2003-03-17 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d
AC
50#include "gdb_assert.h"
51
7a78ae4e
ND
52/* If the kernel has to deliver a signal, it pushes a sigcontext
53 structure on the stack and then calls the signal handler, passing
54 the address of the sigcontext in an argument register. Usually
55 the signal handler doesn't save this register, so we have to
56 access the sigcontext structure via an offset from the signal handler
57 frame.
58 The following constants were determined by experimentation on AIX 3.2. */
59#define SIG_FRAME_PC_OFFSET 96
60#define SIG_FRAME_LR_OFFSET 108
61#define SIG_FRAME_FP_OFFSET 284
62
7a78ae4e
ND
63/* To be used by skip_prologue. */
64
65struct rs6000_framedata
66 {
67 int offset; /* total size of frame --- the distance
68 by which we decrement sp to allocate
69 the frame */
70 int saved_gpr; /* smallest # of saved gpr */
71 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 72 int saved_vr; /* smallest # of saved vr */
96ff0de4 73 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 79 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 80 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
81 int lr_offset; /* offset of saved lr */
82 int cr_offset; /* offset of saved cr */
6be8bc0c 83 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
84 };
85
86/* Description of a single register. */
87
88struct reg
89 {
90 char *name; /* name of register */
91 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
92 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
93 unsigned char fpr; /* whether register is floating-point */
489461e2 94 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
95 };
96
c906108c
SS
97/* Breakpoint shadows for the single step instructions will be kept here. */
98
c5aa993b
JM
99static struct sstep_breaks
100 {
101 /* Address, or 0 if this is not in use. */
102 CORE_ADDR address;
103 /* Shadow contents. */
104 char data[4];
105 }
106stepBreaks[2];
c906108c
SS
107
108/* Hook for determining the TOC address when calling functions in the
109 inferior under AIX. The initialization code in rs6000-nat.c sets
110 this hook to point to find_toc_address. */
111
7a78ae4e
ND
112CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113
114/* Hook to set the current architecture when starting a child process.
115 rs6000-nat.c sets this. */
116
117void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
118
119/* Static function prototypes */
120
a14ed312
KB
121static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
7a78ae4e
ND
125static void frame_get_saved_regs (struct frame_info * fi,
126 struct rs6000_framedata * fdatap);
127static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 128
64b84175
KB
129/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
130int
131altivec_register_p (int regno)
132{
133 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
134 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
135 return 0;
136 else
137 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138}
139
0a613259
AC
140/* Use the architectures FP registers? */
141int
142ppc_floating_point_unit_p (struct gdbarch *gdbarch)
143{
144 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
145 if (info->arch == bfd_arch_powerpc)
146 return (info->mach != bfd_mach_ppc_e500);
147 if (info->arch == bfd_arch_rs6000)
148 return 1;
149 return 0;
150}
151
7a78ae4e 152/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 153
7a78ae4e
ND
154static CORE_ADDR
155read_memory_addr (CORE_ADDR memaddr, int len)
156{
157 return read_memory_unsigned_integer (memaddr, len);
158}
c906108c 159
7a78ae4e
ND
160static CORE_ADDR
161rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
162{
163 struct rs6000_framedata frame;
077276e8 164 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
165 return pc;
166}
167
168
c906108c
SS
169/* Fill in fi->saved_regs */
170
171struct frame_extra_info
172{
173 /* Functions calling alloca() change the value of the stack
174 pointer. We need to use initial stack pointer (which is saved in
175 r31 by gcc) in such cases. If a compiler emits traceback table,
176 then we should use the alloca register specified in traceback
177 table. FIXME. */
c5aa993b 178 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
179};
180
9aa1e687 181void
7a78ae4e 182rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 183{
c9012c71
AC
184 struct frame_extra_info *extra_info =
185 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
186 extra_info->initial_sp = 0;
bdd78e62
AC
187 if (get_next_frame (fi) != NULL
188 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 189 /* We're in get_prev_frame */
c906108c
SS
190 /* and this is a special signal frame. */
191 /* (fi->pc will be some low address in the kernel, */
192 /* to which the signal handler returns). */
5a203e44 193 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
194}
195
7a78ae4e
ND
196/* Put here the code to store, into a struct frame_saved_regs,
197 the addresses of the saved registers of frame described by FRAME_INFO.
198 This includes special registers such as pc and fp saved in special
199 ways in the stack frame. sp is even more special:
200 the address we return for it IS the sp for the next frame. */
c906108c 201
7a78ae4e
ND
202/* In this implementation for RS/6000, we do *not* save sp. I am
203 not sure if it will be needed. The following function takes care of gpr's
204 and fpr's only. */
205
9aa1e687 206void
7a78ae4e 207rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
208{
209 frame_get_saved_regs (fi, NULL);
210}
211
7a78ae4e
ND
212static CORE_ADDR
213rs6000_frame_args_address (struct frame_info *fi)
c906108c 214{
c9012c71
AC
215 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
216 if (extra_info->initial_sp != 0)
217 return extra_info->initial_sp;
c906108c
SS
218 else
219 return frame_initial_stack_address (fi);
220}
221
7a78ae4e
ND
222/* Immediately after a function call, return the saved pc.
223 Can't go through the frames for this because on some machines
224 the new frame is not set up until the new function executes
225 some instructions. */
226
227static CORE_ADDR
228rs6000_saved_pc_after_call (struct frame_info *fi)
229{
2188cbdd 230 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 231}
c906108c
SS
232
233/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
234
235static CORE_ADDR
7a78ae4e 236branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
237{
238 CORE_ADDR dest;
239 int immediate;
240 int absolute;
241 int ext_op;
242
243 absolute = (int) ((instr >> 1) & 1);
244
c5aa993b
JM
245 switch (opcode)
246 {
247 case 18:
248 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
249 if (absolute)
250 dest = immediate;
251 else
252 dest = pc + immediate;
253 break;
254
255 case 16:
256 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
257 if (absolute)
258 dest = immediate;
259 else
260 dest = pc + immediate;
261 break;
262
263 case 19:
264 ext_op = (instr >> 1) & 0x3ff;
265
266 if (ext_op == 16) /* br conditional register */
267 {
2188cbdd 268 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
269
270 /* If we are about to return from a signal handler, dest is
271 something like 0x3c90. The current frame is a signal handler
272 caller frame, upon completion of the sigreturn system call
273 execution will return to the saved PC in the frame. */
274 if (dest < TEXT_SEGMENT_BASE)
275 {
276 struct frame_info *fi;
277
278 fi = get_current_frame ();
279 if (fi != NULL)
8b36eed8 280 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 281 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
282 }
283 }
284
285 else if (ext_op == 528) /* br cond to count reg */
286 {
2188cbdd 287 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
288
289 /* If we are about to execute a system call, dest is something
290 like 0x22fc or 0x3b00. Upon completion the system call
291 will return to the address in the link register. */
292 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 293 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
294 }
295 else
296 return -1;
297 break;
c906108c 298
c5aa993b
JM
299 default:
300 return -1;
301 }
c906108c
SS
302 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
303}
304
305
306/* Sequence of bytes for breakpoint instruction. */
307
308#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
309#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
310
f4f9705a 311const static unsigned char *
7a78ae4e 312rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
313{
314 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
315 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
316 *bp_size = 4;
d7449b42 317 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
318 return big_breakpoint;
319 else
320 return little_breakpoint;
321}
322
323
324/* AIX does not support PT_STEP. Simulate it. */
325
326void
379d08a1
AC
327rs6000_software_single_step (enum target_signal signal,
328 int insert_breakpoints_p)
c906108c 329{
7c40d541
KB
330 CORE_ADDR dummy;
331 int breakp_sz;
f4f9705a 332 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
333 int ii, insn;
334 CORE_ADDR loc;
335 CORE_ADDR breaks[2];
336 int opcode;
337
c5aa993b
JM
338 if (insert_breakpoints_p)
339 {
c906108c 340
c5aa993b 341 loc = read_pc ();
c906108c 342
c5aa993b 343 insn = read_memory_integer (loc, 4);
c906108c 344
7c40d541 345 breaks[0] = loc + breakp_sz;
c5aa993b
JM
346 opcode = insn >> 26;
347 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 348
c5aa993b
JM
349 /* Don't put two breakpoints on the same address. */
350 if (breaks[1] == breaks[0])
351 breaks[1] = -1;
c906108c 352
c5aa993b 353 stepBreaks[1].address = 0;
c906108c 354
c5aa993b
JM
355 for (ii = 0; ii < 2; ++ii)
356 {
c906108c 357
c5aa993b
JM
358 /* ignore invalid breakpoint. */
359 if (breaks[ii] == -1)
360 continue;
7c40d541 361 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
362 stepBreaks[ii].address = breaks[ii];
363 }
c906108c 364
c5aa993b
JM
365 }
366 else
367 {
c906108c 368
c5aa993b
JM
369 /* remove step breakpoints. */
370 for (ii = 0; ii < 2; ++ii)
371 if (stepBreaks[ii].address != 0)
7c40d541
KB
372 target_remove_breakpoint (stepBreaks[ii].address,
373 stepBreaks[ii].data);
c5aa993b 374 }
c906108c 375 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 376 /* What errors? {read,write}_memory call error(). */
c906108c
SS
377}
378
379
380/* return pc value after skipping a function prologue and also return
381 information about a function frame.
382
383 in struct rs6000_framedata fdata:
c5aa993b
JM
384 - frameless is TRUE, if function does not have a frame.
385 - nosavedpc is TRUE, if function does not save %pc value in its frame.
386 - offset is the initial size of this stack frame --- the amount by
387 which we decrement the sp to allocate the frame.
388 - saved_gpr is the number of the first saved gpr.
389 - saved_fpr is the number of the first saved fpr.
6be8bc0c 390 - saved_vr is the number of the first saved vr.
96ff0de4 391 - saved_ev is the number of the first saved ev.
c5aa993b
JM
392 - alloca_reg is the number of the register used for alloca() handling.
393 Otherwise -1.
394 - gpr_offset is the offset of the first saved gpr from the previous frame.
395 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 396 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 397 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
398 - lr_offset is the offset of the saved lr
399 - cr_offset is the offset of the saved cr
6be8bc0c 400 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 401 */
c906108c
SS
402
403#define SIGNED_SHORT(x) \
404 ((sizeof (short) == 2) \
405 ? ((int)(short)(x)) \
406 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
407
408#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
409
55d05f3b
KB
410/* Limit the number of skipped non-prologue instructions, as the examining
411 of the prologue is expensive. */
412static int max_skip_non_prologue_insns = 10;
413
414/* Given PC representing the starting address of a function, and
415 LIM_PC which is the (sloppy) limit to which to scan when looking
416 for a prologue, attempt to further refine this limit by using
417 the line data in the symbol table. If successful, a better guess
418 on where the prologue ends is returned, otherwise the previous
419 value of lim_pc is returned. */
420static CORE_ADDR
421refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
422{
423 struct symtab_and_line prologue_sal;
424
425 prologue_sal = find_pc_line (pc, 0);
426 if (prologue_sal.line != 0)
427 {
428 int i;
429 CORE_ADDR addr = prologue_sal.end;
430
431 /* Handle the case in which compiler's optimizer/scheduler
432 has moved instructions into the prologue. We scan ahead
433 in the function looking for address ranges whose corresponding
434 line number is less than or equal to the first one that we
435 found for the function. (It can be less than when the
436 scheduler puts a body instruction before the first prologue
437 instruction.) */
438 for (i = 2 * max_skip_non_prologue_insns;
439 i > 0 && (lim_pc == 0 || addr < lim_pc);
440 i--)
441 {
442 struct symtab_and_line sal;
443
444 sal = find_pc_line (addr, 0);
445 if (sal.line == 0)
446 break;
447 if (sal.line <= prologue_sal.line
448 && sal.symtab == prologue_sal.symtab)
449 {
450 prologue_sal = sal;
451 }
452 addr = sal.end;
453 }
454
455 if (lim_pc == 0 || prologue_sal.end < lim_pc)
456 lim_pc = prologue_sal.end;
457 }
458 return lim_pc;
459}
460
461
7a78ae4e 462static CORE_ADDR
077276e8 463skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
464{
465 CORE_ADDR orig_pc = pc;
55d05f3b 466 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 467 CORE_ADDR li_found_pc = 0;
c906108c
SS
468 char buf[4];
469 unsigned long op;
470 long offset = 0;
6be8bc0c 471 long vr_saved_offset = 0;
482ca3f5
KB
472 int lr_reg = -1;
473 int cr_reg = -1;
6be8bc0c 474 int vr_reg = -1;
96ff0de4
EZ
475 int ev_reg = -1;
476 long ev_offset = 0;
6be8bc0c 477 int vrsave_reg = -1;
c906108c
SS
478 int reg;
479 int framep = 0;
480 int minimal_toc_loaded = 0;
ddb20c56 481 int prev_insn_was_prologue_insn = 1;
55d05f3b 482 int num_skip_non_prologue_insns = 0;
96ff0de4 483 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 484 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 485
55d05f3b
KB
486 /* Attempt to find the end of the prologue when no limit is specified.
487 Note that refine_prologue_limit() has been written so that it may
488 be used to "refine" the limits of non-zero PC values too, but this
489 is only safe if we 1) trust the line information provided by the
490 compiler and 2) iterate enough to actually find the end of the
491 prologue.
492
493 It may become a good idea at some point (for both performance and
494 accuracy) to unconditionally call refine_prologue_limit(). But,
495 until we can make a clear determination that this is beneficial,
496 we'll play it safe and only use it to obtain a limit when none
497 has been specified. */
498 if (lim_pc == 0)
499 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 500
ddb20c56 501 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
502 fdata->saved_gpr = -1;
503 fdata->saved_fpr = -1;
6be8bc0c 504 fdata->saved_vr = -1;
96ff0de4 505 fdata->saved_ev = -1;
c906108c
SS
506 fdata->alloca_reg = -1;
507 fdata->frameless = 1;
508 fdata->nosavedpc = 1;
509
55d05f3b 510 for (;; pc += 4)
c906108c 511 {
ddb20c56
KB
512 /* Sometimes it isn't clear if an instruction is a prologue
513 instruction or not. When we encounter one of these ambiguous
514 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
515 Otherwise, we'll assume that it really is a prologue instruction. */
516 if (prev_insn_was_prologue_insn)
517 last_prologue_pc = pc;
55d05f3b
KB
518
519 /* Stop scanning if we've hit the limit. */
520 if (lim_pc != 0 && pc >= lim_pc)
521 break;
522
ddb20c56
KB
523 prev_insn_was_prologue_insn = 1;
524
55d05f3b 525 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
526 if (target_read_memory (pc, buf, 4))
527 break;
528 op = extract_signed_integer (buf, 4);
c906108c 529
c5aa993b
JM
530 if ((op & 0xfc1fffff) == 0x7c0802a6)
531 { /* mflr Rx */
532 lr_reg = (op & 0x03e00000) | 0x90010000;
533 continue;
c906108c 534
c5aa993b
JM
535 }
536 else if ((op & 0xfc1fffff) == 0x7c000026)
537 { /* mfcr Rx */
538 cr_reg = (op & 0x03e00000) | 0x90010000;
539 continue;
c906108c 540
c906108c 541 }
c5aa993b
JM
542 else if ((op & 0xfc1f0000) == 0xd8010000)
543 { /* stfd Rx,NUM(r1) */
544 reg = GET_SRC_REG (op);
545 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
546 {
547 fdata->saved_fpr = reg;
548 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
549 }
550 continue;
c906108c 551
c5aa993b
JM
552 }
553 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
554 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
555 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
556 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
557 {
558
559 reg = GET_SRC_REG (op);
560 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
561 {
562 fdata->saved_gpr = reg;
7a78ae4e
ND
563 if ((op & 0xfc1f0003) == 0xf8010000)
564 op = (op >> 1) << 1;
c5aa993b
JM
565 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
566 }
567 continue;
c906108c 568
ddb20c56
KB
569 }
570 else if ((op & 0xffff0000) == 0x60000000)
571 {
96ff0de4 572 /* nop */
ddb20c56
KB
573 /* Allow nops in the prologue, but do not consider them to
574 be part of the prologue unless followed by other prologue
575 instructions. */
576 prev_insn_was_prologue_insn = 0;
577 continue;
578
c906108c 579 }
c5aa993b
JM
580 else if ((op & 0xffff0000) == 0x3c000000)
581 { /* addis 0,0,NUM, used
582 for >= 32k frames */
583 fdata->offset = (op & 0x0000ffff) << 16;
584 fdata->frameless = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x60000000)
589 { /* ori 0,0,NUM, 2nd ha
590 lf of >= 32k frames */
591 fdata->offset |= (op & 0x0000ffff);
592 fdata->frameless = 0;
593 continue;
594
595 }
482ca3f5 596 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
597 { /* st Rx,NUM(r1)
598 where Rx == lr */
599 fdata->lr_offset = SIGNED_SHORT (op) + offset;
600 fdata->nosavedpc = 0;
601 lr_reg = 0;
602 continue;
603
604 }
482ca3f5 605 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
606 { /* st Rx,NUM(r1)
607 where Rx == cr */
608 fdata->cr_offset = SIGNED_SHORT (op) + offset;
609 cr_reg = 0;
610 continue;
611
612 }
613 else if (op == 0x48000005)
614 { /* bl .+4 used in
615 -mrelocatable */
616 continue;
617
618 }
619 else if (op == 0x48000004)
620 { /* b .+4 (xlc) */
621 break;
622
c5aa993b 623 }
6be8bc0c
EZ
624 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
625 in V.4 -mminimal-toc */
c5aa993b
JM
626 (op & 0xffff0000) == 0x3bde0000)
627 { /* addi 30,30,foo@l */
628 continue;
c906108c 629
c5aa993b
JM
630 }
631 else if ((op & 0xfc000001) == 0x48000001)
632 { /* bl foo,
633 to save fprs??? */
c906108c 634
c5aa993b 635 fdata->frameless = 0;
6be8bc0c
EZ
636 /* Don't skip over the subroutine call if it is not within
637 the first three instructions of the prologue. */
c5aa993b
JM
638 if ((pc - orig_pc) > 8)
639 break;
640
641 op = read_memory_integer (pc + 4, 4);
642
6be8bc0c
EZ
643 /* At this point, make sure this is not a trampoline
644 function (a function that simply calls another functions,
645 and nothing else). If the next is not a nop, this branch
646 was part of the function prologue. */
c5aa993b
JM
647
648 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
649 break; /* don't skip over
650 this branch */
651 continue;
652
653 /* update stack pointer */
654 }
7a78ae4e
ND
655 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
656 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
657 {
c5aa993b 658 fdata->frameless = 0;
7a78ae4e
ND
659 if ((op & 0xffff0003) == 0xf8210001)
660 op = (op >> 1) << 1;
c5aa993b
JM
661 fdata->offset = SIGNED_SHORT (op);
662 offset = fdata->offset;
663 continue;
664
665 }
666 else if (op == 0x7c21016e)
667 { /* stwux 1,1,0 */
668 fdata->frameless = 0;
669 offset = fdata->offset;
670 continue;
671
672 /* Load up minimal toc pointer */
673 }
674 else if ((op >> 22) == 0x20f
675 && !minimal_toc_loaded)
676 { /* l r31,... or l r30,... */
677 minimal_toc_loaded = 1;
678 continue;
679
f6077098
KB
680 /* move parameters from argument registers to local variable
681 registers */
682 }
683 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
684 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
685 (((op >> 21) & 31) <= 10) &&
96ff0de4 686 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
687 {
688 continue;
689
c5aa993b
JM
690 /* store parameters in stack */
691 }
6be8bc0c 692 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 693 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
694 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
695 {
c5aa993b 696 continue;
c906108c 697
c5aa993b
JM
698 /* store parameters in stack via frame pointer */
699 }
700 else if (framep &&
701 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
702 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
703 (op & 0xfc1f0000) == 0xfc1f0000))
704 { /* frsp, fp?,NUM(r1) */
705 continue;
706
707 /* Set up frame pointer */
708 }
709 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
710 || op == 0x7c3f0b78)
711 { /* mr r31, r1 */
712 fdata->frameless = 0;
713 framep = 1;
6f99cb26 714 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
715 continue;
716
717 /* Another way to set up the frame pointer. */
718 }
719 else if ((op & 0xfc1fffff) == 0x38010000)
720 { /* addi rX, r1, 0x0 */
721 fdata->frameless = 0;
722 framep = 1;
6f99cb26
AC
723 fdata->alloca_reg = (tdep->ppc_gp0_regnum
724 + ((op & ~0x38010000) >> 21));
c5aa993b 725 continue;
c5aa993b 726 }
6be8bc0c
EZ
727 /* AltiVec related instructions. */
728 /* Store the vrsave register (spr 256) in another register for
729 later manipulation, or load a register into the vrsave
730 register. 2 instructions are used: mfvrsave and
731 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
732 and mtspr SPR256, Rn. */
733 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
734 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
735 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
736 {
737 vrsave_reg = GET_SRC_REG (op);
738 continue;
739 }
740 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
741 {
742 continue;
743 }
744 /* Store the register where vrsave was saved to onto the stack:
745 rS is the register where vrsave was stored in a previous
746 instruction. */
747 /* 100100 sssss 00001 dddddddd dddddddd */
748 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
749 {
750 if (vrsave_reg == GET_SRC_REG (op))
751 {
752 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
753 vrsave_reg = -1;
754 }
755 continue;
756 }
757 /* Compute the new value of vrsave, by modifying the register
758 where vrsave was saved to. */
759 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
760 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
761 {
762 continue;
763 }
764 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
765 in a pair of insns to save the vector registers on the
766 stack. */
767 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
768 /* 001110 01110 00000 iiii iiii iiii iiii */
769 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
770 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
771 {
772 li_found_pc = pc;
773 vr_saved_offset = SIGNED_SHORT (op);
774 }
775 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
776 /* 011111 sssss 11111 00000 00111001110 */
777 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
778 {
779 if (pc == (li_found_pc + 4))
780 {
781 vr_reg = GET_SRC_REG (op);
782 /* If this is the first vector reg to be saved, or if
783 it has a lower number than others previously seen,
784 reupdate the frame info. */
785 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
786 {
787 fdata->saved_vr = vr_reg;
788 fdata->vr_offset = vr_saved_offset + offset;
789 }
790 vr_saved_offset = -1;
791 vr_reg = -1;
792 li_found_pc = 0;
793 }
794 }
795 /* End AltiVec related instructions. */
96ff0de4
EZ
796
797 /* Start BookE related instructions. */
798 /* Store gen register S at (r31+uimm).
799 Any register less than r13 is volatile, so we don't care. */
800 /* 000100 sssss 11111 iiiii 01100100001 */
801 else if (arch_info->mach == bfd_mach_ppc_e500
802 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
803 {
804 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
805 {
806 unsigned int imm;
807 ev_reg = GET_SRC_REG (op);
808 imm = (op >> 11) & 0x1f;
809 ev_offset = imm * 8;
810 /* If this is the first vector reg to be saved, or if
811 it has a lower number than others previously seen,
812 reupdate the frame info. */
813 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
814 {
815 fdata->saved_ev = ev_reg;
816 fdata->ev_offset = ev_offset + offset;
817 }
818 }
819 continue;
820 }
821 /* Store gen register rS at (r1+rB). */
822 /* 000100 sssss 00001 bbbbb 01100100000 */
823 else if (arch_info->mach == bfd_mach_ppc_e500
824 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
825 {
826 if (pc == (li_found_pc + 4))
827 {
828 ev_reg = GET_SRC_REG (op);
829 /* If this is the first vector reg to be saved, or if
830 it has a lower number than others previously seen,
831 reupdate the frame info. */
832 /* We know the contents of rB from the previous instruction. */
833 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
834 {
835 fdata->saved_ev = ev_reg;
836 fdata->ev_offset = vr_saved_offset + offset;
837 }
838 vr_saved_offset = -1;
839 ev_reg = -1;
840 li_found_pc = 0;
841 }
842 continue;
843 }
844 /* Store gen register r31 at (rA+uimm). */
845 /* 000100 11111 aaaaa iiiii 01100100001 */
846 else if (arch_info->mach == bfd_mach_ppc_e500
847 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
848 {
849 /* Wwe know that the source register is 31 already, but
850 it can't hurt to compute it. */
851 ev_reg = GET_SRC_REG (op);
852 ev_offset = ((op >> 11) & 0x1f) * 8;
853 /* If this is the first vector reg to be saved, or if
854 it has a lower number than others previously seen,
855 reupdate the frame info. */
856 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
857 {
858 fdata->saved_ev = ev_reg;
859 fdata->ev_offset = ev_offset + offset;
860 }
861
862 continue;
863 }
864 /* Store gen register S at (r31+r0).
865 Store param on stack when offset from SP bigger than 4 bytes. */
866 /* 000100 sssss 11111 00000 01100100000 */
867 else if (arch_info->mach == bfd_mach_ppc_e500
868 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
869 {
870 if (pc == (li_found_pc + 4))
871 {
872 if ((op & 0x03e00000) >= 0x01a00000)
873 {
874 ev_reg = GET_SRC_REG (op);
875 /* If this is the first vector reg to be saved, or if
876 it has a lower number than others previously seen,
877 reupdate the frame info. */
878 /* We know the contents of r0 from the previous
879 instruction. */
880 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
881 {
882 fdata->saved_ev = ev_reg;
883 fdata->ev_offset = vr_saved_offset + offset;
884 }
885 ev_reg = -1;
886 }
887 vr_saved_offset = -1;
888 li_found_pc = 0;
889 continue;
890 }
891 }
892 /* End BookE related instructions. */
893
c5aa993b
JM
894 else
895 {
55d05f3b
KB
896 /* Not a recognized prologue instruction.
897 Handle optimizer code motions into the prologue by continuing
898 the search if we have no valid frame yet or if the return
899 address is not yet saved in the frame. */
900 if (fdata->frameless == 0
901 && (lr_reg == -1 || fdata->nosavedpc == 0))
902 break;
903
904 if (op == 0x4e800020 /* blr */
905 || op == 0x4e800420) /* bctr */
906 /* Do not scan past epilogue in frameless functions or
907 trampolines. */
908 break;
909 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 910 /* Never skip branches. */
55d05f3b
KB
911 break;
912
913 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
914 /* Do not scan too many insns, scanning insns is expensive with
915 remote targets. */
916 break;
917
918 /* Continue scanning. */
919 prev_insn_was_prologue_insn = 0;
920 continue;
c5aa993b 921 }
c906108c
SS
922 }
923
924#if 0
925/* I have problems with skipping over __main() that I need to address
926 * sometime. Previously, I used to use misc_function_vector which
927 * didn't work as well as I wanted to be. -MGO */
928
929 /* If the first thing after skipping a prolog is a branch to a function,
930 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 931 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 932 work before calling a function right after a prologue, thus we can
64366f1c 933 single out such gcc2 behaviour. */
c906108c 934
c906108c 935
c5aa993b
JM
936 if ((op & 0xfc000001) == 0x48000001)
937 { /* bl foo, an initializer function? */
938 op = read_memory_integer (pc + 4, 4);
939
940 if (op == 0x4def7b82)
941 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 942
64366f1c
EZ
943 /* Check and see if we are in main. If so, skip over this
944 initializer function as well. */
c906108c 945
c5aa993b 946 tmp = find_pc_misc_function (pc);
51cc5b07 947 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
948 return pc + 8;
949 }
c906108c 950 }
c906108c 951#endif /* 0 */
c5aa993b
JM
952
953 fdata->offset = -fdata->offset;
ddb20c56 954 return last_prologue_pc;
c906108c
SS
955}
956
957
958/*************************************************************************
f6077098 959 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
960 frames, etc.
961*************************************************************************/
962
c906108c 963
64366f1c 964/* Pop the innermost frame, go back to the caller. */
c5aa993b 965
c906108c 966static void
7a78ae4e 967rs6000_pop_frame (void)
c906108c 968{
470d5666 969 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
970 struct rs6000_framedata fdata;
971 struct frame_info *frame = get_current_frame ();
470d5666 972 int ii, wordsize;
c906108c
SS
973
974 pc = read_pc ();
c193f6ac 975 sp = get_frame_base (frame);
c906108c 976
bdd78e62 977 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
978 get_frame_base (frame),
979 get_frame_base (frame)))
c906108c 980 {
7a78ae4e
ND
981 generic_pop_dummy_frame ();
982 flush_cached_frames ();
983 return;
c906108c
SS
984 }
985
986 /* Make sure that all registers are valid. */
73937e03 987 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
c906108c 988
64366f1c 989 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 990 still in the link register, otherwise walk the frames and retrieve the
64366f1c 991 saved %pc value in the previous frame. */
c906108c 992
bdd78e62
AC
993 addr = get_pc_function_start (get_frame_pc (frame));
994 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 995
21283beb 996 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
997 if (fdata.frameless)
998 prev_sp = sp;
999 else
7a78ae4e 1000 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1001 if (fdata.lr_offset == 0)
2188cbdd 1002 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1003 else
7a78ae4e 1004 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1005
1006 /* reset %pc value. */
1007 write_register (PC_REGNUM, lr);
1008
64366f1c 1009 /* reset register values if any was saved earlier. */
c906108c
SS
1010
1011 if (fdata.saved_gpr != -1)
1012 {
1013 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1014 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1015 {
524d7c18
AC
1016 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1017 wordsize);
7a78ae4e 1018 addr += wordsize;
c5aa993b 1019 }
c906108c
SS
1020 }
1021
1022 if (fdata.saved_fpr != -1)
1023 {
1024 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1025 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1026 {
524d7c18 1027 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1028 addr += 8;
1029 }
c906108c
SS
1030 }
1031
1032 write_register (SP_REGNUM, prev_sp);
1033 target_store_registers (-1);
1034 flush_cached_frames ();
1035}
1036
7a78ae4e 1037/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1038 address. Its arguments will be passed by gdb. */
c906108c 1039
7a78ae4e
ND
1040static void
1041rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1042 int nargs, struct value **args, struct type *type,
7a78ae4e 1043 int gcc_p)
c906108c 1044{
c906108c
SS
1045 int ii;
1046 CORE_ADDR target_addr;
1047
7a78ae4e 1048 if (rs6000_find_toc_address_hook != NULL)
f6077098 1049 {
7a78ae4e 1050 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1051 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1052 tocvalue);
f6077098 1053 }
c906108c
SS
1054}
1055
11269d7e
AC
1056/* All the ABI's require 16 byte alignment. */
1057static CORE_ADDR
1058rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1059{
1060 return (addr & -16);
1061}
1062
7a78ae4e 1063/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1064 the first eight words of the argument list (that might be less than
1065 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1066 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1067 passed in fpr's, in addition to that. Rest of the parameters if any
1068 are passed in user stack. There might be cases in which half of the
c906108c
SS
1069 parameter is copied into registers, the other half is pushed into
1070 stack.
1071
7a78ae4e
ND
1072 Stack must be aligned on 64-bit boundaries when synthesizing
1073 function calls.
1074
c906108c
SS
1075 If the function is returning a structure, then the return address is passed
1076 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1077 starting from r4. */
c906108c 1078
7a78ae4e 1079static CORE_ADDR
ea7c478f 1080rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1081 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1082{
1083 int ii;
1084 int len = 0;
c5aa993b
JM
1085 int argno; /* current argument number */
1086 int argbytes; /* current argument byte */
1087 char tmp_buffer[50];
1088 int f_argno = 0; /* current floating point argno */
21283beb 1089 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1090
ea7c478f 1091 struct value *arg = 0;
c906108c
SS
1092 struct type *type;
1093
1094 CORE_ADDR saved_sp;
1095
64366f1c
EZ
1096 /* The first eight words of ther arguments are passed in registers.
1097 Copy them appropriately.
c906108c
SS
1098
1099 If the function is returning a `struct', then the first word (which
64366f1c 1100 will be passed in r3) is used for struct return address. In that
c906108c 1101 case we should advance one word and start from r4 register to copy
64366f1c 1102 parameters. */
c906108c 1103
c5aa993b 1104 ii = struct_return ? 1 : 0;
c906108c
SS
1105
1106/*
c5aa993b
JM
1107 effectively indirect call... gcc does...
1108
1109 return_val example( float, int);
1110
1111 eabi:
1112 float in fp0, int in r3
1113 offset of stack on overflow 8/16
1114 for varargs, must go by type.
1115 power open:
1116 float in r3&r4, int in r5
1117 offset of stack on overflow different
1118 both:
1119 return in r3 or f0. If no float, must study how gcc emulates floats;
1120 pay attention to arg promotion.
1121 User may have to cast\args to handle promotion correctly
1122 since gdb won't know if prototype supplied or not.
1123 */
c906108c 1124
c5aa993b
JM
1125 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1126 {
f6077098 1127 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1128
1129 arg = args[argno];
1130 type = check_typedef (VALUE_TYPE (arg));
1131 len = TYPE_LENGTH (type);
1132
1133 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1134 {
1135
64366f1c 1136 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1137 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1138 there is no way we would run out of them. */
c5aa993b
JM
1139
1140 if (len > 8)
1141 printf_unfiltered (
1142 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1143
524d7c18 1144 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1145 VALUE_CONTENTS (arg),
1146 len);
1147 ++f_argno;
1148 }
1149
f6077098 1150 if (len > reg_size)
c5aa993b
JM
1151 {
1152
64366f1c 1153 /* Argument takes more than one register. */
c5aa993b
JM
1154 while (argbytes < len)
1155 {
524d7c18
AC
1156 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1157 reg_size);
1158 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1159 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1160 (len - argbytes) > reg_size
1161 ? reg_size : len - argbytes);
1162 ++ii, argbytes += reg_size;
c5aa993b
JM
1163
1164 if (ii >= 8)
1165 goto ran_out_of_registers_for_arguments;
1166 }
1167 argbytes = 0;
1168 --ii;
1169 }
1170 else
64366f1c
EZ
1171 {
1172 /* Argument can fit in one register. No problem. */
d7449b42 1173 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1174 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1175 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1176 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1177 }
1178 ++argno;
c906108c 1179 }
c906108c
SS
1180
1181ran_out_of_registers_for_arguments:
1182
7a78ae4e 1183 saved_sp = read_sp ();
cc9836a8 1184
64366f1c 1185 /* Location for 8 parameters are always reserved. */
7a78ae4e 1186 sp -= wordsize * 8;
f6077098 1187
64366f1c 1188 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1189 sp -= wordsize * 6;
f6077098 1190
64366f1c 1191 /* Stack pointer must be quadword aligned. */
7a78ae4e 1192 sp &= -16;
c906108c 1193
64366f1c
EZ
1194 /* If there are more arguments, allocate space for them in
1195 the stack, then push them starting from the ninth one. */
c906108c 1196
c5aa993b
JM
1197 if ((argno < nargs) || argbytes)
1198 {
1199 int space = 0, jj;
c906108c 1200
c5aa993b
JM
1201 if (argbytes)
1202 {
1203 space += ((len - argbytes + 3) & -4);
1204 jj = argno + 1;
1205 }
1206 else
1207 jj = argno;
c906108c 1208
c5aa993b
JM
1209 for (; jj < nargs; ++jj)
1210 {
ea7c478f 1211 struct value *val = args[jj];
c5aa993b
JM
1212 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1213 }
c906108c 1214
64366f1c 1215 /* Add location required for the rest of the parameters. */
f6077098 1216 space = (space + 15) & -16;
c5aa993b 1217 sp -= space;
c906108c 1218
64366f1c
EZ
1219 /* This is another instance we need to be concerned about
1220 securing our stack space. If we write anything underneath %sp
1221 (r1), we might conflict with the kernel who thinks he is free
1222 to use this area. So, update %sp first before doing anything
1223 else. */
c906108c 1224
c5aa993b 1225 write_register (SP_REGNUM, sp);
c906108c 1226
64366f1c
EZ
1227 /* If the last argument copied into the registers didn't fit there
1228 completely, push the rest of it into stack. */
c906108c 1229
c5aa993b
JM
1230 if (argbytes)
1231 {
1232 write_memory (sp + 24 + (ii * 4),
1233 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1234 len - argbytes);
1235 ++argno;
1236 ii += ((len - argbytes + 3) & -4) / 4;
1237 }
c906108c 1238
64366f1c 1239 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1240 for (; argno < nargs; ++argno)
1241 {
c906108c 1242
c5aa993b
JM
1243 arg = args[argno];
1244 type = check_typedef (VALUE_TYPE (arg));
1245 len = TYPE_LENGTH (type);
c906108c
SS
1246
1247
64366f1c
EZ
1248 /* Float types should be passed in fpr's, as well as in the
1249 stack. */
c5aa993b
JM
1250 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1251 {
c906108c 1252
c5aa993b
JM
1253 if (len > 8)
1254 printf_unfiltered (
1255 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1256
524d7c18 1257 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1258 VALUE_CONTENTS (arg),
1259 len);
1260 ++f_argno;
1261 }
c906108c 1262
c5aa993b
JM
1263 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1264 ii += ((len + 3) & -4) / 4;
1265 }
c906108c 1266 }
c906108c 1267 else
64366f1c 1268 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1269 write_register (SP_REGNUM, sp);
1270
c906108c
SS
1271 /* set back chain properly */
1272 store_address (tmp_buffer, 4, saved_sp);
1273 write_memory (sp, tmp_buffer, 4);
1274
1275 target_store_registers (-1);
1276 return sp;
1277}
c906108c
SS
1278
1279/* Function: ppc_push_return_address (pc, sp)
64366f1c 1280 Set up the return address for the inferior function call. */
c906108c 1281
7a78ae4e
ND
1282static CORE_ADDR
1283ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1284{
2188cbdd
EZ
1285 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1286 CALL_DUMMY_ADDRESS ());
c906108c
SS
1287 return sp;
1288}
1289
7a78ae4e 1290/* Extract a function return value of type TYPE from raw register array
64366f1c 1291 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1292static void
46d79c04 1293e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1294{
1295 int offset = 0;
1296 int vallen = TYPE_LENGTH (valtype);
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1298
1299 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1300 && vallen == 8
1301 && TYPE_VECTOR (valtype))
1302 {
1303 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1304 }
1305 else
1306 {
1307 /* Return value is copied starting from r3. Note that r3 for us
1308 is a pseudo register. */
1309 int offset = 0;
1310 int return_regnum = tdep->ppc_gp0_regnum + 3;
1311 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1312 int reg_part_size;
1313 char *val_buffer;
1314 int copied = 0;
1315 int i = 0;
1316
1317 /* Compute where we will start storing the value from. */
1318 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1319 {
1320 if (vallen <= reg_size)
1321 offset = reg_size - vallen;
1322 else
1323 offset = reg_size + (reg_size - vallen);
1324 }
1325
1326 /* How big does the local buffer need to be? */
1327 if (vallen <= reg_size)
1328 val_buffer = alloca (reg_size);
1329 else
1330 val_buffer = alloca (vallen);
1331
1332 /* Read all we need into our private buffer. We copy it in
1333 chunks that are as long as one register, never shorter, even
1334 if the value is smaller than the register. */
1335 while (copied < vallen)
1336 {
1337 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1338 /* It is a pseudo/cooked register. */
1339 regcache_cooked_read (regbuf, return_regnum + i,
1340 val_buffer + copied);
1341 copied += reg_part_size;
1342 i++;
1343 }
1344 /* Put the stuff in the return buffer. */
1345 memcpy (valbuf, val_buffer + offset, vallen);
1346 }
1347}
c906108c 1348
7a78ae4e
ND
1349static void
1350rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1351{
1352 int offset = 0;
ace1378a 1353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1354
c5aa993b
JM
1355 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1356 {
c906108c 1357
c5aa993b
JM
1358 double dd;
1359 float ff;
1360 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1361 We need to truncate the return value into float size (4 byte) if
64366f1c 1362 necessary. */
c906108c 1363
c5aa993b
JM
1364 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1365 memcpy (valbuf,
1366 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1367 TYPE_LENGTH (valtype));
1368 else
1369 { /* float */
1370 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1371 ff = (float) dd;
1372 memcpy (valbuf, &ff, sizeof (float));
1373 }
1374 }
ace1378a
EZ
1375 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1376 && TYPE_LENGTH (valtype) == 16
1377 && TYPE_VECTOR (valtype))
1378 {
1379 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1380 TYPE_LENGTH (valtype));
1381 }
c5aa993b
JM
1382 else
1383 {
1384 /* return value is copied starting from r3. */
d7449b42 1385 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1386 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1387 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1388
1389 memcpy (valbuf,
1390 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1391 TYPE_LENGTH (valtype));
c906108c 1392 }
c906108c
SS
1393}
1394
977adac5
ND
1395/* Return whether handle_inferior_event() should proceed through code
1396 starting at PC in function NAME when stepping.
1397
1398 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1399 handle memory references that are too distant to fit in instructions
1400 generated by the compiler. For example, if 'foo' in the following
1401 instruction:
1402
1403 lwz r9,foo(r2)
1404
1405 is greater than 32767, the linker might replace the lwz with a branch to
1406 somewhere in @FIX1 that does the load in 2 instructions and then branches
1407 back to where execution should continue.
1408
1409 GDB should silently step over @FIX code, just like AIX dbx does.
1410 Unfortunately, the linker uses the "b" instruction for the branches,
1411 meaning that the link register doesn't get set. Therefore, GDB's usual
1412 step_over_function() mechanism won't work.
1413
1414 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1415 in handle_inferior_event() to skip past @FIX code. */
1416
1417int
1418rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1419{
1420 return name && !strncmp (name, "@FIX", 4);
1421}
1422
1423/* Skip code that the user doesn't want to see when stepping:
1424
1425 1. Indirect function calls use a piece of trampoline code to do context
1426 switching, i.e. to set the new TOC table. Skip such code if we are on
1427 its first instruction (as when we have single-stepped to here).
1428
1429 2. Skip shared library trampoline code (which is different from
c906108c 1430 indirect function call trampolines).
977adac5
ND
1431
1432 3. Skip bigtoc fixup code.
1433
c906108c 1434 Result is desired PC to step until, or NULL if we are not in
977adac5 1435 code that should be skipped. */
c906108c
SS
1436
1437CORE_ADDR
7a78ae4e 1438rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1439{
1440 register unsigned int ii, op;
977adac5 1441 int rel;
c906108c 1442 CORE_ADDR solib_target_pc;
977adac5 1443 struct minimal_symbol *msymbol;
c906108c 1444
c5aa993b
JM
1445 static unsigned trampoline_code[] =
1446 {
1447 0x800b0000, /* l r0,0x0(r11) */
1448 0x90410014, /* st r2,0x14(r1) */
1449 0x7c0903a6, /* mtctr r0 */
1450 0x804b0004, /* l r2,0x4(r11) */
1451 0x816b0008, /* l r11,0x8(r11) */
1452 0x4e800420, /* bctr */
1453 0x4e800020, /* br */
1454 0
c906108c
SS
1455 };
1456
977adac5
ND
1457 /* Check for bigtoc fixup code. */
1458 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1459 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1460 {
1461 /* Double-check that the third instruction from PC is relative "b". */
1462 op = read_memory_integer (pc + 8, 4);
1463 if ((op & 0xfc000003) == 0x48000000)
1464 {
1465 /* Extract bits 6-29 as a signed 24-bit relative word address and
1466 add it to the containing PC. */
1467 rel = ((int)(op << 6) >> 6);
1468 return pc + 8 + rel;
1469 }
1470 }
1471
c906108c
SS
1472 /* If pc is in a shared library trampoline, return its target. */
1473 solib_target_pc = find_solib_trampoline_target (pc);
1474 if (solib_target_pc)
1475 return solib_target_pc;
1476
c5aa993b
JM
1477 for (ii = 0; trampoline_code[ii]; ++ii)
1478 {
1479 op = read_memory_integer (pc + (ii * 4), 4);
1480 if (op != trampoline_code[ii])
1481 return 0;
1482 }
1483 ii = read_register (11); /* r11 holds destination addr */
21283beb 1484 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1485 return pc;
1486}
1487
1488/* Determines whether the function FI has a frame on the stack or not. */
1489
9aa1e687 1490int
c877c8e6 1491rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1492{
1493 CORE_ADDR func_start;
1494 struct rs6000_framedata fdata;
1495
1496 /* Don't even think about framelessness except on the innermost frame
1497 or if the function was interrupted by a signal. */
75e3c1f9
AC
1498 if (get_next_frame (fi) != NULL
1499 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1500 return 0;
c5aa993b 1501
bdd78e62 1502 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1503
1504 /* If we failed to find the start of the function, it is a mistake
64366f1c 1505 to inspect the instructions. */
c906108c
SS
1506
1507 if (!func_start)
1508 {
1509 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1510 function pointer, normally causing an immediate core dump of the
64366f1c 1511 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1512 of setting up a stack frame. */
bdd78e62 1513 if (get_frame_pc (fi) == 0)
c906108c
SS
1514 return 1;
1515 else
1516 return 0;
1517 }
1518
bdd78e62 1519 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1520 return fdata.frameless;
1521}
1522
64366f1c 1523/* Return the PC saved in a frame. */
c906108c 1524
9aa1e687 1525CORE_ADDR
c877c8e6 1526rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1527{
1528 CORE_ADDR func_start;
1529 struct rs6000_framedata fdata;
21283beb 1530 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1531 int wordsize = tdep->wordsize;
c906108c 1532
5a203e44 1533 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1534 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1535 wordsize);
c906108c 1536
bdd78e62 1537 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1538 get_frame_base (fi),
1539 get_frame_base (fi)))
bdd78e62 1540 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1541 get_frame_base (fi), PC_REGNUM);
c906108c 1542
bdd78e62 1543 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1544
1545 /* If we failed to find the start of the function, it is a mistake
64366f1c 1546 to inspect the instructions. */
c906108c
SS
1547 if (!func_start)
1548 return 0;
1549
bdd78e62 1550 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1551
75e3c1f9 1552 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1553 {
75e3c1f9 1554 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1555 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1556 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1557 wordsize);
bdd78e62 1558 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1559 /* The link register wasn't saved by this frame and the next
1560 (inner, newer) frame is a dummy. Get the link register
1561 value by unwinding it from that [dummy] frame. */
1562 {
1563 ULONGEST lr;
1564 frame_unwind_unsigned_register (get_next_frame (fi),
1565 tdep->ppc_lr_regnum, &lr);
1566 return lr;
1567 }
c906108c 1568 else
a88376a3 1569 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
7a78ae4e 1570 wordsize);
c906108c
SS
1571 }
1572
1573 if (fdata.lr_offset == 0)
2188cbdd 1574 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1575
7a78ae4e 1576 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1577}
1578
1579/* If saved registers of frame FI are not known yet, read and cache them.
1580 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1581 in which case the framedata are read. */
1582
1583static void
7a78ae4e 1584frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1585{
c5aa993b 1586 CORE_ADDR frame_addr;
c906108c 1587 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1588 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1589 int wordsize = tdep->wordsize;
c906108c 1590
c9012c71 1591 if (get_frame_saved_regs (fi))
c906108c 1592 return;
c5aa993b 1593
c906108c
SS
1594 if (fdatap == NULL)
1595 {
1596 fdatap = &work_fdata;
bdd78e62
AC
1597 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1598 get_frame_pc (fi), fdatap);
c906108c
SS
1599 }
1600
1601 frame_saved_regs_zalloc (fi);
1602
1603 /* If there were any saved registers, figure out parent's stack
64366f1c 1604 pointer. */
c906108c 1605 /* The following is true only if the frame doesn't have a call to
64366f1c 1606 alloca(), FIXME. */
c906108c 1607
6be8bc0c
EZ
1608 if (fdatap->saved_fpr == 0
1609 && fdatap->saved_gpr == 0
1610 && fdatap->saved_vr == 0
96ff0de4 1611 && fdatap->saved_ev == 0
6be8bc0c
EZ
1612 && fdatap->lr_offset == 0
1613 && fdatap->cr_offset == 0
96ff0de4
EZ
1614 && fdatap->vr_offset == 0
1615 && fdatap->ev_offset == 0)
c906108c 1616 frame_addr = 0;
c906108c 1617 else
bf75c8c1
AC
1618 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1619 address of the current frame. Things might be easier if the
1620 ->frame pointed to the outer-most address of the frame. In the
1621 mean time, the address of the prev frame is used as the base
1622 address of this frame. */
1623 frame_addr = FRAME_CHAIN (fi);
c5aa993b 1624
c906108c
SS
1625 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1626 All fpr's from saved_fpr to fp31 are saved. */
1627
1628 if (fdatap->saved_fpr >= 0)
1629 {
1630 int i;
7a78ae4e 1631 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1632 for (i = fdatap->saved_fpr; i < 32; i++)
1633 {
c9012c71 1634 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1635 fpr_addr += 8;
c906108c
SS
1636 }
1637 }
1638
1639 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1640 All gpr's from saved_gpr to gpr31 are saved. */
1641
1642 if (fdatap->saved_gpr >= 0)
1643 {
1644 int i;
7a78ae4e 1645 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1646 for (i = fdatap->saved_gpr; i < 32; i++)
1647 {
c9012c71 1648 get_frame_saved_regs (fi)[i] = gpr_addr;
7a78ae4e 1649 gpr_addr += wordsize;
c906108c
SS
1650 }
1651 }
1652
6be8bc0c
EZ
1653 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1654 All vr's from saved_vr to vr31 are saved. */
1655 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1656 {
1657 if (fdatap->saved_vr >= 0)
1658 {
1659 int i;
1660 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1661 for (i = fdatap->saved_vr; i < 32; i++)
1662 {
c9012c71 1663 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1664 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1665 }
1666 }
1667 }
1668
96ff0de4
EZ
1669 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1670 All vr's from saved_ev to ev31 are saved. ????? */
1671 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1672 {
1673 if (fdatap->saved_ev >= 0)
1674 {
1675 int i;
1676 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1677 for (i = fdatap->saved_ev; i < 32; i++)
1678 {
c9012c71
AC
1679 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1680 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1681 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1682 }
1683 }
1684 }
1685
c906108c
SS
1686 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1687 the CR. */
1688 if (fdatap->cr_offset != 0)
c9012c71 1689 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1690
1691 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1692 the LR. */
1693 if (fdatap->lr_offset != 0)
c9012c71 1694 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1695
1696 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1697 the VRSAVE. */
1698 if (fdatap->vrsave_offset != 0)
c9012c71 1699 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1700}
1701
1702/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1703 was first allocated. For functions calling alloca(), it might be saved in
1704 an alloca register. */
c906108c
SS
1705
1706static CORE_ADDR
7a78ae4e 1707frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1708{
1709 CORE_ADDR tmpaddr;
1710 struct rs6000_framedata fdata;
1711 struct frame_info *callee_fi;
1712
64366f1c
EZ
1713 /* If the initial stack pointer (frame address) of this frame is known,
1714 just return it. */
c906108c 1715
c9012c71
AC
1716 if (get_frame_extra_info (fi)->initial_sp)
1717 return get_frame_extra_info (fi)->initial_sp;
c906108c 1718
64366f1c 1719 /* Find out if this function is using an alloca register. */
c906108c 1720
bdd78e62
AC
1721 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1722 get_frame_pc (fi), &fdata);
c906108c 1723
64366f1c
EZ
1724 /* If saved registers of this frame are not known yet, read and
1725 cache them. */
c906108c 1726
c9012c71 1727 if (!get_frame_saved_regs (fi))
c906108c
SS
1728 frame_get_saved_regs (fi, &fdata);
1729
1730 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1731 this frame, and it is good enough. */
c906108c
SS
1732
1733 if (fdata.alloca_reg < 0)
1734 {
c9012c71
AC
1735 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1736 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1737 }
1738
953836b2
AC
1739 /* There is an alloca register, use its value, in the current frame,
1740 as the initial stack pointer. */
1741 {
1742 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1743 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1744 {
c9012c71 1745 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1746 = extract_unsigned_integer (tmpbuf,
1747 REGISTER_RAW_SIZE (fdata.alloca_reg));
1748 }
1749 else
1750 /* NOTE: cagney/2002-04-17: At present the only time
1751 frame_register_read will fail is when the register isn't
1752 available. If that does happen, use the frame. */
c9012c71 1753 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1754 }
c9012c71 1755 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1756}
1757
7a78ae4e
ND
1758/* Describe the pointer in each stack frame to the previous stack frame
1759 (its caller). */
1760
1761/* FRAME_CHAIN takes a frame's nominal address
64366f1c 1762 and produces the frame's chain-pointer. */
7a78ae4e
ND
1763
1764/* In the case of the RS/6000, the frame's nominal address
1765 is the address of a 4-byte word containing the calling frame's address. */
1766
9aa1e687 1767CORE_ADDR
7a78ae4e 1768rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1769{
7a78ae4e 1770 CORE_ADDR fp, fpp, lr;
21283beb 1771 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1772
bdd78e62 1773 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1774 get_frame_base (thisframe),
1775 get_frame_base (thisframe)))
9f3b7f07
AC
1776 /* A dummy frame always correctly chains back to the previous
1777 frame. */
8b36eed8 1778 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1779
bdd78e62
AC
1780 if (inside_entry_file (get_frame_pc (thisframe))
1781 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1782 return 0;
1783
5a203e44 1784 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1785 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1786 wordsize);
75e3c1f9
AC
1787 else if (get_next_frame (thisframe) != NULL
1788 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1789 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1790 /* A frameless function interrupted by a signal did not change the
1791 frame pointer. */
c193f6ac 1792 fp = get_frame_base (thisframe);
c906108c 1793 else
8b36eed8 1794 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1795 return fp;
1796}
1797
1798/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1799 isn't available with that word size, return 0. */
7a78ae4e
ND
1800
1801static int
1802regsize (const struct reg *reg, int wordsize)
1803{
1804 return wordsize == 8 ? reg->sz64 : reg->sz32;
1805}
1806
1807/* Return the name of register number N, or null if no such register exists
64366f1c 1808 in the current architecture. */
7a78ae4e 1809
fa88f677 1810static const char *
7a78ae4e
ND
1811rs6000_register_name (int n)
1812{
21283beb 1813 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1814 const struct reg *reg = tdep->regs + n;
1815
1816 if (!regsize (reg, tdep->wordsize))
1817 return NULL;
1818 return reg->name;
1819}
1820
1821/* Index within `registers' of the first byte of the space for
1822 register N. */
1823
1824static int
1825rs6000_register_byte (int n)
1826{
21283beb 1827 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1828}
1829
1830/* Return the number of bytes of storage in the actual machine representation
64366f1c 1831 for register N if that register is available, else return 0. */
7a78ae4e
ND
1832
1833static int
1834rs6000_register_raw_size (int n)
1835{
21283beb 1836 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1837 const struct reg *reg = tdep->regs + n;
1838 return regsize (reg, tdep->wordsize);
1839}
1840
7a78ae4e
ND
1841/* Return the GDB type object for the "standard" data type
1842 of data in register N. */
1843
1844static struct type *
fba45db2 1845rs6000_register_virtual_type (int n)
7a78ae4e 1846{
21283beb 1847 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1848 const struct reg *reg = tdep->regs + n;
1849
1fcc0bb8
EZ
1850 if (reg->fpr)
1851 return builtin_type_double;
1852 else
1853 {
1854 int size = regsize (reg, tdep->wordsize);
1855 switch (size)
1856 {
1857 case 8:
c8001721
EZ
1858 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1859 return builtin_type_vec64;
1860 else
1861 return builtin_type_int64;
1fcc0bb8
EZ
1862 break;
1863 case 16:
08cf96df 1864 return builtin_type_vec128;
1fcc0bb8
EZ
1865 break;
1866 default:
1867 return builtin_type_int32;
1868 break;
1869 }
1870 }
7a78ae4e
ND
1871}
1872
7a78ae4e
ND
1873/* Return whether register N requires conversion when moving from raw format
1874 to virtual format.
1875
1876 The register format for RS/6000 floating point registers is always
64366f1c 1877 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1878
1879static int
1880rs6000_register_convertible (int n)
1881{
21283beb 1882 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1883 return reg->fpr;
1884}
1885
1886/* Convert data from raw format for register N in buffer FROM
64366f1c 1887 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1888
1889static void
1890rs6000_register_convert_to_virtual (int n, struct type *type,
1891 char *from, char *to)
1892{
1893 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1894 {
7a78ae4e
ND
1895 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1896 store_floating (to, TYPE_LENGTH (type), val);
1897 }
1898 else
1899 memcpy (to, from, REGISTER_RAW_SIZE (n));
1900}
1901
1902/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1903 to raw format for register N in buffer TO. */
7a292a7a 1904
7a78ae4e
ND
1905static void
1906rs6000_register_convert_to_raw (struct type *type, int n,
1907 char *from, char *to)
1908{
1909 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1910 {
1911 double val = extract_floating (from, TYPE_LENGTH (type));
1912 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1913 }
7a78ae4e
ND
1914 else
1915 memcpy (to, from, REGISTER_RAW_SIZE (n));
1916}
c906108c 1917
c8001721
EZ
1918static void
1919e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1920 int reg_nr, void *buffer)
1921{
1922 int base_regnum;
1923 int offset = 0;
1924 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1925 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1926
1927 if (reg_nr >= tdep->ppc_gp0_regnum
1928 && reg_nr <= tdep->ppc_gplast_regnum)
1929 {
1930 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1931
1932 /* Build the value in the provided buffer. */
1933 /* Read the raw register of which this one is the lower portion. */
1934 regcache_raw_read (regcache, base_regnum, temp_buffer);
1935 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1936 offset = 4;
1937 memcpy ((char *) buffer, temp_buffer + offset, 4);
1938 }
1939}
1940
1941static void
1942e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1943 int reg_nr, const void *buffer)
1944{
1945 int base_regnum;
1946 int offset = 0;
1947 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1948 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1949
1950 if (reg_nr >= tdep->ppc_gp0_regnum
1951 && reg_nr <= tdep->ppc_gplast_regnum)
1952 {
1953 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1954 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1955 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1956 offset = 4;
1957
1958 /* Let's read the value of the base register into a temporary
1959 buffer, so that overwriting the last four bytes with the new
1960 value of the pseudo will leave the upper 4 bytes unchanged. */
1961 regcache_raw_read (regcache, base_regnum, temp_buffer);
1962
1963 /* Write as an 8 byte quantity. */
1964 memcpy (temp_buffer + offset, (char *) buffer, 4);
1965 regcache_raw_write (regcache, base_regnum, temp_buffer);
1966 }
1967}
1968
1969/* Convert a dwarf2 register number to a gdb REGNUM. */
1970static int
1971e500_dwarf2_reg_to_regnum (int num)
1972{
1973 int regnum;
1974 if (0 <= num && num <= 31)
1975 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1976 else
1977 return num;
1978}
1979
2188cbdd 1980/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1981 REGNUM. */
2188cbdd
EZ
1982static int
1983rs6000_stab_reg_to_regnum (int num)
1984{
1985 int regnum;
1986 switch (num)
1987 {
1988 case 64:
1989 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1990 break;
1991 case 65:
1992 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1993 break;
1994 case 66:
1995 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1996 break;
1997 case 76:
1998 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1999 break;
2000 default:
2001 regnum = num;
2002 break;
2003 }
2004 return regnum;
2005}
2006
7a78ae4e 2007/* Store the address of the place in which to copy the structure the
11269d7e 2008 subroutine will return. */
7a78ae4e
ND
2009
2010static void
2011rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2012{
da3eff49
AC
2013 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2014 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2015}
2016
2017/* Write into appropriate registers a function return value
2018 of type TYPE, given in virtual format. */
96ff0de4
EZ
2019static void
2020e500_store_return_value (struct type *type, char *valbuf)
2021{
2022 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2023
2024 /* Everything is returned in GPR3 and up. */
2025 int copied = 0;
2026 int i = 0;
2027 int len = TYPE_LENGTH (type);
2028 while (copied < len)
2029 {
2030 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2031 int reg_size = REGISTER_RAW_SIZE (regnum);
2032 char *reg_val_buf = alloca (reg_size);
2033
2034 memcpy (reg_val_buf, valbuf + copied, reg_size);
2035 copied += reg_size;
4caf0990 2036 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2037 i++;
2038 }
2039}
7a78ae4e
ND
2040
2041static void
2042rs6000_store_return_value (struct type *type, char *valbuf)
2043{
ace1378a
EZ
2044 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2045
7a78ae4e
ND
2046 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2047
2048 /* Floating point values are returned starting from FPR1 and up.
2049 Say a double_double_double type could be returned in
64366f1c 2050 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2051
73937e03
AC
2052 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2053 TYPE_LENGTH (type));
ace1378a
EZ
2054 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2055 {
2056 if (TYPE_LENGTH (type) == 16
2057 && TYPE_VECTOR (type))
73937e03
AC
2058 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2059 valbuf, TYPE_LENGTH (type));
ace1378a 2060 }
7a78ae4e 2061 else
64366f1c 2062 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2063 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2064 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2065}
2066
2067/* Extract from an array REGBUF containing the (raw) register state
2068 the address in which a function should return its structure value,
2069 as a CORE_ADDR (or an expression that can be used as one). */
2070
2071static CORE_ADDR
11269d7e
AC
2072rs6000_extract_struct_value_address (struct regcache *regcache)
2073{
2074 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2075 function call GDB knows the address of the struct return value
2076 and hence, should not need to call this function. Unfortunately,
2077 the current hand_function_call() code only saves the most recent
2078 struct address leading to occasional calls. The code should
2079 instead maintain a stack of such addresses (in the dummy frame
2080 object). */
2081 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2082 really got no idea where the return value is being stored. While
2083 r3, on function entry, contained the address it will have since
2084 been reused (scratch) and hence wouldn't be valid */
2085 return 0;
7a78ae4e
ND
2086}
2087
2088/* Return whether PC is in a dummy function call.
2089
2090 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2091 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2092
2093static int
2094rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2095{
2096 return sp < pc && pc < fp;
2097}
2098
64366f1c 2099/* Hook called when a new child process is started. */
7a78ae4e
ND
2100
2101void
2102rs6000_create_inferior (int pid)
2103{
2104 if (rs6000_set_host_arch_hook)
2105 rs6000_set_host_arch_hook (pid);
c906108c
SS
2106}
2107\f
7a78ae4e
ND
2108/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2109
2110 Usually a function pointer's representation is simply the address
2111 of the function. On the RS/6000 however, a function pointer is
2112 represented by a pointer to a TOC entry. This TOC entry contains
2113 three words, the first word is the address of the function, the
2114 second word is the TOC pointer (r2), and the third word is the
2115 static chain value. Throughout GDB it is currently assumed that a
2116 function pointer contains the address of the function, which is not
2117 easy to fix. In addition, the conversion of a function address to
2118 a function pointer would require allocation of a TOC entry in the
2119 inferior's memory space, with all its drawbacks. To be able to
2120 call C++ virtual methods in the inferior (which are called via
f517ea4e 2121 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2122 function address from a function pointer. */
2123
f517ea4e
PS
2124/* Return real function address if ADDR (a function pointer) is in the data
2125 space and is therefore a special function pointer. */
c906108c 2126
7a78ae4e
ND
2127CORE_ADDR
2128rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2129{
2130 struct obj_section *s;
2131
2132 s = find_pc_section (addr);
2133 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2134 return addr;
c906108c 2135
7a78ae4e 2136 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2137 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2138}
c906108c 2139\f
c5aa993b 2140
7a78ae4e 2141/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2142
2143
7a78ae4e
ND
2144/* The arrays here called registers_MUMBLE hold information about available
2145 registers.
c906108c
SS
2146
2147 For each family of PPC variants, I've tried to isolate out the
2148 common registers and put them up front, so that as long as you get
2149 the general family right, GDB will correctly identify the registers
2150 common to that family. The common register sets are:
2151
2152 For the 60x family: hid0 hid1 iabr dabr pir
2153
2154 For the 505 and 860 family: eie eid nri
2155
2156 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2157 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2158 pbu1 pbl2 pbu2
c906108c
SS
2159
2160 Most of these register groups aren't anything formal. I arrived at
2161 them by looking at the registers that occurred in more than one
6f5987a6
KB
2162 processor.
2163
2164 Note: kevinb/2002-04-30: Support for the fpscr register was added
2165 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2166 for Power. For PowerPC, slot 70 was unused and was already in the
2167 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2168 slot 70 was being used for "mq", so the next available slot (71)
2169 was chosen. It would have been nice to be able to make the
2170 register numbers the same across processor cores, but this wasn't
2171 possible without either 1) renumbering some registers for some
2172 processors or 2) assigning fpscr to a really high slot that's
2173 larger than any current register number. Doing (1) is bad because
2174 existing stubs would break. Doing (2) is undesirable because it
2175 would introduce a really large gap between fpscr and the rest of
2176 the registers for most processors. */
7a78ae4e 2177
64366f1c 2178/* Convenience macros for populating register arrays. */
7a78ae4e 2179
64366f1c 2180/* Within another macro, convert S to a string. */
7a78ae4e
ND
2181
2182#define STR(s) #s
2183
2184/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2185 and 64 bits on 64-bit systems. */
489461e2 2186#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2187
2188/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2189 systems. */
489461e2 2190#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2191
2192/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2193 systems. */
489461e2 2194#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2195
1fcc0bb8 2196/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2197 systems. */
489461e2 2198#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2199
64366f1c 2200/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2201#define F(name) { STR(name), 8, 8, 1, 0 }
2202
64366f1c 2203/* Return a struct reg defining a pseudo register NAME. */
489461e2 2204#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2205
2206/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2207 systems and that doesn't exist on 64-bit systems. */
489461e2 2208#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2209
2210/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2211 systems and that doesn't exist on 32-bit systems. */
489461e2 2212#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2213
64366f1c 2214/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2215#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2216
2217/* UISA registers common across all architectures, including POWER. */
2218
2219#define COMMON_UISA_REGS \
2220 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2221 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2222 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2223 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2224 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2225 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2226 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2227 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2228 /* 64 */ R(pc), R(ps)
2229
ebeac11a
EZ
2230#define COMMON_UISA_NOFP_REGS \
2231 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2232 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2233 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2234 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2235 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2236 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2237 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2238 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2239 /* 64 */ R(pc), R(ps)
2240
7a78ae4e
ND
2241/* UISA-level SPRs for PowerPC. */
2242#define PPC_UISA_SPRS \
e3f36dbd 2243 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2244
c8001721
EZ
2245/* UISA-level SPRs for PowerPC without floating point support. */
2246#define PPC_UISA_NOFP_SPRS \
2247 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2248
7a78ae4e
ND
2249/* Segment registers, for PowerPC. */
2250#define PPC_SEGMENT_REGS \
2251 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2252 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2253 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2254 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2255
2256/* OEA SPRs for PowerPC. */
2257#define PPC_OEA_SPRS \
2258 /* 87 */ R4(pvr), \
2259 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2260 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2261 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2262 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2263 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2264 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2265 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2266 /* 116 */ R4(dec), R(dabr), R4(ear)
2267
64366f1c 2268/* AltiVec registers. */
1fcc0bb8
EZ
2269#define PPC_ALTIVEC_REGS \
2270 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2271 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2272 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2273 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2274 /*151*/R4(vscr), R4(vrsave)
2275
c8001721
EZ
2276/* Vectors of hi-lo general purpose registers. */
2277#define PPC_EV_REGS \
2278 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2279 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2280 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2281 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2282
2283/* Lower half of the EV registers. */
2284#define PPC_GPRS_PSEUDO_REGS \
2285 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2286 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2287 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2288 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2289
7a78ae4e 2290/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2291 user-level SPR's. */
7a78ae4e 2292static const struct reg registers_power[] =
c906108c 2293{
7a78ae4e 2294 COMMON_UISA_REGS,
e3f36dbd
KB
2295 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2296 /* 71 */ R4(fpscr)
c906108c
SS
2297};
2298
7a78ae4e 2299/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2300 view of the PowerPC. */
7a78ae4e 2301static const struct reg registers_powerpc[] =
c906108c 2302{
7a78ae4e 2303 COMMON_UISA_REGS,
1fcc0bb8
EZ
2304 PPC_UISA_SPRS,
2305 PPC_ALTIVEC_REGS
c906108c
SS
2306};
2307
ebeac11a
EZ
2308/* PowerPC UISA - a PPC processor as viewed by user-level
2309 code, but without floating point registers. */
2310static const struct reg registers_powerpc_nofp[] =
2311{
2312 COMMON_UISA_NOFP_REGS,
2313 PPC_UISA_SPRS
2314};
2315
64366f1c 2316/* IBM PowerPC 403. */
7a78ae4e 2317static const struct reg registers_403[] =
c5aa993b 2318{
7a78ae4e
ND
2319 COMMON_UISA_REGS,
2320 PPC_UISA_SPRS,
2321 PPC_SEGMENT_REGS,
2322 PPC_OEA_SPRS,
2323 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2324 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2325 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2326 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2327 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2328 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2329};
2330
64366f1c 2331/* IBM PowerPC 403GC. */
7a78ae4e 2332static const struct reg registers_403GC[] =
c5aa993b 2333{
7a78ae4e
ND
2334 COMMON_UISA_REGS,
2335 PPC_UISA_SPRS,
2336 PPC_SEGMENT_REGS,
2337 PPC_OEA_SPRS,
2338 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2339 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2340 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2341 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2342 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2343 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2344 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2345 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2346};
2347
64366f1c 2348/* Motorola PowerPC 505. */
7a78ae4e 2349static const struct reg registers_505[] =
c5aa993b 2350{
7a78ae4e
ND
2351 COMMON_UISA_REGS,
2352 PPC_UISA_SPRS,
2353 PPC_SEGMENT_REGS,
2354 PPC_OEA_SPRS,
2355 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2356};
2357
64366f1c 2358/* Motorola PowerPC 860 or 850. */
7a78ae4e 2359static const struct reg registers_860[] =
c5aa993b 2360{
7a78ae4e
ND
2361 COMMON_UISA_REGS,
2362 PPC_UISA_SPRS,
2363 PPC_SEGMENT_REGS,
2364 PPC_OEA_SPRS,
2365 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2366 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2367 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2368 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2369 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2370 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2371 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2372 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2373 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2374 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2375 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2376 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2377};
2378
7a78ae4e
ND
2379/* Motorola PowerPC 601. Note that the 601 has different register numbers
2380 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2381 register is the stub's problem. */
7a78ae4e 2382static const struct reg registers_601[] =
c5aa993b 2383{
7a78ae4e
ND
2384 COMMON_UISA_REGS,
2385 PPC_UISA_SPRS,
2386 PPC_SEGMENT_REGS,
2387 PPC_OEA_SPRS,
2388 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2389 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2390};
2391
64366f1c 2392/* Motorola PowerPC 602. */
7a78ae4e 2393static const struct reg registers_602[] =
c5aa993b 2394{
7a78ae4e
ND
2395 COMMON_UISA_REGS,
2396 PPC_UISA_SPRS,
2397 PPC_SEGMENT_REGS,
2398 PPC_OEA_SPRS,
2399 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2400 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2401 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2402};
2403
64366f1c 2404/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2405static const struct reg registers_603[] =
c5aa993b 2406{
7a78ae4e
ND
2407 COMMON_UISA_REGS,
2408 PPC_UISA_SPRS,
2409 PPC_SEGMENT_REGS,
2410 PPC_OEA_SPRS,
2411 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2412 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2413 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2414};
2415
64366f1c 2416/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2417static const struct reg registers_604[] =
c5aa993b 2418{
7a78ae4e
ND
2419 COMMON_UISA_REGS,
2420 PPC_UISA_SPRS,
2421 PPC_SEGMENT_REGS,
2422 PPC_OEA_SPRS,
2423 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2424 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2425 /* 127 */ R(sia), R(sda)
c906108c
SS
2426};
2427
64366f1c 2428/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2429static const struct reg registers_750[] =
c5aa993b 2430{
7a78ae4e
ND
2431 COMMON_UISA_REGS,
2432 PPC_UISA_SPRS,
2433 PPC_SEGMENT_REGS,
2434 PPC_OEA_SPRS,
2435 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2436 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2437 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2438 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2439 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2440 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2441};
2442
2443
64366f1c 2444/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2445static const struct reg registers_7400[] =
2446{
2447 /* gpr0-gpr31, fpr0-fpr31 */
2448 COMMON_UISA_REGS,
2449 /* ctr, xre, lr, cr */
2450 PPC_UISA_SPRS,
2451 /* sr0-sr15 */
2452 PPC_SEGMENT_REGS,
2453 PPC_OEA_SPRS,
2454 /* vr0-vr31, vrsave, vscr */
2455 PPC_ALTIVEC_REGS
2456 /* FIXME? Add more registers? */
2457};
2458
c8001721
EZ
2459/* Motorola e500. */
2460static const struct reg registers_e500[] =
2461{
2462 R(pc), R(ps),
2463 /* cr, lr, ctr, xer, "" */
2464 PPC_UISA_NOFP_SPRS,
2465 /* 7...38 */
2466 PPC_EV_REGS,
338ef23d
AC
2467 R8(acc), R(spefscr),
2468 /* NOTE: Add new registers here the end of the raw register
2469 list and just before the first pseudo register. */
c8001721
EZ
2470 /* 39...70 */
2471 PPC_GPRS_PSEUDO_REGS
2472};
2473
c906108c 2474/* Information about a particular processor variant. */
7a78ae4e 2475
c906108c 2476struct variant
c5aa993b
JM
2477 {
2478 /* Name of this variant. */
2479 char *name;
c906108c 2480
c5aa993b
JM
2481 /* English description of the variant. */
2482 char *description;
c906108c 2483
64366f1c 2484 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2485 enum bfd_architecture arch;
2486
64366f1c 2487 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2488 unsigned long mach;
2489
489461e2
EZ
2490 /* Number of real registers. */
2491 int nregs;
2492
2493 /* Number of pseudo registers. */
2494 int npregs;
2495
2496 /* Number of total registers (the sum of nregs and npregs). */
2497 int num_tot_regs;
2498
c5aa993b
JM
2499 /* Table of register names; registers[R] is the name of the register
2500 number R. */
7a78ae4e 2501 const struct reg *regs;
c5aa993b 2502 };
c906108c 2503
489461e2
EZ
2504#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2505
2506static int
2507num_registers (const struct reg *reg_list, int num_tot_regs)
2508{
2509 int i;
2510 int nregs = 0;
2511
2512 for (i = 0; i < num_tot_regs; i++)
2513 if (!reg_list[i].pseudo)
2514 nregs++;
2515
2516 return nregs;
2517}
2518
2519static int
2520num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2521{
2522 int i;
2523 int npregs = 0;
2524
2525 for (i = 0; i < num_tot_regs; i++)
2526 if (reg_list[i].pseudo)
2527 npregs ++;
2528
2529 return npregs;
2530}
c906108c 2531
c906108c
SS
2532/* Information in this table comes from the following web sites:
2533 IBM: http://www.chips.ibm.com:80/products/embedded/
2534 Motorola: http://www.mot.com/SPS/PowerPC/
2535
2536 I'm sure I've got some of the variant descriptions not quite right.
2537 Please report any inaccuracies you find to GDB's maintainer.
2538
2539 If you add entries to this table, please be sure to allow the new
2540 value as an argument to the --with-cpu flag, in configure.in. */
2541
489461e2 2542static struct variant variants[] =
c906108c 2543{
489461e2 2544
7a78ae4e 2545 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2546 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2547 registers_powerpc},
7a78ae4e 2548 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2549 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2550 registers_power},
7a78ae4e 2551 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2552 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2553 registers_403},
7a78ae4e 2554 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2555 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2556 registers_601},
7a78ae4e 2557 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2558 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2559 registers_602},
7a78ae4e 2560 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2561 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2562 registers_603},
7a78ae4e 2563 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2564 604, -1, -1, tot_num_registers (registers_604),
2565 registers_604},
7a78ae4e 2566 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2567 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2568 registers_403GC},
7a78ae4e 2569 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2570 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2571 registers_505},
7a78ae4e 2572 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2573 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2574 registers_860},
7a78ae4e 2575 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2576 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2577 registers_750},
1fcc0bb8 2578 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2579 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2580 registers_7400},
c8001721
EZ
2581 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2582 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2583 registers_e500},
7a78ae4e 2584
5d57ee30
KB
2585 /* 64-bit */
2586 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2587 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2588 registers_powerpc},
7a78ae4e 2589 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2590 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2591 registers_powerpc},
5d57ee30 2592 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2593 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2594 registers_powerpc},
7a78ae4e 2595 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2596 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2597 registers_powerpc},
5d57ee30 2598 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2599 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2600 registers_powerpc},
5d57ee30 2601 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2602 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2603 registers_powerpc},
5d57ee30 2604
64366f1c 2605 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2606 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2607 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2608 registers_power},
7a78ae4e 2609 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2610 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2611 registers_power},
7a78ae4e 2612 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2613 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2614 registers_power},
7a78ae4e 2615
489461e2 2616 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2617};
2618
64366f1c 2619/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2620
2621static void
2622init_variants (void)
2623{
2624 struct variant *v;
2625
2626 for (v = variants; v->name; v++)
2627 {
2628 if (v->nregs == -1)
2629 v->nregs = num_registers (v->regs, v->num_tot_regs);
2630 if (v->npregs == -1)
2631 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2632 }
2633}
c906108c 2634
7a78ae4e 2635/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2636 MACH. If no such variant exists, return null. */
c906108c 2637
7a78ae4e
ND
2638static const struct variant *
2639find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2640{
7a78ae4e 2641 const struct variant *v;
c5aa993b 2642
7a78ae4e
ND
2643 for (v = variants; v->name; v++)
2644 if (arch == v->arch && mach == v->mach)
2645 return v;
c906108c 2646
7a78ae4e 2647 return NULL;
c906108c 2648}
9364a0ef
EZ
2649
2650static int
2651gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2652{
2653 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2654 return print_insn_big_powerpc (memaddr, info);
2655 else
2656 return print_insn_little_powerpc (memaddr, info);
2657}
7a78ae4e 2658\f
7a78ae4e
ND
2659/* Initialize the current architecture based on INFO. If possible, re-use an
2660 architecture from ARCHES, which is a list of architectures already created
2661 during this debugging session.
c906108c 2662
7a78ae4e 2663 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2664 a binary file. */
c906108c 2665
7a78ae4e
ND
2666static struct gdbarch *
2667rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2668{
2669 struct gdbarch *gdbarch;
2670 struct gdbarch_tdep *tdep;
9aa1e687 2671 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2672 struct reg *regs;
2673 const struct variant *v;
2674 enum bfd_architecture arch;
2675 unsigned long mach;
2676 bfd abfd;
7b112f9c 2677 int sysv_abi;
5bf1c677 2678 asection *sect;
7a78ae4e 2679
9aa1e687 2680 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2681 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2682
9aa1e687
KB
2683 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2684 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2685
2686 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2687
e712c1cf 2688 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2689 that, else choose a likely default. */
9aa1e687 2690 if (from_xcoff_exec)
c906108c 2691 {
11ed25ac 2692 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2693 wordsize = 8;
2694 else
2695 wordsize = 4;
c906108c 2696 }
9aa1e687
KB
2697 else if (from_elf_exec)
2698 {
2699 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2700 wordsize = 8;
2701 else
2702 wordsize = 4;
2703 }
c906108c 2704 else
7a78ae4e 2705 {
27b15785
KB
2706 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2707 wordsize = info.bfd_arch_info->bits_per_word /
2708 info.bfd_arch_info->bits_per_byte;
2709 else
2710 wordsize = 4;
7a78ae4e 2711 }
c906108c 2712
64366f1c 2713 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2714 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2715 arches != NULL;
2716 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2717 {
2718 /* Word size in the various PowerPC bfd_arch_info structs isn't
2719 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2720 separate word size check. */
7a78ae4e 2721 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2722 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2723 return arches->gdbarch;
2724 }
c906108c 2725
7a78ae4e
ND
2726 /* None found, create a new architecture from INFO, whose bfd_arch_info
2727 validity depends on the source:
2728 - executable useless
2729 - rs6000_host_arch() good
2730 - core file good
2731 - "set arch" trust blindly
2732 - GDB startup useless but harmless */
c906108c 2733
9aa1e687 2734 if (!from_xcoff_exec)
c906108c 2735 {
b732d07d 2736 arch = info.bfd_arch_info->arch;
7a78ae4e 2737 mach = info.bfd_arch_info->mach;
c906108c 2738 }
7a78ae4e 2739 else
c906108c 2740 {
7a78ae4e
ND
2741 arch = bfd_arch_powerpc;
2742 mach = 0;
2743 bfd_default_set_arch_mach (&abfd, arch, mach);
2744 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2745 }
2746 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2747 tdep->wordsize = wordsize;
5bf1c677
EZ
2748
2749 /* For e500 executables, the apuinfo section is of help here. Such
2750 section contains the identifier and revision number of each
2751 Application-specific Processing Unit that is present on the
2752 chip. The content of the section is determined by the assembler
2753 which looks at each instruction and determines which unit (and
2754 which version of it) can execute it. In our case we just look for
2755 the existance of the section. */
2756
2757 if (info.abfd)
2758 {
2759 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2760 if (sect)
2761 {
2762 arch = info.bfd_arch_info->arch;
2763 mach = bfd_mach_ppc_e500;
2764 bfd_default_set_arch_mach (&abfd, arch, mach);
2765 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2766 }
2767 }
2768
7a78ae4e
ND
2769 gdbarch = gdbarch_alloc (&info, tdep);
2770 power = arch == bfd_arch_rs6000;
2771
489461e2
EZ
2772 /* Initialize the number of real and pseudo registers in each variant. */
2773 init_variants ();
2774
64366f1c 2775 /* Choose variant. */
7a78ae4e
ND
2776 v = find_variant_by_arch (arch, mach);
2777 if (!v)
dd47e6fd
EZ
2778 return NULL;
2779
7a78ae4e
ND
2780 tdep->regs = v->regs;
2781
2188cbdd
EZ
2782 tdep->ppc_gp0_regnum = 0;
2783 tdep->ppc_gplast_regnum = 31;
2784 tdep->ppc_toc_regnum = 2;
2785 tdep->ppc_ps_regnum = 65;
2786 tdep->ppc_cr_regnum = 66;
2787 tdep->ppc_lr_regnum = 67;
2788 tdep->ppc_ctr_regnum = 68;
2789 tdep->ppc_xer_regnum = 69;
2790 if (v->mach == bfd_mach_ppc_601)
2791 tdep->ppc_mq_regnum = 124;
e3f36dbd 2792 else if (power)
2188cbdd 2793 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2794 else
2795 tdep->ppc_mq_regnum = -1;
2796 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2797
c8001721
EZ
2798 set_gdbarch_pc_regnum (gdbarch, 64);
2799 set_gdbarch_sp_regnum (gdbarch, 1);
2800 set_gdbarch_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2801 set_gdbarch_deprecated_extract_return_value (gdbarch,
2802 rs6000_extract_return_value);
46d79c04 2803 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2804
1fcc0bb8
EZ
2805 if (v->arch == bfd_arch_powerpc)
2806 switch (v->mach)
2807 {
2808 case bfd_mach_ppc:
2809 tdep->ppc_vr0_regnum = 71;
2810 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2811 tdep->ppc_ev0_regnum = -1;
2812 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2813 break;
2814 case bfd_mach_ppc_7400:
2815 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2816 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2817 tdep->ppc_ev0_regnum = -1;
2818 tdep->ppc_ev31_regnum = -1;
2819 break;
2820 case bfd_mach_ppc_e500:
338ef23d
AC
2821 tdep->ppc_gp0_regnum = 41;
2822 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2823 tdep->ppc_toc_regnum = -1;
2824 tdep->ppc_ps_regnum = 1;
2825 tdep->ppc_cr_regnum = 2;
2826 tdep->ppc_lr_regnum = 3;
2827 tdep->ppc_ctr_regnum = 4;
2828 tdep->ppc_xer_regnum = 5;
2829 tdep->ppc_ev0_regnum = 7;
2830 tdep->ppc_ev31_regnum = 38;
2831 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d
AC
2832 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2833 set_gdbarch_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2834 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2835 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2836 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2837 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2838 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2839 break;
2840 default:
2841 tdep->ppc_vr0_regnum = -1;
2842 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2843 tdep->ppc_ev0_regnum = -1;
2844 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2845 break;
2846 }
2847
338ef23d
AC
2848 /* Sanity check on registers. */
2849 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2850
a88376a3
KB
2851 /* Set lr_frame_offset. */
2852 if (wordsize == 8)
2853 tdep->lr_frame_offset = 16;
2854 else if (sysv_abi)
2855 tdep->lr_frame_offset = 4;
2856 else
2857 tdep->lr_frame_offset = 8;
2858
2859 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2860 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2861 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2862 {
2863 tdep->regoff[i] = off;
2864 off += regsize (v->regs + i, wordsize);
c906108c
SS
2865 }
2866
56a6dfb9
KB
2867 /* Select instruction printer. */
2868 if (arch == power)
9364a0ef 2869 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2870 else
9364a0ef 2871 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2872
7a78ae4e
ND
2873 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2874 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2875 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2876 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2877 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2878
2879 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2880 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2881 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2882 set_gdbarch_register_size (gdbarch, wordsize);
2883 set_gdbarch_register_bytes (gdbarch, off);
2884 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2885 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
a0ed5532 2886 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
b2e75d78 2887 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
a0ed5532 2888 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2889 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2890
2891 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2892 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2893 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2894 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2895 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2896 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2897 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2898 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2899 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2900
7a78ae4e 2901 set_gdbarch_call_dummy_length (gdbarch, 0);
7a78ae4e
ND
2902 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2903 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2904 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2905 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
7a78ae4e
ND
2906 set_gdbarch_call_dummy_p (gdbarch, 1);
2907 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
7a78ae4e 2908 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2909 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
58223630 2910 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2911 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2912 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e
ND
2913
2914 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2915 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2916 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2917 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2918 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2919 is correct for the SysV ABI when the wordsize is 8, but I'm also
2920 fairly certain that ppc_sysv_abi_push_arguments() will give even
2921 worse results since it only works for 32-bit code. So, for the moment,
2922 we're better off calling rs6000_push_arguments() since it works for
2923 64-bit code. At some point in the future, this matter needs to be
2924 revisited. */
2925 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2926 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2927 else
2928 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2929
d0403e00 2930 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2931 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2932 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2933
2934 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2935 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2936 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2937 set_gdbarch_function_start_offset (gdbarch, 0);
2938 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2939
2940 /* Not sure on this. FIXMEmgo */
2941 set_gdbarch_frame_args_skip (gdbarch, 8);
2942
8e0662df 2943 if (sysv_abi)
7b112f9c
JT
2944 set_gdbarch_use_struct_convention (gdbarch,
2945 ppc_sysv_abi_use_struct_convention);
8e0662df 2946 else
7b112f9c
JT
2947 set_gdbarch_use_struct_convention (gdbarch,
2948 generic_use_struct_convention);
8e0662df 2949
7b112f9c
JT
2950 set_gdbarch_frameless_function_invocation (gdbarch,
2951 rs6000_frameless_function_invocation);
2952 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2953 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2954
f30ee0bc 2955 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2956 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2957
15813d3f
AC
2958 if (!sysv_abi)
2959 {
2960 /* Handle RS/6000 function pointers (which are really function
2961 descriptors). */
f517ea4e
PS
2962 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2963 rs6000_convert_from_func_ptr_addr);
9aa1e687 2964 }
7a78ae4e
ND
2965 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2966 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2967 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2968
2969 /* We can't tell how many args there are
2970 now that the C compiler delays popping them. */
2971 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2972
7b112f9c 2973 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2974 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2975
7a78ae4e 2976 return gdbarch;
c906108c
SS
2977}
2978
7b112f9c
JT
2979static void
2980rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2981{
2982 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2983
2984 if (tdep == NULL)
2985 return;
2986
4be87837 2987 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2988}
2989
1fcc0bb8
EZ
2990static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2991
2992static void
2993rs6000_info_powerpc_command (char *args, int from_tty)
2994{
2995 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2996}
2997
c906108c
SS
2998/* Initialization code. */
2999
3000void
fba45db2 3001_initialize_rs6000_tdep (void)
c906108c 3002{
7b112f9c
JT
3003 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3004 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3005
3006 /* Add root prefix command for "info powerpc" commands */
3007 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3008 "Various POWERPC info specific commands.",
3009 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3010}
This page took 0.696988 seconds and 4 git commands to generate.