[gdb/testsuite] Fix gdb.threads/watchpoint-fork.exp race
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
b811d2c2 3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
3b2ca824 32#include "target-float.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6f072a10 39#include "reggroups.h"
4fc771b8 40#include "dwarf2-frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
cd453cd0 53#include "elf/ppc64.h"
7a78ae4e 54
6ded7999 55#include "solib-svr4.h"
9aa1e687 56#include "ppc-tdep.h"
debb1f09 57#include "ppc-ravenscar-thread.h"
7a78ae4e 58
a89aa300 59#include "dis-asm.h"
338ef23d 60
61a65099
KB
61#include "trad-frame.h"
62#include "frame-unwind.h"
63#include "frame-base.h"
64
a67914de
MK
65#include "ax.h"
66#include "ax-gdb.h"
325fac50 67#include <algorithm>
a67914de 68
7cc46491 69#include "features/rs6000/powerpc-32.c"
7284e1be 70#include "features/rs6000/powerpc-altivec32.c"
604c2f83 71#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-403.c"
73#include "features/rs6000/powerpc-403gc.c"
4d09ffea 74#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
75#include "features/rs6000/powerpc-505.c"
76#include "features/rs6000/powerpc-601.c"
77#include "features/rs6000/powerpc-602.c"
78#include "features/rs6000/powerpc-603.c"
79#include "features/rs6000/powerpc-604.c"
80#include "features/rs6000/powerpc-64.c"
7284e1be 81#include "features/rs6000/powerpc-altivec64.c"
604c2f83 82#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
83#include "features/rs6000/powerpc-7400.c"
84#include "features/rs6000/powerpc-750.c"
85#include "features/rs6000/powerpc-860.c"
86#include "features/rs6000/powerpc-e500.c"
87#include "features/rs6000/rs6000.c"
88
5a9e69ba
TJB
89/* Determine if regnum is an SPE pseudo-register. */
90#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
91 && (regnum) >= (tdep)->ppc_ev0_regnum \
92 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
93
f949c649
TJB
94/* Determine if regnum is a decimal float pseudo-register. */
95#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
96 && (regnum) >= (tdep)->ppc_dl0_regnum \
97 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
98
6f072a10
PFC
99/* Determine if regnum is a "vX" alias for the raw "vrX" vector
100 registers. */
101#define IS_V_ALIAS_PSEUDOREG(tdep, regnum) (\
102 (tdep)->ppc_v0_alias_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_v0_alias_regnum \
104 && (regnum) < (tdep)->ppc_v0_alias_regnum + ppc_num_vrs)
105
604c2f83
LM
106/* Determine if regnum is a POWER7 VSX register. */
107#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
108 && (regnum) >= (tdep)->ppc_vsr0_regnum \
109 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
110
111/* Determine if regnum is a POWER7 Extended FP register. */
112#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
113 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 114 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 115
8d619c01
EBM
116/* Determine if regnum is a checkpointed decimal float
117 pseudo-register. */
118#define IS_CDFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cdl0_regnum >= 0 \
119 && (regnum) >= (tdep)->ppc_cdl0_regnum \
120 && (regnum) < (tdep)->ppc_cdl0_regnum + 16)
121
122/* Determine if regnum is a Checkpointed POWER7 VSX register. */
123#define IS_CVSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cvsr0_regnum >= 0 \
124 && (regnum) >= (tdep)->ppc_cvsr0_regnum \
125 && (regnum) < (tdep)->ppc_cvsr0_regnum + ppc_num_vsrs)
126
127/* Determine if regnum is a Checkpointed POWER7 Extended FP register. */
128#define IS_CEFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_cefpr0_regnum >= 0 \
129 && (regnum) >= (tdep)->ppc_cefpr0_regnum \
130 && (regnum) < (tdep)->ppc_cefpr0_regnum + ppc_num_efprs)
131
65b48a81
PB
132/* Holds the current set of options to be passed to the disassembler. */
133static char *powerpc_disassembler_options;
134
55eddb0f
DJ
135/* The list of available "set powerpc ..." and "show powerpc ..."
136 commands. */
137static struct cmd_list_element *setpowerpccmdlist = NULL;
138static struct cmd_list_element *showpowerpccmdlist = NULL;
139
140static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
141
142/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 143static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
144{
145 "auto",
146 "generic",
147 "altivec",
148 "spe",
149 NULL
150};
151
152/* A variable that can be configured by the user. */
153static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
154static const char *powerpc_vector_abi_string = "auto";
155
0df8b418 156/* To be used by skip_prologue. */
7a78ae4e
ND
157
158struct rs6000_framedata
159 {
160 int offset; /* total size of frame --- the distance
161 by which we decrement sp to allocate
162 the frame */
163 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 164 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 165 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 166 int saved_vr; /* smallest # of saved vr */
96ff0de4 167 int saved_ev; /* smallest # of saved ev */
7a78ae4e 168 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
169 char frameless; /* true if frameless functions. */
170 char nosavedpc; /* true if pc not saved. */
46a9b8ed 171 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
172 int gpr_offset; /* offset of saved gprs from prev sp */
173 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 174 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 175 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 176 int lr_offset; /* offset of saved lr */
46a9b8ed 177 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 178 int cr_offset; /* offset of saved cr */
6be8bc0c 179 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
180 };
181
c906108c 182
604c2f83
LM
183/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
184int
185vsx_register_p (struct gdbarch *gdbarch, int regno)
186{
187 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
188 if (tdep->ppc_vsr0_regnum < 0)
189 return 0;
190 else
191 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
192 <= tdep->ppc_vsr0_upper_regnum + 31);
193}
194
64b84175
KB
195/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
196int
be8626e0 197altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 198{
be8626e0 199 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
200 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
201 return 0;
202 else
203 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
204}
205
383f0f5b 206
867e2dc5
JB
207/* Return true if REGNO is an SPE register, false otherwise. */
208int
be8626e0 209spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 210{
be8626e0 211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
212
213 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 214 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
215 return 1;
216
6ced10dd
JB
217 /* Is it a reference to one of the raw upper GPR halves? */
218 if (tdep->ppc_ev0_upper_regnum >= 0
219 && tdep->ppc_ev0_upper_regnum <= regno
220 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
221 return 1;
222
867e2dc5
JB
223 /* Is it a reference to the 64-bit accumulator, and do we have that? */
224 if (tdep->ppc_acc_regnum >= 0
225 && tdep->ppc_acc_regnum == regno)
226 return 1;
227
228 /* Is it a reference to the SPE floating-point status and control register,
229 and do we have that? */
230 if (tdep->ppc_spefscr_regnum >= 0
231 && tdep->ppc_spefscr_regnum == regno)
232 return 1;
233
234 return 0;
235}
236
237
383f0f5b
JB
238/* Return non-zero if the architecture described by GDBARCH has
239 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
240int
241ppc_floating_point_unit_p (struct gdbarch *gdbarch)
242{
383f0f5b
JB
243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
244
245 return (tdep->ppc_fp0_regnum >= 0
246 && tdep->ppc_fpscr_regnum >= 0);
0a613259 247}
9f643768 248
06caf7d2
CES
249/* Return non-zero if the architecture described by GDBARCH has
250 Altivec registers (vr0 --- vr31, vrsave and vscr). */
251int
252ppc_altivec_support_p (struct gdbarch *gdbarch)
253{
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255
256 return (tdep->ppc_vr0_regnum >= 0
257 && tdep->ppc_vrsave_regnum >= 0);
258}
09991fa0
JB
259
260/* Check that TABLE[GDB_REGNO] is not already initialized, and then
261 set it to SIM_REGNO.
262
263 This is a helper function for init_sim_regno_table, constructing
264 the table mapping GDB register numbers to sim register numbers; we
265 initialize every element in that table to -1 before we start
266 filling it in. */
9f643768
JB
267static void
268set_sim_regno (int *table, int gdb_regno, int sim_regno)
269{
270 /* Make sure we don't try to assign any given GDB register a sim
271 register number more than once. */
272 gdb_assert (table[gdb_regno] == -1);
273 table[gdb_regno] = sim_regno;
274}
275
09991fa0
JB
276
277/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
278 numbers to simulator register numbers, based on the values placed
279 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
280static void
281init_sim_regno_table (struct gdbarch *arch)
282{
283 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 284 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
285 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
286 int i;
7cc46491
DJ
287 static const char *const segment_regs[] = {
288 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
289 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
290 };
9f643768
JB
291
292 /* Presume that all registers not explicitly mentioned below are
293 unavailable from the sim. */
294 for (i = 0; i < total_regs; i++)
295 sim_regno[i] = -1;
296
297 /* General-purpose registers. */
298 for (i = 0; i < ppc_num_gprs; i++)
299 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
300
301 /* Floating-point registers. */
302 if (tdep->ppc_fp0_regnum >= 0)
303 for (i = 0; i < ppc_num_fprs; i++)
304 set_sim_regno (sim_regno,
305 tdep->ppc_fp0_regnum + i,
306 sim_ppc_f0_regnum + i);
307 if (tdep->ppc_fpscr_regnum >= 0)
308 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
309
310 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
311 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
312 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
313
314 /* Segment registers. */
7cc46491
DJ
315 for (i = 0; i < ppc_num_srs; i++)
316 {
317 int gdb_regno;
318
319 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
320 if (gdb_regno >= 0)
321 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
322 }
9f643768
JB
323
324 /* Altivec registers. */
325 if (tdep->ppc_vr0_regnum >= 0)
326 {
327 for (i = 0; i < ppc_num_vrs; i++)
328 set_sim_regno (sim_regno,
329 tdep->ppc_vr0_regnum + i,
330 sim_ppc_vr0_regnum + i);
331
332 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
333 we can treat this more like the other cases. */
334 set_sim_regno (sim_regno,
335 tdep->ppc_vr0_regnum + ppc_num_vrs,
336 sim_ppc_vscr_regnum);
337 }
338 /* vsave is a special-purpose register, so the code below handles it. */
339
340 /* SPE APU (E500) registers. */
6ced10dd
JB
341 if (tdep->ppc_ev0_upper_regnum >= 0)
342 for (i = 0; i < ppc_num_gprs; i++)
343 set_sim_regno (sim_regno,
344 tdep->ppc_ev0_upper_regnum + i,
345 sim_ppc_rh0_regnum + i);
9f643768
JB
346 if (tdep->ppc_acc_regnum >= 0)
347 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
348 /* spefscr is a special-purpose register, so the code below handles it. */
349
976102cd 350#ifdef WITH_PPC_SIM
9f643768
JB
351 /* Now handle all special-purpose registers. Verify that they
352 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
353 code. */
354 for (i = 0; i < sim_ppc_num_sprs; i++)
355 {
356 const char *spr_name = sim_spr_register_name (i);
357 int gdb_regno = -1;
358
359 if (spr_name != NULL)
360 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
361
362 if (gdb_regno != -1)
363 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
364 }
365#endif
9f643768
JB
366
367 /* Drop the initialized array into place. */
368 tdep->sim_regno = sim_regno;
369}
370
09991fa0
JB
371
372/* Given a GDB register number REG, return the corresponding SIM
373 register number. */
9f643768 374static int
e7faf938 375rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 376{
e7faf938 377 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
378 int sim_regno;
379
7cc46491 380 if (tdep->sim_regno == NULL)
e7faf938 381 init_sim_regno_table (gdbarch);
7cc46491 382
f6efe3f8 383 gdb_assert (0 <= reg && reg <= gdbarch_num_cooked_regs (gdbarch));
9f643768
JB
384 sim_regno = tdep->sim_regno[reg];
385
386 if (sim_regno >= 0)
387 return sim_regno;
388 else
389 return LEGACY_SIM_REGNO_IGNORE;
390}
391
d195bc9f
MK
392\f
393
394/* Register set support functions. */
395
f2db237a
AM
396/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
397 Write the register to REGCACHE. */
398
7284e1be 399void
d195bc9f 400ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 401 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
402{
403 if (regnum != -1 && offset != -1)
f2db237a
AM
404 {
405 if (regsize > 4)
406 {
ac7936df 407 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
408 int gdb_regsize = register_size (gdbarch, regnum);
409 if (gdb_regsize < regsize
410 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
411 offset += regsize - gdb_regsize;
412 }
73e1c03f 413 regcache->raw_supply (regnum, regs + offset);
f2db237a 414 }
d195bc9f
MK
415}
416
f2db237a
AM
417/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
418 in a field REGSIZE wide. Zero pad as necessary. */
419
7284e1be 420void
d195bc9f 421ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 422 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
423{
424 if (regnum != -1 && offset != -1)
f2db237a
AM
425 {
426 if (regsize > 4)
427 {
ac7936df 428 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
429 int gdb_regsize = register_size (gdbarch, regnum);
430 if (gdb_regsize < regsize)
431 {
432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
433 {
434 memset (regs + offset, 0, regsize - gdb_regsize);
435 offset += regsize - gdb_regsize;
436 }
437 else
438 memset (regs + offset + regsize - gdb_regsize, 0,
439 regsize - gdb_regsize);
440 }
441 }
34a79281 442 regcache->raw_collect (regnum, regs + offset);
f2db237a 443 }
d195bc9f
MK
444}
445
f2db237a
AM
446static int
447ppc_greg_offset (struct gdbarch *gdbarch,
448 struct gdbarch_tdep *tdep,
449 const struct ppc_reg_offsets *offsets,
450 int regnum,
451 int *regsize)
452{
453 *regsize = offsets->gpr_size;
454 if (regnum >= tdep->ppc_gp0_regnum
455 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
456 return (offsets->r0_offset
457 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
458
459 if (regnum == gdbarch_pc_regnum (gdbarch))
460 return offsets->pc_offset;
461
462 if (regnum == tdep->ppc_ps_regnum)
463 return offsets->ps_offset;
464
465 if (regnum == tdep->ppc_lr_regnum)
466 return offsets->lr_offset;
467
468 if (regnum == tdep->ppc_ctr_regnum)
469 return offsets->ctr_offset;
470
471 *regsize = offsets->xr_size;
472 if (regnum == tdep->ppc_cr_regnum)
473 return offsets->cr_offset;
474
475 if (regnum == tdep->ppc_xer_regnum)
476 return offsets->xer_offset;
477
478 if (regnum == tdep->ppc_mq_regnum)
479 return offsets->mq_offset;
480
481 return -1;
482}
483
484static int
485ppc_fpreg_offset (struct gdbarch_tdep *tdep,
486 const struct ppc_reg_offsets *offsets,
487 int regnum)
488{
489 if (regnum >= tdep->ppc_fp0_regnum
490 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
491 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
492
493 if (regnum == tdep->ppc_fpscr_regnum)
494 return offsets->fpscr_offset;
495
496 return -1;
497}
498
d195bc9f
MK
499/* Supply register REGNUM in the general-purpose register set REGSET
500 from the buffer specified by GREGS and LEN to register cache
501 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
502
503void
504ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
505 int regnum, const void *gregs, size_t len)
506{
ac7936df 507 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 508 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
509 const struct ppc_reg_offsets *offsets
510 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 511 size_t offset;
f2db237a 512 int regsize;
d195bc9f 513
f2db237a 514 if (regnum == -1)
d195bc9f 515 {
f2db237a
AM
516 int i;
517 int gpr_size = offsets->gpr_size;
518
519 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
520 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
521 i++, offset += gpr_size)
19ba03f4
SM
522 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
523 gpr_size);
f2db237a
AM
524
525 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 526 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 527 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 528 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 529 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 530 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 531 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 532 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 533 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
534 (const gdb_byte *) gregs, offsets->cr_offset,
535 offsets->xr_size);
f2db237a 536 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
537 (const gdb_byte *) gregs, offsets->xer_offset,
538 offsets->xr_size);
f2db237a 539 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
540 (const gdb_byte *) gregs, offsets->mq_offset,
541 offsets->xr_size);
f2db237a 542 return;
d195bc9f
MK
543 }
544
f2db237a 545 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 546 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
547}
548
549/* Supply register REGNUM in the floating-point register set REGSET
550 from the buffer specified by FPREGS and LEN to register cache
551 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
552
553void
554ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
555 int regnum, const void *fpregs, size_t len)
556{
ac7936df 557 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
558 struct gdbarch_tdep *tdep;
559 const struct ppc_reg_offsets *offsets;
d195bc9f 560 size_t offset;
d195bc9f 561
f2db237a
AM
562 if (!ppc_floating_point_unit_p (gdbarch))
563 return;
383f0f5b 564
f2db237a 565 tdep = gdbarch_tdep (gdbarch);
19ba03f4 566 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 567 if (regnum == -1)
d195bc9f 568 {
f2db237a
AM
569 int i;
570
571 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
572 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
573 i++, offset += 8)
19ba03f4 574 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
575
576 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
577 (const gdb_byte *) fpregs, offsets->fpscr_offset,
578 offsets->fpscr_size);
f2db237a 579 return;
d195bc9f
MK
580 }
581
f2db237a 582 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 583 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 584 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
585}
586
587/* Collect register REGNUM in the general-purpose register set
f2db237a 588 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
589 GREGS and LEN. If REGNUM is -1, do this for all registers in
590 REGSET. */
591
592void
593ppc_collect_gregset (const struct regset *regset,
594 const struct regcache *regcache,
595 int regnum, void *gregs, size_t len)
596{
ac7936df 597 struct gdbarch *gdbarch = regcache->arch ();
d195bc9f 598 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
599 const struct ppc_reg_offsets *offsets
600 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 601 size_t offset;
f2db237a 602 int regsize;
d195bc9f 603
f2db237a 604 if (regnum == -1)
d195bc9f 605 {
f2db237a
AM
606 int i;
607 int gpr_size = offsets->gpr_size;
608
609 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
610 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
611 i++, offset += gpr_size)
19ba03f4 612 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
613
614 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 615 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 616 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 617 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 618 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 619 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 620 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 621 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 622 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
623 (gdb_byte *) gregs, offsets->cr_offset,
624 offsets->xr_size);
f2db237a 625 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
626 (gdb_byte *) gregs, offsets->xer_offset,
627 offsets->xr_size);
f2db237a 628 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
629 (gdb_byte *) gregs, offsets->mq_offset,
630 offsets->xr_size);
f2db237a 631 return;
d195bc9f
MK
632 }
633
f2db237a 634 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 635 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
636}
637
638/* Collect register REGNUM in the floating-point register set
f2db237a 639 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
640 FPREGS and LEN. If REGNUM is -1, do this for all registers in
641 REGSET. */
642
643void
644ppc_collect_fpregset (const struct regset *regset,
645 const struct regcache *regcache,
646 int regnum, void *fpregs, size_t len)
647{
ac7936df 648 struct gdbarch *gdbarch = regcache->arch ();
f2db237a
AM
649 struct gdbarch_tdep *tdep;
650 const struct ppc_reg_offsets *offsets;
d195bc9f 651 size_t offset;
d195bc9f 652
f2db237a
AM
653 if (!ppc_floating_point_unit_p (gdbarch))
654 return;
383f0f5b 655
f2db237a 656 tdep = gdbarch_tdep (gdbarch);
19ba03f4 657 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 658 if (regnum == -1)
d195bc9f 659 {
f2db237a
AM
660 int i;
661
662 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
663 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
664 i++, offset += 8)
19ba03f4 665 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
666
667 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
668 (gdb_byte *) fpregs, offsets->fpscr_offset,
669 offsets->fpscr_size);
f2db237a 670 return;
d195bc9f
MK
671 }
672
f2db237a 673 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 674 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 675 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 676}
06caf7d2 677
0d1243d9
PG
678static int
679insn_changes_sp_or_jumps (unsigned long insn)
680{
681 int opcode = (insn >> 26) & 0x03f;
682 int sd = (insn >> 21) & 0x01f;
683 int a = (insn >> 16) & 0x01f;
684 int subcode = (insn >> 1) & 0x3ff;
685
686 /* Changes the stack pointer. */
687
688 /* NOTE: There are many ways to change the value of a given register.
689 The ways below are those used when the register is R1, the SP,
690 in a funtion's epilogue. */
691
692 if (opcode == 31 && subcode == 444 && a == 1)
693 return 1; /* mr R1,Rn */
694 if (opcode == 14 && sd == 1)
695 return 1; /* addi R1,Rn,simm */
696 if (opcode == 58 && sd == 1)
697 return 1; /* ld R1,ds(Rn) */
698
699 /* Transfers control. */
700
701 if (opcode == 18)
702 return 1; /* b */
703 if (opcode == 16)
704 return 1; /* bc */
705 if (opcode == 19 && subcode == 16)
706 return 1; /* bclr */
707 if (opcode == 19 && subcode == 528)
708 return 1; /* bcctr */
709
710 return 0;
711}
712
713/* Return true if we are in the function's epilogue, i.e. after the
714 instruction that destroyed the function's stack frame.
715
716 1) scan forward from the point of execution:
717 a) If you find an instruction that modifies the stack pointer
718 or transfers control (except a return), execution is not in
719 an epilogue, return.
720 b) Stop scanning if you find a return instruction or reach the
721 end of the function or reach the hard limit for the size of
722 an epilogue.
723 2) scan backward from the point of execution:
724 a) If you find an instruction that modifies the stack pointer,
725 execution *is* in an epilogue, return.
726 b) Stop scanning if you reach an instruction that transfers
727 control or the beginning of the function or reach the hard
728 limit for the size of an epilogue. */
729
730static int
2608dbf8
WW
731rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
732 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 733{
46a9b8ed 734 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 735 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
736 bfd_byte insn_buf[PPC_INSN_SIZE];
737 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
738 unsigned long insn;
0d1243d9
PG
739
740 /* Find the search limits based on function boundaries and hard limit. */
741
742 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
743 return 0;
744
745 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
746 if (epilogue_start < func_start) epilogue_start = func_start;
747
748 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
749 if (epilogue_end > func_end) epilogue_end = func_end;
750
0d1243d9
PG
751 /* Scan forward until next 'blr'. */
752
753 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
754 {
755 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
756 return 0;
e17a4113 757 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
758 if (insn == 0x4e800020)
759 break;
46a9b8ed
DJ
760 /* Assume a bctr is a tail call unless it points strictly within
761 this function. */
762 if (insn == 0x4e800420)
763 {
764 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
765 tdep->ppc_ctr_regnum);
766 if (ctr > func_start && ctr < func_end)
767 return 0;
768 else
769 break;
770 }
0d1243d9
PG
771 if (insn_changes_sp_or_jumps (insn))
772 return 0;
773 }
774
775 /* Scan backward until adjustment to stack pointer (R1). */
776
777 for (scan_pc = pc - PPC_INSN_SIZE;
778 scan_pc >= epilogue_start;
779 scan_pc -= PPC_INSN_SIZE)
780 {
781 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
782 return 0;
e17a4113 783 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
784 if (insn_changes_sp_or_jumps (insn))
785 return 1;
786 }
787
788 return 0;
789}
790
c9cf6e20 791/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
792
793static int
c9cf6e20 794rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
795{
796 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
797 gdbarch, pc);
798}
799
143985b7 800/* Get the ith function argument for the current function. */
b9362cc7 801static CORE_ADDR
143985b7
AF
802rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
803 struct type *type)
804{
50fd1280 805 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
806}
807
c906108c
SS
808/* Sequence of bytes for breakpoint instruction. */
809
04180708
YQ
810constexpr gdb_byte big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
811constexpr gdb_byte little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
d19280ad 812
04180708
YQ
813typedef BP_MANIPULATION_ENDIAN (little_breakpoint, big_breakpoint)
814 rs6000_breakpoint;
c906108c 815
f74c6cad
LM
816/* Instruction masks for displaced stepping. */
817#define BRANCH_MASK 0xfc000000
818#define BP_MASK 0xFC0007FE
819#define B_INSN 0x48000000
820#define BC_INSN 0x40000000
821#define BXL_INSN 0x4c000000
822#define BP_INSN 0x7C000008
823
7f03bd92
PA
824/* Instruction masks used during single-stepping of atomic
825 sequences. */
2039d74e 826#define LOAD_AND_RESERVE_MASK 0xfc0007fe
7f03bd92
PA
827#define LWARX_INSTRUCTION 0x7c000028
828#define LDARX_INSTRUCTION 0x7c0000A8
2039d74e
EBM
829#define LBARX_INSTRUCTION 0x7c000068
830#define LHARX_INSTRUCTION 0x7c0000e8
831#define LQARX_INSTRUCTION 0x7c000228
832#define STORE_CONDITIONAL_MASK 0xfc0007ff
7f03bd92
PA
833#define STWCX_INSTRUCTION 0x7c00012d
834#define STDCX_INSTRUCTION 0x7c0001ad
2039d74e
EBM
835#define STBCX_INSTRUCTION 0x7c00056d
836#define STHCX_INSTRUCTION 0x7c0005ad
837#define STQCX_INSTRUCTION 0x7c00016d
838
839/* Check if insn is one of the Load And Reserve instructions used for atomic
840 sequences. */
841#define IS_LOAD_AND_RESERVE_INSN(insn) ((insn & LOAD_AND_RESERVE_MASK) == LWARX_INSTRUCTION \
842 || (insn & LOAD_AND_RESERVE_MASK) == LDARX_INSTRUCTION \
843 || (insn & LOAD_AND_RESERVE_MASK) == LBARX_INSTRUCTION \
844 || (insn & LOAD_AND_RESERVE_MASK) == LHARX_INSTRUCTION \
845 || (insn & LOAD_AND_RESERVE_MASK) == LQARX_INSTRUCTION)
846/* Check if insn is one of the Store Conditional instructions used for atomic
847 sequences. */
848#define IS_STORE_CONDITIONAL_INSN(insn) ((insn & STORE_CONDITIONAL_MASK) == STWCX_INSTRUCTION \
849 || (insn & STORE_CONDITIONAL_MASK) == STDCX_INSTRUCTION \
850 || (insn & STORE_CONDITIONAL_MASK) == STBCX_INSTRUCTION \
851 || (insn & STORE_CONDITIONAL_MASK) == STHCX_INSTRUCTION \
852 || (insn & STORE_CONDITIONAL_MASK) == STQCX_INSTRUCTION)
7f03bd92 853
cfba9872
SM
854typedef buf_displaced_step_closure ppc_displaced_step_closure;
855
c2508e90 856/* We can't displaced step atomic sequences. */
7f03bd92
PA
857
858static struct displaced_step_closure *
859ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
860 CORE_ADDR from, CORE_ADDR to,
861 struct regcache *regs)
862{
863 size_t len = gdbarch_max_insn_length (gdbarch);
cfba9872
SM
864 std::unique_ptr<ppc_displaced_step_closure> closure
865 (new ppc_displaced_step_closure (len));
866 gdb_byte *buf = closure->buf.data ();
7f03bd92
PA
867 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
868 int insn;
869
870 read_memory (from, buf, len);
871
872 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
873
2039d74e
EBM
874 /* Assume all atomic sequences start with a Load and Reserve instruction. */
875 if (IS_LOAD_AND_RESERVE_INSN (insn))
7f03bd92
PA
876 {
877 if (debug_displaced)
878 {
879 fprintf_unfiltered (gdb_stdlog,
880 "displaced: can't displaced step "
881 "atomic sequence at %s\n",
882 paddress (gdbarch, from));
883 }
cfba9872 884
7f03bd92
PA
885 return NULL;
886 }
887
888 write_memory (to, buf, len);
889
890 if (debug_displaced)
891 {
892 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
893 paddress (gdbarch, from), paddress (gdbarch, to));
894 displaced_step_dump_bytes (gdb_stdlog, buf, len);
895 }
896
cfba9872 897 return closure.release ();
7f03bd92
PA
898}
899
f74c6cad
LM
900/* Fix up the state of registers and memory after having single-stepped
901 a displaced instruction. */
63807e1d 902static void
f74c6cad 903ppc_displaced_step_fixup (struct gdbarch *gdbarch,
cfba9872 904 struct displaced_step_closure *closure_,
63807e1d
PA
905 CORE_ADDR from, CORE_ADDR to,
906 struct regcache *regs)
f74c6cad 907{
e17a4113 908 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 909 /* Our closure is a copy of the instruction. */
cfba9872
SM
910 ppc_displaced_step_closure *closure = (ppc_displaced_step_closure *) closure_;
911 ULONGEST insn = extract_unsigned_integer (closure->buf.data (),
912 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
913 ULONGEST opcode = 0;
914 /* Offset for non PC-relative instructions. */
915 LONGEST offset = PPC_INSN_SIZE;
916
917 opcode = insn & BRANCH_MASK;
918
919 if (debug_displaced)
920 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
921 "displaced: (ppc) fixup (%s, %s)\n",
922 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
923
924
925 /* Handle PC-relative branch instructions. */
926 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
927 {
a4fafde3 928 ULONGEST current_pc;
f74c6cad
LM
929
930 /* Read the current PC value after the instruction has been executed
931 in a displaced location. Calculate the offset to be applied to the
932 original PC value before the displaced stepping. */
933 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
934 &current_pc);
935 offset = current_pc - to;
936
937 if (opcode != BXL_INSN)
938 {
939 /* Check for AA bit indicating whether this is an absolute
940 addressing or PC-relative (1: absolute, 0: relative). */
941 if (!(insn & 0x2))
942 {
943 /* PC-relative addressing is being used in the branch. */
944 if (debug_displaced)
945 fprintf_unfiltered
946 (gdb_stdlog,
5af949e3
UW
947 "displaced: (ppc) branch instruction: %s\n"
948 "displaced: (ppc) adjusted PC from %s to %s\n",
949 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
950 paddress (gdbarch, from + offset));
f74c6cad 951
0df8b418
MS
952 regcache_cooked_write_unsigned (regs,
953 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
954 from + offset);
955 }
956 }
957 else
958 {
959 /* If we're here, it means we have a branch to LR or CTR. If the
960 branch was taken, the offset is probably greater than 4 (the next
961 instruction), so it's safe to assume that an offset of 4 means we
962 did not take the branch. */
963 if (offset == PPC_INSN_SIZE)
964 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
965 from + PPC_INSN_SIZE);
966 }
967
968 /* Check for LK bit indicating whether we should set the link
969 register to point to the next instruction
970 (1: Set, 0: Don't set). */
971 if (insn & 0x1)
972 {
973 /* Link register needs to be set to the next instruction's PC. */
974 regcache_cooked_write_unsigned (regs,
975 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
976 from + PPC_INSN_SIZE);
977 if (debug_displaced)
978 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
979 "displaced: (ppc) adjusted LR to %s\n",
980 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
981
982 }
983 }
984 /* Check for breakpoints in the inferior. If we've found one, place the PC
985 right at the breakpoint instruction. */
986 else if ((insn & BP_MASK) == BP_INSN)
987 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
988 else
989 /* Handle any other instructions that do not fit in the categories above. */
990 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
991 from + offset);
992}
c906108c 993
99e40580
UW
994/* Always use hardware single-stepping to execute the
995 displaced instruction. */
996static int
997ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
998 struct displaced_step_closure *closure)
999{
1000 return 1;
1001}
1002
2039d74e
EBM
1003/* Checks for an atomic sequence of instructions beginning with a
1004 Load And Reserve instruction and ending with a Store Conditional
1005 instruction. If such a sequence is found, attempt to step through it.
1006 A breakpoint is placed at the end of the sequence. */
a0ff9e1a 1007std::vector<CORE_ADDR>
f5ea389a 1008ppc_deal_with_atomic_sequence (struct regcache *regcache)
ce5eab59 1009{
ac7936df 1010 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1011 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
41e26ad3 1012 CORE_ADDR pc = regcache_read_pc (regcache);
70ab8ccd 1013 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
ce5eab59 1014 CORE_ADDR loc = pc;
24d45690 1015 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 1016 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1017 int insn_count;
1018 int index;
1019 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1020 const int atomic_sequence_length = 16; /* Instruction sequence length. */
ce5eab59
UW
1021 int bc_insn_count = 0; /* Conditional branch instruction count. */
1022
2039d74e
EBM
1023 /* Assume all atomic sequences start with a Load And Reserve instruction. */
1024 if (!IS_LOAD_AND_RESERVE_INSN (insn))
a0ff9e1a 1025 return {};
ce5eab59
UW
1026
1027 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1028 instructions. */
1029 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1030 {
1031 loc += PPC_INSN_SIZE;
e17a4113 1032 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1033
1034 /* Assume that there is at most one conditional branch in the atomic
1035 sequence. If a conditional branch is found, put a breakpoint in
1036 its destination address. */
f74c6cad 1037 if ((insn & BRANCH_MASK) == BC_INSN)
ce5eab59 1038 {
a3769e0c
AM
1039 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1040 int absolute = insn & 2;
4a7622d1 1041
ce5eab59 1042 if (bc_insn_count >= 1)
a0ff9e1a
SM
1043 return {}; /* More than one conditional branch found, fallback
1044 to the standard single-step code. */
4a7622d1
UW
1045
1046 if (absolute)
1047 breaks[1] = immediate;
1048 else
a3769e0c 1049 breaks[1] = loc + immediate;
4a7622d1
UW
1050
1051 bc_insn_count++;
1052 last_breakpoint++;
ce5eab59
UW
1053 }
1054
2039d74e 1055 if (IS_STORE_CONDITIONAL_INSN (insn))
ce5eab59
UW
1056 break;
1057 }
1058
2039d74e
EBM
1059 /* Assume that the atomic sequence ends with a Store Conditional
1060 instruction. */
1061 if (!IS_STORE_CONDITIONAL_INSN (insn))
a0ff9e1a 1062 return {};
ce5eab59 1063
24d45690 1064 closing_insn = loc;
ce5eab59 1065 loc += PPC_INSN_SIZE;
ce5eab59
UW
1066
1067 /* Insert a breakpoint right after the end of the atomic sequence. */
1068 breaks[0] = loc;
1069
24d45690 1070 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1071 placed (branch instruction's destination) anywhere in sequence. */
1072 if (last_breakpoint
1073 && (breaks[1] == breaks[0]
1074 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1075 last_breakpoint = 0;
1076
a0ff9e1a
SM
1077 std::vector<CORE_ADDR> next_pcs;
1078
ce5eab59 1079 for (index = 0; index <= last_breakpoint; index++)
a0ff9e1a 1080 next_pcs.push_back (breaks[index]);
ce5eab59 1081
93f9a11f 1082 return next_pcs;
ce5eab59
UW
1083}
1084
c906108c 1085
c906108c
SS
1086#define SIGNED_SHORT(x) \
1087 ((sizeof (short) == 2) \
1088 ? ((int)(short)(x)) \
1089 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1090
1091#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1092
55d05f3b
KB
1093/* Limit the number of skipped non-prologue instructions, as the examining
1094 of the prologue is expensive. */
1095static int max_skip_non_prologue_insns = 10;
1096
773df3e5
JB
1097/* Return nonzero if the given instruction OP can be part of the prologue
1098 of a function and saves a parameter on the stack. FRAMEP should be
1099 set if one of the previous instructions in the function has set the
1100 Frame Pointer. */
1101
1102static int
1103store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1104{
1105 /* Move parameters from argument registers to temporary register. */
1106 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1107 {
1108 /* Rx must be scratch register r0. */
1109 const int rx_regno = (op >> 16) & 31;
1110 /* Ry: Only r3 - r10 are used for parameter passing. */
1111 const int ry_regno = GET_SRC_REG (op);
1112
1113 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1114 {
1115 *r0_contains_arg = 1;
1116 return 1;
1117 }
1118 else
1119 return 0;
1120 }
1121
1122 /* Save a General Purpose Register on stack. */
1123
1124 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1125 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1126 {
1127 /* Rx: Only r3 - r10 are used for parameter passing. */
1128 const int rx_regno = GET_SRC_REG (op);
1129
1130 return (rx_regno >= 3 && rx_regno <= 10);
1131 }
1132
1133 /* Save a General Purpose Register on stack via the Frame Pointer. */
1134
1135 if (framep &&
1136 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1137 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1138 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1139 {
1140 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1141 However, the compiler sometimes uses r0 to hold an argument. */
1142 const int rx_regno = GET_SRC_REG (op);
1143
1144 return ((rx_regno >= 3 && rx_regno <= 10)
1145 || (rx_regno == 0 && *r0_contains_arg));
1146 }
1147
1148 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1149 {
1150 /* Only f2 - f8 are used for parameter passing. */
1151 const int src_regno = GET_SRC_REG (op);
1152
1153 return (src_regno >= 2 && src_regno <= 8);
1154 }
1155
1156 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1157 {
1158 /* Only f2 - f8 are used for parameter passing. */
1159 const int src_regno = GET_SRC_REG (op);
1160
1161 return (src_regno >= 2 && src_regno <= 8);
1162 }
1163
1164 /* Not an insn that saves a parameter on stack. */
1165 return 0;
1166}
55d05f3b 1167
3c77c82a
DJ
1168/* Assuming that INSN is a "bl" instruction located at PC, return
1169 nonzero if the destination of the branch is a "blrl" instruction.
1170
1171 This sequence is sometimes found in certain function prologues.
1172 It allows the function to load the LR register with a value that
1173 they can use to access PIC data using PC-relative offsets. */
1174
1175static int
e17a4113 1176bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1177{
0b1b3e42
UW
1178 CORE_ADDR dest;
1179 int immediate;
1180 int absolute;
3c77c82a
DJ
1181 int dest_insn;
1182
0b1b3e42
UW
1183 absolute = (int) ((insn >> 1) & 1);
1184 immediate = ((insn & ~3) << 6) >> 6;
1185 if (absolute)
1186 dest = immediate;
1187 else
1188 dest = pc + immediate;
1189
e17a4113 1190 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1191 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1192 return 1;
1193
1194 return 0;
1195}
1196
dd6d677f
PFC
1197/* Return true if OP is a stw or std instruction with
1198 register operands RS and RA and any immediate offset.
1199
1200 If WITH_UPDATE is true, also return true if OP is
1201 a stwu or stdu instruction with the same operands.
1202
1203 Return false otherwise.
1204 */
1205static bool
1206store_insn_p (unsigned long op, unsigned long rs,
1207 unsigned long ra, bool with_update)
1208{
1209 rs = rs << 21;
1210 ra = ra << 16;
1211
1212 if (/* std RS, SIMM(RA) */
1213 ((op & 0xffff0003) == (rs | ra | 0xf8000000)) ||
1214 /* stw RS, SIMM(RA) */
1215 ((op & 0xffff0000) == (rs | ra | 0x90000000)))
1216 return true;
1217
1218 if (with_update)
1219 {
1220 if (/* stdu RS, SIMM(RA) */
1221 ((op & 0xffff0003) == (rs | ra | 0xf8000001)) ||
1222 /* stwu RS, SIMM(RA) */
1223 ((op & 0xffff0000) == (rs | ra | 0x94000000)))
1224 return true;
1225 }
1226
1227 return false;
1228}
1229
0df8b418 1230/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1231
1232 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1233 The former is anded with the opcode in question; if the result of
1234 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1235 question is a ``bl'' instruction.
1236
85102364 1237 BL_DISPLACEMENT_MASK is anded with the opcode in order to extract
8ab3d180
KB
1238 the branch displacement. */
1239
1240#define BL_MASK 0xfc000001
1241#define BL_INSTRUCTION 0x48000001
1242#define BL_DISPLACEMENT_MASK 0x03fffffc
1243
de9f48f0 1244static unsigned long
e17a4113 1245rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1246{
e17a4113 1247 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1248 gdb_byte buf[4];
1249 unsigned long op;
1250
1251 /* Fetch the instruction and convert it to an integer. */
1252 if (target_read_memory (pc, buf, 4))
1253 return 0;
e17a4113 1254 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1255
1256 return op;
1257}
1258
1259/* GCC generates several well-known sequences of instructions at the begining
1260 of each function prologue when compiling with -fstack-check. If one of
1261 such sequences starts at START_PC, then return the address of the
1262 instruction immediately past this sequence. Otherwise, return START_PC. */
1263
1264static CORE_ADDR
e17a4113 1265rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1266{
1267 CORE_ADDR pc = start_pc;
e17a4113 1268 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1269
1270 /* First possible sequence: A small number of probes.
1271 stw 0, -<some immediate>(1)
0df8b418 1272 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1273
1274 if ((op & 0xffff0000) == 0x90010000)
1275 {
1276 while ((op & 0xffff0000) == 0x90010000)
1277 {
1278 pc = pc + 4;
e17a4113 1279 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1280 }
1281 return pc;
1282 }
1283
1284 /* Second sequence: A probing loop.
1285 addi 12,1,-<some immediate>
1286 lis 0,-<some immediate>
1287 [possibly ori 0,0,<some immediate>]
1288 add 0,12,0
1289 cmpw 0,12,0
1290 beq 0,<disp>
1291 addi 12,12,-<some immediate>
1292 stw 0,0(12)
1293 b <disp>
0df8b418 1294 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1295
1296 while (1)
1297 {
1298 /* addi 12,1,-<some immediate> */
1299 if ((op & 0xffff0000) != 0x39810000)
1300 break;
1301
1302 /* lis 0,-<some immediate> */
1303 pc = pc + 4;
e17a4113 1304 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1305 if ((op & 0xffff0000) != 0x3c000000)
1306 break;
1307
1308 pc = pc + 4;
e17a4113 1309 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1310 /* [possibly ori 0,0,<some immediate>] */
1311 if ((op & 0xffff0000) == 0x60000000)
1312 {
1313 pc = pc + 4;
e17a4113 1314 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1315 }
1316 /* add 0,12,0 */
1317 if (op != 0x7c0c0214)
1318 break;
1319
1320 /* cmpw 0,12,0 */
1321 pc = pc + 4;
e17a4113 1322 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1323 if (op != 0x7c0c0000)
1324 break;
1325
1326 /* beq 0,<disp> */
1327 pc = pc + 4;
e17a4113 1328 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1329 if ((op & 0xff9f0001) != 0x41820000)
1330 break;
1331
1332 /* addi 12,12,-<some immediate> */
1333 pc = pc + 4;
e17a4113 1334 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1335 if ((op & 0xffff0000) != 0x398c0000)
1336 break;
1337
1338 /* stw 0,0(12) */
1339 pc = pc + 4;
e17a4113 1340 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1341 if (op != 0x900c0000)
1342 break;
1343
1344 /* b <disp> */
1345 pc = pc + 4;
e17a4113 1346 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1347 if ((op & 0xfc000001) != 0x48000000)
1348 break;
1349
0df8b418 1350 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1351 pc = pc + 4;
e17a4113 1352 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1353 if ((op & 0xffff0000) == 0x900c0000)
1354 {
1355 pc = pc + 4;
e17a4113 1356 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1357 }
1358
1359 /* We found a valid stack-check sequence, return the new PC. */
1360 return pc;
1361 }
1362
30baf67b 1363 /* Third sequence: No probe; instead, a comparison between the stack size
de9f48f0
JG
1364 limit (saved in a run-time global variable) and the current stack
1365 pointer:
1366
1367 addi 0,1,-<some immediate>
1368 lis 12,__gnat_stack_limit@ha
1369 lwz 12,__gnat_stack_limit@l(12)
1370 twllt 0,12
1371
1372 or, with a small variant in the case of a bigger stack frame:
1373 addis 0,1,<some immediate>
1374 addic 0,0,-<some immediate>
1375 lis 12,__gnat_stack_limit@ha
1376 lwz 12,__gnat_stack_limit@l(12)
1377 twllt 0,12
1378 */
1379 while (1)
1380 {
1381 /* addi 0,1,-<some immediate> */
1382 if ((op & 0xffff0000) != 0x38010000)
1383 {
1384 /* small stack frame variant not recognized; try the
1385 big stack frame variant: */
1386
1387 /* addis 0,1,<some immediate> */
1388 if ((op & 0xffff0000) != 0x3c010000)
1389 break;
1390
1391 /* addic 0,0,-<some immediate> */
1392 pc = pc + 4;
e17a4113 1393 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1394 if ((op & 0xffff0000) != 0x30000000)
1395 break;
1396 }
1397
1398 /* lis 12,<some immediate> */
1399 pc = pc + 4;
e17a4113 1400 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1401 if ((op & 0xffff0000) != 0x3d800000)
1402 break;
1403
1404 /* lwz 12,<some immediate>(12) */
1405 pc = pc + 4;
e17a4113 1406 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1407 if ((op & 0xffff0000) != 0x818c0000)
1408 break;
1409
1410 /* twllt 0,12 */
1411 pc = pc + 4;
e17a4113 1412 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1413 if ((op & 0xfffffffe) != 0x7c406008)
1414 break;
1415
1416 /* We found a valid stack-check sequence, return the new PC. */
1417 return pc;
1418 }
1419
1420 /* No stack check code in our prologue, return the start_pc. */
1421 return start_pc;
1422}
1423
6a16c029
TJB
1424/* return pc value after skipping a function prologue and also return
1425 information about a function frame.
1426
1427 in struct rs6000_framedata fdata:
1428 - frameless is TRUE, if function does not have a frame.
1429 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1430 - offset is the initial size of this stack frame --- the amount by
1431 which we decrement the sp to allocate the frame.
1432 - saved_gpr is the number of the first saved gpr.
1433 - saved_fpr is the number of the first saved fpr.
1434 - saved_vr is the number of the first saved vr.
1435 - saved_ev is the number of the first saved ev.
1436 - alloca_reg is the number of the register used for alloca() handling.
1437 Otherwise -1.
1438 - gpr_offset is the offset of the first saved gpr from the previous frame.
1439 - fpr_offset is the offset of the first saved fpr from the previous frame.
1440 - vr_offset is the offset of the first saved vr from the previous frame.
1441 - ev_offset is the offset of the first saved ev from the previous frame.
1442 - lr_offset is the offset of the saved lr
1443 - cr_offset is the offset of the saved cr
0df8b418 1444 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1445
7a78ae4e 1446static CORE_ADDR
be8626e0
MD
1447skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1448 struct rs6000_framedata *fdata)
c906108c
SS
1449{
1450 CORE_ADDR orig_pc = pc;
55d05f3b 1451 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1452 CORE_ADDR li_found_pc = 0;
50fd1280 1453 gdb_byte buf[4];
c906108c
SS
1454 unsigned long op;
1455 long offset = 0;
dd6d677f 1456 long alloca_reg_offset = 0;
6be8bc0c 1457 long vr_saved_offset = 0;
482ca3f5
KB
1458 int lr_reg = -1;
1459 int cr_reg = -1;
6be8bc0c 1460 int vr_reg = -1;
96ff0de4
EZ
1461 int ev_reg = -1;
1462 long ev_offset = 0;
6be8bc0c 1463 int vrsave_reg = -1;
c906108c
SS
1464 int reg;
1465 int framep = 0;
1466 int minimal_toc_loaded = 0;
ddb20c56 1467 int prev_insn_was_prologue_insn = 1;
55d05f3b 1468 int num_skip_non_prologue_insns = 0;
773df3e5 1469 int r0_contains_arg = 0;
be8626e0
MD
1470 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1471 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1472 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1473
ddb20c56 1474 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1475 fdata->saved_gpr = -1;
1476 fdata->saved_fpr = -1;
6be8bc0c 1477 fdata->saved_vr = -1;
96ff0de4 1478 fdata->saved_ev = -1;
c906108c
SS
1479 fdata->alloca_reg = -1;
1480 fdata->frameless = 1;
1481 fdata->nosavedpc = 1;
46a9b8ed 1482 fdata->lr_register = -1;
c906108c 1483
e17a4113 1484 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1485 if (pc >= lim_pc)
1486 pc = lim_pc;
1487
55d05f3b 1488 for (;; pc += 4)
c906108c 1489 {
ddb20c56
KB
1490 /* Sometimes it isn't clear if an instruction is a prologue
1491 instruction or not. When we encounter one of these ambiguous
1492 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1493 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1494 if (prev_insn_was_prologue_insn)
1495 last_prologue_pc = pc;
55d05f3b
KB
1496
1497 /* Stop scanning if we've hit the limit. */
4e463ff5 1498 if (pc >= lim_pc)
55d05f3b
KB
1499 break;
1500
ddb20c56
KB
1501 prev_insn_was_prologue_insn = 1;
1502
55d05f3b 1503 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1504 if (target_read_memory (pc, buf, 4))
1505 break;
e17a4113 1506 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1507
c5aa993b
JM
1508 if ((op & 0xfc1fffff) == 0x7c0802a6)
1509 { /* mflr Rx */
43b1ab88
AC
1510 /* Since shared library / PIC code, which needs to get its
1511 address at runtime, can appear to save more than one link
1512 register vis:
1513
1514 *INDENT-OFF*
1515 stwu r1,-304(r1)
1516 mflr r3
1517 bl 0xff570d0 (blrl)
1518 stw r30,296(r1)
1519 mflr r30
1520 stw r31,300(r1)
1521 stw r3,308(r1);
1522 ...
1523 *INDENT-ON*
1524
1525 remember just the first one, but skip over additional
1526 ones. */
721d14ba 1527 if (lr_reg == -1)
dd6d677f 1528 lr_reg = (op & 0x03e00000) >> 21;
773df3e5
JB
1529 if (lr_reg == 0)
1530 r0_contains_arg = 0;
c5aa993b 1531 continue;
c5aa993b
JM
1532 }
1533 else if ((op & 0xfc1fffff) == 0x7c000026)
1534 { /* mfcr Rx */
dd6d677f 1535 cr_reg = (op & 0x03e00000) >> 21;
773df3e5
JB
1536 if (cr_reg == 0)
1537 r0_contains_arg = 0;
c5aa993b 1538 continue;
c906108c 1539
c906108c 1540 }
c5aa993b
JM
1541 else if ((op & 0xfc1f0000) == 0xd8010000)
1542 { /* stfd Rx,NUM(r1) */
1543 reg = GET_SRC_REG (op);
1544 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1545 {
1546 fdata->saved_fpr = reg;
1547 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1548 }
1549 continue;
c906108c 1550
c5aa993b
JM
1551 }
1552 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1553 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1554 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1555 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1556 {
1557
1558 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1559 if ((op & 0xfc1f0000) == 0xbc010000)
1560 fdata->gpr_mask |= ~((1U << reg) - 1);
1561 else
1562 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1563 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1564 {
1565 fdata->saved_gpr = reg;
7a78ae4e 1566 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1567 op &= ~3UL;
c5aa993b
JM
1568 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1569 }
1570 continue;
c906108c 1571
ddb20c56 1572 }
ef1bc9e7
AM
1573 else if ((op & 0xffff0000) == 0x3c4c0000
1574 || (op & 0xffff0000) == 0x3c400000
1575 || (op & 0xffff0000) == 0x38420000)
1576 {
1577 /* . 0: addis 2,12,.TOC.-0b@ha
1578 . addi 2,2,.TOC.-0b@l
1579 or
1580 . lis 2,.TOC.@ha
1581 . addi 2,2,.TOC.@l
1582 used by ELFv2 global entry points to set up r2. */
1583 continue;
1584 }
1585 else if (op == 0x60000000)
ddb20c56 1586 {
96ff0de4 1587 /* nop */
ddb20c56
KB
1588 /* Allow nops in the prologue, but do not consider them to
1589 be part of the prologue unless followed by other prologue
0df8b418 1590 instructions. */
ddb20c56
KB
1591 prev_insn_was_prologue_insn = 0;
1592 continue;
1593
c906108c 1594 }
c5aa993b 1595 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1596 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1597 fdata->offset = (op & 0x0000ffff) << 16;
1598 fdata->frameless = 0;
773df3e5 1599 r0_contains_arg = 0;
c5aa993b
JM
1600 continue;
1601
1602 }
1603 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1604 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1605 fdata->offset |= (op & 0x0000ffff);
1606 fdata->frameless = 0;
773df3e5 1607 r0_contains_arg = 0;
c5aa993b
JM
1608 continue;
1609
1610 }
be723e22 1611 else if (lr_reg >= 0 &&
dd6d677f
PFC
1612 ((store_insn_p (op, lr_reg, 1, true)) ||
1613 (framep &&
1614 (store_insn_p (op, lr_reg,
1615 fdata->alloca_reg - tdep->ppc_gp0_regnum,
1616 false)))))
1617 {
1618 if (store_insn_p (op, lr_reg, 1, true))
1619 fdata->lr_offset = offset;
1620 else /* LR save through frame pointer. */
1621 fdata->lr_offset = alloca_reg_offset;
1622
c5aa993b 1623 fdata->nosavedpc = 0;
be723e22
MS
1624 /* Invalidate lr_reg, but don't set it to -1.
1625 That would mean that it had never been set. */
1626 lr_reg = -2;
98f08d3d
KB
1627 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1628 (op & 0xfc000000) == 0x90000000) /* stw */
1629 {
1630 /* Does not update r1, so add displacement to lr_offset. */
1631 fdata->lr_offset += SIGNED_SHORT (op);
1632 }
c5aa993b
JM
1633 continue;
1634
1635 }
be723e22 1636 else if (cr_reg >= 0 &&
dd6d677f
PFC
1637 (store_insn_p (op, cr_reg, 1, true)))
1638 {
98f08d3d 1639 fdata->cr_offset = offset;
be723e22
MS
1640 /* Invalidate cr_reg, but don't set it to -1.
1641 That would mean that it had never been set. */
1642 cr_reg = -2;
98f08d3d
KB
1643 if ((op & 0xfc000003) == 0xf8000000 ||
1644 (op & 0xfc000000) == 0x90000000)
1645 {
1646 /* Does not update r1, so add displacement to cr_offset. */
1647 fdata->cr_offset += SIGNED_SHORT (op);
1648 }
c5aa993b
JM
1649 continue;
1650
1651 }
721d14ba
DJ
1652 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1653 {
1654 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1655 prediction bits. If the LR has already been saved, we can
1656 skip it. */
1657 continue;
1658 }
c5aa993b
JM
1659 else if (op == 0x48000005)
1660 { /* bl .+4 used in
1661 -mrelocatable */
46a9b8ed 1662 fdata->used_bl = 1;
c5aa993b
JM
1663 continue;
1664
1665 }
1666 else if (op == 0x48000004)
1667 { /* b .+4 (xlc) */
1668 break;
1669
c5aa993b 1670 }
6be8bc0c
EZ
1671 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1672 in V.4 -mminimal-toc */
c5aa993b
JM
1673 (op & 0xffff0000) == 0x3bde0000)
1674 { /* addi 30,30,foo@l */
1675 continue;
c906108c 1676
c5aa993b
JM
1677 }
1678 else if ((op & 0xfc000001) == 0x48000001)
1679 { /* bl foo,
0df8b418 1680 to save fprs??? */
c906108c 1681
c5aa993b 1682 fdata->frameless = 0;
3c77c82a
DJ
1683
1684 /* If the return address has already been saved, we can skip
1685 calls to blrl (for PIC). */
e17a4113 1686 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1687 {
1688 fdata->used_bl = 1;
1689 continue;
1690 }
3c77c82a 1691
6be8bc0c 1692 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1693 the first three instructions of the prologue and either
1694 we have no line table information or the line info tells
1695 us that the subroutine call is not part of the line
1696 associated with the prologue. */
c5aa993b 1697 if ((pc - orig_pc) > 8)
ebd98106
FF
1698 {
1699 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1700 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1701
0df8b418
MS
1702 if ((prologue_sal.line == 0)
1703 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1704 break;
1705 }
c5aa993b 1706
e17a4113 1707 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1708
6be8bc0c
EZ
1709 /* At this point, make sure this is not a trampoline
1710 function (a function that simply calls another functions,
1711 and nothing else). If the next is not a nop, this branch
0df8b418 1712 was part of the function prologue. */
c5aa993b
JM
1713
1714 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1715 break; /* Don't skip over
1716 this branch. */
c5aa993b 1717
46a9b8ed
DJ
1718 fdata->used_bl = 1;
1719 continue;
c5aa993b 1720 }
98f08d3d
KB
1721 /* update stack pointer */
1722 else if ((op & 0xfc1f0000) == 0x94010000)
1723 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1724 fdata->frameless = 0;
1725 fdata->offset = SIGNED_SHORT (op);
1726 offset = fdata->offset;
1727 continue;
c5aa993b 1728 }
7a8f494c
PFC
1729 else if ((op & 0xfc1f07fa) == 0x7c01016a)
1730 { /* stwux rX,r1,rY || stdux rX,r1,rY */
0df8b418 1731 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1732 fdata->frameless = 0;
1733 offset = fdata->offset;
1734 continue;
1735 }
1736 else if ((op & 0xfc1f0003) == 0xf8010001)
1737 { /* stdu rX,NUM(r1) */
1738 fdata->frameless = 0;
1739 fdata->offset = SIGNED_SHORT (op & ~3UL);
1740 offset = fdata->offset;
1741 continue;
1742 }
7313566f
FF
1743 else if ((op & 0xffff0000) == 0x38210000)
1744 { /* addi r1,r1,SIMM */
1745 fdata->frameless = 0;
1746 fdata->offset += SIGNED_SHORT (op);
1747 offset = fdata->offset;
1748 continue;
1749 }
4e463ff5
DJ
1750 /* Load up minimal toc pointer. Do not treat an epilogue restore
1751 of r31 as a minimal TOC load. */
0df8b418
MS
1752 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1753 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1754 && !framep
c5aa993b 1755 && !minimal_toc_loaded)
98f08d3d 1756 {
c5aa993b
JM
1757 minimal_toc_loaded = 1;
1758 continue;
1759
f6077098
KB
1760 /* move parameters from argument registers to local variable
1761 registers */
1762 }
1763 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1764 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1765 (((op >> 21) & 31) <= 10) &&
0df8b418
MS
1766 ((long) ((op >> 16) & 31)
1767 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1768 {
1769 continue;
1770
c5aa993b
JM
1771 /* store parameters in stack */
1772 }
e802b915 1773 /* Move parameters from argument registers to temporary register. */
773df3e5 1774 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1775 {
c5aa993b
JM
1776 continue;
1777
1778 /* Set up frame pointer */
1779 }
76219d77
JB
1780 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1781 {
1782 fdata->frameless = 0;
1783 framep = 1;
1784 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
dd6d677f 1785 alloca_reg_offset = offset;
76219d77
JB
1786 continue;
1787
1788 /* Another way to set up the frame pointer. */
1789 }
c5aa993b
JM
1790 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1791 || op == 0x7c3f0b78)
1792 { /* mr r31, r1 */
1793 fdata->frameless = 0;
1794 framep = 1;
6f99cb26 1795 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
dd6d677f 1796 alloca_reg_offset = offset;
c5aa993b
JM
1797 continue;
1798
1799 /* Another way to set up the frame pointer. */
1800 }
1801 else if ((op & 0xfc1fffff) == 0x38010000)
1802 { /* addi rX, r1, 0x0 */
1803 fdata->frameless = 0;
1804 framep = 1;
6f99cb26
AC
1805 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1806 + ((op & ~0x38010000) >> 21));
dd6d677f 1807 alloca_reg_offset = offset;
c5aa993b 1808 continue;
c5aa993b 1809 }
6be8bc0c
EZ
1810 /* AltiVec related instructions. */
1811 /* Store the vrsave register (spr 256) in another register for
1812 later manipulation, or load a register into the vrsave
1813 register. 2 instructions are used: mfvrsave and
1814 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1815 and mtspr SPR256, Rn. */
1816 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1817 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1818 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1819 {
1820 vrsave_reg = GET_SRC_REG (op);
1821 continue;
1822 }
1823 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1824 {
1825 continue;
1826 }
1827 /* Store the register where vrsave was saved to onto the stack:
1828 rS is the register where vrsave was stored in a previous
1829 instruction. */
1830 /* 100100 sssss 00001 dddddddd dddddddd */
1831 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1832 {
1833 if (vrsave_reg == GET_SRC_REG (op))
1834 {
1835 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1836 vrsave_reg = -1;
1837 }
1838 continue;
1839 }
1840 /* Compute the new value of vrsave, by modifying the register
1841 where vrsave was saved to. */
1842 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1843 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1844 {
1845 continue;
1846 }
1847 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1848 in a pair of insns to save the vector registers on the
1849 stack. */
1850 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1851 /* 001110 01110 00000 iiii iiii iiii iiii */
1852 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1853 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1854 {
773df3e5
JB
1855 if ((op & 0xffff0000) == 0x38000000)
1856 r0_contains_arg = 0;
6be8bc0c
EZ
1857 li_found_pc = pc;
1858 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1859
1860 /* This insn by itself is not part of the prologue, unless
0df8b418 1861 if part of the pair of insns mentioned above. So do not
773df3e5
JB
1862 record this insn as part of the prologue yet. */
1863 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1864 }
1865 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1866 /* 011111 sssss 11111 00000 00111001110 */
1867 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1868 {
1869 if (pc == (li_found_pc + 4))
1870 {
1871 vr_reg = GET_SRC_REG (op);
1872 /* If this is the first vector reg to be saved, or if
1873 it has a lower number than others previously seen,
1874 reupdate the frame info. */
1875 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1876 {
1877 fdata->saved_vr = vr_reg;
1878 fdata->vr_offset = vr_saved_offset + offset;
1879 }
1880 vr_saved_offset = -1;
1881 vr_reg = -1;
1882 li_found_pc = 0;
1883 }
1884 }
1885 /* End AltiVec related instructions. */
96ff0de4
EZ
1886
1887 /* Start BookE related instructions. */
1888 /* Store gen register S at (r31+uimm).
1889 Any register less than r13 is volatile, so we don't care. */
1890 /* 000100 sssss 11111 iiiii 01100100001 */
1891 else if (arch_info->mach == bfd_mach_ppc_e500
1892 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1893 {
1894 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1895 {
1896 unsigned int imm;
1897 ev_reg = GET_SRC_REG (op);
1898 imm = (op >> 11) & 0x1f;
1899 ev_offset = imm * 8;
1900 /* If this is the first vector reg to be saved, or if
1901 it has a lower number than others previously seen,
1902 reupdate the frame info. */
1903 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1904 {
1905 fdata->saved_ev = ev_reg;
1906 fdata->ev_offset = ev_offset + offset;
1907 }
1908 }
1909 continue;
1910 }
1911 /* Store gen register rS at (r1+rB). */
1912 /* 000100 sssss 00001 bbbbb 01100100000 */
1913 else if (arch_info->mach == bfd_mach_ppc_e500
1914 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1915 {
1916 if (pc == (li_found_pc + 4))
1917 {
1918 ev_reg = GET_SRC_REG (op);
1919 /* If this is the first vector reg to be saved, or if
1920 it has a lower number than others previously seen,
1921 reupdate the frame info. */
1922 /* We know the contents of rB from the previous instruction. */
1923 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1924 {
1925 fdata->saved_ev = ev_reg;
1926 fdata->ev_offset = vr_saved_offset + offset;
1927 }
1928 vr_saved_offset = -1;
1929 ev_reg = -1;
1930 li_found_pc = 0;
1931 }
1932 continue;
1933 }
1934 /* Store gen register r31 at (rA+uimm). */
1935 /* 000100 11111 aaaaa iiiii 01100100001 */
1936 else if (arch_info->mach == bfd_mach_ppc_e500
1937 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1938 {
1939 /* Wwe know that the source register is 31 already, but
1940 it can't hurt to compute it. */
1941 ev_reg = GET_SRC_REG (op);
1942 ev_offset = ((op >> 11) & 0x1f) * 8;
1943 /* If this is the first vector reg to be saved, or if
1944 it has a lower number than others previously seen,
1945 reupdate the frame info. */
1946 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1947 {
1948 fdata->saved_ev = ev_reg;
1949 fdata->ev_offset = ev_offset + offset;
1950 }
1951
1952 continue;
1953 }
1954 /* Store gen register S at (r31+r0).
1955 Store param on stack when offset from SP bigger than 4 bytes. */
1956 /* 000100 sssss 11111 00000 01100100000 */
1957 else if (arch_info->mach == bfd_mach_ppc_e500
1958 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1959 {
1960 if (pc == (li_found_pc + 4))
1961 {
1962 if ((op & 0x03e00000) >= 0x01a00000)
1963 {
1964 ev_reg = GET_SRC_REG (op);
1965 /* If this is the first vector reg to be saved, or if
1966 it has a lower number than others previously seen,
1967 reupdate the frame info. */
1968 /* We know the contents of r0 from the previous
1969 instruction. */
1970 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1971 {
1972 fdata->saved_ev = ev_reg;
1973 fdata->ev_offset = vr_saved_offset + offset;
1974 }
1975 ev_reg = -1;
1976 }
1977 vr_saved_offset = -1;
1978 li_found_pc = 0;
1979 continue;
1980 }
1981 }
1982 /* End BookE related instructions. */
1983
c5aa993b
JM
1984 else
1985 {
55d05f3b
KB
1986 /* Not a recognized prologue instruction.
1987 Handle optimizer code motions into the prologue by continuing
1988 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
1989 address is not yet saved in the frame. Also skip instructions
1990 if some of the GPRs expected to be saved are not yet saved. */
1991 if (fdata->frameless == 0 && fdata->nosavedpc == 0
1cc62f2e
JB
1992 && fdata->saved_gpr != -1)
1993 {
1994 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
1995
1996 if ((fdata->gpr_mask & all_mask) == all_mask)
1997 break;
1998 }
55d05f3b
KB
1999
2000 if (op == 0x4e800020 /* blr */
2001 || op == 0x4e800420) /* bctr */
2002 /* Do not scan past epilogue in frameless functions or
2003 trampolines. */
2004 break;
2005 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 2006 /* Never skip branches. */
55d05f3b
KB
2007 break;
2008
2009 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2010 /* Do not scan too many insns, scanning insns is expensive with
2011 remote targets. */
2012 break;
2013
2014 /* Continue scanning. */
2015 prev_insn_was_prologue_insn = 0;
2016 continue;
c5aa993b 2017 }
c906108c
SS
2018 }
2019
2020#if 0
2021/* I have problems with skipping over __main() that I need to address
0df8b418 2022 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
2023 * didn't work as well as I wanted to be. -MGO */
2024
2025 /* If the first thing after skipping a prolog is a branch to a function,
2026 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2027 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2028 work before calling a function right after a prologue, thus we can
64366f1c 2029 single out such gcc2 behaviour. */
c906108c 2030
c906108c 2031
c5aa993b 2032 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2033 { /* bl foo, an initializer function? */
e17a4113 2034 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2035
2036 if (op == 0x4def7b82)
2037 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2038
64366f1c
EZ
2039 /* Check and see if we are in main. If so, skip over this
2040 initializer function as well. */
c906108c 2041
c5aa993b 2042 tmp = find_pc_misc_function (pc);
6314a349
AC
2043 if (tmp >= 0
2044 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2045 return pc + 8;
2046 }
c906108c 2047 }
c906108c 2048#endif /* 0 */
c5aa993b 2049
46a9b8ed 2050 if (pc == lim_pc && lr_reg >= 0)
dd6d677f 2051 fdata->lr_register = lr_reg;
46a9b8ed 2052
c5aa993b 2053 fdata->offset = -fdata->offset;
ddb20c56 2054 return last_prologue_pc;
c906108c
SS
2055}
2056
7a78ae4e 2057static CORE_ADDR
4a7622d1 2058rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2059{
4a7622d1 2060 struct rs6000_framedata frame;
e3acb115 2061 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2062
4a7622d1
UW
2063 /* See if we can determine the end of the prologue via the symbol table.
2064 If so, then return either PC, or the PC after the prologue, whichever
2065 is greater. */
e3acb115 2066 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2067 {
d80b854b
UW
2068 CORE_ADDR post_prologue_pc
2069 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1 2070 if (post_prologue_pc != 0)
325fac50 2071 return std::max (pc, post_prologue_pc);
c906108c 2072 }
c906108c 2073
4a7622d1
UW
2074 /* Can't determine prologue from the symbol table, need to examine
2075 instructions. */
c906108c 2076
4a7622d1
UW
2077 /* Find an upper limit on the function prologue using the debug
2078 information. If the debug information could not be used to provide
2079 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2080 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2081 if (limit_pc == 0)
2082 limit_pc = pc + 100; /* Magic. */
794a477a 2083
e3acb115
JB
2084 /* Do not allow limit_pc to be past the function end, if we know
2085 where that end is... */
2086 if (func_end_addr && limit_pc > func_end_addr)
2087 limit_pc = func_end_addr;
2088
4a7622d1
UW
2089 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2090 return pc;
c906108c 2091}
c906108c 2092
8ab3d180
KB
2093/* When compiling for EABI, some versions of GCC emit a call to __eabi
2094 in the prologue of main().
2095
2096 The function below examines the code pointed at by PC and checks to
2097 see if it corresponds to a call to __eabi. If so, it returns the
2098 address of the instruction following that call. Otherwise, it simply
2099 returns PC. */
2100
63807e1d 2101static CORE_ADDR
8ab3d180
KB
2102rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2103{
e17a4113 2104 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2105 gdb_byte buf[4];
2106 unsigned long op;
2107
2108 if (target_read_memory (pc, buf, 4))
2109 return pc;
e17a4113 2110 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2111
2112 if ((op & BL_MASK) == BL_INSTRUCTION)
2113 {
2114 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2115 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2116 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2117
2118 /* We check for ___eabi (three leading underscores) in addition
2119 to __eabi in case the GCC option "-fleading-underscore" was
2120 used to compile the program. */
7cbd4a93 2121 if (s.minsym != NULL
c9d95fa3
CB
2122 && s.minsym->linkage_name () != NULL
2123 && (strcmp (s.minsym->linkage_name (), "__eabi") == 0
2124 || strcmp (s.minsym->linkage_name (), "___eabi") == 0))
8ab3d180
KB
2125 pc += 4;
2126 }
2127 return pc;
2128}
383f0f5b 2129
4a7622d1
UW
2130/* All the ABI's require 16 byte alignment. */
2131static CORE_ADDR
2132rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2133{
2134 return (addr & -16);
c906108c
SS
2135}
2136
977adac5
ND
2137/* Return whether handle_inferior_event() should proceed through code
2138 starting at PC in function NAME when stepping.
2139
2140 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2141 handle memory references that are too distant to fit in instructions
2142 generated by the compiler. For example, if 'foo' in the following
2143 instruction:
2144
2145 lwz r9,foo(r2)
2146
2147 is greater than 32767, the linker might replace the lwz with a branch to
2148 somewhere in @FIX1 that does the load in 2 instructions and then branches
2149 back to where execution should continue.
2150
2151 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2152 Unfortunately, the linker uses the "b" instruction for the
2153 branches, meaning that the link register doesn't get set.
2154 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2155
e76f05fa
UW
2156 Instead, use the gdbarch_skip_trampoline_code and
2157 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2158 @FIX code. */
977adac5 2159
63807e1d 2160static int
e17a4113 2161rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2162 CORE_ADDR pc, const char *name)
977adac5 2163{
61012eef 2164 return name && startswith (name, "@FIX");
977adac5
ND
2165}
2166
2167/* Skip code that the user doesn't want to see when stepping:
2168
2169 1. Indirect function calls use a piece of trampoline code to do context
2170 switching, i.e. to set the new TOC table. Skip such code if we are on
2171 its first instruction (as when we have single-stepped to here).
2172
2173 2. Skip shared library trampoline code (which is different from
c906108c 2174 indirect function call trampolines).
977adac5
ND
2175
2176 3. Skip bigtoc fixup code.
2177
c906108c 2178 Result is desired PC to step until, or NULL if we are not in
977adac5 2179 code that should be skipped. */
c906108c 2180
63807e1d 2181static CORE_ADDR
52f729a7 2182rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2183{
e17a4113
UW
2184 struct gdbarch *gdbarch = get_frame_arch (frame);
2185 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2186 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2187 unsigned int ii, op;
977adac5 2188 int rel;
c906108c 2189 CORE_ADDR solib_target_pc;
7cbd4a93 2190 struct bound_minimal_symbol msymbol;
c906108c 2191
c5aa993b
JM
2192 static unsigned trampoline_code[] =
2193 {
2194 0x800b0000, /* l r0,0x0(r11) */
2195 0x90410014, /* st r2,0x14(r1) */
2196 0x7c0903a6, /* mtctr r0 */
2197 0x804b0004, /* l r2,0x4(r11) */
2198 0x816b0008, /* l r11,0x8(r11) */
2199 0x4e800420, /* bctr */
2200 0x4e800020, /* br */
2201 0
c906108c
SS
2202 };
2203
977adac5
ND
2204 /* Check for bigtoc fixup code. */
2205 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2206 if (msymbol.minsym
e17a4113 2207 && rs6000_in_solib_return_trampoline (gdbarch, pc,
c9d95fa3 2208 msymbol.minsym->linkage_name ()))
977adac5
ND
2209 {
2210 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2211 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2212 if ((op & 0xfc000003) == 0x48000000)
2213 {
2214 /* Extract bits 6-29 as a signed 24-bit relative word address and
2215 add it to the containing PC. */
2216 rel = ((int)(op << 6) >> 6);
2217 return pc + 8 + rel;
2218 }
2219 }
2220
c906108c 2221 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2222 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2223 if (solib_target_pc)
2224 return solib_target_pc;
2225
c5aa993b
JM
2226 for (ii = 0; trampoline_code[ii]; ++ii)
2227 {
e17a4113 2228 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2229 if (op != trampoline_code[ii])
2230 return 0;
2231 }
0df8b418
MS
2232 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2233 addr. */
e17a4113 2234 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2235 return pc;
2236}
2237
794ac428
UW
2238/* ISA-specific vector types. */
2239
2240static struct type *
2241rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2242{
2243 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2244
2245 if (!tdep->ppc_builtin_type_vec64)
2246 {
df4df182
UW
2247 const struct builtin_type *bt = builtin_type (gdbarch);
2248
794ac428
UW
2249 /* The type we're building is this: */
2250#if 0
2251 union __gdb_builtin_type_vec64
2252 {
2253 int64_t uint64;
2254 float v2_float[2];
2255 int32_t v2_int32[2];
2256 int16_t v4_int16[4];
2257 int8_t v8_int8[8];
2258 };
2259#endif
2260
2261 struct type *t;
2262
e9bb382b
UW
2263 t = arch_composite_type (gdbarch,
2264 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2265 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2266 append_composite_type_field (t, "v2_float",
df4df182 2267 init_vector_type (bt->builtin_float, 2));
794ac428 2268 append_composite_type_field (t, "v2_int32",
df4df182 2269 init_vector_type (bt->builtin_int32, 2));
794ac428 2270 append_composite_type_field (t, "v4_int16",
df4df182 2271 init_vector_type (bt->builtin_int16, 4));
794ac428 2272 append_composite_type_field (t, "v8_int8",
df4df182 2273 init_vector_type (bt->builtin_int8, 8));
794ac428 2274
876cecd0 2275 TYPE_VECTOR (t) = 1;
794ac428
UW
2276 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2277 tdep->ppc_builtin_type_vec64 = t;
2278 }
2279
2280 return tdep->ppc_builtin_type_vec64;
2281}
2282
604c2f83
LM
2283/* Vector 128 type. */
2284
2285static struct type *
2286rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2287{
2288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2289
2290 if (!tdep->ppc_builtin_type_vec128)
2291 {
df4df182
UW
2292 const struct builtin_type *bt = builtin_type (gdbarch);
2293
604c2f83
LM
2294 /* The type we're building is this
2295
2296 type = union __ppc_builtin_type_vec128 {
2297 uint128_t uint128;
db9f5df8 2298 double v2_double[2];
604c2f83
LM
2299 float v4_float[4];
2300 int32_t v4_int32[4];
2301 int16_t v8_int16[8];
2302 int8_t v16_int8[16];
2303 }
2304 */
2305
2306 struct type *t;
2307
e9bb382b
UW
2308 t = arch_composite_type (gdbarch,
2309 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 2310 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2311 append_composite_type_field (t, "v2_double",
2312 init_vector_type (bt->builtin_double, 2));
604c2f83 2313 append_composite_type_field (t, "v4_float",
df4df182 2314 init_vector_type (bt->builtin_float, 4));
604c2f83 2315 append_composite_type_field (t, "v4_int32",
df4df182 2316 init_vector_type (bt->builtin_int32, 4));
604c2f83 2317 append_composite_type_field (t, "v8_int16",
df4df182 2318 init_vector_type (bt->builtin_int16, 8));
604c2f83 2319 append_composite_type_field (t, "v16_int8",
df4df182 2320 init_vector_type (bt->builtin_int8, 16));
604c2f83 2321
803e1097 2322 TYPE_VECTOR (t) = 1;
604c2f83
LM
2323 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2324 tdep->ppc_builtin_type_vec128 = t;
2325 }
2326
2327 return tdep->ppc_builtin_type_vec128;
2328}
2329
7cc46491
DJ
2330/* Return the name of register number REGNO, or the empty string if it
2331 is an anonymous register. */
7a78ae4e 2332
fa88f677 2333static const char *
d93859e2 2334rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2335{
d93859e2 2336 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2337
7cc46491
DJ
2338 /* The upper half "registers" have names in the XML description,
2339 but we present only the low GPRs and the full 64-bit registers
2340 to the user. */
2341 if (tdep->ppc_ev0_upper_regnum >= 0
2342 && tdep->ppc_ev0_upper_regnum <= regno
2343 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2344 return "";
2345
604c2f83
LM
2346 /* Hide the upper halves of the vs0~vs31 registers. */
2347 if (tdep->ppc_vsr0_regnum >= 0
2348 && tdep->ppc_vsr0_upper_regnum <= regno
2349 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2350 return "";
2351
8d619c01
EBM
2352 /* Hide the upper halves of the cvs0~cvs31 registers. */
2353 if (PPC_CVSR0_UPPER_REGNUM <= regno
2354 && regno < PPC_CVSR0_UPPER_REGNUM + ppc_num_gprs)
2355 return "";
2356
7cc46491 2357 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2358 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2359 {
2360 static const char *const spe_regnames[] = {
2361 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2362 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2363 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2364 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2365 };
2366 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2367 }
2368
f949c649
TJB
2369 /* Check if the decimal128 pseudo-registers are available. */
2370 if (IS_DFP_PSEUDOREG (tdep, regno))
2371 {
2372 static const char *const dfp128_regnames[] = {
2373 "dl0", "dl1", "dl2", "dl3",
2374 "dl4", "dl5", "dl6", "dl7",
2375 "dl8", "dl9", "dl10", "dl11",
2376 "dl12", "dl13", "dl14", "dl15"
2377 };
2378 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2379 }
2380
6f072a10
PFC
2381 /* Check if this is a vX alias for a raw vrX vector register. */
2382 if (IS_V_ALIAS_PSEUDOREG (tdep, regno))
2383 {
2384 static const char *const vector_alias_regnames[] = {
2385 "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
2386 "v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
2387 "v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
2388 "v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31"
2389 };
2390 return vector_alias_regnames[regno - tdep->ppc_v0_alias_regnum];
2391 }
2392
604c2f83
LM
2393 /* Check if this is a VSX pseudo-register. */
2394 if (IS_VSX_PSEUDOREG (tdep, regno))
2395 {
2396 static const char *const vsx_regnames[] = {
2397 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2398 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2399 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2400 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2401 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2402 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2403 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2404 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2405 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2406 };
2407 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2408 }
2409
2410 /* Check if the this is a Extended FP pseudo-register. */
2411 if (IS_EFP_PSEUDOREG (tdep, regno))
2412 {
2413 static const char *const efpr_regnames[] = {
2414 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2415 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2416 "f46", "f47", "f48", "f49", "f50", "f51",
2417 "f52", "f53", "f54", "f55", "f56", "f57",
2418 "f58", "f59", "f60", "f61", "f62", "f63"
2419 };
2420 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2421 }
2422
8d619c01
EBM
2423 /* Check if this is a Checkpointed DFP pseudo-register. */
2424 if (IS_CDFP_PSEUDOREG (tdep, regno))
2425 {
2426 static const char *const cdfp128_regnames[] = {
2427 "cdl0", "cdl1", "cdl2", "cdl3",
2428 "cdl4", "cdl5", "cdl6", "cdl7",
2429 "cdl8", "cdl9", "cdl10", "cdl11",
2430 "cdl12", "cdl13", "cdl14", "cdl15"
2431 };
2432 return cdfp128_regnames[regno - tdep->ppc_cdl0_regnum];
2433 }
2434
2435 /* Check if this is a Checkpointed VSX pseudo-register. */
2436 if (IS_CVSX_PSEUDOREG (tdep, regno))
2437 {
2438 static const char *const cvsx_regnames[] = {
2439 "cvs0", "cvs1", "cvs2", "cvs3", "cvs4", "cvs5", "cvs6", "cvs7",
2440 "cvs8", "cvs9", "cvs10", "cvs11", "cvs12", "cvs13", "cvs14",
2441 "cvs15", "cvs16", "cvs17", "cvs18", "cvs19", "cvs20", "cvs21",
2442 "cvs22", "cvs23", "cvs24", "cvs25", "cvs26", "cvs27", "cvs28",
2443 "cvs29", "cvs30", "cvs31", "cvs32", "cvs33", "cvs34", "cvs35",
2444 "cvs36", "cvs37", "cvs38", "cvs39", "cvs40", "cvs41", "cvs42",
2445 "cvs43", "cvs44", "cvs45", "cvs46", "cvs47", "cvs48", "cvs49",
2446 "cvs50", "cvs51", "cvs52", "cvs53", "cvs54", "cvs55", "cvs56",
2447 "cvs57", "cvs58", "cvs59", "cvs60", "cvs61", "cvs62", "cvs63"
2448 };
2449 return cvsx_regnames[regno - tdep->ppc_cvsr0_regnum];
2450 }
2451
2452 /* Check if the this is a Checkpointed Extended FP pseudo-register. */
2453 if (IS_CEFP_PSEUDOREG (tdep, regno))
2454 {
2455 static const char *const cefpr_regnames[] = {
2456 "cf32", "cf33", "cf34", "cf35", "cf36", "cf37", "cf38",
2457 "cf39", "cf40", "cf41", "cf42", "cf43", "cf44", "cf45",
2458 "cf46", "cf47", "cf48", "cf49", "cf50", "cf51",
2459 "cf52", "cf53", "cf54", "cf55", "cf56", "cf57",
2460 "cf58", "cf59", "cf60", "cf61", "cf62", "cf63"
2461 };
2462 return cefpr_regnames[regno - tdep->ppc_cefpr0_regnum];
2463 }
2464
d93859e2 2465 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2466}
2467
7cc46491
DJ
2468/* Return the GDB type object for the "standard" data type of data in
2469 register N. */
7a78ae4e
ND
2470
2471static struct type *
7cc46491 2472rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2473{
691d145a 2474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2475
f949c649
TJB
2476 /* These are the e500 pseudo-registers. */
2477 if (IS_SPE_PSEUDOREG (tdep, regnum))
2478 return rs6000_builtin_type_vec64 (gdbarch);
8d619c01
EBM
2479 else if (IS_DFP_PSEUDOREG (tdep, regnum)
2480 || IS_CDFP_PSEUDOREG (tdep, regnum))
604c2f83 2481 /* PPC decimal128 pseudo-registers. */
f949c649 2482 return builtin_type (gdbarch)->builtin_declong;
6f072a10
PFC
2483 else if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2484 return gdbarch_register_type (gdbarch,
2485 tdep->ppc_vr0_regnum
2486 + (regnum
2487 - tdep->ppc_v0_alias_regnum));
8d619c01
EBM
2488 else if (IS_VSX_PSEUDOREG (tdep, regnum)
2489 || IS_CVSX_PSEUDOREG (tdep, regnum))
604c2f83
LM
2490 /* POWER7 VSX pseudo-registers. */
2491 return rs6000_builtin_type_vec128 (gdbarch);
8d619c01
EBM
2492 else if (IS_EFP_PSEUDOREG (tdep, regnum)
2493 || IS_CEFP_PSEUDOREG (tdep, regnum))
604c2f83
LM
2494 /* POWER7 Extended FP pseudo-registers. */
2495 return builtin_type (gdbarch)->builtin_double;
8d619c01
EBM
2496 else
2497 internal_error (__FILE__, __LINE__,
2498 _("rs6000_pseudo_register_type: "
2499 "called on unexpected register '%s' (%d)"),
2500 gdbarch_register_name (gdbarch, regnum), regnum);
7a78ae4e
ND
2501}
2502
6f072a10
PFC
2503/* Check if REGNUM is a member of REGGROUP. We only need to handle
2504 the vX aliases for the vector registers by always returning false
2505 to avoid duplicated information in "info register vector/all",
2506 since the raw vrX registers will already show in these cases. For
2507 other pseudo-registers we use the default membership function. */
2508
2509static int
2510rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2511 struct reggroup *group)
2512{
2513 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2514
2515 if (IS_V_ALIAS_PSEUDOREG (tdep, regnum))
2516 return 0;
2517 else
2518 return default_register_reggroup_p (gdbarch, regnum, group);
2519}
2520
691d145a 2521/* The register format for RS/6000 floating point registers is always
64366f1c 2522 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2523
2524static int
0abe36f5
MD
2525rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2526 struct type *type)
7a78ae4e 2527{
0abe36f5 2528 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2529
2530 return (tdep->ppc_fp0_regnum >= 0
2531 && regnum >= tdep->ppc_fp0_regnum
2532 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2533 && TYPE_CODE (type) == TYPE_CODE_FLT
0dfff4cb
UW
2534 && TYPE_LENGTH (type)
2535 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2536}
2537
8dccd430 2538static int
691d145a
JB
2539rs6000_register_to_value (struct frame_info *frame,
2540 int regnum,
2541 struct type *type,
8dccd430
PA
2542 gdb_byte *to,
2543 int *optimizedp, int *unavailablep)
7a78ae4e 2544{
0dfff4cb 2545 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2546 gdb_byte from[PPC_MAX_REGISTER_SIZE];
691d145a 2547
691d145a 2548 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2549
8dccd430
PA
2550 if (!get_frame_register_bytes (frame, regnum, 0,
2551 register_size (gdbarch, regnum),
2552 from, optimizedp, unavailablep))
2553 return 0;
2554
3b2ca824
UW
2555 target_float_convert (from, builtin_type (gdbarch)->builtin_double,
2556 to, type);
8dccd430
PA
2557 *optimizedp = *unavailablep = 0;
2558 return 1;
691d145a 2559}
7a292a7a 2560
7a78ae4e 2561static void
691d145a
JB
2562rs6000_value_to_register (struct frame_info *frame,
2563 int regnum,
2564 struct type *type,
50fd1280 2565 const gdb_byte *from)
7a78ae4e 2566{
0dfff4cb 2567 struct gdbarch *gdbarch = get_frame_arch (frame);
0f068fb5 2568 gdb_byte to[PPC_MAX_REGISTER_SIZE];
691d145a 2569
691d145a
JB
2570 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2571
3b2ca824
UW
2572 target_float_convert (from, type,
2573 to, builtin_type (gdbarch)->builtin_double);
691d145a 2574 put_frame_register (frame, regnum, to);
7a78ae4e 2575}
c906108c 2576
05d1431c
PA
2577 /* The type of a function that moves the value of REG between CACHE
2578 or BUF --- in either direction. */
2579typedef enum register_status (*move_ev_register_func) (struct regcache *,
2580 int, void *);
2581
6ced10dd
JB
2582/* Move SPE vector register values between a 64-bit buffer and the two
2583 32-bit raw register halves in a regcache. This function handles
2584 both splitting a 64-bit value into two 32-bit halves, and joining
2585 two halves into a whole 64-bit value, depending on the function
2586 passed as the MOVE argument.
2587
2588 EV_REG must be the number of an SPE evN vector register --- a
2589 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2590 64-bit buffer.
2591
2592 Call MOVE once for each 32-bit half of that register, passing
2593 REGCACHE, the number of the raw register corresponding to that
2594 half, and the address of the appropriate half of BUFFER.
2595
2596 For example, passing 'regcache_raw_read' as the MOVE function will
2597 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2598 'regcache_raw_supply' will supply the contents of BUFFER to the
2599 appropriate pair of raw registers in REGCACHE.
2600
2601 You may need to cast away some 'const' qualifiers when passing
2602 MOVE, since this function can't tell at compile-time which of
2603 REGCACHE or BUFFER is acting as the source of the data. If C had
2604 co-variant type qualifiers, ... */
05d1431c
PA
2605
2606static enum register_status
2607e500_move_ev_register (move_ev_register_func move,
2608 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd 2609{
ac7936df 2610 struct gdbarch *arch = regcache->arch ();
6ced10dd
JB
2611 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2612 int reg_index;
19ba03f4 2613 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2614 enum register_status status;
6ced10dd 2615
5a9e69ba 2616 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2617
2618 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2619
8b164abb 2620 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2621 {
05d1431c
PA
2622 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2623 byte_buffer);
2624 if (status == REG_VALID)
2625 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2626 byte_buffer + 4);
6ced10dd
JB
2627 }
2628 else
2629 {
05d1431c
PA
2630 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2631 if (status == REG_VALID)
2632 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2633 byte_buffer + 4);
6ced10dd 2634 }
05d1431c
PA
2635
2636 return status;
6ced10dd
JB
2637}
2638
05d1431c
PA
2639static enum register_status
2640do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2641{
10eaee5f 2642 regcache->raw_write (regnum, (const gdb_byte *) buffer);
05d1431c
PA
2643
2644 return REG_VALID;
2645}
2646
2647static enum register_status
849d0ba8
YQ
2648e500_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
2649 int ev_reg, gdb_byte *buffer)
f949c649 2650{
849d0ba8
YQ
2651 struct gdbarch *arch = regcache->arch ();
2652 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2653 int reg_index;
2654 enum register_status status;
2655
2656 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
2657
2658 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2659
2660 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
2661 {
2662 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2663 buffer);
2664 if (status == REG_VALID)
2665 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index,
2666 buffer + 4);
2667 }
2668 else
2669 {
2670 status = regcache->raw_read (tdep->ppc_gp0_regnum + reg_index, buffer);
2671 if (status == REG_VALID)
2672 status = regcache->raw_read (tdep->ppc_ev0_upper_regnum + reg_index,
2673 buffer + 4);
2674 }
2675
2676 return status;
2677
f949c649
TJB
2678}
2679
2680static void
2681e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2682 int reg_nr, const gdb_byte *buffer)
2683{
05d1431c
PA
2684 e500_move_ev_register (do_regcache_raw_write, regcache,
2685 reg_nr, (void *) buffer);
f949c649
TJB
2686}
2687
604c2f83 2688/* Read method for DFP pseudo-registers. */
05d1431c 2689static enum register_status
849d0ba8 2690dfp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
f949c649
TJB
2691 int reg_nr, gdb_byte *buffer)
2692{
2693 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2694 int reg_index, fp0;
05d1431c 2695 enum register_status status;
f949c649 2696
8d619c01
EBM
2697 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2698 {
2699 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2700 fp0 = PPC_F0_REGNUM;
2701 }
2702 else
2703 {
2704 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2705
2706 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2707 fp0 = PPC_CF0_REGNUM;
2708 }
2709
f949c649
TJB
2710 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2711 {
2712 /* Read two FP registers to form a whole dl register. */
8d619c01 2713 status = regcache->raw_read (fp0 + 2 * reg_index, buffer);
05d1431c 2714 if (status == REG_VALID)
8d619c01
EBM
2715 status = regcache->raw_read (fp0 + 2 * reg_index + 1,
2716 buffer + 8);
f949c649
TJB
2717 }
2718 else
2719 {
8d619c01 2720 status = regcache->raw_read (fp0 + 2 * reg_index + 1, buffer);
05d1431c 2721 if (status == REG_VALID)
8d619c01 2722 status = regcache->raw_read (fp0 + 2 * reg_index, buffer + 8);
f949c649 2723 }
05d1431c
PA
2724
2725 return status;
f949c649
TJB
2726}
2727
604c2f83 2728/* Write method for DFP pseudo-registers. */
f949c649 2729static void
604c2f83 2730dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2731 int reg_nr, const gdb_byte *buffer)
2732{
2733 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2734 int reg_index, fp0;
2735
2736 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
2737 {
2738 reg_index = reg_nr - tdep->ppc_dl0_regnum;
2739 fp0 = PPC_F0_REGNUM;
2740 }
2741 else
2742 {
2743 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
2744
2745 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
2746 fp0 = PPC_CF0_REGNUM;
2747 }
f949c649
TJB
2748
2749 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2750 {
2751 /* Write each half of the dl register into a separate
8d619c01
EBM
2752 FP register. */
2753 regcache->raw_write (fp0 + 2 * reg_index, buffer);
2754 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2755 }
2756 else
2757 {
8d619c01
EBM
2758 regcache->raw_write (fp0 + 2 * reg_index + 1, buffer);
2759 regcache->raw_write (fp0 + 2 * reg_index, buffer + 8);
f949c649
TJB
2760 }
2761}
2762
6f072a10
PFC
2763/* Read method for the vX aliases for the raw vrX registers. */
2764
2765static enum register_status
2766v_alias_pseudo_register_read (struct gdbarch *gdbarch,
2767 readable_regcache *regcache, int reg_nr,
2768 gdb_byte *buffer)
2769{
2770 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2771 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2772
2773 return regcache->raw_read (tdep->ppc_vr0_regnum
2774 + (reg_nr - tdep->ppc_v0_alias_regnum),
2775 buffer);
2776}
2777
2778/* Write method for the vX aliases for the raw vrX registers. */
2779
2780static void
2781v_alias_pseudo_register_write (struct gdbarch *gdbarch,
2782 struct regcache *regcache,
2783 int reg_nr, const gdb_byte *buffer)
2784{
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
2787
2788 regcache->raw_write (tdep->ppc_vr0_regnum
2789 + (reg_nr - tdep->ppc_v0_alias_regnum), buffer);
2790}
2791
604c2f83 2792/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2793static enum register_status
849d0ba8 2794vsx_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2795 int reg_nr, gdb_byte *buffer)
2796{
2797 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2798 int reg_index, vr0, fp0, vsr0_upper;
05d1431c 2799 enum register_status status;
604c2f83 2800
8d619c01
EBM
2801 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2802 {
2803 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2804 vr0 = PPC_VR0_REGNUM;
2805 fp0 = PPC_F0_REGNUM;
2806 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2807 }
2808 else
2809 {
2810 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2811
2812 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2813 vr0 = PPC_CVR0_REGNUM;
2814 fp0 = PPC_CF0_REGNUM;
2815 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2816 }
2817
604c2f83
LM
2818 /* Read the portion that overlaps the VMX registers. */
2819 if (reg_index > 31)
8d619c01 2820 status = regcache->raw_read (vr0 + reg_index - 32, buffer);
604c2f83
LM
2821 else
2822 /* Read the portion that overlaps the FPR registers. */
2823 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2824 {
8d619c01 2825 status = regcache->raw_read (fp0 + reg_index, buffer);
05d1431c 2826 if (status == REG_VALID)
8d619c01
EBM
2827 status = regcache->raw_read (vsr0_upper + reg_index,
2828 buffer + 8);
604c2f83
LM
2829 }
2830 else
2831 {
8d619c01 2832 status = regcache->raw_read (fp0 + reg_index, buffer + 8);
05d1431c 2833 if (status == REG_VALID)
8d619c01 2834 status = regcache->raw_read (vsr0_upper + reg_index, buffer);
604c2f83 2835 }
05d1431c
PA
2836
2837 return status;
604c2f83
LM
2838}
2839
2840/* Write method for POWER7 VSX pseudo-registers. */
2841static void
2842vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2843 int reg_nr, const gdb_byte *buffer)
2844{
2845 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2846 int reg_index, vr0, fp0, vsr0_upper;
2847
2848 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2849 {
2850 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2851 vr0 = PPC_VR0_REGNUM;
2852 fp0 = PPC_F0_REGNUM;
2853 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
2854 }
2855 else
2856 {
2857 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
2858
2859 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
2860 vr0 = PPC_CVR0_REGNUM;
2861 fp0 = PPC_CF0_REGNUM;
2862 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
2863 }
604c2f83
LM
2864
2865 /* Write the portion that overlaps the VMX registers. */
2866 if (reg_index > 31)
8d619c01 2867 regcache->raw_write (vr0 + reg_index - 32, buffer);
604c2f83
LM
2868 else
2869 /* Write the portion that overlaps the FPR registers. */
2870 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2871 {
8d619c01
EBM
2872 regcache->raw_write (fp0 + reg_index, buffer);
2873 regcache->raw_write (vsr0_upper + reg_index, buffer + 8);
604c2f83
LM
2874 }
2875 else
2876 {
8d619c01
EBM
2877 regcache->raw_write (fp0 + reg_index, buffer + 8);
2878 regcache->raw_write (vsr0_upper + reg_index, buffer);
604c2f83
LM
2879 }
2880}
2881
2882/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2883static enum register_status
8d619c01 2884efp_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
604c2f83
LM
2885 int reg_nr, gdb_byte *buffer)
2886{
2887 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01
EBM
2888 int reg_index, vr0;
2889
2890 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2891 {
2892 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2893 vr0 = PPC_VR0_REGNUM;
2894 }
2895 else
2896 {
2897 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2898
2899 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2900 vr0 = PPC_CVR0_REGNUM;
2901 }
2902
084ee545 2903 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2904
d9492458 2905 /* Read the portion that overlaps the VMX register. */
8d619c01
EBM
2906 return regcache->raw_read_part (vr0 + reg_index, offset,
2907 register_size (gdbarch, reg_nr),
849d0ba8 2908 buffer);
604c2f83
LM
2909}
2910
2911/* Write method for POWER7 Extended FP pseudo-registers. */
2912static void
8d619c01 2913efp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
604c2f83
LM
2914 int reg_nr, const gdb_byte *buffer)
2915{
2916 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
8d619c01 2917 int reg_index, vr0;
084ee545 2918 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2919
8d619c01
EBM
2920 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2921 {
2922 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2923 vr0 = PPC_VR0_REGNUM;
2924 }
2925 else
2926 {
2927 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
2928
2929 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
2930 vr0 = PPC_CVR0_REGNUM;
2931
2932 /* The call to raw_write_part fails silently if the initial read
2933 of the read-update-write sequence returns an invalid status,
2934 so we check this manually and throw an error if needed. */
2935 regcache->raw_update (vr0 + reg_index);
2936 if (regcache->get_register_status (vr0 + reg_index) != REG_VALID)
2937 error (_("Cannot write to the checkpointed EFP register, "
2938 "the corresponding vector register is unavailable."));
2939 }
2940
d9492458 2941 /* Write the portion that overlaps the VMX register. */
8d619c01 2942 regcache->raw_write_part (vr0 + reg_index, offset,
4f0420fd 2943 register_size (gdbarch, reg_nr), buffer);
604c2f83
LM
2944}
2945
05d1431c 2946static enum register_status
0df8b418 2947rs6000_pseudo_register_read (struct gdbarch *gdbarch,
849d0ba8 2948 readable_regcache *regcache,
f949c649 2949 int reg_nr, gdb_byte *buffer)
c8001721 2950{
ac7936df 2951 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
2952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2953
6ced10dd 2954 gdb_assert (regcache_arch == gdbarch);
f949c649 2955
5a9e69ba 2956 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 2957 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
2958 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2959 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2960 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
2961 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2962 return v_alias_pseudo_register_read (gdbarch, regcache, reg_nr,
2963 buffer);
8d619c01
EBM
2964 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2965 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
05d1431c 2966 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
2967 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2968 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2969 return efp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2970 else
a44bddec 2971 internal_error (__FILE__, __LINE__,
f949c649
TJB
2972 _("rs6000_pseudo_register_read: "
2973 "called on unexpected register '%s' (%d)"),
2974 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2975}
2976
2977static void
f949c649
TJB
2978rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2979 struct regcache *regcache,
2980 int reg_nr, const gdb_byte *buffer)
c8001721 2981{
ac7936df 2982 struct gdbarch *regcache_arch = regcache->arch ();
c8001721
EZ
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2984
6ced10dd 2985 gdb_assert (regcache_arch == gdbarch);
f949c649 2986
5a9e69ba 2987 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649 2988 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
2989 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
2990 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
604c2f83 2991 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6f072a10
PFC
2992 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
2993 v_alias_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
2994 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
2995 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
604c2f83 2996 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
8d619c01
EBM
2997 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
2998 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2999 efp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 3000 else
a44bddec 3001 internal_error (__FILE__, __LINE__,
f949c649
TJB
3002 _("rs6000_pseudo_register_write: "
3003 "called on unexpected register '%s' (%d)"),
3004 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
3005}
3006
8d619c01
EBM
3007/* Set the register mask in AX with the registers that form the DFP or
3008 checkpointed DFP pseudo-register REG_NR. */
3009
3010static void
3011dfp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3012 struct agent_expr *ax, int reg_nr)
3013{
3014 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3015 int reg_index, fp0;
3016
3017 if (IS_DFP_PSEUDOREG (tdep, reg_nr))
3018 {
3019 reg_index = reg_nr - tdep->ppc_dl0_regnum;
3020 fp0 = PPC_F0_REGNUM;
3021 }
3022 else
3023 {
3024 gdb_assert (IS_CDFP_PSEUDOREG (tdep, reg_nr));
3025
3026 reg_index = reg_nr - tdep->ppc_cdl0_regnum;
3027 fp0 = PPC_CF0_REGNUM;
3028 }
3029
3030 ax_reg_mask (ax, fp0 + 2 * reg_index);
3031 ax_reg_mask (ax, fp0 + 2 * reg_index + 1);
3032}
3033
6f072a10
PFC
3034/* Set the register mask in AX with the raw vector register that
3035 corresponds to its REG_NR alias. */
3036
3037static void
3038v_alias_pseudo_register_collect (struct gdbarch *gdbarch,
3039 struct agent_expr *ax, int reg_nr)
3040{
3041 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3042 gdb_assert (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr));
3043
3044 ax_reg_mask (ax, tdep->ppc_vr0_regnum
3045 + (reg_nr - tdep->ppc_v0_alias_regnum));
3046}
3047
8d619c01
EBM
3048/* Set the register mask in AX with the registers that form the VSX or
3049 checkpointed VSX pseudo-register REG_NR. */
3050
3051static void
3052vsx_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3053 struct agent_expr *ax, int reg_nr)
3054{
3055 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3056 int reg_index, vr0, fp0, vsr0_upper;
3057
3058 if (IS_VSX_PSEUDOREG (tdep, reg_nr))
3059 {
3060 reg_index = reg_nr - tdep->ppc_vsr0_regnum;
3061 vr0 = PPC_VR0_REGNUM;
3062 fp0 = PPC_F0_REGNUM;
3063 vsr0_upper = PPC_VSR0_UPPER_REGNUM;
3064 }
3065 else
3066 {
3067 gdb_assert (IS_CVSX_PSEUDOREG (tdep, reg_nr));
3068
3069 reg_index = reg_nr - tdep->ppc_cvsr0_regnum;
3070 vr0 = PPC_CVR0_REGNUM;
3071 fp0 = PPC_CF0_REGNUM;
3072 vsr0_upper = PPC_CVSR0_UPPER_REGNUM;
3073 }
3074
3075 if (reg_index > 31)
3076 {
3077 ax_reg_mask (ax, vr0 + reg_index - 32);
3078 }
3079 else
3080 {
3081 ax_reg_mask (ax, fp0 + reg_index);
3082 ax_reg_mask (ax, vsr0_upper + reg_index);
3083 }
3084}
3085
3086/* Set the register mask in AX with the register that corresponds to
3087 the EFP or checkpointed EFP pseudo-register REG_NR. */
3088
3089static void
3090efp_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3091 struct agent_expr *ax, int reg_nr)
3092{
3093 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3094 int reg_index, vr0;
3095
3096 if (IS_EFP_PSEUDOREG (tdep, reg_nr))
3097 {
3098 reg_index = reg_nr - tdep->ppc_efpr0_regnum;
3099 vr0 = PPC_VR0_REGNUM;
3100 }
3101 else
3102 {
3103 gdb_assert (IS_CEFP_PSEUDOREG (tdep, reg_nr));
3104
3105 reg_index = reg_nr - tdep->ppc_cefpr0_regnum;
3106 vr0 = PPC_CVR0_REGNUM;
3107 }
3108
3109 ax_reg_mask (ax, vr0 + reg_index);
3110}
3111
2a2fa07b
MK
3112static int
3113rs6000_ax_pseudo_register_collect (struct gdbarch *gdbarch,
3114 struct agent_expr *ax, int reg_nr)
3115{
3116 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3117 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
3118 {
3119 int reg_index = reg_nr - tdep->ppc_ev0_regnum;
3120 ax_reg_mask (ax, tdep->ppc_gp0_regnum + reg_index);
3121 ax_reg_mask (ax, tdep->ppc_ev0_upper_regnum + reg_index);
3122 }
8d619c01
EBM
3123 else if (IS_DFP_PSEUDOREG (tdep, reg_nr)
3124 || IS_CDFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3125 {
8d619c01 3126 dfp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3127 }
6f072a10
PFC
3128 else if (IS_V_ALIAS_PSEUDOREG (tdep, reg_nr))
3129 {
3130 v_alias_pseudo_register_collect (gdbarch, ax, reg_nr);
3131 }
8d619c01
EBM
3132 else if (IS_VSX_PSEUDOREG (tdep, reg_nr)
3133 || IS_CVSX_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3134 {
8d619c01 3135 vsx_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b 3136 }
8d619c01
EBM
3137 else if (IS_EFP_PSEUDOREG (tdep, reg_nr)
3138 || IS_CEFP_PSEUDOREG (tdep, reg_nr))
2a2fa07b 3139 {
8d619c01 3140 efp_ax_pseudo_register_collect (gdbarch, ax, reg_nr);
2a2fa07b
MK
3141 }
3142 else
3143 internal_error (__FILE__, __LINE__,
3144 _("rs6000_pseudo_register_collect: "
3145 "called on unexpected register '%s' (%d)"),
3146 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
3147 return 0;
3148}
3149
3150
a67914de
MK
3151static void
3152rs6000_gen_return_address (struct gdbarch *gdbarch,
3153 struct agent_expr *ax, struct axs_value *value,
3154 CORE_ADDR scope)
3155{
3156 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3157 value->type = register_type (gdbarch, tdep->ppc_lr_regnum);
3158 value->kind = axs_lvalue_register;
3159 value->u.reg = tdep->ppc_lr_regnum;
3160}
3161
3162
18ed0c4e 3163/* Convert a DBX STABS register number to a GDB register number. */
c8001721 3164static int
d3f73121 3165rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 3166{
d3f73121 3167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 3168
9f744501
JB
3169 if (0 <= num && num <= 31)
3170 return tdep->ppc_gp0_regnum + num;
3171 else if (32 <= num && num <= 63)
383f0f5b
JB
3172 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3173 specifies registers the architecture doesn't have? Our
3174 callers don't check the value we return. */
366f009f 3175 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
3176 else if (77 <= num && num <= 108)
3177 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 3178 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3179 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
3180 else
3181 switch (num)
3182 {
3183 case 64:
3184 return tdep->ppc_mq_regnum;
3185 case 65:
3186 return tdep->ppc_lr_regnum;
3187 case 66:
3188 return tdep->ppc_ctr_regnum;
3189 case 76:
3190 return tdep->ppc_xer_regnum;
3191 case 109:
3192 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
3193 case 110:
3194 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 3195 case 111:
18ed0c4e 3196 return tdep->ppc_acc_regnum;
867e2dc5 3197 case 112:
18ed0c4e 3198 return tdep->ppc_spefscr_regnum;
9f744501
JB
3199 default:
3200 return num;
3201 }
18ed0c4e 3202}
9f744501 3203
9f744501 3204
18ed0c4e
JB
3205/* Convert a Dwarf 2 register number to a GDB register number. */
3206static int
d3f73121 3207rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 3208{
d3f73121 3209 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 3210
18ed0c4e
JB
3211 if (0 <= num && num <= 31)
3212 return tdep->ppc_gp0_regnum + num;
3213 else if (32 <= num && num <= 63)
3214 /* FIXME: jimb/2004-05-05: What should we do when the debug info
3215 specifies registers the architecture doesn't have? Our
3216 callers don't check the value we return. */
3217 return tdep->ppc_fp0_regnum + (num - 32);
3218 else if (1124 <= num && num < 1124 + 32)
3219 return tdep->ppc_vr0_regnum + (num - 1124);
3220 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 3221 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
3222 else
3223 switch (num)
3224 {
a489f789
AS
3225 case 64:
3226 return tdep->ppc_cr_regnum;
18ed0c4e
JB
3227 case 67:
3228 return tdep->ppc_vrsave_regnum - 1; /* vscr */
3229 case 99:
3230 return tdep->ppc_acc_regnum;
3231 case 100:
3232 return tdep->ppc_mq_regnum;
3233 case 101:
3234 return tdep->ppc_xer_regnum;
3235 case 108:
3236 return tdep->ppc_lr_regnum;
3237 case 109:
3238 return tdep->ppc_ctr_regnum;
3239 case 356:
3240 return tdep->ppc_vrsave_regnum;
3241 case 612:
3242 return tdep->ppc_spefscr_regnum;
3243 default:
3244 return num;
3245 }
2188cbdd
EZ
3246}
3247
4fc771b8
DJ
3248/* Translate a .eh_frame register to DWARF register, or adjust a
3249 .debug_frame register. */
3250
3251static int
3252rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3253{
3254 /* GCC releases before 3.4 use GCC internal register numbering in
3255 .debug_frame (and .debug_info, et cetera). The numbering is
3256 different from the standard SysV numbering for everything except
3257 for GPRs and FPRs. We can not detect this problem in most cases
3258 - to get accurate debug info for variables living in lr, ctr, v0,
3259 et cetera, use a newer version of GCC. But we must detect
3260 one important case - lr is in column 65 in .debug_frame output,
3261 instead of 108.
3262
3263 GCC 3.4, and the "hammer" branch, have a related problem. They
3264 record lr register saves in .debug_frame as 108, but still record
3265 the return column as 65. We fix that up too.
3266
3267 We can do this because 65 is assigned to fpsr, and GCC never
3268 generates debug info referring to it. To add support for
3269 handwritten debug info that restores fpsr, we would need to add a
3270 producer version check to this. */
3271 if (!eh_frame_p)
3272 {
3273 if (num == 65)
3274 return 108;
3275 else
3276 return num;
3277 }
3278
3279 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3280 internal register numbering; translate that to the standard DWARF2
3281 register numbering. */
3282 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3283 return num;
3284 else if (68 <= num && num <= 75) /* cr0-cr8 */
3285 return num - 68 + 86;
3286 else if (77 <= num && num <= 108) /* vr0-vr31 */
3287 return num - 77 + 1124;
3288 else
3289 switch (num)
3290 {
3291 case 64: /* mq */
3292 return 100;
3293 case 65: /* lr */
3294 return 108;
3295 case 66: /* ctr */
3296 return 109;
3297 case 76: /* xer */
3298 return 101;
3299 case 109: /* vrsave */
3300 return 356;
3301 case 110: /* vscr */
3302 return 67;
3303 case 111: /* spe_acc */
3304 return 99;
3305 case 112: /* spefscr */
3306 return 612;
3307 default:
3308 return num;
3309 }
3310}
c906108c 3311\f
c5aa993b 3312
7a78ae4e 3313/* Handling the various POWER/PowerPC variants. */
c906108c 3314
c906108c 3315/* Information about a particular processor variant. */
7a78ae4e 3316
c906108c 3317struct variant
c5aa993b
JM
3318 {
3319 /* Name of this variant. */
a121b7c1 3320 const char *name;
c906108c 3321
c5aa993b 3322 /* English description of the variant. */
a121b7c1 3323 const char *description;
c906108c 3324
64366f1c 3325 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3326 enum bfd_architecture arch;
3327
64366f1c 3328 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3329 unsigned long mach;
3330
7cc46491
DJ
3331 /* Target description for this variant. */
3332 struct target_desc **tdesc;
c5aa993b 3333 };
c906108c 3334
489461e2 3335static struct variant variants[] =
c906108c 3336{
7a78ae4e 3337 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3338 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3339 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3340 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3341 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3342 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3343 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3344 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3345 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3346 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3347 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3348 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3349 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3350 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3351 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3352 604, &tdesc_powerpc_604},
7a78ae4e 3353 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3354 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3355 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3356 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3357 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3358 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3359 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3360 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3361 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3362 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3363 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3364 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3365
5d57ee30
KB
3366 /* 64-bit */
3367 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3368 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3369 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3370 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3371 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3372 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3373 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3374 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3375 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3376 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3377 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3378 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3379
64366f1c 3380 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3381 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3382 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3383 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3384 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3385 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3386 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3387
3e45d68b 3388 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3389};
3390
7a78ae4e 3391/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3392 MACH. If no such variant exists, return null. */
c906108c 3393
7a78ae4e
ND
3394static const struct variant *
3395find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3396{
7a78ae4e 3397 const struct variant *v;
c5aa993b 3398
7a78ae4e
ND
3399 for (v = variants; v->name; v++)
3400 if (arch == v->arch && mach == v->mach)
3401 return v;
c906108c 3402
7a78ae4e 3403 return NULL;
c906108c 3404}
9364a0ef 3405
7a78ae4e 3406\f
61a65099
KB
3407
3408struct rs6000_frame_cache
3409{
3410 CORE_ADDR base;
3411 CORE_ADDR initial_sp;
3412 struct trad_frame_saved_reg *saved_regs;
50ae56ec
WW
3413
3414 /* Set BASE_P to true if this frame cache is properly initialized.
3415 Otherwise set to false because some registers or memory cannot
3416 collected. */
3417 int base_p;
3418 /* Cache PC for building unavailable frame. */
3419 CORE_ADDR pc;
61a65099
KB
3420};
3421
3422static struct rs6000_frame_cache *
1af5d7ce 3423rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3424{
3425 struct rs6000_frame_cache *cache;
1af5d7ce 3426 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3427 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3428 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3429 struct rs6000_framedata fdata;
3430 int wordsize = tdep->wordsize;
338435ef 3431 CORE_ADDR func = 0, pc = 0;
61a65099
KB
3432
3433 if ((*this_cache) != NULL)
19ba03f4 3434 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3435 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3436 (*this_cache) = cache;
50ae56ec 3437 cache->pc = 0;
1af5d7ce 3438 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3439
a70b8144 3440 try
50ae56ec
WW
3441 {
3442 func = get_frame_func (this_frame);
3443 cache->pc = func;
3444 pc = get_frame_pc (this_frame);
3445 skip_prologue (gdbarch, func, pc, &fdata);
3446
3447 /* Figure out the parent's stack pointer. */
3448
3449 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3450 address of the current frame. Things might be easier if the
3451 ->frame pointed to the outer-most address of the frame. In
3452 the mean time, the address of the prev frame is used as the
3453 base address of this frame. */
3454 cache->base = get_frame_register_unsigned
3455 (this_frame, gdbarch_sp_regnum (gdbarch));
3456 }
230d2906 3457 catch (const gdb_exception_error &ex)
50ae56ec
WW
3458 {
3459 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3460 throw;
1ed0c2a4 3461 return (struct rs6000_frame_cache *) (*this_cache);
50ae56ec 3462 }
e10b1c4c
DJ
3463
3464 /* If the function appears to be frameless, check a couple of likely
3465 indicators that we have simply failed to find the frame setup.
3466 Two common cases of this are missing symbols (i.e.
ef02daa9 3467 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3468 stubs which have a fast exit path but set up a frame on the slow
3469 path.
3470
3471 If the LR appears to return to this function, then presume that
3472 we have an ABI compliant frame that we failed to find. */
3473 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3474 {
e10b1c4c
DJ
3475 CORE_ADDR saved_lr;
3476 int make_frame = 0;
3477
1af5d7ce 3478 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3479 if (func == 0 && saved_lr == pc)
3480 make_frame = 1;
3481 else if (func != 0)
3482 {
3483 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3484 if (func == saved_func)
3485 make_frame = 1;
3486 }
3487
3488 if (make_frame)
3489 {
3490 fdata.frameless = 0;
de6a76fd 3491 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3492 }
61a65099 3493 }
e10b1c4c
DJ
3494
3495 if (!fdata.frameless)
9d9bf2df
EBM
3496 {
3497 /* Frameless really means stackless. */
cc2c4da8 3498 ULONGEST backchain;
9d9bf2df 3499
cc2c4da8
MK
3500 if (safe_read_memory_unsigned_integer (cache->base, wordsize,
3501 byte_order, &backchain))
9d9bf2df
EBM
3502 cache->base = (CORE_ADDR) backchain;
3503 }
e10b1c4c 3504
3e8c568d 3505 trad_frame_set_value (cache->saved_regs,
8b164abb 3506 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
3507
3508 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3509 All fpr's from saved_fpr to fp31 are saved. */
3510
3511 if (fdata.saved_fpr >= 0)
3512 {
3513 int i;
3514 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3515
3516 /* If skip_prologue says floating-point registers were saved,
3517 but the current architecture has no floating-point registers,
3518 then that's strange. But we have no indices to even record
3519 the addresses under, so we just ignore it. */
3520 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3521 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3522 {
3523 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3524 fpr_addr += 8;
3525 }
61a65099
KB
3526 }
3527
3528 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3529 All gpr's from saved_gpr to gpr31 are saved (except during the
3530 prologue). */
61a65099
KB
3531
3532 if (fdata.saved_gpr >= 0)
3533 {
3534 int i;
3535 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3536 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3537 {
46a9b8ed
DJ
3538 if (fdata.gpr_mask & (1U << i))
3539 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
61a65099
KB
3540 gpr_addr += wordsize;
3541 }
3542 }
3543
3544 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3545 All vr's from saved_vr to vr31 are saved. */
3546 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3547 {
3548 if (fdata.saved_vr >= 0)
3549 {
3550 int i;
3551 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3552 for (i = fdata.saved_vr; i < 32; i++)
3553 {
3554 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3555 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3556 }
3557 }
3558 }
3559
3560 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3561 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3562 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3563 {
3564 if (fdata.saved_ev >= 0)
3565 {
3566 int i;
3567 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3568 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3569
063715bf 3570 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3571 {
3572 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
dea80df0 3573 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
61a65099 3574 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3575 }
61a65099
KB
3576 }
3577 }
3578
3579 /* If != 0, fdata.cr_offset is the offset from the frame that
3580 holds the CR. */
3581 if (fdata.cr_offset != 0)
0df8b418
MS
3582 cache->saved_regs[tdep->ppc_cr_regnum].addr
3583 = cache->base + fdata.cr_offset;
61a65099
KB
3584
3585 /* If != 0, fdata.lr_offset is the offset from the frame that
3586 holds the LR. */
3587 if (fdata.lr_offset != 0)
0df8b418
MS
3588 cache->saved_regs[tdep->ppc_lr_regnum].addr
3589 = cache->base + fdata.lr_offset;
46a9b8ed
DJ
3590 else if (fdata.lr_register != -1)
3591 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
61a65099 3592 /* The PC is found in the link register. */
8b164abb 3593 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3594 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3595
3596 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3597 holds the VRSAVE. */
3598 if (fdata.vrsave_offset != 0)
0df8b418
MS
3599 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3600 = cache->base + fdata.vrsave_offset;
61a65099
KB
3601
3602 if (fdata.alloca_reg < 0)
3603 /* If no alloca register used, then fi->frame is the value of the
3604 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3605 cache->initial_sp
3606 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3607 else
1af5d7ce
UW
3608 cache->initial_sp
3609 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099 3610
50ae56ec 3611 cache->base_p = 1;
61a65099
KB
3612 return cache;
3613}
3614
3615static void
1af5d7ce 3616rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3617 struct frame_id *this_id)
3618{
1af5d7ce 3619 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3620 this_cache);
50ae56ec
WW
3621
3622 if (!info->base_p)
3623 {
3624 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3625 return;
3626 }
3627
5b197912
UW
3628 /* This marks the outermost frame. */
3629 if (info->base == 0)
3630 return;
3631
1af5d7ce 3632 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3633}
3634
1af5d7ce
UW
3635static struct value *
3636rs6000_frame_prev_register (struct frame_info *this_frame,
3637 void **this_cache, int regnum)
61a65099 3638{
1af5d7ce 3639 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3640 this_cache);
1af5d7ce 3641 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3642}
3643
3644static const struct frame_unwind rs6000_frame_unwind =
3645{
3646 NORMAL_FRAME,
8fbca658 3647 default_frame_unwind_stop_reason,
61a65099 3648 rs6000_frame_this_id,
1af5d7ce
UW
3649 rs6000_frame_prev_register,
3650 NULL,
3651 default_frame_sniffer
61a65099 3652};
2608dbf8 3653
ddeca1df
WW
3654/* Allocate and initialize a frame cache for an epilogue frame.
3655 SP is restored and prev-PC is stored in LR. */
3656
2608dbf8
WW
3657static struct rs6000_frame_cache *
3658rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3659{
2608dbf8
WW
3660 struct rs6000_frame_cache *cache;
3661 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3663
3664 if (*this_cache)
19ba03f4 3665 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3666
3667 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3668 (*this_cache) = cache;
3669 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3670
a70b8144 3671 try
2608dbf8
WW
3672 {
3673 /* At this point the stack looks as if we just entered the
3674 function, and the return address is stored in LR. */
3675 CORE_ADDR sp, lr;
3676
3677 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3678 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3679
3680 cache->base = sp;
3681 cache->initial_sp = sp;
3682
3683 trad_frame_set_value (cache->saved_regs,
3684 gdbarch_pc_regnum (gdbarch), lr);
3685 }
230d2906 3686 catch (const gdb_exception_error &ex)
7556d4a4
PA
3687 {
3688 if (ex.error != NOT_AVAILABLE_ERROR)
eedc3f4f 3689 throw;
7556d4a4 3690 }
2608dbf8
WW
3691
3692 return cache;
3693}
3694
ddeca1df
WW
3695/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3696 Return the frame ID of an epilogue frame. */
3697
2608dbf8
WW
3698static void
3699rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3700 void **this_cache, struct frame_id *this_id)
3701{
3702 CORE_ADDR pc;
3703 struct rs6000_frame_cache *info =
3704 rs6000_epilogue_frame_cache (this_frame, this_cache);
3705
3706 pc = get_frame_func (this_frame);
3707 if (info->base == 0)
3708 (*this_id) = frame_id_build_unavailable_stack (pc);
3709 else
3710 (*this_id) = frame_id_build (info->base, pc);
3711}
3712
ddeca1df
WW
3713/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3714 Return the register value of REGNUM in previous frame. */
3715
2608dbf8
WW
3716static struct value *
3717rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3718 void **this_cache, int regnum)
3719{
3720 struct rs6000_frame_cache *info =
3721 rs6000_epilogue_frame_cache (this_frame, this_cache);
3722 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3723}
3724
ddeca1df
WW
3725/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3726 Check whether this an epilogue frame. */
3727
2608dbf8
WW
3728static int
3729rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3730 struct frame_info *this_frame,
3731 void **this_prologue_cache)
3732{
3733 if (frame_relative_level (this_frame) == 0)
3734 return rs6000_in_function_epilogue_frame_p (this_frame,
3735 get_frame_arch (this_frame),
3736 get_frame_pc (this_frame));
3737 else
3738 return 0;
3739}
3740
ddeca1df
WW
3741/* Frame unwinder for epilogue frame. This is required for reverse step-over
3742 a function without debug information. */
3743
2608dbf8
WW
3744static const struct frame_unwind rs6000_epilogue_frame_unwind =
3745{
3746 NORMAL_FRAME,
3747 default_frame_unwind_stop_reason,
3748 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3749 NULL,
3750 rs6000_epilogue_frame_sniffer
3751};
61a65099
KB
3752\f
3753
3754static CORE_ADDR
1af5d7ce 3755rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3756{
1af5d7ce 3757 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3758 this_cache);
3759 return info->initial_sp;
3760}
3761
3762static const struct frame_base rs6000_frame_base = {
3763 &rs6000_frame_unwind,
3764 rs6000_frame_base_address,
3765 rs6000_frame_base_address,
3766 rs6000_frame_base_address
3767};
3768
3769static const struct frame_base *
1af5d7ce 3770rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3771{
3772 return &rs6000_frame_base;
3773}
3774
9274a07c
LM
3775/* DWARF-2 frame support. Used to handle the detection of
3776 clobbered registers during function calls. */
3777
3778static void
3779ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3780 struct dwarf2_frame_state_reg *reg,
4a4e5149 3781 struct frame_info *this_frame)
9274a07c
LM
3782{
3783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3784
3785 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3786 non-volatile registers. We will use the same code for both. */
3787
3788 /* Call-saved GP registers. */
3789 if ((regnum >= tdep->ppc_gp0_regnum + 14
3790 && regnum <= tdep->ppc_gp0_regnum + 31)
3791 || (regnum == tdep->ppc_gp0_regnum + 1))
3792 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3793
3794 /* Call-clobbered GP registers. */
3795 if ((regnum >= tdep->ppc_gp0_regnum + 3
3796 && regnum <= tdep->ppc_gp0_regnum + 12)
3797 || (regnum == tdep->ppc_gp0_regnum))
3798 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3799
3800 /* Deal with FP registers, if supported. */
3801 if (tdep->ppc_fp0_regnum >= 0)
3802 {
3803 /* Call-saved FP registers. */
3804 if ((regnum >= tdep->ppc_fp0_regnum + 14
3805 && regnum <= tdep->ppc_fp0_regnum + 31))
3806 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3807
3808 /* Call-clobbered FP registers. */
3809 if ((regnum >= tdep->ppc_fp0_regnum
3810 && regnum <= tdep->ppc_fp0_regnum + 13))
3811 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3812 }
3813
3814 /* Deal with ALTIVEC registers, if supported. */
3815 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3816 {
3817 /* Call-saved Altivec registers. */
3818 if ((regnum >= tdep->ppc_vr0_regnum + 20
3819 && regnum <= tdep->ppc_vr0_regnum + 31)
3820 || regnum == tdep->ppc_vrsave_regnum)
3821 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3822
3823 /* Call-clobbered Altivec registers. */
3824 if ((regnum >= tdep->ppc_vr0_regnum
3825 && regnum <= tdep->ppc_vr0_regnum + 19))
3826 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3827 }
3828
3829 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3830 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3831 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3832 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3833 reg->how = DWARF2_FRAME_REG_CFA;
3834}
3835
3836
74af9197
NF
3837/* Return true if a .gnu_attributes section exists in BFD and it
3838 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3839 section exists in BFD and it indicates that SPE extensions are in
3840 use. Check the .gnu.attributes section first, as the binary might be
3841 compiled for SPE, but not actually using SPE instructions. */
3842
3843static int
3844bfd_uses_spe_extensions (bfd *abfd)
3845{
3846 asection *sect;
3847 gdb_byte *contents = NULL;
3848 bfd_size_type size;
3849 gdb_byte *ptr;
3850 int success = 0;
74af9197
NF
3851
3852 if (!abfd)
3853 return 0;
3854
50a99728 3855#ifdef HAVE_ELF
74af9197
NF
3856 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3857 could be using the SPE vector abi without actually using any spe
3858 bits whatsoever. But it's close enough for now. */
17cbafdb
SM
3859 int vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3860 Tag_GNU_Power_ABI_Vector);
74af9197
NF
3861 if (vector_abi == 3)
3862 return 1;
50a99728 3863#endif
74af9197
NF
3864
3865 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3866 if (!sect)
3867 return 0;
3868
fd361982 3869 size = bfd_section_size (sect);
224c3ddb 3870 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3871 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3872 {
3873 xfree (contents);
3874 return 0;
3875 }
3876
3877 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3878
3879 struct {
3880 uint32 name_len;
3881 uint32 data_len;
3882 uint32 type;
3883 char name[name_len rounded up to 4-byte alignment];
3884 char data[data_len];
3885 };
3886
3887 Technically, there's only supposed to be one such structure in a
3888 given apuinfo section, but the linker is not always vigilant about
3889 merging apuinfo sections from input files. Just go ahead and parse
3890 them all, exiting early when we discover the binary uses SPE
3891 insns.
3892
3893 It's not specified in what endianness the information in this
3894 section is stored. Assume that it's the endianness of the BFD. */
3895 ptr = contents;
3896 while (1)
3897 {
3898 unsigned int name_len;
3899 unsigned int data_len;
3900 unsigned int type;
3901
3902 /* If we can't read the first three fields, we're done. */
3903 if (size < 12)
3904 break;
3905
3906 name_len = bfd_get_32 (abfd, ptr);
3907 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3908 data_len = bfd_get_32 (abfd, ptr + 4);
3909 type = bfd_get_32 (abfd, ptr + 8);
3910 ptr += 12;
3911
3912 /* The name must be "APUinfo\0". */
3913 if (name_len != 8
3914 && strcmp ((const char *) ptr, "APUinfo") != 0)
3915 break;
3916 ptr += name_len;
3917
3918 /* The type must be 2. */
3919 if (type != 2)
3920 break;
3921
3922 /* The data is stored as a series of uint32. The upper half of
3923 each uint32 indicates the particular APU used and the lower
3924 half indicates the revision of that APU. We just care about
3925 the upper half. */
3926
3927 /* Not 4-byte quantities. */
3928 if (data_len & 3U)
3929 break;
3930
3931 while (data_len)
3932 {
3933 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3934 unsigned int apu = apuinfo >> 16;
3935 ptr += 4;
3936 data_len -= 4;
3937
3938 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3939 either. */
3940 if (apu == 0x100 || apu == 0x101)
3941 {
3942 success = 1;
3943 data_len = 0;
3944 }
3945 }
3946
3947 if (success)
3948 break;
3949 }
3950
3951 xfree (contents);
3952 return success;
3953}
3954
b4cdae6f
WW
3955/* These are macros for parsing instruction fields (I.1.6.28) */
3956
3957#define PPC_FIELD(value, from, len) \
3958 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3959#define PPC_SEXT(v, bs) \
3960 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3961 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3962 - ((CORE_ADDR) 1 << ((bs) - 1)))
3963#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3964#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3965#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3966#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3967#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3968#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3969#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3970#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3971#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3972#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3973 | (PPC_FIELD (insn, 16, 5) << 5))
3974#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3975#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3976#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3977#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
6ec2b213 3978#define PPC_DQ(insn) PPC_SEXT (PPC_FIELD (insn, 16, 12), 12)
b4cdae6f
WW
3979#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3980#define PPC_OE(insn) PPC_BIT (insn, 21)
3981#define PPC_RC(insn) PPC_BIT (insn, 31)
3982#define PPC_Rc(insn) PPC_BIT (insn, 21)
3983#define PPC_LK(insn) PPC_BIT (insn, 31)
3984#define PPC_TX(insn) PPC_BIT (insn, 31)
3985#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3986
3987#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3988#define PPC_XER_NB(xer) (xer & 0x7f)
3989
ddeca1df
WW
3990/* Record Vector-Scalar Registers.
3991 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3992 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
3993
3994static int
3995ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3996{
3997 if (vsr < 0 || vsr >= 64)
3998 return -1;
3999
4000 if (vsr >= 32)
4001 {
4002 if (tdep->ppc_vr0_regnum >= 0)
4003 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
4004 }
4005 else
4006 {
4007 if (tdep->ppc_fp0_regnum >= 0)
4008 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
4009 if (tdep->ppc_vsr0_upper_regnum >= 0)
4010 record_full_arch_list_add_reg (regcache,
4011 tdep->ppc_vsr0_upper_regnum + vsr);
4012 }
4013
4014 return 0;
4015}
4016
ddeca1df
WW
4017/* Parse and record instructions primary opcode-4 at ADDR.
4018 Return 0 if successful. */
b4cdae6f
WW
4019
4020static int
4021ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 4022 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
4023{
4024 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4025 int ext = PPC_FIELD (insn, 21, 11);
6ec2b213 4026 int vra = PPC_FIELD (insn, 11, 5);
b4cdae6f
WW
4027
4028 switch (ext & 0x3f)
4029 {
4030 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
4031 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
4032 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
4033 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
4034 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4035 /* FALL-THROUGH */
4036 case 42: /* Vector Select */
4037 case 43: /* Vector Permute */
6ec2b213 4038 case 59: /* Vector Permute Right-indexed */
b4cdae6f
WW
4039 case 44: /* Vector Shift Left Double by Octet Immediate */
4040 case 45: /* Vector Permute and Exclusive-OR */
4041 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
4042 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
4043 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
4044 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
4045 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
6ec2b213 4046 case 35: /* Vector Multiply-Sum Unsigned Doubleword Modulo */
b4cdae6f
WW
4047 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
4048 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
4049 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
4050 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
4051 case 46: /* Vector Multiply-Add Single-Precision */
4052 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
4053 record_full_arch_list_add_reg (regcache,
4054 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4055 return 0;
6ec2b213
EBM
4056
4057 case 48: /* Multiply-Add High Doubleword */
4058 case 49: /* Multiply-Add High Doubleword Unsigned */
4059 case 51: /* Multiply-Add Low Doubleword */
4060 record_full_arch_list_add_reg (regcache,
4061 tdep->ppc_gp0_regnum + PPC_RT (insn));
4062 return 0;
b4cdae6f
WW
4063 }
4064
4065 switch ((ext & 0x1ff))
4066 {
6ec2b213
EBM
4067 case 385:
4068 if (vra != 0 /* Decimal Convert To Signed Quadword */
4069 && vra != 2 /* Decimal Convert From Signed Quadword */
4070 && vra != 4 /* Decimal Convert To Zoned */
4071 && vra != 5 /* Decimal Convert To National */
4072 && vra != 6 /* Decimal Convert From Zoned */
4073 && vra != 7 /* Decimal Convert From National */
4074 && vra != 31) /* Decimal Set Sign */
4075 break;
e3829d13 4076 /* Fall through. */
b4cdae6f
WW
4077 /* 5.16 Decimal Integer Arithmetic Instructions */
4078 case 1: /* Decimal Add Modulo */
4079 case 65: /* Decimal Subtract Modulo */
4080
6ec2b213
EBM
4081 case 193: /* Decimal Shift */
4082 case 129: /* Decimal Unsigned Shift */
4083 case 449: /* Decimal Shift and Round */
4084
4085 case 257: /* Decimal Truncate */
4086 case 321: /* Decimal Unsigned Truncate */
4087
b4cdae6f
WW
4088 /* Bit-21 should be set. */
4089 if (!PPC_BIT (insn, 21))
4090 break;
4091
4092 record_full_arch_list_add_reg (regcache,
4093 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4094 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4095 return 0;
4096 }
4097
4098 /* Bit-21 is used for RC */
4099 switch (ext & 0x3ff)
4100 {
4101 case 6: /* Vector Compare Equal To Unsigned Byte */
4102 case 70: /* Vector Compare Equal To Unsigned Halfword */
4103 case 134: /* Vector Compare Equal To Unsigned Word */
4104 case 199: /* Vector Compare Equal To Unsigned Doubleword */
4105 case 774: /* Vector Compare Greater Than Signed Byte */
4106 case 838: /* Vector Compare Greater Than Signed Halfword */
4107 case 902: /* Vector Compare Greater Than Signed Word */
4108 case 967: /* Vector Compare Greater Than Signed Doubleword */
4109 case 518: /* Vector Compare Greater Than Unsigned Byte */
4110 case 646: /* Vector Compare Greater Than Unsigned Word */
4111 case 582: /* Vector Compare Greater Than Unsigned Halfword */
4112 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
4113 case 966: /* Vector Compare Bounds Single-Precision */
4114 case 198: /* Vector Compare Equal To Single-Precision */
4115 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
4116 case 710: /* Vector Compare Greater Than Single-Precision */
6ec2b213
EBM
4117 case 7: /* Vector Compare Not Equal Byte */
4118 case 71: /* Vector Compare Not Equal Halfword */
4119 case 135: /* Vector Compare Not Equal Word */
4120 case 263: /* Vector Compare Not Equal or Zero Byte */
4121 case 327: /* Vector Compare Not Equal or Zero Halfword */
4122 case 391: /* Vector Compare Not Equal or Zero Word */
b4cdae6f
WW
4123 if (PPC_Rc (insn))
4124 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4125 record_full_arch_list_add_reg (regcache,
4126 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4127 return 0;
4128 }
4129
6ec2b213
EBM
4130 if (ext == 1538)
4131 {
4132 switch (vra)
4133 {
4134 case 0: /* Vector Count Leading Zero Least-Significant Bits
4135 Byte */
4136 case 1: /* Vector Count Trailing Zero Least-Significant Bits
4137 Byte */
4138 record_full_arch_list_add_reg (regcache,
4139 tdep->ppc_gp0_regnum + PPC_RT (insn));
4140 return 0;
4141
4142 case 6: /* Vector Negate Word */
4143 case 7: /* Vector Negate Doubleword */
4144 case 8: /* Vector Parity Byte Word */
4145 case 9: /* Vector Parity Byte Doubleword */
4146 case 10: /* Vector Parity Byte Quadword */
4147 case 16: /* Vector Extend Sign Byte To Word */
4148 case 17: /* Vector Extend Sign Halfword To Word */
4149 case 24: /* Vector Extend Sign Byte To Doubleword */
4150 case 25: /* Vector Extend Sign Halfword To Doubleword */
4151 case 26: /* Vector Extend Sign Word To Doubleword */
4152 case 28: /* Vector Count Trailing Zeros Byte */
4153 case 29: /* Vector Count Trailing Zeros Halfword */
4154 case 30: /* Vector Count Trailing Zeros Word */
4155 case 31: /* Vector Count Trailing Zeros Doubleword */
4156 record_full_arch_list_add_reg (regcache,
4157 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4158 return 0;
4159 }
4160 }
4161
b4cdae6f
WW
4162 switch (ext)
4163 {
4164 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
4165 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
4166 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
4167 case 334: /* Vector Pack Signed Word Unsigned Saturate */
4168 case 398: /* Vector Pack Signed Halfword Signed Saturate */
4169 case 462: /* Vector Pack Signed Word Signed Saturate */
4170 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
4171 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
4172 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
4173 case 512: /* Vector Add Unsigned Byte Saturate */
4174 case 576: /* Vector Add Unsigned Halfword Saturate */
4175 case 640: /* Vector Add Unsigned Word Saturate */
4176 case 768: /* Vector Add Signed Byte Saturate */
4177 case 832: /* Vector Add Signed Halfword Saturate */
4178 case 896: /* Vector Add Signed Word Saturate */
4179 case 1536: /* Vector Subtract Unsigned Byte Saturate */
4180 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
4181 case 1664: /* Vector Subtract Unsigned Word Saturate */
4182 case 1792: /* Vector Subtract Signed Byte Saturate */
4183 case 1856: /* Vector Subtract Signed Halfword Saturate */
4184 case 1920: /* Vector Subtract Signed Word Saturate */
4185
4186 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
4187 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
4188 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
4189 case 1672: /* Vector Sum across Half Signed Word Saturate */
4190 case 1928: /* Vector Sum across Signed Word Saturate */
4191 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
4192 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
4193 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4194 /* FALL-THROUGH */
4195 case 12: /* Vector Merge High Byte */
4196 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
4197 case 76: /* Vector Merge High Halfword */
4198 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
4199 case 140: /* Vector Merge High Word */
4200 case 268: /* Vector Merge Low Byte */
4201 case 332: /* Vector Merge Low Halfword */
4202 case 396: /* Vector Merge Low Word */
4203 case 526: /* Vector Unpack High Signed Byte */
4204 case 590: /* Vector Unpack High Signed Halfword */
4205 case 654: /* Vector Unpack Low Signed Byte */
4206 case 718: /* Vector Unpack Low Signed Halfword */
4207 case 782: /* Vector Pack Pixel */
4208 case 846: /* Vector Unpack High Pixel */
4209 case 974: /* Vector Unpack Low Pixel */
4210 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
4211 case 1614: /* Vector Unpack High Signed Word */
4212 case 1676: /* Vector Merge Odd Word */
4213 case 1742: /* Vector Unpack Low Signed Word */
4214 case 1932: /* Vector Merge Even Word */
4215 case 524: /* Vector Splat Byte */
4216 case 588: /* Vector Splat Halfword */
4217 case 652: /* Vector Splat Word */
4218 case 780: /* Vector Splat Immediate Signed Byte */
4219 case 844: /* Vector Splat Immediate Signed Halfword */
4220 case 908: /* Vector Splat Immediate Signed Word */
4221 case 452: /* Vector Shift Left */
4222 case 708: /* Vector Shift Right */
4223 case 1036: /* Vector Shift Left by Octet */
4224 case 1100: /* Vector Shift Right by Octet */
4225 case 0: /* Vector Add Unsigned Byte Modulo */
4226 case 64: /* Vector Add Unsigned Halfword Modulo */
4227 case 128: /* Vector Add Unsigned Word Modulo */
4228 case 192: /* Vector Add Unsigned Doubleword Modulo */
4229 case 256: /* Vector Add Unsigned Quadword Modulo */
4230 case 320: /* Vector Add & write Carry Unsigned Quadword */
4231 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
4232 case 8: /* Vector Multiply Odd Unsigned Byte */
4233 case 72: /* Vector Multiply Odd Unsigned Halfword */
4234 case 136: /* Vector Multiply Odd Unsigned Word */
4235 case 264: /* Vector Multiply Odd Signed Byte */
4236 case 328: /* Vector Multiply Odd Signed Halfword */
4237 case 392: /* Vector Multiply Odd Signed Word */
4238 case 520: /* Vector Multiply Even Unsigned Byte */
4239 case 584: /* Vector Multiply Even Unsigned Halfword */
4240 case 648: /* Vector Multiply Even Unsigned Word */
4241 case 776: /* Vector Multiply Even Signed Byte */
4242 case 840: /* Vector Multiply Even Signed Halfword */
4243 case 904: /* Vector Multiply Even Signed Word */
4244 case 137: /* Vector Multiply Unsigned Word Modulo */
4245 case 1024: /* Vector Subtract Unsigned Byte Modulo */
4246 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
4247 case 1152: /* Vector Subtract Unsigned Word Modulo */
4248 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
4249 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
4250 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
4251 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
4252 case 1282: /* Vector Average Signed Byte */
4253 case 1346: /* Vector Average Signed Halfword */
4254 case 1410: /* Vector Average Signed Word */
4255 case 1026: /* Vector Average Unsigned Byte */
4256 case 1090: /* Vector Average Unsigned Halfword */
4257 case 1154: /* Vector Average Unsigned Word */
4258 case 258: /* Vector Maximum Signed Byte */
4259 case 322: /* Vector Maximum Signed Halfword */
4260 case 386: /* Vector Maximum Signed Word */
4261 case 450: /* Vector Maximum Signed Doubleword */
4262 case 2: /* Vector Maximum Unsigned Byte */
4263 case 66: /* Vector Maximum Unsigned Halfword */
4264 case 130: /* Vector Maximum Unsigned Word */
4265 case 194: /* Vector Maximum Unsigned Doubleword */
4266 case 770: /* Vector Minimum Signed Byte */
4267 case 834: /* Vector Minimum Signed Halfword */
4268 case 898: /* Vector Minimum Signed Word */
4269 case 962: /* Vector Minimum Signed Doubleword */
4270 case 514: /* Vector Minimum Unsigned Byte */
4271 case 578: /* Vector Minimum Unsigned Halfword */
4272 case 642: /* Vector Minimum Unsigned Word */
4273 case 706: /* Vector Minimum Unsigned Doubleword */
4274 case 1028: /* Vector Logical AND */
4275 case 1668: /* Vector Logical Equivalent */
4276 case 1092: /* Vector Logical AND with Complement */
4277 case 1412: /* Vector Logical NAND */
4278 case 1348: /* Vector Logical OR with Complement */
4279 case 1156: /* Vector Logical OR */
4280 case 1284: /* Vector Logical NOR */
4281 case 1220: /* Vector Logical XOR */
4282 case 4: /* Vector Rotate Left Byte */
4283 case 132: /* Vector Rotate Left Word VX-form */
4284 case 68: /* Vector Rotate Left Halfword */
4285 case 196: /* Vector Rotate Left Doubleword */
4286 case 260: /* Vector Shift Left Byte */
4287 case 388: /* Vector Shift Left Word */
4288 case 324: /* Vector Shift Left Halfword */
4289 case 1476: /* Vector Shift Left Doubleword */
4290 case 516: /* Vector Shift Right Byte */
4291 case 644: /* Vector Shift Right Word */
4292 case 580: /* Vector Shift Right Halfword */
4293 case 1732: /* Vector Shift Right Doubleword */
4294 case 772: /* Vector Shift Right Algebraic Byte */
4295 case 900: /* Vector Shift Right Algebraic Word */
4296 case 836: /* Vector Shift Right Algebraic Halfword */
4297 case 964: /* Vector Shift Right Algebraic Doubleword */
4298 case 10: /* Vector Add Single-Precision */
4299 case 74: /* Vector Subtract Single-Precision */
4300 case 1034: /* Vector Maximum Single-Precision */
4301 case 1098: /* Vector Minimum Single-Precision */
4302 case 842: /* Vector Convert From Signed Fixed-Point Word */
4303 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4304 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4305 case 522: /* Vector Round to Single-Precision Integer Nearest */
4306 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4307 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4308 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4309 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4310 case 266: /* Vector Reciprocal Estimate Single-Precision */
4311 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4312 case 1288: /* Vector AES Cipher */
4313 case 1289: /* Vector AES Cipher Last */
4314 case 1352: /* Vector AES Inverse Cipher */
4315 case 1353: /* Vector AES Inverse Cipher Last */
4316 case 1480: /* Vector AES SubBytes */
4317 case 1730: /* Vector SHA-512 Sigma Doubleword */
4318 case 1666: /* Vector SHA-256 Sigma Word */
4319 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4320 case 1160: /* Vector Polynomial Multiply-Sum Word */
4321 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4322 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4323 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4324 case 1794: /* Vector Count Leading Zeros Byte */
4325 case 1858: /* Vector Count Leading Zeros Halfword */
4326 case 1922: /* Vector Count Leading Zeros Word */
4327 case 1986: /* Vector Count Leading Zeros Doubleword */
4328 case 1795: /* Vector Population Count Byte */
4329 case 1859: /* Vector Population Count Halfword */
4330 case 1923: /* Vector Population Count Word */
4331 case 1987: /* Vector Population Count Doubleword */
4332 case 1356: /* Vector Bit Permute Quadword */
6ec2b213
EBM
4333 case 1484: /* Vector Bit Permute Doubleword */
4334 case 513: /* Vector Multiply-by-10 Unsigned Quadword */
4335 case 1: /* Vector Multiply-by-10 & write Carry Unsigned
4336 Quadword */
4337 case 577: /* Vector Multiply-by-10 Extended Unsigned Quadword */
4338 case 65: /* Vector Multiply-by-10 Extended & write Carry
4339 Unsigned Quadword */
4340 case 1027: /* Vector Absolute Difference Unsigned Byte */
4341 case 1091: /* Vector Absolute Difference Unsigned Halfword */
4342 case 1155: /* Vector Absolute Difference Unsigned Word */
4343 case 1796: /* Vector Shift Right Variable */
4344 case 1860: /* Vector Shift Left Variable */
4345 case 133: /* Vector Rotate Left Word then Mask Insert */
4346 case 197: /* Vector Rotate Left Doubleword then Mask Insert */
4347 case 389: /* Vector Rotate Left Word then AND with Mask */
4348 case 453: /* Vector Rotate Left Doubleword then AND with Mask */
4349 case 525: /* Vector Extract Unsigned Byte */
4350 case 589: /* Vector Extract Unsigned Halfword */
4351 case 653: /* Vector Extract Unsigned Word */
4352 case 717: /* Vector Extract Doubleword */
4353 case 781: /* Vector Insert Byte */
4354 case 845: /* Vector Insert Halfword */
4355 case 909: /* Vector Insert Word */
4356 case 973: /* Vector Insert Doubleword */
b4cdae6f
WW
4357 record_full_arch_list_add_reg (regcache,
4358 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4359 return 0;
4360
6ec2b213
EBM
4361 case 1549: /* Vector Extract Unsigned Byte Left-Indexed */
4362 case 1613: /* Vector Extract Unsigned Halfword Left-Indexed */
4363 case 1677: /* Vector Extract Unsigned Word Left-Indexed */
4364 case 1805: /* Vector Extract Unsigned Byte Right-Indexed */
4365 case 1869: /* Vector Extract Unsigned Halfword Right-Indexed */
4366 case 1933: /* Vector Extract Unsigned Word Right-Indexed */
4367 record_full_arch_list_add_reg (regcache,
4368 tdep->ppc_gp0_regnum + PPC_RT (insn));
4369 return 0;
4370
b4cdae6f
WW
4371 case 1604: /* Move To Vector Status and Control Register */
4372 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4373 return 0;
4374 case 1540: /* Move From Vector Status and Control Register */
4375 record_full_arch_list_add_reg (regcache,
4376 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4377 return 0;
6ec2b213
EBM
4378 case 833: /* Decimal Copy Sign */
4379 record_full_arch_list_add_reg (regcache,
4380 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4381 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4382 return 0;
b4cdae6f
WW
4383 }
4384
810c1026
WW
4385 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4386 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4387 return -1;
4388}
4389
ddeca1df
WW
4390/* Parse and record instructions of primary opcode-19 at ADDR.
4391 Return 0 if successful. */
b4cdae6f
WW
4392
4393static int
4394ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4395 CORE_ADDR addr, uint32_t insn)
4396{
4397 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4398 int ext = PPC_EXTOP (insn);
4399
6ec2b213
EBM
4400 switch (ext & 0x01f)
4401 {
4402 case 2: /* Add PC Immediate Shifted */
4403 record_full_arch_list_add_reg (regcache,
4404 tdep->ppc_gp0_regnum + PPC_RT (insn));
4405 return 0;
4406 }
4407
b4cdae6f
WW
4408 switch (ext)
4409 {
4410 case 0: /* Move Condition Register Field */
4411 case 33: /* Condition Register NOR */
4412 case 129: /* Condition Register AND with Complement */
4413 case 193: /* Condition Register XOR */
4414 case 225: /* Condition Register NAND */
4415 case 257: /* Condition Register AND */
4416 case 289: /* Condition Register Equivalent */
4417 case 417: /* Condition Register OR with Complement */
4418 case 449: /* Condition Register OR */
4419 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4420 return 0;
4421
4422 case 16: /* Branch Conditional */
4423 case 560: /* Branch Conditional to Branch Target Address Register */
4424 if ((PPC_BO (insn) & 0x4) == 0)
4425 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4426 /* FALL-THROUGH */
4427 case 528: /* Branch Conditional to Count Register */
4428 if (PPC_LK (insn))
4429 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4430 return 0;
4431
4432 case 150: /* Instruction Synchronize */
4433 /* Do nothing. */
4434 return 0;
4435 }
4436
810c1026
WW
4437 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4438 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4439 return -1;
4440}
4441
ddeca1df
WW
4442/* Parse and record instructions of primary opcode-31 at ADDR.
4443 Return 0 if successful. */
b4cdae6f
WW
4444
4445static int
4446ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4447 CORE_ADDR addr, uint32_t insn)
4448{
4449 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4450 int ext = PPC_EXTOP (insn);
4451 int tmp, nr, nb, i;
4452 CORE_ADDR at_dcsz, ea = 0;
4453 ULONGEST rb, ra, xer;
4454 int size = 0;
4455
4456 /* These instructions have OE bit. */
4457 switch (ext & 0x1ff)
4458 {
4459 /* These write RT and XER. Update CR if RC is set. */
4460 case 8: /* Subtract from carrying */
4461 case 10: /* Add carrying */
4462 case 136: /* Subtract from extended */
4463 case 138: /* Add extended */
4464 case 200: /* Subtract from zero extended */
4465 case 202: /* Add to zero extended */
4466 case 232: /* Subtract from minus one extended */
4467 case 234: /* Add to minus one extended */
4468 /* CA is always altered, but SO/OV are only altered when OE=1.
4469 In any case, XER is always altered. */
4470 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4471 if (PPC_RC (insn))
4472 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4473 record_full_arch_list_add_reg (regcache,
4474 tdep->ppc_gp0_regnum + PPC_RT (insn));
4475 return 0;
4476
4477 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4478 case 40: /* Subtract from */
4479 case 104: /* Negate */
4480 case 233: /* Multiply low doubleword */
4481 case 235: /* Multiply low word */
4482 case 266: /* Add */
4483 case 393: /* Divide Doubleword Extended Unsigned */
4484 case 395: /* Divide Word Extended Unsigned */
4485 case 425: /* Divide Doubleword Extended */
4486 case 427: /* Divide Word Extended */
4487 case 457: /* Divide Doubleword Unsigned */
4488 case 459: /* Divide Word Unsigned */
4489 case 489: /* Divide Doubleword */
4490 case 491: /* Divide Word */
4491 if (PPC_OE (insn))
4492 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4493 /* FALL-THROUGH */
4494 case 9: /* Multiply High Doubleword Unsigned */
4495 case 11: /* Multiply High Word Unsigned */
4496 case 73: /* Multiply High Doubleword */
4497 case 75: /* Multiply High Word */
4498 if (PPC_RC (insn))
4499 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4500 record_full_arch_list_add_reg (regcache,
4501 tdep->ppc_gp0_regnum + PPC_RT (insn));
4502 return 0;
4503 }
4504
4505 if ((ext & 0x1f) == 15)
4506 {
4507 /* Integer Select. bit[16:20] is used for BC. */
4508 record_full_arch_list_add_reg (regcache,
4509 tdep->ppc_gp0_regnum + PPC_RT (insn));
4510 return 0;
4511 }
4512
6ec2b213
EBM
4513 if ((ext & 0xff) == 170)
4514 {
4515 /* Add Extended using alternate carry bits */
4516 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4517 record_full_arch_list_add_reg (regcache,
4518 tdep->ppc_gp0_regnum + PPC_RT (insn));
4519 return 0;
4520 }
4521
b4cdae6f
WW
4522 switch (ext)
4523 {
4524 case 78: /* Determine Leftmost Zero Byte */
4525 if (PPC_RC (insn))
4526 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4527 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4528 record_full_arch_list_add_reg (regcache,
4529 tdep->ppc_gp0_regnum + PPC_RT (insn));
4530 return 0;
4531
4532 /* These only write RT. */
4533 case 19: /* Move from condition register */
4534 /* Move From One Condition Register Field */
4535 case 74: /* Add and Generate Sixes */
4536 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4537 case 302: /* Move From Branch History Rolling Buffer */
4538 case 339: /* Move From Special Purpose Register */
4539 case 371: /* Move From Time Base [Phased-Out] */
6ec2b213
EBM
4540 case 309: /* Load Doubleword Monitored Indexed */
4541 case 128: /* Set Boolean */
4542 case 755: /* Deliver A Random Number */
b4cdae6f
WW
4543 record_full_arch_list_add_reg (regcache,
4544 tdep->ppc_gp0_regnum + PPC_RT (insn));
4545 return 0;
4546
4547 /* These only write to RA. */
4548 case 51: /* Move From VSR Doubleword */
4549 case 115: /* Move From VSR Word and Zero */
4550 case 122: /* Population count bytes */
4551 case 378: /* Population count words */
4552 case 506: /* Population count doublewords */
4553 case 154: /* Parity Word */
4554 case 186: /* Parity Doubleword */
4555 case 252: /* Bit Permute Doubleword */
4556 case 282: /* Convert Declets To Binary Coded Decimal */
4557 case 314: /* Convert Binary Coded Decimal To Declets */
4558 case 508: /* Compare bytes */
6ec2b213 4559 case 307: /* Move From VSR Lower Doubleword */
b4cdae6f
WW
4560 record_full_arch_list_add_reg (regcache,
4561 tdep->ppc_gp0_regnum + PPC_RA (insn));
4562 return 0;
4563
4564 /* These write CR and optional RA. */
4565 case 792: /* Shift Right Algebraic Word */
4566 case 794: /* Shift Right Algebraic Doubleword */
4567 case 824: /* Shift Right Algebraic Word Immediate */
4568 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4569 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4570 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4571 record_full_arch_list_add_reg (regcache,
4572 tdep->ppc_gp0_regnum + PPC_RA (insn));
4573 /* FALL-THROUGH */
4574 case 0: /* Compare */
4575 case 32: /* Compare logical */
4576 case 144: /* Move To Condition Register Fields */
4577 /* Move To One Condition Register Field */
6ec2b213
EBM
4578 case 192: /* Compare Ranged Byte */
4579 case 224: /* Compare Equal Byte */
4580 case 576: /* Move XER to CR Extended */
4581 case 902: /* Paste (should always fail due to single-stepping and
4582 the memory location might not be accessible, so
4583 record only CR) */
b4cdae6f
WW
4584 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4585 return 0;
4586
4587 /* These write to RT. Update RA if 'update indexed.' */
4588 case 53: /* Load Doubleword with Update Indexed */
4589 case 119: /* Load Byte and Zero with Update Indexed */
4590 case 311: /* Load Halfword and Zero with Update Indexed */
4591 case 55: /* Load Word and Zero with Update Indexed */
4592 case 375: /* Load Halfword Algebraic with Update Indexed */
4593 case 373: /* Load Word Algebraic with Update Indexed */
4594 record_full_arch_list_add_reg (regcache,
4595 tdep->ppc_gp0_regnum + PPC_RA (insn));
4596 /* FALL-THROUGH */
4597 case 21: /* Load Doubleword Indexed */
4598 case 52: /* Load Byte And Reserve Indexed */
4599 case 116: /* Load Halfword And Reserve Indexed */
4600 case 20: /* Load Word And Reserve Indexed */
4601 case 84: /* Load Doubleword And Reserve Indexed */
4602 case 87: /* Load Byte and Zero Indexed */
4603 case 279: /* Load Halfword and Zero Indexed */
4604 case 23: /* Load Word and Zero Indexed */
4605 case 343: /* Load Halfword Algebraic Indexed */
4606 case 341: /* Load Word Algebraic Indexed */
4607 case 790: /* Load Halfword Byte-Reverse Indexed */
4608 case 534: /* Load Word Byte-Reverse Indexed */
4609 case 532: /* Load Doubleword Byte-Reverse Indexed */
6ec2b213
EBM
4610 case 582: /* Load Word Atomic */
4611 case 614: /* Load Doubleword Atomic */
4612 case 265: /* Modulo Unsigned Doubleword */
4613 case 777: /* Modulo Signed Doubleword */
4614 case 267: /* Modulo Unsigned Word */
4615 case 779: /* Modulo Signed Word */
b4cdae6f
WW
4616 record_full_arch_list_add_reg (regcache,
4617 tdep->ppc_gp0_regnum + PPC_RT (insn));
4618 return 0;
4619
4620 case 597: /* Load String Word Immediate */
4621 case 533: /* Load String Word Indexed */
4622 if (ext == 597)
4623 {
4624 nr = PPC_NB (insn);
4625 if (nr == 0)
4626 nr = 32;
4627 }
4628 else
4629 {
4630 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4631 nr = PPC_XER_NB (xer);
4632 }
4633
4634 nr = (nr + 3) >> 2;
4635
4636 /* If n=0, the contents of register RT are undefined. */
4637 if (nr == 0)
4638 nr = 1;
4639
4640 for (i = 0; i < nr; i++)
4641 record_full_arch_list_add_reg (regcache,
4642 tdep->ppc_gp0_regnum
4643 + ((PPC_RT (insn) + i) & 0x1f));
4644 return 0;
4645
4646 case 276: /* Load Quadword And Reserve Indexed */
4647 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4648 record_full_arch_list_add_reg (regcache, tmp);
4649 record_full_arch_list_add_reg (regcache, tmp + 1);
4650 return 0;
4651
4652 /* These write VRT. */
4653 case 6: /* Load Vector for Shift Left Indexed */
4654 case 38: /* Load Vector for Shift Right Indexed */
4655 case 7: /* Load Vector Element Byte Indexed */
4656 case 39: /* Load Vector Element Halfword Indexed */
4657 case 71: /* Load Vector Element Word Indexed */
4658 case 103: /* Load Vector Indexed */
4659 case 359: /* Load Vector Indexed LRU */
4660 record_full_arch_list_add_reg (regcache,
4661 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4662 return 0;
4663
4664 /* These write FRT. Update RA if 'update indexed.' */
4665 case 567: /* Load Floating-Point Single with Update Indexed */
4666 case 631: /* Load Floating-Point Double with Update Indexed */
4667 record_full_arch_list_add_reg (regcache,
4668 tdep->ppc_gp0_regnum + PPC_RA (insn));
4669 /* FALL-THROUGH */
4670 case 535: /* Load Floating-Point Single Indexed */
4671 case 599: /* Load Floating-Point Double Indexed */
4672 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4673 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4674 record_full_arch_list_add_reg (regcache,
4675 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4676 return 0;
4677
4678 case 791: /* Load Floating-Point Double Pair Indexed */
4679 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4680 record_full_arch_list_add_reg (regcache, tmp);
4681 record_full_arch_list_add_reg (regcache, tmp + 1);
4682 return 0;
4683
4684 case 179: /* Move To VSR Doubleword */
4685 case 211: /* Move To VSR Word Algebraic */
4686 case 243: /* Move To VSR Word and Zero */
4687 case 588: /* Load VSX Scalar Doubleword Indexed */
4688 case 524: /* Load VSX Scalar Single-Precision Indexed */
4689 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4690 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4691 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4692 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4693 case 780: /* Load VSX Vector Word*4 Indexed */
6ec2b213
EBM
4694 case 268: /* Load VSX Vector Indexed */
4695 case 364: /* Load VSX Vector Word & Splat Indexed */
4696 case 812: /* Load VSX Vector Halfword*8 Indexed */
4697 case 876: /* Load VSX Vector Byte*16 Indexed */
4698 case 269: /* Load VSX Vector with Length */
4699 case 301: /* Load VSX Vector Left-justified with Length */
4700 case 781: /* Load VSX Scalar as Integer Byte & Zero Indexed */
4701 case 813: /* Load VSX Scalar as Integer Halfword & Zero Indexed */
4702 case 403: /* Move To VSR Word & Splat */
4703 case 435: /* Move To VSR Double Doubleword */
b4cdae6f
WW
4704 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4705 return 0;
4706
4707 /* These write RA. Update CR if RC is set. */
4708 case 24: /* Shift Left Word */
4709 case 26: /* Count Leading Zeros Word */
4710 case 27: /* Shift Left Doubleword */
4711 case 28: /* AND */
4712 case 58: /* Count Leading Zeros Doubleword */
4713 case 60: /* AND with Complement */
4714 case 124: /* NOR */
4715 case 284: /* Equivalent */
4716 case 316: /* XOR */
4717 case 476: /* NAND */
4718 case 412: /* OR with Complement */
4719 case 444: /* OR */
4720 case 536: /* Shift Right Word */
4721 case 539: /* Shift Right Doubleword */
4722 case 922: /* Extend Sign Halfword */
4723 case 954: /* Extend Sign Byte */
4724 case 986: /* Extend Sign Word */
6ec2b213
EBM
4725 case 538: /* Count Trailing Zeros Word */
4726 case 570: /* Count Trailing Zeros Doubleword */
4727 case 890: /* Extend-Sign Word and Shift Left Immediate (445) */
4728 case 890 | 1: /* Extend-Sign Word and Shift Left Immediate (445) */
7ca18ed6
EBM
4729
4730 if (ext == 444 && tdep->ppc_ppr_regnum >= 0
4731 && (PPC_RS (insn) == PPC_RA (insn))
4732 && (PPC_RA (insn) == PPC_RB (insn))
4733 && !PPC_RC (insn))
4734 {
4735 /* or Rx,Rx,Rx alters PRI in PPR. */
4736 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4737 return 0;
4738 }
4739
b4cdae6f
WW
4740 if (PPC_RC (insn))
4741 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4742 record_full_arch_list_add_reg (regcache,
4743 tdep->ppc_gp0_regnum + PPC_RA (insn));
4744 return 0;
4745
4746 /* Store memory. */
4747 case 181: /* Store Doubleword with Update Indexed */
4748 case 183: /* Store Word with Update Indexed */
4749 case 247: /* Store Byte with Update Indexed */
4750 case 439: /* Store Half Word with Update Indexed */
4751 case 695: /* Store Floating-Point Single with Update Indexed */
4752 case 759: /* Store Floating-Point Double with Update Indexed */
4753 record_full_arch_list_add_reg (regcache,
4754 tdep->ppc_gp0_regnum + PPC_RA (insn));
4755 /* FALL-THROUGH */
4756 case 135: /* Store Vector Element Byte Indexed */
4757 case 167: /* Store Vector Element Halfword Indexed */
4758 case 199: /* Store Vector Element Word Indexed */
4759 case 231: /* Store Vector Indexed */
4760 case 487: /* Store Vector Indexed LRU */
4761 case 716: /* Store VSX Scalar Doubleword Indexed */
4762 case 140: /* Store VSX Scalar as Integer Word Indexed */
4763 case 652: /* Store VSX Scalar Single-Precision Indexed */
4764 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4765 case 908: /* Store VSX Vector Word*4 Indexed */
4766 case 149: /* Store Doubleword Indexed */
4767 case 151: /* Store Word Indexed */
4768 case 215: /* Store Byte Indexed */
4769 case 407: /* Store Half Word Indexed */
4770 case 694: /* Store Byte Conditional Indexed */
4771 case 726: /* Store Halfword Conditional Indexed */
4772 case 150: /* Store Word Conditional Indexed */
4773 case 214: /* Store Doubleword Conditional Indexed */
4774 case 182: /* Store Quadword Conditional Indexed */
4775 case 662: /* Store Word Byte-Reverse Indexed */
4776 case 918: /* Store Halfword Byte-Reverse Indexed */
4777 case 660: /* Store Doubleword Byte-Reverse Indexed */
4778 case 663: /* Store Floating-Point Single Indexed */
4779 case 727: /* Store Floating-Point Double Indexed */
4780 case 919: /* Store Floating-Point Double Pair Indexed */
4781 case 983: /* Store Floating-Point as Integer Word Indexed */
6ec2b213
EBM
4782 case 396: /* Store VSX Vector Indexed */
4783 case 940: /* Store VSX Vector Halfword*8 Indexed */
4784 case 1004: /* Store VSX Vector Byte*16 Indexed */
4785 case 909: /* Store VSX Scalar as Integer Byte Indexed */
4786 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4787 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4788 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4789
4790 ra = 0;
4791 if (PPC_RA (insn) != 0)
4792 regcache_raw_read_unsigned (regcache,
4793 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4794 regcache_raw_read_unsigned (regcache,
4795 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4796 ea = ra + rb;
4797
4798 switch (ext)
4799 {
4800 case 183: /* Store Word with Update Indexed */
4801 case 199: /* Store Vector Element Word Indexed */
4802 case 140: /* Store VSX Scalar as Integer Word Indexed */
4803 case 652: /* Store VSX Scalar Single-Precision Indexed */
4804 case 151: /* Store Word Indexed */
4805 case 150: /* Store Word Conditional Indexed */
4806 case 662: /* Store Word Byte-Reverse Indexed */
4807 case 663: /* Store Floating-Point Single Indexed */
4808 case 695: /* Store Floating-Point Single with Update Indexed */
4809 case 983: /* Store Floating-Point as Integer Word Indexed */
4810 size = 4;
4811 break;
4812 case 247: /* Store Byte with Update Indexed */
4813 case 135: /* Store Vector Element Byte Indexed */
4814 case 215: /* Store Byte Indexed */
4815 case 694: /* Store Byte Conditional Indexed */
6ec2b213 4816 case 909: /* Store VSX Scalar as Integer Byte Indexed */
b4cdae6f
WW
4817 size = 1;
4818 break;
4819 case 439: /* Store Halfword with Update Indexed */
4820 case 167: /* Store Vector Element Halfword Indexed */
4821 case 407: /* Store Halfword Indexed */
4822 case 726: /* Store Halfword Conditional Indexed */
4823 case 918: /* Store Halfword Byte-Reverse Indexed */
6ec2b213 4824 case 941: /* Store VSX Scalar as Integer Halfword Indexed */
b4cdae6f
WW
4825 size = 2;
4826 break;
4827 case 181: /* Store Doubleword with Update Indexed */
4828 case 716: /* Store VSX Scalar Doubleword Indexed */
4829 case 149: /* Store Doubleword Indexed */
4830 case 214: /* Store Doubleword Conditional Indexed */
4831 case 660: /* Store Doubleword Byte-Reverse Indexed */
4832 case 727: /* Store Floating-Point Double Indexed */
4833 case 759: /* Store Floating-Point Double with Update Indexed */
4834 size = 8;
4835 break;
4836 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4837 case 908: /* Store VSX Vector Word*4 Indexed */
4838 case 182: /* Store Quadword Conditional Indexed */
4839 case 231: /* Store Vector Indexed */
4840 case 487: /* Store Vector Indexed LRU */
4841 case 919: /* Store Floating-Point Double Pair Indexed */
6ec2b213
EBM
4842 case 396: /* Store VSX Vector Indexed */
4843 case 940: /* Store VSX Vector Halfword*8 Indexed */
4844 case 1004: /* Store VSX Vector Byte*16 Indexed */
b4cdae6f
WW
4845 size = 16;
4846 break;
4847 default:
4848 gdb_assert (0);
4849 }
4850
4851 /* Align address for Store Vector instructions. */
4852 switch (ext)
4853 {
4854 case 167: /* Store Vector Element Halfword Indexed */
4855 addr = addr & ~0x1ULL;
4856 break;
4857
4858 case 199: /* Store Vector Element Word Indexed */
4859 addr = addr & ~0x3ULL;
4860 break;
4861
4862 case 231: /* Store Vector Indexed */
4863 case 487: /* Store Vector Indexed LRU */
4864 addr = addr & ~0xfULL;
4865 break;
4866 }
4867
4868 record_full_arch_list_add_mem (addr, size);
4869 return 0;
4870
6ec2b213
EBM
4871 case 397: /* Store VSX Vector with Length */
4872 case 429: /* Store VSX Vector Left-justified with Length */
de678454 4873 ra = 0;
6ec2b213
EBM
4874 if (PPC_RA (insn) != 0)
4875 regcache_raw_read_unsigned (regcache,
de678454
EBM
4876 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4877 ea = ra;
6ec2b213
EBM
4878 regcache_raw_read_unsigned (regcache,
4879 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4880 /* Store up to 16 bytes. */
4881 nb = (rb & 0xff) > 16 ? 16 : (rb & 0xff);
4882 if (nb > 0)
4883 record_full_arch_list_add_mem (ea, nb);
4884 return 0;
4885
4886 case 710: /* Store Word Atomic */
4887 case 742: /* Store Doubleword Atomic */
de678454 4888 ra = 0;
6ec2b213
EBM
4889 if (PPC_RA (insn) != 0)
4890 regcache_raw_read_unsigned (regcache,
de678454
EBM
4891 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4892 ea = ra;
6ec2b213
EBM
4893 switch (ext)
4894 {
4895 case 710: /* Store Word Atomic */
4896 size = 8;
4897 break;
4898 case 742: /* Store Doubleword Atomic */
4899 size = 16;
4900 break;
4901 default:
4902 gdb_assert (0);
4903 }
4904 record_full_arch_list_add_mem (ea, size);
4905 return 0;
4906
b4cdae6f
WW
4907 case 725: /* Store String Word Immediate */
4908 ra = 0;
4909 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4910 regcache_raw_read_unsigned (regcache,
4911 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4912 ea += ra;
4913
4914 nb = PPC_NB (insn);
4915 if (nb == 0)
4916 nb = 32;
4917
4918 record_full_arch_list_add_mem (ea, nb);
4919
4920 return 0;
4921
4922 case 661: /* Store String Word Indexed */
4923 ra = 0;
4924 if (PPC_RA (insn) != 0)
9f7efd5b
EBM
4925 regcache_raw_read_unsigned (regcache,
4926 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
b4cdae6f
WW
4927 ea += ra;
4928
4929 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4930 nb = PPC_XER_NB (xer);
4931
4932 if (nb != 0)
4933 {
9f7efd5b
EBM
4934 regcache_raw_read_unsigned (regcache,
4935 tdep->ppc_gp0_regnum + PPC_RB (insn),
4936 &rb);
b4cdae6f
WW
4937 ea += rb;
4938 record_full_arch_list_add_mem (ea, nb);
4939 }
4940
4941 return 0;
4942
4943 case 467: /* Move To Special Purpose Register */
4944 switch (PPC_SPR (insn))
4945 {
4946 case 1: /* XER */
4947 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4948 return 0;
7ca18ed6
EBM
4949 case 3: /* DSCR */
4950 if (tdep->ppc_dscr_regnum >= 0)
4951 record_full_arch_list_add_reg (regcache, tdep->ppc_dscr_regnum);
4952 return 0;
b4cdae6f
WW
4953 case 8: /* LR */
4954 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4955 return 0;
4956 case 9: /* CTR */
4957 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4958 return 0;
4959 case 256: /* VRSAVE */
4960 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4961 return 0;
f2cf6173
EBM
4962 case 815: /* TAR */
4963 if (tdep->ppc_tar_regnum >= 0)
4964 record_full_arch_list_add_reg (regcache, tdep->ppc_tar_regnum);
4965 return 0;
7ca18ed6
EBM
4966 case 896:
4967 case 898: /* PPR */
4968 if (tdep->ppc_ppr_regnum >= 0)
4969 record_full_arch_list_add_reg (regcache, tdep->ppc_ppr_regnum);
4970 return 0;
b4cdae6f
WW
4971 }
4972
4973 goto UNKNOWN_OP;
4974
4975 case 147: /* Move To Split Little Endian */
4976 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4977 return 0;
4978
4979 case 512: /* Move to Condition Register from XER */
4980 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4981 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4982 return 0;
4983
4984 case 4: /* Trap Word */
4985 case 68: /* Trap Doubleword */
4986 case 430: /* Clear BHRB */
4987 case 598: /* Synchronize */
4988 case 62: /* Wait for Interrupt */
6ec2b213 4989 case 30: /* Wait */
b4cdae6f
WW
4990 case 22: /* Instruction Cache Block Touch */
4991 case 854: /* Enforce In-order Execution of I/O */
4992 case 246: /* Data Cache Block Touch for Store */
4993 case 54: /* Data Cache Block Store */
4994 case 86: /* Data Cache Block Flush */
4995 case 278: /* Data Cache Block Touch */
4996 case 758: /* Data Cache Block Allocate */
4997 case 982: /* Instruction Cache Block Invalidate */
6ec2b213
EBM
4998 case 774: /* Copy */
4999 case 838: /* CP_Abort */
b4cdae6f
WW
5000 return 0;
5001
5002 case 654: /* Transaction Begin */
5003 case 686: /* Transaction End */
b4cdae6f
WW
5004 case 750: /* Transaction Suspend or Resume */
5005 case 782: /* Transaction Abort Word Conditional */
5006 case 814: /* Transaction Abort Doubleword Conditional */
5007 case 846: /* Transaction Abort Word Conditional Immediate */
5008 case 878: /* Transaction Abort Doubleword Conditional Immediate */
5009 case 910: /* Transaction Abort */
d44c67f3
EBM
5010 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
5011 /* FALL-THROUGH */
5012 case 718: /* Transaction Check */
5013 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5014 return 0;
b4cdae6f
WW
5015
5016 case 1014: /* Data Cache Block set to Zero */
8b88a78e 5017 if (target_auxv_search (current_top_target (), AT_DCACHEBSIZE, &at_dcsz) <= 0
b4cdae6f
WW
5018 || at_dcsz == 0)
5019 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
5020
bec734b2 5021 ra = 0;
b4cdae6f
WW
5022 if (PPC_RA (insn) != 0)
5023 regcache_raw_read_unsigned (regcache,
5024 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
5025 regcache_raw_read_unsigned (regcache,
5026 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
5027 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
5028 record_full_arch_list_add_mem (ea, at_dcsz);
5029 return 0;
5030 }
5031
5032UNKNOWN_OP:
810c1026
WW
5033 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5034 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5035 return -1;
5036}
5037
ddeca1df
WW
5038/* Parse and record instructions of primary opcode-59 at ADDR.
5039 Return 0 if successful. */
b4cdae6f
WW
5040
5041static int
5042ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
5043 CORE_ADDR addr, uint32_t insn)
5044{
5045 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5046 int ext = PPC_EXTOP (insn);
5047
5048 switch (ext & 0x1f)
5049 {
5050 case 18: /* Floating Divide */
5051 case 20: /* Floating Subtract */
5052 case 21: /* Floating Add */
5053 case 22: /* Floating Square Root */
5054 case 24: /* Floating Reciprocal Estimate */
5055 case 25: /* Floating Multiply */
5056 case 26: /* Floating Reciprocal Square Root Estimate */
5057 case 28: /* Floating Multiply-Subtract */
5058 case 29: /* Floating Multiply-Add */
5059 case 30: /* Floating Negative Multiply-Subtract */
5060 case 31: /* Floating Negative Multiply-Add */
5061 record_full_arch_list_add_reg (regcache,
5062 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5063 if (PPC_RC (insn))
5064 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5065 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5066
5067 return 0;
5068 }
5069
5070 switch (ext)
5071 {
5072 case 2: /* DFP Add */
5073 case 3: /* DFP Quantize */
5074 case 34: /* DFP Multiply */
5075 case 35: /* DFP Reround */
5076 case 67: /* DFP Quantize Immediate */
5077 case 99: /* DFP Round To FP Integer With Inexact */
5078 case 227: /* DFP Round To FP Integer Without Inexact */
5079 case 258: /* DFP Convert To DFP Long! */
5080 case 290: /* DFP Convert To Fixed */
5081 case 514: /* DFP Subtract */
5082 case 546: /* DFP Divide */
5083 case 770: /* DFP Round To DFP Short! */
5084 case 802: /* DFP Convert From Fixed */
5085 case 834: /* DFP Encode BCD To DPD */
5086 if (PPC_RC (insn))
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5088 record_full_arch_list_add_reg (regcache,
5089 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5090 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5091 return 0;
5092
5093 case 130: /* DFP Compare Ordered */
5094 case 162: /* DFP Test Exponent */
5095 case 194: /* DFP Test Data Class */
5096 case 226: /* DFP Test Data Group */
5097 case 642: /* DFP Compare Unordered */
5098 case 674: /* DFP Test Significance */
6ec2b213 5099 case 675: /* DFP Test Significance Immediate */
b4cdae6f
WW
5100 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5101 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5102 return 0;
5103
5104 case 66: /* DFP Shift Significand Left Immediate */
5105 case 98: /* DFP Shift Significand Right Immediate */
5106 case 322: /* DFP Decode DPD To BCD */
5107 case 354: /* DFP Extract Biased Exponent */
5108 case 866: /* DFP Insert Biased Exponent */
5109 record_full_arch_list_add_reg (regcache,
5110 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5111 if (PPC_RC (insn))
5112 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5113 return 0;
5114
5115 case 846: /* Floating Convert From Integer Doubleword Single */
5116 case 974: /* Floating Convert From Integer Doubleword Unsigned
5117 Single */
5118 record_full_arch_list_add_reg (regcache,
5119 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5120 if (PPC_RC (insn))
5121 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5122 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5123
5124 return 0;
5125 }
5126
810c1026
WW
5127 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5128 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5129 return -1;
5130}
5131
ddeca1df
WW
5132/* Parse and record instructions of primary opcode-60 at ADDR.
5133 Return 0 if successful. */
b4cdae6f
WW
5134
5135static int
5136ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
5137 CORE_ADDR addr, uint32_t insn)
5138{
5139 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5140 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
5141
5142 switch (ext >> 2)
5143 {
5144 case 0: /* VSX Scalar Add Single-Precision */
5145 case 32: /* VSX Scalar Add Double-Precision */
5146 case 24: /* VSX Scalar Divide Single-Precision */
5147 case 56: /* VSX Scalar Divide Double-Precision */
5148 case 176: /* VSX Scalar Copy Sign Double-Precision */
5149 case 33: /* VSX Scalar Multiply-Add Double-Precision */
5150 case 41: /* ditto */
5151 case 1: /* VSX Scalar Multiply-Add Single-Precision */
5152 case 9: /* ditto */
5153 case 160: /* VSX Scalar Maximum Double-Precision */
5154 case 168: /* VSX Scalar Minimum Double-Precision */
5155 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
5156 case 57: /* ditto */
5157 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
5158 case 25: /* ditto */
5159 case 48: /* VSX Scalar Multiply Double-Precision */
5160 case 16: /* VSX Scalar Multiply Single-Precision */
5161 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
5162 case 169: /* ditto */
5163 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
5164 case 137: /* ditto */
5165 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
5166 case 185: /* ditto */
5167 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
5168 case 153: /* ditto */
5169 case 40: /* VSX Scalar Subtract Double-Precision */
5170 case 8: /* VSX Scalar Subtract Single-Precision */
5171 case 96: /* VSX Vector Add Double-Precision */
5172 case 64: /* VSX Vector Add Single-Precision */
5173 case 120: /* VSX Vector Divide Double-Precision */
5174 case 88: /* VSX Vector Divide Single-Precision */
5175 case 97: /* VSX Vector Multiply-Add Double-Precision */
5176 case 105: /* ditto */
5177 case 65: /* VSX Vector Multiply-Add Single-Precision */
5178 case 73: /* ditto */
5179 case 224: /* VSX Vector Maximum Double-Precision */
5180 case 192: /* VSX Vector Maximum Single-Precision */
5181 case 232: /* VSX Vector Minimum Double-Precision */
5182 case 200: /* VSX Vector Minimum Single-Precision */
5183 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
5184 case 121: /* ditto */
5185 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
5186 case 89: /* ditto */
5187 case 112: /* VSX Vector Multiply Double-Precision */
5188 case 80: /* VSX Vector Multiply Single-Precision */
5189 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
5190 case 233: /* ditto */
5191 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
5192 case 201: /* ditto */
5193 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
5194 case 249: /* ditto */
5195 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
5196 case 217: /* ditto */
5197 case 104: /* VSX Vector Subtract Double-Precision */
5198 case 72: /* VSX Vector Subtract Single-Precision */
6ec2b213
EBM
5199 case 128: /* VSX Scalar Maximum Type-C Double-Precision */
5200 case 136: /* VSX Scalar Minimum Type-C Double-Precision */
5201 case 144: /* VSX Scalar Maximum Type-J Double-Precision */
5202 case 152: /* VSX Scalar Minimum Type-J Double-Precision */
5203 case 3: /* VSX Scalar Compare Equal Double-Precision */
5204 case 11: /* VSX Scalar Compare Greater Than Double-Precision */
5205 case 19: /* VSX Scalar Compare Greater Than or Equal
5206 Double-Precision */
b4cdae6f 5207 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5208 /* FALL-THROUGH */
b4cdae6f
WW
5209 case 240: /* VSX Vector Copy Sign Double-Precision */
5210 case 208: /* VSX Vector Copy Sign Single-Precision */
5211 case 130: /* VSX Logical AND */
5212 case 138: /* VSX Logical AND with Complement */
5213 case 186: /* VSX Logical Equivalence */
5214 case 178: /* VSX Logical NAND */
5215 case 170: /* VSX Logical OR with Complement */
5216 case 162: /* VSX Logical NOR */
5217 case 146: /* VSX Logical OR */
5218 case 154: /* VSX Logical XOR */
5219 case 18: /* VSX Merge High Word */
5220 case 50: /* VSX Merge Low Word */
5221 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
5222 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
5223 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
5224 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
5225 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
5226 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
5227 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
5228 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
6ec2b213
EBM
5229 case 216: /* VSX Vector Insert Exponent Single-Precision */
5230 case 248: /* VSX Vector Insert Exponent Double-Precision */
5231 case 26: /* VSX Vector Permute */
5232 case 58: /* VSX Vector Permute Right-indexed */
5233 case 213: /* VSX Vector Test Data Class Single-Precision (DC=0) */
5234 case 213 | 0x8: /* VSX Vector Test Data Class Single-Precision (DC=1) */
5235 case 245: /* VSX Vector Test Data Class Double-Precision (DC=0) */
5236 case 245 | 0x8: /* VSX Vector Test Data Class Double-Precision (DC=1) */
b4cdae6f
WW
5237 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5238 return 0;
5239
5240 case 61: /* VSX Scalar Test for software Divide Double-Precision */
5241 case 125: /* VSX Vector Test for software Divide Double-Precision */
5242 case 93: /* VSX Vector Test for software Divide Single-Precision */
5243 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5244 return 0;
5245
5246 case 35: /* VSX Scalar Compare Unordered Double-Precision */
5247 case 43: /* VSX Scalar Compare Ordered Double-Precision */
6ec2b213 5248 case 59: /* VSX Scalar Compare Exponents Double-Precision */
b4cdae6f
WW
5249 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5250 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5251 return 0;
5252 }
5253
5254 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
5255 {
5256 case 99: /* VSX Vector Compare Equal To Double-Precision */
5257 case 67: /* VSX Vector Compare Equal To Single-Precision */
5258 case 115: /* VSX Vector Compare Greater Than or
5259 Equal To Double-Precision */
5260 case 83: /* VSX Vector Compare Greater Than or
5261 Equal To Single-Precision */
5262 case 107: /* VSX Vector Compare Greater Than Double-Precision */
5263 case 75: /* VSX Vector Compare Greater Than Single-Precision */
5264 if (PPC_Rc (insn))
5265 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5266 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5267 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5268 return 0;
5269 }
5270
5271 switch (ext >> 1)
5272 {
5273 case 265: /* VSX Scalar round Double-Precision to
5274 Single-Precision and Convert to
5275 Single-Precision format */
5276 case 344: /* VSX Scalar truncate Double-Precision to
5277 Integer and Convert to Signed Integer
5278 Doubleword format with Saturate */
5279 case 88: /* VSX Scalar truncate Double-Precision to
5280 Integer and Convert to Signed Integer Word
5281 Format with Saturate */
5282 case 328: /* VSX Scalar truncate Double-Precision integer
5283 and Convert to Unsigned Integer Doubleword
5284 Format with Saturate */
5285 case 72: /* VSX Scalar truncate Double-Precision to
5286 Integer and Convert to Unsigned Integer Word
5287 Format with Saturate */
5288 case 329: /* VSX Scalar Convert Single-Precision to
5289 Double-Precision format */
5290 case 376: /* VSX Scalar Convert Signed Integer
5291 Doubleword to floating-point format and
5292 Round to Double-Precision format */
5293 case 312: /* VSX Scalar Convert Signed Integer
5294 Doubleword to floating-point format and
5295 round to Single-Precision */
5296 case 360: /* VSX Scalar Convert Unsigned Integer
5297 Doubleword to floating-point format and
5298 Round to Double-Precision format */
5299 case 296: /* VSX Scalar Convert Unsigned Integer
5300 Doubleword to floating-point format and
5301 Round to Single-Precision */
5302 case 73: /* VSX Scalar Round to Double-Precision Integer
5303 Using Round to Nearest Away */
5304 case 107: /* VSX Scalar Round to Double-Precision Integer
5305 Exact using Current rounding mode */
5306 case 121: /* VSX Scalar Round to Double-Precision Integer
5307 Using Round toward -Infinity */
5308 case 105: /* VSX Scalar Round to Double-Precision Integer
5309 Using Round toward +Infinity */
5310 case 89: /* VSX Scalar Round to Double-Precision Integer
5311 Using Round toward Zero */
5312 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
5313 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
5314 case 281: /* VSX Scalar Round to Single-Precision */
5315 case 74: /* VSX Scalar Reciprocal Square Root Estimate
5316 Double-Precision */
5317 case 10: /* VSX Scalar Reciprocal Square Root Estimate
5318 Single-Precision */
5319 case 75: /* VSX Scalar Square Root Double-Precision */
5320 case 11: /* VSX Scalar Square Root Single-Precision */
5321 case 393: /* VSX Vector round Double-Precision to
5322 Single-Precision and Convert to
5323 Single-Precision format */
5324 case 472: /* VSX Vector truncate Double-Precision to
5325 Integer and Convert to Signed Integer
5326 Doubleword format with Saturate */
5327 case 216: /* VSX Vector truncate Double-Precision to
5328 Integer and Convert to Signed Integer Word
5329 Format with Saturate */
5330 case 456: /* VSX Vector truncate Double-Precision to
5331 Integer and Convert to Unsigned Integer
5332 Doubleword format with Saturate */
5333 case 200: /* VSX Vector truncate Double-Precision to
5334 Integer and Convert to Unsigned Integer Word
5335 Format with Saturate */
5336 case 457: /* VSX Vector Convert Single-Precision to
5337 Double-Precision format */
5338 case 408: /* VSX Vector truncate Single-Precision to
5339 Integer and Convert to Signed Integer
5340 Doubleword format with Saturate */
5341 case 152: /* VSX Vector truncate Single-Precision to
5342 Integer and Convert to Signed Integer Word
5343 Format with Saturate */
5344 case 392: /* VSX Vector truncate Single-Precision to
5345 Integer and Convert to Unsigned Integer
5346 Doubleword format with Saturate */
5347 case 136: /* VSX Vector truncate Single-Precision to
5348 Integer and Convert to Unsigned Integer Word
5349 Format with Saturate */
5350 case 504: /* VSX Vector Convert and round Signed Integer
5351 Doubleword to Double-Precision format */
5352 case 440: /* VSX Vector Convert and round Signed Integer
5353 Doubleword to Single-Precision format */
5354 case 248: /* VSX Vector Convert Signed Integer Word to
5355 Double-Precision format */
5356 case 184: /* VSX Vector Convert and round Signed Integer
5357 Word to Single-Precision format */
5358 case 488: /* VSX Vector Convert and round Unsigned
5359 Integer Doubleword to Double-Precision format */
5360 case 424: /* VSX Vector Convert and round Unsigned
5361 Integer Doubleword to Single-Precision format */
5362 case 232: /* VSX Vector Convert and round Unsigned
5363 Integer Word to Double-Precision format */
5364 case 168: /* VSX Vector Convert and round Unsigned
5365 Integer Word to Single-Precision format */
5366 case 201: /* VSX Vector Round to Double-Precision
5367 Integer using round to Nearest Away */
5368 case 235: /* VSX Vector Round to Double-Precision
5369 Integer Exact using Current rounding mode */
5370 case 249: /* VSX Vector Round to Double-Precision
5371 Integer using round toward -Infinity */
5372 case 233: /* VSX Vector Round to Double-Precision
5373 Integer using round toward +Infinity */
5374 case 217: /* VSX Vector Round to Double-Precision
5375 Integer using round toward Zero */
5376 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
5377 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
5378 case 137: /* VSX Vector Round to Single-Precision Integer
5379 Using Round to Nearest Away */
5380 case 171: /* VSX Vector Round to Single-Precision Integer
5381 Exact Using Current rounding mode */
5382 case 185: /* VSX Vector Round to Single-Precision Integer
5383 Using Round toward -Infinity */
5384 case 169: /* VSX Vector Round to Single-Precision Integer
5385 Using Round toward +Infinity */
5386 case 153: /* VSX Vector Round to Single-Precision Integer
5387 Using round toward Zero */
5388 case 202: /* VSX Vector Reciprocal Square Root Estimate
5389 Double-Precision */
5390 case 138: /* VSX Vector Reciprocal Square Root Estimate
5391 Single-Precision */
5392 case 203: /* VSX Vector Square Root Double-Precision */
5393 case 139: /* VSX Vector Square Root Single-Precision */
5394 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
6ec2b213 5395 /* FALL-THROUGH */
b4cdae6f
WW
5396 case 345: /* VSX Scalar Absolute Value Double-Precision */
5397 case 267: /* VSX Scalar Convert Scalar Single-Precision to
5398 Vector Single-Precision format Non-signalling */
5399 case 331: /* VSX Scalar Convert Single-Precision to
5400 Double-Precision format Non-signalling */
5401 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
5402 case 377: /* VSX Scalar Negate Double-Precision */
5403 case 473: /* VSX Vector Absolute Value Double-Precision */
5404 case 409: /* VSX Vector Absolute Value Single-Precision */
5405 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
5406 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
5407 case 505: /* VSX Vector Negate Double-Precision */
5408 case 441: /* VSX Vector Negate Single-Precision */
5409 case 164: /* VSX Splat Word */
6ec2b213
EBM
5410 case 165: /* VSX Vector Extract Unsigned Word */
5411 case 181: /* VSX Vector Insert Word */
b4cdae6f
WW
5412 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5413 return 0;
5414
6ec2b213
EBM
5415 case 298: /* VSX Scalar Test Data Class Single-Precision */
5416 case 362: /* VSX Scalar Test Data Class Double-Precision */
5417 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5418 /* FALL-THROUGH */
b4cdae6f
WW
5419 case 106: /* VSX Scalar Test for software Square Root
5420 Double-Precision */
5421 case 234: /* VSX Vector Test for software Square Root
5422 Double-Precision */
5423 case 170: /* VSX Vector Test for software Square Root
5424 Single-Precision */
5425 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5426 return 0;
6ec2b213
EBM
5427
5428 case 347:
5429 switch (PPC_FIELD (insn, 11, 5))
5430 {
5431 case 0: /* VSX Scalar Extract Exponent Double-Precision */
5432 case 1: /* VSX Scalar Extract Significand Double-Precision */
5433 record_full_arch_list_add_reg (regcache,
5434 tdep->ppc_gp0_regnum + PPC_RT (insn));
5435 return 0;
5436 case 16: /* VSX Scalar Convert Half-Precision format to
5437 Double-Precision format */
5438 case 17: /* VSX Scalar round & Convert Double-Precision format
5439 to Half-Precision format */
5440 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5441 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5442 return 0;
5443 }
5444 break;
5445
5446 case 475:
5447 switch (PPC_FIELD (insn, 11, 5))
5448 {
5449 case 24: /* VSX Vector Convert Half-Precision format to
5450 Single-Precision format */
5451 case 25: /* VSX Vector round and Convert Single-Precision format
5452 to Half-Precision format */
5453 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5454 /* FALL-THROUGH */
5455 case 0: /* VSX Vector Extract Exponent Double-Precision */
5456 case 1: /* VSX Vector Extract Significand Double-Precision */
5457 case 7: /* VSX Vector Byte-Reverse Halfword */
5458 case 8: /* VSX Vector Extract Exponent Single-Precision */
5459 case 9: /* VSX Vector Extract Significand Single-Precision */
5460 case 15: /* VSX Vector Byte-Reverse Word */
5461 case 23: /* VSX Vector Byte-Reverse Doubleword */
5462 case 31: /* VSX Vector Byte-Reverse Quadword */
5463 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5464 return 0;
5465 }
5466 break;
5467 }
5468
5469 switch (ext)
5470 {
5471 case 360: /* VSX Vector Splat Immediate Byte */
5472 if (PPC_FIELD (insn, 11, 2) == 0)
5473 {
5474 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5475 return 0;
5476 }
5477 break;
5478 case 918: /* VSX Scalar Insert Exponent Double-Precision */
5479 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5480 return 0;
b4cdae6f
WW
5481 }
5482
5483 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
5484 {
5485 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5486 return 0;
5487 }
5488
810c1026
WW
5489 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5490 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5491 return -1;
5492}
5493
6ec2b213
EBM
5494/* Parse and record instructions of primary opcode-61 at ADDR.
5495 Return 0 if successful. */
5496
5497static int
5498ppc_process_record_op61 (struct gdbarch *gdbarch, struct regcache *regcache,
5499 CORE_ADDR addr, uint32_t insn)
5500{
5501 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5502 ULONGEST ea = 0;
5503 int size;
5504
5505 switch (insn & 0x3)
5506 {
5507 case 0: /* Store Floating-Point Double Pair */
5508 case 2: /* Store VSX Scalar Doubleword */
5509 case 3: /* Store VSX Scalar Single */
5510 if (PPC_RA (insn) != 0)
5511 regcache_raw_read_unsigned (regcache,
5512 tdep->ppc_gp0_regnum + PPC_RA (insn),
5513 &ea);
5514 ea += PPC_DS (insn) << 2;
5515 switch (insn & 0x3)
5516 {
5517 case 0: /* Store Floating-Point Double Pair */
5518 size = 16;
5519 break;
5520 case 2: /* Store VSX Scalar Doubleword */
5521 size = 8;
5522 break;
5523 case 3: /* Store VSX Scalar Single */
5524 size = 4;
5525 break;
5526 default:
5527 gdb_assert (0);
5528 }
5529 record_full_arch_list_add_mem (ea, size);
5530 return 0;
5531 }
5532
5533 switch (insn & 0x7)
5534 {
5535 case 1: /* Load VSX Vector */
5536 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
5537 return 0;
5538 case 5: /* Store VSX Vector */
5539 if (PPC_RA (insn) != 0)
5540 regcache_raw_read_unsigned (regcache,
5541 tdep->ppc_gp0_regnum + PPC_RA (insn),
5542 &ea);
5543 ea += PPC_DQ (insn) << 4;
5544 record_full_arch_list_add_mem (ea, 16);
5545 return 0;
5546 }
5547
5548 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5549 "at %s.\n", insn, paddress (gdbarch, addr));
5550 return -1;
5551}
5552
ddeca1df
WW
5553/* Parse and record instructions of primary opcode-63 at ADDR.
5554 Return 0 if successful. */
b4cdae6f
WW
5555
5556static int
5557ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
5558 CORE_ADDR addr, uint32_t insn)
5559{
5560 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5561 int ext = PPC_EXTOP (insn);
5562 int tmp;
5563
5564 switch (ext & 0x1f)
5565 {
5566 case 18: /* Floating Divide */
5567 case 20: /* Floating Subtract */
5568 case 21: /* Floating Add */
5569 case 22: /* Floating Square Root */
5570 case 24: /* Floating Reciprocal Estimate */
5571 case 25: /* Floating Multiply */
5572 case 26: /* Floating Reciprocal Square Root Estimate */
5573 case 28: /* Floating Multiply-Subtract */
5574 case 29: /* Floating Multiply-Add */
5575 case 30: /* Floating Negative Multiply-Subtract */
5576 case 31: /* Floating Negative Multiply-Add */
5577 record_full_arch_list_add_reg (regcache,
5578 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5579 if (PPC_RC (insn))
5580 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5581 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5582 return 0;
5583
5584 case 23: /* Floating Select */
5585 record_full_arch_list_add_reg (regcache,
5586 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5587 if (PPC_RC (insn))
5588 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
8aabe2e2 5589 return 0;
b4cdae6f
WW
5590 }
5591
6ec2b213
EBM
5592 switch (ext & 0xff)
5593 {
5594 case 5: /* VSX Scalar Round to Quad-Precision Integer */
5595 case 37: /* VSX Scalar Round Quad-Precision to Double-Extended
5596 Precision */
5597 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5598 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5599 return 0;
5600 }
5601
b4cdae6f
WW
5602 switch (ext)
5603 {
5604 case 2: /* DFP Add Quad */
5605 case 3: /* DFP Quantize Quad */
5606 case 34: /* DFP Multiply Quad */
5607 case 35: /* DFP Reround Quad */
5608 case 67: /* DFP Quantize Immediate Quad */
5609 case 99: /* DFP Round To FP Integer With Inexact Quad */
5610 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5611 case 258: /* DFP Convert To DFP Extended Quad */
5612 case 514: /* DFP Subtract Quad */
5613 case 546: /* DFP Divide Quad */
5614 case 770: /* DFP Round To DFP Long Quad */
5615 case 802: /* DFP Convert From Fixed Quad */
5616 case 834: /* DFP Encode BCD To DPD Quad */
5617 if (PPC_RC (insn))
5618 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5619 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5620 record_full_arch_list_add_reg (regcache, tmp);
5621 record_full_arch_list_add_reg (regcache, tmp + 1);
5622 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5623 return 0;
5624
5625 case 130: /* DFP Compare Ordered Quad */
5626 case 162: /* DFP Test Exponent Quad */
5627 case 194: /* DFP Test Data Class Quad */
5628 case 226: /* DFP Test Data Group Quad */
5629 case 642: /* DFP Compare Unordered Quad */
5630 case 674: /* DFP Test Significance Quad */
6ec2b213 5631 case 675: /* DFP Test Significance Immediate Quad */
b4cdae6f
WW
5632 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5633 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5634 return 0;
5635
5636 case 66: /* DFP Shift Significand Left Immediate Quad */
5637 case 98: /* DFP Shift Significand Right Immediate Quad */
5638 case 322: /* DFP Decode DPD To BCD Quad */
5639 case 866: /* DFP Insert Biased Exponent Quad */
5640 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5641 record_full_arch_list_add_reg (regcache, tmp);
5642 record_full_arch_list_add_reg (regcache, tmp + 1);
5643 if (PPC_RC (insn))
5644 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5645 return 0;
5646
5647 case 290: /* DFP Convert To Fixed Quad */
5648 record_full_arch_list_add_reg (regcache,
5649 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5650 if (PPC_RC (insn))
5651 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5652 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5653 return 0;
b4cdae6f
WW
5654
5655 case 354: /* DFP Extract Biased Exponent Quad */
5656 record_full_arch_list_add_reg (regcache,
5657 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5658 if (PPC_RC (insn))
5659 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5660 return 0;
5661
5662 case 12: /* Floating Round to Single-Precision */
5663 case 14: /* Floating Convert To Integer Word */
5664 case 15: /* Floating Convert To Integer Word
5665 with round toward Zero */
5666 case 142: /* Floating Convert To Integer Word Unsigned */
5667 case 143: /* Floating Convert To Integer Word Unsigned
5668 with round toward Zero */
5669 case 392: /* Floating Round to Integer Nearest */
5670 case 424: /* Floating Round to Integer Toward Zero */
5671 case 456: /* Floating Round to Integer Plus */
5672 case 488: /* Floating Round to Integer Minus */
5673 case 814: /* Floating Convert To Integer Doubleword */
5674 case 815: /* Floating Convert To Integer Doubleword
5675 with round toward Zero */
5676 case 846: /* Floating Convert From Integer Doubleword */
5677 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5678 case 943: /* Floating Convert To Integer Doubleword Unsigned
5679 with round toward Zero */
5680 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5681 record_full_arch_list_add_reg (regcache,
5682 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5683 if (PPC_RC (insn))
5684 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5685 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5686 return 0;
5687
6ec2b213
EBM
5688 case 583:
5689 switch (PPC_FIELD (insn, 11, 5))
5690 {
5691 case 1: /* Move From FPSCR & Clear Enables */
5692 case 20: /* Move From FPSCR Control & set DRN */
5693 case 21: /* Move From FPSCR Control & set DRN Immediate */
5694 case 22: /* Move From FPSCR Control & set RN */
5695 case 23: /* Move From FPSCR Control & set RN Immediate */
5696 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
e3829d13 5697 /* Fall through. */
6ec2b213
EBM
5698 case 0: /* Move From FPSCR */
5699 case 24: /* Move From FPSCR Lightweight */
5700 if (PPC_FIELD (insn, 11, 5) == 0 && PPC_RC (insn))
5701 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5702 record_full_arch_list_add_reg (regcache,
5703 tdep->ppc_fp0_regnum
5704 + PPC_FRT (insn));
5705 return 0;
5706 }
5707 break;
5708
b4cdae6f
WW
5709 case 8: /* Floating Copy Sign */
5710 case 40: /* Floating Negate */
5711 case 72: /* Floating Move Register */
5712 case 136: /* Floating Negative Absolute Value */
5713 case 264: /* Floating Absolute Value */
5714 record_full_arch_list_add_reg (regcache,
5715 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5716 if (PPC_RC (insn))
5717 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5718 return 0;
5719
5720 case 838: /* Floating Merge Odd Word */
5721 case 966: /* Floating Merge Even Word */
5722 record_full_arch_list_add_reg (regcache,
5723 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5724 return 0;
5725
5726 case 38: /* Move To FPSCR Bit 1 */
5727 case 70: /* Move To FPSCR Bit 0 */
5728 case 134: /* Move To FPSCR Field Immediate */
5729 case 711: /* Move To FPSCR Fields */
5730 if (PPC_RC (insn))
5731 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5732 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
8aabe2e2 5733 return 0;
b4cdae6f
WW
5734
5735 case 0: /* Floating Compare Unordered */
5736 case 32: /* Floating Compare Ordered */
5737 case 64: /* Move to Condition Register from FPSCR */
6ec2b213
EBM
5738 case 132: /* VSX Scalar Compare Ordered Quad-Precision */
5739 case 164: /* VSX Scalar Compare Exponents Quad-Precision */
5740 case 644: /* VSX Scalar Compare Unordered Quad-Precision */
5741 case 708: /* VSX Scalar Test Data Class Quad-Precision */
b4cdae6f
WW
5742 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5743 /* FALL-THROUGH */
5744 case 128: /* Floating Test for software Divide */
5745 case 160: /* Floating Test for software Square Root */
5746 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5747 return 0;
5748
6ec2b213
EBM
5749 case 4: /* VSX Scalar Add Quad-Precision */
5750 case 36: /* VSX Scalar Multiply Quad-Precision */
5751 case 388: /* VSX Scalar Multiply-Add Quad-Precision */
5752 case 420: /* VSX Scalar Multiply-Subtract Quad-Precision */
5753 case 452: /* VSX Scalar Negative Multiply-Add Quad-Precision */
5754 case 484: /* VSX Scalar Negative Multiply-Subtract
5755 Quad-Precision */
5756 case 516: /* VSX Scalar Subtract Quad-Precision */
5757 case 548: /* VSX Scalar Divide Quad-Precision */
5758 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5759 /* FALL-THROUGH */
5760 case 100: /* VSX Scalar Copy Sign Quad-Precision */
5761 case 868: /* VSX Scalar Insert Exponent Quad-Precision */
5762 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5763 return 0;
5764
5765 case 804:
5766 switch (PPC_FIELD (insn, 11, 5))
5767 {
5768 case 27: /* VSX Scalar Square Root Quad-Precision */
5769 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5770 /* FALL-THROUGH */
5771 case 0: /* VSX Scalar Absolute Quad-Precision */
5772 case 2: /* VSX Scalar Extract Exponent Quad-Precision */
5773 case 8: /* VSX Scalar Negative Absolute Quad-Precision */
5774 case 16: /* VSX Scalar Negate Quad-Precision */
5775 case 18: /* VSX Scalar Extract Significand Quad-Precision */
5776 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5777 return 0;
5778 }
5779 break;
5780
5781 case 836:
5782 switch (PPC_FIELD (insn, 11, 5))
5783 {
5784 case 1: /* VSX Scalar truncate & Convert Quad-Precision format
5785 to Unsigned Word format */
5786 case 2: /* VSX Scalar Convert Unsigned Doubleword format to
5787 Quad-Precision format */
5788 case 9: /* VSX Scalar truncate & Convert Quad-Precision format
5789 to Signed Word format */
5790 case 10: /* VSX Scalar Convert Signed Doubleword format to
5791 Quad-Precision format */
5792 case 17: /* VSX Scalar truncate & Convert Quad-Precision format
5793 to Unsigned Doubleword format */
5794 case 20: /* VSX Scalar round & Convert Quad-Precision format to
5795 Double-Precision format */
5796 case 22: /* VSX Scalar Convert Double-Precision format to
5797 Quad-Precision format */
5798 case 25: /* VSX Scalar truncate & Convert Quad-Precision format
5799 to Signed Doubleword format */
5800 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5801 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
5802 return 0;
5803 }
b4cdae6f
WW
5804 }
5805
810c1026 5806 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6ec2b213 5807 "at %s, 63-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5808 return -1;
5809}
5810
5811/* Parse the current instruction and record the values of the registers and
5812 memory that will be changed in current instruction to "record_arch_list".
5813 Return -1 if something wrong. */
5814
5815int
5816ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5817 CORE_ADDR addr)
5818{
5819 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5820 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5821 uint32_t insn;
5822 int op6, tmp, i;
5823
5824 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5825 op6 = PPC_OP6 (insn);
5826
5827 switch (op6)
5828 {
5829 case 2: /* Trap Doubleword Immediate */
5830 case 3: /* Trap Word Immediate */
5831 /* Do nothing. */
5832 break;
5833
5834 case 4:
5835 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5836 return -1;
5837 break;
5838
5839 case 17: /* System call */
5840 if (PPC_LEV (insn) != 0)
5841 goto UNKNOWN_OP;
5842
5843 if (tdep->ppc_syscall_record != NULL)
5844 {
5845 if (tdep->ppc_syscall_record (regcache) != 0)
5846 return -1;
5847 }
5848 else
5849 {
5850 printf_unfiltered (_("no syscall record support\n"));
5851 return -1;
5852 }
5853 break;
5854
5855 case 7: /* Multiply Low Immediate */
5856 record_full_arch_list_add_reg (regcache,
5857 tdep->ppc_gp0_regnum + PPC_RT (insn));
5858 break;
5859
5860 case 8: /* Subtract From Immediate Carrying */
5861 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5862 record_full_arch_list_add_reg (regcache,
5863 tdep->ppc_gp0_regnum + PPC_RT (insn));
5864 break;
5865
5866 case 10: /* Compare Logical Immediate */
5867 case 11: /* Compare Immediate */
5868 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5869 break;
5870
5871 case 13: /* Add Immediate Carrying and Record */
5872 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5873 /* FALL-THROUGH */
5874 case 12: /* Add Immediate Carrying */
5875 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5876 /* FALL-THROUGH */
5877 case 14: /* Add Immediate */
5878 case 15: /* Add Immediate Shifted */
5879 record_full_arch_list_add_reg (regcache,
5880 tdep->ppc_gp0_regnum + PPC_RT (insn));
5881 break;
5882
5883 case 16: /* Branch Conditional */
5884 if ((PPC_BO (insn) & 0x4) == 0)
5885 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5886 /* FALL-THROUGH */
5887 case 18: /* Branch */
5888 if (PPC_LK (insn))
5889 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5890 break;
5891
5892 case 19:
5893 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5894 return -1;
5895 break;
5896
5897 case 20: /* Rotate Left Word Immediate then Mask Insert */
5898 case 21: /* Rotate Left Word Immediate then AND with Mask */
5899 case 23: /* Rotate Left Word then AND with Mask */
5900 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5901 /* Rotate Left Doubleword Immediate then Clear Right */
5902 /* Rotate Left Doubleword Immediate then Clear */
5903 /* Rotate Left Doubleword then Clear Left */
5904 /* Rotate Left Doubleword then Clear Right */
5905 /* Rotate Left Doubleword Immediate then Mask Insert */
5906 if (PPC_RC (insn))
5907 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5908 record_full_arch_list_add_reg (regcache,
5909 tdep->ppc_gp0_regnum + PPC_RA (insn));
5910 break;
5911
5912 case 28: /* AND Immediate */
5913 case 29: /* AND Immediate Shifted */
5914 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5915 /* FALL-THROUGH */
5916 case 24: /* OR Immediate */
5917 case 25: /* OR Immediate Shifted */
5918 case 26: /* XOR Immediate */
5919 case 27: /* XOR Immediate Shifted */
5920 record_full_arch_list_add_reg (regcache,
5921 tdep->ppc_gp0_regnum + PPC_RA (insn));
5922 break;
5923
5924 case 31:
5925 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5926 return -1;
5927 break;
5928
5929 case 33: /* Load Word and Zero with Update */
5930 case 35: /* Load Byte and Zero with Update */
5931 case 41: /* Load Halfword and Zero with Update */
5932 case 43: /* Load Halfword Algebraic with Update */
5933 record_full_arch_list_add_reg (regcache,
5934 tdep->ppc_gp0_regnum + PPC_RA (insn));
5935 /* FALL-THROUGH */
5936 case 32: /* Load Word and Zero */
5937 case 34: /* Load Byte and Zero */
5938 case 40: /* Load Halfword and Zero */
5939 case 42: /* Load Halfword Algebraic */
5940 record_full_arch_list_add_reg (regcache,
5941 tdep->ppc_gp0_regnum + PPC_RT (insn));
5942 break;
5943
5944 case 46: /* Load Multiple Word */
5945 for (i = PPC_RT (insn); i < 32; i++)
5946 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5947 break;
5948
5949 case 56: /* Load Quadword */
5950 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5951 record_full_arch_list_add_reg (regcache, tmp);
5952 record_full_arch_list_add_reg (regcache, tmp + 1);
5953 break;
5954
5955 case 49: /* Load Floating-Point Single with Update */
5956 case 51: /* Load Floating-Point Double with Update */
5957 record_full_arch_list_add_reg (regcache,
5958 tdep->ppc_gp0_regnum + PPC_RA (insn));
5959 /* FALL-THROUGH */
5960 case 48: /* Load Floating-Point Single */
5961 case 50: /* Load Floating-Point Double */
5962 record_full_arch_list_add_reg (regcache,
5963 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5964 break;
5965
5966 case 47: /* Store Multiple Word */
5967 {
b926417a 5968 ULONGEST iaddr = 0;
b4cdae6f
WW
5969
5970 if (PPC_RA (insn) != 0)
5971 regcache_raw_read_unsigned (regcache,
5972 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 5973 &iaddr);
b4cdae6f 5974
b926417a
TT
5975 iaddr += PPC_D (insn);
5976 record_full_arch_list_add_mem (iaddr, 4 * (32 - PPC_RS (insn)));
b4cdae6f
WW
5977 }
5978 break;
5979
5980 case 37: /* Store Word with Update */
5981 case 39: /* Store Byte with Update */
5982 case 45: /* Store Halfword with Update */
5983 case 53: /* Store Floating-Point Single with Update */
5984 case 55: /* Store Floating-Point Double with Update */
5985 record_full_arch_list_add_reg (regcache,
5986 tdep->ppc_gp0_regnum + PPC_RA (insn));
5987 /* FALL-THROUGH */
5988 case 36: /* Store Word */
5989 case 38: /* Store Byte */
5990 case 44: /* Store Halfword */
5991 case 52: /* Store Floating-Point Single */
5992 case 54: /* Store Floating-Point Double */
5993 {
b926417a 5994 ULONGEST iaddr = 0;
b4cdae6f
WW
5995 int size = -1;
5996
5997 if (PPC_RA (insn) != 0)
5998 regcache_raw_read_unsigned (regcache,
5999 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a
TT
6000 &iaddr);
6001 iaddr += PPC_D (insn);
b4cdae6f
WW
6002
6003 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
6004 size = 4;
6005 else if (op6 == 54 || op6 == 55)
6006 size = 8;
6007 else if (op6 == 44 || op6 == 45)
6008 size = 2;
6009 else if (op6 == 38 || op6 == 39)
6010 size = 1;
6011 else
6012 gdb_assert (0);
6013
b926417a 6014 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6015 }
6016 break;
6017
6ec2b213
EBM
6018 case 57:
6019 switch (insn & 0x3)
6020 {
6021 case 0: /* Load Floating-Point Double Pair */
6022 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
6023 record_full_arch_list_add_reg (regcache, tmp);
6024 record_full_arch_list_add_reg (regcache, tmp + 1);
6025 break;
6026 case 2: /* Load VSX Scalar Doubleword */
6027 case 3: /* Load VSX Scalar Single */
6028 ppc_record_vsr (regcache, tdep, PPC_VRT (insn) + 32);
6029 break;
6030 default:
6031 goto UNKNOWN_OP;
6032 }
b4cdae6f
WW
6033 break;
6034
6035 case 58: /* Load Doubleword */
6036 /* Load Doubleword with Update */
6037 /* Load Word Algebraic */
6038 if (PPC_FIELD (insn, 30, 2) > 2)
6039 goto UNKNOWN_OP;
6040
6041 record_full_arch_list_add_reg (regcache,
6042 tdep->ppc_gp0_regnum + PPC_RT (insn));
6043 if (PPC_BIT (insn, 31))
6044 record_full_arch_list_add_reg (regcache,
6045 tdep->ppc_gp0_regnum + PPC_RA (insn));
6046 break;
6047
6048 case 59:
6049 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
6050 return -1;
6051 break;
6052
6053 case 60:
6054 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
6055 return -1;
6056 break;
6057
6ec2b213
EBM
6058 case 61:
6059 if (ppc_process_record_op61 (gdbarch, regcache, addr, insn) != 0)
6060 return -1;
6061 break;
6062
b4cdae6f
WW
6063 case 62: /* Store Doubleword */
6064 /* Store Doubleword with Update */
6065 /* Store Quadword with Update */
6066 {
b926417a 6067 ULONGEST iaddr = 0;
b4cdae6f
WW
6068 int size;
6069 int sub2 = PPC_FIELD (insn, 30, 2);
6070
6ec2b213 6071 if (sub2 > 2)
b4cdae6f
WW
6072 goto UNKNOWN_OP;
6073
6074 if (PPC_RA (insn) != 0)
6075 regcache_raw_read_unsigned (regcache,
6076 tdep->ppc_gp0_regnum + PPC_RA (insn),
b926417a 6077 &iaddr);
b4cdae6f 6078
6ec2b213 6079 size = (sub2 == 2) ? 16 : 8;
b4cdae6f 6080
b926417a
TT
6081 iaddr += PPC_DS (insn) << 2;
6082 record_full_arch_list_add_mem (iaddr, size);
b4cdae6f
WW
6083
6084 if (op6 == 62 && sub2 == 1)
6085 record_full_arch_list_add_reg (regcache,
6086 tdep->ppc_gp0_regnum +
6087 PPC_RA (insn));
6088
6089 break;
6090 }
6091
6092 case 63:
6093 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
6094 return -1;
6095 break;
6096
6097 default:
6098UNKNOWN_OP:
810c1026
WW
6099 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
6100 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
6101 return -1;
6102 }
6103
6104 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
6105 return -1;
6106 if (record_full_arch_list_add_end ())
6107 return -1;
6108 return 0;
6109}
6110
7a78ae4e
ND
6111/* Initialize the current architecture based on INFO. If possible, re-use an
6112 architecture from ARCHES, which is a list of architectures already created
6113 during this debugging session.
c906108c 6114
7a78ae4e 6115 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 6116 a binary file. */
c906108c 6117
7a78ae4e
ND
6118static struct gdbarch *
6119rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
6120{
6121 struct gdbarch *gdbarch;
6122 struct gdbarch_tdep *tdep;
7cc46491 6123 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
6124 enum bfd_architecture arch;
6125 unsigned long mach;
6126 bfd abfd;
55eddb0f
DJ
6127 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
6128 int soft_float;
ed0f4273 6129 enum powerpc_long_double_abi long_double_abi = POWERPC_LONG_DOUBLE_AUTO;
55eddb0f 6130 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 6131 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
93b4691f 6132 int have_fpu = 0, have_spe = 0, have_mq = 0, have_altivec = 0;
7ca18ed6 6133 int have_dfp = 0, have_vsx = 0, have_ppr = 0, have_dscr = 0;
8d619c01
EBM
6134 int have_tar = 0, have_ebb = 0, have_pmu = 0, have_htm_spr = 0;
6135 int have_htm_core = 0, have_htm_fpu = 0, have_htm_altivec = 0;
6136 int have_htm_vsx = 0, have_htm_ppr = 0, have_htm_dscr = 0;
6137 int have_htm_tar = 0;
7cc46491
DJ
6138 int tdesc_wordsize = -1;
6139 const struct target_desc *tdesc = info.target_desc;
6140 struct tdesc_arch_data *tdesc_data = NULL;
f949c649 6141 int num_pseudoregs = 0;
604c2f83 6142 int cur_reg;
7a78ae4e 6143
9aa1e687 6144 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
6145 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
6146
9aa1e687
KB
6147 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
6148 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
6149
e712c1cf 6150 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 6151 that, else choose a likely default. */
9aa1e687 6152 if (from_xcoff_exec)
c906108c 6153 {
11ed25ac 6154 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
6155 wordsize = 8;
6156 else
6157 wordsize = 4;
c906108c 6158 }
9aa1e687
KB
6159 else if (from_elf_exec)
6160 {
6161 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
6162 wordsize = 8;
6163 else
6164 wordsize = 4;
6165 }
7cc46491
DJ
6166 else if (tdesc_has_registers (tdesc))
6167 wordsize = -1;
c906108c 6168 else
7a78ae4e 6169 {
27b15785 6170 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
6171 wordsize = (info.bfd_arch_info->bits_per_word
6172 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
6173 else
6174 wordsize = 4;
7a78ae4e 6175 }
c906108c 6176
475bbd17
JB
6177 /* Get the architecture and machine from the BFD. */
6178 arch = info.bfd_arch_info->arch;
6179 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
6180
6181 /* For e500 executables, the apuinfo section is of help here. Such
6182 section contains the identifier and revision number of each
6183 Application-specific Processing Unit that is present on the
6184 chip. The content of the section is determined by the assembler
6185 which looks at each instruction and determines which unit (and
74af9197
NF
6186 which version of it) can execute it. Grovel through the section
6187 looking for relevant e500 APUs. */
5bf1c677 6188
74af9197 6189 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 6190 {
74af9197
NF
6191 arch = info.bfd_arch_info->arch;
6192 mach = bfd_mach_ppc_e500;
6193 bfd_default_set_arch_mach (&abfd, arch, mach);
6194 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
6195 }
6196
7cc46491
DJ
6197 /* Find a default target description which describes our register
6198 layout, if we do not already have one. */
6199 if (! tdesc_has_registers (tdesc))
6200 {
6201 const struct variant *v;
6202
6203 /* Choose variant. */
6204 v = find_variant_by_arch (arch, mach);
6205 if (!v)
6206 return NULL;
6207
6208 tdesc = *v->tdesc;
6209 }
6210
6211 gdb_assert (tdesc_has_registers (tdesc));
6212
6213 /* Check any target description for validity. */
6214 if (tdesc_has_registers (tdesc))
6215 {
6216 static const char *const gprs[] = {
6217 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
6218 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
6219 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
6220 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
6221 };
7cc46491
DJ
6222 const struct tdesc_feature *feature;
6223 int i, valid_p;
6224 static const char *const msr_names[] = { "msr", "ps" };
6225 static const char *const cr_names[] = { "cr", "cnd" };
6226 static const char *const ctr_names[] = { "ctr", "cnt" };
6227
6228 feature = tdesc_find_feature (tdesc,
6229 "org.gnu.gdb.power.core");
6230 if (feature == NULL)
6231 return NULL;
6232
6233 tdesc_data = tdesc_data_alloc ();
6234
6235 valid_p = 1;
6236 for (i = 0; i < ppc_num_gprs; i++)
6237 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
6238 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
6239 "pc");
6240 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
6241 "lr");
6242 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
6243 "xer");
6244
6245 /* Allow alternate names for these registers, to accomodate GDB's
6246 historic naming. */
6247 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6248 PPC_MSR_REGNUM, msr_names);
6249 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6250 PPC_CR_REGNUM, cr_names);
6251 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
6252 PPC_CTR_REGNUM, ctr_names);
6253
6254 if (!valid_p)
6255 {
6256 tdesc_data_cleanup (tdesc_data);
6257 return NULL;
6258 }
6259
6260 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
6261 "mq");
6262
12863263 6263 tdesc_wordsize = tdesc_register_bitsize (feature, "pc") / 8;
7cc46491
DJ
6264 if (wordsize == -1)
6265 wordsize = tdesc_wordsize;
6266
6267 feature = tdesc_find_feature (tdesc,
6268 "org.gnu.gdb.power.fpu");
6269 if (feature != NULL)
6270 {
6271 static const char *const fprs[] = {
6272 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
6273 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
6274 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
6275 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
6276 };
6277 valid_p = 1;
6278 for (i = 0; i < ppc_num_fprs; i++)
6279 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6280 PPC_F0_REGNUM + i, fprs[i]);
6281 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6282 PPC_FPSCR_REGNUM, "fpscr");
6283
6284 if (!valid_p)
6285 {
6286 tdesc_data_cleanup (tdesc_data);
6287 return NULL;
6288 }
6289 have_fpu = 1;
0fb2aaa1
PFC
6290
6291 /* The fpscr register was expanded in isa 2.05 to 64 bits
6292 along with the addition of the decimal floating point
6293 facility. */
12863263 6294 if (tdesc_register_bitsize (feature, "fpscr") > 32)
0fb2aaa1 6295 have_dfp = 1;
7cc46491
DJ
6296 }
6297 else
6298 have_fpu = 0;
6299
6300 feature = tdesc_find_feature (tdesc,
6301 "org.gnu.gdb.power.altivec");
6302 if (feature != NULL)
6303 {
6304 static const char *const vector_regs[] = {
6305 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
6306 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
6307 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
6308 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
6309 };
6310
6311 valid_p = 1;
6312 for (i = 0; i < ppc_num_gprs; i++)
6313 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6314 PPC_VR0_REGNUM + i,
6315 vector_regs[i]);
6316 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6317 PPC_VSCR_REGNUM, "vscr");
6318 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6319 PPC_VRSAVE_REGNUM, "vrsave");
6320
6321 if (have_spe || !valid_p)
6322 {
6323 tdesc_data_cleanup (tdesc_data);
6324 return NULL;
6325 }
6326 have_altivec = 1;
6327 }
6328 else
6329 have_altivec = 0;
6330
604c2f83
LM
6331 /* Check for POWER7 VSX registers support. */
6332 feature = tdesc_find_feature (tdesc,
6333 "org.gnu.gdb.power.vsx");
6334
6335 if (feature != NULL)
6336 {
6337 static const char *const vsx_regs[] = {
6338 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
6339 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
6340 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
6341 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
6342 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
6343 "vs30h", "vs31h"
6344 };
6345
6346 valid_p = 1;
6347
6348 for (i = 0; i < ppc_num_vshrs; i++)
6349 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6350 PPC_VSR0_UPPER_REGNUM + i,
6351 vsx_regs[i]);
81ab84fd
PFC
6352
6353 if (!valid_p || !have_fpu || !have_altivec)
604c2f83
LM
6354 {
6355 tdesc_data_cleanup (tdesc_data);
6356 return NULL;
6357 }
6358
6359 have_vsx = 1;
6360 }
6361 else
6362 have_vsx = 0;
6363
7cc46491
DJ
6364 /* On machines supporting the SPE APU, the general-purpose registers
6365 are 64 bits long. There are SIMD vector instructions to treat them
6366 as pairs of floats, but the rest of the instruction set treats them
6367 as 32-bit registers, and only operates on their lower halves.
6368
6369 In the GDB regcache, we treat their high and low halves as separate
6370 registers. The low halves we present as the general-purpose
6371 registers, and then we have pseudo-registers that stitch together
6372 the upper and lower halves and present them as pseudo-registers.
6373
6374 Thus, the target description is expected to supply the upper
6375 halves separately. */
6376
6377 feature = tdesc_find_feature (tdesc,
6378 "org.gnu.gdb.power.spe");
6379 if (feature != NULL)
6380 {
6381 static const char *const upper_spe[] = {
6382 "ev0h", "ev1h", "ev2h", "ev3h",
6383 "ev4h", "ev5h", "ev6h", "ev7h",
6384 "ev8h", "ev9h", "ev10h", "ev11h",
6385 "ev12h", "ev13h", "ev14h", "ev15h",
6386 "ev16h", "ev17h", "ev18h", "ev19h",
6387 "ev20h", "ev21h", "ev22h", "ev23h",
6388 "ev24h", "ev25h", "ev26h", "ev27h",
6389 "ev28h", "ev29h", "ev30h", "ev31h"
6390 };
6391
6392 valid_p = 1;
6393 for (i = 0; i < ppc_num_gprs; i++)
6394 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6395 PPC_SPE_UPPER_GP0_REGNUM + i,
6396 upper_spe[i]);
6397 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6398 PPC_SPE_ACC_REGNUM, "acc");
6399 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6400 PPC_SPE_FSCR_REGNUM, "spefscr");
6401
6402 if (have_mq || have_fpu || !valid_p)
6403 {
6404 tdesc_data_cleanup (tdesc_data);
6405 return NULL;
6406 }
6407 have_spe = 1;
6408 }
6409 else
6410 have_spe = 0;
7ca18ed6
EBM
6411
6412 /* Program Priority Register. */
6413 feature = tdesc_find_feature (tdesc,
6414 "org.gnu.gdb.power.ppr");
6415 if (feature != NULL)
6416 {
6417 valid_p = 1;
6418 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6419 PPC_PPR_REGNUM, "ppr");
6420
6421 if (!valid_p)
6422 {
6423 tdesc_data_cleanup (tdesc_data);
6424 return NULL;
6425 }
6426 have_ppr = 1;
6427 }
6428 else
6429 have_ppr = 0;
6430
6431 /* Data Stream Control Register. */
6432 feature = tdesc_find_feature (tdesc,
6433 "org.gnu.gdb.power.dscr");
6434 if (feature != NULL)
6435 {
6436 valid_p = 1;
6437 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6438 PPC_DSCR_REGNUM, "dscr");
6439
6440 if (!valid_p)
6441 {
6442 tdesc_data_cleanup (tdesc_data);
6443 return NULL;
6444 }
6445 have_dscr = 1;
6446 }
6447 else
6448 have_dscr = 0;
f2cf6173
EBM
6449
6450 /* Target Address Register. */
6451 feature = tdesc_find_feature (tdesc,
6452 "org.gnu.gdb.power.tar");
6453 if (feature != NULL)
6454 {
6455 valid_p = 1;
6456 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6457 PPC_TAR_REGNUM, "tar");
6458
6459 if (!valid_p)
6460 {
6461 tdesc_data_cleanup (tdesc_data);
6462 return NULL;
6463 }
6464 have_tar = 1;
6465 }
6466 else
6467 have_tar = 0;
232bfb86
EBM
6468
6469 /* Event-based Branching Registers. */
6470 feature = tdesc_find_feature (tdesc,
6471 "org.gnu.gdb.power.ebb");
6472 if (feature != NULL)
6473 {
6474 static const char *const ebb_regs[] = {
6475 "bescr", "ebbhr", "ebbrr"
6476 };
6477
6478 valid_p = 1;
6479 for (i = 0; i < ARRAY_SIZE (ebb_regs); i++)
6480 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6481 PPC_BESCR_REGNUM + i,
6482 ebb_regs[i]);
6483 if (!valid_p)
6484 {
6485 tdesc_data_cleanup (tdesc_data);
6486 return NULL;
6487 }
6488 have_ebb = 1;
6489 }
6490 else
6491 have_ebb = 0;
6492
6493 /* Subset of the ISA 2.07 Performance Monitor Registers provided
6494 by Linux. */
6495 feature = tdesc_find_feature (tdesc,
6496 "org.gnu.gdb.power.linux.pmu");
6497 if (feature != NULL)
6498 {
6499 valid_p = 1;
6500
6501 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6502 PPC_MMCR0_REGNUM,
6503 "mmcr0");
6504 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6505 PPC_MMCR2_REGNUM,
6506 "mmcr2");
6507 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6508 PPC_SIAR_REGNUM,
6509 "siar");
6510 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6511 PPC_SDAR_REGNUM,
6512 "sdar");
6513 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6514 PPC_SIER_REGNUM,
6515 "sier");
6516
6517 if (!valid_p)
6518 {
6519 tdesc_data_cleanup (tdesc_data);
6520 return NULL;
6521 }
6522 have_pmu = 1;
6523 }
6524 else
6525 have_pmu = 0;
8d619c01
EBM
6526
6527 /* Hardware Transactional Memory Registers. */
6528 feature = tdesc_find_feature (tdesc,
6529 "org.gnu.gdb.power.htm.spr");
6530 if (feature != NULL)
6531 {
6532 static const char *const tm_spr_regs[] = {
6533 "tfhar", "texasr", "tfiar"
6534 };
6535
6536 valid_p = 1;
6537 for (i = 0; i < ARRAY_SIZE (tm_spr_regs); i++)
6538 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6539 PPC_TFHAR_REGNUM + i,
6540 tm_spr_regs[i]);
6541 if (!valid_p)
6542 {
6543 tdesc_data_cleanup (tdesc_data);
6544 return NULL;
6545 }
6546
6547 have_htm_spr = 1;
6548 }
6549 else
6550 have_htm_spr = 0;
6551
6552 feature = tdesc_find_feature (tdesc,
6553 "org.gnu.gdb.power.htm.core");
6554 if (feature != NULL)
6555 {
6556 static const char *const cgprs[] = {
6557 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
6558 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14",
6559 "cr15", "cr16", "cr17", "cr18", "cr19", "cr20", "cr21",
6560 "cr22", "cr23", "cr24", "cr25", "cr26", "cr27", "cr28",
6561 "cr29", "cr30", "cr31", "ccr", "cxer", "clr", "cctr"
6562 };
6563
6564 valid_p = 1;
6565
6566 for (i = 0; i < ARRAY_SIZE (cgprs); i++)
6567 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6568 PPC_CR0_REGNUM + i,
6569 cgprs[i]);
6570 if (!valid_p)
6571 {
6572 tdesc_data_cleanup (tdesc_data);
6573 return NULL;
6574 }
6575
6576 have_htm_core = 1;
6577 }
6578 else
6579 have_htm_core = 0;
6580
6581 feature = tdesc_find_feature (tdesc,
6582 "org.gnu.gdb.power.htm.fpu");
6583 if (feature != NULL)
6584 {
6585 valid_p = 1;
6586
6587 static const char *const cfprs[] = {
6588 "cf0", "cf1", "cf2", "cf3", "cf4", "cf5", "cf6", "cf7",
6589 "cf8", "cf9", "cf10", "cf11", "cf12", "cf13", "cf14", "cf15",
6590 "cf16", "cf17", "cf18", "cf19", "cf20", "cf21", "cf22",
6591 "cf23", "cf24", "cf25", "cf26", "cf27", "cf28", "cf29",
6592 "cf30", "cf31", "cfpscr"
6593 };
6594
6595 for (i = 0; i < ARRAY_SIZE (cfprs); i++)
6596 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6597 PPC_CF0_REGNUM + i,
6598 cfprs[i]);
6599
6600 if (!valid_p)
6601 {
6602 tdesc_data_cleanup (tdesc_data);
6603 return NULL;
6604 }
6605 have_htm_fpu = 1;
6606 }
6607 else
6608 have_htm_fpu = 0;
6609
6610 feature = tdesc_find_feature (tdesc,
6611 "org.gnu.gdb.power.htm.altivec");
6612 if (feature != NULL)
6613 {
6614 valid_p = 1;
6615
6616 static const char *const cvmx[] = {
6617 "cvr0", "cvr1", "cvr2", "cvr3", "cvr4", "cvr5", "cvr6",
6618 "cvr7", "cvr8", "cvr9", "cvr10", "cvr11", "cvr12", "cvr13",
6619 "cvr14", "cvr15","cvr16", "cvr17", "cvr18", "cvr19", "cvr20",
6620 "cvr21", "cvr22", "cvr23", "cvr24", "cvr25", "cvr26",
6621 "cvr27", "cvr28", "cvr29", "cvr30", "cvr31", "cvscr",
6622 "cvrsave"
6623 };
6624
6625 for (i = 0; i < ARRAY_SIZE (cvmx); i++)
6626 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6627 PPC_CVR0_REGNUM + i,
6628 cvmx[i]);
6629
6630 if (!valid_p)
6631 {
6632 tdesc_data_cleanup (tdesc_data);
6633 return NULL;
6634 }
6635 have_htm_altivec = 1;
6636 }
6637 else
6638 have_htm_altivec = 0;
6639
6640 feature = tdesc_find_feature (tdesc,
6641 "org.gnu.gdb.power.htm.vsx");
6642 if (feature != NULL)
6643 {
6644 valid_p = 1;
6645
6646 static const char *const cvsx[] = {
6647 "cvs0h", "cvs1h", "cvs2h", "cvs3h", "cvs4h", "cvs5h",
6648 "cvs6h", "cvs7h", "cvs8h", "cvs9h", "cvs10h", "cvs11h",
6649 "cvs12h", "cvs13h", "cvs14h", "cvs15h", "cvs16h", "cvs17h",
6650 "cvs18h", "cvs19h", "cvs20h", "cvs21h", "cvs22h", "cvs23h",
6651 "cvs24h", "cvs25h", "cvs26h", "cvs27h", "cvs28h", "cvs29h",
6652 "cvs30h", "cvs31h"
6653 };
6654
6655 for (i = 0; i < ARRAY_SIZE (cvsx); i++)
6656 valid_p &= tdesc_numbered_register (feature, tdesc_data,
6657 (PPC_CVSR0_UPPER_REGNUM
6658 + i),
6659 cvsx[i]);
6660
6661 if (!valid_p || !have_htm_fpu || !have_htm_altivec)
6662 {
6663 tdesc_data_cleanup (tdesc_data);
6664 return NULL;
6665 }
6666 have_htm_vsx = 1;
6667 }
6668 else
6669 have_htm_vsx = 0;
6670
6671 feature = tdesc_find_feature (tdesc,
6672 "org.gnu.gdb.power.htm.ppr");
6673 if (feature != NULL)
6674 {
6675 valid_p = tdesc_numbered_register (feature, tdesc_data,
6676 PPC_CPPR_REGNUM, "cppr");
6677
6678 if (!valid_p)
6679 {
6680 tdesc_data_cleanup (tdesc_data);
6681 return NULL;
6682 }
6683 have_htm_ppr = 1;
6684 }
6685 else
6686 have_htm_ppr = 0;
6687
6688 feature = tdesc_find_feature (tdesc,
6689 "org.gnu.gdb.power.htm.dscr");
6690 if (feature != NULL)
6691 {
6692 valid_p = tdesc_numbered_register (feature, tdesc_data,
6693 PPC_CDSCR_REGNUM, "cdscr");
6694
6695 if (!valid_p)
6696 {
6697 tdesc_data_cleanup (tdesc_data);
6698 return NULL;
6699 }
6700 have_htm_dscr = 1;
6701 }
6702 else
6703 have_htm_dscr = 0;
6704
6705 feature = tdesc_find_feature (tdesc,
6706 "org.gnu.gdb.power.htm.tar");
6707 if (feature != NULL)
6708 {
6709 valid_p = tdesc_numbered_register (feature, tdesc_data,
6710 PPC_CTAR_REGNUM, "ctar");
6711
6712 if (!valid_p)
6713 {
6714 tdesc_data_cleanup (tdesc_data);
6715 return NULL;
6716 }
6717 have_htm_tar = 1;
6718 }
6719 else
6720 have_htm_tar = 0;
7cc46491
DJ
6721 }
6722
6723 /* If we have a 64-bit binary on a 32-bit target, complain. Also
6724 complain for a 32-bit binary on a 64-bit target; we do not yet
6725 support that. For instance, the 32-bit ABI routines expect
6726 32-bit GPRs.
6727
6728 As long as there isn't an explicit target description, we'll
6729 choose one based on the BFD architecture and get a word size
6730 matching the binary (probably powerpc:common or
6731 powerpc:common64). So there is only trouble if a 64-bit target
6732 supplies a 64-bit description while debugging a 32-bit
6733 binary. */
6734 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
6735 {
6736 tdesc_data_cleanup (tdesc_data);
6737 return NULL;
6738 }
6739
55eddb0f 6740#ifdef HAVE_ELF
cd453cd0
UW
6741 if (from_elf_exec)
6742 {
6743 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
6744 {
6745 case 1:
6746 elf_abi = POWERPC_ELF_V1;
6747 break;
6748 case 2:
6749 elf_abi = POWERPC_ELF_V2;
6750 break;
6751 default:
6752 break;
6753 }
6754 }
6755
55eddb0f
DJ
6756 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
6757 {
6758 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
ed0f4273 6759 Tag_GNU_Power_ABI_FP) & 3)
55eddb0f
DJ
6760 {
6761 case 1:
6762 soft_float_flag = AUTO_BOOLEAN_FALSE;
6763 break;
6764 case 2:
6765 soft_float_flag = AUTO_BOOLEAN_TRUE;
6766 break;
6767 default:
6768 break;
6769 }
6770 }
6771
ed0f4273
UW
6772 if (long_double_abi == POWERPC_LONG_DOUBLE_AUTO && from_elf_exec)
6773 {
6774 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6775 Tag_GNU_Power_ABI_FP) >> 2)
6776 {
6777 case 1:
6778 long_double_abi = POWERPC_LONG_DOUBLE_IBM128;
6779 break;
6780 case 3:
6781 long_double_abi = POWERPC_LONG_DOUBLE_IEEE128;
6782 break;
6783 default:
6784 break;
6785 }
6786 }
6787
55eddb0f
DJ
6788 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
6789 {
6790 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
6791 Tag_GNU_Power_ABI_Vector))
6792 {
6793 case 1:
6794 vector_abi = POWERPC_VEC_GENERIC;
6795 break;
6796 case 2:
6797 vector_abi = POWERPC_VEC_ALTIVEC;
6798 break;
6799 case 3:
6800 vector_abi = POWERPC_VEC_SPE;
6801 break;
6802 default:
6803 break;
6804 }
6805 }
6806#endif
6807
cd453cd0
UW
6808 /* At this point, the only supported ELF-based 64-bit little-endian
6809 operating system is GNU/Linux, and this uses the ELFv2 ABI by
6810 default. All other supported ELF-based operating systems use the
6811 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
6812 e.g. because we run a legacy binary, or have attached to a process
6813 and have not found any associated binary file, set the default
6814 according to this heuristic. */
6815 if (elf_abi == POWERPC_ELF_AUTO)
6816 {
6817 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
6818 elf_abi = POWERPC_ELF_V2;
6819 else
6820 elf_abi = POWERPC_ELF_V1;
6821 }
6822
55eddb0f
DJ
6823 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
6824 soft_float = 1;
6825 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
6826 soft_float = 0;
6827 else
6828 soft_float = !have_fpu;
6829
6830 /* If we have a hard float binary or setting but no floating point
6831 registers, downgrade to soft float anyway. We're still somewhat
6832 useful in this scenario. */
6833 if (!soft_float && !have_fpu)
6834 soft_float = 1;
6835
6836 /* Similarly for vector registers. */
6837 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
6838 vector_abi = POWERPC_VEC_GENERIC;
6839
6840 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
6841 vector_abi = POWERPC_VEC_GENERIC;
6842
6843 if (vector_abi == POWERPC_VEC_AUTO)
6844 {
6845 if (have_altivec)
6846 vector_abi = POWERPC_VEC_ALTIVEC;
6847 else if (have_spe)
6848 vector_abi = POWERPC_VEC_SPE;
6849 else
6850 vector_abi = POWERPC_VEC_GENERIC;
6851 }
6852
6853 /* Do not limit the vector ABI based on available hardware, since we
6854 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
6855
7cc46491
DJ
6856 /* Find a candidate among extant architectures. */
6857 for (arches = gdbarch_list_lookup_by_info (arches, &info);
6858 arches != NULL;
6859 arches = gdbarch_list_lookup_by_info (arches->next, &info))
6860 {
6861 /* Word size in the various PowerPC bfd_arch_info structs isn't
6862 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
6863 separate word size check. */
6864 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
6865 if (tdep && tdep->elf_abi != elf_abi)
6866 continue;
55eddb0f
DJ
6867 if (tdep && tdep->soft_float != soft_float)
6868 continue;
ed0f4273
UW
6869 if (tdep && tdep->long_double_abi != long_double_abi)
6870 continue;
55eddb0f
DJ
6871 if (tdep && tdep->vector_abi != vector_abi)
6872 continue;
7cc46491
DJ
6873 if (tdep && tdep->wordsize == wordsize)
6874 {
6875 if (tdesc_data != NULL)
6876 tdesc_data_cleanup (tdesc_data);
6877 return arches->gdbarch;
6878 }
6879 }
6880
6881 /* None found, create a new architecture from INFO, whose bfd_arch_info
6882 validity depends on the source:
6883 - executable useless
6884 - rs6000_host_arch() good
6885 - core file good
6886 - "set arch" trust blindly
6887 - GDB startup useless but harmless */
6888
fc270c35 6889 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 6890 tdep->wordsize = wordsize;
cd453cd0 6891 tdep->elf_abi = elf_abi;
55eddb0f 6892 tdep->soft_float = soft_float;
ed0f4273 6893 tdep->long_double_abi = long_double_abi;
55eddb0f 6894 tdep->vector_abi = vector_abi;
7cc46491 6895
7a78ae4e 6896 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 6897
7cc46491
DJ
6898 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
6899 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
6900 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
6901 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
6902 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
6903 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
6904 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
6905 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
6906
6907 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
6908 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 6909 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
6910 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
6911 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
6912 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
6913 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
6914 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
7ca18ed6
EBM
6915 tdep->ppc_ppr_regnum = have_ppr ? PPC_PPR_REGNUM : -1;
6916 tdep->ppc_dscr_regnum = have_dscr ? PPC_DSCR_REGNUM : -1;
f2cf6173 6917 tdep->ppc_tar_regnum = have_tar ? PPC_TAR_REGNUM : -1;
232bfb86
EBM
6918 tdep->have_ebb = have_ebb;
6919
6920 /* If additional pmu registers are added, care must be taken when
6921 setting new fields in the tdep below, to maintain compatibility
6922 with features that only provide some of the registers. Currently
6923 gdb access to the pmu registers is only supported in linux, and
6924 linux only provides a subset of the pmu registers defined in the
6925 architecture. */
6926
6927 tdep->ppc_mmcr0_regnum = have_pmu ? PPC_MMCR0_REGNUM : -1;
6928 tdep->ppc_mmcr2_regnum = have_pmu ? PPC_MMCR2_REGNUM : -1;
6929 tdep->ppc_siar_regnum = have_pmu ? PPC_SIAR_REGNUM : -1;
6930 tdep->ppc_sdar_regnum = have_pmu ? PPC_SDAR_REGNUM : -1;
6931 tdep->ppc_sier_regnum = have_pmu ? PPC_SIER_REGNUM : -1;
7cc46491 6932
8d619c01
EBM
6933 tdep->have_htm_spr = have_htm_spr;
6934 tdep->have_htm_core = have_htm_core;
6935 tdep->have_htm_fpu = have_htm_fpu;
6936 tdep->have_htm_altivec = have_htm_altivec;
6937 tdep->have_htm_vsx = have_htm_vsx;
6938 tdep->ppc_cppr_regnum = have_htm_ppr ? PPC_CPPR_REGNUM : -1;
6939 tdep->ppc_cdscr_regnum = have_htm_dscr ? PPC_CDSCR_REGNUM : -1;
6940 tdep->ppc_ctar_regnum = have_htm_tar ? PPC_CTAR_REGNUM : -1;
6941
7cc46491
DJ
6942 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
6943 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
7cc46491 6944 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 6945 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
6946
6947 /* The XML specification for PowerPC sensibly calls the MSR "msr".
6948 GDB traditionally called it "ps", though, so let GDB add an
6949 alias. */
6950 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
6951
4a7622d1 6952 if (wordsize == 8)
05580c65 6953 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 6954 else
4a7622d1 6955 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 6956
baffbae0
JB
6957 /* Set lr_frame_offset. */
6958 if (wordsize == 8)
6959 tdep->lr_frame_offset = 16;
baffbae0 6960 else
4a7622d1 6961 tdep->lr_frame_offset = 4;
baffbae0 6962
6f072a10
PFC
6963 if (have_spe || have_dfp || have_altivec
6964 || have_vsx || have_htm_fpu || have_htm_vsx)
7cc46491 6965 {
f949c649 6966 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
6967 set_gdbarch_pseudo_register_write (gdbarch,
6968 rs6000_pseudo_register_write);
2a2fa07b
MK
6969 set_gdbarch_ax_pseudo_register_collect (gdbarch,
6970 rs6000_ax_pseudo_register_collect);
7cc46491 6971 }
1fcc0bb8 6972
a67914de
MK
6973 set_gdbarch_gen_return_address (gdbarch, rs6000_gen_return_address);
6974
e0d24f8d
WZ
6975 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
6976
5a9e69ba 6977 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
6978
6979 if (have_spe)
6980 num_pseudoregs += 32;
6981 if (have_dfp)
6982 num_pseudoregs += 16;
6f072a10
PFC
6983 if (have_altivec)
6984 num_pseudoregs += 32;
604c2f83
LM
6985 if (have_vsx)
6986 /* Include both VSX and Extended FP registers. */
6987 num_pseudoregs += 96;
8d619c01
EBM
6988 if (have_htm_fpu)
6989 num_pseudoregs += 16;
6990 /* Include both checkpointed VSX and EFP registers. */
6991 if (have_htm_vsx)
6992 num_pseudoregs += 64 + 32;
f949c649
TJB
6993
6994 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
6995
6996 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
6997 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
6998 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
6999 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
7000 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
7001 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
7002 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 7003 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 7004 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 7005
11269d7e 7006 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 7007 if (wordsize == 8)
8b148df9
AC
7008 /* PPC64 SYSV. */
7009 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 7010
691d145a
JB
7011 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
7012 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
7013 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
7014
18ed0c4e
JB
7015 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7016 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 7017
4a7622d1 7018 if (wordsize == 4)
77b2b6d4 7019 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 7020 else if (wordsize == 8)
8be9034a 7021 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 7022
7a78ae4e 7023 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 7024 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 7025 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 7026
7a78ae4e 7027 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
04180708
YQ
7028
7029 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
7030 rs6000_breakpoint::kind_from_pc);
7031 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
7032 rs6000_breakpoint::bp_from_kind);
7a78ae4e 7033
203c3895 7034 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 7035 it shouldn't be. */
203c3895
UW
7036 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
7037
ce5eab59 7038 /* Handles single stepping of atomic sequences. */
4a7622d1 7039 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 7040
0df8b418 7041 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
7042 set_gdbarch_frame_args_skip (gdbarch, 8);
7043
143985b7
AF
7044 /* Helpers for function argument information. */
7045 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
7046
6f7f3f0d
UW
7047 /* Trampoline. */
7048 set_gdbarch_in_solib_return_trampoline
7049 (gdbarch, rs6000_in_solib_return_trampoline);
7050 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
7051
4fc771b8 7052 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 7053 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
7054 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
7055
9274a07c
LM
7056 /* Frame handling. */
7057 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
7058
2454a024
UW
7059 /* Setup displaced stepping. */
7060 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 7061 ppc_displaced_step_copy_insn);
99e40580
UW
7062 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
7063 ppc_displaced_step_hw_singlestep);
2454a024 7064 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
2454a024
UW
7065 set_gdbarch_displaced_step_location (gdbarch,
7066 displaced_step_at_entry_point);
7067
7068 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
7069
7b112f9c 7070 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 7071 info.target_desc = tdesc;
0dba2a6c 7072 info.tdesc_data = tdesc_data;
4be87837 7073 gdbarch_init_osabi (info, gdbarch);
7b112f9c 7074
61a65099
KB
7075 switch (info.osabi)
7076 {
f5aecab8 7077 case GDB_OSABI_LINUX:
1736a7bd 7078 case GDB_OSABI_NETBSD:
61a65099 7079 case GDB_OSABI_UNKNOWN:
2608dbf8 7080 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7081 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
61a65099
KB
7082 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
7083 break;
7084 default:
61a65099 7085 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287 7086
2608dbf8 7087 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce 7088 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
81332287 7089 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
7090 }
7091
7cc46491 7092 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6f072a10
PFC
7093 set_tdesc_pseudo_register_reggroup_p (gdbarch,
7094 rs6000_pseudo_register_reggroup_p);
7cc46491
DJ
7095 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
7096
7097 /* Override the normal target description method to make the SPE upper
7098 halves anonymous. */
7099 set_gdbarch_register_name (gdbarch, rs6000_register_name);
7100
604c2f83
LM
7101 /* Choose register numbers for all supported pseudo-registers. */
7102 tdep->ppc_ev0_regnum = -1;
7103 tdep->ppc_dl0_regnum = -1;
6f072a10 7104 tdep->ppc_v0_alias_regnum = -1;
604c2f83
LM
7105 tdep->ppc_vsr0_regnum = -1;
7106 tdep->ppc_efpr0_regnum = -1;
8d619c01
EBM
7107 tdep->ppc_cdl0_regnum = -1;
7108 tdep->ppc_cvsr0_regnum = -1;
7109 tdep->ppc_cefpr0_regnum = -1;
9f643768 7110
604c2f83
LM
7111 cur_reg = gdbarch_num_regs (gdbarch);
7112
7113 if (have_spe)
7114 {
7115 tdep->ppc_ev0_regnum = cur_reg;
7116 cur_reg += 32;
7117 }
7118 if (have_dfp)
7119 {
7120 tdep->ppc_dl0_regnum = cur_reg;
7121 cur_reg += 16;
7122 }
6f072a10
PFC
7123 if (have_altivec)
7124 {
7125 tdep->ppc_v0_alias_regnum = cur_reg;
7126 cur_reg += 32;
7127 }
604c2f83
LM
7128 if (have_vsx)
7129 {
7130 tdep->ppc_vsr0_regnum = cur_reg;
7131 cur_reg += 64;
7132 tdep->ppc_efpr0_regnum = cur_reg;
7133 cur_reg += 32;
7134 }
8d619c01
EBM
7135 if (have_htm_fpu)
7136 {
7137 tdep->ppc_cdl0_regnum = cur_reg;
7138 cur_reg += 16;
7139 }
7140 if (have_htm_vsx)
7141 {
7142 tdep->ppc_cvsr0_regnum = cur_reg;
7143 cur_reg += 64;
7144 tdep->ppc_cefpr0_regnum = cur_reg;
7145 cur_reg += 32;
7146 }
f949c649 7147
f6efe3f8 7148 gdb_assert (gdbarch_num_cooked_regs (gdbarch) == cur_reg);
f949c649 7149
debb1f09
JB
7150 /* Register the ravenscar_arch_ops. */
7151 if (mach == bfd_mach_ppc_e500)
7152 register_e500_ravenscar_ops (gdbarch);
7153 else
7154 register_ppc_ravenscar_ops (gdbarch);
7155
65b48a81
PB
7156 set_gdbarch_disassembler_options (gdbarch, &powerpc_disassembler_options);
7157 set_gdbarch_valid_disassembler_options (gdbarch,
7158 disassembler_options_powerpc ());
7159
7a78ae4e 7160 return gdbarch;
c906108c
SS
7161}
7162
7b112f9c 7163static void
8b164abb 7164rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 7165{
8b164abb 7166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
7167
7168 if (tdep == NULL)
7169 return;
7170
4be87837 7171 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
7172}
7173
55eddb0f
DJ
7174/* PowerPC-specific commands. */
7175
7176static void
981a3fb3 7177set_powerpc_command (const char *args, int from_tty)
55eddb0f
DJ
7178{
7179 printf_unfiltered (_("\
7180\"set powerpc\" must be followed by an appropriate subcommand.\n"));
7181 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
7182}
7183
7184static void
981a3fb3 7185show_powerpc_command (const char *args, int from_tty)
55eddb0f
DJ
7186{
7187 cmd_show_list (showpowerpccmdlist, from_tty, "");
7188}
7189
7190static void
eb4c3f4a 7191powerpc_set_soft_float (const char *args, int from_tty,
55eddb0f
DJ
7192 struct cmd_list_element *c)
7193{
7194 struct gdbarch_info info;
7195
7196 /* Update the architecture. */
7197 gdbarch_info_init (&info);
7198 if (!gdbarch_update_p (info))
9b20d036 7199 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7200}
7201
7202static void
eb4c3f4a 7203powerpc_set_vector_abi (const char *args, int from_tty,
55eddb0f
DJ
7204 struct cmd_list_element *c)
7205{
7206 struct gdbarch_info info;
570dc176 7207 int vector_abi;
55eddb0f
DJ
7208
7209 for (vector_abi = POWERPC_VEC_AUTO;
7210 vector_abi != POWERPC_VEC_LAST;
7211 vector_abi++)
7212 if (strcmp (powerpc_vector_abi_string,
7213 powerpc_vector_strings[vector_abi]) == 0)
7214 {
aead7601 7215 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
7216 break;
7217 }
7218
7219 if (vector_abi == POWERPC_VEC_LAST)
7220 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
7221 powerpc_vector_abi_string);
7222
7223 /* Update the architecture. */
7224 gdbarch_info_init (&info);
7225 if (!gdbarch_update_p (info))
9b20d036 7226 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
7227}
7228
e09342b5
TJB
7229/* Show the current setting of the exact watchpoints flag. */
7230
7231static void
7232show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
7233 struct cmd_list_element *c,
7234 const char *value)
7235{
7236 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
7237}
7238
845d4708 7239/* Read a PPC instruction from memory. */
d78489bf
AT
7240
7241static unsigned int
845d4708 7242read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 7243{
845d4708
AM
7244 struct gdbarch *gdbarch = get_frame_arch (frame);
7245 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7246
7247 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
7248}
7249
7250/* Return non-zero if the instructions at PC match the series
7251 described in PATTERN, or zero otherwise. PATTERN is an array of
7252 'struct ppc_insn_pattern' objects, terminated by an entry whose
7253 mask is zero.
7254
7433498b 7255 When the match is successful, fill INSNS[i] with what PATTERN[i]
d78489bf 7256 matched. If PATTERN[i] is optional, and the instruction wasn't
7433498b
AM
7257 present, set INSNS[i] to 0 (which is not a valid PPC instruction).
7258 INSNS should have as many elements as PATTERN, minus the terminator.
7259 Note that, if PATTERN contains optional instructions which aren't
7260 present in memory, then INSNS will have holes, so INSNS[i] isn't
7261 necessarily the i'th instruction in memory. */
d78489bf
AT
7262
7263int
845d4708 7264ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
7433498b 7265 const struct ppc_insn_pattern *pattern,
845d4708 7266 unsigned int *insns)
d78489bf
AT
7267{
7268 int i;
845d4708 7269 unsigned int insn;
d78489bf 7270
845d4708 7271 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 7272 {
845d4708
AM
7273 if (insn == 0)
7274 insn = read_insn (frame, pc);
7275 insns[i] = 0;
7276 if ((insn & pattern[i].mask) == pattern[i].data)
7277 {
7278 insns[i] = insn;
7279 pc += 4;
7280 insn = 0;
7281 }
7282 else if (!pattern[i].optional)
d78489bf
AT
7283 return 0;
7284 }
7285
7286 return 1;
7287}
7288
7289/* Return the 'd' field of the d-form instruction INSN, properly
7290 sign-extended. */
7291
7292CORE_ADDR
7293ppc_insn_d_field (unsigned int insn)
7294{
7295 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
7296}
7297
7298/* Return the 'ds' field of the ds-form instruction INSN, with the two
7299 zero bits concatenated at the right, and properly
7300 sign-extended. */
7301
7302CORE_ADDR
7303ppc_insn_ds_field (unsigned int insn)
7304{
7305 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
7306}
7307
c906108c
SS
7308/* Initialization code. */
7309
6c265988 7310void _initialize_rs6000_tdep ();
c906108c 7311void
6c265988 7312_initialize_rs6000_tdep ()
c906108c 7313{
7b112f9c
JT
7314 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
7315 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
7316
7317 /* Initialize the standard target descriptions. */
7318 initialize_tdesc_powerpc_32 ();
7284e1be 7319 initialize_tdesc_powerpc_altivec32 ();
604c2f83 7320 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
7321 initialize_tdesc_powerpc_403 ();
7322 initialize_tdesc_powerpc_403gc ();
4d09ffea 7323 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
7324 initialize_tdesc_powerpc_505 ();
7325 initialize_tdesc_powerpc_601 ();
7326 initialize_tdesc_powerpc_602 ();
7327 initialize_tdesc_powerpc_603 ();
7328 initialize_tdesc_powerpc_604 ();
7329 initialize_tdesc_powerpc_64 ();
7284e1be 7330 initialize_tdesc_powerpc_altivec64 ();
604c2f83 7331 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
7332 initialize_tdesc_powerpc_7400 ();
7333 initialize_tdesc_powerpc_750 ();
7334 initialize_tdesc_powerpc_860 ();
7335 initialize_tdesc_powerpc_e500 ();
7336 initialize_tdesc_rs6000 ();
55eddb0f
DJ
7337
7338 /* Add root prefix command for all "set powerpc"/"show powerpc"
7339 commands. */
7340 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
7341 _("Various PowerPC-specific commands."),
7342 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
7343
7344 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
7345 _("Various PowerPC-specific commands."),
7346 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
7347
7348 /* Add a command to allow the user to force the ABI. */
7349 add_setshow_auto_boolean_cmd ("soft-float", class_support,
7350 &powerpc_soft_float_global,
7351 _("Set whether to use a soft-float ABI."),
7352 _("Show whether to use a soft-float ABI."),
7353 NULL,
7354 powerpc_set_soft_float, NULL,
7355 &setpowerpccmdlist, &showpowerpccmdlist);
7356
7357 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
7358 &powerpc_vector_abi_string,
7359 _("Set the vector ABI."),
7360 _("Show the vector ABI."),
7361 NULL, powerpc_set_vector_abi, NULL,
7362 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
7363
7364 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
7365 &target_exact_watchpoints,
7366 _("\
7367Set whether to use just one debug register for watchpoints on scalars."),
7368 _("\
7369Show whether to use just one debug register for watchpoints on scalars."),
7370 _("\
7371If true, GDB will use only one debug register when watching a variable of\n\
7372scalar type, thus assuming that the variable is accessed through the address\n\
7373of its first byte."),
7374 NULL, show_powerpc_exact_watchpoints,
7375 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 7376}
This page took 2.445936 seconds and 4 git commands to generate.