gdb/
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
197e01b6 3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
721d14ba
DJ
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
c44ca51c 62#include "reggroups.h"
1f82754b 63#include "rs6000-tdep.h"
c44ca51c 64
7a78ae4e
ND
65/* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72#define SIG_FRAME_PC_OFFSET 96
73#define SIG_FRAME_LR_OFFSET 108
74#define SIG_FRAME_FP_OFFSET 284
75
7a78ae4e
ND
76/* To be used by skip_prologue. */
77
78struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 85 int saved_vr; /* smallest # of saved vr */
96ff0de4 86 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 92 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 93 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
6be8bc0c 96 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
97 };
98
99/* Description of a single register. */
100
101struct reg
102 {
103 char *name; /* name of register */
0bcc32ae
JB
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 106 unsigned char fpr; /* whether register is floating-point */
489461e2 107 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
7a78ae4e
ND
111 };
112
c906108c
SS
113/* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
7a78ae4e
ND
117CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
119/* Hook to set the current architecture when starting a child process.
120 rs6000-nat.c sets this. */
121
122void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
123
124/* Static function prototypes */
125
a14ed312
KB
126static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
127 CORE_ADDR safety);
077276e8
KB
128static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
129 struct rs6000_framedata *);
c906108c 130
64b84175
KB
131/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
132int
133altivec_register_p (int regno)
134{
135 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
136 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
137 return 0;
138 else
139 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
140}
141
383f0f5b 142
867e2dc5
JB
143/* Return true if REGNO is an SPE register, false otherwise. */
144int
145spe_register_p (int regno)
146{
147 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
148
149 /* Is it a reference to EV0 -- EV31, and do we have those? */
150 if (tdep->ppc_ev0_regnum >= 0
151 && tdep->ppc_ev31_regnum >= 0
152 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
153 return 1;
154
6ced10dd
JB
155 /* Is it a reference to one of the raw upper GPR halves? */
156 if (tdep->ppc_ev0_upper_regnum >= 0
157 && tdep->ppc_ev0_upper_regnum <= regno
158 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
159 return 1;
160
867e2dc5
JB
161 /* Is it a reference to the 64-bit accumulator, and do we have that? */
162 if (tdep->ppc_acc_regnum >= 0
163 && tdep->ppc_acc_regnum == regno)
164 return 1;
165
166 /* Is it a reference to the SPE floating-point status and control register,
167 and do we have that? */
168 if (tdep->ppc_spefscr_regnum >= 0
169 && tdep->ppc_spefscr_regnum == regno)
170 return 1;
171
172 return 0;
173}
174
175
383f0f5b
JB
176/* Return non-zero if the architecture described by GDBARCH has
177 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
178int
179ppc_floating_point_unit_p (struct gdbarch *gdbarch)
180{
383f0f5b
JB
181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
182
183 return (tdep->ppc_fp0_regnum >= 0
184 && tdep->ppc_fpscr_regnum >= 0);
0a613259 185}
9f643768 186
09991fa0
JB
187
188/* Check that TABLE[GDB_REGNO] is not already initialized, and then
189 set it to SIM_REGNO.
190
191 This is a helper function for init_sim_regno_table, constructing
192 the table mapping GDB register numbers to sim register numbers; we
193 initialize every element in that table to -1 before we start
194 filling it in. */
9f643768
JB
195static void
196set_sim_regno (int *table, int gdb_regno, int sim_regno)
197{
198 /* Make sure we don't try to assign any given GDB register a sim
199 register number more than once. */
200 gdb_assert (table[gdb_regno] == -1);
201 table[gdb_regno] = sim_regno;
202}
203
09991fa0
JB
204
205/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
206 numbers to simulator register numbers, based on the values placed
207 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
208static void
209init_sim_regno_table (struct gdbarch *arch)
210{
211 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
212 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
213 const struct reg *regs = tdep->regs;
214 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
215 int i;
216
217 /* Presume that all registers not explicitly mentioned below are
218 unavailable from the sim. */
219 for (i = 0; i < total_regs; i++)
220 sim_regno[i] = -1;
221
222 /* General-purpose registers. */
223 for (i = 0; i < ppc_num_gprs; i++)
224 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
225
226 /* Floating-point registers. */
227 if (tdep->ppc_fp0_regnum >= 0)
228 for (i = 0; i < ppc_num_fprs; i++)
229 set_sim_regno (sim_regno,
230 tdep->ppc_fp0_regnum + i,
231 sim_ppc_f0_regnum + i);
232 if (tdep->ppc_fpscr_regnum >= 0)
233 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
234
235 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
236 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
237 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
238
239 /* Segment registers. */
240 if (tdep->ppc_sr0_regnum >= 0)
241 for (i = 0; i < ppc_num_srs; i++)
242 set_sim_regno (sim_regno,
243 tdep->ppc_sr0_regnum + i,
244 sim_ppc_sr0_regnum + i);
245
246 /* Altivec registers. */
247 if (tdep->ppc_vr0_regnum >= 0)
248 {
249 for (i = 0; i < ppc_num_vrs; i++)
250 set_sim_regno (sim_regno,
251 tdep->ppc_vr0_regnum + i,
252 sim_ppc_vr0_regnum + i);
253
254 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
255 we can treat this more like the other cases. */
256 set_sim_regno (sim_regno,
257 tdep->ppc_vr0_regnum + ppc_num_vrs,
258 sim_ppc_vscr_regnum);
259 }
260 /* vsave is a special-purpose register, so the code below handles it. */
261
262 /* SPE APU (E500) registers. */
263 if (tdep->ppc_ev0_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_regnum + i,
267 sim_ppc_ev0_regnum + i);
6ced10dd
JB
268 if (tdep->ppc_ev0_upper_regnum >= 0)
269 for (i = 0; i < ppc_num_gprs; i++)
270 set_sim_regno (sim_regno,
271 tdep->ppc_ev0_upper_regnum + i,
272 sim_ppc_rh0_regnum + i);
9f643768
JB
273 if (tdep->ppc_acc_regnum >= 0)
274 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
275 /* spefscr is a special-purpose register, so the code below handles it. */
276
277 /* Now handle all special-purpose registers. Verify that they
278 haven't mistakenly been assigned numbers by any of the above
279 code). */
280 for (i = 0; i < total_regs; i++)
281 if (regs[i].spr_num >= 0)
282 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
283
284 /* Drop the initialized array into place. */
285 tdep->sim_regno = sim_regno;
286}
287
09991fa0
JB
288
289/* Given a GDB register number REG, return the corresponding SIM
290 register number. */
9f643768
JB
291static int
292rs6000_register_sim_regno (int reg)
293{
294 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
295 int sim_regno;
296
297 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
298 sim_regno = tdep->sim_regno[reg];
299
300 if (sim_regno >= 0)
301 return sim_regno;
302 else
303 return LEGACY_SIM_REGNO_IGNORE;
304}
305
d195bc9f
MK
306\f
307
308/* Register set support functions. */
309
310static void
311ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 312 const gdb_byte *regs, size_t offset)
d195bc9f
MK
313{
314 if (regnum != -1 && offset != -1)
315 regcache_raw_supply (regcache, regnum, regs + offset);
316}
317
318static void
319ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 320 gdb_byte *regs, size_t offset)
d195bc9f
MK
321{
322 if (regnum != -1 && offset != -1)
323 regcache_raw_collect (regcache, regnum, regs + offset);
324}
325
326/* Supply register REGNUM in the general-purpose register set REGSET
327 from the buffer specified by GREGS and LEN to register cache
328 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
329
330void
331ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
332 int regnum, const void *gregs, size_t len)
333{
334 struct gdbarch *gdbarch = get_regcache_arch (regcache);
335 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
336 const struct ppc_reg_offsets *offsets = regset->descr;
337 size_t offset;
338 int i;
339
cdf2c5f5 340 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 341 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 342 i++, offset += 4)
d195bc9f
MK
343 {
344 if (regnum == -1 || regnum == i)
345 ppc_supply_reg (regcache, i, gregs, offset);
346 }
347
348 if (regnum == -1 || regnum == PC_REGNUM)
349 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
350 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
352 gregs, offsets->ps_offset);
353 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
355 gregs, offsets->cr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
358 gregs, offsets->lr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
361 gregs, offsets->ctr_offset);
362 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
363 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
364 gregs, offsets->cr_offset);
365 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
366 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
367}
368
369/* Supply register REGNUM in the floating-point register set REGSET
370 from the buffer specified by FPREGS and LEN to register cache
371 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
372
373void
374ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
375 int regnum, const void *fpregs, size_t len)
376{
377 struct gdbarch *gdbarch = get_regcache_arch (regcache);
378 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
379 const struct ppc_reg_offsets *offsets = regset->descr;
380 size_t offset;
381 int i;
382
383f0f5b
JB
383 gdb_assert (ppc_floating_point_unit_p (gdbarch));
384
d195bc9f 385 offset = offsets->f0_offset;
366f009f
JB
386 for (i = tdep->ppc_fp0_regnum;
387 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 388 i++, offset += 8)
d195bc9f
MK
389 {
390 if (regnum == -1 || regnum == i)
391 ppc_supply_reg (regcache, i, fpregs, offset);
392 }
393
394 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
395 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
396 fpregs, offsets->fpscr_offset);
397}
398
399/* Collect register REGNUM in the general-purpose register set
400 REGSET. from register cache REGCACHE into the buffer specified by
401 GREGS and LEN. If REGNUM is -1, do this for all registers in
402 REGSET. */
403
404void
405ppc_collect_gregset (const struct regset *regset,
406 const struct regcache *regcache,
407 int regnum, void *gregs, size_t len)
408{
409 struct gdbarch *gdbarch = get_regcache_arch (regcache);
410 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
411 const struct ppc_reg_offsets *offsets = regset->descr;
412 size_t offset;
413 int i;
414
415 offset = offsets->r0_offset;
cdf2c5f5 416 for (i = tdep->ppc_gp0_regnum;
063715bf 417 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 418 i++, offset += 4)
d195bc9f
MK
419 {
420 if (regnum == -1 || regnum == i)
2e56e9c1 421 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
422 }
423
424 if (regnum == -1 || regnum == PC_REGNUM)
425 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
426 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
428 gregs, offsets->ps_offset);
429 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
431 gregs, offsets->cr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
434 gregs, offsets->lr_offset);
435 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
437 gregs, offsets->ctr_offset);
438 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
439 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
440 gregs, offsets->xer_offset);
441 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
442 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
443 gregs, offsets->mq_offset);
444}
445
446/* Collect register REGNUM in the floating-point register set
447 REGSET. from register cache REGCACHE into the buffer specified by
448 FPREGS and LEN. If REGNUM is -1, do this for all registers in
449 REGSET. */
450
451void
452ppc_collect_fpregset (const struct regset *regset,
453 const struct regcache *regcache,
454 int regnum, void *fpregs, size_t len)
455{
456 struct gdbarch *gdbarch = get_regcache_arch (regcache);
457 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
458 const struct ppc_reg_offsets *offsets = regset->descr;
459 size_t offset;
460 int i;
461
383f0f5b
JB
462 gdb_assert (ppc_floating_point_unit_p (gdbarch));
463
d195bc9f 464 offset = offsets->f0_offset;
366f009f
JB
465 for (i = tdep->ppc_fp0_regnum;
466 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 467 i++, offset += 8)
d195bc9f
MK
468 {
469 if (regnum == -1 || regnum == i)
bdbcb8b4 470 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
471 }
472
473 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
474 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
475 fpregs, offsets->fpscr_offset);
476}
477\f
0a613259 478
7a78ae4e 479/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 480
7a78ae4e
ND
481static CORE_ADDR
482read_memory_addr (CORE_ADDR memaddr, int len)
483{
484 return read_memory_unsigned_integer (memaddr, len);
485}
c906108c 486
7a78ae4e
ND
487static CORE_ADDR
488rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
489{
490 struct rs6000_framedata frame;
077276e8 491 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
492 return pc;
493}
494
0d1243d9
PG
495static int
496insn_changes_sp_or_jumps (unsigned long insn)
497{
498 int opcode = (insn >> 26) & 0x03f;
499 int sd = (insn >> 21) & 0x01f;
500 int a = (insn >> 16) & 0x01f;
501 int subcode = (insn >> 1) & 0x3ff;
502
503 /* Changes the stack pointer. */
504
505 /* NOTE: There are many ways to change the value of a given register.
506 The ways below are those used when the register is R1, the SP,
507 in a funtion's epilogue. */
508
509 if (opcode == 31 && subcode == 444 && a == 1)
510 return 1; /* mr R1,Rn */
511 if (opcode == 14 && sd == 1)
512 return 1; /* addi R1,Rn,simm */
513 if (opcode == 58 && sd == 1)
514 return 1; /* ld R1,ds(Rn) */
515
516 /* Transfers control. */
517
518 if (opcode == 18)
519 return 1; /* b */
520 if (opcode == 16)
521 return 1; /* bc */
522 if (opcode == 19 && subcode == 16)
523 return 1; /* bclr */
524 if (opcode == 19 && subcode == 528)
525 return 1; /* bcctr */
526
527 return 0;
528}
529
530/* Return true if we are in the function's epilogue, i.e. after the
531 instruction that destroyed the function's stack frame.
532
533 1) scan forward from the point of execution:
534 a) If you find an instruction that modifies the stack pointer
535 or transfers control (except a return), execution is not in
536 an epilogue, return.
537 b) Stop scanning if you find a return instruction or reach the
538 end of the function or reach the hard limit for the size of
539 an epilogue.
540 2) scan backward from the point of execution:
541 a) If you find an instruction that modifies the stack pointer,
542 execution *is* in an epilogue, return.
543 b) Stop scanning if you reach an instruction that transfers
544 control or the beginning of the function or reach the hard
545 limit for the size of an epilogue. */
546
547static int
548rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
549{
550 bfd_byte insn_buf[PPC_INSN_SIZE];
551 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
552 unsigned long insn;
553 struct frame_info *curfrm;
554
555 /* Find the search limits based on function boundaries and hard limit. */
556
557 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
558 return 0;
559
560 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
561 if (epilogue_start < func_start) epilogue_start = func_start;
562
563 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
564 if (epilogue_end > func_end) epilogue_end = func_end;
565
566 curfrm = get_current_frame ();
567
568 /* Scan forward until next 'blr'. */
569
570 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
571 {
572 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
573 return 0;
574 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
575 if (insn == 0x4e800020)
576 break;
577 if (insn_changes_sp_or_jumps (insn))
578 return 0;
579 }
580
581 /* Scan backward until adjustment to stack pointer (R1). */
582
583 for (scan_pc = pc - PPC_INSN_SIZE;
584 scan_pc >= epilogue_start;
585 scan_pc -= PPC_INSN_SIZE)
586 {
587 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
588 return 0;
589 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
590 if (insn_changes_sp_or_jumps (insn))
591 return 1;
592 }
593
594 return 0;
595}
596
b83266a0 597
c906108c
SS
598/* Fill in fi->saved_regs */
599
600struct frame_extra_info
601{
602 /* Functions calling alloca() change the value of the stack
603 pointer. We need to use initial stack pointer (which is saved in
604 r31 by gcc) in such cases. If a compiler emits traceback table,
605 then we should use the alloca register specified in traceback
606 table. FIXME. */
c5aa993b 607 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
608};
609
143985b7 610/* Get the ith function argument for the current function. */
b9362cc7 611static CORE_ADDR
143985b7
AF
612rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
613 struct type *type)
614{
50fd1280 615 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
616}
617
c906108c
SS
618/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
619
620static CORE_ADDR
7a78ae4e 621branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
622{
623 CORE_ADDR dest;
624 int immediate;
625 int absolute;
626 int ext_op;
627
628 absolute = (int) ((instr >> 1) & 1);
629
c5aa993b
JM
630 switch (opcode)
631 {
632 case 18:
633 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
634 if (absolute)
635 dest = immediate;
636 else
637 dest = pc + immediate;
638 break;
639
640 case 16:
641 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
642 if (absolute)
643 dest = immediate;
644 else
645 dest = pc + immediate;
646 break;
647
648 case 19:
649 ext_op = (instr >> 1) & 0x3ff;
650
651 if (ext_op == 16) /* br conditional register */
652 {
2188cbdd 653 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
654
655 /* If we are about to return from a signal handler, dest is
656 something like 0x3c90. The current frame is a signal handler
657 caller frame, upon completion of the sigreturn system call
658 execution will return to the saved PC in the frame. */
659 if (dest < TEXT_SEGMENT_BASE)
660 {
661 struct frame_info *fi;
662
663 fi = get_current_frame ();
664 if (fi != NULL)
8b36eed8 665 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 666 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
667 }
668 }
669
670 else if (ext_op == 528) /* br cond to count reg */
671 {
2188cbdd 672 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
673
674 /* If we are about to execute a system call, dest is something
675 like 0x22fc or 0x3b00. Upon completion the system call
676 will return to the address in the link register. */
677 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 678 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
679 }
680 else
681 return -1;
682 break;
c906108c 683
c5aa993b
JM
684 default:
685 return -1;
686 }
c906108c
SS
687 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
688}
689
690
691/* Sequence of bytes for breakpoint instruction. */
692
f4f9705a 693const static unsigned char *
7a78ae4e 694rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 695{
aaab4dba
AC
696 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
697 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 698 *bp_size = 4;
d7449b42 699 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
700 return big_breakpoint;
701 else
702 return little_breakpoint;
703}
704
705
706/* AIX does not support PT_STEP. Simulate it. */
707
708void
379d08a1
AC
709rs6000_software_single_step (enum target_signal signal,
710 int insert_breakpoints_p)
c906108c 711{
7c40d541
KB
712 CORE_ADDR dummy;
713 int breakp_sz;
50fd1280 714 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
715 int ii, insn;
716 CORE_ADDR loc;
717 CORE_ADDR breaks[2];
718 int opcode;
719
c5aa993b
JM
720 if (insert_breakpoints_p)
721 {
c5aa993b 722 loc = read_pc ();
c906108c 723
c5aa993b 724 insn = read_memory_integer (loc, 4);
c906108c 725
7c40d541 726 breaks[0] = loc + breakp_sz;
c5aa993b
JM
727 opcode = insn >> 26;
728 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 729
c5aa993b
JM
730 /* Don't put two breakpoints on the same address. */
731 if (breaks[1] == breaks[0])
732 breaks[1] = -1;
c906108c 733
c5aa993b
JM
734 for (ii = 0; ii < 2; ++ii)
735 {
c5aa993b
JM
736 /* ignore invalid breakpoint. */
737 if (breaks[ii] == -1)
738 continue;
8181d85f 739 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 740 }
c5aa993b
JM
741 }
742 else
8181d85f 743 remove_single_step_breakpoints ();
c906108c 744
c906108c 745 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 746 /* What errors? {read,write}_memory call error(). */
c906108c
SS
747}
748
749
750/* return pc value after skipping a function prologue and also return
751 information about a function frame.
752
753 in struct rs6000_framedata fdata:
c5aa993b
JM
754 - frameless is TRUE, if function does not have a frame.
755 - nosavedpc is TRUE, if function does not save %pc value in its frame.
756 - offset is the initial size of this stack frame --- the amount by
757 which we decrement the sp to allocate the frame.
758 - saved_gpr is the number of the first saved gpr.
759 - saved_fpr is the number of the first saved fpr.
6be8bc0c 760 - saved_vr is the number of the first saved vr.
96ff0de4 761 - saved_ev is the number of the first saved ev.
c5aa993b
JM
762 - alloca_reg is the number of the register used for alloca() handling.
763 Otherwise -1.
764 - gpr_offset is the offset of the first saved gpr from the previous frame.
765 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 766 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 767 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
768 - lr_offset is the offset of the saved lr
769 - cr_offset is the offset of the saved cr
6be8bc0c 770 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 771 */
c906108c
SS
772
773#define SIGNED_SHORT(x) \
774 ((sizeof (short) == 2) \
775 ? ((int)(short)(x)) \
776 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
777
778#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
779
55d05f3b
KB
780/* Limit the number of skipped non-prologue instructions, as the examining
781 of the prologue is expensive. */
782static int max_skip_non_prologue_insns = 10;
783
784/* Given PC representing the starting address of a function, and
785 LIM_PC which is the (sloppy) limit to which to scan when looking
786 for a prologue, attempt to further refine this limit by using
787 the line data in the symbol table. If successful, a better guess
788 on where the prologue ends is returned, otherwise the previous
789 value of lim_pc is returned. */
634aa483
AC
790
791/* FIXME: cagney/2004-02-14: This function and logic have largely been
792 superseded by skip_prologue_using_sal. */
793
55d05f3b
KB
794static CORE_ADDR
795refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
796{
797 struct symtab_and_line prologue_sal;
798
799 prologue_sal = find_pc_line (pc, 0);
800 if (prologue_sal.line != 0)
801 {
802 int i;
803 CORE_ADDR addr = prologue_sal.end;
804
805 /* Handle the case in which compiler's optimizer/scheduler
806 has moved instructions into the prologue. We scan ahead
807 in the function looking for address ranges whose corresponding
808 line number is less than or equal to the first one that we
809 found for the function. (It can be less than when the
810 scheduler puts a body instruction before the first prologue
811 instruction.) */
812 for (i = 2 * max_skip_non_prologue_insns;
813 i > 0 && (lim_pc == 0 || addr < lim_pc);
814 i--)
815 {
816 struct symtab_and_line sal;
817
818 sal = find_pc_line (addr, 0);
819 if (sal.line == 0)
820 break;
821 if (sal.line <= prologue_sal.line
822 && sal.symtab == prologue_sal.symtab)
823 {
824 prologue_sal = sal;
825 }
826 addr = sal.end;
827 }
828
829 if (lim_pc == 0 || prologue_sal.end < lim_pc)
830 lim_pc = prologue_sal.end;
831 }
832 return lim_pc;
833}
834
773df3e5
JB
835/* Return nonzero if the given instruction OP can be part of the prologue
836 of a function and saves a parameter on the stack. FRAMEP should be
837 set if one of the previous instructions in the function has set the
838 Frame Pointer. */
839
840static int
841store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
842{
843 /* Move parameters from argument registers to temporary register. */
844 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
845 {
846 /* Rx must be scratch register r0. */
847 const int rx_regno = (op >> 16) & 31;
848 /* Ry: Only r3 - r10 are used for parameter passing. */
849 const int ry_regno = GET_SRC_REG (op);
850
851 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
852 {
853 *r0_contains_arg = 1;
854 return 1;
855 }
856 else
857 return 0;
858 }
859
860 /* Save a General Purpose Register on stack. */
861
862 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
863 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
864 {
865 /* Rx: Only r3 - r10 are used for parameter passing. */
866 const int rx_regno = GET_SRC_REG (op);
867
868 return (rx_regno >= 3 && rx_regno <= 10);
869 }
870
871 /* Save a General Purpose Register on stack via the Frame Pointer. */
872
873 if (framep &&
874 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
875 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
876 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
877 {
878 /* Rx: Usually, only r3 - r10 are used for parameter passing.
879 However, the compiler sometimes uses r0 to hold an argument. */
880 const int rx_regno = GET_SRC_REG (op);
881
882 return ((rx_regno >= 3 && rx_regno <= 10)
883 || (rx_regno == 0 && *r0_contains_arg));
884 }
885
886 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
887 {
888 /* Only f2 - f8 are used for parameter passing. */
889 const int src_regno = GET_SRC_REG (op);
890
891 return (src_regno >= 2 && src_regno <= 8);
892 }
893
894 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
895 {
896 /* Only f2 - f8 are used for parameter passing. */
897 const int src_regno = GET_SRC_REG (op);
898
899 return (src_regno >= 2 && src_regno <= 8);
900 }
901
902 /* Not an insn that saves a parameter on stack. */
903 return 0;
904}
55d05f3b 905
7a78ae4e 906static CORE_ADDR
077276e8 907skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
908{
909 CORE_ADDR orig_pc = pc;
55d05f3b 910 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 911 CORE_ADDR li_found_pc = 0;
50fd1280 912 gdb_byte buf[4];
c906108c
SS
913 unsigned long op;
914 long offset = 0;
6be8bc0c 915 long vr_saved_offset = 0;
482ca3f5
KB
916 int lr_reg = -1;
917 int cr_reg = -1;
6be8bc0c 918 int vr_reg = -1;
96ff0de4
EZ
919 int ev_reg = -1;
920 long ev_offset = 0;
6be8bc0c 921 int vrsave_reg = -1;
c906108c
SS
922 int reg;
923 int framep = 0;
924 int minimal_toc_loaded = 0;
ddb20c56 925 int prev_insn_was_prologue_insn = 1;
55d05f3b 926 int num_skip_non_prologue_insns = 0;
773df3e5 927 int r0_contains_arg = 0;
96ff0de4 928 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 929 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 930
55d05f3b
KB
931 /* Attempt to find the end of the prologue when no limit is specified.
932 Note that refine_prologue_limit() has been written so that it may
933 be used to "refine" the limits of non-zero PC values too, but this
934 is only safe if we 1) trust the line information provided by the
935 compiler and 2) iterate enough to actually find the end of the
936 prologue.
937
938 It may become a good idea at some point (for both performance and
939 accuracy) to unconditionally call refine_prologue_limit(). But,
940 until we can make a clear determination that this is beneficial,
941 we'll play it safe and only use it to obtain a limit when none
942 has been specified. */
943 if (lim_pc == 0)
944 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 945
ddb20c56 946 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
947 fdata->saved_gpr = -1;
948 fdata->saved_fpr = -1;
6be8bc0c 949 fdata->saved_vr = -1;
96ff0de4 950 fdata->saved_ev = -1;
c906108c
SS
951 fdata->alloca_reg = -1;
952 fdata->frameless = 1;
953 fdata->nosavedpc = 1;
954
55d05f3b 955 for (;; pc += 4)
c906108c 956 {
ddb20c56
KB
957 /* Sometimes it isn't clear if an instruction is a prologue
958 instruction or not. When we encounter one of these ambiguous
959 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
960 Otherwise, we'll assume that it really is a prologue instruction. */
961 if (prev_insn_was_prologue_insn)
962 last_prologue_pc = pc;
55d05f3b
KB
963
964 /* Stop scanning if we've hit the limit. */
965 if (lim_pc != 0 && pc >= lim_pc)
966 break;
967
ddb20c56
KB
968 prev_insn_was_prologue_insn = 1;
969
55d05f3b 970 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
971 if (target_read_memory (pc, buf, 4))
972 break;
973 op = extract_signed_integer (buf, 4);
c906108c 974
c5aa993b
JM
975 if ((op & 0xfc1fffff) == 0x7c0802a6)
976 { /* mflr Rx */
43b1ab88
AC
977 /* Since shared library / PIC code, which needs to get its
978 address at runtime, can appear to save more than one link
979 register vis:
980
981 *INDENT-OFF*
982 stwu r1,-304(r1)
983 mflr r3
984 bl 0xff570d0 (blrl)
985 stw r30,296(r1)
986 mflr r30
987 stw r31,300(r1)
988 stw r3,308(r1);
989 ...
990 *INDENT-ON*
991
992 remember just the first one, but skip over additional
993 ones. */
721d14ba 994 if (lr_reg == -1)
43b1ab88 995 lr_reg = (op & 0x03e00000);
773df3e5
JB
996 if (lr_reg == 0)
997 r0_contains_arg = 0;
c5aa993b 998 continue;
c5aa993b
JM
999 }
1000 else if ((op & 0xfc1fffff) == 0x7c000026)
1001 { /* mfcr Rx */
98f08d3d 1002 cr_reg = (op & 0x03e00000);
773df3e5
JB
1003 if (cr_reg == 0)
1004 r0_contains_arg = 0;
c5aa993b 1005 continue;
c906108c 1006
c906108c 1007 }
c5aa993b
JM
1008 else if ((op & 0xfc1f0000) == 0xd8010000)
1009 { /* stfd Rx,NUM(r1) */
1010 reg = GET_SRC_REG (op);
1011 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1012 {
1013 fdata->saved_fpr = reg;
1014 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1015 }
1016 continue;
c906108c 1017
c5aa993b
JM
1018 }
1019 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1020 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1021 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1022 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1023 {
1024
1025 reg = GET_SRC_REG (op);
1026 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1027 {
1028 fdata->saved_gpr = reg;
7a78ae4e 1029 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1030 op &= ~3UL;
c5aa993b
JM
1031 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1032 }
1033 continue;
c906108c 1034
ddb20c56
KB
1035 }
1036 else if ((op & 0xffff0000) == 0x60000000)
1037 {
96ff0de4 1038 /* nop */
ddb20c56
KB
1039 /* Allow nops in the prologue, but do not consider them to
1040 be part of the prologue unless followed by other prologue
1041 instructions. */
1042 prev_insn_was_prologue_insn = 0;
1043 continue;
1044
c906108c 1045 }
c5aa993b
JM
1046 else if ((op & 0xffff0000) == 0x3c000000)
1047 { /* addis 0,0,NUM, used
1048 for >= 32k frames */
1049 fdata->offset = (op & 0x0000ffff) << 16;
1050 fdata->frameless = 0;
773df3e5 1051 r0_contains_arg = 0;
c5aa993b
JM
1052 continue;
1053
1054 }
1055 else if ((op & 0xffff0000) == 0x60000000)
1056 { /* ori 0,0,NUM, 2nd ha
1057 lf of >= 32k frames */
1058 fdata->offset |= (op & 0x0000ffff);
1059 fdata->frameless = 0;
773df3e5 1060 r0_contains_arg = 0;
c5aa993b
JM
1061 continue;
1062
1063 }
be723e22 1064 else if (lr_reg >= 0 &&
98f08d3d
KB
1065 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1066 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1067 /* stw Rx, NUM(r1) */
1068 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1069 /* stwu Rx, NUM(r1) */
1070 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1071 { /* where Rx == lr */
1072 fdata->lr_offset = offset;
c5aa993b 1073 fdata->nosavedpc = 0;
be723e22
MS
1074 /* Invalidate lr_reg, but don't set it to -1.
1075 That would mean that it had never been set. */
1076 lr_reg = -2;
98f08d3d
KB
1077 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1078 (op & 0xfc000000) == 0x90000000) /* stw */
1079 {
1080 /* Does not update r1, so add displacement to lr_offset. */
1081 fdata->lr_offset += SIGNED_SHORT (op);
1082 }
c5aa993b
JM
1083 continue;
1084
1085 }
be723e22 1086 else if (cr_reg >= 0 &&
98f08d3d
KB
1087 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1088 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1089 /* stw Rx, NUM(r1) */
1090 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1091 /* stwu Rx, NUM(r1) */
1092 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1093 { /* where Rx == cr */
1094 fdata->cr_offset = offset;
be723e22
MS
1095 /* Invalidate cr_reg, but don't set it to -1.
1096 That would mean that it had never been set. */
1097 cr_reg = -2;
98f08d3d
KB
1098 if ((op & 0xfc000003) == 0xf8000000 ||
1099 (op & 0xfc000000) == 0x90000000)
1100 {
1101 /* Does not update r1, so add displacement to cr_offset. */
1102 fdata->cr_offset += SIGNED_SHORT (op);
1103 }
c5aa993b
JM
1104 continue;
1105
1106 }
721d14ba
DJ
1107 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1108 {
1109 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1110 prediction bits. If the LR has already been saved, we can
1111 skip it. */
1112 continue;
1113 }
c5aa993b
JM
1114 else if (op == 0x48000005)
1115 { /* bl .+4 used in
1116 -mrelocatable */
1117 continue;
1118
1119 }
1120 else if (op == 0x48000004)
1121 { /* b .+4 (xlc) */
1122 break;
1123
c5aa993b 1124 }
6be8bc0c
EZ
1125 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1126 in V.4 -mminimal-toc */
c5aa993b
JM
1127 (op & 0xffff0000) == 0x3bde0000)
1128 { /* addi 30,30,foo@l */
1129 continue;
c906108c 1130
c5aa993b
JM
1131 }
1132 else if ((op & 0xfc000001) == 0x48000001)
1133 { /* bl foo,
1134 to save fprs??? */
c906108c 1135
c5aa993b 1136 fdata->frameless = 0;
6be8bc0c 1137 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1138 the first three instructions of the prologue and either
1139 we have no line table information or the line info tells
1140 us that the subroutine call is not part of the line
1141 associated with the prologue. */
c5aa993b 1142 if ((pc - orig_pc) > 8)
ebd98106
FF
1143 {
1144 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1145 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1146
1147 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1148 break;
1149 }
c5aa993b
JM
1150
1151 op = read_memory_integer (pc + 4, 4);
1152
6be8bc0c
EZ
1153 /* At this point, make sure this is not a trampoline
1154 function (a function that simply calls another functions,
1155 and nothing else). If the next is not a nop, this branch
1156 was part of the function prologue. */
c5aa993b
JM
1157
1158 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1159 break; /* don't skip over
1160 this branch */
1161 continue;
1162
c5aa993b 1163 }
98f08d3d
KB
1164 /* update stack pointer */
1165 else if ((op & 0xfc1f0000) == 0x94010000)
1166 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1167 fdata->frameless = 0;
1168 fdata->offset = SIGNED_SHORT (op);
1169 offset = fdata->offset;
1170 continue;
c5aa993b 1171 }
98f08d3d
KB
1172 else if ((op & 0xfc1f016a) == 0x7c01016e)
1173 { /* stwux rX,r1,rY */
1174 /* no way to figure out what r1 is going to be */
1175 fdata->frameless = 0;
1176 offset = fdata->offset;
1177 continue;
1178 }
1179 else if ((op & 0xfc1f0003) == 0xf8010001)
1180 { /* stdu rX,NUM(r1) */
1181 fdata->frameless = 0;
1182 fdata->offset = SIGNED_SHORT (op & ~3UL);
1183 offset = fdata->offset;
1184 continue;
1185 }
1186 else if ((op & 0xfc1f016a) == 0x7c01016a)
1187 { /* stdux rX,r1,rY */
1188 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1189 fdata->frameless = 0;
1190 offset = fdata->offset;
1191 continue;
c5aa993b 1192 }
98f08d3d
KB
1193 /* Load up minimal toc pointer */
1194 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1195 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1196 && !minimal_toc_loaded)
98f08d3d 1197 {
c5aa993b
JM
1198 minimal_toc_loaded = 1;
1199 continue;
1200
f6077098
KB
1201 /* move parameters from argument registers to local variable
1202 registers */
1203 }
1204 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1205 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1206 (((op >> 21) & 31) <= 10) &&
96ff0de4 1207 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1208 {
1209 continue;
1210
c5aa993b
JM
1211 /* store parameters in stack */
1212 }
e802b915 1213 /* Move parameters from argument registers to temporary register. */
773df3e5 1214 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1215 {
c5aa993b
JM
1216 continue;
1217
1218 /* Set up frame pointer */
1219 }
1220 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1221 || op == 0x7c3f0b78)
1222 { /* mr r31, r1 */
1223 fdata->frameless = 0;
1224 framep = 1;
6f99cb26 1225 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1226 continue;
1227
1228 /* Another way to set up the frame pointer. */
1229 }
1230 else if ((op & 0xfc1fffff) == 0x38010000)
1231 { /* addi rX, r1, 0x0 */
1232 fdata->frameless = 0;
1233 framep = 1;
6f99cb26
AC
1234 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1235 + ((op & ~0x38010000) >> 21));
c5aa993b 1236 continue;
c5aa993b 1237 }
6be8bc0c
EZ
1238 /* AltiVec related instructions. */
1239 /* Store the vrsave register (spr 256) in another register for
1240 later manipulation, or load a register into the vrsave
1241 register. 2 instructions are used: mfvrsave and
1242 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1243 and mtspr SPR256, Rn. */
1244 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1245 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1246 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1247 {
1248 vrsave_reg = GET_SRC_REG (op);
1249 continue;
1250 }
1251 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1252 {
1253 continue;
1254 }
1255 /* Store the register where vrsave was saved to onto the stack:
1256 rS is the register where vrsave was stored in a previous
1257 instruction. */
1258 /* 100100 sssss 00001 dddddddd dddddddd */
1259 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1260 {
1261 if (vrsave_reg == GET_SRC_REG (op))
1262 {
1263 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1264 vrsave_reg = -1;
1265 }
1266 continue;
1267 }
1268 /* Compute the new value of vrsave, by modifying the register
1269 where vrsave was saved to. */
1270 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1271 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1272 {
1273 continue;
1274 }
1275 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1276 in a pair of insns to save the vector registers on the
1277 stack. */
1278 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1279 /* 001110 01110 00000 iiii iiii iiii iiii */
1280 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1281 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1282 {
773df3e5
JB
1283 if ((op & 0xffff0000) == 0x38000000)
1284 r0_contains_arg = 0;
6be8bc0c
EZ
1285 li_found_pc = pc;
1286 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1287
1288 /* This insn by itself is not part of the prologue, unless
1289 if part of the pair of insns mentioned above. So do not
1290 record this insn as part of the prologue yet. */
1291 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1292 }
1293 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1294 /* 011111 sssss 11111 00000 00111001110 */
1295 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1296 {
1297 if (pc == (li_found_pc + 4))
1298 {
1299 vr_reg = GET_SRC_REG (op);
1300 /* If this is the first vector reg to be saved, or if
1301 it has a lower number than others previously seen,
1302 reupdate the frame info. */
1303 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1304 {
1305 fdata->saved_vr = vr_reg;
1306 fdata->vr_offset = vr_saved_offset + offset;
1307 }
1308 vr_saved_offset = -1;
1309 vr_reg = -1;
1310 li_found_pc = 0;
1311 }
1312 }
1313 /* End AltiVec related instructions. */
96ff0de4
EZ
1314
1315 /* Start BookE related instructions. */
1316 /* Store gen register S at (r31+uimm).
1317 Any register less than r13 is volatile, so we don't care. */
1318 /* 000100 sssss 11111 iiiii 01100100001 */
1319 else if (arch_info->mach == bfd_mach_ppc_e500
1320 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1321 {
1322 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1323 {
1324 unsigned int imm;
1325 ev_reg = GET_SRC_REG (op);
1326 imm = (op >> 11) & 0x1f;
1327 ev_offset = imm * 8;
1328 /* If this is the first vector reg to be saved, or if
1329 it has a lower number than others previously seen,
1330 reupdate the frame info. */
1331 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1332 {
1333 fdata->saved_ev = ev_reg;
1334 fdata->ev_offset = ev_offset + offset;
1335 }
1336 }
1337 continue;
1338 }
1339 /* Store gen register rS at (r1+rB). */
1340 /* 000100 sssss 00001 bbbbb 01100100000 */
1341 else if (arch_info->mach == bfd_mach_ppc_e500
1342 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1343 {
1344 if (pc == (li_found_pc + 4))
1345 {
1346 ev_reg = GET_SRC_REG (op);
1347 /* If this is the first vector reg to be saved, or if
1348 it has a lower number than others previously seen,
1349 reupdate the frame info. */
1350 /* We know the contents of rB from the previous instruction. */
1351 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1352 {
1353 fdata->saved_ev = ev_reg;
1354 fdata->ev_offset = vr_saved_offset + offset;
1355 }
1356 vr_saved_offset = -1;
1357 ev_reg = -1;
1358 li_found_pc = 0;
1359 }
1360 continue;
1361 }
1362 /* Store gen register r31 at (rA+uimm). */
1363 /* 000100 11111 aaaaa iiiii 01100100001 */
1364 else if (arch_info->mach == bfd_mach_ppc_e500
1365 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1366 {
1367 /* Wwe know that the source register is 31 already, but
1368 it can't hurt to compute it. */
1369 ev_reg = GET_SRC_REG (op);
1370 ev_offset = ((op >> 11) & 0x1f) * 8;
1371 /* If this is the first vector reg to be saved, or if
1372 it has a lower number than others previously seen,
1373 reupdate the frame info. */
1374 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1375 {
1376 fdata->saved_ev = ev_reg;
1377 fdata->ev_offset = ev_offset + offset;
1378 }
1379
1380 continue;
1381 }
1382 /* Store gen register S at (r31+r0).
1383 Store param on stack when offset from SP bigger than 4 bytes. */
1384 /* 000100 sssss 11111 00000 01100100000 */
1385 else if (arch_info->mach == bfd_mach_ppc_e500
1386 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1387 {
1388 if (pc == (li_found_pc + 4))
1389 {
1390 if ((op & 0x03e00000) >= 0x01a00000)
1391 {
1392 ev_reg = GET_SRC_REG (op);
1393 /* If this is the first vector reg to be saved, or if
1394 it has a lower number than others previously seen,
1395 reupdate the frame info. */
1396 /* We know the contents of r0 from the previous
1397 instruction. */
1398 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1399 {
1400 fdata->saved_ev = ev_reg;
1401 fdata->ev_offset = vr_saved_offset + offset;
1402 }
1403 ev_reg = -1;
1404 }
1405 vr_saved_offset = -1;
1406 li_found_pc = 0;
1407 continue;
1408 }
1409 }
1410 /* End BookE related instructions. */
1411
c5aa993b
JM
1412 else
1413 {
55d05f3b
KB
1414 /* Not a recognized prologue instruction.
1415 Handle optimizer code motions into the prologue by continuing
1416 the search if we have no valid frame yet or if the return
1417 address is not yet saved in the frame. */
1418 if (fdata->frameless == 0
1419 && (lr_reg == -1 || fdata->nosavedpc == 0))
1420 break;
1421
1422 if (op == 0x4e800020 /* blr */
1423 || op == 0x4e800420) /* bctr */
1424 /* Do not scan past epilogue in frameless functions or
1425 trampolines. */
1426 break;
1427 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1428 /* Never skip branches. */
55d05f3b
KB
1429 break;
1430
1431 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1432 /* Do not scan too many insns, scanning insns is expensive with
1433 remote targets. */
1434 break;
1435
1436 /* Continue scanning. */
1437 prev_insn_was_prologue_insn = 0;
1438 continue;
c5aa993b 1439 }
c906108c
SS
1440 }
1441
1442#if 0
1443/* I have problems with skipping over __main() that I need to address
1444 * sometime. Previously, I used to use misc_function_vector which
1445 * didn't work as well as I wanted to be. -MGO */
1446
1447 /* If the first thing after skipping a prolog is a branch to a function,
1448 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1449 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1450 work before calling a function right after a prologue, thus we can
64366f1c 1451 single out such gcc2 behaviour. */
c906108c 1452
c906108c 1453
c5aa993b
JM
1454 if ((op & 0xfc000001) == 0x48000001)
1455 { /* bl foo, an initializer function? */
1456 op = read_memory_integer (pc + 4, 4);
1457
1458 if (op == 0x4def7b82)
1459 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1460
64366f1c
EZ
1461 /* Check and see if we are in main. If so, skip over this
1462 initializer function as well. */
c906108c 1463
c5aa993b 1464 tmp = find_pc_misc_function (pc);
6314a349
AC
1465 if (tmp >= 0
1466 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1467 return pc + 8;
1468 }
c906108c 1469 }
c906108c 1470#endif /* 0 */
c5aa993b
JM
1471
1472 fdata->offset = -fdata->offset;
ddb20c56 1473 return last_prologue_pc;
c906108c
SS
1474}
1475
1476
1477/*************************************************************************
f6077098 1478 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1479 frames, etc.
1480*************************************************************************/
1481
c906108c 1482
11269d7e
AC
1483/* All the ABI's require 16 byte alignment. */
1484static CORE_ADDR
1485rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1486{
1487 return (addr & -16);
1488}
1489
7a78ae4e 1490/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1491 the first eight words of the argument list (that might be less than
1492 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1493 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1494 passed in fpr's, in addition to that. Rest of the parameters if any
1495 are passed in user stack. There might be cases in which half of the
c906108c
SS
1496 parameter is copied into registers, the other half is pushed into
1497 stack.
1498
7a78ae4e
ND
1499 Stack must be aligned on 64-bit boundaries when synthesizing
1500 function calls.
1501
c906108c
SS
1502 If the function is returning a structure, then the return address is passed
1503 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1504 starting from r4. */
c906108c 1505
7a78ae4e 1506static CORE_ADDR
7d9b040b 1507rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1508 struct regcache *regcache, CORE_ADDR bp_addr,
1509 int nargs, struct value **args, CORE_ADDR sp,
1510 int struct_return, CORE_ADDR struct_addr)
c906108c 1511{
7a41266b 1512 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1513 int ii;
1514 int len = 0;
c5aa993b
JM
1515 int argno; /* current argument number */
1516 int argbytes; /* current argument byte */
50fd1280 1517 gdb_byte tmp_buffer[50];
c5aa993b 1518 int f_argno = 0; /* current floating point argno */
21283beb 1519 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1520 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1521
ea7c478f 1522 struct value *arg = 0;
c906108c
SS
1523 struct type *type;
1524
1525 CORE_ADDR saved_sp;
1526
383f0f5b
JB
1527 /* The calling convention this function implements assumes the
1528 processor has floating-point registers. We shouldn't be using it
1529 on PPC variants that lack them. */
1530 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1531
64366f1c 1532 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1533 Copy them appropriately. */
1534 ii = 0;
1535
1536 /* If the function is returning a `struct', then the first word
1537 (which will be passed in r3) is used for struct return address.
1538 In that case we should advance one word and start from r4
1539 register to copy parameters. */
1540 if (struct_return)
1541 {
1542 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1543 struct_addr);
1544 ii++;
1545 }
c906108c
SS
1546
1547/*
c5aa993b
JM
1548 effectively indirect call... gcc does...
1549
1550 return_val example( float, int);
1551
1552 eabi:
1553 float in fp0, int in r3
1554 offset of stack on overflow 8/16
1555 for varargs, must go by type.
1556 power open:
1557 float in r3&r4, int in r5
1558 offset of stack on overflow different
1559 both:
1560 return in r3 or f0. If no float, must study how gcc emulates floats;
1561 pay attention to arg promotion.
1562 User may have to cast\args to handle promotion correctly
1563 since gdb won't know if prototype supplied or not.
1564 */
c906108c 1565
c5aa993b
JM
1566 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1567 {
3acba339 1568 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1569
1570 arg = args[argno];
df407dfe 1571 type = check_typedef (value_type (arg));
c5aa993b
JM
1572 len = TYPE_LENGTH (type);
1573
1574 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1575 {
1576
64366f1c 1577 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1578 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1579 there is no way we would run out of them. */
c5aa993b 1580
9f335945
KB
1581 gdb_assert (len <= 8);
1582
1583 regcache_cooked_write (regcache,
1584 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1585 value_contents (arg));
c5aa993b
JM
1586 ++f_argno;
1587 }
1588
f6077098 1589 if (len > reg_size)
c5aa993b
JM
1590 {
1591
64366f1c 1592 /* Argument takes more than one register. */
c5aa993b
JM
1593 while (argbytes < len)
1594 {
50fd1280 1595 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1596 memset (word, 0, reg_size);
1597 memcpy (word,
0fd88904 1598 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1599 (len - argbytes) > reg_size
1600 ? reg_size : len - argbytes);
9f335945
KB
1601 regcache_cooked_write (regcache,
1602 tdep->ppc_gp0_regnum + 3 + ii,
1603 word);
f6077098 1604 ++ii, argbytes += reg_size;
c5aa993b
JM
1605
1606 if (ii >= 8)
1607 goto ran_out_of_registers_for_arguments;
1608 }
1609 argbytes = 0;
1610 --ii;
1611 }
1612 else
64366f1c
EZ
1613 {
1614 /* Argument can fit in one register. No problem. */
d7449b42 1615 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1616 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1617
1618 memset (word, 0, reg_size);
0fd88904 1619 memcpy (word, value_contents (arg), len);
9f335945 1620 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1621 }
1622 ++argno;
c906108c 1623 }
c906108c
SS
1624
1625ran_out_of_registers_for_arguments:
1626
7a78ae4e 1627 saved_sp = read_sp ();
cc9836a8 1628
64366f1c 1629 /* Location for 8 parameters are always reserved. */
7a78ae4e 1630 sp -= wordsize * 8;
f6077098 1631
64366f1c 1632 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1633 sp -= wordsize * 6;
f6077098 1634
64366f1c 1635 /* Stack pointer must be quadword aligned. */
7a78ae4e 1636 sp &= -16;
c906108c 1637
64366f1c
EZ
1638 /* If there are more arguments, allocate space for them in
1639 the stack, then push them starting from the ninth one. */
c906108c 1640
c5aa993b
JM
1641 if ((argno < nargs) || argbytes)
1642 {
1643 int space = 0, jj;
c906108c 1644
c5aa993b
JM
1645 if (argbytes)
1646 {
1647 space += ((len - argbytes + 3) & -4);
1648 jj = argno + 1;
1649 }
1650 else
1651 jj = argno;
c906108c 1652
c5aa993b
JM
1653 for (; jj < nargs; ++jj)
1654 {
ea7c478f 1655 struct value *val = args[jj];
df407dfe 1656 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1657 }
c906108c 1658
64366f1c 1659 /* Add location required for the rest of the parameters. */
f6077098 1660 space = (space + 15) & -16;
c5aa993b 1661 sp -= space;
c906108c 1662
7aea86e6
AC
1663 /* This is another instance we need to be concerned about
1664 securing our stack space. If we write anything underneath %sp
1665 (r1), we might conflict with the kernel who thinks he is free
1666 to use this area. So, update %sp first before doing anything
1667 else. */
1668
1669 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1670
64366f1c
EZ
1671 /* If the last argument copied into the registers didn't fit there
1672 completely, push the rest of it into stack. */
c906108c 1673
c5aa993b
JM
1674 if (argbytes)
1675 {
1676 write_memory (sp + 24 + (ii * 4),
50fd1280 1677 value_contents (arg) + argbytes,
c5aa993b
JM
1678 len - argbytes);
1679 ++argno;
1680 ii += ((len - argbytes + 3) & -4) / 4;
1681 }
c906108c 1682
64366f1c 1683 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1684 for (; argno < nargs; ++argno)
1685 {
c906108c 1686
c5aa993b 1687 arg = args[argno];
df407dfe 1688 type = check_typedef (value_type (arg));
c5aa993b 1689 len = TYPE_LENGTH (type);
c906108c
SS
1690
1691
64366f1c
EZ
1692 /* Float types should be passed in fpr's, as well as in the
1693 stack. */
c5aa993b
JM
1694 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1695 {
c906108c 1696
9f335945 1697 gdb_assert (len <= 8);
c906108c 1698
9f335945
KB
1699 regcache_cooked_write (regcache,
1700 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1701 value_contents (arg));
c5aa993b
JM
1702 ++f_argno;
1703 }
c906108c 1704
50fd1280 1705 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1706 ii += ((len + 3) & -4) / 4;
1707 }
c906108c 1708 }
c906108c 1709
69517000 1710 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1711 be set _before_ the corresponding stack space is used. On AIX,
1712 this even applies when the target has been completely stopped!
1713 Not doing this can lead to conflicts with the kernel which thinks
1714 that it still has control over this not-yet-allocated stack
1715 region. */
33a7c2fc
AC
1716 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1717
7aea86e6 1718 /* Set back chain properly. */
8ba0209f
AM
1719 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1720 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1721
e56a0ecc
AC
1722 /* Point the inferior function call's return address at the dummy's
1723 breakpoint. */
1724 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1725
794a477a
AC
1726 /* Set the TOC register, get the value from the objfile reader
1727 which, in turn, gets it from the VMAP table. */
1728 if (rs6000_find_toc_address_hook != NULL)
1729 {
1730 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1731 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1732 }
1733
c906108c
SS
1734 target_store_registers (-1);
1735 return sp;
1736}
c906108c 1737
b9ff3018
AC
1738/* PowerOpen always puts structures in memory. Vectors, which were
1739 added later, do get returned in a register though. */
1740
1741static int
1742rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1743{
1744 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1745 && TYPE_VECTOR (value_type))
1746 return 0;
1747 return 1;
1748}
1749
7a78ae4e 1750static void
50fd1280
AC
1751rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1752 gdb_byte *valbuf)
c906108c
SS
1753{
1754 int offset = 0;
ace1378a 1755 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1756
383f0f5b
JB
1757 /* The calling convention this function implements assumes the
1758 processor has floating-point registers. We shouldn't be using it
1759 on PPC variants that lack them. */
1760 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1761
c5aa993b
JM
1762 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1763 {
c906108c 1764
c5aa993b
JM
1765 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1766 We need to truncate the return value into float size (4 byte) if
64366f1c 1767 necessary. */
c906108c 1768
65951cd9 1769 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1770 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1771 builtin_type_double,
1772 valbuf,
1773 valtype);
c5aa993b 1774 }
ace1378a
EZ
1775 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1776 && TYPE_LENGTH (valtype) == 16
1777 && TYPE_VECTOR (valtype))
1778 {
62700349 1779 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1780 TYPE_LENGTH (valtype));
1781 }
c5aa993b
JM
1782 else
1783 {
1784 /* return value is copied starting from r3. */
d7449b42 1785 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1786 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1787 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1788
1789 memcpy (valbuf,
62700349 1790 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1791 TYPE_LENGTH (valtype));
c906108c 1792 }
c906108c
SS
1793}
1794
977adac5
ND
1795/* Return whether handle_inferior_event() should proceed through code
1796 starting at PC in function NAME when stepping.
1797
1798 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1799 handle memory references that are too distant to fit in instructions
1800 generated by the compiler. For example, if 'foo' in the following
1801 instruction:
1802
1803 lwz r9,foo(r2)
1804
1805 is greater than 32767, the linker might replace the lwz with a branch to
1806 somewhere in @FIX1 that does the load in 2 instructions and then branches
1807 back to where execution should continue.
1808
1809 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1810 Unfortunately, the linker uses the "b" instruction for the
1811 branches, meaning that the link register doesn't get set.
1812 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1813
2ec664f5
MS
1814 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1815 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1816 @FIX code. */
977adac5
ND
1817
1818int
1819rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1820{
1821 return name && !strncmp (name, "@FIX", 4);
1822}
1823
1824/* Skip code that the user doesn't want to see when stepping:
1825
1826 1. Indirect function calls use a piece of trampoline code to do context
1827 switching, i.e. to set the new TOC table. Skip such code if we are on
1828 its first instruction (as when we have single-stepped to here).
1829
1830 2. Skip shared library trampoline code (which is different from
c906108c 1831 indirect function call trampolines).
977adac5
ND
1832
1833 3. Skip bigtoc fixup code.
1834
c906108c 1835 Result is desired PC to step until, or NULL if we are not in
977adac5 1836 code that should be skipped. */
c906108c
SS
1837
1838CORE_ADDR
7a78ae4e 1839rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1840{
52f0bd74 1841 unsigned int ii, op;
977adac5 1842 int rel;
c906108c 1843 CORE_ADDR solib_target_pc;
977adac5 1844 struct minimal_symbol *msymbol;
c906108c 1845
c5aa993b
JM
1846 static unsigned trampoline_code[] =
1847 {
1848 0x800b0000, /* l r0,0x0(r11) */
1849 0x90410014, /* st r2,0x14(r1) */
1850 0x7c0903a6, /* mtctr r0 */
1851 0x804b0004, /* l r2,0x4(r11) */
1852 0x816b0008, /* l r11,0x8(r11) */
1853 0x4e800420, /* bctr */
1854 0x4e800020, /* br */
1855 0
c906108c
SS
1856 };
1857
977adac5
ND
1858 /* Check for bigtoc fixup code. */
1859 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1860 if (msymbol
1861 && rs6000_in_solib_return_trampoline (pc,
1862 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1863 {
1864 /* Double-check that the third instruction from PC is relative "b". */
1865 op = read_memory_integer (pc + 8, 4);
1866 if ((op & 0xfc000003) == 0x48000000)
1867 {
1868 /* Extract bits 6-29 as a signed 24-bit relative word address and
1869 add it to the containing PC. */
1870 rel = ((int)(op << 6) >> 6);
1871 return pc + 8 + rel;
1872 }
1873 }
1874
c906108c
SS
1875 /* If pc is in a shared library trampoline, return its target. */
1876 solib_target_pc = find_solib_trampoline_target (pc);
1877 if (solib_target_pc)
1878 return solib_target_pc;
1879
c5aa993b
JM
1880 for (ii = 0; trampoline_code[ii]; ++ii)
1881 {
1882 op = read_memory_integer (pc + (ii * 4), 4);
1883 if (op != trampoline_code[ii])
1884 return 0;
1885 }
1886 ii = read_register (11); /* r11 holds destination addr */
21283beb 1887 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1888 return pc;
1889}
1890
7a78ae4e 1891/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1892 isn't available with that word size, return 0. */
7a78ae4e
ND
1893
1894static int
1895regsize (const struct reg *reg, int wordsize)
1896{
1897 return wordsize == 8 ? reg->sz64 : reg->sz32;
1898}
1899
1900/* Return the name of register number N, or null if no such register exists
64366f1c 1901 in the current architecture. */
7a78ae4e 1902
fa88f677 1903static const char *
7a78ae4e
ND
1904rs6000_register_name (int n)
1905{
21283beb 1906 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1907 const struct reg *reg = tdep->regs + n;
1908
1909 if (!regsize (reg, tdep->wordsize))
1910 return NULL;
1911 return reg->name;
1912}
1913
7a78ae4e
ND
1914/* Return the GDB type object for the "standard" data type
1915 of data in register N. */
1916
1917static struct type *
691d145a 1918rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1919{
691d145a 1920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1921 const struct reg *reg = tdep->regs + n;
1922
1fcc0bb8
EZ
1923 if (reg->fpr)
1924 return builtin_type_double;
1925 else
1926 {
1927 int size = regsize (reg, tdep->wordsize);
1928 switch (size)
1929 {
449a5da4
AC
1930 case 0:
1931 return builtin_type_int0;
1932 case 4:
ed6edd9b 1933 return builtin_type_uint32;
1fcc0bb8 1934 case 8:
c8001721
EZ
1935 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1936 return builtin_type_vec64;
1937 else
ed6edd9b 1938 return builtin_type_uint64;
1fcc0bb8
EZ
1939 break;
1940 case 16:
08cf96df 1941 return builtin_type_vec128;
1fcc0bb8
EZ
1942 break;
1943 default:
e2e0b3e5 1944 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1945 n, size);
1fcc0bb8
EZ
1946 }
1947 }
7a78ae4e
ND
1948}
1949
c44ca51c
AC
1950/* Is REGNUM a member of REGGROUP? */
1951static int
1952rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1953 struct reggroup *group)
1954{
1955 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1956 int float_p;
1957 int vector_p;
1958 int general_p;
1959
1960 if (REGISTER_NAME (regnum) == NULL
1961 || *REGISTER_NAME (regnum) == '\0')
1962 return 0;
1963 if (group == all_reggroup)
1964 return 1;
1965
1966 float_p = (regnum == tdep->ppc_fpscr_regnum
1967 || (regnum >= tdep->ppc_fp0_regnum
1968 && regnum < tdep->ppc_fp0_regnum + 32));
1969 if (group == float_reggroup)
1970 return float_p;
1971
826d5376
PG
1972 vector_p = ((tdep->ppc_vr0_regnum >= 0
1973 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 1974 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
1975 || (tdep->ppc_ev0_regnum >= 0
1976 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 1977 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 1978 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
1979 || regnum == tdep->ppc_vrsave_regnum
1980 || regnum == tdep->ppc_acc_regnum
1981 || regnum == tdep->ppc_spefscr_regnum);
1982 if (group == vector_reggroup)
1983 return vector_p;
1984
1985 /* Note that PS aka MSR isn't included - it's a system register (and
1986 besides, due to GCC's CFI foobar you do not want to restore
1987 it). */
1988 general_p = ((regnum >= tdep->ppc_gp0_regnum
1989 && regnum < tdep->ppc_gp0_regnum + 32)
1990 || regnum == tdep->ppc_toc_regnum
1991 || regnum == tdep->ppc_cr_regnum
1992 || regnum == tdep->ppc_lr_regnum
1993 || regnum == tdep->ppc_ctr_regnum
1994 || regnum == tdep->ppc_xer_regnum
1995 || regnum == PC_REGNUM);
1996 if (group == general_reggroup)
1997 return general_p;
1998
1999 if (group == save_reggroup || group == restore_reggroup)
2000 return general_p || vector_p || float_p;
2001
2002 return 0;
2003}
2004
691d145a 2005/* The register format for RS/6000 floating point registers is always
64366f1c 2006 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2007
2008static int
691d145a 2009rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2010{
691d145a
JB
2011 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2012
2013 return (reg->fpr
2014 && TYPE_CODE (type) == TYPE_CODE_FLT
2015 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2016}
2017
7a78ae4e 2018static void
691d145a
JB
2019rs6000_register_to_value (struct frame_info *frame,
2020 int regnum,
2021 struct type *type,
50fd1280 2022 gdb_byte *to)
7a78ae4e 2023{
691d145a 2024 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2025 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2026
2027 gdb_assert (reg->fpr);
2028 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2029
691d145a
JB
2030 get_frame_register (frame, regnum, from);
2031 convert_typed_floating (from, builtin_type_double, to, type);
2032}
7a292a7a 2033
7a78ae4e 2034static void
691d145a
JB
2035rs6000_value_to_register (struct frame_info *frame,
2036 int regnum,
2037 struct type *type,
50fd1280 2038 const gdb_byte *from)
7a78ae4e 2039{
691d145a 2040 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2041 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2042
2043 gdb_assert (reg->fpr);
2044 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2045
2046 convert_typed_floating (from, type, to, builtin_type_double);
2047 put_frame_register (frame, regnum, to);
7a78ae4e 2048}
c906108c 2049
6ced10dd
JB
2050/* Move SPE vector register values between a 64-bit buffer and the two
2051 32-bit raw register halves in a regcache. This function handles
2052 both splitting a 64-bit value into two 32-bit halves, and joining
2053 two halves into a whole 64-bit value, depending on the function
2054 passed as the MOVE argument.
2055
2056 EV_REG must be the number of an SPE evN vector register --- a
2057 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2058 64-bit buffer.
2059
2060 Call MOVE once for each 32-bit half of that register, passing
2061 REGCACHE, the number of the raw register corresponding to that
2062 half, and the address of the appropriate half of BUFFER.
2063
2064 For example, passing 'regcache_raw_read' as the MOVE function will
2065 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2066 'regcache_raw_supply' will supply the contents of BUFFER to the
2067 appropriate pair of raw registers in REGCACHE.
2068
2069 You may need to cast away some 'const' qualifiers when passing
2070 MOVE, since this function can't tell at compile-time which of
2071 REGCACHE or BUFFER is acting as the source of the data. If C had
2072 co-variant type qualifiers, ... */
2073static void
2074e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2075 int regnum, gdb_byte *buf),
6ced10dd 2076 struct regcache *regcache, int ev_reg,
50fd1280 2077 gdb_byte *buffer)
6ced10dd
JB
2078{
2079 struct gdbarch *arch = get_regcache_arch (regcache);
2080 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2081 int reg_index;
50fd1280 2082 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2083
2084 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2085 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2086
2087 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2088
2089 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2090 {
2091 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2092 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2093 }
2094 else
2095 {
2096 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2097 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2098 }
2099}
2100
c8001721
EZ
2101static void
2102e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2103 int reg_nr, gdb_byte *buffer)
c8001721 2104{
6ced10dd 2105 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2106 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2107
6ced10dd
JB
2108 gdb_assert (regcache_arch == gdbarch);
2109
2110 if (tdep->ppc_ev0_regnum <= reg_nr
2111 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2112 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2113 else
a44bddec 2114 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2115 _("e500_pseudo_register_read: "
2116 "called on unexpected register '%s' (%d)"),
a44bddec 2117 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2118}
2119
2120static void
2121e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2122 int reg_nr, const gdb_byte *buffer)
c8001721 2123{
6ced10dd 2124 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2125 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2126
6ced10dd
JB
2127 gdb_assert (regcache_arch == gdbarch);
2128
2129 if (tdep->ppc_ev0_regnum <= reg_nr
2130 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2131 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2132 regcache_raw_write,
50fd1280 2133 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2134 else
a44bddec 2135 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2136 _("e500_pseudo_register_read: "
2137 "called on unexpected register '%s' (%d)"),
a44bddec 2138 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2139}
2140
2141/* The E500 needs a custom reggroup function: it has anonymous raw
2142 registers, and default_register_reggroup_p assumes that anonymous
2143 registers are not members of any reggroup. */
2144static int
2145e500_register_reggroup_p (struct gdbarch *gdbarch,
2146 int regnum,
2147 struct reggroup *group)
2148{
2149 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2150
2151 /* The save and restore register groups need to include the
2152 upper-half registers, even though they're anonymous. */
2153 if ((group == save_reggroup
2154 || group == restore_reggroup)
2155 && (tdep->ppc_ev0_upper_regnum <= regnum
2156 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2157 return 1;
2158
2159 /* In all other regards, the default reggroup definition is fine. */
2160 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2161}
2162
18ed0c4e 2163/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2164static int
18ed0c4e 2165rs6000_stab_reg_to_regnum (int num)
c8001721 2166{
9f744501 2167 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2168
9f744501
JB
2169 if (0 <= num && num <= 31)
2170 return tdep->ppc_gp0_regnum + num;
2171 else if (32 <= num && num <= 63)
383f0f5b
JB
2172 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2173 specifies registers the architecture doesn't have? Our
2174 callers don't check the value we return. */
366f009f 2175 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2176 else if (77 <= num && num <= 108)
2177 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2178 else if (1200 <= num && num < 1200 + 32)
2179 return tdep->ppc_ev0_regnum + (num - 1200);
2180 else
2181 switch (num)
2182 {
2183 case 64:
2184 return tdep->ppc_mq_regnum;
2185 case 65:
2186 return tdep->ppc_lr_regnum;
2187 case 66:
2188 return tdep->ppc_ctr_regnum;
2189 case 76:
2190 return tdep->ppc_xer_regnum;
2191 case 109:
2192 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2193 case 110:
2194 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2195 case 111:
18ed0c4e 2196 return tdep->ppc_acc_regnum;
867e2dc5 2197 case 112:
18ed0c4e 2198 return tdep->ppc_spefscr_regnum;
9f744501
JB
2199 default:
2200 return num;
2201 }
18ed0c4e 2202}
9f744501 2203
9f744501 2204
18ed0c4e
JB
2205/* Convert a Dwarf 2 register number to a GDB register number. */
2206static int
2207rs6000_dwarf2_reg_to_regnum (int num)
2208{
2209 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2210
18ed0c4e
JB
2211 if (0 <= num && num <= 31)
2212 return tdep->ppc_gp0_regnum + num;
2213 else if (32 <= num && num <= 63)
2214 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2215 specifies registers the architecture doesn't have? Our
2216 callers don't check the value we return. */
2217 return tdep->ppc_fp0_regnum + (num - 32);
2218 else if (1124 <= num && num < 1124 + 32)
2219 return tdep->ppc_vr0_regnum + (num - 1124);
2220 else if (1200 <= num && num < 1200 + 32)
2221 return tdep->ppc_ev0_regnum + (num - 1200);
2222 else
2223 switch (num)
2224 {
2225 case 67:
2226 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2227 case 99:
2228 return tdep->ppc_acc_regnum;
2229 case 100:
2230 return tdep->ppc_mq_regnum;
2231 case 101:
2232 return tdep->ppc_xer_regnum;
2233 case 108:
2234 return tdep->ppc_lr_regnum;
2235 case 109:
2236 return tdep->ppc_ctr_regnum;
2237 case 356:
2238 return tdep->ppc_vrsave_regnum;
2239 case 612:
2240 return tdep->ppc_spefscr_regnum;
2241 default:
2242 return num;
2243 }
2188cbdd
EZ
2244}
2245
18ed0c4e 2246
7a78ae4e 2247static void
a3c001ce
JB
2248rs6000_store_return_value (struct type *type,
2249 struct regcache *regcache,
50fd1280 2250 const gdb_byte *valbuf)
7a78ae4e 2251{
a3c001ce
JB
2252 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2253 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2254 int regnum = -1;
ace1378a 2255
383f0f5b
JB
2256 /* The calling convention this function implements assumes the
2257 processor has floating-point registers. We shouldn't be using it
2258 on PPC variants that lack them. */
a3c001ce 2259 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2260
7a78ae4e 2261 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2262 /* Floating point values are returned starting from FPR1 and up.
2263 Say a double_double_double type could be returned in
64366f1c 2264 FPR1/FPR2/FPR3 triple. */
a3c001ce 2265 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2266 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2267 {
2268 if (TYPE_LENGTH (type) == 16
2269 && TYPE_VECTOR (type))
a3c001ce
JB
2270 regnum = tdep->ppc_vr0_regnum + 2;
2271 else
a44bddec 2272 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2273 _("rs6000_store_return_value: "
2274 "unexpected array return type"));
ace1378a 2275 }
7a78ae4e 2276 else
64366f1c 2277 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2278 regnum = tdep->ppc_gp0_regnum + 3;
2279
2280 {
2281 size_t bytes_written = 0;
2282
2283 while (bytes_written < TYPE_LENGTH (type))
2284 {
2285 /* How much of this value can we write to this register? */
2286 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2287 register_size (gdbarch, regnum));
2288 regcache_cooked_write_part (regcache, regnum,
2289 0, bytes_to_write,
50fd1280 2290 valbuf + bytes_written);
a3c001ce
JB
2291 regnum++;
2292 bytes_written += bytes_to_write;
2293 }
2294 }
7a78ae4e
ND
2295}
2296
a3c001ce 2297
7a78ae4e
ND
2298/* Extract from an array REGBUF containing the (raw) register state
2299 the address in which a function should return its structure value,
2300 as a CORE_ADDR (or an expression that can be used as one). */
2301
2302static CORE_ADDR
11269d7e
AC
2303rs6000_extract_struct_value_address (struct regcache *regcache)
2304{
2305 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2306 function call GDB knows the address of the struct return value
2307 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2308 the current call_function_by_hand() code only saves the most
2309 recent struct address leading to occasional calls. The code
2310 should instead maintain a stack of such addresses (in the dummy
2311 frame object). */
11269d7e
AC
2312 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2313 really got no idea where the return value is being stored. While
2314 r3, on function entry, contained the address it will have since
2315 been reused (scratch) and hence wouldn't be valid */
2316 return 0;
7a78ae4e
ND
2317}
2318
64366f1c 2319/* Hook called when a new child process is started. */
7a78ae4e
ND
2320
2321void
2322rs6000_create_inferior (int pid)
2323{
2324 if (rs6000_set_host_arch_hook)
2325 rs6000_set_host_arch_hook (pid);
c906108c
SS
2326}
2327\f
e2d0e7eb 2328/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2329
2330 Usually a function pointer's representation is simply the address
2331 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2332 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2333 three words, the first word is the address of the function, the
2334 second word is the TOC pointer (r2), and the third word is the
2335 static chain value. Throughout GDB it is currently assumed that a
2336 function pointer contains the address of the function, which is not
2337 easy to fix. In addition, the conversion of a function address to
8ba0209f 2338 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2339 inferior's memory space, with all its drawbacks. To be able to
2340 call C++ virtual methods in the inferior (which are called via
f517ea4e 2341 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2342 function address from a function pointer. */
2343
f517ea4e
PS
2344/* Return real function address if ADDR (a function pointer) is in the data
2345 space and is therefore a special function pointer. */
c906108c 2346
b9362cc7 2347static CORE_ADDR
e2d0e7eb
AC
2348rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2349 CORE_ADDR addr,
2350 struct target_ops *targ)
c906108c
SS
2351{
2352 struct obj_section *s;
2353
2354 s = find_pc_section (addr);
2355 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2356 return addr;
c906108c 2357
7a78ae4e 2358 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2359 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2360}
c906108c 2361\f
c5aa993b 2362
7a78ae4e 2363/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2364
2365
7a78ae4e
ND
2366/* The arrays here called registers_MUMBLE hold information about available
2367 registers.
c906108c
SS
2368
2369 For each family of PPC variants, I've tried to isolate out the
2370 common registers and put them up front, so that as long as you get
2371 the general family right, GDB will correctly identify the registers
2372 common to that family. The common register sets are:
2373
2374 For the 60x family: hid0 hid1 iabr dabr pir
2375
2376 For the 505 and 860 family: eie eid nri
2377
2378 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2379 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2380 pbu1 pbl2 pbu2
c906108c
SS
2381
2382 Most of these register groups aren't anything formal. I arrived at
2383 them by looking at the registers that occurred in more than one
6f5987a6
KB
2384 processor.
2385
2386 Note: kevinb/2002-04-30: Support for the fpscr register was added
2387 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2388 for Power. For PowerPC, slot 70 was unused and was already in the
2389 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2390 slot 70 was being used for "mq", so the next available slot (71)
2391 was chosen. It would have been nice to be able to make the
2392 register numbers the same across processor cores, but this wasn't
2393 possible without either 1) renumbering some registers for some
2394 processors or 2) assigning fpscr to a really high slot that's
2395 larger than any current register number. Doing (1) is bad because
2396 existing stubs would break. Doing (2) is undesirable because it
2397 would introduce a really large gap between fpscr and the rest of
2398 the registers for most processors. */
7a78ae4e 2399
64366f1c 2400/* Convenience macros for populating register arrays. */
7a78ae4e 2401
64366f1c 2402/* Within another macro, convert S to a string. */
7a78ae4e
ND
2403
2404#define STR(s) #s
2405
2406/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2407 and 64 bits on 64-bit systems. */
13ac140c 2408#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2409
2410/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2411 systems. */
13ac140c 2412#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2413
2414/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2415 systems. */
13ac140c 2416#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2417
1fcc0bb8 2418/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2419 systems. */
13ac140c 2420#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2421
64366f1c 2422/* Return a struct reg defining floating-point register NAME. */
13ac140c 2423#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2424
6ced10dd
JB
2425/* Return a struct reg defining a pseudo register NAME that is 64 bits
2426 long on all systems. */
2427#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2428
2429/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2430 systems and that doesn't exist on 64-bit systems. */
13ac140c 2431#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2432
2433/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2434 systems and that doesn't exist on 32-bit systems. */
13ac140c 2435#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2436
64366f1c 2437/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2438#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2439
6ced10dd
JB
2440/* Return a struct reg defining an anonymous raw register that's 32
2441 bits on all systems. */
2442#define A4 { 0, 4, 4, 0, 0, -1 }
2443
13ac140c
JB
2444/* Return a struct reg defining an SPR named NAME that is 32 bits on
2445 32-bit systems and 64 bits on 64-bit systems. */
2446#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2447
2448/* Return a struct reg defining an SPR named NAME that is 32 bits on
2449 all systems. */
2450#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2451
2452/* Return a struct reg defining an SPR named NAME that is 32 bits on
2453 all systems, and whose SPR number is NUMBER. */
2454#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2455
2456/* Return a struct reg defining an SPR named NAME that's 64 bits on
2457 64-bit systems and that doesn't exist on 32-bit systems. */
2458#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2459
7a78ae4e
ND
2460/* UISA registers common across all architectures, including POWER. */
2461
2462#define COMMON_UISA_REGS \
2463 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2464 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2465 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2466 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2467 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2468 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2469 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2470 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2471 /* 64 */ R(pc), R(ps)
2472
2473/* UISA-level SPRs for PowerPC. */
2474#define PPC_UISA_SPRS \
13ac140c 2475 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2476
c8001721
EZ
2477/* UISA-level SPRs for PowerPC without floating point support. */
2478#define PPC_UISA_NOFP_SPRS \
13ac140c 2479 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2480
7a78ae4e
ND
2481/* Segment registers, for PowerPC. */
2482#define PPC_SEGMENT_REGS \
2483 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2484 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2485 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2486 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2487
2488/* OEA SPRs for PowerPC. */
2489#define PPC_OEA_SPRS \
13ac140c
JB
2490 /* 87 */ S4(pvr), \
2491 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2492 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2493 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2494 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2495 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2496 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2497 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2498 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2499
64366f1c 2500/* AltiVec registers. */
1fcc0bb8
EZ
2501#define PPC_ALTIVEC_REGS \
2502 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2503 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2504 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2505 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2506 /*151*/R4(vscr), R4(vrsave)
2507
c8001721 2508
6ced10dd
JB
2509/* On machines supporting the SPE APU, the general-purpose registers
2510 are 64 bits long. There are SIMD vector instructions to treat them
2511 as pairs of floats, but the rest of the instruction set treats them
2512 as 32-bit registers, and only operates on their lower halves.
2513
2514 In the GDB regcache, we treat their high and low halves as separate
2515 registers. The low halves we present as the general-purpose
2516 registers, and then we have pseudo-registers that stitch together
2517 the upper and lower halves and present them as pseudo-registers. */
2518
2519/* SPE GPR lower halves --- raw registers. */
2520#define PPC_SPE_GP_REGS \
2521 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2522 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2523 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2524 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2525
2526/* SPE GPR upper halves --- anonymous raw registers. */
2527#define PPC_SPE_UPPER_GP_REGS \
2528 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2529 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2530 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2531 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2532
2533/* SPE GPR vector registers --- pseudo registers based on underlying
2534 gprs and the anonymous upper half raw registers. */
2535#define PPC_EV_PSEUDO_REGS \
2536/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2537/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2538/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2539/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2540
7a78ae4e 2541/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2542 user-level SPR's. */
7a78ae4e 2543static const struct reg registers_power[] =
c906108c 2544{
7a78ae4e 2545 COMMON_UISA_REGS,
13ac140c 2546 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2547 /* 71 */ R4(fpscr)
c906108c
SS
2548};
2549
7a78ae4e 2550/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2551 view of the PowerPC. */
7a78ae4e 2552static const struct reg registers_powerpc[] =
c906108c 2553{
7a78ae4e 2554 COMMON_UISA_REGS,
1fcc0bb8
EZ
2555 PPC_UISA_SPRS,
2556 PPC_ALTIVEC_REGS
c906108c
SS
2557};
2558
13ac140c
JB
2559/* IBM PowerPC 403.
2560
2561 Some notes about the "tcr" special-purpose register:
2562 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2563 403's programmable interval timer, fixed interval timer, and
2564 watchdog timer.
2565 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2566 watchdog timer, and nothing else.
2567
2568 Some of the fields are similar between the two, but they're not
2569 compatible with each other. Since the two variants have different
2570 registers, with different numbers, but the same name, we can't
2571 splice the register name to get the SPR number. */
7a78ae4e 2572static const struct reg registers_403[] =
c5aa993b 2573{
7a78ae4e
ND
2574 COMMON_UISA_REGS,
2575 PPC_UISA_SPRS,
2576 PPC_SEGMENT_REGS,
2577 PPC_OEA_SPRS,
13ac140c
JB
2578 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2579 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2580 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2581 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2582 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2583 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2584};
2585
13ac140c
JB
2586/* IBM PowerPC 403GC.
2587 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2588static const struct reg registers_403GC[] =
c5aa993b 2589{
7a78ae4e
ND
2590 COMMON_UISA_REGS,
2591 PPC_UISA_SPRS,
2592 PPC_SEGMENT_REGS,
2593 PPC_OEA_SPRS,
13ac140c
JB
2594 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2595 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2596 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2597 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2598 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2599 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2600 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2601 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2602};
2603
64366f1c 2604/* Motorola PowerPC 505. */
7a78ae4e 2605static const struct reg registers_505[] =
c5aa993b 2606{
7a78ae4e
ND
2607 COMMON_UISA_REGS,
2608 PPC_UISA_SPRS,
2609 PPC_SEGMENT_REGS,
2610 PPC_OEA_SPRS,
13ac140c 2611 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2612};
2613
64366f1c 2614/* Motorola PowerPC 860 or 850. */
7a78ae4e 2615static const struct reg registers_860[] =
c5aa993b 2616{
7a78ae4e
ND
2617 COMMON_UISA_REGS,
2618 PPC_UISA_SPRS,
2619 PPC_SEGMENT_REGS,
2620 PPC_OEA_SPRS,
13ac140c
JB
2621 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2622 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2623 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2624 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2625 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2626 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2627 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2628 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2629 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2630 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2631 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2632 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2633};
2634
7a78ae4e
ND
2635/* Motorola PowerPC 601. Note that the 601 has different register numbers
2636 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2637 register is the stub's problem. */
7a78ae4e 2638static const struct reg registers_601[] =
c5aa993b 2639{
7a78ae4e
ND
2640 COMMON_UISA_REGS,
2641 PPC_UISA_SPRS,
2642 PPC_SEGMENT_REGS,
2643 PPC_OEA_SPRS,
13ac140c
JB
2644 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2645 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2646};
2647
13ac140c
JB
2648/* Motorola PowerPC 602.
2649 See the notes under the 403 about 'tcr'. */
7a78ae4e 2650static const struct reg registers_602[] =
c5aa993b 2651{
7a78ae4e
ND
2652 COMMON_UISA_REGS,
2653 PPC_UISA_SPRS,
2654 PPC_SEGMENT_REGS,
2655 PPC_OEA_SPRS,
13ac140c
JB
2656 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2657 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2658 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2659};
2660
64366f1c 2661/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2662static const struct reg registers_603[] =
c5aa993b 2663{
7a78ae4e
ND
2664 COMMON_UISA_REGS,
2665 PPC_UISA_SPRS,
2666 PPC_SEGMENT_REGS,
2667 PPC_OEA_SPRS,
13ac140c
JB
2668 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2669 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2670 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2671};
2672
64366f1c 2673/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2674static const struct reg registers_604[] =
c5aa993b 2675{
7a78ae4e
ND
2676 COMMON_UISA_REGS,
2677 PPC_UISA_SPRS,
2678 PPC_SEGMENT_REGS,
2679 PPC_OEA_SPRS,
13ac140c
JB
2680 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2681 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2682 /* 127 */ S(sia), S(sda)
c906108c
SS
2683};
2684
64366f1c 2685/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2686static const struct reg registers_750[] =
c5aa993b 2687{
7a78ae4e
ND
2688 COMMON_UISA_REGS,
2689 PPC_UISA_SPRS,
2690 PPC_SEGMENT_REGS,
2691 PPC_OEA_SPRS,
13ac140c
JB
2692 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2693 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2694 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2695 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2696 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2697 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2698};
2699
2700
64366f1c 2701/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2702static const struct reg registers_7400[] =
2703{
2704 /* gpr0-gpr31, fpr0-fpr31 */
2705 COMMON_UISA_REGS,
13c7b1ca 2706 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2707 PPC_UISA_SPRS,
2708 /* sr0-sr15 */
2709 PPC_SEGMENT_REGS,
2710 PPC_OEA_SPRS,
2711 /* vr0-vr31, vrsave, vscr */
2712 PPC_ALTIVEC_REGS
2713 /* FIXME? Add more registers? */
2714};
2715
c8001721
EZ
2716/* Motorola e500. */
2717static const struct reg registers_e500[] =
2718{
6ced10dd
JB
2719 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2720 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2721 /* 64 .. 65 */ R(pc), R(ps),
2722 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2723 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2724 /* NOTE: Add new registers here the end of the raw register
2725 list and just before the first pseudo register. */
6ced10dd 2726 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2727};
2728
c906108c 2729/* Information about a particular processor variant. */
7a78ae4e 2730
c906108c 2731struct variant
c5aa993b
JM
2732 {
2733 /* Name of this variant. */
2734 char *name;
c906108c 2735
c5aa993b
JM
2736 /* English description of the variant. */
2737 char *description;
c906108c 2738
64366f1c 2739 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2740 enum bfd_architecture arch;
2741
64366f1c 2742 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2743 unsigned long mach;
2744
489461e2
EZ
2745 /* Number of real registers. */
2746 int nregs;
2747
2748 /* Number of pseudo registers. */
2749 int npregs;
2750
2751 /* Number of total registers (the sum of nregs and npregs). */
2752 int num_tot_regs;
2753
c5aa993b
JM
2754 /* Table of register names; registers[R] is the name of the register
2755 number R. */
7a78ae4e 2756 const struct reg *regs;
c5aa993b 2757 };
c906108c 2758
489461e2
EZ
2759#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2760
2761static int
2762num_registers (const struct reg *reg_list, int num_tot_regs)
2763{
2764 int i;
2765 int nregs = 0;
2766
2767 for (i = 0; i < num_tot_regs; i++)
2768 if (!reg_list[i].pseudo)
2769 nregs++;
2770
2771 return nregs;
2772}
2773
2774static int
2775num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2776{
2777 int i;
2778 int npregs = 0;
2779
2780 for (i = 0; i < num_tot_regs; i++)
2781 if (reg_list[i].pseudo)
2782 npregs ++;
2783
2784 return npregs;
2785}
c906108c 2786
c906108c
SS
2787/* Information in this table comes from the following web sites:
2788 IBM: http://www.chips.ibm.com:80/products/embedded/
2789 Motorola: http://www.mot.com/SPS/PowerPC/
2790
2791 I'm sure I've got some of the variant descriptions not quite right.
2792 Please report any inaccuracies you find to GDB's maintainer.
2793
2794 If you add entries to this table, please be sure to allow the new
2795 value as an argument to the --with-cpu flag, in configure.in. */
2796
489461e2 2797static struct variant variants[] =
c906108c 2798{
489461e2 2799
7a78ae4e 2800 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2801 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2802 registers_powerpc},
7a78ae4e 2803 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2804 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2805 registers_power},
7a78ae4e 2806 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2807 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2808 registers_403},
7a78ae4e 2809 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2810 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2811 registers_601},
7a78ae4e 2812 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2813 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2814 registers_602},
7a78ae4e 2815 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2816 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2817 registers_603},
7a78ae4e 2818 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2819 604, -1, -1, tot_num_registers (registers_604),
2820 registers_604},
7a78ae4e 2821 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2822 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2823 registers_403GC},
7a78ae4e 2824 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2825 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2826 registers_505},
7a78ae4e 2827 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2828 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2829 registers_860},
7a78ae4e 2830 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2831 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2832 registers_750},
1fcc0bb8 2833 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2834 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2835 registers_7400},
c8001721
EZ
2836 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2837 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2838 registers_e500},
7a78ae4e 2839
5d57ee30
KB
2840 /* 64-bit */
2841 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2842 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2843 registers_powerpc},
7a78ae4e 2844 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2845 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2846 registers_powerpc},
5d57ee30 2847 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2848 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2849 registers_powerpc},
7a78ae4e 2850 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2851 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2852 registers_powerpc},
5d57ee30 2853 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2854 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2855 registers_powerpc},
5d57ee30 2856 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2857 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2858 registers_powerpc},
5d57ee30 2859
64366f1c 2860 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2861 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2862 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2863 registers_power},
7a78ae4e 2864 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2865 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2866 registers_power},
7a78ae4e 2867 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2868 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2869 registers_power},
7a78ae4e 2870
489461e2 2871 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2872};
2873
64366f1c 2874/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2875
2876static void
2877init_variants (void)
2878{
2879 struct variant *v;
2880
2881 for (v = variants; v->name; v++)
2882 {
2883 if (v->nregs == -1)
2884 v->nregs = num_registers (v->regs, v->num_tot_regs);
2885 if (v->npregs == -1)
2886 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2887 }
2888}
c906108c 2889
7a78ae4e 2890/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2891 MACH. If no such variant exists, return null. */
c906108c 2892
7a78ae4e
ND
2893static const struct variant *
2894find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2895{
7a78ae4e 2896 const struct variant *v;
c5aa993b 2897
7a78ae4e
ND
2898 for (v = variants; v->name; v++)
2899 if (arch == v->arch && mach == v->mach)
2900 return v;
c906108c 2901
7a78ae4e 2902 return NULL;
c906108c 2903}
9364a0ef
EZ
2904
2905static int
2906gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2907{
2908 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2909 return print_insn_big_powerpc (memaddr, info);
2910 else
2911 return print_insn_little_powerpc (memaddr, info);
2912}
7a78ae4e 2913\f
61a65099
KB
2914static CORE_ADDR
2915rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2916{
2917 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2918}
2919
2920static struct frame_id
2921rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2922{
2923 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2924 SP_REGNUM),
2925 frame_pc_unwind (next_frame));
2926}
2927
2928struct rs6000_frame_cache
2929{
2930 CORE_ADDR base;
2931 CORE_ADDR initial_sp;
2932 struct trad_frame_saved_reg *saved_regs;
2933};
2934
2935static struct rs6000_frame_cache *
2936rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2937{
2938 struct rs6000_frame_cache *cache;
2939 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2940 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2941 struct rs6000_framedata fdata;
2942 int wordsize = tdep->wordsize;
e10b1c4c 2943 CORE_ADDR func, pc;
61a65099
KB
2944
2945 if ((*this_cache) != NULL)
2946 return (*this_cache);
2947 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2948 (*this_cache) = cache;
2949 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2950
e10b1c4c
DJ
2951 func = frame_func_unwind (next_frame);
2952 pc = frame_pc_unwind (next_frame);
2953 skip_prologue (func, pc, &fdata);
2954
2955 /* Figure out the parent's stack pointer. */
2956
2957 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2958 address of the current frame. Things might be easier if the
2959 ->frame pointed to the outer-most address of the frame. In
2960 the mean time, the address of the prev frame is used as the
2961 base address of this frame. */
2962 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2963
2964 /* If the function appears to be frameless, check a couple of likely
2965 indicators that we have simply failed to find the frame setup.
2966 Two common cases of this are missing symbols (i.e.
2967 frame_func_unwind returns the wrong address or 0), and assembly
2968 stubs which have a fast exit path but set up a frame on the slow
2969 path.
2970
2971 If the LR appears to return to this function, then presume that
2972 we have an ABI compliant frame that we failed to find. */
2973 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2974 {
e10b1c4c
DJ
2975 CORE_ADDR saved_lr;
2976 int make_frame = 0;
2977
2978 saved_lr = frame_unwind_register_unsigned (next_frame,
2979 tdep->ppc_lr_regnum);
2980 if (func == 0 && saved_lr == pc)
2981 make_frame = 1;
2982 else if (func != 0)
2983 {
2984 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2985 if (func == saved_func)
2986 make_frame = 1;
2987 }
2988
2989 if (make_frame)
2990 {
2991 fdata.frameless = 0;
2992 fdata.lr_offset = wordsize;
2993 }
61a65099 2994 }
e10b1c4c
DJ
2995
2996 if (!fdata.frameless)
2997 /* Frameless really means stackless. */
2998 cache->base = read_memory_addr (cache->base, wordsize);
2999
61a65099
KB
3000 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3001
3002 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3003 All fpr's from saved_fpr to fp31 are saved. */
3004
3005 if (fdata.saved_fpr >= 0)
3006 {
3007 int i;
3008 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3009
3010 /* If skip_prologue says floating-point registers were saved,
3011 but the current architecture has no floating-point registers,
3012 then that's strange. But we have no indices to even record
3013 the addresses under, so we just ignore it. */
3014 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3015 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3016 {
3017 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3018 fpr_addr += 8;
3019 }
61a65099
KB
3020 }
3021
3022 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3023 All gpr's from saved_gpr to gpr31 are saved. */
3024
3025 if (fdata.saved_gpr >= 0)
3026 {
3027 int i;
3028 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3029 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3030 {
3031 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3032 gpr_addr += wordsize;
3033 }
3034 }
3035
3036 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3037 All vr's from saved_vr to vr31 are saved. */
3038 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3039 {
3040 if (fdata.saved_vr >= 0)
3041 {
3042 int i;
3043 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3044 for (i = fdata.saved_vr; i < 32; i++)
3045 {
3046 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3047 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3048 }
3049 }
3050 }
3051
3052 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3053 All vr's from saved_ev to ev31 are saved. ????? */
3054 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3055 {
3056 if (fdata.saved_ev >= 0)
3057 {
3058 int i;
3059 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3060 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3061 {
3062 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3063 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3064 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3065 }
3066 }
3067 }
3068
3069 /* If != 0, fdata.cr_offset is the offset from the frame that
3070 holds the CR. */
3071 if (fdata.cr_offset != 0)
3072 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3073
3074 /* If != 0, fdata.lr_offset is the offset from the frame that
3075 holds the LR. */
3076 if (fdata.lr_offset != 0)
3077 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3078 /* The PC is found in the link register. */
3079 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3080
3081 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3082 holds the VRSAVE. */
3083 if (fdata.vrsave_offset != 0)
3084 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3085
3086 if (fdata.alloca_reg < 0)
3087 /* If no alloca register used, then fi->frame is the value of the
3088 %sp for this frame, and it is good enough. */
3089 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3090 else
3091 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3092 fdata.alloca_reg);
3093
3094 return cache;
3095}
3096
3097static void
3098rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3099 struct frame_id *this_id)
3100{
3101 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3102 this_cache);
3103 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3104}
3105
3106static void
3107rs6000_frame_prev_register (struct frame_info *next_frame,
3108 void **this_cache,
3109 int regnum, int *optimizedp,
3110 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3111 int *realnump, gdb_byte *valuep)
61a65099
KB
3112{
3113 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3114 this_cache);
1f67027d
AC
3115 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3116 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3117}
3118
3119static const struct frame_unwind rs6000_frame_unwind =
3120{
3121 NORMAL_FRAME,
3122 rs6000_frame_this_id,
3123 rs6000_frame_prev_register
3124};
3125
3126static const struct frame_unwind *
3127rs6000_frame_sniffer (struct frame_info *next_frame)
3128{
3129 return &rs6000_frame_unwind;
3130}
3131
3132\f
3133
3134static CORE_ADDR
3135rs6000_frame_base_address (struct frame_info *next_frame,
3136 void **this_cache)
3137{
3138 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3139 this_cache);
3140 return info->initial_sp;
3141}
3142
3143static const struct frame_base rs6000_frame_base = {
3144 &rs6000_frame_unwind,
3145 rs6000_frame_base_address,
3146 rs6000_frame_base_address,
3147 rs6000_frame_base_address
3148};
3149
3150static const struct frame_base *
3151rs6000_frame_base_sniffer (struct frame_info *next_frame)
3152{
3153 return &rs6000_frame_base;
3154}
3155
7a78ae4e
ND
3156/* Initialize the current architecture based on INFO. If possible, re-use an
3157 architecture from ARCHES, which is a list of architectures already created
3158 during this debugging session.
c906108c 3159
7a78ae4e 3160 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3161 a binary file. */
c906108c 3162
7a78ae4e
ND
3163static struct gdbarch *
3164rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3165{
3166 struct gdbarch *gdbarch;
3167 struct gdbarch_tdep *tdep;
708ff411 3168 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3169 struct reg *regs;
3170 const struct variant *v;
3171 enum bfd_architecture arch;
3172 unsigned long mach;
3173 bfd abfd;
7b112f9c 3174 int sysv_abi;
5bf1c677 3175 asection *sect;
7a78ae4e 3176
9aa1e687 3177 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3178 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3179
9aa1e687
KB
3180 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3181 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3182
3183 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3184
e712c1cf 3185 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3186 that, else choose a likely default. */
9aa1e687 3187 if (from_xcoff_exec)
c906108c 3188 {
11ed25ac 3189 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3190 wordsize = 8;
3191 else
3192 wordsize = 4;
c906108c 3193 }
9aa1e687
KB
3194 else if (from_elf_exec)
3195 {
3196 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3197 wordsize = 8;
3198 else
3199 wordsize = 4;
3200 }
c906108c 3201 else
7a78ae4e 3202 {
27b15785
KB
3203 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3204 wordsize = info.bfd_arch_info->bits_per_word /
3205 info.bfd_arch_info->bits_per_byte;
3206 else
3207 wordsize = 4;
7a78ae4e 3208 }
c906108c 3209
13c0b536 3210 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3211 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3212 arches != NULL;
3213 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3214 {
3215 /* Word size in the various PowerPC bfd_arch_info structs isn't
3216 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3217 separate word size check. */
7a78ae4e 3218 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3219 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3220 return arches->gdbarch;
3221 }
c906108c 3222
7a78ae4e
ND
3223 /* None found, create a new architecture from INFO, whose bfd_arch_info
3224 validity depends on the source:
3225 - executable useless
3226 - rs6000_host_arch() good
3227 - core file good
3228 - "set arch" trust blindly
3229 - GDB startup useless but harmless */
c906108c 3230
9aa1e687 3231 if (!from_xcoff_exec)
c906108c 3232 {
b732d07d 3233 arch = info.bfd_arch_info->arch;
7a78ae4e 3234 mach = info.bfd_arch_info->mach;
c906108c 3235 }
7a78ae4e 3236 else
c906108c 3237 {
7a78ae4e 3238 arch = bfd_arch_powerpc;
35cec841 3239 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3240 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3241 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3242 }
3243 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3244 tdep->wordsize = wordsize;
5bf1c677
EZ
3245
3246 /* For e500 executables, the apuinfo section is of help here. Such
3247 section contains the identifier and revision number of each
3248 Application-specific Processing Unit that is present on the
3249 chip. The content of the section is determined by the assembler
3250 which looks at each instruction and determines which unit (and
3251 which version of it) can execute it. In our case we just look for
3252 the existance of the section. */
3253
3254 if (info.abfd)
3255 {
3256 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3257 if (sect)
3258 {
3259 arch = info.bfd_arch_info->arch;
3260 mach = bfd_mach_ppc_e500;
3261 bfd_default_set_arch_mach (&abfd, arch, mach);
3262 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3263 }
3264 }
3265
7a78ae4e 3266 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3267
489461e2
EZ
3268 /* Initialize the number of real and pseudo registers in each variant. */
3269 init_variants ();
3270
64366f1c 3271 /* Choose variant. */
7a78ae4e
ND
3272 v = find_variant_by_arch (arch, mach);
3273 if (!v)
dd47e6fd
EZ
3274 return NULL;
3275
7a78ae4e
ND
3276 tdep->regs = v->regs;
3277
2188cbdd 3278 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3279 tdep->ppc_toc_regnum = 2;
3280 tdep->ppc_ps_regnum = 65;
3281 tdep->ppc_cr_regnum = 66;
3282 tdep->ppc_lr_regnum = 67;
3283 tdep->ppc_ctr_regnum = 68;
3284 tdep->ppc_xer_regnum = 69;
3285 if (v->mach == bfd_mach_ppc_601)
3286 tdep->ppc_mq_regnum = 124;
708ff411 3287 else if (arch == bfd_arch_rs6000)
2188cbdd 3288 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3289 else
3290 tdep->ppc_mq_regnum = -1;
366f009f 3291 tdep->ppc_fp0_regnum = 32;
708ff411 3292 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3293 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3294 tdep->ppc_vr0_regnum = -1;
3295 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3296 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3297 tdep->ppc_ev0_regnum = -1;
3298 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3299 tdep->ppc_acc_regnum = -1;
3300 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3301
c8001721
EZ
3302 set_gdbarch_pc_regnum (gdbarch, 64);
3303 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3304 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3305 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3306 if (sysv_abi && wordsize == 8)
05580c65 3307 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3308 else if (sysv_abi && wordsize == 4)
05580c65 3309 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3310 else
3311 {
3312 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3313 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3314 }
c8001721 3315
baffbae0
JB
3316 /* Set lr_frame_offset. */
3317 if (wordsize == 8)
3318 tdep->lr_frame_offset = 16;
3319 else if (sysv_abi)
3320 tdep->lr_frame_offset = 4;
3321 else
3322 tdep->lr_frame_offset = 8;
3323
f86a7158
JB
3324 if (v->arch == bfd_arch_rs6000)
3325 tdep->ppc_sr0_regnum = -1;
3326 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3327 switch (v->mach)
3328 {
3329 case bfd_mach_ppc:
412b3060 3330 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3331 tdep->ppc_vr0_regnum = 71;
3332 tdep->ppc_vrsave_regnum = 104;
3333 break;
3334 case bfd_mach_ppc_7400:
3335 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3336 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3337 break;
3338 case bfd_mach_ppc_e500:
c8001721 3339 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3340 tdep->ppc_ev0_upper_regnum = 32;
3341 tdep->ppc_ev0_regnum = 73;
3342 tdep->ppc_ev31_regnum = 104;
3343 tdep->ppc_acc_regnum = 71;
3344 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3345 tdep->ppc_fp0_regnum = -1;
3346 tdep->ppc_fpscr_regnum = -1;
f86a7158 3347 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3348 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3349 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3350 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3351 break;
f86a7158
JB
3352
3353 case bfd_mach_ppc64:
3354 case bfd_mach_ppc_620:
3355 case bfd_mach_ppc_630:
3356 case bfd_mach_ppc_a35:
3357 case bfd_mach_ppc_rs64ii:
3358 case bfd_mach_ppc_rs64iii:
3359 /* These processor's register sets don't have segment registers. */
3360 tdep->ppc_sr0_regnum = -1;
3361 break;
1fcc0bb8 3362 }
f86a7158
JB
3363 else
3364 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3365 _("rs6000_gdbarch_init: "
3366 "received unexpected BFD 'arch' value"));
1fcc0bb8 3367
e0d24f8d
WZ
3368 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3369
338ef23d
AC
3370 /* Sanity check on registers. */
3371 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3372
56a6dfb9 3373 /* Select instruction printer. */
708ff411 3374 if (arch == bfd_arch_rs6000)
9364a0ef 3375 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3376 else
9364a0ef 3377 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3378
7a78ae4e 3379 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3380
3381 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3382 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3383 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3384 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3385 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3386
3387 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3388 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3389 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3390 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3391 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3392 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3393 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3394 if (sysv_abi)
3395 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3396 else
3397 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3398 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3399
11269d7e 3400 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3401 if (sysv_abi && wordsize == 8)
3402 /* PPC64 SYSV. */
3403 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3404 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3405 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3406 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3407 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3408 224. */
3409 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3410
691d145a
JB
3411 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3412 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3413 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3414
18ed0c4e
JB
3415 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3416 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3417 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3418 is correct for the SysV ABI when the wordsize is 8, but I'm also
3419 fairly certain that ppc_sysv_abi_push_arguments() will give even
3420 worse results since it only works for 32-bit code. So, for the moment,
3421 we're better off calling rs6000_push_arguments() since it works for
3422 64-bit code. At some point in the future, this matter needs to be
3423 revisited. */
3424 if (sysv_abi && wordsize == 4)
77b2b6d4 3425 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3426 else if (sysv_abi && wordsize == 8)
3427 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3428 else
77b2b6d4 3429 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3430
74055713 3431 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3432
3433 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3434 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3435
7a78ae4e 3436 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3437 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3438
6066c3de
AC
3439 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3440 for the descriptor and ".FN" for the entry-point -- a user
3441 specifying "break FN" will unexpectedly end up with a breakpoint
3442 on the descriptor and not the function. This architecture method
3443 transforms any breakpoints on descriptors into breakpoints on the
3444 corresponding entry point. */
3445 if (sysv_abi && wordsize == 8)
3446 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3447
7a78ae4e
ND
3448 /* Not sure on this. FIXMEmgo */
3449 set_gdbarch_frame_args_skip (gdbarch, 8);
3450
05580c65 3451 if (!sysv_abi)
b5622e8d 3452 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3453
15813d3f
AC
3454 if (!sysv_abi)
3455 {
3456 /* Handle RS/6000 function pointers (which are really function
3457 descriptors). */
f517ea4e
PS
3458 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3459 rs6000_convert_from_func_ptr_addr);
9aa1e687 3460 }
7a78ae4e 3461
143985b7
AF
3462 /* Helpers for function argument information. */
3463 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3464
7b112f9c 3465 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3466 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3467
61a65099
KB
3468 switch (info.osabi)
3469 {
f5aecab8
PG
3470 case GDB_OSABI_LINUX:
3471 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3472 have altivec registers. If not, ptrace will fail the first time it's
3473 called to access one and will not be called again. This wart will
3474 be removed when Daniel Jacobowitz's proposal for autodetecting target
3475 registers is implemented. */
3476 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3477 {
3478 tdep->ppc_vr0_regnum = 71;
3479 tdep->ppc_vrsave_regnum = 104;
3480 }
3481 /* Fall Thru */
61a65099
KB
3482 case GDB_OSABI_NETBSD_AOUT:
3483 case GDB_OSABI_NETBSD_ELF:
3484 case GDB_OSABI_UNKNOWN:
61a65099
KB
3485 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3486 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3487 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3488 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3489 break;
3490 default:
61a65099 3491 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3492
3493 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3494 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3495 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3496 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3497 }
3498
9f643768
JB
3499 init_sim_regno_table (gdbarch);
3500
7a78ae4e 3501 return gdbarch;
c906108c
SS
3502}
3503
7b112f9c
JT
3504static void
3505rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3506{
3507 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3508
3509 if (tdep == NULL)
3510 return;
3511
4be87837 3512 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3513}
3514
c906108c
SS
3515/* Initialization code. */
3516
a78f21af 3517extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3518
c906108c 3519void
fba45db2 3520_initialize_rs6000_tdep (void)
c906108c 3521{
7b112f9c
JT
3522 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3523 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3524}
This page took 1.08446 seconds and 4 git commands to generate.