366 | /* 64-bit */ |
3367 | {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc, | |
7284e1be | 3368 | bfd_mach_ppc64, &tdesc_powerpc_altivec64}, |
7a78ae4e | 3369 | {"620", "Motorola PowerPC 620", bfd_arch_powerpc, |
7cc46491 | 3370 | bfd_mach_ppc_620, &tdesc_powerpc_64}, |
5d57ee30 | 3371 | {"630", "Motorola PowerPC 630", bfd_arch_powerpc, |
7cc46491 | 3372 | bfd_mach_ppc_630, &tdesc_powerpc_64}, |
7a78ae4e | 3373 | {"a35", "PowerPC A35", bfd_arch_powerpc, |
7cc46491 | 3374 | bfd_mach_ppc_a35, &tdesc_powerpc_64}, |
5d57ee30 | 3375 | {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc, |
7cc46491 | 3376 | bfd_mach_ppc_rs64ii, &tdesc_powerpc_64}, |
5d57ee30 | 3377 | {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc, |
7cc46491 | 3378 | bfd_mach_ppc_rs64iii, &tdesc_powerpc_64}, |
5d57ee30 | 3379 | |
64366f1c | 3380 | /* FIXME: I haven't checked the register sets of the following. */ |
7a78ae4e | 3381 | {"rs1", "IBM POWER RS1", bfd_arch_rs6000, |
7cc46491 | 3382 | bfd_mach_rs6k_rs1, &tdesc_rs6000}, |
7a78ae4e | 3383 | {"rsc", "IBM POWER RSC", bfd_arch_rs6000, |
7cc46491 | 3384 | bfd_mach_rs6k_rsc, &tdesc_rs6000}, |
7a78ae4e | 3385 | {"rs2", "IBM POWER RS2", bfd_arch_rs6000, |
7cc46491 | 3386 | bfd_mach_rs6k_rs2, &tdesc_rs6000}, |
7a78ae4e | 3387 | |
3e45d68b | 3388 | {0, 0, (enum bfd_architecture) 0, 0, 0} |
c906108c SS |
3389 | }; |
3390 | ||
7a78ae4e | 3391 | /* Return the variant corresponding to architecture ARCH and machine number |
64366f1c | 3392 | MACH. If no such variant exists, return null. */ |
c906108c | 3393 | |
7a78ae4e ND |
3394 | static const struct variant * |
3395 | find_variant_by_arch (enum bfd_architecture arch, unsigned long mach) | |
c906108c | 3396 | { |
7a78ae4e | 3397 | const struct variant *v; |
c5aa993b | 3398 | |
7a78ae4e ND |
3399 | for (v = variants; v->name; v++) |
3400 | if (arch == v->arch && mach == v->mach) | |
3401 | return v; | |
c906108c | 3402 | |
7a78ae4e | 3403 | return NULL; |
c906108c | 3404 | } |
9364a0ef | 3405 | |
7a78ae4e | 3406 | \f |
61a65099 KB |
3407 | |
3408 | struct rs6000_frame_cache | |
3409 | { | |
3410 | CORE_ADDR base; | |
3411 | CORE_ADDR initial_sp; | |
3412 | struct trad_frame_saved_reg *saved_regs; | |
50ae56ec WW |
3413 | |
3414 | /* Set BASE_P to true if this frame cache is properly initialized. | |
3415 | Otherwise set to false because some registers or memory cannot | |
3416 | collected. */ | |
3417 | int base_p; | |
3418 | /* Cache PC for building unavailable frame. */ | |
3419 | CORE_ADDR pc; | |
61a65099 KB |
3420 | }; |
3421 | ||
3422 | static struct rs6000_frame_cache * | |
1af5d7ce | 3423 | rs6000_frame_cache (struct frame_info *this_frame, void **this_cache) |
61a65099 KB |
3424 | { |
3425 | struct rs6000_frame_cache *cache; | |
1af5d7ce | 3426 | struct gdbarch *gdbarch = get_frame_arch (this_frame); |
61a65099 | 3427 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
e17a4113 | 3428 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); |
61a65099 KB |
3429 | struct rs6000_framedata fdata; |
3430 | int wordsize = tdep->wordsize; | |
338435ef | 3431 | CORE_ADDR func = 0, pc = 0; |
61a65099 KB |
3432 | |
3433 | if ((*this_cache) != NULL) | |
19ba03f4 | 3434 | return (struct rs6000_frame_cache *) (*this_cache); |
61a65099 KB |
3435 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); |
3436 | (*this_cache) = cache; | |
50ae56ec | 3437 | cache->pc = 0; |
1af5d7ce | 3438 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); |
61a65099 | 3439 | |
a70b8144 | 3440 | try |
50ae56ec WW |
3441 | { |
3442 | func = get_frame_func (this_frame); | |
3443 | cache->pc = func; | |
3444 | pc = get_frame_pc (this_frame); | |
3445 | skip_prologue (gdbarch, func, pc, &fdata); | |
3446 | ||
3447 | /* Figure out the parent's stack pointer. */ | |
3448 | ||
3449 | /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most | |
3450 | address of the current frame. Things might be easier if the | |
3451 | ->frame pointed to the outer-most address of the frame. In | |
3452 | the mean time, the address of the prev frame is used as the | |
3453 | base address of this frame. */ | |
3454 | cache->base = get_frame_register_unsigned | |
3455 | (this_frame, gdbarch_sp_regnum (gdbarch)); | |
3456 | } | |
230d2906 | 3457 | catch (const gdb_exception_error &ex) |
50ae56ec WW |
3458 | { |
3459 | if (ex.error != NOT_AVAILABLE_ERROR) | |
eedc3f4f | 3460 | throw; |
1ed0c2a4 | 3461 | return (struct rs6000_frame_cache *) (*this_cache); |
50ae56ec | 3462 | } |
e10b1c4c DJ |
3463 | |
3464 | /* If the function appears to be frameless, check a couple of likely | |
3465 | indicators that we have simply failed to find the frame setup. | |
3466 | Two common cases of this are missing symbols (i.e. | |
ef02daa9 | 3467 | get_frame_func returns the wrong address or 0), and assembly |
e10b1c4c DJ |
3468 | stubs which have a fast exit path but set up a frame on the slow |
3469 | path. | |
3470 | ||
3471 | If the LR appears to return to this function, then presume that | |
3472 | we have an ABI compliant frame that we failed to find. */ | |
3473 | if (fdata.frameless && fdata.lr_offset == 0) | |
61a65099 | 3474 | { |
e10b1c4c DJ |
3475 | CORE_ADDR saved_lr; |
3476 | int make_frame = 0; | |
3477 | ||
1af5d7ce | 3478 | saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum); |
e10b1c4c DJ |
3479 | if (func == 0 && saved_lr == pc) |
3480 | make_frame = 1; | |
3481 | else if (func != 0) | |
3482 | { | |
3483 | CORE_ADDR saved_func = get_pc_function_start (saved_lr); | |
3484 | if (func == saved_func) | |
3485 | make_frame = 1; | |
3486 | } | |
3487 | ||
3488 | if (make_frame) | |
3489 | { | |
3490 | fdata.frameless = 0; | |
de6a76fd | 3491 | fdata.lr_offset = tdep->lr_frame_offset; |
e10b1c4c | 3492 | } |
61a65099 | 3493 | } |
e10b1c4c DJ |
3494 | |
3495 | if (!fdata.frameless) | |
9d9bf2df EBM |
3496 | { |
3497 | /* Frameless really means stackless. */ | |
cc2c4da8 | 3498 | ULONGEST backchain; |
9d9bf2df | 3499 | |
cc2c4da8 MK |
3500 | if (safe_read_memory_unsigned_integer (cache->base, wordsize, |
3501 | byte_order, &backchain)) | |
9d9bf2df EBM |
3502 | cache->base = (CORE_ADDR) backchain; |
3503 | } | |
e10b1c4c | 3504 | |
3e8c568d | 3505 | trad_frame_set_value (cache->saved_regs, |
8b164abb | 3506 | gdbarch_sp_regnum (gdbarch), cache->base); |
61a65099 KB |
3507 | |
3508 | /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr. | |
3509 | All fpr's from saved_fpr to fp31 are saved. */ | |
3510 | ||
3511 | if (fdata.saved_fpr >= 0) | |
3512 | { | |
3513 | int i; | |
3514 | CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset; | |
383f0f5b JB |
3515 | |
3516 | /* If skip_prologue says floating-point registers were saved, | |
3517 | but the current architecture has no floating-point registers, | |
3518 | then that's strange. But we have no indices to even record | |
3519 | the addresses under, so we just ignore it. */ | |
3520 | if (ppc_floating_point_unit_p (gdbarch)) | |
063715bf | 3521 | for (i = fdata.saved_fpr; i < ppc_num_fprs; i++) |
383f0f5b JB |
3522 | { |
3523 | cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr; | |
3524 | fpr_addr += 8; | |
3525 | } | |
61a65099 KB |
3526 | } |
3527 | ||
3528 | /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr. | |
46a9b8ed DJ |
3529 | All gpr's from saved_gpr to gpr31 are saved (except during the |
3530 | prologue). */ | |
61a65099 KB |
3531 | |
3532 | if (fdata.saved_gpr >= 0) | |
3533 | { | |
3534 | int i; | |
3535 | CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset; | |
063715bf | 3536 | for (i = fdata.saved_gpr; i < ppc_num_gprs; i++) |
61a65099 | 3537 | { |
46a9b8ed DJ |
3538 | if (fdata.gpr_mask & (1U << i)) |
3539 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr; | |
61a65099 KB |
3540 | gpr_addr += wordsize; |
3541 | } | |
3542 | } | |
3543 | ||
3544 | /* if != -1, fdata.saved_vr is the smallest number of saved_vr. | |
3545 | All vr's from saved_vr to vr31 are saved. */ | |
3546 | if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1) | |
3547 | { | |
3548 | if (fdata.saved_vr >= 0) | |
3549 | { | |
3550 | int i; | |
3551 | CORE_ADDR vr_addr = cache->base + fdata.vr_offset; | |
3552 | for (i = fdata.saved_vr; i < 32; i++) | |
3553 | { | |
3554 | cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr; | |
3555 | vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum); | |
3556 | } | |
3557 | } | |
3558 | } | |
3559 | ||
3560 | /* if != -1, fdata.saved_ev is the smallest number of saved_ev. | |
0df8b418 | 3561 | All vr's from saved_ev to ev31 are saved. ????? */ |
5a9e69ba | 3562 | if (tdep->ppc_ev0_regnum != -1) |
61a65099 KB |
3563 | { |
3564 | if (fdata.saved_ev >= 0) | |
3565 | { | |
3566 | int i; | |
3567 | CORE_ADDR ev_addr = cache->base + fdata.ev_offset; | |
dea80df0 MR |
3568 | CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0); |
3569 | ||
063715bf | 3570 | for (i = fdata.saved_ev; i < ppc_num_gprs; i++) |
61a65099 KB |
3571 | { |
3572 | cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr; | |
dea80df0 | 3573 | cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off; |
61a65099 | 3574 | ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum); |
dea80df0 | 3575 | } |
61a65099 KB |
3576 | } |
3577 | } | |
3578 | ||
3579 | /* If != 0, fdata.cr_offset is the offset from the frame that | |
3580 | holds the CR. */ | |
3581 | if (fdata.cr_offset != 0) | |
0df8b418 MS |
3582 | cache->saved_regs[tdep->ppc_cr_regnum].addr |
3583 | = cache->base + fdata.cr_offset; | |
61a65099 KB |
3584 | |
3585 | /* If != 0, fdata.lr_offset is the offset from the frame that | |
3586 | holds the LR. */ | |
3587 | if (fdata.lr_offset != 0) | |
0df8b418 MS |
3588 | cache->saved_regs[tdep->ppc_lr_regnum].addr |
3589 | = cache->base + fdata.lr_offset; | |
46a9b8ed DJ |
3590 | else if (fdata.lr_register != -1) |
3591 | cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register; | |
61a65099 | 3592 | /* The PC is found in the link register. */ |
8b164abb | 3593 | cache->saved_regs[gdbarch_pc_regnum (gdbarch)] = |
3e8c568d | 3594 | cache->saved_regs[tdep->ppc_lr_regnum]; |
61a65099 KB |
3595 | |
3596 | /* If != 0, fdata.vrsave_offset is the offset from the frame that | |
3597 | holds the VRSAVE. */ | |
3598 | if (fdata.vrsave_offset != 0) | |
0df8b418 MS |
3599 | cache->saved_regs[tdep->ppc_vrsave_regnum].addr |
3600 | = cache->base + fdata.vrsave_offset; | |
61a65099 KB |
3601 | |
3602 | if (fdata.alloca_reg < 0) | |
3603 | /* If no alloca register used, then fi->frame is the value of the | |
3604 | %sp for this frame, and it is good enough. */ | |
1af5d7ce UW |
3605 | cache->initial_sp |
3606 | = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch)); | |
61a65099 | 3607 | else |
1af5d7ce UW |
3608 | cache->initial_sp |
3609 | = get_frame_register_unsigned (this_frame, fdata.alloca_reg); | |
61a65099 | 3610 | |
50ae56ec | 3611 | cache->base_p = 1; |
61a65099 KB |
3612 | return cache; |
3613 | } | |
3614 | ||
3615 | static void | |
1af5d7ce | 3616 | rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache, |
61a65099 KB |
3617 | struct frame_id *this_id) |
3618 | { | |
1af5d7ce | 3619 | struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, |
61a65099 | 3620 | this_cache); |
50ae56ec WW |
3621 | |
3622 | if (!info->base_p) | |
3623 | { | |
3624 | (*this_id) = frame_id_build_unavailable_stack (info->pc); | |
3625 | return; | |
3626 | } | |
3627 | ||
5b197912 UW |
3628 | /* This marks the outermost frame. */ |
3629 | if (info->base == 0) | |
3630 | return; | |
3631 | ||
1af5d7ce | 3632 | (*this_id) = frame_id_build (info->base, get_frame_func (this_frame)); |
61a65099 KB |
3633 | } |
3634 | ||
1af5d7ce UW |
3635 | static struct value * |
3636 | rs6000_frame_prev_register (struct frame_info *this_frame, | |
3637 | void **this_cache, int regnum) | |
61a65099 | 3638 | { |
1af5d7ce | 3639 | struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, |
61a65099 | 3640 | this_cache); |
1af5d7ce | 3641 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); |
61a65099 KB |
3642 | } |
3643 | ||
3644 | static const struct frame_unwind rs6000_frame_unwind = | |
3645 | { | |
3646 | NORMAL_FRAME, | |
8fbca658 | 3647 | default_frame_unwind_stop_reason, |
61a65099 | 3648 | rs6000_frame_this_id, |
1af5d7ce UW |
3649 | rs6000_frame_prev_register, |
3650 | NULL, | |
3651 | default_frame_sniffer | |
61a65099 | 3652 | }; |
2608dbf8 | 3653 | |
ddeca1df WW |
3654 | /* Allocate and initialize a frame cache for an epilogue frame. |
3655 | SP is restored and prev-PC is stored in LR. */ | |
3656 | ||
2608dbf8 WW |
3657 | static struct rs6000_frame_cache * |
3658 | rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache) | |
3659 | { | |
2608dbf8 WW |
3660 | struct rs6000_frame_cache *cache; |
3661 | struct gdbarch *gdbarch = get_frame_arch (this_frame); | |
3662 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
2608dbf8 WW |
3663 | |
3664 | if (*this_cache) | |
19ba03f4 | 3665 | return (struct rs6000_frame_cache *) *this_cache; |
2608dbf8 WW |
3666 | |
3667 | cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache); | |
3668 | (*this_cache) = cache; | |
3669 | cache->saved_regs = trad_frame_alloc_saved_regs (this_frame); | |
3670 | ||
a70b8144 | 3671 | try |
2608dbf8 WW |
3672 | { |
3673 | /* At this point the stack looks as if we just entered the | |
3674 | function, and the return address is stored in LR. */ | |
3675 | CORE_ADDR sp, lr; | |
3676 | ||
3677 | sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch)); | |
3678 | lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum); | |
3679 | ||
3680 | cache->base = sp; | |
3681 | cache->initial_sp = sp; | |
3682 | ||
3683 | trad_frame_set_value (cache->saved_regs, | |
3684 | gdbarch_pc_regnum (gdbarch), lr); | |
3685 | } | |
230d2906 | 3686 | catch (const gdb_exception_error &ex) |
7556d4a4 PA |
3687 | { |
3688 | if (ex.error != NOT_AVAILABLE_ERROR) | |
eedc3f4f | 3689 | throw; |
7556d4a4 | 3690 | } |
2608dbf8 WW |
3691 | |
3692 | return cache; | |
3693 | } | |
3694 | ||
ddeca1df WW |
3695 | /* Implementation of frame_unwind.this_id, as defined in frame_unwind.h. |
3696 | Return the frame ID of an epilogue frame. */ | |
3697 | ||
2608dbf8 WW |
3698 | static void |
3699 | rs6000_epilogue_frame_this_id (struct frame_info *this_frame, | |
3700 | void **this_cache, struct frame_id *this_id) | |
3701 | { | |
3702 | CORE_ADDR pc; | |
3703 | struct rs6000_frame_cache *info = | |
3704 | rs6000_epilogue_frame_cache (this_frame, this_cache); | |
3705 | ||
3706 | pc = get_frame_func (this_frame); | |
3707 | if (info->base == 0) | |
3708 | (*this_id) = frame_id_build_unavailable_stack (pc); | |
3709 | else | |
3710 | (*this_id) = frame_id_build (info->base, pc); | |
3711 | } | |
3712 | ||
ddeca1df WW |
3713 | /* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h. |
3714 | Return the register value of REGNUM in previous frame. */ | |
3715 | ||
2608dbf8 WW |
3716 | static struct value * |
3717 | rs6000_epilogue_frame_prev_register (struct frame_info *this_frame, | |
3718 | void **this_cache, int regnum) | |
3719 | { | |
3720 | struct rs6000_frame_cache *info = | |
3721 | rs6000_epilogue_frame_cache (this_frame, this_cache); | |
3722 | return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum); | |
3723 | } | |
3724 | ||
ddeca1df WW |
3725 | /* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h. |
3726 | Check whether this an epilogue frame. */ | |
3727 | ||
2608dbf8 WW |
3728 | static int |
3729 | rs6000_epilogue_frame_sniffer (const struct frame_unwind *self, | |
3730 | struct frame_info *this_frame, | |
3731 | void **this_prologue_cache) | |
3732 | { | |
3733 | if (frame_relative_level (this_frame) == 0) | |
3734 | return rs6000_in_function_epilogue_frame_p (this_frame, | |
3735 | get_frame_arch (this_frame), | |
3736 | get_frame_pc (this_frame)); | |
3737 | else | |
3738 | return 0; | |
3739 | } | |
3740 | ||
ddeca1df WW |
3741 | /* Frame unwinder for epilogue frame. This is required for reverse step-over |
3742 | a function without debug information. */ | |
3743 | ||
2608dbf8 WW |
3744 | static const struct frame_unwind rs6000_epilogue_frame_unwind = |
3745 | { | |
3746 | NORMAL_FRAME, | |
3747 | default_frame_unwind_stop_reason, | |
3748 | rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register, | |
3749 | NULL, | |
3750 | rs6000_epilogue_frame_sniffer | |
3751 | }; | |
61a65099 KB |
3752 | \f |
3753 | ||
3754 | static CORE_ADDR | |
1af5d7ce | 3755 | rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache) |
61a65099 | 3756 | { |
1af5d7ce | 3757 | struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame, |
61a65099 KB |
3758 | this_cache); |
3759 | return info->initial_sp; | |
3760 | } | |
3761 | ||
3762 | static const struct frame_base rs6000_frame_base = { | |
3763 | &rs6000_frame_unwind, | |
3764 | rs6000_frame_base_address, | |
3765 | rs6000_frame_base_address, | |
3766 | rs6000_frame_base_address | |
3767 | }; | |
3768 | ||
3769 | static const struct frame_base * | |
1af5d7ce | 3770 | rs6000_frame_base_sniffer (struct frame_info *this_frame) |
61a65099 KB |
3771 | { |
3772 | return &rs6000_frame_base; | |
3773 | } | |
3774 | ||
9274a07c LM |
3775 | /* DWARF-2 frame support. Used to handle the detection of |
3776 | clobbered registers during function calls. */ | |
3777 | ||
3778 | static void | |
3779 | ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
3780 | struct dwarf2_frame_state_reg *reg, | |
4a4e5149 | 3781 | struct frame_info *this_frame) |
9274a07c LM |
3782 | { |
3783 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
3784 | ||
3785 | /* PPC32 and PPC64 ABI's are the same regarding volatile and | |
3786 | non-volatile registers. We will use the same code for both. */ | |
3787 | ||
3788 | /* Call-saved GP registers. */ | |
3789 | if ((regnum >= tdep->ppc_gp0_regnum + 14 | |
3790 | && regnum <= tdep->ppc_gp0_regnum + 31) | |
3791 | || (regnum == tdep->ppc_gp0_regnum + 1)) | |
3792 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3793 | ||
3794 | /* Call-clobbered GP registers. */ | |
3795 | if ((regnum >= tdep->ppc_gp0_regnum + 3 | |
3796 | && regnum <= tdep->ppc_gp0_regnum + 12) | |
3797 | || (regnum == tdep->ppc_gp0_regnum)) | |
3798 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3799 | ||
3800 | /* Deal with FP registers, if supported. */ | |
3801 | if (tdep->ppc_fp0_regnum >= 0) | |
3802 | { | |
3803 | /* Call-saved FP registers. */ | |
3804 | if ((regnum >= tdep->ppc_fp0_regnum + 14 | |
3805 | && regnum <= tdep->ppc_fp0_regnum + 31)) | |
3806 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3807 | ||
3808 | /* Call-clobbered FP registers. */ | |
3809 | if ((regnum >= tdep->ppc_fp0_regnum | |
3810 | && regnum <= tdep->ppc_fp0_regnum + 13)) | |
3811 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3812 | } | |
3813 | ||
3814 | /* Deal with ALTIVEC registers, if supported. */ | |
3815 | if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0) | |
3816 | { | |
3817 | /* Call-saved Altivec registers. */ | |
3818 | if ((regnum >= tdep->ppc_vr0_regnum + 20 | |
3819 | && regnum <= tdep->ppc_vr0_regnum + 31) | |
3820 | || regnum == tdep->ppc_vrsave_regnum) | |
3821 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
3822 | ||
3823 | /* Call-clobbered Altivec registers. */ | |
3824 | if ((regnum >= tdep->ppc_vr0_regnum | |
3825 | && regnum <= tdep->ppc_vr0_regnum + 19)) | |
3826 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
3827 | } | |
3828 | ||
3829 | /* Handle PC register and Stack Pointer correctly. */ | |
40a6adc1 | 3830 | if (regnum == gdbarch_pc_regnum (gdbarch)) |
9274a07c | 3831 | reg->how = DWARF2_FRAME_REG_RA; |
40a6adc1 | 3832 | else if (regnum == gdbarch_sp_regnum (gdbarch)) |
9274a07c LM |
3833 | reg->how = DWARF2_FRAME_REG_CFA; |
3834 | } | |
3835 | ||
3836 | ||
74af9197 NF |
3837 | /* Return true if a .gnu_attributes section exists in BFD and it |
3838 | indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo | |
3839 | section exists in BFD and it indicates that SPE extensions are in | |
3840 | use. Check the .gnu.attributes section first, as the binary might be | |
3841 | compiled for SPE, but not actually using SPE instructions. */ | |
3842 | ||
3843 | static int | |
3844 | bfd_uses_spe_extensions (bfd *abfd) | |
3845 | { | |
3846 | asection *sect; | |
3847 | gdb_byte *contents = NULL; | |
3848 | bfd_size_type size; | |
3849 | gdb_byte *ptr; | |
3850 | int success = 0; | |
74af9197 NF |
3851 | |
3852 | if (!abfd) | |
3853 | return 0; | |
3854 | ||
50a99728 | 3855 | #ifdef HAVE_ELF |
74af9197 NF |
3856 | /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user |
3857 | could be using the SPE vector abi without actually using any spe | |
3858 | bits whatsoever. But it's close enough for now. */ | |
17cbafdb SM |
3859 | int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU, |
3860 | Tag_GNU_Power_ABI_Vector); | |
74af9197 NF |
3861 | if (vector_abi == 3) |
3862 | return 1; | |
50a99728 | 3863 | #endif |
74af9197 NF |
3864 | |
3865 | sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo"); | |
3866 | if (!sect) | |
3867 | return 0; | |
3868 | ||
fd361982 | 3869 | size = bfd_section_size (sect); |
224c3ddb | 3870 | contents = (gdb_byte *) xmalloc (size); |
74af9197 NF |
3871 | if (!bfd_get_section_contents (abfd, sect, contents, 0, size)) |
3872 | { | |
3873 | xfree (contents); | |
3874 | return 0; | |
3875 | } | |
3876 | ||
3877 | /* Parse the .PPC.EMB.apuinfo section. The layout is as follows: | |
3878 | ||
3879 | struct { | |
3880 | uint32 name_len; | |
3881 | uint32 data_len; | |
3882 | uint32 type; | |
3883 | char name[name_len rounded up to 4-byte alignment]; | |
3884 | char data[data_len]; | |
3885 | }; | |
3886 | ||
3887 | Technically, there's only supposed to be one such structure in a | |
3888 | given apuinfo section, but the linker is not always vigilant about | |
3889 | merging apuinfo sections from input files. Just go ahead and parse | |
3890 | them all, exiting early when we discover the binary uses SPE | |
3891 | insns. | |
3892 | ||
3893 | It's not specified in what endianness the information in this | |
3894 | section is stored. Assume that it's the endianness of the BFD. */ | |
3895 | ptr = contents; | |
3896 | while (1) | |
3897 | { | |
3898 | unsigned int name_len; | |
3899 | unsigned int data_len; | |
3900 | unsigned int type; | |
3901 | ||
3902 | /* If we can't read the first three fields, we're done. */ | |
3903 | if (size < 12) | |
3904 | break; | |
3905 | ||
3906 | name_len = bfd_get_32 (abfd, ptr); | |
3907 | name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */ | |
3908 | data_len = bfd_get_32 (abfd, ptr + 4); | |
3909 | type = bfd_get_32 (abfd, ptr + 8); | |
3910 | ptr += 12; | |
3911 | ||
3912 | /* The name must be "APUinfo\0". */ | |
3913 | if (name_len != 8 | |
3914 | && strcmp ((const char *) ptr, "APUinfo") != 0) | |
3915 | break; | |
3916 | ptr += name_len; | |
3917 | ||
3918 | /* The type must be 2. */ | |
3919 | if (type != 2) | |
3920 | break; | |
3921 | ||
3922 | /* The data is stored as a series of uint32. The upper half of | |
3923 | each uint32 indicates the particular APU used and the lower | |
3924 | half indicates the revision of that APU. We just care about | |
3925 | the upper half. */ | |
3926 | ||
3927 | /* Not 4-byte quantities. */ | |
3928 | if (data_len & 3U) | |
3929 | break; | |
3930 | ||
3931 | while (data_len) | |
3932 | { | |
3933 | unsigned int apuinfo = bfd_get_32 (abfd, ptr); | |
3934 | unsigned int apu = apuinfo >> 16; | |
3935 | ptr += 4; | |
3936 | data_len -= 4; | |
3937 | ||
3938 | /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept | |
3939 | either. */ | |
3940 | if (apu == 0x100 || apu == 0x101) | |
3941 | { | |
3942 | success = 1; | |
3943 | data_len = 0; | |
3944 | } | |
3945 | } | |
3946 | ||
3947 | if (success) | |
3948 | break; | |
3949 | } | |
3950 | ||
3951 | xfree (contents); | |
3952 | return success; | |
3953 | } | |
3954 | ||
b4cdae6f WW |
3955 | /* These are macros for parsing instruction fields (I.1.6.28) */ |
3956 | ||
3957 | #define PPC_FIELD(value, from, len) \ | |
3958 | (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1)) | |
3959 | #define PPC_SEXT(v, bs) \ | |
3960 | ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \ | |
3961 | ^ ((CORE_ADDR) 1 << ((bs) - 1))) \ | |
3962 | - ((CORE_ADDR) 1 << ((bs) - 1))) | |
3963 | #define PPC_OP6(insn) PPC_FIELD (insn, 0, 6) | |
3964 | #define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10) | |
3965 | #define PPC_RT(insn) PPC_FIELD (insn, 6, 5) | |
3966 | #define PPC_RS(insn) PPC_FIELD (insn, 6, 5) | |
3967 | #define PPC_RA(insn) PPC_FIELD (insn, 11, 5) | |
3968 | #define PPC_RB(insn) PPC_FIELD (insn, 16, 5) | |
3969 | #define PPC_NB(insn) PPC_FIELD (insn, 16, 5) | |
3970 | #define PPC_VRT(insn) PPC_FIELD (insn, 6, 5) | |
3971 | #define PPC_FRT(insn) PPC_FIELD (insn, 6, 5) | |
3972 | #define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \ | |
3973 | | (PPC_FIELD (insn, 16, 5) << 5)) | |
3974 | #define PPC_BO(insn) PPC_FIELD (insn, 6, 5) | |
3975 | #define PPC_T(insn) PPC_FIELD (insn, 6, 5) | |
3976 | #define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16) | |
3977 | #define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14) | |
6ec2b213 | 3978 | #define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12) |
b4cdae6f WW |
3979 | #define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0) |
3980 | #define PPC_OE(insn) PPC_BIT (insn, 21) | |
3981 | #define PPC_RC(insn) PPC_BIT (insn, 31) | |
3982 | #define PPC_Rc(insn) PPC_BIT (insn, 21) | |
3983 | #define PPC_LK(insn) PPC_BIT (insn, 31) | |
3984 | #define PPC_TX(insn) PPC_BIT (insn, 31) | |
3985 | #define PPC_LEV(insn) PPC_FIELD (insn, 20, 7) | |
3986 | ||
3987 | #define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn)) | |
3988 | #define PPC_XER_NB(xer) (xer & 0x7f) | |
3989 | ||
ddeca1df WW |
3990 | /* Record Vector-Scalar Registers. |
3991 | For VSR less than 32, it's represented by an FPR and an VSR-upper register. | |
3992 | Otherwise, it's just a VR register. Record them accordingly. */ | |
b4cdae6f WW |
3993 | |
3994 | static int | |
3995 | ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr) | |
3996 | { | |
3997 | if (vsr < 0 || vsr >= 64) | |
3998 | return -1; | |
3999 | ||
4000 | if (vsr >= 32) | |
4001 | { | |
4002 | if (tdep->ppc_vr0_regnum >= 0) | |
4003 | record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32); | |
4004 | } | |
4005 | else | |
4006 | { | |
4007 | if (tdep->ppc_fp0_regnum >= 0) | |
4008 | record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr); | |
4009 | if (tdep->ppc_vsr0_upper_regnum >= 0) | |
4010 | record_full_arch_list_add_reg (regcache, | |
4011 | tdep->ppc_vsr0_upper_regnum + vsr); | |
4012 | } | |
4013 | ||
4014 | return 0; | |
4015 | } | |
4016 | ||
ddeca1df WW |
4017 | /* Parse and record instructions primary opcode-4 at ADDR. |
4018 | Return 0 if successful. */ | |
b4cdae6f WW |
4019 | |
4020 | static int | |
4021 | ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache, | |
ddeca1df | 4022 | CORE_ADDR addr, uint32_t insn) |
b4cdae6f WW |
4023 | { |
4024 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4025 | int ext = PPC_FIELD (insn, 21, 11); | |
6ec2b213 | 4026 | int vra = PPC_FIELD (insn, 11, 5); |
b4cdae6f WW |
4027 | |
4028 | switch (ext & 0x3f) | |
4029 | { | |
4030 | case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */ | |
4031 | case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */ | |
4032 | case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */ | |
4033 | case 41: /* Vector Multiply-Sum Signed Halfword Saturate */ | |
4034 | record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM); | |
4035 | /* FALL-THROUGH */ | |
4036 | case 42: /* Vector Select */ | |
4037 | case 43: /* Vector Permute */ | |
6ec2b213 | 4038 | case 59: /* Vector Permute Right-indexed */ |
b4cdae6f WW |
4039 | case 44: /* Vector Shift Left Double by Octet Immediate */ |
4040 | case 45: /* Vector Permute and Exclusive-OR */ | |
4041 | case 60: /* Vector Add Extended Unsigned Quadword Modulo */ | |
4042 | case 61: /* Vector Add Extended & write Carry Unsigned Quadword */ | |
4043 | case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */ | |
4044 | case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */ | |
4045 | case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */ | |
6ec2b213 | 4046 | case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */ |
b4cdae6f WW |
4047 | case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */ |
4048 | case 37: /* Vector Multiply-Sum Mixed Byte Modulo */ | |
4049 | case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */ | |
4050 | case 40: /* Vector Multiply-Sum Signed Halfword Modulo */ | |
4051 | case 46: /* Vector Multiply-Add Single-Precision */ | |
4052 | case 47: /* Vector Negative Multiply-Subtract Single-Precision */ | |
4053 | record_full_arch_list_add_reg (regcache, | |
4054 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4055 | return 0; | |
6ec2b213 EBM |
4056 | |
4057 | case 48: /* Multiply-Add High Doubleword */ | |
4058 | case 49: /* Multiply-Add High Doubleword Unsigned */ | |
4059 | case 51: /* Multiply-Add Low Doubleword */ | |
4060 | record_full_arch_list_add_reg (regcache, | |
4061 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4062 | return 0; | |
b4cdae6f WW |
4063 | } |
4064 | ||
4065 | switch ((ext & 0x1ff)) | |
4066 | { | |
6ec2b213 EBM |
4067 | case 385: |
4068 | if (vra != 0 /* Decimal Convert To Signed Quadword */ | |
4069 | && vra != 2 /* Decimal Convert From Signed Quadword */ | |
4070 | && vra != 4 /* Decimal Convert To Zoned */ | |
4071 | && vra != 5 /* Decimal Convert To National */ | |
4072 | && vra != 6 /* Decimal Convert From Zoned */ | |
4073 | && vra != 7 /* Decimal Convert From National */ | |
4074 | && vra != 31) /* Decimal Set Sign */ | |
4075 | break; | |
e3829d13 | 4076 | /* Fall through. */ |
b4cdae6f WW |
4077 | /* 5.16 Decimal Integer Arithmetic Instructions */ |
4078 | case 1: /* Decimal Add Modulo */ | |
4079 | case 65: /* Decimal Subtract Modulo */ | |
4080 | ||
6ec2b213 EBM |
4081 | case 193: /* Decimal Shift */ |
4082 | case 129: /* Decimal Unsigned Shift */ | |
4083 | case 449: /* Decimal Shift and Round */ | |
4084 | ||
4085 | case 257: /* Decimal Truncate */ | |
4086 | case 321: /* Decimal Unsigned Truncate */ | |
4087 | ||
b4cdae6f WW |
4088 | /* Bit-21 should be set. */ |
4089 | if (!PPC_BIT (insn, 21)) | |
4090 | break; | |
4091 | ||
4092 | record_full_arch_list_add_reg (regcache, | |
4093 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4094 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4095 | return 0; | |
4096 | } | |
4097 | ||
4098 | /* Bit-21 is used for RC */ | |
4099 | switch (ext & 0x3ff) | |
4100 | { | |
4101 | case 6: /* Vector Compare Equal To Unsigned Byte */ | |
4102 | case 70: /* Vector Compare Equal To Unsigned Halfword */ | |
4103 | case 134: /* Vector Compare Equal To Unsigned Word */ | |
4104 | case 199: /* Vector Compare Equal To Unsigned Doubleword */ | |
4105 | case 774: /* Vector Compare Greater Than Signed Byte */ | |
4106 | case 838: /* Vector Compare Greater Than Signed Halfword */ | |
4107 | case 902: /* Vector Compare Greater Than Signed Word */ | |
4108 | case 967: /* Vector Compare Greater Than Signed Doubleword */ | |
4109 | case 518: /* Vector Compare Greater Than Unsigned Byte */ | |
4110 | case 646: /* Vector Compare Greater Than Unsigned Word */ | |
4111 | case 582: /* Vector Compare Greater Than Unsigned Halfword */ | |
4112 | case 711: /* Vector Compare Greater Than Unsigned Doubleword */ | |
4113 | case 966: /* Vector Compare Bounds Single-Precision */ | |
4114 | case 198: /* Vector Compare Equal To Single-Precision */ | |
4115 | case 454: /* Vector Compare Greater Than or Equal To Single-Precision */ | |
4116 | case 710: /* Vector Compare Greater Than Single-Precision */ | |
6ec2b213 EBM |
4117 | case 7: /* Vector Compare Not Equal Byte */ |
4118 | case 71: /* Vector Compare Not Equal Halfword */ | |
4119 | case 135: /* Vector Compare Not Equal Word */ | |
4120 | case 263: /* Vector Compare Not Equal or Zero Byte */ | |
4121 | case 327: /* Vector Compare Not Equal or Zero Halfword */ | |
4122 | case 391: /* Vector Compare Not Equal or Zero Word */ | |
b4cdae6f WW |
4123 | if (PPC_Rc (insn)) |
4124 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4125 | record_full_arch_list_add_reg (regcache, | |
4126 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4127 | return 0; | |
4128 | } | |
4129 | ||
6ec2b213 EBM |
4130 | if (ext == 1538) |
4131 | { | |
4132 | switch (vra) | |
4133 | { | |
4134 | case 0: /* Vector Count Leading Zero Least-Significant Bits | |
4135 | Byte */ | |
4136 | case 1: /* Vector Count Trailing Zero Least-Significant Bits | |
4137 | Byte */ | |
4138 | record_full_arch_list_add_reg (regcache, | |
4139 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4140 | return 0; | |
4141 | ||
4142 | case 6: /* Vector Negate Word */ | |
4143 | case 7: /* Vector Negate Doubleword */ | |
4144 | case 8: /* Vector Parity Byte Word */ | |
4145 | case 9: /* Vector Parity Byte Doubleword */ | |
4146 | case 10: /* Vector Parity Byte Quadword */ | |
4147 | case 16: /* Vector Extend Sign Byte To Word */ | |
4148 | case 17: /* Vector Extend Sign Halfword To Word */ | |
4149 | case 24: /* Vector Extend Sign Byte To Doubleword */ | |
4150 | case 25: /* Vector Extend Sign Halfword To Doubleword */ | |
4151 | case 26: /* Vector Extend Sign Word To Doubleword */ | |
4152 | case 28: /* Vector Count Trailing Zeros Byte */ | |
4153 | case 29: /* Vector Count Trailing Zeros Halfword */ | |
4154 | case 30: /* Vector Count Trailing Zeros Word */ | |
4155 | case 31: /* Vector Count Trailing Zeros Doubleword */ | |
4156 | record_full_arch_list_add_reg (regcache, | |
4157 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4158 | return 0; | |
4159 | } | |
4160 | } | |
4161 | ||
b4cdae6f WW |
4162 | switch (ext) |
4163 | { | |
4164 | case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */ | |
4165 | case 206: /* Vector Pack Unsigned Word Unsigned Saturate */ | |
4166 | case 270: /* Vector Pack Signed Halfword Unsigned Saturate */ | |
4167 | case 334: /* Vector Pack Signed Word Unsigned Saturate */ | |
4168 | case 398: /* Vector Pack Signed Halfword Signed Saturate */ | |
4169 | case 462: /* Vector Pack Signed Word Signed Saturate */ | |
4170 | case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */ | |
4171 | case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */ | |
4172 | case 1486: /* Vector Pack Signed Doubleword Signed Saturate */ | |
4173 | case 512: /* Vector Add Unsigned Byte Saturate */ | |
4174 | case 576: /* Vector Add Unsigned Halfword Saturate */ | |
4175 | case 640: /* Vector Add Unsigned Word Saturate */ | |
4176 | case 768: /* Vector Add Signed Byte Saturate */ | |
4177 | case 832: /* Vector Add Signed Halfword Saturate */ | |
4178 | case 896: /* Vector Add Signed Word Saturate */ | |
4179 | case 1536: /* Vector Subtract Unsigned Byte Saturate */ | |
4180 | case 1600: /* Vector Subtract Unsigned Halfword Saturate */ | |
4181 | case 1664: /* Vector Subtract Unsigned Word Saturate */ | |
4182 | case 1792: /* Vector Subtract Signed Byte Saturate */ | |
4183 | case 1856: /* Vector Subtract Signed Halfword Saturate */ | |
4184 | case 1920: /* Vector Subtract Signed Word Saturate */ | |
4185 | ||
4186 | case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */ | |
4187 | case 1800: /* Vector Sum across Quarter Signed Byte Saturate */ | |
4188 | case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */ | |
4189 | case 1672: /* Vector Sum across Half Signed Word Saturate */ | |
4190 | case 1928: /* Vector Sum across Signed Word Saturate */ | |
4191 | case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */ | |
4192 | case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */ | |
4193 | record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM); | |
4194 | /* FALL-THROUGH */ | |
4195 | case 12: /* Vector Merge High Byte */ | |
4196 | case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */ | |
4197 | case 76: /* Vector Merge High Halfword */ | |
4198 | case 78: /* Vector Pack Unsigned Word Unsigned Modulo */ | |
4199 | case 140: /* Vector Merge High Word */ | |
4200 | case 268: /* Vector Merge Low Byte */ | |
4201 | case 332: /* Vector Merge Low Halfword */ | |
4202 | case 396: /* Vector Merge Low Word */ | |
4203 | case 526: /* Vector Unpack High Signed Byte */ | |
4204 | case 590: /* Vector Unpack High Signed Halfword */ | |
4205 | case 654: /* Vector Unpack Low Signed Byte */ | |
4206 | case 718: /* Vector Unpack Low Signed Halfword */ | |
4207 | case 782: /* Vector Pack Pixel */ | |
4208 | case 846: /* Vector Unpack High Pixel */ | |
4209 | case 974: /* Vector Unpack Low Pixel */ | |
4210 | case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */ | |
4211 | case 1614: /* Vector Unpack High Signed Word */ | |
4212 | case 1676: /* Vector Merge Odd Word */ | |
4213 | case 1742: /* Vector Unpack Low Signed Word */ | |
4214 | case 1932: /* Vector Merge Even Word */ | |
4215 | case 524: /* Vector Splat Byte */ | |
4216 | case 588: /* Vector Splat Halfword */ | |
4217 | case 652: /* Vector Splat Word */ | |
4218 | case 780: /* Vector Splat Immediate Signed Byte */ | |
4219 | case 844: /* Vector Splat Immediate Signed Halfword */ | |
4220 | case 908: /* Vector Splat Immediate Signed Word */ | |
4221 | case 452: /* Vector Shift Left */ | |
4222 | case 708: /* Vector Shift Right */ | |
4223 | case 1036: /* Vector Shift Left by Octet */ | |
4224 | case 1100: /* Vector Shift Right by Octet */ | |
4225 | case 0: /* Vector Add Unsigned Byte Modulo */ | |
4226 | case 64: /* Vector Add Unsigned Halfword Modulo */ | |
4227 | case 128: /* Vector Add Unsigned Word Modulo */ | |
4228 | case 192: /* Vector Add Unsigned Doubleword Modulo */ | |
4229 | case 256: /* Vector Add Unsigned Quadword Modulo */ | |
4230 | case 320: /* Vector Add & write Carry Unsigned Quadword */ | |
4231 | case 384: /* Vector Add and Write Carry-Out Unsigned Word */ | |
4232 | case 8: /* Vector Multiply Odd Unsigned Byte */ | |
4233 | case 72: /* Vector Multiply Odd Unsigned Halfword */ | |
4234 | case 136: /* Vector Multiply Odd Unsigned Word */ | |
4235 | case 264: /* Vector Multiply Odd Signed Byte */ | |
4236 | case 328: /* Vector Multiply Odd Signed Halfword */ | |
4237 | case 392: /* Vector Multiply Odd Signed Word */ | |
4238 | case 520: /* Vector Multiply Even Unsigned Byte */ | |
4239 | case 584: /* Vector Multiply Even Unsigned Halfword */ | |
4240 | case 648: /* Vector Multiply Even Unsigned Word */ | |
4241 | case 776: /* Vector Multiply Even Signed Byte */ | |
4242 | case 840: /* Vector Multiply Even Signed Halfword */ | |
4243 | case 904: /* Vector Multiply Even Signed Word */ | |
4244 | case 137: /* Vector Multiply Unsigned Word Modulo */ | |
4245 | case 1024: /* Vector Subtract Unsigned Byte Modulo */ | |
4246 | case 1088: /* Vector Subtract Unsigned Halfword Modulo */ | |
4247 | case 1152: /* Vector Subtract Unsigned Word Modulo */ | |
4248 | case 1216: /* Vector Subtract Unsigned Doubleword Modulo */ | |
4249 | case 1280: /* Vector Subtract Unsigned Quadword Modulo */ | |
4250 | case 1344: /* Vector Subtract & write Carry Unsigned Quadword */ | |
4251 | case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */ | |
4252 | case 1282: /* Vector Average Signed Byte */ | |
4253 | case 1346: /* Vector Average Signed Halfword */ | |
4254 | case 1410: /* Vector Average Signed Word */ | |
4255 | case 1026: /* Vector Average Unsigned Byte */ | |
4256 | case 1090: /* Vector Average Unsigned Halfword */ | |
4257 | case 1154: /* Vector Average Unsigned Word */ | |
4258 | case 258: /* Vector Maximum Signed Byte */ | |
4259 | case 322: /* Vector Maximum Signed Halfword */ | |
4260 | case 386: /* Vector Maximum Signed Word */ | |
4261 | case 450: /* Vector Maximum Signed Doubleword */ | |
4262 | case 2: /* Vector Maximum Unsigned Byte */ | |
4263 | case 66: /* Vector Maximum Unsigned Halfword */ | |
4264 | case 130: /* Vector Maximum Unsigned Word */ | |
4265 | case 194: /* Vector Maximum Unsigned Doubleword */ | |
4266 | case 770: /* Vector Minimum Signed Byte */ | |
4267 | case 834: /* Vector Minimum Signed Halfword */ | |
4268 | case 898: /* Vector Minimum Signed Word */ | |
4269 | case 962: /* Vector Minimum Signed Doubleword */ | |
4270 | case 514: /* Vector Minimum Unsigned Byte */ | |
4271 | case 578: /* Vector Minimum Unsigned Halfword */ | |
4272 | case 642: /* Vector Minimum Unsigned Word */ | |
4273 | case 706: /* Vector Minimum Unsigned Doubleword */ | |
4274 | case 1028: /* Vector Logical AND */ | |
4275 | case 1668: /* Vector Logical Equivalent */ | |
4276 | case 1092: /* Vector Logical AND with Complement */ | |
4277 | case 1412: /* Vector Logical NAND */ | |
4278 | case 1348: /* Vector Logical OR with Complement */ | |
4279 | case 1156: /* Vector Logical OR */ | |
4280 | case 1284: /* Vector Logical NOR */ | |
4281 | case 1220: /* Vector Logical XOR */ | |
4282 | case 4: /* Vector Rotate Left Byte */ | |
4283 | case 132: /* Vector Rotate Left Word VX-form */ | |
4284 | case 68: /* Vector Rotate Left Halfword */ | |
4285 | case 196: /* Vector Rotate Left Doubleword */ | |
4286 | case 260: /* Vector Shift Left Byte */ | |
4287 | case 388: /* Vector Shift Left Word */ | |
4288 | case 324: /* Vector Shift Left Halfword */ | |
4289 | case 1476: /* Vector Shift Left Doubleword */ | |
4290 | case 516: /* Vector Shift Right Byte */ | |
4291 | case 644: /* Vector Shift Right Word */ | |
4292 | case 580: /* Vector Shift Right Halfword */ | |
4293 | case 1732: /* Vector Shift Right Doubleword */ | |
4294 | case 772: /* Vector Shift Right Algebraic Byte */ | |
4295 | case 900: /* Vector Shift Right Algebraic Word */ | |
4296 | case 836: /* Vector Shift Right Algebraic Halfword */ | |
4297 | case 964: /* Vector Shift Right Algebraic Doubleword */ | |
4298 | case 10: /* Vector Add Single-Precision */ | |
4299 | case 74: /* Vector Subtract Single-Precision */ | |
4300 | case 1034: /* Vector Maximum Single-Precision */ | |
4301 | case 1098: /* Vector Minimum Single-Precision */ | |
4302 | case 842: /* Vector Convert From Signed Fixed-Point Word */ | |
4303 | case 778: /* Vector Convert From Unsigned Fixed-Point Word */ | |
4304 | case 714: /* Vector Round to Single-Precision Integer toward -Infinity */ | |
4305 | case 522: /* Vector Round to Single-Precision Integer Nearest */ | |
4306 | case 650: /* Vector Round to Single-Precision Integer toward +Infinity */ | |
4307 | case 586: /* Vector Round to Single-Precision Integer toward Zero */ | |
4308 | case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */ | |
4309 | case 458: /* Vector Log Base 2 Estimate Floating-Point */ | |
4310 | case 266: /* Vector Reciprocal Estimate Single-Precision */ | |
4311 | case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */ | |
4312 | case 1288: /* Vector AES Cipher */ | |
4313 | case 1289: /* Vector AES Cipher Last */ | |
4314 | case 1352: /* Vector AES Inverse Cipher */ | |
4315 | case 1353: /* Vector AES Inverse Cipher Last */ | |
4316 | case 1480: /* Vector AES SubBytes */ | |
4317 | case 1730: /* Vector SHA-512 Sigma Doubleword */ | |
4318 | case 1666: /* Vector SHA-256 Sigma Word */ | |
4319 | case 1032: /* Vector Polynomial Multiply-Sum Byte */ | |
4320 | case 1160: /* Vector Polynomial Multiply-Sum Word */ | |
4321 | case 1096: /* Vector Polynomial Multiply-Sum Halfword */ | |
4322 | case 1224: /* Vector Polynomial Multiply-Sum Doubleword */ | |
4323 | case 1292: /* Vector Gather Bits by Bytes by Doubleword */ | |
4324 | case 1794: /* Vector Count Leading Zeros Byte */ | |
4325 | case 1858: /* Vector Count Leading Zeros Halfword */ | |
4326 | case 1922: /* Vector Count Leading Zeros Word */ | |
4327 | case 1986: /* Vector Count Leading Zeros Doubleword */ | |
4328 | case 1795: /* Vector Population Count Byte */ | |
4329 | case 1859: /* Vector Population Count Halfword */ | |
4330 | case 1923: /* Vector Population Count Word */ | |
4331 | case 1987: /* Vector Population Count Doubleword */ | |
4332 | case 1356: /* Vector Bit Permute Quadword */ | |
6ec2b213 EBM |
4333 | case 1484: /* Vector Bit Permute Doubleword */ |
4334 | case 513: /* Vector Multiply-by-10 Unsigned Quadword */ | |
4335 | case 1: /* Vector Multiply-by-10 & write Carry Unsigned | |
4336 | Quadword */ | |
4337 | case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */ | |
4338 | case 65: /* Vector Multiply-by-10 Extended & write Carry | |
4339 | Unsigned Quadword */ | |
4340 | case 1027: /* Vector Absolute Difference Unsigned Byte */ | |
4341 | case 1091: /* Vector Absolute Difference Unsigned Halfword */ | |
4342 | case 1155: /* Vector Absolute Difference Unsigned Word */ | |
4343 | case 1796: /* Vector Shift Right Variable */ | |
4344 | case 1860: /* Vector Shift Left Variable */ | |
4345 | case 133: /* Vector Rotate Left Word then Mask Insert */ | |
4346 | case 197: /* Vector Rotate Left Doubleword then Mask Insert */ | |
4347 | case 389: /* Vector Rotate Left Word then AND with Mask */ | |
4348 | case 453: /* Vector Rotate Left Doubleword then AND with Mask */ | |
4349 | case 525: /* Vector Extract Unsigned Byte */ | |
4350 | case 589: /* Vector Extract Unsigned Halfword */ | |
4351 | case 653: /* Vector Extract Unsigned Word */ | |
4352 | case 717: /* Vector Extract Doubleword */ | |
4353 | case 781: /* Vector Insert Byte */ | |
4354 | case 845: /* Vector Insert Halfword */ | |
4355 | case 909: /* Vector Insert Word */ | |
4356 | case 973: /* Vector Insert Doubleword */ | |
b4cdae6f WW |
4357 | record_full_arch_list_add_reg (regcache, |
4358 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4359 | return 0; | |
4360 | ||
6ec2b213 EBM |
4361 | case 1549: /* Vector Extract Unsigned Byte Left-Indexed */ |
4362 | case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */ | |
4363 | case 1677: /* Vector Extract Unsigned Word Left-Indexed */ | |
4364 | case 1805: /* Vector Extract Unsigned Byte Right-Indexed */ | |
4365 | case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */ | |
4366 | case 1933: /* Vector Extract Unsigned Word Right-Indexed */ | |
4367 | record_full_arch_list_add_reg (regcache, | |
4368 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4369 | return 0; | |
4370 | ||
b4cdae6f WW |
4371 | case 1604: /* Move To Vector Status and Control Register */ |
4372 | record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM); | |
4373 | return 0; | |
4374 | case 1540: /* Move From Vector Status and Control Register */ | |
4375 | record_full_arch_list_add_reg (regcache, | |
4376 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4377 | return 0; | |
6ec2b213 EBM |
4378 | case 833: /* Decimal Copy Sign */ |
4379 | record_full_arch_list_add_reg (regcache, | |
4380 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4381 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4382 | return 0; | |
b4cdae6f WW |
4383 | } |
4384 | ||
810c1026 WW |
4385 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
4386 | "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
4387 | return -1; |
4388 | } | |
4389 | ||
ddeca1df WW |
4390 | /* Parse and record instructions of primary opcode-19 at ADDR. |
4391 | Return 0 if successful. */ | |
b4cdae6f WW |
4392 | |
4393 | static int | |
4394 | ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache, | |
4395 | CORE_ADDR addr, uint32_t insn) | |
4396 | { | |
4397 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4398 | int ext = PPC_EXTOP (insn); | |
4399 | ||
6ec2b213 EBM |
4400 | switch (ext & 0x01f) |
4401 | { | |
4402 | case 2: /* Add PC Immediate Shifted */ | |
4403 | record_full_arch_list_add_reg (regcache, | |
4404 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4405 | return 0; | |
4406 | } | |
4407 | ||
b4cdae6f WW |
4408 | switch (ext) |
4409 | { | |
4410 | case 0: /* Move Condition Register Field */ | |
4411 | case 33: /* Condition Register NOR */ | |
4412 | case 129: /* Condition Register AND with Complement */ | |
4413 | case 193: /* Condition Register XOR */ | |
4414 | case 225: /* Condition Register NAND */ | |
4415 | case 257: /* Condition Register AND */ | |
4416 | case 289: /* Condition Register Equivalent */ | |
4417 | case 417: /* Condition Register OR with Complement */ | |
4418 | case 449: /* Condition Register OR */ | |
4419 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4420 | return 0; | |
4421 | ||
4422 | case 16: /* Branch Conditional */ | |
4423 | case 560: /* Branch Conditional to Branch Target Address Register */ | |
4424 | if ((PPC_BO (insn) & 0x4) == 0) | |
4425 | record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum); | |
4426 | /* FALL-THROUGH */ | |
4427 | case 528: /* Branch Conditional to Count Register */ | |
4428 | if (PPC_LK (insn)) | |
4429 | record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum); | |
4430 | return 0; | |
4431 | ||
4432 | case 150: /* Instruction Synchronize */ | |
4433 | /* Do nothing. */ | |
4434 | return 0; | |
4435 | } | |
4436 | ||
810c1026 WW |
4437 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
4438 | "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
4439 | return -1; |
4440 | } | |
4441 | ||
ddeca1df WW |
4442 | /* Parse and record instructions of primary opcode-31 at ADDR. |
4443 | Return 0 if successful. */ | |
b4cdae6f WW |
4444 | |
4445 | static int | |
4446 | ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache, | |
4447 | CORE_ADDR addr, uint32_t insn) | |
4448 | { | |
4449 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
4450 | int ext = PPC_EXTOP (insn); | |
4451 | int tmp, nr, nb, i; | |
4452 | CORE_ADDR at_dcsz, ea = 0; | |
4453 | ULONGEST rb, ra, xer; | |
4454 | int size = 0; | |
4455 | ||
4456 | /* These instructions have OE bit. */ | |
4457 | switch (ext & 0x1ff) | |
4458 | { | |
4459 | /* These write RT and XER. Update CR if RC is set. */ | |
4460 | case 8: /* Subtract from carrying */ | |
4461 | case 10: /* Add carrying */ | |
4462 | case 136: /* Subtract from extended */ | |
4463 | case 138: /* Add extended */ | |
4464 | case 200: /* Subtract from zero extended */ | |
4465 | case 202: /* Add to zero extended */ | |
4466 | case 232: /* Subtract from minus one extended */ | |
4467 | case 234: /* Add to minus one extended */ | |
4468 | /* CA is always altered, but SO/OV are only altered when OE=1. | |
4469 | In any case, XER is always altered. */ | |
4470 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4471 | if (PPC_RC (insn)) | |
4472 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4473 | record_full_arch_list_add_reg (regcache, | |
4474 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4475 | return 0; | |
4476 | ||
4477 | /* These write RT. Update CR if RC is set and update XER if OE is set. */ | |
4478 | case 40: /* Subtract from */ | |
4479 | case 104: /* Negate */ | |
4480 | case 233: /* Multiply low doubleword */ | |
4481 | case 235: /* Multiply low word */ | |
4482 | case 266: /* Add */ | |
4483 | case 393: /* Divide Doubleword Extended Unsigned */ | |
4484 | case 395: /* Divide Word Extended Unsigned */ | |
4485 | case 425: /* Divide Doubleword Extended */ | |
4486 | case 427: /* Divide Word Extended */ | |
4487 | case 457: /* Divide Doubleword Unsigned */ | |
4488 | case 459: /* Divide Word Unsigned */ | |
4489 | case 489: /* Divide Doubleword */ | |
4490 | case 491: /* Divide Word */ | |
4491 | if (PPC_OE (insn)) | |
4492 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4493 | /* FALL-THROUGH */ | |
4494 | case 9: /* Multiply High Doubleword Unsigned */ | |
4495 | case 11: /* Multiply High Word Unsigned */ | |
4496 | case 73: /* Multiply High Doubleword */ | |
4497 | case 75: /* Multiply High Word */ | |
4498 | if (PPC_RC (insn)) | |
4499 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4500 | record_full_arch_list_add_reg (regcache, | |
4501 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4502 | return 0; | |
4503 | } | |
4504 | ||
4505 | if ((ext & 0x1f) == 15) | |
4506 | { | |
4507 | /* Integer Select. bit[16:20] is used for BC. */ | |
4508 | record_full_arch_list_add_reg (regcache, | |
4509 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4510 | return 0; | |
4511 | } | |
4512 | ||
6ec2b213 EBM |
4513 | if ((ext & 0xff) == 170) |
4514 | { | |
4515 | /* Add Extended using alternate carry bits */ | |
4516 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4517 | record_full_arch_list_add_reg (regcache, | |
4518 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4519 | return 0; | |
4520 | } | |
4521 | ||
b4cdae6f WW |
4522 | switch (ext) |
4523 | { | |
4524 | case 78: /* Determine Leftmost Zero Byte */ | |
4525 | if (PPC_RC (insn)) | |
4526 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4527 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4528 | record_full_arch_list_add_reg (regcache, | |
4529 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4530 | return 0; | |
4531 | ||
4532 | /* These only write RT. */ | |
4533 | case 19: /* Move from condition register */ | |
4534 | /* Move From One Condition Register Field */ | |
4535 | case 74: /* Add and Generate Sixes */ | |
4536 | case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */ | |
4537 | case 302: /* Move From Branch History Rolling Buffer */ | |
4538 | case 339: /* Move From Special Purpose Register */ | |
4539 | case 371: /* Move From Time Base [Phased-Out] */ | |
6ec2b213 EBM |
4540 | case 309: /* Load Doubleword Monitored Indexed */ |
4541 | case 128: /* Set Boolean */ | |
4542 | case 755: /* Deliver A Random Number */ | |
b4cdae6f WW |
4543 | record_full_arch_list_add_reg (regcache, |
4544 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4545 | return 0; | |
4546 | ||
4547 | /* These only write to RA. */ | |
4548 | case 51: /* Move From VSR Doubleword */ | |
4549 | case 115: /* Move From VSR Word and Zero */ | |
4550 | case 122: /* Population count bytes */ | |
4551 | case 378: /* Population count words */ | |
4552 | case 506: /* Population count doublewords */ | |
4553 | case 154: /* Parity Word */ | |
4554 | case 186: /* Parity Doubleword */ | |
4555 | case 252: /* Bit Permute Doubleword */ | |
4556 | case 282: /* Convert Declets To Binary Coded Decimal */ | |
4557 | case 314: /* Convert Binary Coded Decimal To Declets */ | |
4558 | case 508: /* Compare bytes */ | |
6ec2b213 | 4559 | case 307: /* Move From VSR Lower Doubleword */ |
b4cdae6f WW |
4560 | record_full_arch_list_add_reg (regcache, |
4561 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4562 | return 0; | |
4563 | ||
4564 | /* These write CR and optional RA. */ | |
4565 | case 792: /* Shift Right Algebraic Word */ | |
4566 | case 794: /* Shift Right Algebraic Doubleword */ | |
4567 | case 824: /* Shift Right Algebraic Word Immediate */ | |
4568 | case 826: /* Shift Right Algebraic Doubleword Immediate (413) */ | |
4569 | case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */ | |
4570 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4571 | record_full_arch_list_add_reg (regcache, | |
4572 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4573 | /* FALL-THROUGH */ | |
4574 | case 0: /* Compare */ | |
4575 | case 32: /* Compare logical */ | |
4576 | case 144: /* Move To Condition Register Fields */ | |
4577 | /* Move To One Condition Register Field */ | |
6ec2b213 EBM |
4578 | case 192: /* Compare Ranged Byte */ |
4579 | case 224: /* Compare Equal Byte */ | |
4580 | case 576: /* Move XER to CR Extended */ | |
4581 | case 902: /* Paste (should always fail due to single-stepping and | |
4582 | the memory location might not be accessible, so | |
4583 | record only CR) */ | |
b4cdae6f WW |
4584 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
4585 | return 0; | |
4586 | ||
4587 | /* These write to RT. Update RA if 'update indexed.' */ | |
4588 | case 53: /* Load Doubleword with Update Indexed */ | |
4589 | case 119: /* Load Byte and Zero with Update Indexed */ | |
4590 | case 311: /* Load Halfword and Zero with Update Indexed */ | |
4591 | case 55: /* Load Word and Zero with Update Indexed */ | |
4592 | case 375: /* Load Halfword Algebraic with Update Indexed */ | |
4593 | case 373: /* Load Word Algebraic with Update Indexed */ | |
4594 | record_full_arch_list_add_reg (regcache, | |
4595 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4596 | /* FALL-THROUGH */ | |
4597 | case 21: /* Load Doubleword Indexed */ | |
4598 | case 52: /* Load Byte And Reserve Indexed */ | |
4599 | case 116: /* Load Halfword And Reserve Indexed */ | |
4600 | case 20: /* Load Word And Reserve Indexed */ | |
4601 | case 84: /* Load Doubleword And Reserve Indexed */ | |
4602 | case 87: /* Load Byte and Zero Indexed */ | |
4603 | case 279: /* Load Halfword and Zero Indexed */ | |
4604 | case 23: /* Load Word and Zero Indexed */ | |
4605 | case 343: /* Load Halfword Algebraic Indexed */ | |
4606 | case 341: /* Load Word Algebraic Indexed */ | |
4607 | case 790: /* Load Halfword Byte-Reverse Indexed */ | |
4608 | case 534: /* Load Word Byte-Reverse Indexed */ | |
4609 | case 532: /* Load Doubleword Byte-Reverse Indexed */ | |
6ec2b213 EBM |
4610 | case 582: /* Load Word Atomic */ |
4611 | case 614: /* Load Doubleword Atomic */ | |
4612 | case 265: /* Modulo Unsigned Doubleword */ | |
4613 | case 777: /* Modulo Signed Doubleword */ | |
4614 | case 267: /* Modulo Unsigned Word */ | |
4615 | case 779: /* Modulo Signed Word */ | |
b4cdae6f WW |
4616 | record_full_arch_list_add_reg (regcache, |
4617 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
4618 | return 0; | |
4619 | ||
4620 | case 597: /* Load String Word Immediate */ | |
4621 | case 533: /* Load String Word Indexed */ | |
4622 | if (ext == 597) | |
4623 | { | |
4624 | nr = PPC_NB (insn); | |
4625 | if (nr == 0) | |
4626 | nr = 32; | |
4627 | } | |
4628 | else | |
4629 | { | |
4630 | regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer); | |
4631 | nr = PPC_XER_NB (xer); | |
4632 | } | |
4633 | ||
4634 | nr = (nr + 3) >> 2; | |
4635 | ||
4636 | /* If n=0, the contents of register RT are undefined. */ | |
4637 | if (nr == 0) | |
4638 | nr = 1; | |
4639 | ||
4640 | for (i = 0; i < nr; i++) | |
4641 | record_full_arch_list_add_reg (regcache, | |
4642 | tdep->ppc_gp0_regnum | |
4643 | + ((PPC_RT (insn) + i) & 0x1f)); | |
4644 | return 0; | |
4645 | ||
4646 | case 276: /* Load Quadword And Reserve Indexed */ | |
4647 | tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1); | |
4648 | record_full_arch_list_add_reg (regcache, tmp); | |
4649 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
4650 | return 0; | |
4651 | ||
4652 | /* These write VRT. */ | |
4653 | case 6: /* Load Vector for Shift Left Indexed */ | |
4654 | case 38: /* Load Vector for Shift Right Indexed */ | |
4655 | case 7: /* Load Vector Element Byte Indexed */ | |
4656 | case 39: /* Load Vector Element Halfword Indexed */ | |
4657 | case 71: /* Load Vector Element Word Indexed */ | |
4658 | case 103: /* Load Vector Indexed */ | |
4659 | case 359: /* Load Vector Indexed LRU */ | |
4660 | record_full_arch_list_add_reg (regcache, | |
4661 | tdep->ppc_vr0_regnum + PPC_VRT (insn)); | |
4662 | return 0; | |
4663 | ||
4664 | /* These write FRT. Update RA if 'update indexed.' */ | |
4665 | case 567: /* Load Floating-Point Single with Update Indexed */ | |
4666 | case 631: /* Load Floating-Point Double with Update Indexed */ | |
4667 | record_full_arch_list_add_reg (regcache, | |
4668 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4669 | /* FALL-THROUGH */ | |
4670 | case 535: /* Load Floating-Point Single Indexed */ | |
4671 | case 599: /* Load Floating-Point Double Indexed */ | |
4672 | case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */ | |
4673 | case 887: /* Load Floating-Point as Integer Word and Zero Indexed */ | |
4674 | record_full_arch_list_add_reg (regcache, | |
4675 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
4676 | return 0; | |
4677 | ||
4678 | case 791: /* Load Floating-Point Double Pair Indexed */ | |
4679 | tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1); | |
4680 | record_full_arch_list_add_reg (regcache, tmp); | |
4681 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
4682 | return 0; | |
4683 | ||
4684 | case 179: /* Move To VSR Doubleword */ | |
4685 | case 211: /* Move To VSR Word Algebraic */ | |
4686 | case 243: /* Move To VSR Word and Zero */ | |
4687 | case 588: /* Load VSX Scalar Doubleword Indexed */ | |
4688 | case 524: /* Load VSX Scalar Single-Precision Indexed */ | |
4689 | case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */ | |
4690 | case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */ | |
4691 | case 844: /* Load VSX Vector Doubleword*2 Indexed */ | |
4692 | case 332: /* Load VSX Vector Doubleword & Splat Indexed */ | |
4693 | case 780: /* Load VSX Vector Word*4 Indexed */ | |
6ec2b213 EBM |
4694 | case 268: /* Load VSX Vector Indexed */ |
4695 | case 364: /* Load VSX Vector Word & Splat Indexed */ | |
4696 | case 812: /* Load VSX Vector Halfword*8 Indexed */ | |
4697 | case 876: /* Load VSX Vector Byte*16 Indexed */ | |
4698 | case 269: /* Load VSX Vector with Length */ | |
4699 | case 301: /* Load VSX Vector Left-justified with Length */ | |
4700 | case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */ | |
4701 | case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */ | |
4702 | case 403: /* Move To VSR Word & Splat */ | |
4703 | case 435: /* Move To VSR Double Doubleword */ | |
b4cdae6f WW |
4704 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); |
4705 | return 0; | |
4706 | ||
4707 | /* These write RA. Update CR if RC is set. */ | |
4708 | case 24: /* Shift Left Word */ | |
4709 | case 26: /* Count Leading Zeros Word */ | |
4710 | case 27: /* Shift Left Doubleword */ | |
4711 | case 28: /* AND */ | |
4712 | case 58: /* Count Leading Zeros Doubleword */ | |
4713 | case 60: /* AND with Complement */ | |
4714 | case 124: /* NOR */ | |
4715 | case 284: /* Equivalent */ | |
4716 | case 316: /* XOR */ | |
4717 | case 476: /* NAND */ | |
4718 | case 412: /* OR with Complement */ | |
4719 | case 444: /* OR */ | |
4720 | case 536: /* Shift Right Word */ | |
4721 | case 539: /* Shift Right Doubleword */ | |
4722 | case 922: /* Extend Sign Halfword */ | |
4723 | case 954: /* Extend Sign Byte */ | |
4724 | case 986: /* Extend Sign Word */ | |
6ec2b213 EBM |
4725 | case 538: /* Count Trailing Zeros Word */ |
4726 | case 570: /* Count Trailing Zeros Doubleword */ | |
4727 | case 890: /* Extend-Sign Word and Shift Left Immediate (445) */ | |
4728 | case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */ | |
7ca18ed6 EBM |
4729 | |
4730 | if (ext == 444 && tdep->ppc_ppr_regnum >= 0 | |
4731 | && (PPC_RS (insn) == PPC_RA (insn)) | |
4732 | && (PPC_RA (insn) == PPC_RB (insn)) | |
4733 | && !PPC_RC (insn)) | |
4734 | { | |
4735 | /* or Rx,Rx,Rx alters PRI in PPR. */ | |
4736 | record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum); | |
4737 | return 0; | |
4738 | } | |
4739 | ||
b4cdae6f WW |
4740 | if (PPC_RC (insn)) |
4741 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4742 | record_full_arch_list_add_reg (regcache, | |
4743 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4744 | return 0; | |
4745 | ||
4746 | /* Store memory. */ | |
4747 | case 181: /* Store Doubleword with Update Indexed */ | |
4748 | case 183: /* Store Word with Update Indexed */ | |
4749 | case 247: /* Store Byte with Update Indexed */ | |
4750 | case 439: /* Store Half Word with Update Indexed */ | |
4751 | case 695: /* Store Floating-Point Single with Update Indexed */ | |
4752 | case 759: /* Store Floating-Point Double with Update Indexed */ | |
4753 | record_full_arch_list_add_reg (regcache, | |
4754 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
4755 | /* FALL-THROUGH */ | |
4756 | case 135: /* Store Vector Element Byte Indexed */ | |
4757 | case 167: /* Store Vector Element Halfword Indexed */ | |
4758 | case 199: /* Store Vector Element Word Indexed */ | |
4759 | case 231: /* Store Vector Indexed */ | |
4760 | case 487: /* Store Vector Indexed LRU */ | |
4761 | case 716: /* Store VSX Scalar Doubleword Indexed */ | |
4762 | case 140: /* Store VSX Scalar as Integer Word Indexed */ | |
4763 | case 652: /* Store VSX Scalar Single-Precision Indexed */ | |
4764 | case 972: /* Store VSX Vector Doubleword*2 Indexed */ | |
4765 | case 908: /* Store VSX Vector Word*4 Indexed */ | |
4766 | case 149: /* Store Doubleword Indexed */ | |
4767 | case 151: /* Store Word Indexed */ | |
4768 | case 215: /* Store Byte Indexed */ | |
4769 | case 407: /* Store Half Word Indexed */ | |
4770 | case 694: /* Store Byte Conditional Indexed */ | |
4771 | case 726: /* Store Halfword Conditional Indexed */ | |
4772 | case 150: /* Store Word Conditional Indexed */ | |
4773 | case 214: /* Store Doubleword Conditional Indexed */ | |
4774 | case 182: /* Store Quadword Conditional Indexed */ | |
4775 | case 662: /* Store Word Byte-Reverse Indexed */ | |
4776 | case 918: /* Store Halfword Byte-Reverse Indexed */ | |
4777 | case 660: /* Store Doubleword Byte-Reverse Indexed */ | |
4778 | case 663: /* Store Floating-Point Single Indexed */ | |
4779 | case 727: /* Store Floating-Point Double Indexed */ | |
4780 | case 919: /* Store Floating-Point Double Pair Indexed */ | |
4781 | case 983: /* Store Floating-Point as Integer Word Indexed */ | |
6ec2b213 EBM |
4782 | case 396: /* Store VSX Vector Indexed */ |
4783 | case 940: /* Store VSX Vector Halfword*8 Indexed */ | |
4784 | case 1004: /* Store VSX Vector Byte*16 Indexed */ | |
4785 | case 909: /* Store VSX Scalar as Integer Byte Indexed */ | |
4786 | case 941: /* Store VSX Scalar as Integer Halfword Indexed */ | |
b4cdae6f WW |
4787 | if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182) |
4788 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4789 | ||
4790 | ra = 0; | |
4791 | if (PPC_RA (insn) != 0) | |
4792 | regcache_raw_read_unsigned (regcache, | |
4793 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
4794 | regcache_raw_read_unsigned (regcache, | |
4795 | tdep->ppc_gp0_regnum + PPC_RB (insn), &rb); | |
4796 | ea = ra + rb; | |
4797 | ||
4798 | switch (ext) | |
4799 | { | |
4800 | case 183: /* Store Word with Update Indexed */ | |
4801 | case 199: /* Store Vector Element Word Indexed */ | |
4802 | case 140: /* Store VSX Scalar as Integer Word Indexed */ | |
4803 | case 652: /* Store VSX Scalar Single-Precision Indexed */ | |
4804 | case 151: /* Store Word Indexed */ | |
4805 | case 150: /* Store Word Conditional Indexed */ | |
4806 | case 662: /* Store Word Byte-Reverse Indexed */ | |
4807 | case 663: /* Store Floating-Point Single Indexed */ | |
4808 | case 695: /* Store Floating-Point Single with Update Indexed */ | |
4809 | case 983: /* Store Floating-Point as Integer Word Indexed */ | |
4810 | size = 4; | |
4811 | break; | |
4812 | case 247: /* Store Byte with Update Indexed */ | |
4813 | case 135: /* Store Vector Element Byte Indexed */ | |
4814 | case 215: /* Store Byte Indexed */ | |
4815 | case 694: /* Store Byte Conditional Indexed */ | |
6ec2b213 | 4816 | case 909: /* Store VSX Scalar as Integer Byte Indexed */ |
b4cdae6f WW |
4817 | size = 1; |
4818 | break; | |
4819 | case 439: /* Store Halfword with Update Indexed */ | |
4820 | case 167: /* Store Vector Element Halfword Indexed */ | |
4821 | case 407: /* Store Halfword Indexed */ | |
4822 | case 726: /* Store Halfword Conditional Indexed */ | |
4823 | case 918: /* Store Halfword Byte-Reverse Indexed */ | |
6ec2b213 | 4824 | case 941: /* Store VSX Scalar as Integer Halfword Indexed */ |
b4cdae6f WW |
4825 | size = 2; |
4826 | break; | |
4827 | case 181: /* Store Doubleword with Update Indexed */ | |
4828 | case 716: /* Store VSX Scalar Doubleword Indexed */ | |
4829 | case 149: /* Store Doubleword Indexed */ | |
4830 | case 214: /* Store Doubleword Conditional Indexed */ | |
4831 | case 660: /* Store Doubleword Byte-Reverse Indexed */ | |
4832 | case 727: /* Store Floating-Point Double Indexed */ | |
4833 | case 759: /* Store Floating-Point Double with Update Indexed */ | |
4834 | size = 8; | |
4835 | break; | |
4836 | case 972: /* Store VSX Vector Doubleword*2 Indexed */ | |
4837 | case 908: /* Store VSX Vector Word*4 Indexed */ | |
4838 | case 182: /* Store Quadword Conditional Indexed */ | |
4839 | case 231: /* Store Vector Indexed */ | |
4840 | case 487: /* Store Vector Indexed LRU */ | |
4841 | case 919: /* Store Floating-Point Double Pair Indexed */ | |
6ec2b213 EBM |
4842 | case 396: /* Store VSX Vector Indexed */ |
4843 | case 940: /* Store VSX Vector Halfword*8 Indexed */ | |
4844 | case 1004: /* Store VSX Vector Byte*16 Indexed */ | |
b4cdae6f WW |
4845 | size = 16; |
4846 | break; | |
4847 | default: | |
4848 | gdb_assert (0); | |
4849 | } | |
4850 | ||
4851 | /* Align address for Store Vector instructions. */ | |
4852 | switch (ext) | |
4853 | { | |
4854 | case 167: /* Store Vector Element Halfword Indexed */ | |
4855 | addr = addr & ~0x1ULL; | |
4856 | break; | |
4857 | ||
4858 | case 199: /* Store Vector Element Word Indexed */ | |
4859 | addr = addr & ~0x3ULL; | |
4860 | break; | |
4861 | ||
4862 | case 231: /* Store Vector Indexed */ | |
4863 | case 487: /* Store Vector Indexed LRU */ | |
4864 | addr = addr & ~0xfULL; | |
4865 | break; | |
4866 | } | |
4867 | ||
4868 | record_full_arch_list_add_mem (addr, size); | |
4869 | return 0; | |
4870 | ||
6ec2b213 EBM |
4871 | case 397: /* Store VSX Vector with Length */ |
4872 | case 429: /* Store VSX Vector Left-justified with Length */ | |
de678454 | 4873 | ra = 0; |
6ec2b213 EBM |
4874 | if (PPC_RA (insn) != 0) |
4875 | regcache_raw_read_unsigned (regcache, | |
de678454 EBM |
4876 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); |
4877 | ea = ra; | |
6ec2b213 EBM |
4878 | regcache_raw_read_unsigned (regcache, |
4879 | tdep->ppc_gp0_regnum + PPC_RB (insn), &rb); | |
4880 | /* Store up to 16 bytes. */ | |
4881 | nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff); | |
4882 | if (nb > 0) | |
4883 | record_full_arch_list_add_mem (ea, nb); | |
4884 | return 0; | |
4885 | ||
4886 | case 710: /* Store Word Atomic */ | |
4887 | case 742: /* Store Doubleword Atomic */ | |
de678454 | 4888 | ra = 0; |
6ec2b213 EBM |
4889 | if (PPC_RA (insn) != 0) |
4890 | regcache_raw_read_unsigned (regcache, | |
de678454 EBM |
4891 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); |
4892 | ea = ra; | |
6ec2b213 EBM |
4893 | switch (ext) |
4894 | { | |
4895 | case 710: /* Store Word Atomic */ | |
4896 | size = 8; | |
4897 | break; | |
4898 | case 742: /* Store Doubleword Atomic */ | |
4899 | size = 16; | |
4900 | break; | |
4901 | default: | |
4902 | gdb_assert (0); | |
4903 | } | |
4904 | record_full_arch_list_add_mem (ea, size); | |
4905 | return 0; | |
4906 | ||
b4cdae6f WW |
4907 | case 725: /* Store String Word Immediate */ |
4908 | ra = 0; | |
4909 | if (PPC_RA (insn) != 0) | |
9f7efd5b EBM |
4910 | regcache_raw_read_unsigned (regcache, |
4911 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
b4cdae6f WW |
4912 | ea += ra; |
4913 | ||
4914 | nb = PPC_NB (insn); | |
4915 | if (nb == 0) | |
4916 | nb = 32; | |
4917 | ||
4918 | record_full_arch_list_add_mem (ea, nb); | |
4919 | ||
4920 | return 0; | |
4921 | ||
4922 | case 661: /* Store String Word Indexed */ | |
4923 | ra = 0; | |
4924 | if (PPC_RA (insn) != 0) | |
9f7efd5b EBM |
4925 | regcache_raw_read_unsigned (regcache, |
4926 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
b4cdae6f WW |
4927 | ea += ra; |
4928 | ||
4929 | regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer); | |
4930 | nb = PPC_XER_NB (xer); | |
4931 | ||
4932 | if (nb != 0) | |
4933 | { | |
9f7efd5b EBM |
4934 | regcache_raw_read_unsigned (regcache, |
4935 | tdep->ppc_gp0_regnum + PPC_RB (insn), | |
4936 | &rb); | |
b4cdae6f WW |
4937 | ea += rb; |
4938 | record_full_arch_list_add_mem (ea, nb); | |
4939 | } | |
4940 | ||
4941 | return 0; | |
4942 | ||
4943 | case 467: /* Move To Special Purpose Register */ | |
4944 | switch (PPC_SPR (insn)) | |
4945 | { | |
4946 | case 1: /* XER */ | |
4947 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4948 | return 0; | |
7ca18ed6 EBM |
4949 | case 3: /* DSCR */ |
4950 | if (tdep->ppc_dscr_regnum >= 0) | |
4951 | record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum); | |
4952 | return 0; | |
b4cdae6f WW |
4953 | case 8: /* LR */ |
4954 | record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum); | |
4955 | return 0; | |
4956 | case 9: /* CTR */ | |
4957 | record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum); | |
4958 | return 0; | |
4959 | case 256: /* VRSAVE */ | |
4960 | record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum); | |
4961 | return 0; | |
f2cf6173 EBM |
4962 | case 815: /* TAR */ |
4963 | if (tdep->ppc_tar_regnum >= 0) | |
4964 | record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum); | |
4965 | return 0; | |
7ca18ed6 EBM |
4966 | case 896: |
4967 | case 898: /* PPR */ | |
4968 | if (tdep->ppc_ppr_regnum >= 0) | |
4969 | record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum); | |
4970 | return 0; | |
b4cdae6f WW |
4971 | } |
4972 | ||
4973 | goto UNKNOWN_OP; | |
4974 | ||
4975 | case 147: /* Move To Split Little Endian */ | |
4976 | record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum); | |
4977 | return 0; | |
4978 | ||
4979 | case 512: /* Move to Condition Register from XER */ | |
4980 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
4981 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
4982 | return 0; | |
4983 | ||
4984 | case 4: /* Trap Word */ | |
4985 | case 68: /* Trap Doubleword */ | |
4986 | case 430: /* Clear BHRB */ | |
4987 | case 598: /* Synchronize */ | |
4988 | case 62: /* Wait for Interrupt */ | |
6ec2b213 | 4989 | case 30: /* Wait */ |
b4cdae6f WW |
4990 | case 22: /* Instruction Cache Block Touch */ |
4991 | case 854: /* Enforce In-order Execution of I/O */ | |
4992 | case 246: /* Data Cache Block Touch for Store */ | |
4993 | case 54: /* Data Cache Block Store */ | |
4994 | case 86: /* Data Cache Block Flush */ | |
4995 | case 278: /* Data Cache Block Touch */ | |
4996 | case 758: /* Data Cache Block Allocate */ | |
4997 | case 982: /* Instruction Cache Block Invalidate */ | |
6ec2b213 EBM |
4998 | case 774: /* Copy */ |
4999 | case 838: /* CP_Abort */ | |
b4cdae6f WW |
5000 | return 0; |
5001 | ||
5002 | case 654: /* Transaction Begin */ | |
5003 | case 686: /* Transaction End */ | |
b4cdae6f WW |
5004 | case 750: /* Transaction Suspend or Resume */ |
5005 | case 782: /* Transaction Abort Word Conditional */ | |
5006 | case 814: /* Transaction Abort Doubleword Conditional */ | |
5007 | case 846: /* Transaction Abort Word Conditional Immediate */ | |
5008 | case 878: /* Transaction Abort Doubleword Conditional Immediate */ | |
5009 | case 910: /* Transaction Abort */ | |
d44c67f3 EBM |
5010 | record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum); |
5011 | /* FALL-THROUGH */ | |
5012 | case 718: /* Transaction Check */ | |
5013 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5014 | return 0; | |
b4cdae6f WW |
5015 | |
5016 | case 1014: /* Data Cache Block set to Zero */ | |
8b88a78e | 5017 | if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0 |
b4cdae6f WW |
5018 | || at_dcsz == 0) |
5019 | at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */ | |
5020 | ||
bec734b2 | 5021 | ra = 0; |
b4cdae6f WW |
5022 | if (PPC_RA (insn) != 0) |
5023 | regcache_raw_read_unsigned (regcache, | |
5024 | tdep->ppc_gp0_regnum + PPC_RA (insn), &ra); | |
5025 | regcache_raw_read_unsigned (regcache, | |
5026 | tdep->ppc_gp0_regnum + PPC_RB (insn), &rb); | |
5027 | ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1)); | |
5028 | record_full_arch_list_add_mem (ea, at_dcsz); | |
5029 | return 0; | |
5030 | } | |
5031 | ||
5032 | UNKNOWN_OP: | |
810c1026 WW |
5033 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
5034 | "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
5035 | return -1; |
5036 | } | |
5037 | ||
ddeca1df WW |
5038 | /* Parse and record instructions of primary opcode-59 at ADDR. |
5039 | Return 0 if successful. */ | |
b4cdae6f WW |
5040 | |
5041 | static int | |
5042 | ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5043 | CORE_ADDR addr, uint32_t insn) | |
5044 | { | |
5045 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5046 | int ext = PPC_EXTOP (insn); | |
5047 | ||
5048 | switch (ext & 0x1f) | |
5049 | { | |
5050 | case 18: /* Floating Divide */ | |
5051 | case 20: /* Floating Subtract */ | |
5052 | case 21: /* Floating Add */ | |
5053 | case 22: /* Floating Square Root */ | |
5054 | case 24: /* Floating Reciprocal Estimate */ | |
5055 | case 25: /* Floating Multiply */ | |
5056 | case 26: /* Floating Reciprocal Square Root Estimate */ | |
5057 | case 28: /* Floating Multiply-Subtract */ | |
5058 | case 29: /* Floating Multiply-Add */ | |
5059 | case 30: /* Floating Negative Multiply-Subtract */ | |
5060 | case 31: /* Floating Negative Multiply-Add */ | |
5061 | record_full_arch_list_add_reg (regcache, | |
5062 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5063 | if (PPC_RC (insn)) | |
5064 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5065 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5066 | ||
5067 | return 0; | |
5068 | } | |
5069 | ||
5070 | switch (ext) | |
5071 | { | |
5072 | case 2: /* DFP Add */ | |
5073 | case 3: /* DFP Quantize */ | |
5074 | case 34: /* DFP Multiply */ | |
5075 | case 35: /* DFP Reround */ | |
5076 | case 67: /* DFP Quantize Immediate */ | |
5077 | case 99: /* DFP Round To FP Integer With Inexact */ | |
5078 | case 227: /* DFP Round To FP Integer Without Inexact */ | |
5079 | case 258: /* DFP Convert To DFP Long! */ | |
5080 | case 290: /* DFP Convert To Fixed */ | |
5081 | case 514: /* DFP Subtract */ | |
5082 | case 546: /* DFP Divide */ | |
5083 | case 770: /* DFP Round To DFP Short! */ | |
5084 | case 802: /* DFP Convert From Fixed */ | |
5085 | case 834: /* DFP Encode BCD To DPD */ | |
5086 | if (PPC_RC (insn)) | |
5087 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5088 | record_full_arch_list_add_reg (regcache, | |
5089 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5090 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5091 | return 0; | |
5092 | ||
5093 | case 130: /* DFP Compare Ordered */ | |
5094 | case 162: /* DFP Test Exponent */ | |
5095 | case 194: /* DFP Test Data Class */ | |
5096 | case 226: /* DFP Test Data Group */ | |
5097 | case 642: /* DFP Compare Unordered */ | |
5098 | case 674: /* DFP Test Significance */ | |
6ec2b213 | 5099 | case 675: /* DFP Test Significance Immediate */ |
b4cdae6f WW |
5100 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
5101 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5102 | return 0; | |
5103 | ||
5104 | case 66: /* DFP Shift Significand Left Immediate */ | |
5105 | case 98: /* DFP Shift Significand Right Immediate */ | |
5106 | case 322: /* DFP Decode DPD To BCD */ | |
5107 | case 354: /* DFP Extract Biased Exponent */ | |
5108 | case 866: /* DFP Insert Biased Exponent */ | |
5109 | record_full_arch_list_add_reg (regcache, | |
5110 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5111 | if (PPC_RC (insn)) | |
5112 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5113 | return 0; | |
5114 | ||
5115 | case 846: /* Floating Convert From Integer Doubleword Single */ | |
5116 | case 974: /* Floating Convert From Integer Doubleword Unsigned | |
5117 | Single */ | |
5118 | record_full_arch_list_add_reg (regcache, | |
5119 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5120 | if (PPC_RC (insn)) | |
5121 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5122 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5123 | ||
5124 | return 0; | |
5125 | } | |
5126 | ||
810c1026 WW |
5127 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
5128 | "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
5129 | return -1; |
5130 | } | |
5131 | ||
ddeca1df WW |
5132 | /* Parse and record instructions of primary opcode-60 at ADDR. |
5133 | Return 0 if successful. */ | |
b4cdae6f WW |
5134 | |
5135 | static int | |
5136 | ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5137 | CORE_ADDR addr, uint32_t insn) | |
5138 | { | |
5139 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5140 | int ext = PPC_EXTOP (insn); | |
b4cdae6f WW |
5141 | |
5142 | switch (ext >> 2) | |
5143 | { | |
5144 | case 0: /* VSX Scalar Add Single-Precision */ | |
5145 | case 32: /* VSX Scalar Add Double-Precision */ | |
5146 | case 24: /* VSX Scalar Divide Single-Precision */ | |
5147 | case 56: /* VSX Scalar Divide Double-Precision */ | |
5148 | case 176: /* VSX Scalar Copy Sign Double-Precision */ | |
5149 | case 33: /* VSX Scalar Multiply-Add Double-Precision */ | |
5150 | case 41: /* ditto */ | |
5151 | case 1: /* VSX Scalar Multiply-Add Single-Precision */ | |
5152 | case 9: /* ditto */ | |
5153 | case 160: /* VSX Scalar Maximum Double-Precision */ | |
5154 | case 168: /* VSX Scalar Minimum Double-Precision */ | |
5155 | case 49: /* VSX Scalar Multiply-Subtract Double-Precision */ | |
5156 | case 57: /* ditto */ | |
5157 | case 17: /* VSX Scalar Multiply-Subtract Single-Precision */ | |
5158 | case 25: /* ditto */ | |
5159 | case 48: /* VSX Scalar Multiply Double-Precision */ | |
5160 | case 16: /* VSX Scalar Multiply Single-Precision */ | |
5161 | case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */ | |
5162 | case 169: /* ditto */ | |
5163 | case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */ | |
5164 | case 137: /* ditto */ | |
5165 | case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */ | |
5166 | case 185: /* ditto */ | |
5167 | case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */ | |
5168 | case 153: /* ditto */ | |
5169 | case 40: /* VSX Scalar Subtract Double-Precision */ | |
5170 | case 8: /* VSX Scalar Subtract Single-Precision */ | |
5171 | case 96: /* VSX Vector Add Double-Precision */ | |
5172 | case 64: /* VSX Vector Add Single-Precision */ | |
5173 | case 120: /* VSX Vector Divide Double-Precision */ | |
5174 | case 88: /* VSX Vector Divide Single-Precision */ | |
5175 | case 97: /* VSX Vector Multiply-Add Double-Precision */ | |
5176 | case 105: /* ditto */ | |
5177 | case 65: /* VSX Vector Multiply-Add Single-Precision */ | |
5178 | case 73: /* ditto */ | |
5179 | case 224: /* VSX Vector Maximum Double-Precision */ | |
5180 | case 192: /* VSX Vector Maximum Single-Precision */ | |
5181 | case 232: /* VSX Vector Minimum Double-Precision */ | |
5182 | case 200: /* VSX Vector Minimum Single-Precision */ | |
5183 | case 113: /* VSX Vector Multiply-Subtract Double-Precision */ | |
5184 | case 121: /* ditto */ | |
5185 | case 81: /* VSX Vector Multiply-Subtract Single-Precision */ | |
5186 | case 89: /* ditto */ | |
5187 | case 112: /* VSX Vector Multiply Double-Precision */ | |
5188 | case 80: /* VSX Vector Multiply Single-Precision */ | |
5189 | case 225: /* VSX Vector Negative Multiply-Add Double-Precision */ | |
5190 | case 233: /* ditto */ | |
5191 | case 193: /* VSX Vector Negative Multiply-Add Single-Precision */ | |
5192 | case 201: /* ditto */ | |
5193 | case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */ | |
5194 | case 249: /* ditto */ | |
5195 | case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */ | |
5196 | case 217: /* ditto */ | |
5197 | case 104: /* VSX Vector Subtract Double-Precision */ | |
5198 | case 72: /* VSX Vector Subtract Single-Precision */ | |
6ec2b213 EBM |
5199 | case 128: /* VSX Scalar Maximum Type-C Double-Precision */ |
5200 | case 136: /* VSX Scalar Minimum Type-C Double-Precision */ | |
5201 | case 144: /* VSX Scalar Maximum Type-J Double-Precision */ | |
5202 | case 152: /* VSX Scalar Minimum Type-J Double-Precision */ | |
5203 | case 3: /* VSX Scalar Compare Equal Double-Precision */ | |
5204 | case 11: /* VSX Scalar Compare Greater Than Double-Precision */ | |
5205 | case 19: /* VSX Scalar Compare Greater Than or Equal | |
5206 | Double-Precision */ | |
b4cdae6f | 5207 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); |
6ec2b213 | 5208 | /* FALL-THROUGH */ |
b4cdae6f WW |
5209 | case 240: /* VSX Vector Copy Sign Double-Precision */ |
5210 | case 208: /* VSX Vector Copy Sign Single-Precision */ | |
5211 | case 130: /* VSX Logical AND */ | |
5212 | case 138: /* VSX Logical AND with Complement */ | |
5213 | case 186: /* VSX Logical Equivalence */ | |
5214 | case 178: /* VSX Logical NAND */ | |
5215 | case 170: /* VSX Logical OR with Complement */ | |
5216 | case 162: /* VSX Logical NOR */ | |
5217 | case 146: /* VSX Logical OR */ | |
5218 | case 154: /* VSX Logical XOR */ | |
5219 | case 18: /* VSX Merge High Word */ | |
5220 | case 50: /* VSX Merge Low Word */ | |
5221 | case 10: /* VSX Permute Doubleword Immediate (DM=0) */ | |
5222 | case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */ | |
5223 | case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */ | |
5224 | case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */ | |
5225 | case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */ | |
5226 | case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */ | |
5227 | case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */ | |
5228 | case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */ | |
6ec2b213 EBM |
5229 | case 216: /* VSX Vector Insert Exponent Single-Precision */ |
5230 | case 248: /* VSX Vector Insert Exponent Double-Precision */ | |
5231 | case 26: /* VSX Vector Permute */ | |
5232 | case 58: /* VSX Vector Permute Right-indexed */ | |
5233 | case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */ | |
5234 | case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */ | |
5235 | case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */ | |
5236 | case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */ | |
b4cdae6f WW |
5237 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); |
5238 | return 0; | |
5239 | ||
5240 | case 61: /* VSX Scalar Test for software Divide Double-Precision */ | |
5241 | case 125: /* VSX Vector Test for software Divide Double-Precision */ | |
5242 | case 93: /* VSX Vector Test for software Divide Single-Precision */ | |
5243 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5244 | return 0; | |
5245 | ||
5246 | case 35: /* VSX Scalar Compare Unordered Double-Precision */ | |
5247 | case 43: /* VSX Scalar Compare Ordered Double-Precision */ | |
6ec2b213 | 5248 | case 59: /* VSX Scalar Compare Exponents Double-Precision */ |
b4cdae6f WW |
5249 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
5250 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5251 | return 0; | |
5252 | } | |
5253 | ||
5254 | switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */ | |
5255 | { | |
5256 | case 99: /* VSX Vector Compare Equal To Double-Precision */ | |
5257 | case 67: /* VSX Vector Compare Equal To Single-Precision */ | |
5258 | case 115: /* VSX Vector Compare Greater Than or | |
5259 | Equal To Double-Precision */ | |
5260 | case 83: /* VSX Vector Compare Greater Than or | |
5261 | Equal To Single-Precision */ | |
5262 | case 107: /* VSX Vector Compare Greater Than Double-Precision */ | |
5263 | case 75: /* VSX Vector Compare Greater Than Single-Precision */ | |
5264 | if (PPC_Rc (insn)) | |
5265 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5266 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5267 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5268 | return 0; | |
5269 | } | |
5270 | ||
5271 | switch (ext >> 1) | |
5272 | { | |
5273 | case 265: /* VSX Scalar round Double-Precision to | |
5274 | Single-Precision and Convert to | |
5275 | Single-Precision format */ | |
5276 | case 344: /* VSX Scalar truncate Double-Precision to | |
5277 | Integer and Convert to Signed Integer | |
5278 | Doubleword format with Saturate */ | |
5279 | case 88: /* VSX Scalar truncate Double-Precision to | |
5280 | Integer and Convert to Signed Integer Word | |
5281 | Format with Saturate */ | |
5282 | case 328: /* VSX Scalar truncate Double-Precision integer | |
5283 | and Convert to Unsigned Integer Doubleword | |
5284 | Format with Saturate */ | |
5285 | case 72: /* VSX Scalar truncate Double-Precision to | |
5286 | Integer and Convert to Unsigned Integer Word | |
5287 | Format with Saturate */ | |
5288 | case 329: /* VSX Scalar Convert Single-Precision to | |
5289 | Double-Precision format */ | |
5290 | case 376: /* VSX Scalar Convert Signed Integer | |
5291 | Doubleword to floating-point format and | |
5292 | Round to Double-Precision format */ | |
5293 | case 312: /* VSX Scalar Convert Signed Integer | |
5294 | Doubleword to floating-point format and | |
5295 | round to Single-Precision */ | |
5296 | case 360: /* VSX Scalar Convert Unsigned Integer | |
5297 | Doubleword to floating-point format and | |
5298 | Round to Double-Precision format */ | |
5299 | case 296: /* VSX Scalar Convert Unsigned Integer | |
5300 | Doubleword to floating-point format and | |
5301 | Round to Single-Precision */ | |
5302 | case 73: /* VSX Scalar Round to Double-Precision Integer | |
5303 | Using Round to Nearest Away */ | |
5304 | case 107: /* VSX Scalar Round to Double-Precision Integer | |
5305 | Exact using Current rounding mode */ | |
5306 | case 121: /* VSX Scalar Round to Double-Precision Integer | |
5307 | Using Round toward -Infinity */ | |
5308 | case 105: /* VSX Scalar Round to Double-Precision Integer | |
5309 | Using Round toward +Infinity */ | |
5310 | case 89: /* VSX Scalar Round to Double-Precision Integer | |
5311 | Using Round toward Zero */ | |
5312 | case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */ | |
5313 | case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */ | |
5314 | case 281: /* VSX Scalar Round to Single-Precision */ | |
5315 | case 74: /* VSX Scalar Reciprocal Square Root Estimate | |
5316 | Double-Precision */ | |
5317 | case 10: /* VSX Scalar Reciprocal Square Root Estimate | |
5318 | Single-Precision */ | |
5319 | case 75: /* VSX Scalar Square Root Double-Precision */ | |
5320 | case 11: /* VSX Scalar Square Root Single-Precision */ | |
5321 | case 393: /* VSX Vector round Double-Precision to | |
5322 | Single-Precision and Convert to | |
5323 | Single-Precision format */ | |
5324 | case 472: /* VSX Vector truncate Double-Precision to | |
5325 | Integer and Convert to Signed Integer | |
5326 | Doubleword format with Saturate */ | |
5327 | case 216: /* VSX Vector truncate Double-Precision to | |
5328 | Integer and Convert to Signed Integer Word | |
5329 | Format with Saturate */ | |
5330 | case 456: /* VSX Vector truncate Double-Precision to | |
5331 | Integer and Convert to Unsigned Integer | |
5332 | Doubleword format with Saturate */ | |
5333 | case 200: /* VSX Vector truncate Double-Precision to | |
5334 | Integer and Convert to Unsigned Integer Word | |
5335 | Format with Saturate */ | |
5336 | case 457: /* VSX Vector Convert Single-Precision to | |
5337 | Double-Precision format */ | |
5338 | case 408: /* VSX Vector truncate Single-Precision to | |
5339 | Integer and Convert to Signed Integer | |
5340 | Doubleword format with Saturate */ | |
5341 | case 152: /* VSX Vector truncate Single-Precision to | |
5342 | Integer and Convert to Signed Integer Word | |
5343 | Format with Saturate */ | |
5344 | case 392: /* VSX Vector truncate Single-Precision to | |
5345 | Integer and Convert to Unsigned Integer | |
5346 | Doubleword format with Saturate */ | |
5347 | case 136: /* VSX Vector truncate Single-Precision to | |
5348 | Integer and Convert to Unsigned Integer Word | |
5349 | Format with Saturate */ | |
5350 | case 504: /* VSX Vector Convert and round Signed Integer | |
5351 | Doubleword to Double-Precision format */ | |
5352 | case 440: /* VSX Vector Convert and round Signed Integer | |
5353 | Doubleword to Single-Precision format */ | |
5354 | case 248: /* VSX Vector Convert Signed Integer Word to | |
5355 | Double-Precision format */ | |
5356 | case 184: /* VSX Vector Convert and round Signed Integer | |
5357 | Word to Single-Precision format */ | |
5358 | case 488: /* VSX Vector Convert and round Unsigned | |
5359 | Integer Doubleword to Double-Precision format */ | |
5360 | case 424: /* VSX Vector Convert and round Unsigned | |
5361 | Integer Doubleword to Single-Precision format */ | |
5362 | case 232: /* VSX Vector Convert and round Unsigned | |
5363 | Integer Word to Double-Precision format */ | |
5364 | case 168: /* VSX Vector Convert and round Unsigned | |
5365 | Integer Word to Single-Precision format */ | |
5366 | case 201: /* VSX Vector Round to Double-Precision | |
5367 | Integer using round to Nearest Away */ | |
5368 | case 235: /* VSX Vector Round to Double-Precision | |
5369 | Integer Exact using Current rounding mode */ | |
5370 | case 249: /* VSX Vector Round to Double-Precision | |
5371 | Integer using round toward -Infinity */ | |
5372 | case 233: /* VSX Vector Round to Double-Precision | |
5373 | Integer using round toward +Infinity */ | |
5374 | case 217: /* VSX Vector Round to Double-Precision | |
5375 | Integer using round toward Zero */ | |
5376 | case 218: /* VSX Vector Reciprocal Estimate Double-Precision */ | |
5377 | case 154: /* VSX Vector Reciprocal Estimate Single-Precision */ | |
5378 | case 137: /* VSX Vector Round to Single-Precision Integer | |
5379 | Using Round to Nearest Away */ | |
5380 | case 171: /* VSX Vector Round to Single-Precision Integer | |
5381 | Exact Using Current rounding mode */ | |
5382 | case 185: /* VSX Vector Round to Single-Precision Integer | |
5383 | Using Round toward -Infinity */ | |
5384 | case 169: /* VSX Vector Round to Single-Precision Integer | |
5385 | Using Round toward +Infinity */ | |
5386 | case 153: /* VSX Vector Round to Single-Precision Integer | |
5387 | Using round toward Zero */ | |
5388 | case 202: /* VSX Vector Reciprocal Square Root Estimate | |
5389 | Double-Precision */ | |
5390 | case 138: /* VSX Vector Reciprocal Square Root Estimate | |
5391 | Single-Precision */ | |
5392 | case 203: /* VSX Vector Square Root Double-Precision */ | |
5393 | case 139: /* VSX Vector Square Root Single-Precision */ | |
5394 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
6ec2b213 | 5395 | /* FALL-THROUGH */ |
b4cdae6f WW |
5396 | case 345: /* VSX Scalar Absolute Value Double-Precision */ |
5397 | case 267: /* VSX Scalar Convert Scalar Single-Precision to | |
5398 | Vector Single-Precision format Non-signalling */ | |
5399 | case 331: /* VSX Scalar Convert Single-Precision to | |
5400 | Double-Precision format Non-signalling */ | |
5401 | case 361: /* VSX Scalar Negative Absolute Value Double-Precision */ | |
5402 | case 377: /* VSX Scalar Negate Double-Precision */ | |
5403 | case 473: /* VSX Vector Absolute Value Double-Precision */ | |
5404 | case 409: /* VSX Vector Absolute Value Single-Precision */ | |
5405 | case 489: /* VSX Vector Negative Absolute Value Double-Precision */ | |
5406 | case 425: /* VSX Vector Negative Absolute Value Single-Precision */ | |
5407 | case 505: /* VSX Vector Negate Double-Precision */ | |
5408 | case 441: /* VSX Vector Negate Single-Precision */ | |
5409 | case 164: /* VSX Splat Word */ | |
6ec2b213 EBM |
5410 | case 165: /* VSX Vector Extract Unsigned Word */ |
5411 | case 181: /* VSX Vector Insert Word */ | |
b4cdae6f WW |
5412 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); |
5413 | return 0; | |
5414 | ||
6ec2b213 EBM |
5415 | case 298: /* VSX Scalar Test Data Class Single-Precision */ |
5416 | case 362: /* VSX Scalar Test Data Class Double-Precision */ | |
5417 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5418 | /* FALL-THROUGH */ | |
b4cdae6f WW |
5419 | case 106: /* VSX Scalar Test for software Square Root |
5420 | Double-Precision */ | |
5421 | case 234: /* VSX Vector Test for software Square Root | |
5422 | Double-Precision */ | |
5423 | case 170: /* VSX Vector Test for software Square Root | |
5424 | Single-Precision */ | |
5425 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5426 | return 0; | |
6ec2b213 EBM |
5427 | |
5428 | case 347: | |
5429 | switch (PPC_FIELD (insn, 11, 5)) | |
5430 | { | |
5431 | case 0: /* VSX Scalar Extract Exponent Double-Precision */ | |
5432 | case 1: /* VSX Scalar Extract Significand Double-Precision */ | |
5433 | record_full_arch_list_add_reg (regcache, | |
5434 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5435 | return 0; | |
5436 | case 16: /* VSX Scalar Convert Half-Precision format to | |
5437 | Double-Precision format */ | |
5438 | case 17: /* VSX Scalar round & Convert Double-Precision format | |
5439 | to Half-Precision format */ | |
5440 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5441 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5442 | return 0; | |
5443 | } | |
5444 | break; | |
5445 | ||
5446 | case 475: | |
5447 | switch (PPC_FIELD (insn, 11, 5)) | |
5448 | { | |
5449 | case 24: /* VSX Vector Convert Half-Precision format to | |
5450 | Single-Precision format */ | |
5451 | case 25: /* VSX Vector round and Convert Single-Precision format | |
5452 | to Half-Precision format */ | |
5453 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5454 | /* FALL-THROUGH */ | |
5455 | case 0: /* VSX Vector Extract Exponent Double-Precision */ | |
5456 | case 1: /* VSX Vector Extract Significand Double-Precision */ | |
5457 | case 7: /* VSX Vector Byte-Reverse Halfword */ | |
5458 | case 8: /* VSX Vector Extract Exponent Single-Precision */ | |
5459 | case 9: /* VSX Vector Extract Significand Single-Precision */ | |
5460 | case 15: /* VSX Vector Byte-Reverse Word */ | |
5461 | case 23: /* VSX Vector Byte-Reverse Doubleword */ | |
5462 | case 31: /* VSX Vector Byte-Reverse Quadword */ | |
5463 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5464 | return 0; | |
5465 | } | |
5466 | break; | |
5467 | } | |
5468 | ||
5469 | switch (ext) | |
5470 | { | |
5471 | case 360: /* VSX Vector Splat Immediate Byte */ | |
5472 | if (PPC_FIELD (insn, 11, 2) == 0) | |
5473 | { | |
5474 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5475 | return 0; | |
5476 | } | |
5477 | break; | |
5478 | case 918: /* VSX Scalar Insert Exponent Double-Precision */ | |
5479 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5480 | return 0; | |
b4cdae6f WW |
5481 | } |
5482 | ||
5483 | if (((ext >> 3) & 0x3) == 3) /* VSX Select */ | |
5484 | { | |
5485 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5486 | return 0; | |
5487 | } | |
5488 | ||
810c1026 WW |
5489 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
5490 | "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext); | |
b4cdae6f WW |
5491 | return -1; |
5492 | } | |
5493 | ||
6ec2b213 EBM |
5494 | /* Parse and record instructions of primary opcode-61 at ADDR. |
5495 | Return 0 if successful. */ | |
5496 | ||
5497 | static int | |
5498 | ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5499 | CORE_ADDR addr, uint32_t insn) | |
5500 | { | |
5501 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5502 | ULONGEST ea = 0; | |
5503 | int size; | |
5504 | ||
5505 | switch (insn & 0x3) | |
5506 | { | |
5507 | case 0: /* Store Floating-Point Double Pair */ | |
5508 | case 2: /* Store VSX Scalar Doubleword */ | |
5509 | case 3: /* Store VSX Scalar Single */ | |
5510 | if (PPC_RA (insn) != 0) | |
5511 | regcache_raw_read_unsigned (regcache, | |
5512 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
5513 | &ea); | |
5514 | ea += PPC_DS (insn) << 2; | |
5515 | switch (insn & 0x3) | |
5516 | { | |
5517 | case 0: /* Store Floating-Point Double Pair */ | |
5518 | size = 16; | |
5519 | break; | |
5520 | case 2: /* Store VSX Scalar Doubleword */ | |
5521 | size = 8; | |
5522 | break; | |
5523 | case 3: /* Store VSX Scalar Single */ | |
5524 | size = 4; | |
5525 | break; | |
5526 | default: | |
5527 | gdb_assert (0); | |
5528 | } | |
5529 | record_full_arch_list_add_mem (ea, size); | |
5530 | return 0; | |
5531 | } | |
5532 | ||
5533 | switch (insn & 0x7) | |
5534 | { | |
5535 | case 1: /* Load VSX Vector */ | |
5536 | ppc_record_vsr (regcache, tdep, PPC_XT (insn)); | |
5537 | return 0; | |
5538 | case 5: /* Store VSX Vector */ | |
5539 | if (PPC_RA (insn) != 0) | |
5540 | regcache_raw_read_unsigned (regcache, | |
5541 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
5542 | &ea); | |
5543 | ea += PPC_DQ (insn) << 4; | |
5544 | record_full_arch_list_add_mem (ea, 16); | |
5545 | return 0; | |
5546 | } | |
5547 | ||
5548 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " | |
5549 | "at %s.\n", insn, paddress (gdbarch, addr)); | |
5550 | return -1; | |
5551 | } | |
5552 | ||
ddeca1df WW |
5553 | /* Parse and record instructions of primary opcode-63 at ADDR. |
5554 | Return 0 if successful. */ | |
b4cdae6f WW |
5555 | |
5556 | static int | |
5557 | ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache, | |
5558 | CORE_ADDR addr, uint32_t insn) | |
5559 | { | |
5560 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5561 | int ext = PPC_EXTOP (insn); | |
5562 | int tmp; | |
5563 | ||
5564 | switch (ext & 0x1f) | |
5565 | { | |
5566 | case 18: /* Floating Divide */ | |
5567 | case 20: /* Floating Subtract */ | |
5568 | case 21: /* Floating Add */ | |
5569 | case 22: /* Floating Square Root */ | |
5570 | case 24: /* Floating Reciprocal Estimate */ | |
5571 | case 25: /* Floating Multiply */ | |
5572 | case 26: /* Floating Reciprocal Square Root Estimate */ | |
5573 | case 28: /* Floating Multiply-Subtract */ | |
5574 | case 29: /* Floating Multiply-Add */ | |
5575 | case 30: /* Floating Negative Multiply-Subtract */ | |
5576 | case 31: /* Floating Negative Multiply-Add */ | |
5577 | record_full_arch_list_add_reg (regcache, | |
5578 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5579 | if (PPC_RC (insn)) | |
5580 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5581 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5582 | return 0; | |
5583 | ||
5584 | case 23: /* Floating Select */ | |
5585 | record_full_arch_list_add_reg (regcache, | |
5586 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5587 | if (PPC_RC (insn)) | |
5588 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
8aabe2e2 | 5589 | return 0; |
b4cdae6f WW |
5590 | } |
5591 | ||
6ec2b213 EBM |
5592 | switch (ext & 0xff) |
5593 | { | |
5594 | case 5: /* VSX Scalar Round to Quad-Precision Integer */ | |
5595 | case 37: /* VSX Scalar Round Quad-Precision to Double-Extended | |
5596 | Precision */ | |
5597 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5598 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5599 | return 0; | |
5600 | } | |
5601 | ||
b4cdae6f WW |
5602 | switch (ext) |
5603 | { | |
5604 | case 2: /* DFP Add Quad */ | |
5605 | case 3: /* DFP Quantize Quad */ | |
5606 | case 34: /* DFP Multiply Quad */ | |
5607 | case 35: /* DFP Reround Quad */ | |
5608 | case 67: /* DFP Quantize Immediate Quad */ | |
5609 | case 99: /* DFP Round To FP Integer With Inexact Quad */ | |
5610 | case 227: /* DFP Round To FP Integer Without Inexact Quad */ | |
5611 | case 258: /* DFP Convert To DFP Extended Quad */ | |
5612 | case 514: /* DFP Subtract Quad */ | |
5613 | case 546: /* DFP Divide Quad */ | |
5614 | case 770: /* DFP Round To DFP Long Quad */ | |
5615 | case 802: /* DFP Convert From Fixed Quad */ | |
5616 | case 834: /* DFP Encode BCD To DPD Quad */ | |
5617 | if (PPC_RC (insn)) | |
5618 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5619 | tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1); | |
5620 | record_full_arch_list_add_reg (regcache, tmp); | |
5621 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
5622 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5623 | return 0; | |
5624 | ||
5625 | case 130: /* DFP Compare Ordered Quad */ | |
5626 | case 162: /* DFP Test Exponent Quad */ | |
5627 | case 194: /* DFP Test Data Class Quad */ | |
5628 | case 226: /* DFP Test Data Group Quad */ | |
5629 | case 642: /* DFP Compare Unordered Quad */ | |
5630 | case 674: /* DFP Test Significance Quad */ | |
6ec2b213 | 5631 | case 675: /* DFP Test Significance Immediate Quad */ |
b4cdae6f WW |
5632 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); |
5633 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5634 | return 0; | |
5635 | ||
5636 | case 66: /* DFP Shift Significand Left Immediate Quad */ | |
5637 | case 98: /* DFP Shift Significand Right Immediate Quad */ | |
5638 | case 322: /* DFP Decode DPD To BCD Quad */ | |
5639 | case 866: /* DFP Insert Biased Exponent Quad */ | |
5640 | tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1); | |
5641 | record_full_arch_list_add_reg (regcache, tmp); | |
5642 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
5643 | if (PPC_RC (insn)) | |
5644 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5645 | return 0; | |
5646 | ||
5647 | case 290: /* DFP Convert To Fixed Quad */ | |
5648 | record_full_arch_list_add_reg (regcache, | |
5649 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5650 | if (PPC_RC (insn)) | |
5651 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5652 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
8aabe2e2 | 5653 | return 0; |
b4cdae6f WW |
5654 | |
5655 | case 354: /* DFP Extract Biased Exponent Quad */ | |
5656 | record_full_arch_list_add_reg (regcache, | |
5657 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5658 | if (PPC_RC (insn)) | |
5659 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5660 | return 0; | |
5661 | ||
5662 | case 12: /* Floating Round to Single-Precision */ | |
5663 | case 14: /* Floating Convert To Integer Word */ | |
5664 | case 15: /* Floating Convert To Integer Word | |
5665 | with round toward Zero */ | |
5666 | case 142: /* Floating Convert To Integer Word Unsigned */ | |
5667 | case 143: /* Floating Convert To Integer Word Unsigned | |
5668 | with round toward Zero */ | |
5669 | case 392: /* Floating Round to Integer Nearest */ | |
5670 | case 424: /* Floating Round to Integer Toward Zero */ | |
5671 | case 456: /* Floating Round to Integer Plus */ | |
5672 | case 488: /* Floating Round to Integer Minus */ | |
5673 | case 814: /* Floating Convert To Integer Doubleword */ | |
5674 | case 815: /* Floating Convert To Integer Doubleword | |
5675 | with round toward Zero */ | |
5676 | case 846: /* Floating Convert From Integer Doubleword */ | |
5677 | case 942: /* Floating Convert To Integer Doubleword Unsigned */ | |
5678 | case 943: /* Floating Convert To Integer Doubleword Unsigned | |
5679 | with round toward Zero */ | |
5680 | case 974: /* Floating Convert From Integer Doubleword Unsigned */ | |
5681 | record_full_arch_list_add_reg (regcache, | |
5682 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5683 | if (PPC_RC (insn)) | |
5684 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5685 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5686 | return 0; | |
5687 | ||
6ec2b213 EBM |
5688 | case 583: |
5689 | switch (PPC_FIELD (insn, 11, 5)) | |
5690 | { | |
5691 | case 1: /* Move From FPSCR & Clear Enables */ | |
5692 | case 20: /* Move From FPSCR Control & set DRN */ | |
5693 | case 21: /* Move From FPSCR Control & set DRN Immediate */ | |
5694 | case 22: /* Move From FPSCR Control & set RN */ | |
5695 | case 23: /* Move From FPSCR Control & set RN Immediate */ | |
5696 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
e3829d13 | 5697 | /* Fall through. */ |
6ec2b213 EBM |
5698 | case 0: /* Move From FPSCR */ |
5699 | case 24: /* Move From FPSCR Lightweight */ | |
5700 | if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn)) | |
5701 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5702 | record_full_arch_list_add_reg (regcache, | |
5703 | tdep->ppc_fp0_regnum | |
5704 | + PPC_FRT (insn)); | |
5705 | return 0; | |
5706 | } | |
5707 | break; | |
5708 | ||
b4cdae6f WW |
5709 | case 8: /* Floating Copy Sign */ |
5710 | case 40: /* Floating Negate */ | |
5711 | case 72: /* Floating Move Register */ | |
5712 | case 136: /* Floating Negative Absolute Value */ | |
5713 | case 264: /* Floating Absolute Value */ | |
5714 | record_full_arch_list_add_reg (regcache, | |
5715 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5716 | if (PPC_RC (insn)) | |
5717 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5718 | return 0; | |
5719 | ||
5720 | case 838: /* Floating Merge Odd Word */ | |
5721 | case 966: /* Floating Merge Even Word */ | |
5722 | record_full_arch_list_add_reg (regcache, | |
5723 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5724 | return 0; | |
5725 | ||
5726 | case 38: /* Move To FPSCR Bit 1 */ | |
5727 | case 70: /* Move To FPSCR Bit 0 */ | |
5728 | case 134: /* Move To FPSCR Field Immediate */ | |
5729 | case 711: /* Move To FPSCR Fields */ | |
5730 | if (PPC_RC (insn)) | |
5731 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5732 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
8aabe2e2 | 5733 | return 0; |
b4cdae6f WW |
5734 | |
5735 | case 0: /* Floating Compare Unordered */ | |
5736 | case 32: /* Floating Compare Ordered */ | |
5737 | case 64: /* Move to Condition Register from FPSCR */ | |
6ec2b213 EBM |
5738 | case 132: /* VSX Scalar Compare Ordered Quad-Precision */ |
5739 | case 164: /* VSX Scalar Compare Exponents Quad-Precision */ | |
5740 | case 644: /* VSX Scalar Compare Unordered Quad-Precision */ | |
5741 | case 708: /* VSX Scalar Test Data Class Quad-Precision */ | |
b4cdae6f WW |
5742 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); |
5743 | /* FALL-THROUGH */ | |
5744 | case 128: /* Floating Test for software Divide */ | |
5745 | case 160: /* Floating Test for software Square Root */ | |
5746 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5747 | return 0; | |
5748 | ||
6ec2b213 EBM |
5749 | case 4: /* VSX Scalar Add Quad-Precision */ |
5750 | case 36: /* VSX Scalar Multiply Quad-Precision */ | |
5751 | case 388: /* VSX Scalar Multiply-Add Quad-Precision */ | |
5752 | case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */ | |
5753 | case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */ | |
5754 | case 484: /* VSX Scalar Negative Multiply-Subtract | |
5755 | Quad-Precision */ | |
5756 | case 516: /* VSX Scalar Subtract Quad-Precision */ | |
5757 | case 548: /* VSX Scalar Divide Quad-Precision */ | |
5758 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5759 | /* FALL-THROUGH */ | |
5760 | case 100: /* VSX Scalar Copy Sign Quad-Precision */ | |
5761 | case 868: /* VSX Scalar Insert Exponent Quad-Precision */ | |
5762 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5763 | return 0; | |
5764 | ||
5765 | case 804: | |
5766 | switch (PPC_FIELD (insn, 11, 5)) | |
5767 | { | |
5768 | case 27: /* VSX Scalar Square Root Quad-Precision */ | |
5769 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5770 | /* FALL-THROUGH */ | |
5771 | case 0: /* VSX Scalar Absolute Quad-Precision */ | |
5772 | case 2: /* VSX Scalar Extract Exponent Quad-Precision */ | |
5773 | case 8: /* VSX Scalar Negative Absolute Quad-Precision */ | |
5774 | case 16: /* VSX Scalar Negate Quad-Precision */ | |
5775 | case 18: /* VSX Scalar Extract Significand Quad-Precision */ | |
5776 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5777 | return 0; | |
5778 | } | |
5779 | break; | |
5780 | ||
5781 | case 836: | |
5782 | switch (PPC_FIELD (insn, 11, 5)) | |
5783 | { | |
5784 | case 1: /* VSX Scalar truncate & Convert Quad-Precision format | |
5785 | to Unsigned Word format */ | |
5786 | case 2: /* VSX Scalar Convert Unsigned Doubleword format to | |
5787 | Quad-Precision format */ | |
5788 | case 9: /* VSX Scalar truncate & Convert Quad-Precision format | |
5789 | to Signed Word format */ | |
5790 | case 10: /* VSX Scalar Convert Signed Doubleword format to | |
5791 | Quad-Precision format */ | |
5792 | case 17: /* VSX Scalar truncate & Convert Quad-Precision format | |
5793 | to Unsigned Doubleword format */ | |
5794 | case 20: /* VSX Scalar round & Convert Quad-Precision format to | |
5795 | Double-Precision format */ | |
5796 | case 22: /* VSX Scalar Convert Double-Precision format to | |
5797 | Quad-Precision format */ | |
5798 | case 25: /* VSX Scalar truncate & Convert Quad-Precision format | |
5799 | to Signed Doubleword format */ | |
5800 | record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum); | |
5801 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
5802 | return 0; | |
5803 | } | |
b4cdae6f WW |
5804 | } |
5805 | ||
810c1026 | 5806 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
6ec2b213 | 5807 | "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext); |
b4cdae6f WW |
5808 | return -1; |
5809 | } | |
5810 | ||
5811 | /* Parse the current instruction and record the values of the registers and | |
5812 | memory that will be changed in current instruction to "record_arch_list". | |
5813 | Return -1 if something wrong. */ | |
5814 | ||
5815 | int | |
5816 | ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache, | |
5817 | CORE_ADDR addr) | |
5818 | { | |
5819 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
5820 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
5821 | uint32_t insn; | |
5822 | int op6, tmp, i; | |
5823 | ||
5824 | insn = read_memory_unsigned_integer (addr, 4, byte_order); | |
5825 | op6 = PPC_OP6 (insn); | |
5826 | ||
5827 | switch (op6) | |
5828 | { | |
5829 | case 2: /* Trap Doubleword Immediate */ | |
5830 | case 3: /* Trap Word Immediate */ | |
5831 | /* Do nothing. */ | |
5832 | break; | |
5833 | ||
5834 | case 4: | |
5835 | if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0) | |
5836 | return -1; | |
5837 | break; | |
5838 | ||
5839 | case 17: /* System call */ | |
5840 | if (PPC_LEV (insn) != 0) | |
5841 | goto UNKNOWN_OP; | |
5842 | ||
5843 | if (tdep->ppc_syscall_record != NULL) | |
5844 | { | |
5845 | if (tdep->ppc_syscall_record (regcache) != 0) | |
5846 | return -1; | |
5847 | } | |
5848 | else | |
5849 | { | |
5850 | printf_unfiltered (_("no syscall record support\n")); | |
5851 | return -1; | |
5852 | } | |
5853 | break; | |
5854 | ||
5855 | case 7: /* Multiply Low Immediate */ | |
5856 | record_full_arch_list_add_reg (regcache, | |
5857 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5858 | break; | |
5859 | ||
5860 | case 8: /* Subtract From Immediate Carrying */ | |
5861 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
5862 | record_full_arch_list_add_reg (regcache, | |
5863 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5864 | break; | |
5865 | ||
5866 | case 10: /* Compare Logical Immediate */ | |
5867 | case 11: /* Compare Immediate */ | |
5868 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5869 | break; | |
5870 | ||
5871 | case 13: /* Add Immediate Carrying and Record */ | |
5872 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5873 | /* FALL-THROUGH */ | |
5874 | case 12: /* Add Immediate Carrying */ | |
5875 | record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum); | |
5876 | /* FALL-THROUGH */ | |
5877 | case 14: /* Add Immediate */ | |
5878 | case 15: /* Add Immediate Shifted */ | |
5879 | record_full_arch_list_add_reg (regcache, | |
5880 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5881 | break; | |
5882 | ||
5883 | case 16: /* Branch Conditional */ | |
5884 | if ((PPC_BO (insn) & 0x4) == 0) | |
5885 | record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum); | |
5886 | /* FALL-THROUGH */ | |
5887 | case 18: /* Branch */ | |
5888 | if (PPC_LK (insn)) | |
5889 | record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum); | |
5890 | break; | |
5891 | ||
5892 | case 19: | |
5893 | if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0) | |
5894 | return -1; | |
5895 | break; | |
5896 | ||
5897 | case 20: /* Rotate Left Word Immediate then Mask Insert */ | |
5898 | case 21: /* Rotate Left Word Immediate then AND with Mask */ | |
5899 | case 23: /* Rotate Left Word then AND with Mask */ | |
5900 | case 30: /* Rotate Left Doubleword Immediate then Clear Left */ | |
5901 | /* Rotate Left Doubleword Immediate then Clear Right */ | |
5902 | /* Rotate Left Doubleword Immediate then Clear */ | |
5903 | /* Rotate Left Doubleword then Clear Left */ | |
5904 | /* Rotate Left Doubleword then Clear Right */ | |
5905 | /* Rotate Left Doubleword Immediate then Mask Insert */ | |
5906 | if (PPC_RC (insn)) | |
5907 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5908 | record_full_arch_list_add_reg (regcache, | |
5909 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5910 | break; | |
5911 | ||
5912 | case 28: /* AND Immediate */ | |
5913 | case 29: /* AND Immediate Shifted */ | |
5914 | record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum); | |
5915 | /* FALL-THROUGH */ | |
5916 | case 24: /* OR Immediate */ | |
5917 | case 25: /* OR Immediate Shifted */ | |
5918 | case 26: /* XOR Immediate */ | |
5919 | case 27: /* XOR Immediate Shifted */ | |
5920 | record_full_arch_list_add_reg (regcache, | |
5921 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5922 | break; | |
5923 | ||
5924 | case 31: | |
5925 | if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0) | |
5926 | return -1; | |
5927 | break; | |
5928 | ||
5929 | case 33: /* Load Word and Zero with Update */ | |
5930 | case 35: /* Load Byte and Zero with Update */ | |
5931 | case 41: /* Load Halfword and Zero with Update */ | |
5932 | case 43: /* Load Halfword Algebraic with Update */ | |
5933 | record_full_arch_list_add_reg (regcache, | |
5934 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5935 | /* FALL-THROUGH */ | |
5936 | case 32: /* Load Word and Zero */ | |
5937 | case 34: /* Load Byte and Zero */ | |
5938 | case 40: /* Load Halfword and Zero */ | |
5939 | case 42: /* Load Halfword Algebraic */ | |
5940 | record_full_arch_list_add_reg (regcache, | |
5941 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
5942 | break; | |
5943 | ||
5944 | case 46: /* Load Multiple Word */ | |
5945 | for (i = PPC_RT (insn); i < 32; i++) | |
5946 | record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i); | |
5947 | break; | |
5948 | ||
5949 | case 56: /* Load Quadword */ | |
5950 | tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1); | |
5951 | record_full_arch_list_add_reg (regcache, tmp); | |
5952 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
5953 | break; | |
5954 | ||
5955 | case 49: /* Load Floating-Point Single with Update */ | |
5956 | case 51: /* Load Floating-Point Double with Update */ | |
5957 | record_full_arch_list_add_reg (regcache, | |
5958 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5959 | /* FALL-THROUGH */ | |
5960 | case 48: /* Load Floating-Point Single */ | |
5961 | case 50: /* Load Floating-Point Double */ | |
5962 | record_full_arch_list_add_reg (regcache, | |
5963 | tdep->ppc_fp0_regnum + PPC_FRT (insn)); | |
5964 | break; | |
5965 | ||
5966 | case 47: /* Store Multiple Word */ | |
5967 | { | |
b926417a | 5968 | ULONGEST iaddr = 0; |
b4cdae6f WW |
5969 | |
5970 | if (PPC_RA (insn) != 0) | |
5971 | regcache_raw_read_unsigned (regcache, | |
5972 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
b926417a | 5973 | &iaddr); |
b4cdae6f | 5974 | |
b926417a TT |
5975 | iaddr += PPC_D (insn); |
5976 | record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn))); | |
b4cdae6f WW |
5977 | } |
5978 | break; | |
5979 | ||
5980 | case 37: /* Store Word with Update */ | |
5981 | case 39: /* Store Byte with Update */ | |
5982 | case 45: /* Store Halfword with Update */ | |
5983 | case 53: /* Store Floating-Point Single with Update */ | |
5984 | case 55: /* Store Floating-Point Double with Update */ | |
5985 | record_full_arch_list_add_reg (regcache, | |
5986 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
5987 | /* FALL-THROUGH */ | |
5988 | case 36: /* Store Word */ | |
5989 | case 38: /* Store Byte */ | |
5990 | case 44: /* Store Halfword */ | |
5991 | case 52: /* Store Floating-Point Single */ | |
5992 | case 54: /* Store Floating-Point Double */ | |
5993 | { | |
b926417a | 5994 | ULONGEST iaddr = 0; |
b4cdae6f WW |
5995 | int size = -1; |
5996 | ||
5997 | if (PPC_RA (insn) != 0) | |
5998 | regcache_raw_read_unsigned (regcache, | |
5999 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
b926417a TT |
6000 | &iaddr); |
6001 | iaddr += PPC_D (insn); | |
b4cdae6f WW |
6002 | |
6003 | if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53) | |
6004 | size = 4; | |
6005 | else if (op6 == 54 || op6 == 55) | |
6006 | size = 8; | |
6007 | else if (op6 == 44 || op6 == 45) | |
6008 | size = 2; | |
6009 | else if (op6 == 38 || op6 == 39) | |
6010 | size = 1; | |
6011 | else | |
6012 | gdb_assert (0); | |
6013 | ||
b926417a | 6014 | record_full_arch_list_add_mem (iaddr, size); |
b4cdae6f WW |
6015 | } |
6016 | break; | |
6017 | ||
6ec2b213 EBM |
6018 | case 57: |
6019 | switch (insn & 0x3) | |
6020 | { | |
6021 | case 0: /* Load Floating-Point Double Pair */ | |
6022 | tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1); | |
6023 | record_full_arch_list_add_reg (regcache, tmp); | |
6024 | record_full_arch_list_add_reg (regcache, tmp + 1); | |
6025 | break; | |
6026 | case 2: /* Load VSX Scalar Doubleword */ | |
6027 | case 3: /* Load VSX Scalar Single */ | |
6028 | ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32); | |
6029 | break; | |
6030 | default: | |
6031 | goto UNKNOWN_OP; | |
6032 | } | |
b4cdae6f WW |
6033 | break; |
6034 | ||
6035 | case 58: /* Load Doubleword */ | |
6036 | /* Load Doubleword with Update */ | |
6037 | /* Load Word Algebraic */ | |
6038 | if (PPC_FIELD (insn, 30, 2) > 2) | |
6039 | goto UNKNOWN_OP; | |
6040 | ||
6041 | record_full_arch_list_add_reg (regcache, | |
6042 | tdep->ppc_gp0_regnum + PPC_RT (insn)); | |
6043 | if (PPC_BIT (insn, 31)) | |
6044 | record_full_arch_list_add_reg (regcache, | |
6045 | tdep->ppc_gp0_regnum + PPC_RA (insn)); | |
6046 | break; | |
6047 | ||
6048 | case 59: | |
6049 | if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0) | |
6050 | return -1; | |
6051 | break; | |
6052 | ||
6053 | case 60: | |
6054 | if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0) | |
6055 | return -1; | |
6056 | break; | |
6057 | ||
6ec2b213 EBM |
6058 | case 61: |
6059 | if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0) | |
6060 | return -1; | |
6061 | break; | |
6062 | ||
b4cdae6f WW |
6063 | case 62: /* Store Doubleword */ |
6064 | /* Store Doubleword with Update */ | |
6065 | /* Store Quadword with Update */ | |
6066 | { | |
b926417a | 6067 | ULONGEST iaddr = 0; |
b4cdae6f WW |
6068 | int size; |
6069 | int sub2 = PPC_FIELD (insn, 30, 2); | |
6070 | ||
6ec2b213 | 6071 | if (sub2 > 2) |
b4cdae6f WW |
6072 | goto UNKNOWN_OP; |
6073 | ||
6074 | if (PPC_RA (insn) != 0) | |
6075 | regcache_raw_read_unsigned (regcache, | |
6076 | tdep->ppc_gp0_regnum + PPC_RA (insn), | |
b926417a | 6077 | &iaddr); |
b4cdae6f | 6078 | |
6ec2b213 | 6079 | size = (sub2 == 2) ? 16 : 8; |
b4cdae6f | 6080 | |
b926417a TT |
6081 | iaddr += PPC_DS (insn) << 2; |
6082 | record_full_arch_list_add_mem (iaddr, size); | |
b4cdae6f WW |
6083 | |
6084 | if (op6 == 62 && sub2 == 1) | |
6085 | record_full_arch_list_add_reg (regcache, | |
6086 | tdep->ppc_gp0_regnum + | |
6087 | PPC_RA (insn)); | |
6088 | ||
6089 | break; | |
6090 | } | |
6091 | ||
6092 | case 63: | |
6093 | if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0) | |
6094 | return -1; | |
6095 | break; | |
6096 | ||
6097 | default: | |
6098 | UNKNOWN_OP: | |
810c1026 WW |
6099 | fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x " |
6100 | "at %s, %d.\n", insn, paddress (gdbarch, addr), op6); | |
b4cdae6f WW |
6101 | return -1; |
6102 | } | |
6103 | ||
6104 | if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM)) | |
6105 | return -1; | |
6106 | if (record_full_arch_list_add_end ()) | |
6107 | return -1; | |
6108 | return 0; | |
6109 | } | |
6110 | ||
7a78ae4e ND |
6111 | /* Initialize the current architecture based on INFO. If possible, re-use an |
6112 | architecture from ARCHES, which is a list of architectures already created | |
6113 | during this debugging session. | |
c906108c | 6114 | |
7a78ae4e | 6115 | Called e.g. at program startup, when reading a core file, and when reading |
64366f1c | 6116 | a binary file. */ |
c906108c | 6117 | |
7a78ae4e ND |
6118 | static struct gdbarch * |
6119 | rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
6120 | { | |
6121 | struct gdbarch *gdbarch; | |
6122 | struct gdbarch_tdep *tdep; | |
7cc46491 | 6123 | int wordsize, from_xcoff_exec, from_elf_exec; |
7a78ae4e ND |
6124 | enum bfd_architecture arch; |
6125 | unsigned long mach; | |
6126 | bfd abfd; | |
55eddb0f DJ |
6127 | enum auto_boolean soft_float_flag = powerpc_soft_float_global; |
6128 | int soft_float; | |
ed0f4273 | 6129 | enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO; |
55eddb0f | 6130 | enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global; |
cd453cd0 | 6131 | enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO; |
93b4691f | 6132 | int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0; |
7ca18ed6 | 6133 | int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0; |
8d619c01 EBM |
6134 | int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0; |
6135 | int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0; | |
6136 | int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0; | |
6137 | int have_htm_tar = 0; | |
7cc46491 DJ |
6138 | int tdesc_wordsize = -1; |
6139 | const struct target_desc *tdesc = info.target_desc; | |
6140 | struct tdesc_arch_data *tdesc_data = NULL; | |
f949c649 | 6141 | int num_pseudoregs = 0; |
604c2f83 | 6142 | int cur_reg; |
7a78ae4e | 6143 | |
9aa1e687 | 6144 | from_xcoff_exec = info.abfd && info.abfd->format == bfd_object && |
7a78ae4e ND |
6145 | bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour; |
6146 | ||
9aa1e687 KB |
6147 | from_elf_exec = info.abfd && info.abfd->format == bfd_object && |
6148 | bfd_get_flavour (info.abfd) == bfd_target_elf_flavour; | |
6149 | ||
e712c1cf | 6150 | /* Check word size. If INFO is from a binary file, infer it from |
64366f1c | 6151 | that, else choose a likely default. */ |
9aa1e687 | 6152 | if (from_xcoff_exec) |
c906108c | 6153 | { |
11ed25ac | 6154 | if (bfd_xcoff_is_xcoff64 (info.abfd)) |
7a78ae4e ND |
6155 | wordsize = 8; |
6156 | else | |
6157 | wordsize = 4; | |
c906108c | 6158 | } |
9aa1e687 KB |
6159 | else if (from_elf_exec) |
6160 | { | |
6161 | if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64) | |
6162 | wordsize = 8; | |
6163 | else | |
6164 | wordsize = 4; | |
6165 | } | |
7cc46491 DJ |
6166 | else if (tdesc_has_registers (tdesc)) |
6167 | wordsize = -1; | |
c906108c | 6168 | else |
7a78ae4e | 6169 | { |
27b15785 | 6170 | if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0) |
16d8013c JB |
6171 | wordsize = (info.bfd_arch_info->bits_per_word |
6172 | / info.bfd_arch_info->bits_per_byte); | |
27b15785 KB |
6173 | else |
6174 | wordsize = 4; | |
7a78ae4e | 6175 | } |
c906108c | 6176 | |
475bbd17 JB |
6177 | /* Get the architecture and machine from the BFD. */ |
6178 | arch = info.bfd_arch_info->arch; | |
6179 | mach = info.bfd_arch_info->mach; | |
5bf1c677 EZ |
6180 | |
6181 | /* For e500 executables, the apuinfo section is of help here. Such | |
6182 | section contains the identifier and revision number of each | |
6183 | Application-specific Processing Unit that is present on the | |
6184 | chip. The content of the section is determined by the assembler | |
6185 | which looks at each instruction and determines which unit (and | |
74af9197 NF |
6186 | which version of it) can execute it. Grovel through the section |
6187 | looking for relevant e500 APUs. */ | |
5bf1c677 | 6188 | |
74af9197 | 6189 | if (bfd_uses_spe_extensions (info.abfd)) |
5bf1c677 | 6190 | { |
74af9197 NF |
6191 | arch = info.bfd_arch_info->arch; |
6192 | mach = bfd_mach_ppc_e500; | |
6193 | bfd_default_set_arch_mach (&abfd, arch, mach); | |
6194 | info.bfd_arch_info = bfd_get_arch_info (&abfd); | |
5bf1c677 EZ |
6195 | } |
6196 | ||
7cc46491 DJ |
6197 | /* Find a default target description which describes our register |
6198 | layout, if we do not already have one. */ | |
6199 | if (! tdesc_has_registers (tdesc)) | |
6200 | { | |
6201 | const struct variant *v; | |
6202 | ||
6203 | /* Choose variant. */ | |
6204 | v = find_variant_by_arch (arch, mach); | |
6205 | if (!v) | |
6206 | return NULL; | |
6207 | ||
6208 | tdesc = *v->tdesc; | |
6209 | } | |
6210 | ||
6211 | gdb_assert (tdesc_has_registers (tdesc)); | |
6212 | ||
6213 | /* Check any target description for validity. */ | |
6214 | if (tdesc_has_registers (tdesc)) | |
6215 | { | |
6216 | static const char *const gprs[] = { | |
6217 | "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", | |
6218 | "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", | |
6219 | "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", | |
6220 | "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31" | |
6221 | }; | |
7cc46491 DJ |
6222 | const struct tdesc_feature *feature; |
6223 | int i, valid_p; | |
6224 | static const char *const msr_names[] = { "msr", "ps" }; | |
6225 | static const char *const cr_names[] = { "cr", "cnd" }; | |
6226 | static const char *const ctr_names[] = { "ctr", "cnt" }; | |
6227 | ||
6228 | feature = tdesc_find_feature (tdesc, | |
6229 | "org.gnu.gdb.power.core"); | |
6230 | if (feature == NULL) | |
6231 | return NULL; | |
6232 | ||
6233 | tdesc_data = tdesc_data_alloc (); | |
6234 | ||
6235 | valid_p = 1; | |
6236 | for (i = 0; i < ppc_num_gprs; i++) | |
6237 | valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]); | |
6238 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM, | |
6239 | "pc"); | |
6240 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM, | |
6241 | "lr"); | |
6242 | valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM, | |
6243 | "xer"); | |
6244 | ||
6245 | /* Allow alternate names for these registers, to accomodate GDB's | |
6246 | historic naming. */ | |
6247 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
6248 | PPC_MSR_REGNUM, msr_names); | |
6249 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
6250 | PPC_CR_REGNUM, cr_names); | |
6251 | valid_p &= tdesc_numbered_register_choices (feature, tdesc_data, | |
6252 | PPC_CTR_REGNUM, ctr_names); | |
6253 | ||
6254 | if (!valid_p) | |
6255 | { | |
6256 | tdesc_data_cleanup (tdesc_data); | |
6257 | return NULL; | |
6258 | } | |
6259 | ||
6260 | have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM, | |
6261 | "mq"); | |
6262 | ||
12863263 | 6263 | tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8; |
7cc46491 DJ |
6264 | if (wordsize == -1) |
6265 | wordsize = tdesc_wordsize; | |
6266 | ||
6267 | feature = tdesc_find_feature (tdesc, | |
6268 | "org.gnu.gdb.power.fpu"); | |
6269 | if (feature != NULL) | |
6270 | { | |
6271 | static const char *const fprs[] = { | |
6272 | "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", | |
6273 | "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", | |
6274 | "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23", | |
6275 | "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31" | |
6276 | }; | |
6277 | valid_p = 1; | |
6278 | for (i = 0; i < ppc_num_fprs; i++) | |
6279 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6280 | PPC_F0_REGNUM + i, fprs[i]); | |
6281 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6282 | PPC_FPSCR_REGNUM, "fpscr"); | |
6283 | ||
6284 | if (!valid_p) | |
6285 | { | |
6286 | tdesc_data_cleanup (tdesc_data); | |
6287 | return NULL; | |
6288 | } | |
6289 | have_fpu = 1; | |
0fb2aaa1 PFC |
6290 | |
6291 | /* The fpscr register was expanded in isa 2.05 to 64 bits | |
6292 | along with the addition of the decimal floating point | |
6293 | facility. */ | |
12863263 | 6294 | if (tdesc_register_bitsize (feature, "fpscr") > 32) |
0fb2aaa1 | 6295 | have_dfp = 1; |
7cc46491 DJ |
6296 | } |
6297 | else | |
6298 | have_fpu = 0; | |
6299 | ||
6300 | feature = tdesc_find_feature (tdesc, | |
6301 | "org.gnu.gdb.power.altivec"); | |
6302 | if (feature != NULL) | |
6303 | { | |
6304 | static const char *const vector_regs[] = { | |
6305 | "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7", | |
6306 | "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15", | |
6307 | "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23", | |
6308 | "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31" | |
6309 | }; | |
6310 | ||
6311 | valid_p = 1; | |
6312 | for (i = 0; i < ppc_num_gprs; i++) | |
6313 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6314 | PPC_VR0_REGNUM + i, | |
6315 | vector_regs[i]); | |
6316 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6317 | PPC_VSCR_REGNUM, "vscr"); | |
6318 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6319 | PPC_VRSAVE_REGNUM, "vrsave"); | |
6320 | ||
6321 | if (have_spe || !valid_p) | |
6322 | { | |
6323 | tdesc_data_cleanup (tdesc_data); | |
6324 | return NULL; | |
6325 | } | |
6326 | have_altivec = 1; | |
6327 | } | |
6328 | else | |
6329 | have_altivec = 0; | |
6330 | ||
604c2f83 LM |
6331 | /* Check for POWER7 VSX registers support. */ |
6332 | feature = tdesc_find_feature (tdesc, | |
6333 | "org.gnu.gdb.power.vsx"); | |
6334 | ||
6335 | if (feature != NULL) | |
6336 | { | |
6337 | static const char *const vsx_regs[] = { | |
6338 | "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h", | |
6339 | "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h", | |
6340 | "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h", | |
6341 | "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h", | |
6342 | "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h", | |
6343 | "vs30h", "vs31h" | |
6344 | }; | |
6345 | ||
6346 | valid_p = 1; | |
6347 | ||
6348 | for (i = 0; i < ppc_num_vshrs; i++) | |
6349 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6350 | PPC_VSR0_UPPER_REGNUM + i, | |
6351 | vsx_regs[i]); | |
81ab84fd PFC |
6352 | |
6353 | if (!valid_p || !have_fpu || !have_altivec) | |
604c2f83 LM |
6354 | { |
6355 | tdesc_data_cleanup (tdesc_data); | |
6356 | return NULL; | |
6357 | } | |
6358 | ||
6359 | have_vsx = 1; | |
6360 | } | |
6361 | else | |
6362 | have_vsx = 0; | |
6363 | ||
7cc46491 DJ |
6364 | /* On machines supporting the SPE APU, the general-purpose registers |
6365 | are 64 bits long. There are SIMD vector instructions to treat them | |
6366 | as pairs of floats, but the rest of the instruction set treats them | |
6367 | as 32-bit registers, and only operates on their lower halves. | |
6368 | ||
6369 | In the GDB regcache, we treat their high and low halves as separate | |
6370 | registers. The low halves we present as the general-purpose | |
6371 | registers, and then we have pseudo-registers that stitch together | |
6372 | the upper and lower halves and present them as pseudo-registers. | |
6373 | ||
6374 | Thus, the target description is expected to supply the upper | |
6375 | halves separately. */ | |
6376 | ||
6377 | feature = tdesc_find_feature (tdesc, | |
6378 | "org.gnu.gdb.power.spe"); | |
6379 | if (feature != NULL) | |
6380 | { | |
6381 | static const char *const upper_spe[] = { | |
6382 | "ev0h", "ev1h", "ev2h", "ev3h", | |
6383 | "ev4h", "ev5h", "ev6h", "ev7h", | |
6384 | "ev8h", "ev9h", "ev10h", "ev11h", | |
6385 | "ev12h", "ev13h", "ev14h", "ev15h", | |
6386 | "ev16h", "ev17h", "ev18h", "ev19h", | |
6387 | "ev20h", "ev21h", "ev22h", "ev23h", | |
6388 | "ev24h", "ev25h", "ev26h", "ev27h", | |
6389 | "ev28h", "ev29h", "ev30h", "ev31h" | |
6390 | }; | |
6391 | ||
6392 | valid_p = 1; | |
6393 | for (i = 0; i < ppc_num_gprs; i++) | |
6394 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6395 | PPC_SPE_UPPER_GP0_REGNUM + i, | |
6396 | upper_spe[i]); | |
6397 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6398 | PPC_SPE_ACC_REGNUM, "acc"); | |
6399 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6400 | PPC_SPE_FSCR_REGNUM, "spefscr"); | |
6401 | ||
6402 | if (have_mq || have_fpu || !valid_p) | |
6403 | { | |
6404 | tdesc_data_cleanup (tdesc_data); | |
6405 | return NULL; | |
6406 | } | |
6407 | have_spe = 1; | |
6408 | } | |
6409 | else | |
6410 | have_spe = 0; | |
7ca18ed6 EBM |
6411 | |
6412 | /* Program Priority Register. */ | |
6413 | feature = tdesc_find_feature (tdesc, | |
6414 | "org.gnu.gdb.power.ppr"); | |
6415 | if (feature != NULL) | |
6416 | { | |
6417 | valid_p = 1; | |
6418 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6419 | PPC_PPR_REGNUM, "ppr"); | |
6420 | ||
6421 | if (!valid_p) | |
6422 | { | |
6423 | tdesc_data_cleanup (tdesc_data); | |
6424 | return NULL; | |
6425 | } | |
6426 | have_ppr = 1; | |
6427 | } | |
6428 | else | |
6429 | have_ppr = 0; | |
6430 | ||
6431 | /* Data Stream Control Register. */ | |
6432 | feature = tdesc_find_feature (tdesc, | |
6433 | "org.gnu.gdb.power.dscr"); | |
6434 | if (feature != NULL) | |
6435 | { | |
6436 | valid_p = 1; | |
6437 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6438 | PPC_DSCR_REGNUM, "dscr"); | |
6439 | ||
6440 | if (!valid_p) | |
6441 | { | |
6442 | tdesc_data_cleanup (tdesc_data); | |
6443 | return NULL; | |
6444 | } | |
6445 | have_dscr = 1; | |
6446 | } | |
6447 | else | |
6448 | have_dscr = 0; | |
f2cf6173 EBM |
6449 | |
6450 | /* Target Address Register. */ | |
6451 | feature = tdesc_find_feature (tdesc, | |
6452 | "org.gnu.gdb.power.tar"); | |
6453 | if (feature != NULL) | |
6454 | { | |
6455 | valid_p = 1; | |
6456 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6457 | PPC_TAR_REGNUM, "tar"); | |
6458 | ||
6459 | if (!valid_p) | |
6460 | { | |
6461 | tdesc_data_cleanup (tdesc_data); | |
6462 | return NULL; | |
6463 | } | |
6464 | have_tar = 1; | |
6465 | } | |
6466 | else | |
6467 | have_tar = 0; | |
232bfb86 EBM |
6468 | |
6469 | /* Event-based Branching Registers. */ | |
6470 | feature = tdesc_find_feature (tdesc, | |
6471 | "org.gnu.gdb.power.ebb"); | |
6472 | if (feature != NULL) | |
6473 | { | |
6474 | static const char *const ebb_regs[] = { | |
6475 | "bescr", "ebbhr", "ebbrr" | |
6476 | }; | |
6477 | ||
6478 | valid_p = 1; | |
6479 | for (i = 0; i < ARRAY_SIZE (ebb_regs); i++) | |
6480 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6481 | PPC_BESCR_REGNUM + i, | |
6482 | ebb_regs[i]); | |
6483 | if (!valid_p) | |
6484 | { | |
6485 | tdesc_data_cleanup (tdesc_data); | |
6486 | return NULL; | |
6487 | } | |
6488 | have_ebb = 1; | |
6489 | } | |
6490 | else | |
6491 | have_ebb = 0; | |
6492 | ||
6493 | /* Subset of the ISA 2.07 Performance Monitor Registers provided | |
6494 | by Linux. */ | |
6495 | feature = tdesc_find_feature (tdesc, | |
6496 | "org.gnu.gdb.power.linux.pmu"); | |
6497 | if (feature != NULL) | |
6498 | { | |
6499 | valid_p = 1; | |
6500 | ||
6501 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6502 | PPC_MMCR0_REGNUM, | |
6503 | "mmcr0"); | |
6504 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6505 | PPC_MMCR2_REGNUM, | |
6506 | "mmcr2"); | |
6507 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6508 | PPC_SIAR_REGNUM, | |
6509 | "siar"); | |
6510 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6511 | PPC_SDAR_REGNUM, | |
6512 | "sdar"); | |
6513 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6514 | PPC_SIER_REGNUM, | |
6515 | "sier"); | |
6516 | ||
6517 | if (!valid_p) | |
6518 | { | |
6519 | tdesc_data_cleanup (tdesc_data); | |
6520 | return NULL; | |
6521 | } | |
6522 | have_pmu = 1; | |
6523 | } | |
6524 | else | |
6525 | have_pmu = 0; | |
8d619c01 EBM |
6526 | |
6527 | /* Hardware Transactional Memory Registers. */ | |
6528 | feature = tdesc_find_feature (tdesc, | |
6529 | "org.gnu.gdb.power.htm.spr"); | |
6530 | if (feature != NULL) | |
6531 | { | |
6532 | static const char *const tm_spr_regs[] = { | |
6533 | "tfhar", "texasr", "tfiar" | |
6534 | }; | |
6535 | ||
6536 | valid_p = 1; | |
6537 | for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++) | |
6538 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6539 | PPC_TFHAR_REGNUM + i, | |
6540 | tm_spr_regs[i]); | |
6541 | if (!valid_p) | |
6542 | { | |
6543 | tdesc_data_cleanup (tdesc_data); | |
6544 | return NULL; | |
6545 | } | |
6546 | ||
6547 | have_htm_spr = 1; | |
6548 | } | |
6549 | else | |
6550 | have_htm_spr = 0; | |
6551 | ||
6552 | feature = tdesc_find_feature (tdesc, | |
6553 | "org.gnu.gdb.power.htm.core"); | |
6554 | if (feature != NULL) | |
6555 | { | |
6556 | static const char *const cgprs[] = { | |
6557 | "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7", | |
6558 | "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", | |
6559 | "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21", | |
6560 | "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28", | |
6561 | "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr" | |
6562 | }; | |
6563 | ||
6564 | valid_p = 1; | |
6565 | ||
6566 | for (i = 0; i < ARRAY_SIZE (cgprs); i++) | |
6567 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6568 | PPC_CR0_REGNUM + i, | |
6569 | cgprs[i]); | |
6570 | if (!valid_p) | |
6571 | { | |
6572 | tdesc_data_cleanup (tdesc_data); | |
6573 | return NULL; | |
6574 | } | |
6575 | ||
6576 | have_htm_core = 1; | |
6577 | } | |
6578 | else | |
6579 | have_htm_core = 0; | |
6580 | ||
6581 | feature = tdesc_find_feature (tdesc, | |
6582 | "org.gnu.gdb.power.htm.fpu"); | |
6583 | if (feature != NULL) | |
6584 | { | |
6585 | valid_p = 1; | |
6586 | ||
6587 | static const char *const cfprs[] = { | |
6588 | "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7", | |
6589 | "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15", | |
6590 | "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22", | |
6591 | "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29", | |
6592 | "cf30", "cf31", "cfpscr" | |
6593 | }; | |
6594 | ||
6595 | for (i = 0; i < ARRAY_SIZE (cfprs); i++) | |
6596 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6597 | PPC_CF0_REGNUM + i, | |
6598 | cfprs[i]); | |
6599 | ||
6600 | if (!valid_p) | |
6601 | { | |
6602 | tdesc_data_cleanup (tdesc_data); | |
6603 | return NULL; | |
6604 | } | |
6605 | have_htm_fpu = 1; | |
6606 | } | |
6607 | else | |
6608 | have_htm_fpu = 0; | |
6609 | ||
6610 | feature = tdesc_find_feature (tdesc, | |
6611 | "org.gnu.gdb.power.htm.altivec"); | |
6612 | if (feature != NULL) | |
6613 | { | |
6614 | valid_p = 1; | |
6615 | ||
6616 | static const char *const cvmx[] = { | |
6617 | "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6", | |
6618 | "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13", | |
6619 | "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20", | |
6620 | "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26", | |
6621 | "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr", | |
6622 | "cvrsave" | |
6623 | }; | |
6624 | ||
6625 | for (i = 0; i < ARRAY_SIZE (cvmx); i++) | |
6626 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6627 | PPC_CVR0_REGNUM + i, | |
6628 | cvmx[i]); | |
6629 | ||
6630 | if (!valid_p) | |
6631 | { | |
6632 | tdesc_data_cleanup (tdesc_data); | |
6633 | return NULL; | |
6634 | } | |
6635 | have_htm_altivec = 1; | |
6636 | } | |
6637 | else | |
6638 | have_htm_altivec = 0; | |
6639 | ||
6640 | feature = tdesc_find_feature (tdesc, | |
6641 | "org.gnu.gdb.power.htm.vsx"); | |
6642 | if (feature != NULL) | |
6643 | { | |
6644 | valid_p = 1; | |
6645 | ||
6646 | static const char *const cvsx[] = { | |
6647 | "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h", | |
6648 | "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h", | |
6649 | "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h", | |
6650 | "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h", | |
6651 | "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h", | |
6652 | "cvs30h", "cvs31h" | |
6653 | }; | |
6654 | ||
6655 | for (i = 0; i < ARRAY_SIZE (cvsx); i++) | |
6656 | valid_p &= tdesc_numbered_register (feature, tdesc_data, | |
6657 | (PPC_CVSR0_UPPER_REGNUM | |
6658 | + i), | |
6659 | cvsx[i]); | |
6660 | ||
6661 | if (!valid_p || !have_htm_fpu || !have_htm_altivec) | |
6662 | { | |
6663 | tdesc_data_cleanup (tdesc_data); | |
6664 | return NULL; | |
6665 | } | |
6666 | have_htm_vsx = 1; | |
6667 | } | |
6668 | else | |
6669 | have_htm_vsx = 0; | |
6670 | ||
6671 | feature = tdesc_find_feature (tdesc, | |
6672 | "org.gnu.gdb.power.htm.ppr"); | |
6673 | if (feature != NULL) | |
6674 | { | |
6675 | valid_p = tdesc_numbered_register (feature, tdesc_data, | |
6676 | PPC_CPPR_REGNUM, "cppr"); | |
6677 | ||
6678 | if (!valid_p) | |
6679 | { | |
6680 | tdesc_data_cleanup (tdesc_data); | |
6681 | return NULL; | |
6682 | } | |
6683 | have_htm_ppr = 1; | |
6684 | } | |
6685 | else | |
6686 | have_htm_ppr = 0; | |
6687 | ||
6688 | feature = tdesc_find_feature (tdesc, | |
6689 | "org.gnu.gdb.power.htm.dscr"); | |
6690 | if (feature != NULL) | |
6691 | { | |
6692 | valid_p = tdesc_numbered_register (feature, tdesc_data, | |
6693 | PPC_CDSCR_REGNUM, "cdscr"); | |
6694 | ||
6695 | if (!valid_p) | |
6696 | { | |
6697 | tdesc_data_cleanup (tdesc_data); | |
6698 | return NULL; | |
6699 | } | |
6700 | have_htm_dscr = 1; | |
6701 | } | |
6702 | else | |
6703 | have_htm_dscr = 0; | |
6704 | ||
6705 | feature = tdesc_find_feature (tdesc, | |
6706 | "org.gnu.gdb.power.htm.tar"); | |
6707 | if (feature != NULL) | |
6708 | { | |
6709 | valid_p = tdesc_numbered_register (feature, tdesc_data, | |
6710 | PPC_CTAR_REGNUM, "ctar"); | |
6711 | ||
6712 | if (!valid_p) | |
6713 | { | |
6714 | tdesc_data_cleanup (tdesc_data); | |
6715 | return NULL; | |
6716 | } | |
6717 | have_htm_tar = 1; | |
6718 | } | |
6719 | else | |
6720 | have_htm_tar = 0; | |
7cc46491 DJ |
6721 | } |
6722 | ||
6723 | /* If we have a 64-bit binary on a 32-bit target, complain. Also | |
6724 | complain for a 32-bit binary on a 64-bit target; we do not yet | |
6725 | support that. For instance, the 32-bit ABI routines expect | |
6726 | 32-bit GPRs. | |
6727 | ||
6728 | As long as there isn't an explicit target description, we'll | |
6729 | choose one based on the BFD architecture and get a word size | |
6730 | matching the binary (probably powerpc:common or | |
6731 | powerpc:common64). So there is only trouble if a 64-bit target | |
6732 | supplies a 64-bit description while debugging a 32-bit | |
6733 | binary. */ | |
6734 | if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize) | |
6735 | { | |
6736 | tdesc_data_cleanup (tdesc_data); | |
6737 | return NULL; | |
6738 | } | |
6739 | ||
55eddb0f | 6740 | #ifdef HAVE_ELF |
cd453cd0 UW |
6741 | if (from_elf_exec) |
6742 | { | |
6743 | switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI) | |
6744 | { | |
6745 | case 1: | |
6746 | elf_abi = POWERPC_ELF_V1; | |
6747 | break; | |
6748 | case 2: | |
6749 | elf_abi = POWERPC_ELF_V2; | |
6750 | break; | |
6751 | default: | |
6752 | break; | |
6753 | } | |
6754 | } | |
6755 | ||
55eddb0f DJ |
6756 | if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec) |
6757 | { | |
6758 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
ed0f4273 | 6759 | Tag_GNU_Power_ABI_FP) & 3) |
55eddb0f DJ |
6760 | { |
6761 | case 1: | |
6762 | soft_float_flag = AUTO_BOOLEAN_FALSE; | |
6763 | break; | |
6764 | case 2: | |
6765 | soft_float_flag = AUTO_BOOLEAN_TRUE; | |
6766 | break; | |
6767 | default: | |
6768 | break; | |
6769 | } | |
6770 | } | |
6771 | ||
ed0f4273 UW |
6772 | if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec) |
6773 | { | |
6774 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
6775 | Tag_GNU_Power_ABI_FP) >> 2) | |
6776 | { | |
6777 | case 1: | |
6778 | long_double_abi = POWERPC_LONG_DOUBLE_IBM128; | |
6779 | break; | |
6780 | case 3: | |
6781 | long_double_abi = POWERPC_LONG_DOUBLE_IEEE128; | |
6782 | break; | |
6783 | default: | |
6784 | break; | |
6785 | } | |
6786 | } | |
6787 | ||
55eddb0f DJ |
6788 | if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec) |
6789 | { | |
6790 | switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU, | |
6791 | Tag_GNU_Power_ABI_Vector)) | |
6792 | { | |
6793 | case 1: | |
6794 | vector_abi = POWERPC_VEC_GENERIC; | |
6795 | break; | |
6796 | case 2: | |
6797 | vector_abi = POWERPC_VEC_ALTIVEC; | |
6798 | break; | |
6799 | case 3: | |
6800 | vector_abi = POWERPC_VEC_SPE; | |
6801 | break; | |
6802 | default: | |
6803 | break; | |
6804 | } | |
6805 | } | |
6806 | #endif | |
6807 | ||
cd453cd0 UW |
6808 | /* At this point, the only supported ELF-based 64-bit little-endian |
6809 | operating system is GNU/Linux, and this uses the ELFv2 ABI by | |
6810 | default. All other supported ELF-based operating systems use the | |
6811 | ELFv1 ABI by default. Therefore, if the ABI marker is missing, | |
6812 | e.g. because we run a legacy binary, or have attached to a process | |
6813 | and have not found any associated binary file, set the default | |
6814 | according to this heuristic. */ | |
6815 | if (elf_abi == POWERPC_ELF_AUTO) | |
6816 | { | |
6817 | if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE) | |
6818 | elf_abi = POWERPC_ELF_V2; | |
6819 | else | |
6820 | elf_abi = POWERPC_ELF_V1; | |
6821 | } | |
6822 | ||
55eddb0f DJ |
6823 | if (soft_float_flag == AUTO_BOOLEAN_TRUE) |
6824 | soft_float = 1; | |
6825 | else if (soft_float_flag == AUTO_BOOLEAN_FALSE) | |
6826 | soft_float = 0; | |
6827 | else | |
6828 | soft_float = !have_fpu; | |
6829 | ||
6830 | /* If we have a hard float binary or setting but no floating point | |
6831 | registers, downgrade to soft float anyway. We're still somewhat | |
6832 | useful in this scenario. */ | |
6833 | if (!soft_float && !have_fpu) | |
6834 | soft_float = 1; | |
6835 | ||
6836 | /* Similarly for vector registers. */ | |
6837 | if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec) | |
6838 | vector_abi = POWERPC_VEC_GENERIC; | |
6839 | ||
6840 | if (vector_abi == POWERPC_VEC_SPE && !have_spe) | |
6841 | vector_abi = POWERPC_VEC_GENERIC; | |
6842 | ||
6843 | if (vector_abi == POWERPC_VEC_AUTO) | |
6844 | { | |
6845 | if (have_altivec) | |
6846 | vector_abi = POWERPC_VEC_ALTIVEC; | |
6847 | else if (have_spe) | |
6848 | vector_abi = POWERPC_VEC_SPE; | |
6849 | else | |
6850 | vector_abi = POWERPC_VEC_GENERIC; | |
6851 | } | |
6852 | ||
6853 | /* Do not limit the vector ABI based on available hardware, since we | |
6854 | do not yet know what hardware we'll decide we have. Yuck! FIXME! */ | |
6855 | ||
7cc46491 DJ |
6856 | /* Find a candidate among extant architectures. */ |
6857 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
6858 | arches != NULL; | |
6859 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
6860 | { | |
6861 | /* Word size in the various PowerPC bfd_arch_info structs isn't | |
6862 | meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform | |
6863 | separate word size check. */ | |
6864 | tdep = gdbarch_tdep (arches->gdbarch); | |
cd453cd0 UW |
6865 | if (tdep && tdep->elf_abi != elf_abi) |
6866 | continue; | |
55eddb0f DJ |
6867 | if (tdep && tdep->soft_float != soft_float) |
6868 | continue; | |
ed0f4273 UW |
6869 | if (tdep && tdep->long_double_abi != long_double_abi) |
6870 | continue; | |
55eddb0f DJ |
6871 | if (tdep && tdep->vector_abi != vector_abi) |
6872 | continue; | |
7cc46491 DJ |
6873 | if (tdep && tdep->wordsize == wordsize) |
6874 | { | |
6875 | if (tdesc_data != NULL) | |
6876 | tdesc_data_cleanup (tdesc_data); | |
6877 | return arches->gdbarch; | |
6878 | } | |
6879 | } | |
6880 | ||
6881 | /* None found, create a new architecture from INFO, whose bfd_arch_info | |
6882 | validity depends on the source: | |
6883 | - executable useless | |
6884 | - rs6000_host_arch() good | |
6885 | - core file good | |
6886 | - "set arch" trust blindly | |
6887 | - GDB startup useless but harmless */ | |
6888 | ||
fc270c35 | 6889 | tdep = XCNEW (struct gdbarch_tdep); |
7cc46491 | 6890 | tdep->wordsize = wordsize; |
cd453cd0 | 6891 | tdep->elf_abi = elf_abi; |
55eddb0f | 6892 | tdep->soft_float = soft_float; |
ed0f4273 | 6893 | tdep->long_double_abi = long_double_abi; |
55eddb0f | 6894 | tdep->vector_abi = vector_abi; |
7cc46491 | 6895 | |
7a78ae4e | 6896 | gdbarch = gdbarch_alloc (&info, tdep); |
7a78ae4e | 6897 | |
7cc46491 DJ |
6898 | tdep->ppc_gp0_regnum = PPC_R0_REGNUM; |
6899 | tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2; | |
6900 | tdep->ppc_ps_regnum = PPC_MSR_REGNUM; | |
6901 | tdep->ppc_cr_regnum = PPC_CR_REGNUM; | |
6902 | tdep->ppc_lr_regnum = PPC_LR_REGNUM; | |
6903 | tdep->ppc_ctr_regnum = PPC_CTR_REGNUM; | |
6904 | tdep->ppc_xer_regnum = PPC_XER_REGNUM; | |
6905 | tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1; | |
6906 | ||
6907 | tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1; | |
6908 | tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1; | |
604c2f83 | 6909 | tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1; |
7cc46491 DJ |
6910 | tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1; |
6911 | tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1; | |
6912 | tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1; | |
6913 | tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1; | |
6914 | tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1; | |
7ca18ed6 EBM |
6915 | tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1; |
6916 | tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1; | |
f2cf6173 | 6917 | tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1; |
232bfb86 EBM |
6918 | tdep->have_ebb = have_ebb; |
6919 | ||
6920 | /* If additional pmu registers are added, care must be taken when | |
6921 | setting new fields in the tdep below, to maintain compatibility | |
6922 | with features that only provide some of the registers. Currently | |
6923 | gdb access to the pmu registers is only supported in linux, and | |
6924 | linux only provides a subset of the pmu registers defined in the | |
6925 | architecture. */ | |
6926 | ||
6927 | tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1; | |
6928 | tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1; | |
6929 | tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1; | |
6930 | tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1; | |
6931 | tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1; | |
7cc46491 | 6932 | |
8d619c01 EBM |
6933 | tdep->have_htm_spr = have_htm_spr; |
6934 | tdep->have_htm_core = have_htm_core; | |
6935 | tdep->have_htm_fpu = have_htm_fpu; | |
6936 | tdep->have_htm_altivec = have_htm_altivec; | |
6937 | tdep->have_htm_vsx = have_htm_vsx; | |
6938 | tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1; | |
6939 | tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1; | |
6940 | tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1; | |
6941 | ||
7cc46491 DJ |
6942 | set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM); |
6943 | set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1); | |
7cc46491 | 6944 | set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum); |
9f643768 | 6945 | set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno); |
7cc46491 DJ |
6946 | |
6947 | /* The XML specification for PowerPC sensibly calls the MSR "msr". | |
6948 | GDB traditionally called it "ps", though, so let GDB add an | |
6949 | alias. */ | |
6950 | set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum); | |
6951 | ||
4a7622d1 | 6952 | if (wordsize == 8) |
05580c65 | 6953 | set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value); |
afd48b75 | 6954 | else |
4a7622d1 | 6955 | set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value); |
c8001721 | 6956 | |
baffbae0 JB |
6957 | /* Set lr_frame_offset. */ |
6958 | if (wordsize == 8) | |
6959 | tdep->lr_frame_offset = 16; | |
baffbae0 | 6960 | else |
4a7622d1 | 6961 | tdep->lr_frame_offset = 4; |
baffbae0 | 6962 | |
6f072a10 PFC |
6963 | if (have_spe || have_dfp || have_altivec |
6964 | || have_vsx || have_htm_fpu || have_htm_vsx) | |
7cc46491 | 6965 | { |
f949c649 | 6966 | set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read); |
0df8b418 MS |
6967 | set_gdbarch_pseudo_register_write (gdbarch, |
6968 | rs6000_pseudo_register_write); | |
2a2fa07b MK |
6969 | set_gdbarch_ax_pseudo_register_collect (gdbarch, |
6970 | rs6000_ax_pseudo_register_collect); | |
7cc46491 | 6971 | } |
1fcc0bb8 | 6972 | |
a67914de MK |
6973 | set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address); |
6974 | ||
e0d24f8d WZ |
6975 | set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1); |
6976 | ||
5a9e69ba | 6977 | set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS); |
f949c649 TJB |
6978 | |
6979 | if (have_spe) | |
6980 | num_pseudoregs += 32; | |
6981 | if (have_dfp) | |
6982 | num_pseudoregs += 16; | |
6f072a10 PFC |
6983 | if (have_altivec) |
6984 | num_pseudoregs += 32; | |
604c2f83 LM |
6985 | if (have_vsx) |
6986 | /* Include both VSX and Extended FP registers. */ | |
6987 | num_pseudoregs += 96; | |
8d619c01 EBM |
6988 | if (have_htm_fpu) |
6989 | num_pseudoregs += 16; | |
6990 | /* Include both checkpointed VSX and EFP registers. */ | |
6991 | if (have_htm_vsx) | |
6992 | num_pseudoregs += 64 + 32; | |
f949c649 TJB |
6993 | |
6994 | set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs); | |
7a78ae4e ND |
6995 | |
6996 | set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
6997 | set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT); | |
6998 | set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
6999 | set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT); | |
7000 | set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
7001 | set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT); | |
7002 | set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT); | |
4a7622d1 | 7003 | set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT); |
4e409299 | 7004 | set_gdbarch_char_signed (gdbarch, 0); |
7a78ae4e | 7005 | |
11269d7e | 7006 | set_gdbarch_frame_align (gdbarch, rs6000_frame_align); |
4a7622d1 | 7007 | if (wordsize == 8) |
8b148df9 AC |
7008 | /* PPC64 SYSV. */ |
7009 | set_gdbarch_frame_red_zone_size (gdbarch, 288); | |
7a78ae4e | 7010 | |
691d145a JB |
7011 | set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p); |
7012 | set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value); | |
7013 | set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register); | |
7014 | ||
18ed0c4e JB |
7015 | set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum); |
7016 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum); | |
d217aaed | 7017 | |
4a7622d1 | 7018 | if (wordsize == 4) |
77b2b6d4 | 7019 | set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call); |
4a7622d1 | 7020 | else if (wordsize == 8) |
8be9034a | 7021 | set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call); |
7a78ae4e | 7022 | |
7a78ae4e | 7023 | set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue); |
c9cf6e20 | 7024 | set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p); |
8ab3d180 | 7025 | set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue); |
0d1243d9 | 7026 | |
7a78ae4e | 7027 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); |
04180708 YQ |
7028 | |
7029 | set_gdbarch_breakpoint_kind_from_pc (gdbarch, | |
7030 | rs6000_breakpoint::kind_from_pc); | |
7031 | set_gdbarch_sw_breakpoint_from_kind (gdbarch, | |
7032 | rs6000_breakpoint::bp_from_kind); | |
7a78ae4e | 7033 | |
203c3895 | 7034 | /* The value of symbols of type N_SO and N_FUN maybe null when |
0df8b418 | 7035 | it shouldn't be. */ |
203c3895 UW |
7036 | set_gdbarch_sofun_address_maybe_missing (gdbarch, 1); |
7037 | ||
ce5eab59 | 7038 | /* Handles single stepping of atomic sequences. */ |
4a7622d1 | 7039 | set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence); |
ce5eab59 | 7040 | |
0df8b418 | 7041 | /* Not sure on this. FIXMEmgo */ |
7a78ae4e ND |
7042 | set_gdbarch_frame_args_skip (gdbarch, 8); |
7043 | ||
143985b7 AF |
7044 | /* Helpers for function argument information. */ |
7045 | set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument); | |
7046 | ||
6f7f3f0d UW |
7047 | /* Trampoline. */ |
7048 | set_gdbarch_in_solib_return_trampoline | |
7049 | (gdbarch, rs6000_in_solib_return_trampoline); | |
7050 | set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code); | |
7051 | ||
4fc771b8 | 7052 | /* Hook in the DWARF CFI frame unwinder. */ |
1af5d7ce | 7053 | dwarf2_append_unwinders (gdbarch); |
4fc771b8 DJ |
7054 | dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum); |
7055 | ||
9274a07c LM |
7056 | /* Frame handling. */ |
7057 | dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg); | |
7058 | ||
2454a024 UW |
7059 | /* Setup displaced stepping. */ |
7060 | set_gdbarch_displaced_step_copy_insn (gdbarch, | |
7f03bd92 | 7061 | ppc_displaced_step_copy_insn); |
99e40580 UW |
7062 | set_gdbarch_displaced_step_hw_singlestep (gdbarch, |
7063 | ppc_displaced_step_hw_singlestep); | |
2454a024 | 7064 | set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup); |
2454a024 UW |
7065 | set_gdbarch_displaced_step_location (gdbarch, |
7066 | displaced_step_at_entry_point); | |
7067 | ||
7068 | set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE); | |
7069 | ||
7b112f9c | 7070 | /* Hook in ABI-specific overrides, if they have been registered. */ |
8a4c2d24 | 7071 | info.target_desc = tdesc; |
0dba2a6c | 7072 | info.tdesc_data = tdesc_data; |
4be87837 | 7073 | gdbarch_init_osabi (info, gdbarch); |
7b112f9c | 7074 | |
61a65099 KB |
7075 | switch (info.osabi) |
7076 | { | |
f5aecab8 | 7077 | case GDB_OSABI_LINUX: |
1736a7bd | 7078 | case GDB_OSABI_NETBSD: |
61a65099 | 7079 | case GDB_OSABI_UNKNOWN: |
2608dbf8 | 7080 | frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind); |
1af5d7ce | 7081 | frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); |
61a65099 KB |
7082 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); |
7083 | break; | |
7084 | default: | |
61a65099 | 7085 | set_gdbarch_believe_pcc_promotion (gdbarch, 1); |
81332287 | 7086 | |
2608dbf8 | 7087 | frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind); |
1af5d7ce | 7088 | frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind); |
81332287 | 7089 | frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer); |
61a65099 KB |
7090 | } |
7091 | ||
7cc46491 | 7092 | set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type); |
6f072a10 PFC |
7093 | set_tdesc_pseudo_register_reggroup_p (gdbarch, |
7094 | rs6000_pseudo_register_reggroup_p); | |
7cc46491 DJ |
7095 | tdesc_use_registers (gdbarch, tdesc, tdesc_data); |
7096 | ||
7097 | /* Override the normal target description method to make the SPE upper | |
7098 | halves anonymous. */ | |
7099 | set_gdbarch_register_name (gdbarch, rs6000_register_name); | |
7100 | ||
604c2f83 LM |
7101 | /* Choose register numbers for all supported pseudo-registers. */ |
7102 | tdep->ppc_ev0_regnum = -1; | |
7103 | tdep->ppc_dl0_regnum = -1; | |
6f072a10 | 7104 | tdep->ppc_v0_alias_regnum = -1; |
604c2f83 LM |
7105 | tdep->ppc_vsr0_regnum = -1; |
7106 | tdep->ppc_efpr0_regnum = -1; | |
8d619c01 EBM |
7107 | tdep->ppc_cdl0_regnum = -1; |
7108 | tdep->ppc_cvsr0_regnum = -1; | |
7109 | tdep->ppc_cefpr0_regnum = -1; | |
9f643768 | 7110 | |
604c2f83 LM |
7111 | cur_reg = gdbarch_num_regs (gdbarch); |
7112 | ||
7113 | if (have_spe) | |
7114 | { | |
7115 | tdep->ppc_ev0_regnum = cur_reg; | |
7116 | cur_reg += 32; | |
7117 | } | |
7118 | if (have_dfp) | |
7119 | { | |
7120 | tdep->ppc_dl0_regnum = cur_reg; | |
7121 | cur_reg += 16; | |
7122 | } | |
6f072a10 PFC |
7123 | if (have_altivec) |
7124 | { | |
7125 | tdep->ppc_v0_alias_regnum = cur_reg; | |
7126 | cur_reg += 32; | |
7127 | } | |
604c2f83 LM |
7128 | if (have_vsx) |
7129 | { | |
7130 | tdep->ppc_vsr0_regnum = cur_reg; | |
7131 | cur_reg += 64; | |
7132 | tdep->ppc_efpr0_regnum = cur_reg; | |
7133 | cur_reg += 32; | |
7134 | } | |
8d619c01 EBM |
7135 | if (have_htm_fpu) |
7136 | { | |
7137 | tdep->ppc_cdl0_regnum = cur_reg; | |
7138 | cur_reg += 16; | |
7139 | } | |
7140 | if (have_htm_vsx) | |
7141 | { | |
7142 | tdep->ppc_cvsr0_regnum = cur_reg; | |
7143 | cur_reg += 64; | |
7144 | tdep->ppc_cefpr0_regnum = cur_reg; | |
7145 | cur_reg += 32; | |
7146 | } | |
f949c649 | 7147 | |
f6efe3f8 | 7148 | gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg); |
f949c649 | 7149 | |
debb1f09 JB |
7150 | /* Register the ravenscar_arch_ops. */ |
7151 | if (mach == bfd_mach_ppc_e500) | |
7152 | register_e500_ravenscar_ops (gdbarch); | |
7153 | else | |
7154 | register_ppc_ravenscar_ops (gdbarch); | |
7155 | ||
65b48a81 PB |
7156 | set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options); |
7157 | set_gdbarch_valid_disassembler_options (gdbarch, | |
7158 | disassembler_options_powerpc ()); | |
7159 | ||
7a78ae4e | 7160 | return gdbarch; |
c906108c SS |
7161 | } |
7162 | ||
7b112f9c | 7163 | static void |
8b164abb | 7164 | rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file) |
7b112f9c | 7165 | { |
8b164abb | 7166 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
7b112f9c JT |
7167 | |
7168 | if (tdep == NULL) | |
7169 | return; | |
7170 | ||
4be87837 | 7171 | /* FIXME: Dump gdbarch_tdep. */ |
7b112f9c JT |
7172 | } |
7173 | ||
55eddb0f DJ |
7174 | /* PowerPC-specific commands. */ |
7175 | ||
7176 | static void | |
981a3fb3 | 7177 | set_powerpc_command (const char *args, int from_tty) |
55eddb0f DJ |
7178 | { |
7179 | printf_unfiltered (_("\ | |
7180 | \"set powerpc\" must be followed by an appropriate subcommand.\n")); | |
7181 | help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout); | |
7182 | } | |
7183 | ||
7184 | static void | |
981a3fb3 | 7185 | show_powerpc_command (const char *args, int from_tty) |
55eddb0f DJ |
7186 | { |
7187 | cmd_show_list (showpowerpccmdlist, from_tty, ""); | |
7188 | } | |
7189 | ||
7190 | static void | |
eb4c3f4a | 7191 | powerpc_set_soft_float (const char *args, int from_tty, |
55eddb0f DJ |
7192 | struct cmd_list_element *c) |
7193 | { | |
7194 | struct gdbarch_info info; | |
7195 | ||
7196 | /* Update the architecture. */ | |
7197 | gdbarch_info_init (&info); | |
7198 | if (!gdbarch_update_p (info)) | |
9b20d036 | 7199 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
55eddb0f DJ |
7200 | } |
7201 | ||
7202 | static void | |
eb4c3f4a | 7203 | powerpc_set_vector_abi (const char *args, int from_tty, |
55eddb0f DJ |
7204 | struct cmd_list_element *c) |
7205 | { | |
7206 | struct gdbarch_info info; | |
570dc176 | 7207 | int vector_abi; |
55eddb0f DJ |
7208 | |
7209 | for (vector_abi = POWERPC_VEC_AUTO; | |
7210 | vector_abi != POWERPC_VEC_LAST; | |
7211 | vector_abi++) | |
7212 | if (strcmp (powerpc_vector_abi_string, | |
7213 | powerpc_vector_strings[vector_abi]) == 0) | |
7214 | { | |
aead7601 | 7215 | powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi; |
55eddb0f DJ |
7216 | break; |
7217 | } | |
7218 | ||
7219 | if (vector_abi == POWERPC_VEC_LAST) | |
7220 | internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."), | |
7221 | powerpc_vector_abi_string); | |
7222 | ||
7223 | /* Update the architecture. */ | |
7224 | gdbarch_info_init (&info); | |
7225 | if (!gdbarch_update_p (info)) | |
9b20d036 | 7226 | internal_error (__FILE__, __LINE__, _("could not update architecture")); |
55eddb0f DJ |
7227 | } |
7228 | ||
e09342b5 TJB |
7229 | /* Show the current setting of the exact watchpoints flag. */ |
7230 | ||
7231 | static void | |
7232 | show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty, | |
7233 | struct cmd_list_element *c, | |
7234 | const char *value) | |
7235 | { | |
7236 | fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value); | |
7237 | } | |
7238 | ||
845d4708 | 7239 | /* Read a PPC instruction from memory. */ |
d78489bf AT |
7240 | |
7241 | static unsigned int | |
845d4708 | 7242 | read_insn (struct frame_info *frame, CORE_ADDR pc) |
d78489bf | 7243 | { |
845d4708 AM |
7244 | struct gdbarch *gdbarch = get_frame_arch (frame); |
7245 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
7246 | ||
7247 | return read_memory_unsigned_integer (pc, 4, byte_order); | |
d78489bf AT |
7248 | } |
7249 | ||
7250 | /* Return non-zero if the instructions at PC match the series | |
7251 | described in PATTERN, or zero otherwise. PATTERN is an array of | |
7252 | 'struct ppc_insn_pattern' objects, terminated by an entry whose | |
7253 | mask is zero. | |
7254 | ||
7433498b | 7255 | When the match is successful, fill INSNS[i] with what PATTERN[i] |
d78489bf | 7256 | matched. If PATTERN[i] is optional, and the instruction wasn't |
7433498b AM |
7257 | present, set INSNS[i] to 0 (which is not a valid PPC instruction). |
7258 | INSNS should have as many elements as PATTERN, minus the terminator. | |
7259 | Note that, if PATTERN contains optional instructions which aren't | |
7260 | present in memory, then INSNS will have holes, so INSNS[i] isn't | |
7261 | necessarily the i'th instruction in memory. */ | |
d78489bf AT |
7262 | |
7263 | int | |
845d4708 | 7264 | ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc, |
7433498b | 7265 | const struct ppc_insn_pattern *pattern, |
845d4708 | 7266 | unsigned int *insns) |
d78489bf AT |
7267 | { |
7268 | int i; | |
845d4708 | 7269 | unsigned int insn; |
d78489bf | 7270 | |
845d4708 | 7271 | for (i = 0, insn = 0; pattern[i].mask; i++) |
d78489bf | 7272 | { |
845d4708 AM |
7273 | if (insn == 0) |
7274 | insn = read_insn (frame, pc); | |
7275 | insns[i] = 0; | |
7276 | if ((insn & pattern[i].mask) == pattern[i].data) | |
7277 | { | |
7278 | insns[i] = insn; | |
7279 | pc += 4; | |
7280 | insn = 0; | |
7281 | } | |
7282 | else if (!pattern[i].optional) | |
d78489bf AT |
7283 | return 0; |
7284 | } | |
7285 | ||
7286 | return 1; | |
7287 | } | |
7288 | ||
7289 | /* Return the 'd' field of the d-form instruction INSN, properly | |
7290 | sign-extended. */ | |
7291 | ||
7292 | CORE_ADDR | |
7293 | ppc_insn_d_field (unsigned int insn) | |
7294 | { | |
7295 | return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000); | |
7296 | } | |
7297 | ||
7298 | /* Return the 'ds' field of the ds-form instruction INSN, with the two | |
7299 | zero bits concatenated at the right, and properly | |
7300 | sign-extended. */ | |
7301 | ||
7302 | CORE_ADDR | |
7303 | ppc_insn_ds_field (unsigned int insn) | |
7304 | { | |
7305 | return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000); | |
7306 | } | |
7307 | ||
c906108c SS |
7308 | /* Initialization code. */ |
7309 | ||
6c265988 | 7310 | void _initialize_rs6000_tdep (); |
c906108c | 7311 | void |
6c265988 | 7312 | _initialize_rs6000_tdep () |
c906108c | 7313 | { |
7b112f9c JT |
7314 | gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep); |
7315 | gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep); | |
7cc46491 DJ |
7316 | |
7317 | /* Initialize the standard target descriptions. */ | |
7318 | initialize_tdesc_powerpc_32 (); | |
7284e1be | 7319 | initialize_tdesc_powerpc_altivec32 (); |
604c2f83 | 7320 | initialize_tdesc_powerpc_vsx32 (); |
7cc46491 DJ |
7321 | initialize_tdesc_powerpc_403 (); |
7322 | initialize_tdesc_powerpc_403gc (); | |
4d09ffea | 7323 | initialize_tdesc_powerpc_405 (); |
7cc46491 DJ |
7324 | initialize_tdesc_powerpc_505 (); |
7325 | initialize_tdesc_powerpc_601 (); | |
7326 | initialize_tdesc_powerpc_602 (); | |
7327 | initialize_tdesc_powerpc_603 (); | |
7328 | initialize_tdesc_powerpc_604 (); | |
7329 | initialize_tdesc_powerpc_64 (); | |
7284e1be | 7330 | initialize_tdesc_powerpc_altivec64 (); |
604c2f83 | 7331 | initialize_tdesc_powerpc_vsx64 (); |
7cc46491 DJ |
7332 | initialize_tdesc_powerpc_7400 (); |
7333 | initialize_tdesc_powerpc_750 (); | |
7334 | initialize_tdesc_powerpc_860 (); | |
7335 | initialize_tdesc_powerpc_e500 (); | |
7336 | initialize_tdesc_rs6000 (); | |
55eddb0f DJ |
7337 | |
7338 | /* Add root prefix command for all "set powerpc"/"show powerpc" | |
7339 | commands. */ | |
7340 | add_prefix_cmd ("powerpc", no_class, set_powerpc_command, | |
7341 | _("Various PowerPC-specific commands."), | |
7342 | &setpowerpccmdlist, "set powerpc ", 0, &setlist); | |
7343 | ||
7344 | add_prefix_cmd ("powerpc", no_class, show_powerpc_command, | |
7345 | _("Various PowerPC-specific commands."), | |
7346 | &showpowerpccmdlist, "show powerpc ", 0, &showlist); | |
7347 | ||
7348 | /* Add a command to allow the user to force the ABI. */ | |
7349 | add_setshow_auto_boolean_cmd ("soft-float", class_support, | |
7350 | &powerpc_soft_float_global, | |
7351 | _("Set whether to use a soft-float ABI."), | |
7352 | _("Show whether to use a soft-float ABI."), | |
7353 | NULL, | |
7354 | powerpc_set_soft_float, NULL, | |
7355 | &setpowerpccmdlist, &showpowerpccmdlist); | |
7356 | ||
7357 | add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings, | |
7358 | &powerpc_vector_abi_string, | |
7359 | _("Set the vector ABI."), | |
7360 | _("Show the vector ABI."), | |
7361 | NULL, powerpc_set_vector_abi, NULL, | |
7362 | &setpowerpccmdlist, &showpowerpccmdlist); | |
e09342b5 TJB |
7363 | |
7364 | add_setshow_boolean_cmd ("exact-watchpoints", class_support, | |
7365 | &target_exact_watchpoints, | |
7366 | _("\ | |
7367 | Set whether to use just one debug register for watchpoints on scalars."), | |
7368 | _("\ | |
7369 | Show whether to use just one debug register for watchpoints on scalars."), | |
7370 | _("\ | |
7371 | If true, GDB will use only one debug register when watching a variable of\n\ | |
7372 | scalar type, thus assuming that the variable is accessed through the address\n\ | |
7373 | of its first byte."), | |
7374 | NULL, show_powerpc_exact_watchpoints, | |
7375 | &setpowerpccmdlist, &showpowerpccmdlist); | |
c906108c | 7376 | } |