2005-02-18 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
0fd88904 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
7aea86e6 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
c44ca51c
AC
62#include "reggroups.h"
63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Breakpoint shadows for the single step instructions will be kept here. */
113
c5aa993b
JM
114static struct sstep_breaks
115 {
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 char data[4];
120 }
121stepBreaks[2];
c906108c
SS
122
123/* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
7a78ae4e
ND
127CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129/* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
133
134/* Static function prototypes */
135
a14ed312
KB
136static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
077276e8
KB
138static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
c906108c 140
64b84175
KB
141/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142int
143altivec_register_p (int regno)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150}
151
383f0f5b 152
867e2dc5
JB
153/* Return true if REGNO is an SPE register, false otherwise. */
154int
155spe_register_p (int regno)
156{
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
6ced10dd
JB
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
867e2dc5
JB
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183}
184
185
383f0f5b
JB
186/* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
188int
189ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190{
383f0f5b
JB
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
0a613259 195}
9f643768 196
09991fa0
JB
197
198/* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
9f643768
JB
205static void
206set_sim_regno (int *table, int gdb_regno, int sim_regno)
207{
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212}
213
09991fa0
JB
214
215/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
218static void
219init_sim_regno_table (struct gdbarch *arch)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
6ced10dd
JB
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
9f643768
JB
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296}
297
09991fa0
JB
298
299/* Given a GDB register number REG, return the corresponding SIM
300 register number. */
9f643768
JB
301static int
302rs6000_register_sim_regno (int reg)
303{
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314}
315
d195bc9f
MK
316\f
317
318/* Register set support functions. */
319
320static void
321ppc_supply_reg (struct regcache *regcache, int regnum,
322 const char *regs, size_t offset)
323{
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326}
327
328static void
329ppc_collect_reg (const struct regcache *regcache, int regnum,
330 char *regs, size_t offset)
331{
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334}
335
336/* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340void
341ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343{
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
cdf2c5f5 350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 352 i++, offset += 4)
d195bc9f
MK
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377}
378
379/* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383void
384ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386{
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
383f0f5b
JB
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
d195bc9f 395 offset = offsets->f0_offset;
366f009f
JB
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
398 i++, offset += 4)
d195bc9f
MK
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407}
408
409/* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414void
415ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418{
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
cdf2c5f5 426 for (i = tdep->ppc_gp0_regnum;
063715bf 427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 428 i++, offset += 4)
d195bc9f
MK
429 {
430 if (regnum == -1 || regnum == i)
2e56e9c1 431 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454}
455
456/* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461void
462ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465{
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
383f0f5b
JB
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
d195bc9f 474 offset = offsets->f0_offset;
366f009f
JB
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
477 i++, offset += 4)
d195bc9f
MK
478 {
479 if (regnum == -1 || regnum == i)
480 ppc_collect_reg (regcache, regnum, fpregs, offset);
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486}
487\f
0a613259 488
7a78ae4e 489/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 490
7a78ae4e
ND
491static CORE_ADDR
492read_memory_addr (CORE_ADDR memaddr, int len)
493{
494 return read_memory_unsigned_integer (memaddr, len);
495}
c906108c 496
7a78ae4e
ND
497static CORE_ADDR
498rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
499{
500 struct rs6000_framedata frame;
077276e8 501 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
502 return pc;
503}
504
505
c906108c
SS
506/* Fill in fi->saved_regs */
507
508struct frame_extra_info
509{
510 /* Functions calling alloca() change the value of the stack
511 pointer. We need to use initial stack pointer (which is saved in
512 r31 by gcc) in such cases. If a compiler emits traceback table,
513 then we should use the alloca register specified in traceback
514 table. FIXME. */
c5aa993b 515 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
516};
517
143985b7 518/* Get the ith function argument for the current function. */
b9362cc7 519static CORE_ADDR
143985b7
AF
520rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
521 struct type *type)
522{
523 CORE_ADDR addr;
7f5f525d 524 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
525 return addr;
526}
527
c906108c
SS
528/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
529
530static CORE_ADDR
7a78ae4e 531branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
532{
533 CORE_ADDR dest;
534 int immediate;
535 int absolute;
536 int ext_op;
537
538 absolute = (int) ((instr >> 1) & 1);
539
c5aa993b
JM
540 switch (opcode)
541 {
542 case 18:
543 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
544 if (absolute)
545 dest = immediate;
546 else
547 dest = pc + immediate;
548 break;
549
550 case 16:
551 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
552 if (absolute)
553 dest = immediate;
554 else
555 dest = pc + immediate;
556 break;
557
558 case 19:
559 ext_op = (instr >> 1) & 0x3ff;
560
561 if (ext_op == 16) /* br conditional register */
562 {
2188cbdd 563 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
564
565 /* If we are about to return from a signal handler, dest is
566 something like 0x3c90. The current frame is a signal handler
567 caller frame, upon completion of the sigreturn system call
568 execution will return to the saved PC in the frame. */
569 if (dest < TEXT_SEGMENT_BASE)
570 {
571 struct frame_info *fi;
572
573 fi = get_current_frame ();
574 if (fi != NULL)
8b36eed8 575 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 576 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
577 }
578 }
579
580 else if (ext_op == 528) /* br cond to count reg */
581 {
2188cbdd 582 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
583
584 /* If we are about to execute a system call, dest is something
585 like 0x22fc or 0x3b00. Upon completion the system call
586 will return to the address in the link register. */
587 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 588 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
589 }
590 else
591 return -1;
592 break;
c906108c 593
c5aa993b
JM
594 default:
595 return -1;
596 }
c906108c
SS
597 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
598}
599
600
601/* Sequence of bytes for breakpoint instruction. */
602
f4f9705a 603const static unsigned char *
7a78ae4e 604rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 605{
aaab4dba
AC
606 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
607 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 608 *bp_size = 4;
d7449b42 609 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
610 return big_breakpoint;
611 else
612 return little_breakpoint;
613}
614
615
616/* AIX does not support PT_STEP. Simulate it. */
617
618void
379d08a1
AC
619rs6000_software_single_step (enum target_signal signal,
620 int insert_breakpoints_p)
c906108c 621{
7c40d541
KB
622 CORE_ADDR dummy;
623 int breakp_sz;
f4f9705a 624 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
625 int ii, insn;
626 CORE_ADDR loc;
627 CORE_ADDR breaks[2];
628 int opcode;
629
c5aa993b
JM
630 if (insert_breakpoints_p)
631 {
c906108c 632
c5aa993b 633 loc = read_pc ();
c906108c 634
c5aa993b 635 insn = read_memory_integer (loc, 4);
c906108c 636
7c40d541 637 breaks[0] = loc + breakp_sz;
c5aa993b
JM
638 opcode = insn >> 26;
639 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 640
c5aa993b
JM
641 /* Don't put two breakpoints on the same address. */
642 if (breaks[1] == breaks[0])
643 breaks[1] = -1;
c906108c 644
c5aa993b 645 stepBreaks[1].address = 0;
c906108c 646
c5aa993b
JM
647 for (ii = 0; ii < 2; ++ii)
648 {
c906108c 649
c5aa993b
JM
650 /* ignore invalid breakpoint. */
651 if (breaks[ii] == -1)
652 continue;
7c40d541 653 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
654 stepBreaks[ii].address = breaks[ii];
655 }
c906108c 656
c5aa993b
JM
657 }
658 else
659 {
c906108c 660
c5aa993b
JM
661 /* remove step breakpoints. */
662 for (ii = 0; ii < 2; ++ii)
663 if (stepBreaks[ii].address != 0)
7c40d541
KB
664 target_remove_breakpoint (stepBreaks[ii].address,
665 stepBreaks[ii].data);
c5aa993b 666 }
c906108c 667 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 668 /* What errors? {read,write}_memory call error(). */
c906108c
SS
669}
670
671
672/* return pc value after skipping a function prologue and also return
673 information about a function frame.
674
675 in struct rs6000_framedata fdata:
c5aa993b
JM
676 - frameless is TRUE, if function does not have a frame.
677 - nosavedpc is TRUE, if function does not save %pc value in its frame.
678 - offset is the initial size of this stack frame --- the amount by
679 which we decrement the sp to allocate the frame.
680 - saved_gpr is the number of the first saved gpr.
681 - saved_fpr is the number of the first saved fpr.
6be8bc0c 682 - saved_vr is the number of the first saved vr.
96ff0de4 683 - saved_ev is the number of the first saved ev.
c5aa993b
JM
684 - alloca_reg is the number of the register used for alloca() handling.
685 Otherwise -1.
686 - gpr_offset is the offset of the first saved gpr from the previous frame.
687 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 688 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 689 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
690 - lr_offset is the offset of the saved lr
691 - cr_offset is the offset of the saved cr
6be8bc0c 692 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 693 */
c906108c
SS
694
695#define SIGNED_SHORT(x) \
696 ((sizeof (short) == 2) \
697 ? ((int)(short)(x)) \
698 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
699
700#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
701
55d05f3b
KB
702/* Limit the number of skipped non-prologue instructions, as the examining
703 of the prologue is expensive. */
704static int max_skip_non_prologue_insns = 10;
705
706/* Given PC representing the starting address of a function, and
707 LIM_PC which is the (sloppy) limit to which to scan when looking
708 for a prologue, attempt to further refine this limit by using
709 the line data in the symbol table. If successful, a better guess
710 on where the prologue ends is returned, otherwise the previous
711 value of lim_pc is returned. */
634aa483
AC
712
713/* FIXME: cagney/2004-02-14: This function and logic have largely been
714 superseded by skip_prologue_using_sal. */
715
55d05f3b
KB
716static CORE_ADDR
717refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
718{
719 struct symtab_and_line prologue_sal;
720
721 prologue_sal = find_pc_line (pc, 0);
722 if (prologue_sal.line != 0)
723 {
724 int i;
725 CORE_ADDR addr = prologue_sal.end;
726
727 /* Handle the case in which compiler's optimizer/scheduler
728 has moved instructions into the prologue. We scan ahead
729 in the function looking for address ranges whose corresponding
730 line number is less than or equal to the first one that we
731 found for the function. (It can be less than when the
732 scheduler puts a body instruction before the first prologue
733 instruction.) */
734 for (i = 2 * max_skip_non_prologue_insns;
735 i > 0 && (lim_pc == 0 || addr < lim_pc);
736 i--)
737 {
738 struct symtab_and_line sal;
739
740 sal = find_pc_line (addr, 0);
741 if (sal.line == 0)
742 break;
743 if (sal.line <= prologue_sal.line
744 && sal.symtab == prologue_sal.symtab)
745 {
746 prologue_sal = sal;
747 }
748 addr = sal.end;
749 }
750
751 if (lim_pc == 0 || prologue_sal.end < lim_pc)
752 lim_pc = prologue_sal.end;
753 }
754 return lim_pc;
755}
756
773df3e5
JB
757/* Return nonzero if the given instruction OP can be part of the prologue
758 of a function and saves a parameter on the stack. FRAMEP should be
759 set if one of the previous instructions in the function has set the
760 Frame Pointer. */
761
762static int
763store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
764{
765 /* Move parameters from argument registers to temporary register. */
766 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
767 {
768 /* Rx must be scratch register r0. */
769 const int rx_regno = (op >> 16) & 31;
770 /* Ry: Only r3 - r10 are used for parameter passing. */
771 const int ry_regno = GET_SRC_REG (op);
772
773 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
774 {
775 *r0_contains_arg = 1;
776 return 1;
777 }
778 else
779 return 0;
780 }
781
782 /* Save a General Purpose Register on stack. */
783
784 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
785 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
786 {
787 /* Rx: Only r3 - r10 are used for parameter passing. */
788 const int rx_regno = GET_SRC_REG (op);
789
790 return (rx_regno >= 3 && rx_regno <= 10);
791 }
792
793 /* Save a General Purpose Register on stack via the Frame Pointer. */
794
795 if (framep &&
796 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
797 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
798 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
799 {
800 /* Rx: Usually, only r3 - r10 are used for parameter passing.
801 However, the compiler sometimes uses r0 to hold an argument. */
802 const int rx_regno = GET_SRC_REG (op);
803
804 return ((rx_regno >= 3 && rx_regno <= 10)
805 || (rx_regno == 0 && *r0_contains_arg));
806 }
807
808 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
809 {
810 /* Only f2 - f8 are used for parameter passing. */
811 const int src_regno = GET_SRC_REG (op);
812
813 return (src_regno >= 2 && src_regno <= 8);
814 }
815
816 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
817 {
818 /* Only f2 - f8 are used for parameter passing. */
819 const int src_regno = GET_SRC_REG (op);
820
821 return (src_regno >= 2 && src_regno <= 8);
822 }
823
824 /* Not an insn that saves a parameter on stack. */
825 return 0;
826}
55d05f3b 827
7a78ae4e 828static CORE_ADDR
077276e8 829skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
830{
831 CORE_ADDR orig_pc = pc;
55d05f3b 832 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 833 CORE_ADDR li_found_pc = 0;
c906108c
SS
834 char buf[4];
835 unsigned long op;
836 long offset = 0;
6be8bc0c 837 long vr_saved_offset = 0;
482ca3f5
KB
838 int lr_reg = -1;
839 int cr_reg = -1;
6be8bc0c 840 int vr_reg = -1;
96ff0de4
EZ
841 int ev_reg = -1;
842 long ev_offset = 0;
6be8bc0c 843 int vrsave_reg = -1;
c906108c
SS
844 int reg;
845 int framep = 0;
846 int minimal_toc_loaded = 0;
ddb20c56 847 int prev_insn_was_prologue_insn = 1;
55d05f3b 848 int num_skip_non_prologue_insns = 0;
773df3e5 849 int r0_contains_arg = 0;
96ff0de4 850 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 852
55d05f3b
KB
853 /* Attempt to find the end of the prologue when no limit is specified.
854 Note that refine_prologue_limit() has been written so that it may
855 be used to "refine" the limits of non-zero PC values too, but this
856 is only safe if we 1) trust the line information provided by the
857 compiler and 2) iterate enough to actually find the end of the
858 prologue.
859
860 It may become a good idea at some point (for both performance and
861 accuracy) to unconditionally call refine_prologue_limit(). But,
862 until we can make a clear determination that this is beneficial,
863 we'll play it safe and only use it to obtain a limit when none
864 has been specified. */
865 if (lim_pc == 0)
866 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 867
ddb20c56 868 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
869 fdata->saved_gpr = -1;
870 fdata->saved_fpr = -1;
6be8bc0c 871 fdata->saved_vr = -1;
96ff0de4 872 fdata->saved_ev = -1;
c906108c
SS
873 fdata->alloca_reg = -1;
874 fdata->frameless = 1;
875 fdata->nosavedpc = 1;
876
55d05f3b 877 for (;; pc += 4)
c906108c 878 {
ddb20c56
KB
879 /* Sometimes it isn't clear if an instruction is a prologue
880 instruction or not. When we encounter one of these ambiguous
881 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
882 Otherwise, we'll assume that it really is a prologue instruction. */
883 if (prev_insn_was_prologue_insn)
884 last_prologue_pc = pc;
55d05f3b
KB
885
886 /* Stop scanning if we've hit the limit. */
887 if (lim_pc != 0 && pc >= lim_pc)
888 break;
889
ddb20c56
KB
890 prev_insn_was_prologue_insn = 1;
891
55d05f3b 892 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
893 if (target_read_memory (pc, buf, 4))
894 break;
895 op = extract_signed_integer (buf, 4);
c906108c 896
c5aa993b
JM
897 if ((op & 0xfc1fffff) == 0x7c0802a6)
898 { /* mflr Rx */
43b1ab88
AC
899 /* Since shared library / PIC code, which needs to get its
900 address at runtime, can appear to save more than one link
901 register vis:
902
903 *INDENT-OFF*
904 stwu r1,-304(r1)
905 mflr r3
906 bl 0xff570d0 (blrl)
907 stw r30,296(r1)
908 mflr r30
909 stw r31,300(r1)
910 stw r3,308(r1);
911 ...
912 *INDENT-ON*
913
914 remember just the first one, but skip over additional
915 ones. */
916 if (lr_reg < 0)
917 lr_reg = (op & 0x03e00000);
773df3e5
JB
918 if (lr_reg == 0)
919 r0_contains_arg = 0;
c5aa993b 920 continue;
c5aa993b
JM
921 }
922 else if ((op & 0xfc1fffff) == 0x7c000026)
923 { /* mfcr Rx */
98f08d3d 924 cr_reg = (op & 0x03e00000);
773df3e5
JB
925 if (cr_reg == 0)
926 r0_contains_arg = 0;
c5aa993b 927 continue;
c906108c 928
c906108c 929 }
c5aa993b
JM
930 else if ((op & 0xfc1f0000) == 0xd8010000)
931 { /* stfd Rx,NUM(r1) */
932 reg = GET_SRC_REG (op);
933 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
934 {
935 fdata->saved_fpr = reg;
936 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
937 }
938 continue;
c906108c 939
c5aa993b
JM
940 }
941 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
942 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
943 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
944 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
945 {
946
947 reg = GET_SRC_REG (op);
948 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
949 {
950 fdata->saved_gpr = reg;
7a78ae4e 951 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 952 op &= ~3UL;
c5aa993b
JM
953 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
954 }
955 continue;
c906108c 956
ddb20c56
KB
957 }
958 else if ((op & 0xffff0000) == 0x60000000)
959 {
96ff0de4 960 /* nop */
ddb20c56
KB
961 /* Allow nops in the prologue, but do not consider them to
962 be part of the prologue unless followed by other prologue
963 instructions. */
964 prev_insn_was_prologue_insn = 0;
965 continue;
966
c906108c 967 }
c5aa993b
JM
968 else if ((op & 0xffff0000) == 0x3c000000)
969 { /* addis 0,0,NUM, used
970 for >= 32k frames */
971 fdata->offset = (op & 0x0000ffff) << 16;
972 fdata->frameless = 0;
773df3e5 973 r0_contains_arg = 0;
c5aa993b
JM
974 continue;
975
976 }
977 else if ((op & 0xffff0000) == 0x60000000)
978 { /* ori 0,0,NUM, 2nd ha
979 lf of >= 32k frames */
980 fdata->offset |= (op & 0x0000ffff);
981 fdata->frameless = 0;
773df3e5 982 r0_contains_arg = 0;
c5aa993b
JM
983 continue;
984
985 }
be723e22 986 else if (lr_reg >= 0 &&
98f08d3d
KB
987 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
988 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
989 /* stw Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
991 /* stwu Rx, NUM(r1) */
992 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
993 { /* where Rx == lr */
994 fdata->lr_offset = offset;
c5aa993b 995 fdata->nosavedpc = 0;
be723e22
MS
996 /* Invalidate lr_reg, but don't set it to -1.
997 That would mean that it had never been set. */
998 lr_reg = -2;
98f08d3d
KB
999 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1000 (op & 0xfc000000) == 0x90000000) /* stw */
1001 {
1002 /* Does not update r1, so add displacement to lr_offset. */
1003 fdata->lr_offset += SIGNED_SHORT (op);
1004 }
c5aa993b
JM
1005 continue;
1006
1007 }
be723e22 1008 else if (cr_reg >= 0 &&
98f08d3d
KB
1009 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1010 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1011 /* stw Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1013 /* stwu Rx, NUM(r1) */
1014 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1015 { /* where Rx == cr */
1016 fdata->cr_offset = offset;
be723e22
MS
1017 /* Invalidate cr_reg, but don't set it to -1.
1018 That would mean that it had never been set. */
1019 cr_reg = -2;
98f08d3d
KB
1020 if ((op & 0xfc000003) == 0xf8000000 ||
1021 (op & 0xfc000000) == 0x90000000)
1022 {
1023 /* Does not update r1, so add displacement to cr_offset. */
1024 fdata->cr_offset += SIGNED_SHORT (op);
1025 }
c5aa993b
JM
1026 continue;
1027
1028 }
1029 else if (op == 0x48000005)
1030 { /* bl .+4 used in
1031 -mrelocatable */
1032 continue;
1033
1034 }
1035 else if (op == 0x48000004)
1036 { /* b .+4 (xlc) */
1037 break;
1038
c5aa993b 1039 }
6be8bc0c
EZ
1040 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1041 in V.4 -mminimal-toc */
c5aa993b
JM
1042 (op & 0xffff0000) == 0x3bde0000)
1043 { /* addi 30,30,foo@l */
1044 continue;
c906108c 1045
c5aa993b
JM
1046 }
1047 else if ((op & 0xfc000001) == 0x48000001)
1048 { /* bl foo,
1049 to save fprs??? */
c906108c 1050
c5aa993b 1051 fdata->frameless = 0;
6be8bc0c 1052 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1053 the first three instructions of the prologue and either
1054 we have no line table information or the line info tells
1055 us that the subroutine call is not part of the line
1056 associated with the prologue. */
c5aa993b 1057 if ((pc - orig_pc) > 8)
ebd98106
FF
1058 {
1059 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1060 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1061
1062 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1063 break;
1064 }
c5aa993b
JM
1065
1066 op = read_memory_integer (pc + 4, 4);
1067
6be8bc0c
EZ
1068 /* At this point, make sure this is not a trampoline
1069 function (a function that simply calls another functions,
1070 and nothing else). If the next is not a nop, this branch
1071 was part of the function prologue. */
c5aa993b
JM
1072
1073 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1074 break; /* don't skip over
1075 this branch */
1076 continue;
1077
c5aa993b 1078 }
98f08d3d
KB
1079 /* update stack pointer */
1080 else if ((op & 0xfc1f0000) == 0x94010000)
1081 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1082 fdata->frameless = 0;
1083 fdata->offset = SIGNED_SHORT (op);
1084 offset = fdata->offset;
1085 continue;
c5aa993b 1086 }
98f08d3d
KB
1087 else if ((op & 0xfc1f016a) == 0x7c01016e)
1088 { /* stwux rX,r1,rY */
1089 /* no way to figure out what r1 is going to be */
1090 fdata->frameless = 0;
1091 offset = fdata->offset;
1092 continue;
1093 }
1094 else if ((op & 0xfc1f0003) == 0xf8010001)
1095 { /* stdu rX,NUM(r1) */
1096 fdata->frameless = 0;
1097 fdata->offset = SIGNED_SHORT (op & ~3UL);
1098 offset = fdata->offset;
1099 continue;
1100 }
1101 else if ((op & 0xfc1f016a) == 0x7c01016a)
1102 { /* stdux rX,r1,rY */
1103 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1104 fdata->frameless = 0;
1105 offset = fdata->offset;
1106 continue;
c5aa993b 1107 }
98f08d3d
KB
1108 /* Load up minimal toc pointer */
1109 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1110 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1111 && !minimal_toc_loaded)
98f08d3d 1112 {
c5aa993b
JM
1113 minimal_toc_loaded = 1;
1114 continue;
1115
f6077098
KB
1116 /* move parameters from argument registers to local variable
1117 registers */
1118 }
1119 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1120 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1121 (((op >> 21) & 31) <= 10) &&
96ff0de4 1122 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1123 {
1124 continue;
1125
c5aa993b
JM
1126 /* store parameters in stack */
1127 }
e802b915 1128 /* Move parameters from argument registers to temporary register. */
773df3e5 1129 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1130 {
c5aa993b
JM
1131 continue;
1132
1133 /* Set up frame pointer */
1134 }
1135 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1136 || op == 0x7c3f0b78)
1137 { /* mr r31, r1 */
1138 fdata->frameless = 0;
1139 framep = 1;
6f99cb26 1140 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1141 continue;
1142
1143 /* Another way to set up the frame pointer. */
1144 }
1145 else if ((op & 0xfc1fffff) == 0x38010000)
1146 { /* addi rX, r1, 0x0 */
1147 fdata->frameless = 0;
1148 framep = 1;
6f99cb26
AC
1149 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1150 + ((op & ~0x38010000) >> 21));
c5aa993b 1151 continue;
c5aa993b 1152 }
6be8bc0c
EZ
1153 /* AltiVec related instructions. */
1154 /* Store the vrsave register (spr 256) in another register for
1155 later manipulation, or load a register into the vrsave
1156 register. 2 instructions are used: mfvrsave and
1157 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1158 and mtspr SPR256, Rn. */
1159 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1160 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1161 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1162 {
1163 vrsave_reg = GET_SRC_REG (op);
1164 continue;
1165 }
1166 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1167 {
1168 continue;
1169 }
1170 /* Store the register where vrsave was saved to onto the stack:
1171 rS is the register where vrsave was stored in a previous
1172 instruction. */
1173 /* 100100 sssss 00001 dddddddd dddddddd */
1174 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1175 {
1176 if (vrsave_reg == GET_SRC_REG (op))
1177 {
1178 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1179 vrsave_reg = -1;
1180 }
1181 continue;
1182 }
1183 /* Compute the new value of vrsave, by modifying the register
1184 where vrsave was saved to. */
1185 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1186 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1187 {
1188 continue;
1189 }
1190 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1191 in a pair of insns to save the vector registers on the
1192 stack. */
1193 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1194 /* 001110 01110 00000 iiii iiii iiii iiii */
1195 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1196 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1197 {
773df3e5
JB
1198 if ((op & 0xffff0000) == 0x38000000)
1199 r0_contains_arg = 0;
6be8bc0c
EZ
1200 li_found_pc = pc;
1201 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1202
1203 /* This insn by itself is not part of the prologue, unless
1204 if part of the pair of insns mentioned above. So do not
1205 record this insn as part of the prologue yet. */
1206 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1207 }
1208 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1209 /* 011111 sssss 11111 00000 00111001110 */
1210 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1211 {
1212 if (pc == (li_found_pc + 4))
1213 {
1214 vr_reg = GET_SRC_REG (op);
1215 /* If this is the first vector reg to be saved, or if
1216 it has a lower number than others previously seen,
1217 reupdate the frame info. */
1218 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1219 {
1220 fdata->saved_vr = vr_reg;
1221 fdata->vr_offset = vr_saved_offset + offset;
1222 }
1223 vr_saved_offset = -1;
1224 vr_reg = -1;
1225 li_found_pc = 0;
1226 }
1227 }
1228 /* End AltiVec related instructions. */
96ff0de4
EZ
1229
1230 /* Start BookE related instructions. */
1231 /* Store gen register S at (r31+uimm).
1232 Any register less than r13 is volatile, so we don't care. */
1233 /* 000100 sssss 11111 iiiii 01100100001 */
1234 else if (arch_info->mach == bfd_mach_ppc_e500
1235 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1236 {
1237 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1238 {
1239 unsigned int imm;
1240 ev_reg = GET_SRC_REG (op);
1241 imm = (op >> 11) & 0x1f;
1242 ev_offset = imm * 8;
1243 /* If this is the first vector reg to be saved, or if
1244 it has a lower number than others previously seen,
1245 reupdate the frame info. */
1246 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1247 {
1248 fdata->saved_ev = ev_reg;
1249 fdata->ev_offset = ev_offset + offset;
1250 }
1251 }
1252 continue;
1253 }
1254 /* Store gen register rS at (r1+rB). */
1255 /* 000100 sssss 00001 bbbbb 01100100000 */
1256 else if (arch_info->mach == bfd_mach_ppc_e500
1257 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1258 {
1259 if (pc == (li_found_pc + 4))
1260 {
1261 ev_reg = GET_SRC_REG (op);
1262 /* If this is the first vector reg to be saved, or if
1263 it has a lower number than others previously seen,
1264 reupdate the frame info. */
1265 /* We know the contents of rB from the previous instruction. */
1266 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1267 {
1268 fdata->saved_ev = ev_reg;
1269 fdata->ev_offset = vr_saved_offset + offset;
1270 }
1271 vr_saved_offset = -1;
1272 ev_reg = -1;
1273 li_found_pc = 0;
1274 }
1275 continue;
1276 }
1277 /* Store gen register r31 at (rA+uimm). */
1278 /* 000100 11111 aaaaa iiiii 01100100001 */
1279 else if (arch_info->mach == bfd_mach_ppc_e500
1280 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1281 {
1282 /* Wwe know that the source register is 31 already, but
1283 it can't hurt to compute it. */
1284 ev_reg = GET_SRC_REG (op);
1285 ev_offset = ((op >> 11) & 0x1f) * 8;
1286 /* If this is the first vector reg to be saved, or if
1287 it has a lower number than others previously seen,
1288 reupdate the frame info. */
1289 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1290 {
1291 fdata->saved_ev = ev_reg;
1292 fdata->ev_offset = ev_offset + offset;
1293 }
1294
1295 continue;
1296 }
1297 /* Store gen register S at (r31+r0).
1298 Store param on stack when offset from SP bigger than 4 bytes. */
1299 /* 000100 sssss 11111 00000 01100100000 */
1300 else if (arch_info->mach == bfd_mach_ppc_e500
1301 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1302 {
1303 if (pc == (li_found_pc + 4))
1304 {
1305 if ((op & 0x03e00000) >= 0x01a00000)
1306 {
1307 ev_reg = GET_SRC_REG (op);
1308 /* If this is the first vector reg to be saved, or if
1309 it has a lower number than others previously seen,
1310 reupdate the frame info. */
1311 /* We know the contents of r0 from the previous
1312 instruction. */
1313 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1314 {
1315 fdata->saved_ev = ev_reg;
1316 fdata->ev_offset = vr_saved_offset + offset;
1317 }
1318 ev_reg = -1;
1319 }
1320 vr_saved_offset = -1;
1321 li_found_pc = 0;
1322 continue;
1323 }
1324 }
1325 /* End BookE related instructions. */
1326
c5aa993b
JM
1327 else
1328 {
55d05f3b
KB
1329 /* Not a recognized prologue instruction.
1330 Handle optimizer code motions into the prologue by continuing
1331 the search if we have no valid frame yet or if the return
1332 address is not yet saved in the frame. */
1333 if (fdata->frameless == 0
1334 && (lr_reg == -1 || fdata->nosavedpc == 0))
1335 break;
1336
1337 if (op == 0x4e800020 /* blr */
1338 || op == 0x4e800420) /* bctr */
1339 /* Do not scan past epilogue in frameless functions or
1340 trampolines. */
1341 break;
1342 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1343 /* Never skip branches. */
55d05f3b
KB
1344 break;
1345
1346 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1347 /* Do not scan too many insns, scanning insns is expensive with
1348 remote targets. */
1349 break;
1350
1351 /* Continue scanning. */
1352 prev_insn_was_prologue_insn = 0;
1353 continue;
c5aa993b 1354 }
c906108c
SS
1355 }
1356
1357#if 0
1358/* I have problems with skipping over __main() that I need to address
1359 * sometime. Previously, I used to use misc_function_vector which
1360 * didn't work as well as I wanted to be. -MGO */
1361
1362 /* If the first thing after skipping a prolog is a branch to a function,
1363 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1364 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1365 work before calling a function right after a prologue, thus we can
64366f1c 1366 single out such gcc2 behaviour. */
c906108c 1367
c906108c 1368
c5aa993b
JM
1369 if ((op & 0xfc000001) == 0x48000001)
1370 { /* bl foo, an initializer function? */
1371 op = read_memory_integer (pc + 4, 4);
1372
1373 if (op == 0x4def7b82)
1374 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1375
64366f1c
EZ
1376 /* Check and see if we are in main. If so, skip over this
1377 initializer function as well. */
c906108c 1378
c5aa993b 1379 tmp = find_pc_misc_function (pc);
6314a349
AC
1380 if (tmp >= 0
1381 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1382 return pc + 8;
1383 }
c906108c 1384 }
c906108c 1385#endif /* 0 */
c5aa993b
JM
1386
1387 fdata->offset = -fdata->offset;
ddb20c56 1388 return last_prologue_pc;
c906108c
SS
1389}
1390
1391
1392/*************************************************************************
f6077098 1393 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1394 frames, etc.
1395*************************************************************************/
1396
c906108c 1397
11269d7e
AC
1398/* All the ABI's require 16 byte alignment. */
1399static CORE_ADDR
1400rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1401{
1402 return (addr & -16);
1403}
1404
7a78ae4e 1405/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1406 the first eight words of the argument list (that might be less than
1407 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1408 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1409 passed in fpr's, in addition to that. Rest of the parameters if any
1410 are passed in user stack. There might be cases in which half of the
c906108c
SS
1411 parameter is copied into registers, the other half is pushed into
1412 stack.
1413
7a78ae4e
ND
1414 Stack must be aligned on 64-bit boundaries when synthesizing
1415 function calls.
1416
c906108c
SS
1417 If the function is returning a structure, then the return address is passed
1418 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1419 starting from r4. */
c906108c 1420
7a78ae4e 1421static CORE_ADDR
7d9b040b 1422rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1423 struct regcache *regcache, CORE_ADDR bp_addr,
1424 int nargs, struct value **args, CORE_ADDR sp,
1425 int struct_return, CORE_ADDR struct_addr)
c906108c 1426{
7a41266b 1427 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1428 int ii;
1429 int len = 0;
c5aa993b
JM
1430 int argno; /* current argument number */
1431 int argbytes; /* current argument byte */
1432 char tmp_buffer[50];
1433 int f_argno = 0; /* current floating point argno */
21283beb 1434 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1435 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1436
ea7c478f 1437 struct value *arg = 0;
c906108c
SS
1438 struct type *type;
1439
1440 CORE_ADDR saved_sp;
1441
383f0f5b
JB
1442 /* The calling convention this function implements assumes the
1443 processor has floating-point registers. We shouldn't be using it
1444 on PPC variants that lack them. */
1445 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1446
64366f1c 1447 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1448 Copy them appropriately. */
1449 ii = 0;
1450
1451 /* If the function is returning a `struct', then the first word
1452 (which will be passed in r3) is used for struct return address.
1453 In that case we should advance one word and start from r4
1454 register to copy parameters. */
1455 if (struct_return)
1456 {
1457 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1458 struct_addr);
1459 ii++;
1460 }
c906108c
SS
1461
1462/*
c5aa993b
JM
1463 effectively indirect call... gcc does...
1464
1465 return_val example( float, int);
1466
1467 eabi:
1468 float in fp0, int in r3
1469 offset of stack on overflow 8/16
1470 for varargs, must go by type.
1471 power open:
1472 float in r3&r4, int in r5
1473 offset of stack on overflow different
1474 both:
1475 return in r3 or f0. If no float, must study how gcc emulates floats;
1476 pay attention to arg promotion.
1477 User may have to cast\args to handle promotion correctly
1478 since gdb won't know if prototype supplied or not.
1479 */
c906108c 1480
c5aa993b
JM
1481 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1482 {
3acba339 1483 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1484
1485 arg = args[argno];
df407dfe 1486 type = check_typedef (value_type (arg));
c5aa993b
JM
1487 len = TYPE_LENGTH (type);
1488
1489 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1490 {
1491
64366f1c 1492 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1493 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1494 there is no way we would run out of them. */
c5aa993b 1495
9f335945
KB
1496 gdb_assert (len <= 8);
1497
1498 regcache_cooked_write (regcache,
1499 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1500 value_contents (arg));
c5aa993b
JM
1501 ++f_argno;
1502 }
1503
f6077098 1504 if (len > reg_size)
c5aa993b
JM
1505 {
1506
64366f1c 1507 /* Argument takes more than one register. */
c5aa993b
JM
1508 while (argbytes < len)
1509 {
9f335945
KB
1510 char word[MAX_REGISTER_SIZE];
1511 memset (word, 0, reg_size);
1512 memcpy (word,
0fd88904 1513 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1514 (len - argbytes) > reg_size
1515 ? reg_size : len - argbytes);
9f335945
KB
1516 regcache_cooked_write (regcache,
1517 tdep->ppc_gp0_regnum + 3 + ii,
1518 word);
f6077098 1519 ++ii, argbytes += reg_size;
c5aa993b
JM
1520
1521 if (ii >= 8)
1522 goto ran_out_of_registers_for_arguments;
1523 }
1524 argbytes = 0;
1525 --ii;
1526 }
1527 else
64366f1c
EZ
1528 {
1529 /* Argument can fit in one register. No problem. */
d7449b42 1530 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
9f335945
KB
1531 char word[MAX_REGISTER_SIZE];
1532
1533 memset (word, 0, reg_size);
0fd88904 1534 memcpy (word, value_contents (arg), len);
9f335945 1535 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1536 }
1537 ++argno;
c906108c 1538 }
c906108c
SS
1539
1540ran_out_of_registers_for_arguments:
1541
7a78ae4e 1542 saved_sp = read_sp ();
cc9836a8 1543
64366f1c 1544 /* Location for 8 parameters are always reserved. */
7a78ae4e 1545 sp -= wordsize * 8;
f6077098 1546
64366f1c 1547 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1548 sp -= wordsize * 6;
f6077098 1549
64366f1c 1550 /* Stack pointer must be quadword aligned. */
7a78ae4e 1551 sp &= -16;
c906108c 1552
64366f1c
EZ
1553 /* If there are more arguments, allocate space for them in
1554 the stack, then push them starting from the ninth one. */
c906108c 1555
c5aa993b
JM
1556 if ((argno < nargs) || argbytes)
1557 {
1558 int space = 0, jj;
c906108c 1559
c5aa993b
JM
1560 if (argbytes)
1561 {
1562 space += ((len - argbytes + 3) & -4);
1563 jj = argno + 1;
1564 }
1565 else
1566 jj = argno;
c906108c 1567
c5aa993b
JM
1568 for (; jj < nargs; ++jj)
1569 {
ea7c478f 1570 struct value *val = args[jj];
df407dfe 1571 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1572 }
c906108c 1573
64366f1c 1574 /* Add location required for the rest of the parameters. */
f6077098 1575 space = (space + 15) & -16;
c5aa993b 1576 sp -= space;
c906108c 1577
7aea86e6
AC
1578 /* This is another instance we need to be concerned about
1579 securing our stack space. If we write anything underneath %sp
1580 (r1), we might conflict with the kernel who thinks he is free
1581 to use this area. So, update %sp first before doing anything
1582 else. */
1583
1584 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1585
64366f1c
EZ
1586 /* If the last argument copied into the registers didn't fit there
1587 completely, push the rest of it into stack. */
c906108c 1588
c5aa993b
JM
1589 if (argbytes)
1590 {
1591 write_memory (sp + 24 + (ii * 4),
0fd88904 1592 ((char *) value_contents (arg)) + argbytes,
c5aa993b
JM
1593 len - argbytes);
1594 ++argno;
1595 ii += ((len - argbytes + 3) & -4) / 4;
1596 }
c906108c 1597
64366f1c 1598 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1599 for (; argno < nargs; ++argno)
1600 {
c906108c 1601
c5aa993b 1602 arg = args[argno];
df407dfe 1603 type = check_typedef (value_type (arg));
c5aa993b 1604 len = TYPE_LENGTH (type);
c906108c
SS
1605
1606
64366f1c
EZ
1607 /* Float types should be passed in fpr's, as well as in the
1608 stack. */
c5aa993b
JM
1609 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1610 {
c906108c 1611
9f335945 1612 gdb_assert (len <= 8);
c906108c 1613
9f335945
KB
1614 regcache_cooked_write (regcache,
1615 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1616 value_contents (arg));
c5aa993b
JM
1617 ++f_argno;
1618 }
c906108c 1619
c2b6b4aa 1620 write_memory (sp + 24 + (ii * 4),
0fd88904 1621 (char *) value_contents (arg),
c2b6b4aa 1622 len);
c5aa993b
JM
1623 ii += ((len + 3) & -4) / 4;
1624 }
c906108c 1625 }
c906108c 1626
69517000 1627 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1628 be set _before_ the corresponding stack space is used. On AIX,
1629 this even applies when the target has been completely stopped!
1630 Not doing this can lead to conflicts with the kernel which thinks
1631 that it still has control over this not-yet-allocated stack
1632 region. */
33a7c2fc
AC
1633 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1634
7aea86e6
AC
1635 /* Set back chain properly. */
1636 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1637 write_memory (sp, tmp_buffer, 4);
1638
e56a0ecc
AC
1639 /* Point the inferior function call's return address at the dummy's
1640 breakpoint. */
1641 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1642
794a477a
AC
1643 /* Set the TOC register, get the value from the objfile reader
1644 which, in turn, gets it from the VMAP table. */
1645 if (rs6000_find_toc_address_hook != NULL)
1646 {
1647 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1648 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1649 }
1650
c906108c
SS
1651 target_store_registers (-1);
1652 return sp;
1653}
c906108c 1654
b9ff3018
AC
1655/* PowerOpen always puts structures in memory. Vectors, which were
1656 added later, do get returned in a register though. */
1657
1658static int
1659rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1660{
1661 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1662 && TYPE_VECTOR (value_type))
1663 return 0;
1664 return 1;
1665}
1666
7a78ae4e
ND
1667static void
1668rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1669{
1670 int offset = 0;
ace1378a 1671 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1672
383f0f5b
JB
1673 /* The calling convention this function implements assumes the
1674 processor has floating-point registers. We shouldn't be using it
1675 on PPC variants that lack them. */
1676 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1677
c5aa993b
JM
1678 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1679 {
c906108c 1680
c5aa993b
JM
1681 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1682 We need to truncate the return value into float size (4 byte) if
64366f1c 1683 necessary. */
c906108c 1684
65951cd9 1685 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1686 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1687 builtin_type_double,
1688 valbuf,
1689 valtype);
c5aa993b 1690 }
ace1378a
EZ
1691 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1692 && TYPE_LENGTH (valtype) == 16
1693 && TYPE_VECTOR (valtype))
1694 {
62700349 1695 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1696 TYPE_LENGTH (valtype));
1697 }
c5aa993b
JM
1698 else
1699 {
1700 /* return value is copied starting from r3. */
d7449b42 1701 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1702 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1703 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1704
1705 memcpy (valbuf,
62700349 1706 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1707 TYPE_LENGTH (valtype));
c906108c 1708 }
c906108c
SS
1709}
1710
977adac5
ND
1711/* Return whether handle_inferior_event() should proceed through code
1712 starting at PC in function NAME when stepping.
1713
1714 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1715 handle memory references that are too distant to fit in instructions
1716 generated by the compiler. For example, if 'foo' in the following
1717 instruction:
1718
1719 lwz r9,foo(r2)
1720
1721 is greater than 32767, the linker might replace the lwz with a branch to
1722 somewhere in @FIX1 that does the load in 2 instructions and then branches
1723 back to where execution should continue.
1724
1725 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1726 Unfortunately, the linker uses the "b" instruction for the
1727 branches, meaning that the link register doesn't get set.
1728 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1729
2ec664f5
MS
1730 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1731 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1732 @FIX code. */
977adac5
ND
1733
1734int
1735rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1736{
1737 return name && !strncmp (name, "@FIX", 4);
1738}
1739
1740/* Skip code that the user doesn't want to see when stepping:
1741
1742 1. Indirect function calls use a piece of trampoline code to do context
1743 switching, i.e. to set the new TOC table. Skip such code if we are on
1744 its first instruction (as when we have single-stepped to here).
1745
1746 2. Skip shared library trampoline code (which is different from
c906108c 1747 indirect function call trampolines).
977adac5
ND
1748
1749 3. Skip bigtoc fixup code.
1750
c906108c 1751 Result is desired PC to step until, or NULL if we are not in
977adac5 1752 code that should be skipped. */
c906108c
SS
1753
1754CORE_ADDR
7a78ae4e 1755rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1756{
52f0bd74 1757 unsigned int ii, op;
977adac5 1758 int rel;
c906108c 1759 CORE_ADDR solib_target_pc;
977adac5 1760 struct minimal_symbol *msymbol;
c906108c 1761
c5aa993b
JM
1762 static unsigned trampoline_code[] =
1763 {
1764 0x800b0000, /* l r0,0x0(r11) */
1765 0x90410014, /* st r2,0x14(r1) */
1766 0x7c0903a6, /* mtctr r0 */
1767 0x804b0004, /* l r2,0x4(r11) */
1768 0x816b0008, /* l r11,0x8(r11) */
1769 0x4e800420, /* bctr */
1770 0x4e800020, /* br */
1771 0
c906108c
SS
1772 };
1773
977adac5
ND
1774 /* Check for bigtoc fixup code. */
1775 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1776 if (msymbol
1777 && rs6000_in_solib_return_trampoline (pc,
1778 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1779 {
1780 /* Double-check that the third instruction from PC is relative "b". */
1781 op = read_memory_integer (pc + 8, 4);
1782 if ((op & 0xfc000003) == 0x48000000)
1783 {
1784 /* Extract bits 6-29 as a signed 24-bit relative word address and
1785 add it to the containing PC. */
1786 rel = ((int)(op << 6) >> 6);
1787 return pc + 8 + rel;
1788 }
1789 }
1790
c906108c
SS
1791 /* If pc is in a shared library trampoline, return its target. */
1792 solib_target_pc = find_solib_trampoline_target (pc);
1793 if (solib_target_pc)
1794 return solib_target_pc;
1795
c5aa993b
JM
1796 for (ii = 0; trampoline_code[ii]; ++ii)
1797 {
1798 op = read_memory_integer (pc + (ii * 4), 4);
1799 if (op != trampoline_code[ii])
1800 return 0;
1801 }
1802 ii = read_register (11); /* r11 holds destination addr */
21283beb 1803 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1804 return pc;
1805}
1806
7a78ae4e 1807/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1808 isn't available with that word size, return 0. */
7a78ae4e
ND
1809
1810static int
1811regsize (const struct reg *reg, int wordsize)
1812{
1813 return wordsize == 8 ? reg->sz64 : reg->sz32;
1814}
1815
1816/* Return the name of register number N, or null if no such register exists
64366f1c 1817 in the current architecture. */
7a78ae4e 1818
fa88f677 1819static const char *
7a78ae4e
ND
1820rs6000_register_name (int n)
1821{
21283beb 1822 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1823 const struct reg *reg = tdep->regs + n;
1824
1825 if (!regsize (reg, tdep->wordsize))
1826 return NULL;
1827 return reg->name;
1828}
1829
7a78ae4e
ND
1830/* Return the GDB type object for the "standard" data type
1831 of data in register N. */
1832
1833static struct type *
691d145a 1834rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1835{
691d145a 1836 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1837 const struct reg *reg = tdep->regs + n;
1838
1fcc0bb8
EZ
1839 if (reg->fpr)
1840 return builtin_type_double;
1841 else
1842 {
1843 int size = regsize (reg, tdep->wordsize);
1844 switch (size)
1845 {
449a5da4
AC
1846 case 0:
1847 return builtin_type_int0;
1848 case 4:
ed6edd9b 1849 return builtin_type_uint32;
1fcc0bb8 1850 case 8:
c8001721
EZ
1851 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1852 return builtin_type_vec64;
1853 else
ed6edd9b 1854 return builtin_type_uint64;
1fcc0bb8
EZ
1855 break;
1856 case 16:
08cf96df 1857 return builtin_type_vec128;
1fcc0bb8
EZ
1858 break;
1859 default:
e2e0b3e5 1860 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1861 n, size);
1fcc0bb8
EZ
1862 }
1863 }
7a78ae4e
ND
1864}
1865
c44ca51c
AC
1866/* Is REGNUM a member of REGGROUP? */
1867static int
1868rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1869 struct reggroup *group)
1870{
1871 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1872 int float_p;
1873 int vector_p;
1874 int general_p;
1875
1876 if (REGISTER_NAME (regnum) == NULL
1877 || *REGISTER_NAME (regnum) == '\0')
1878 return 0;
1879 if (group == all_reggroup)
1880 return 1;
1881
1882 float_p = (regnum == tdep->ppc_fpscr_regnum
1883 || (regnum >= tdep->ppc_fp0_regnum
1884 && regnum < tdep->ppc_fp0_regnum + 32));
1885 if (group == float_reggroup)
1886 return float_p;
1887
1888 vector_p = ((regnum >= tdep->ppc_vr0_regnum
1889 && regnum < tdep->ppc_vr0_regnum + 32)
1890 || (regnum >= tdep->ppc_ev0_regnum
1891 && regnum < tdep->ppc_ev0_regnum + 32)
1892 || regnum == tdep->ppc_vrsave_regnum
1893 || regnum == tdep->ppc_acc_regnum
1894 || regnum == tdep->ppc_spefscr_regnum);
1895 if (group == vector_reggroup)
1896 return vector_p;
1897
1898 /* Note that PS aka MSR isn't included - it's a system register (and
1899 besides, due to GCC's CFI foobar you do not want to restore
1900 it). */
1901 general_p = ((regnum >= tdep->ppc_gp0_regnum
1902 && regnum < tdep->ppc_gp0_regnum + 32)
1903 || regnum == tdep->ppc_toc_regnum
1904 || regnum == tdep->ppc_cr_regnum
1905 || regnum == tdep->ppc_lr_regnum
1906 || regnum == tdep->ppc_ctr_regnum
1907 || regnum == tdep->ppc_xer_regnum
1908 || regnum == PC_REGNUM);
1909 if (group == general_reggroup)
1910 return general_p;
1911
1912 if (group == save_reggroup || group == restore_reggroup)
1913 return general_p || vector_p || float_p;
1914
1915 return 0;
1916}
1917
691d145a 1918/* The register format for RS/6000 floating point registers is always
64366f1c 1919 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1920
1921static int
691d145a 1922rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 1923{
691d145a
JB
1924 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1925
1926 return (reg->fpr
1927 && TYPE_CODE (type) == TYPE_CODE_FLT
1928 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
1929}
1930
7a78ae4e 1931static void
691d145a
JB
1932rs6000_register_to_value (struct frame_info *frame,
1933 int regnum,
1934 struct type *type,
1935 void *to)
7a78ae4e 1936{
691d145a
JB
1937 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1938 char from[MAX_REGISTER_SIZE];
1939
1940 gdb_assert (reg->fpr);
1941 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 1942
691d145a
JB
1943 get_frame_register (frame, regnum, from);
1944 convert_typed_floating (from, builtin_type_double, to, type);
1945}
7a292a7a 1946
7a78ae4e 1947static void
691d145a
JB
1948rs6000_value_to_register (struct frame_info *frame,
1949 int regnum,
1950 struct type *type,
1951 const void *from)
7a78ae4e 1952{
691d145a
JB
1953 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1954 char to[MAX_REGISTER_SIZE];
1955
1956 gdb_assert (reg->fpr);
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1958
1959 convert_typed_floating (from, type, to, builtin_type_double);
1960 put_frame_register (frame, regnum, to);
7a78ae4e 1961}
c906108c 1962
6ced10dd
JB
1963/* Move SPE vector register values between a 64-bit buffer and the two
1964 32-bit raw register halves in a regcache. This function handles
1965 both splitting a 64-bit value into two 32-bit halves, and joining
1966 two halves into a whole 64-bit value, depending on the function
1967 passed as the MOVE argument.
1968
1969 EV_REG must be the number of an SPE evN vector register --- a
1970 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1971 64-bit buffer.
1972
1973 Call MOVE once for each 32-bit half of that register, passing
1974 REGCACHE, the number of the raw register corresponding to that
1975 half, and the address of the appropriate half of BUFFER.
1976
1977 For example, passing 'regcache_raw_read' as the MOVE function will
1978 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1979 'regcache_raw_supply' will supply the contents of BUFFER to the
1980 appropriate pair of raw registers in REGCACHE.
1981
1982 You may need to cast away some 'const' qualifiers when passing
1983 MOVE, since this function can't tell at compile-time which of
1984 REGCACHE or BUFFER is acting as the source of the data. If C had
1985 co-variant type qualifiers, ... */
1986static void
1987e500_move_ev_register (void (*move) (struct regcache *regcache,
1988 int regnum, void *buf),
1989 struct regcache *regcache, int ev_reg,
1990 void *buffer)
1991{
1992 struct gdbarch *arch = get_regcache_arch (regcache);
1993 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1994 int reg_index;
1995 char *byte_buffer = buffer;
1996
1997 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1998 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1999
2000 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2001
2002 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2003 {
2004 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2005 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2006 }
2007 else
2008 {
2009 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2010 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2011 }
2012}
2013
c8001721
EZ
2014static void
2015e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2016 int reg_nr, void *buffer)
2017{
6ced10dd 2018 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2019 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2020
6ced10dd
JB
2021 gdb_assert (regcache_arch == gdbarch);
2022
2023 if (tdep->ppc_ev0_regnum <= reg_nr
2024 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2025 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2026 else
a44bddec 2027 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2028 _("e500_pseudo_register_read: "
2029 "called on unexpected register '%s' (%d)"),
a44bddec 2030 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2031}
2032
2033static void
2034e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2035 int reg_nr, const void *buffer)
2036{
6ced10dd 2037 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2038 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2039
6ced10dd
JB
2040 gdb_assert (regcache_arch == gdbarch);
2041
2042 if (tdep->ppc_ev0_regnum <= reg_nr
2043 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2044 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
2045 regcache_raw_write,
2046 regcache, reg_nr, (void *) buffer);
2047 else
a44bddec 2048 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2049 _("e500_pseudo_register_read: "
2050 "called on unexpected register '%s' (%d)"),
a44bddec 2051 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2052}
2053
2054/* The E500 needs a custom reggroup function: it has anonymous raw
2055 registers, and default_register_reggroup_p assumes that anonymous
2056 registers are not members of any reggroup. */
2057static int
2058e500_register_reggroup_p (struct gdbarch *gdbarch,
2059 int regnum,
2060 struct reggroup *group)
2061{
2062 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2063
2064 /* The save and restore register groups need to include the
2065 upper-half registers, even though they're anonymous. */
2066 if ((group == save_reggroup
2067 || group == restore_reggroup)
2068 && (tdep->ppc_ev0_upper_regnum <= regnum
2069 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2070 return 1;
2071
2072 /* In all other regards, the default reggroup definition is fine. */
2073 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2074}
2075
18ed0c4e 2076/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2077static int
18ed0c4e 2078rs6000_stab_reg_to_regnum (int num)
c8001721 2079{
9f744501 2080 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2081
9f744501
JB
2082 if (0 <= num && num <= 31)
2083 return tdep->ppc_gp0_regnum + num;
2084 else if (32 <= num && num <= 63)
383f0f5b
JB
2085 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2086 specifies registers the architecture doesn't have? Our
2087 callers don't check the value we return. */
366f009f 2088 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2089 else if (77 <= num && num <= 108)
2090 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2091 else if (1200 <= num && num < 1200 + 32)
2092 return tdep->ppc_ev0_regnum + (num - 1200);
2093 else
2094 switch (num)
2095 {
2096 case 64:
2097 return tdep->ppc_mq_regnum;
2098 case 65:
2099 return tdep->ppc_lr_regnum;
2100 case 66:
2101 return tdep->ppc_ctr_regnum;
2102 case 76:
2103 return tdep->ppc_xer_regnum;
2104 case 109:
2105 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2106 case 110:
2107 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2108 case 111:
18ed0c4e 2109 return tdep->ppc_acc_regnum;
867e2dc5 2110 case 112:
18ed0c4e 2111 return tdep->ppc_spefscr_regnum;
9f744501
JB
2112 default:
2113 return num;
2114 }
18ed0c4e 2115}
9f744501 2116
9f744501 2117
18ed0c4e
JB
2118/* Convert a Dwarf 2 register number to a GDB register number. */
2119static int
2120rs6000_dwarf2_reg_to_regnum (int num)
2121{
2122 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2123
18ed0c4e
JB
2124 if (0 <= num && num <= 31)
2125 return tdep->ppc_gp0_regnum + num;
2126 else if (32 <= num && num <= 63)
2127 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2128 specifies registers the architecture doesn't have? Our
2129 callers don't check the value we return. */
2130 return tdep->ppc_fp0_regnum + (num - 32);
2131 else if (1124 <= num && num < 1124 + 32)
2132 return tdep->ppc_vr0_regnum + (num - 1124);
2133 else if (1200 <= num && num < 1200 + 32)
2134 return tdep->ppc_ev0_regnum + (num - 1200);
2135 else
2136 switch (num)
2137 {
2138 case 67:
2139 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2140 case 99:
2141 return tdep->ppc_acc_regnum;
2142 case 100:
2143 return tdep->ppc_mq_regnum;
2144 case 101:
2145 return tdep->ppc_xer_regnum;
2146 case 108:
2147 return tdep->ppc_lr_regnum;
2148 case 109:
2149 return tdep->ppc_ctr_regnum;
2150 case 356:
2151 return tdep->ppc_vrsave_regnum;
2152 case 612:
2153 return tdep->ppc_spefscr_regnum;
2154 default:
2155 return num;
2156 }
2188cbdd
EZ
2157}
2158
18ed0c4e 2159
7a78ae4e 2160static void
a3c001ce
JB
2161rs6000_store_return_value (struct type *type,
2162 struct regcache *regcache,
2163 const void *valbuf)
7a78ae4e 2164{
a3c001ce
JB
2165 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2166 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2167 int regnum = -1;
ace1378a 2168
383f0f5b
JB
2169 /* The calling convention this function implements assumes the
2170 processor has floating-point registers. We shouldn't be using it
2171 on PPC variants that lack them. */
a3c001ce 2172 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2173
7a78ae4e 2174 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2175 /* Floating point values are returned starting from FPR1 and up.
2176 Say a double_double_double type could be returned in
64366f1c 2177 FPR1/FPR2/FPR3 triple. */
a3c001ce 2178 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2179 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2180 {
2181 if (TYPE_LENGTH (type) == 16
2182 && TYPE_VECTOR (type))
a3c001ce
JB
2183 regnum = tdep->ppc_vr0_regnum + 2;
2184 else
a44bddec 2185 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2186 _("rs6000_store_return_value: "
2187 "unexpected array return type"));
ace1378a 2188 }
7a78ae4e 2189 else
64366f1c 2190 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2191 regnum = tdep->ppc_gp0_regnum + 3;
2192
2193 {
2194 size_t bytes_written = 0;
2195
2196 while (bytes_written < TYPE_LENGTH (type))
2197 {
2198 /* How much of this value can we write to this register? */
2199 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2200 register_size (gdbarch, regnum));
2201 regcache_cooked_write_part (regcache, regnum,
2202 0, bytes_to_write,
2203 (char *) valbuf + bytes_written);
2204 regnum++;
2205 bytes_written += bytes_to_write;
2206 }
2207 }
7a78ae4e
ND
2208}
2209
a3c001ce 2210
7a78ae4e
ND
2211/* Extract from an array REGBUF containing the (raw) register state
2212 the address in which a function should return its structure value,
2213 as a CORE_ADDR (or an expression that can be used as one). */
2214
2215static CORE_ADDR
11269d7e
AC
2216rs6000_extract_struct_value_address (struct regcache *regcache)
2217{
2218 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2219 function call GDB knows the address of the struct return value
2220 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2221 the current call_function_by_hand() code only saves the most
2222 recent struct address leading to occasional calls. The code
2223 should instead maintain a stack of such addresses (in the dummy
2224 frame object). */
11269d7e
AC
2225 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2226 really got no idea where the return value is being stored. While
2227 r3, on function entry, contained the address it will have since
2228 been reused (scratch) and hence wouldn't be valid */
2229 return 0;
7a78ae4e
ND
2230}
2231
64366f1c 2232/* Hook called when a new child process is started. */
7a78ae4e
ND
2233
2234void
2235rs6000_create_inferior (int pid)
2236{
2237 if (rs6000_set_host_arch_hook)
2238 rs6000_set_host_arch_hook (pid);
c906108c
SS
2239}
2240\f
e2d0e7eb 2241/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2242
2243 Usually a function pointer's representation is simply the address
2244 of the function. On the RS/6000 however, a function pointer is
2245 represented by a pointer to a TOC entry. This TOC entry contains
2246 three words, the first word is the address of the function, the
2247 second word is the TOC pointer (r2), and the third word is the
2248 static chain value. Throughout GDB it is currently assumed that a
2249 function pointer contains the address of the function, which is not
2250 easy to fix. In addition, the conversion of a function address to
2251 a function pointer would require allocation of a TOC entry in the
2252 inferior's memory space, with all its drawbacks. To be able to
2253 call C++ virtual methods in the inferior (which are called via
f517ea4e 2254 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2255 function address from a function pointer. */
2256
f517ea4e
PS
2257/* Return real function address if ADDR (a function pointer) is in the data
2258 space and is therefore a special function pointer. */
c906108c 2259
b9362cc7 2260static CORE_ADDR
e2d0e7eb
AC
2261rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2262 CORE_ADDR addr,
2263 struct target_ops *targ)
c906108c
SS
2264{
2265 struct obj_section *s;
2266
2267 s = find_pc_section (addr);
2268 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2269 return addr;
c906108c 2270
7a78ae4e 2271 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2272 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2273}
c906108c 2274\f
c5aa993b 2275
7a78ae4e 2276/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2277
2278
7a78ae4e
ND
2279/* The arrays here called registers_MUMBLE hold information about available
2280 registers.
c906108c
SS
2281
2282 For each family of PPC variants, I've tried to isolate out the
2283 common registers and put them up front, so that as long as you get
2284 the general family right, GDB will correctly identify the registers
2285 common to that family. The common register sets are:
2286
2287 For the 60x family: hid0 hid1 iabr dabr pir
2288
2289 For the 505 and 860 family: eie eid nri
2290
2291 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2292 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2293 pbu1 pbl2 pbu2
c906108c
SS
2294
2295 Most of these register groups aren't anything formal. I arrived at
2296 them by looking at the registers that occurred in more than one
6f5987a6
KB
2297 processor.
2298
2299 Note: kevinb/2002-04-30: Support for the fpscr register was added
2300 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2301 for Power. For PowerPC, slot 70 was unused and was already in the
2302 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2303 slot 70 was being used for "mq", so the next available slot (71)
2304 was chosen. It would have been nice to be able to make the
2305 register numbers the same across processor cores, but this wasn't
2306 possible without either 1) renumbering some registers for some
2307 processors or 2) assigning fpscr to a really high slot that's
2308 larger than any current register number. Doing (1) is bad because
2309 existing stubs would break. Doing (2) is undesirable because it
2310 would introduce a really large gap between fpscr and the rest of
2311 the registers for most processors. */
7a78ae4e 2312
64366f1c 2313/* Convenience macros for populating register arrays. */
7a78ae4e 2314
64366f1c 2315/* Within another macro, convert S to a string. */
7a78ae4e
ND
2316
2317#define STR(s) #s
2318
2319/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2320 and 64 bits on 64-bit systems. */
13ac140c 2321#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2322
2323/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2324 systems. */
13ac140c 2325#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2326
2327/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2328 systems. */
13ac140c 2329#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2330
1fcc0bb8 2331/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2332 systems. */
13ac140c 2333#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2334
64366f1c 2335/* Return a struct reg defining floating-point register NAME. */
13ac140c 2336#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2337
6ced10dd
JB
2338/* Return a struct reg defining a pseudo register NAME that is 64 bits
2339 long on all systems. */
2340#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2341
2342/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2343 systems and that doesn't exist on 64-bit systems. */
13ac140c 2344#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2345
2346/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2347 systems and that doesn't exist on 32-bit systems. */
13ac140c 2348#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2349
64366f1c 2350/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2351#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2352
6ced10dd
JB
2353/* Return a struct reg defining an anonymous raw register that's 32
2354 bits on all systems. */
2355#define A4 { 0, 4, 4, 0, 0, -1 }
2356
13ac140c
JB
2357/* Return a struct reg defining an SPR named NAME that is 32 bits on
2358 32-bit systems and 64 bits on 64-bit systems. */
2359#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2360
2361/* Return a struct reg defining an SPR named NAME that is 32 bits on
2362 all systems. */
2363#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2364
2365/* Return a struct reg defining an SPR named NAME that is 32 bits on
2366 all systems, and whose SPR number is NUMBER. */
2367#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2368
2369/* Return a struct reg defining an SPR named NAME that's 64 bits on
2370 64-bit systems and that doesn't exist on 32-bit systems. */
2371#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2372
7a78ae4e
ND
2373/* UISA registers common across all architectures, including POWER. */
2374
2375#define COMMON_UISA_REGS \
2376 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2377 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2378 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2379 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2380 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2381 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2382 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2383 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2384 /* 64 */ R(pc), R(ps)
2385
2386/* UISA-level SPRs for PowerPC. */
2387#define PPC_UISA_SPRS \
13ac140c 2388 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2389
c8001721
EZ
2390/* UISA-level SPRs for PowerPC without floating point support. */
2391#define PPC_UISA_NOFP_SPRS \
13ac140c 2392 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2393
7a78ae4e
ND
2394/* Segment registers, for PowerPC. */
2395#define PPC_SEGMENT_REGS \
2396 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2397 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2398 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2399 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2400
2401/* OEA SPRs for PowerPC. */
2402#define PPC_OEA_SPRS \
13ac140c
JB
2403 /* 87 */ S4(pvr), \
2404 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2405 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2406 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2407 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2408 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2409 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2410 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2411 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2412
64366f1c 2413/* AltiVec registers. */
1fcc0bb8
EZ
2414#define PPC_ALTIVEC_REGS \
2415 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2416 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2417 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2418 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2419 /*151*/R4(vscr), R4(vrsave)
2420
c8001721 2421
6ced10dd
JB
2422/* On machines supporting the SPE APU, the general-purpose registers
2423 are 64 bits long. There are SIMD vector instructions to treat them
2424 as pairs of floats, but the rest of the instruction set treats them
2425 as 32-bit registers, and only operates on their lower halves.
2426
2427 In the GDB regcache, we treat their high and low halves as separate
2428 registers. The low halves we present as the general-purpose
2429 registers, and then we have pseudo-registers that stitch together
2430 the upper and lower halves and present them as pseudo-registers. */
2431
2432/* SPE GPR lower halves --- raw registers. */
2433#define PPC_SPE_GP_REGS \
2434 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2435 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2436 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2437 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2438
2439/* SPE GPR upper halves --- anonymous raw registers. */
2440#define PPC_SPE_UPPER_GP_REGS \
2441 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2442 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2443 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2444 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2445
2446/* SPE GPR vector registers --- pseudo registers based on underlying
2447 gprs and the anonymous upper half raw registers. */
2448#define PPC_EV_PSEUDO_REGS \
2449/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2450/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2451/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2452/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2453
7a78ae4e 2454/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2455 user-level SPR's. */
7a78ae4e 2456static const struct reg registers_power[] =
c906108c 2457{
7a78ae4e 2458 COMMON_UISA_REGS,
13ac140c 2459 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2460 /* 71 */ R4(fpscr)
c906108c
SS
2461};
2462
7a78ae4e 2463/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2464 view of the PowerPC. */
7a78ae4e 2465static const struct reg registers_powerpc[] =
c906108c 2466{
7a78ae4e 2467 COMMON_UISA_REGS,
1fcc0bb8
EZ
2468 PPC_UISA_SPRS,
2469 PPC_ALTIVEC_REGS
c906108c
SS
2470};
2471
13ac140c
JB
2472/* IBM PowerPC 403.
2473
2474 Some notes about the "tcr" special-purpose register:
2475 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2476 403's programmable interval timer, fixed interval timer, and
2477 watchdog timer.
2478 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2479 watchdog timer, and nothing else.
2480
2481 Some of the fields are similar between the two, but they're not
2482 compatible with each other. Since the two variants have different
2483 registers, with different numbers, but the same name, we can't
2484 splice the register name to get the SPR number. */
7a78ae4e 2485static const struct reg registers_403[] =
c5aa993b 2486{
7a78ae4e
ND
2487 COMMON_UISA_REGS,
2488 PPC_UISA_SPRS,
2489 PPC_SEGMENT_REGS,
2490 PPC_OEA_SPRS,
13ac140c
JB
2491 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2492 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2493 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2494 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2495 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2496 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2497};
2498
13ac140c
JB
2499/* IBM PowerPC 403GC.
2500 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2501static const struct reg registers_403GC[] =
c5aa993b 2502{
7a78ae4e
ND
2503 COMMON_UISA_REGS,
2504 PPC_UISA_SPRS,
2505 PPC_SEGMENT_REGS,
2506 PPC_OEA_SPRS,
13ac140c
JB
2507 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2508 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2509 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2510 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2511 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2512 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2513 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2514 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2515};
2516
64366f1c 2517/* Motorola PowerPC 505. */
7a78ae4e 2518static const struct reg registers_505[] =
c5aa993b 2519{
7a78ae4e
ND
2520 COMMON_UISA_REGS,
2521 PPC_UISA_SPRS,
2522 PPC_SEGMENT_REGS,
2523 PPC_OEA_SPRS,
13ac140c 2524 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2525};
2526
64366f1c 2527/* Motorola PowerPC 860 or 850. */
7a78ae4e 2528static const struct reg registers_860[] =
c5aa993b 2529{
7a78ae4e
ND
2530 COMMON_UISA_REGS,
2531 PPC_UISA_SPRS,
2532 PPC_SEGMENT_REGS,
2533 PPC_OEA_SPRS,
13ac140c
JB
2534 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2535 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2536 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2537 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2538 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2539 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2540 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2541 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2542 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2543 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2544 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2545 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2546};
2547
7a78ae4e
ND
2548/* Motorola PowerPC 601. Note that the 601 has different register numbers
2549 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2550 register is the stub's problem. */
7a78ae4e 2551static const struct reg registers_601[] =
c5aa993b 2552{
7a78ae4e
ND
2553 COMMON_UISA_REGS,
2554 PPC_UISA_SPRS,
2555 PPC_SEGMENT_REGS,
2556 PPC_OEA_SPRS,
13ac140c
JB
2557 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2558 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2559};
2560
13ac140c
JB
2561/* Motorola PowerPC 602.
2562 See the notes under the 403 about 'tcr'. */
7a78ae4e 2563static const struct reg registers_602[] =
c5aa993b 2564{
7a78ae4e
ND
2565 COMMON_UISA_REGS,
2566 PPC_UISA_SPRS,
2567 PPC_SEGMENT_REGS,
2568 PPC_OEA_SPRS,
13ac140c
JB
2569 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2570 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2571 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2572};
2573
64366f1c 2574/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2575static const struct reg registers_603[] =
c5aa993b 2576{
7a78ae4e
ND
2577 COMMON_UISA_REGS,
2578 PPC_UISA_SPRS,
2579 PPC_SEGMENT_REGS,
2580 PPC_OEA_SPRS,
13ac140c
JB
2581 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2582 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2583 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2584};
2585
64366f1c 2586/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2587static const struct reg registers_604[] =
c5aa993b 2588{
7a78ae4e
ND
2589 COMMON_UISA_REGS,
2590 PPC_UISA_SPRS,
2591 PPC_SEGMENT_REGS,
2592 PPC_OEA_SPRS,
13ac140c
JB
2593 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2594 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2595 /* 127 */ S(sia), S(sda)
c906108c
SS
2596};
2597
64366f1c 2598/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2599static const struct reg registers_750[] =
c5aa993b 2600{
7a78ae4e
ND
2601 COMMON_UISA_REGS,
2602 PPC_UISA_SPRS,
2603 PPC_SEGMENT_REGS,
2604 PPC_OEA_SPRS,
13ac140c
JB
2605 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2606 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2607 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2608 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2609 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2610 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2611};
2612
2613
64366f1c 2614/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2615static const struct reg registers_7400[] =
2616{
2617 /* gpr0-gpr31, fpr0-fpr31 */
2618 COMMON_UISA_REGS,
13c7b1ca 2619 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2620 PPC_UISA_SPRS,
2621 /* sr0-sr15 */
2622 PPC_SEGMENT_REGS,
2623 PPC_OEA_SPRS,
2624 /* vr0-vr31, vrsave, vscr */
2625 PPC_ALTIVEC_REGS
2626 /* FIXME? Add more registers? */
2627};
2628
c8001721
EZ
2629/* Motorola e500. */
2630static const struct reg registers_e500[] =
2631{
6ced10dd
JB
2632 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2633 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2634 /* 64 .. 65 */ R(pc), R(ps),
2635 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2636 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2637 /* NOTE: Add new registers here the end of the raw register
2638 list and just before the first pseudo register. */
6ced10dd 2639 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2640};
2641
c906108c 2642/* Information about a particular processor variant. */
7a78ae4e 2643
c906108c 2644struct variant
c5aa993b
JM
2645 {
2646 /* Name of this variant. */
2647 char *name;
c906108c 2648
c5aa993b
JM
2649 /* English description of the variant. */
2650 char *description;
c906108c 2651
64366f1c 2652 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2653 enum bfd_architecture arch;
2654
64366f1c 2655 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2656 unsigned long mach;
2657
489461e2
EZ
2658 /* Number of real registers. */
2659 int nregs;
2660
2661 /* Number of pseudo registers. */
2662 int npregs;
2663
2664 /* Number of total registers (the sum of nregs and npregs). */
2665 int num_tot_regs;
2666
c5aa993b
JM
2667 /* Table of register names; registers[R] is the name of the register
2668 number R. */
7a78ae4e 2669 const struct reg *regs;
c5aa993b 2670 };
c906108c 2671
489461e2
EZ
2672#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2673
2674static int
2675num_registers (const struct reg *reg_list, int num_tot_regs)
2676{
2677 int i;
2678 int nregs = 0;
2679
2680 for (i = 0; i < num_tot_regs; i++)
2681 if (!reg_list[i].pseudo)
2682 nregs++;
2683
2684 return nregs;
2685}
2686
2687static int
2688num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2689{
2690 int i;
2691 int npregs = 0;
2692
2693 for (i = 0; i < num_tot_regs; i++)
2694 if (reg_list[i].pseudo)
2695 npregs ++;
2696
2697 return npregs;
2698}
c906108c 2699
c906108c
SS
2700/* Information in this table comes from the following web sites:
2701 IBM: http://www.chips.ibm.com:80/products/embedded/
2702 Motorola: http://www.mot.com/SPS/PowerPC/
2703
2704 I'm sure I've got some of the variant descriptions not quite right.
2705 Please report any inaccuracies you find to GDB's maintainer.
2706
2707 If you add entries to this table, please be sure to allow the new
2708 value as an argument to the --with-cpu flag, in configure.in. */
2709
489461e2 2710static struct variant variants[] =
c906108c 2711{
489461e2 2712
7a78ae4e 2713 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2714 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2715 registers_powerpc},
7a78ae4e 2716 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2717 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2718 registers_power},
7a78ae4e 2719 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2720 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2721 registers_403},
7a78ae4e 2722 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2723 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2724 registers_601},
7a78ae4e 2725 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2726 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2727 registers_602},
7a78ae4e 2728 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2729 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2730 registers_603},
7a78ae4e 2731 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2732 604, -1, -1, tot_num_registers (registers_604),
2733 registers_604},
7a78ae4e 2734 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2735 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2736 registers_403GC},
7a78ae4e 2737 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2738 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2739 registers_505},
7a78ae4e 2740 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2741 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2742 registers_860},
7a78ae4e 2743 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2744 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2745 registers_750},
1fcc0bb8 2746 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2747 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2748 registers_7400},
c8001721
EZ
2749 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2750 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2751 registers_e500},
7a78ae4e 2752
5d57ee30
KB
2753 /* 64-bit */
2754 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2755 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2756 registers_powerpc},
7a78ae4e 2757 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2758 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2759 registers_powerpc},
5d57ee30 2760 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2761 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2762 registers_powerpc},
7a78ae4e 2763 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2764 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2765 registers_powerpc},
5d57ee30 2766 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2767 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2768 registers_powerpc},
5d57ee30 2769 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2770 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2771 registers_powerpc},
5d57ee30 2772
64366f1c 2773 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2774 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2775 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2776 registers_power},
7a78ae4e 2777 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2778 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2779 registers_power},
7a78ae4e 2780 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2781 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2782 registers_power},
7a78ae4e 2783
489461e2 2784 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2785};
2786
64366f1c 2787/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2788
2789static void
2790init_variants (void)
2791{
2792 struct variant *v;
2793
2794 for (v = variants; v->name; v++)
2795 {
2796 if (v->nregs == -1)
2797 v->nregs = num_registers (v->regs, v->num_tot_regs);
2798 if (v->npregs == -1)
2799 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2800 }
2801}
c906108c 2802
7a78ae4e 2803/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2804 MACH. If no such variant exists, return null. */
c906108c 2805
7a78ae4e
ND
2806static const struct variant *
2807find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2808{
7a78ae4e 2809 const struct variant *v;
c5aa993b 2810
7a78ae4e
ND
2811 for (v = variants; v->name; v++)
2812 if (arch == v->arch && mach == v->mach)
2813 return v;
c906108c 2814
7a78ae4e 2815 return NULL;
c906108c 2816}
9364a0ef
EZ
2817
2818static int
2819gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2820{
2821 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2822 return print_insn_big_powerpc (memaddr, info);
2823 else
2824 return print_insn_little_powerpc (memaddr, info);
2825}
7a78ae4e 2826\f
61a65099
KB
2827static CORE_ADDR
2828rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2829{
2830 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2831}
2832
2833static struct frame_id
2834rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2835{
2836 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2837 SP_REGNUM),
2838 frame_pc_unwind (next_frame));
2839}
2840
2841struct rs6000_frame_cache
2842{
2843 CORE_ADDR base;
2844 CORE_ADDR initial_sp;
2845 struct trad_frame_saved_reg *saved_regs;
2846};
2847
2848static struct rs6000_frame_cache *
2849rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2850{
2851 struct rs6000_frame_cache *cache;
2852 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2853 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2854 struct rs6000_framedata fdata;
2855 int wordsize = tdep->wordsize;
2856
2857 if ((*this_cache) != NULL)
2858 return (*this_cache);
2859 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2860 (*this_cache) = cache;
2861 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2862
2863 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2864 &fdata);
2865
2866 /* If there were any saved registers, figure out parent's stack
2867 pointer. */
2868 /* The following is true only if the frame doesn't have a call to
2869 alloca(), FIXME. */
2870
2871 if (fdata.saved_fpr == 0
2872 && fdata.saved_gpr == 0
2873 && fdata.saved_vr == 0
2874 && fdata.saved_ev == 0
2875 && fdata.lr_offset == 0
2876 && fdata.cr_offset == 0
2877 && fdata.vr_offset == 0
2878 && fdata.ev_offset == 0)
2879 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2880 else
2881 {
2882 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2883 address of the current frame. Things might be easier if the
2884 ->frame pointed to the outer-most address of the frame. In
2885 the mean time, the address of the prev frame is used as the
2886 base address of this frame. */
2887 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2888 if (!fdata.frameless)
2889 /* Frameless really means stackless. */
2890 cache->base = read_memory_addr (cache->base, wordsize);
2891 }
2892 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2893
2894 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2895 All fpr's from saved_fpr to fp31 are saved. */
2896
2897 if (fdata.saved_fpr >= 0)
2898 {
2899 int i;
2900 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2901
2902 /* If skip_prologue says floating-point registers were saved,
2903 but the current architecture has no floating-point registers,
2904 then that's strange. But we have no indices to even record
2905 the addresses under, so we just ignore it. */
2906 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2907 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2908 {
2909 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2910 fpr_addr += 8;
2911 }
61a65099
KB
2912 }
2913
2914 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2915 All gpr's from saved_gpr to gpr31 are saved. */
2916
2917 if (fdata.saved_gpr >= 0)
2918 {
2919 int i;
2920 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2921 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2922 {
2923 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2924 gpr_addr += wordsize;
2925 }
2926 }
2927
2928 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2929 All vr's from saved_vr to vr31 are saved. */
2930 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2931 {
2932 if (fdata.saved_vr >= 0)
2933 {
2934 int i;
2935 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2936 for (i = fdata.saved_vr; i < 32; i++)
2937 {
2938 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2939 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2940 }
2941 }
2942 }
2943
2944 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2945 All vr's from saved_ev to ev31 are saved. ????? */
2946 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2947 {
2948 if (fdata.saved_ev >= 0)
2949 {
2950 int i;
2951 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2952 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2953 {
2954 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2955 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2956 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2957 }
2958 }
2959 }
2960
2961 /* If != 0, fdata.cr_offset is the offset from the frame that
2962 holds the CR. */
2963 if (fdata.cr_offset != 0)
2964 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2965
2966 /* If != 0, fdata.lr_offset is the offset from the frame that
2967 holds the LR. */
2968 if (fdata.lr_offset != 0)
2969 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2970 /* The PC is found in the link register. */
2971 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2972
2973 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2974 holds the VRSAVE. */
2975 if (fdata.vrsave_offset != 0)
2976 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2977
2978 if (fdata.alloca_reg < 0)
2979 /* If no alloca register used, then fi->frame is the value of the
2980 %sp for this frame, and it is good enough. */
2981 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2982 else
2983 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2984 fdata.alloca_reg);
2985
2986 return cache;
2987}
2988
2989static void
2990rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2991 struct frame_id *this_id)
2992{
2993 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2994 this_cache);
2995 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2996}
2997
2998static void
2999rs6000_frame_prev_register (struct frame_info *next_frame,
3000 void **this_cache,
3001 int regnum, int *optimizedp,
3002 enum lval_type *lvalp, CORE_ADDR *addrp,
3003 int *realnump, void *valuep)
3004{
3005 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3006 this_cache);
1f67027d
AC
3007 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3008 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3009}
3010
3011static const struct frame_unwind rs6000_frame_unwind =
3012{
3013 NORMAL_FRAME,
3014 rs6000_frame_this_id,
3015 rs6000_frame_prev_register
3016};
3017
3018static const struct frame_unwind *
3019rs6000_frame_sniffer (struct frame_info *next_frame)
3020{
3021 return &rs6000_frame_unwind;
3022}
3023
3024\f
3025
3026static CORE_ADDR
3027rs6000_frame_base_address (struct frame_info *next_frame,
3028 void **this_cache)
3029{
3030 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3031 this_cache);
3032 return info->initial_sp;
3033}
3034
3035static const struct frame_base rs6000_frame_base = {
3036 &rs6000_frame_unwind,
3037 rs6000_frame_base_address,
3038 rs6000_frame_base_address,
3039 rs6000_frame_base_address
3040};
3041
3042static const struct frame_base *
3043rs6000_frame_base_sniffer (struct frame_info *next_frame)
3044{
3045 return &rs6000_frame_base;
3046}
3047
7a78ae4e
ND
3048/* Initialize the current architecture based on INFO. If possible, re-use an
3049 architecture from ARCHES, which is a list of architectures already created
3050 during this debugging session.
c906108c 3051
7a78ae4e 3052 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3053 a binary file. */
c906108c 3054
7a78ae4e
ND
3055static struct gdbarch *
3056rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3057{
3058 struct gdbarch *gdbarch;
3059 struct gdbarch_tdep *tdep;
708ff411 3060 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3061 struct reg *regs;
3062 const struct variant *v;
3063 enum bfd_architecture arch;
3064 unsigned long mach;
3065 bfd abfd;
7b112f9c 3066 int sysv_abi;
5bf1c677 3067 asection *sect;
7a78ae4e 3068
9aa1e687 3069 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3070 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3071
9aa1e687
KB
3072 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3073 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3074
3075 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3076
e712c1cf 3077 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3078 that, else choose a likely default. */
9aa1e687 3079 if (from_xcoff_exec)
c906108c 3080 {
11ed25ac 3081 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3082 wordsize = 8;
3083 else
3084 wordsize = 4;
c906108c 3085 }
9aa1e687
KB
3086 else if (from_elf_exec)
3087 {
3088 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3089 wordsize = 8;
3090 else
3091 wordsize = 4;
3092 }
c906108c 3093 else
7a78ae4e 3094 {
27b15785
KB
3095 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3096 wordsize = info.bfd_arch_info->bits_per_word /
3097 info.bfd_arch_info->bits_per_byte;
3098 else
3099 wordsize = 4;
7a78ae4e 3100 }
c906108c 3101
64366f1c 3102 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3103 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3104 arches != NULL;
3105 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3106 {
3107 /* Word size in the various PowerPC bfd_arch_info structs isn't
3108 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3109 separate word size check. */
7a78ae4e 3110 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3111 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3112 return arches->gdbarch;
3113 }
c906108c 3114
7a78ae4e
ND
3115 /* None found, create a new architecture from INFO, whose bfd_arch_info
3116 validity depends on the source:
3117 - executable useless
3118 - rs6000_host_arch() good
3119 - core file good
3120 - "set arch" trust blindly
3121 - GDB startup useless but harmless */
c906108c 3122
9aa1e687 3123 if (!from_xcoff_exec)
c906108c 3124 {
b732d07d 3125 arch = info.bfd_arch_info->arch;
7a78ae4e 3126 mach = info.bfd_arch_info->mach;
c906108c 3127 }
7a78ae4e 3128 else
c906108c 3129 {
7a78ae4e 3130 arch = bfd_arch_powerpc;
35cec841 3131 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3132 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3133 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3134 }
3135 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3136 tdep->wordsize = wordsize;
5bf1c677
EZ
3137
3138 /* For e500 executables, the apuinfo section is of help here. Such
3139 section contains the identifier and revision number of each
3140 Application-specific Processing Unit that is present on the
3141 chip. The content of the section is determined by the assembler
3142 which looks at each instruction and determines which unit (and
3143 which version of it) can execute it. In our case we just look for
3144 the existance of the section. */
3145
3146 if (info.abfd)
3147 {
3148 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3149 if (sect)
3150 {
3151 arch = info.bfd_arch_info->arch;
3152 mach = bfd_mach_ppc_e500;
3153 bfd_default_set_arch_mach (&abfd, arch, mach);
3154 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3155 }
3156 }
3157
7a78ae4e 3158 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3159
489461e2
EZ
3160 /* Initialize the number of real and pseudo registers in each variant. */
3161 init_variants ();
3162
64366f1c 3163 /* Choose variant. */
7a78ae4e
ND
3164 v = find_variant_by_arch (arch, mach);
3165 if (!v)
dd47e6fd
EZ
3166 return NULL;
3167
7a78ae4e
ND
3168 tdep->regs = v->regs;
3169
2188cbdd 3170 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3171 tdep->ppc_toc_regnum = 2;
3172 tdep->ppc_ps_regnum = 65;
3173 tdep->ppc_cr_regnum = 66;
3174 tdep->ppc_lr_regnum = 67;
3175 tdep->ppc_ctr_regnum = 68;
3176 tdep->ppc_xer_regnum = 69;
3177 if (v->mach == bfd_mach_ppc_601)
3178 tdep->ppc_mq_regnum = 124;
708ff411 3179 else if (arch == bfd_arch_rs6000)
2188cbdd 3180 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3181 else
3182 tdep->ppc_mq_regnum = -1;
366f009f 3183 tdep->ppc_fp0_regnum = 32;
708ff411 3184 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3185 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3186 tdep->ppc_vr0_regnum = -1;
3187 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3188 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3189 tdep->ppc_ev0_regnum = -1;
3190 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3191 tdep->ppc_acc_regnum = -1;
3192 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3193
c8001721
EZ
3194 set_gdbarch_pc_regnum (gdbarch, 64);
3195 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3196 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3197 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3198 if (sysv_abi && wordsize == 8)
05580c65 3199 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3200 else if (sysv_abi && wordsize == 4)
05580c65 3201 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3202 else
3203 {
3204 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3205 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3206 }
c8001721 3207
baffbae0
JB
3208 /* Set lr_frame_offset. */
3209 if (wordsize == 8)
3210 tdep->lr_frame_offset = 16;
3211 else if (sysv_abi)
3212 tdep->lr_frame_offset = 4;
3213 else
3214 tdep->lr_frame_offset = 8;
3215
f86a7158
JB
3216 if (v->arch == bfd_arch_rs6000)
3217 tdep->ppc_sr0_regnum = -1;
3218 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3219 switch (v->mach)
3220 {
3221 case bfd_mach_ppc:
412b3060 3222 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3223 tdep->ppc_vr0_regnum = 71;
3224 tdep->ppc_vrsave_regnum = 104;
3225 break;
3226 case bfd_mach_ppc_7400:
3227 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3228 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3229 break;
3230 case bfd_mach_ppc_e500:
c8001721 3231 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3232 tdep->ppc_ev0_upper_regnum = 32;
3233 tdep->ppc_ev0_regnum = 73;
3234 tdep->ppc_ev31_regnum = 104;
3235 tdep->ppc_acc_regnum = 71;
3236 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3237 tdep->ppc_fp0_regnum = -1;
3238 tdep->ppc_fpscr_regnum = -1;
f86a7158 3239 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3240 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3241 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3242 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3243 break;
f86a7158
JB
3244
3245 case bfd_mach_ppc64:
3246 case bfd_mach_ppc_620:
3247 case bfd_mach_ppc_630:
3248 case bfd_mach_ppc_a35:
3249 case bfd_mach_ppc_rs64ii:
3250 case bfd_mach_ppc_rs64iii:
3251 /* These processor's register sets don't have segment registers. */
3252 tdep->ppc_sr0_regnum = -1;
3253 break;
1fcc0bb8 3254 }
f86a7158
JB
3255 else
3256 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3257 _("rs6000_gdbarch_init: "
3258 "received unexpected BFD 'arch' value"));
1fcc0bb8 3259
338ef23d
AC
3260 /* Sanity check on registers. */
3261 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3262
56a6dfb9 3263 /* Select instruction printer. */
708ff411 3264 if (arch == bfd_arch_rs6000)
9364a0ef 3265 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3266 else
9364a0ef 3267 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3268
7a78ae4e 3269 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3270
3271 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3272 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3273 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3274 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3275 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3276
3277 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3278 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3279 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3280 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3281 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3282 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3283 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3284 if (sysv_abi)
3285 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3286 else
3287 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3288 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3289
11269d7e 3290 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3291 if (sysv_abi && wordsize == 8)
3292 /* PPC64 SYSV. */
3293 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3294 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3295 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3296 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3297 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3298 224. */
3299 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3300
691d145a
JB
3301 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3302 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3303 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3304
18ed0c4e
JB
3305 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3306 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3307 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3308 is correct for the SysV ABI when the wordsize is 8, but I'm also
3309 fairly certain that ppc_sysv_abi_push_arguments() will give even
3310 worse results since it only works for 32-bit code. So, for the moment,
3311 we're better off calling rs6000_push_arguments() since it works for
3312 64-bit code. At some point in the future, this matter needs to be
3313 revisited. */
3314 if (sysv_abi && wordsize == 4)
77b2b6d4 3315 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3316 else if (sysv_abi && wordsize == 8)
3317 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3318 else
77b2b6d4 3319 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3320
74055713 3321 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3322
3323 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3324 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3325 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3326
6066c3de
AC
3327 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3328 for the descriptor and ".FN" for the entry-point -- a user
3329 specifying "break FN" will unexpectedly end up with a breakpoint
3330 on the descriptor and not the function. This architecture method
3331 transforms any breakpoints on descriptors into breakpoints on the
3332 corresponding entry point. */
3333 if (sysv_abi && wordsize == 8)
3334 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3335
7a78ae4e
ND
3336 /* Not sure on this. FIXMEmgo */
3337 set_gdbarch_frame_args_skip (gdbarch, 8);
3338
05580c65 3339 if (!sysv_abi)
b5622e8d 3340 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3341
15813d3f
AC
3342 if (!sysv_abi)
3343 {
3344 /* Handle RS/6000 function pointers (which are really function
3345 descriptors). */
f517ea4e
PS
3346 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3347 rs6000_convert_from_func_ptr_addr);
9aa1e687 3348 }
7a78ae4e 3349
143985b7
AF
3350 /* Helpers for function argument information. */
3351 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3352
7b112f9c 3353 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3354 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3355
61a65099
KB
3356 switch (info.osabi)
3357 {
3358 case GDB_OSABI_NETBSD_AOUT:
3359 case GDB_OSABI_NETBSD_ELF:
3360 case GDB_OSABI_UNKNOWN:
3361 case GDB_OSABI_LINUX:
3362 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3363 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3364 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3365 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3366 break;
3367 default:
61a65099 3368 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3369
3370 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3371 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3372 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3373 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3374 }
3375
ef5200c1
AC
3376 if (from_xcoff_exec)
3377 {
3378 /* NOTE: jimix/2003-06-09: This test should really check for
3379 GDB_OSABI_AIX when that is defined and becomes
3380 available. (Actually, once things are properly split apart,
3381 the test goes away.) */
3382 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3383 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3384 }
3385
9f643768
JB
3386 init_sim_regno_table (gdbarch);
3387
7a78ae4e 3388 return gdbarch;
c906108c
SS
3389}
3390
7b112f9c
JT
3391static void
3392rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3393{
3394 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3395
3396 if (tdep == NULL)
3397 return;
3398
4be87837 3399 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3400}
3401
1fcc0bb8
EZ
3402static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3403
3404static void
3405rs6000_info_powerpc_command (char *args, int from_tty)
3406{
3407 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3408}
3409
c906108c
SS
3410/* Initialization code. */
3411
a78f21af 3412extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3413
c906108c 3414void
fba45db2 3415_initialize_rs6000_tdep (void)
c906108c 3416{
7b112f9c
JT
3417 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3418 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3419
3420 /* Add root prefix command for "info powerpc" commands */
3421 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
1bedd215 3422 _("Various POWERPC info specific commands."),
1fcc0bb8 3423 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3424}
This page took 0.866262 seconds and 4 git commands to generate.