*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
197e01b6 3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
721d14ba
DJ
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
c44ca51c
AC
62#include "reggroups.h"
63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
0bcc32ae
JB
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Breakpoint shadows for the single step instructions will be kept here. */
113
c5aa993b 114static struct sstep_breaks
50fd1280
AC
115{
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120}
c5aa993b 121stepBreaks[2];
c906108c
SS
122
123/* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
7a78ae4e
ND
127CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129/* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
133
134/* Static function prototypes */
135
a14ed312
KB
136static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
077276e8
KB
138static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
c906108c 140
64b84175
KB
141/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142int
143altivec_register_p (int regno)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150}
151
383f0f5b 152
867e2dc5
JB
153/* Return true if REGNO is an SPE register, false otherwise. */
154int
155spe_register_p (int regno)
156{
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
6ced10dd
JB
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
867e2dc5
JB
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183}
184
185
383f0f5b
JB
186/* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
188int
189ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190{
383f0f5b
JB
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
0a613259 195}
9f643768 196
09991fa0
JB
197
198/* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
9f643768
JB
205static void
206set_sim_regno (int *table, int gdb_regno, int sim_regno)
207{
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212}
213
09991fa0
JB
214
215/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
218static void
219init_sim_regno_table (struct gdbarch *arch)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
6ced10dd
JB
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
9f643768
JB
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296}
297
09991fa0
JB
298
299/* Given a GDB register number REG, return the corresponding SIM
300 register number. */
9f643768
JB
301static int
302rs6000_register_sim_regno (int reg)
303{
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314}
315
d195bc9f
MK
316\f
317
318/* Register set support functions. */
319
320static void
321ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 322 const gdb_byte *regs, size_t offset)
d195bc9f
MK
323{
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326}
327
328static void
329ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 330 gdb_byte *regs, size_t offset)
d195bc9f
MK
331{
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334}
335
336/* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340void
341ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343{
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
cdf2c5f5 350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 352 i++, offset += 4)
d195bc9f
MK
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377}
378
379/* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383void
384ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386{
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
383f0f5b
JB
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
d195bc9f 395 offset = offsets->f0_offset;
366f009f
JB
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 398 i++, offset += 8)
d195bc9f
MK
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407}
408
409/* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414void
415ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418{
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
cdf2c5f5 426 for (i = tdep->ppc_gp0_regnum;
063715bf 427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 428 i++, offset += 4)
d195bc9f
MK
429 {
430 if (regnum == -1 || regnum == i)
2e56e9c1 431 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454}
455
456/* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461void
462ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465{
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
383f0f5b
JB
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
d195bc9f 474 offset = offsets->f0_offset;
366f009f
JB
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 477 i++, offset += 8)
d195bc9f
MK
478 {
479 if (regnum == -1 || regnum == i)
bdbcb8b4 480 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486}
487\f
0a613259 488
7a78ae4e 489/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 490
7a78ae4e
ND
491static CORE_ADDR
492read_memory_addr (CORE_ADDR memaddr, int len)
493{
494 return read_memory_unsigned_integer (memaddr, len);
495}
c906108c 496
7a78ae4e
ND
497static CORE_ADDR
498rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
499{
500 struct rs6000_framedata frame;
077276e8 501 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
502 return pc;
503}
504
0d1243d9
PG
505static int
506insn_changes_sp_or_jumps (unsigned long insn)
507{
508 int opcode = (insn >> 26) & 0x03f;
509 int sd = (insn >> 21) & 0x01f;
510 int a = (insn >> 16) & 0x01f;
511 int subcode = (insn >> 1) & 0x3ff;
512
513 /* Changes the stack pointer. */
514
515 /* NOTE: There are many ways to change the value of a given register.
516 The ways below are those used when the register is R1, the SP,
517 in a funtion's epilogue. */
518
519 if (opcode == 31 && subcode == 444 && a == 1)
520 return 1; /* mr R1,Rn */
521 if (opcode == 14 && sd == 1)
522 return 1; /* addi R1,Rn,simm */
523 if (opcode == 58 && sd == 1)
524 return 1; /* ld R1,ds(Rn) */
525
526 /* Transfers control. */
527
528 if (opcode == 18)
529 return 1; /* b */
530 if (opcode == 16)
531 return 1; /* bc */
532 if (opcode == 19 && subcode == 16)
533 return 1; /* bclr */
534 if (opcode == 19 && subcode == 528)
535 return 1; /* bcctr */
536
537 return 0;
538}
539
540/* Return true if we are in the function's epilogue, i.e. after the
541 instruction that destroyed the function's stack frame.
542
543 1) scan forward from the point of execution:
544 a) If you find an instruction that modifies the stack pointer
545 or transfers control (except a return), execution is not in
546 an epilogue, return.
547 b) Stop scanning if you find a return instruction or reach the
548 end of the function or reach the hard limit for the size of
549 an epilogue.
550 2) scan backward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer,
552 execution *is* in an epilogue, return.
553 b) Stop scanning if you reach an instruction that transfers
554 control or the beginning of the function or reach the hard
555 limit for the size of an epilogue. */
556
557static int
558rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
559{
560 bfd_byte insn_buf[PPC_INSN_SIZE];
561 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
562 unsigned long insn;
563 struct frame_info *curfrm;
564
565 /* Find the search limits based on function boundaries and hard limit. */
566
567 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
568 return 0;
569
570 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
571 if (epilogue_start < func_start) epilogue_start = func_start;
572
573 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
574 if (epilogue_end > func_end) epilogue_end = func_end;
575
576 curfrm = get_current_frame ();
577
578 /* Scan forward until next 'blr'. */
579
580 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
581 {
582 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
583 return 0;
584 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
585 if (insn == 0x4e800020)
586 break;
587 if (insn_changes_sp_or_jumps (insn))
588 return 0;
589 }
590
591 /* Scan backward until adjustment to stack pointer (R1). */
592
593 for (scan_pc = pc - PPC_INSN_SIZE;
594 scan_pc >= epilogue_start;
595 scan_pc -= PPC_INSN_SIZE)
596 {
597 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
598 return 0;
599 insn = extract_signed_integer (insn_buf, PPC_INSN_SIZE);
600 if (insn_changes_sp_or_jumps (insn))
601 return 1;
602 }
603
604 return 0;
605}
606
b83266a0 607
c906108c
SS
608/* Fill in fi->saved_regs */
609
610struct frame_extra_info
611{
612 /* Functions calling alloca() change the value of the stack
613 pointer. We need to use initial stack pointer (which is saved in
614 r31 by gcc) in such cases. If a compiler emits traceback table,
615 then we should use the alloca register specified in traceback
616 table. FIXME. */
c5aa993b 617 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
618};
619
143985b7 620/* Get the ith function argument for the current function. */
b9362cc7 621static CORE_ADDR
143985b7
AF
622rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
623 struct type *type)
624{
50fd1280 625 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
626}
627
c906108c
SS
628/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
629
630static CORE_ADDR
7a78ae4e 631branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
632{
633 CORE_ADDR dest;
634 int immediate;
635 int absolute;
636 int ext_op;
637
638 absolute = (int) ((instr >> 1) & 1);
639
c5aa993b
JM
640 switch (opcode)
641 {
642 case 18:
643 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
644 if (absolute)
645 dest = immediate;
646 else
647 dest = pc + immediate;
648 break;
649
650 case 16:
651 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
652 if (absolute)
653 dest = immediate;
654 else
655 dest = pc + immediate;
656 break;
657
658 case 19:
659 ext_op = (instr >> 1) & 0x3ff;
660
661 if (ext_op == 16) /* br conditional register */
662 {
2188cbdd 663 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
664
665 /* If we are about to return from a signal handler, dest is
666 something like 0x3c90. The current frame is a signal handler
667 caller frame, upon completion of the sigreturn system call
668 execution will return to the saved PC in the frame. */
669 if (dest < TEXT_SEGMENT_BASE)
670 {
671 struct frame_info *fi;
672
673 fi = get_current_frame ();
674 if (fi != NULL)
8b36eed8 675 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 676 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
677 }
678 }
679
680 else if (ext_op == 528) /* br cond to count reg */
681 {
2188cbdd 682 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
683
684 /* If we are about to execute a system call, dest is something
685 like 0x22fc or 0x3b00. Upon completion the system call
686 will return to the address in the link register. */
687 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 688 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
689 }
690 else
691 return -1;
692 break;
c906108c 693
c5aa993b
JM
694 default:
695 return -1;
696 }
c906108c
SS
697 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
698}
699
700
701/* Sequence of bytes for breakpoint instruction. */
702
f4f9705a 703const static unsigned char *
7a78ae4e 704rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 705{
aaab4dba
AC
706 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
707 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 708 *bp_size = 4;
d7449b42 709 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
710 return big_breakpoint;
711 else
712 return little_breakpoint;
713}
714
715
716/* AIX does not support PT_STEP. Simulate it. */
717
718void
379d08a1
AC
719rs6000_software_single_step (enum target_signal signal,
720 int insert_breakpoints_p)
c906108c 721{
7c40d541
KB
722 CORE_ADDR dummy;
723 int breakp_sz;
50fd1280 724 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
725 int ii, insn;
726 CORE_ADDR loc;
727 CORE_ADDR breaks[2];
728 int opcode;
729
c5aa993b
JM
730 if (insert_breakpoints_p)
731 {
c906108c 732
c5aa993b 733 loc = read_pc ();
c906108c 734
c5aa993b 735 insn = read_memory_integer (loc, 4);
c906108c 736
7c40d541 737 breaks[0] = loc + breakp_sz;
c5aa993b
JM
738 opcode = insn >> 26;
739 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 740
c5aa993b
JM
741 /* Don't put two breakpoints on the same address. */
742 if (breaks[1] == breaks[0])
743 breaks[1] = -1;
c906108c 744
c5aa993b 745 stepBreaks[1].address = 0;
c906108c 746
c5aa993b
JM
747 for (ii = 0; ii < 2; ++ii)
748 {
c906108c 749
c5aa993b
JM
750 /* ignore invalid breakpoint. */
751 if (breaks[ii] == -1)
752 continue;
7c40d541 753 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
754 stepBreaks[ii].address = breaks[ii];
755 }
c906108c 756
c5aa993b
JM
757 }
758 else
759 {
c906108c 760
c5aa993b
JM
761 /* remove step breakpoints. */
762 for (ii = 0; ii < 2; ++ii)
763 if (stepBreaks[ii].address != 0)
7c40d541
KB
764 target_remove_breakpoint (stepBreaks[ii].address,
765 stepBreaks[ii].data);
c5aa993b 766 }
c906108c 767 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 768 /* What errors? {read,write}_memory call error(). */
c906108c
SS
769}
770
771
772/* return pc value after skipping a function prologue and also return
773 information about a function frame.
774
775 in struct rs6000_framedata fdata:
c5aa993b
JM
776 - frameless is TRUE, if function does not have a frame.
777 - nosavedpc is TRUE, if function does not save %pc value in its frame.
778 - offset is the initial size of this stack frame --- the amount by
779 which we decrement the sp to allocate the frame.
780 - saved_gpr is the number of the first saved gpr.
781 - saved_fpr is the number of the first saved fpr.
6be8bc0c 782 - saved_vr is the number of the first saved vr.
96ff0de4 783 - saved_ev is the number of the first saved ev.
c5aa993b
JM
784 - alloca_reg is the number of the register used for alloca() handling.
785 Otherwise -1.
786 - gpr_offset is the offset of the first saved gpr from the previous frame.
787 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 788 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 789 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
790 - lr_offset is the offset of the saved lr
791 - cr_offset is the offset of the saved cr
6be8bc0c 792 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 793 */
c906108c
SS
794
795#define SIGNED_SHORT(x) \
796 ((sizeof (short) == 2) \
797 ? ((int)(short)(x)) \
798 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
799
800#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
801
55d05f3b
KB
802/* Limit the number of skipped non-prologue instructions, as the examining
803 of the prologue is expensive. */
804static int max_skip_non_prologue_insns = 10;
805
806/* Given PC representing the starting address of a function, and
807 LIM_PC which is the (sloppy) limit to which to scan when looking
808 for a prologue, attempt to further refine this limit by using
809 the line data in the symbol table. If successful, a better guess
810 on where the prologue ends is returned, otherwise the previous
811 value of lim_pc is returned. */
634aa483
AC
812
813/* FIXME: cagney/2004-02-14: This function and logic have largely been
814 superseded by skip_prologue_using_sal. */
815
55d05f3b
KB
816static CORE_ADDR
817refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
818{
819 struct symtab_and_line prologue_sal;
820
821 prologue_sal = find_pc_line (pc, 0);
822 if (prologue_sal.line != 0)
823 {
824 int i;
825 CORE_ADDR addr = prologue_sal.end;
826
827 /* Handle the case in which compiler's optimizer/scheduler
828 has moved instructions into the prologue. We scan ahead
829 in the function looking for address ranges whose corresponding
830 line number is less than or equal to the first one that we
831 found for the function. (It can be less than when the
832 scheduler puts a body instruction before the first prologue
833 instruction.) */
834 for (i = 2 * max_skip_non_prologue_insns;
835 i > 0 && (lim_pc == 0 || addr < lim_pc);
836 i--)
837 {
838 struct symtab_and_line sal;
839
840 sal = find_pc_line (addr, 0);
841 if (sal.line == 0)
842 break;
843 if (sal.line <= prologue_sal.line
844 && sal.symtab == prologue_sal.symtab)
845 {
846 prologue_sal = sal;
847 }
848 addr = sal.end;
849 }
850
851 if (lim_pc == 0 || prologue_sal.end < lim_pc)
852 lim_pc = prologue_sal.end;
853 }
854 return lim_pc;
855}
856
773df3e5
JB
857/* Return nonzero if the given instruction OP can be part of the prologue
858 of a function and saves a parameter on the stack. FRAMEP should be
859 set if one of the previous instructions in the function has set the
860 Frame Pointer. */
861
862static int
863store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
864{
865 /* Move parameters from argument registers to temporary register. */
866 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
867 {
868 /* Rx must be scratch register r0. */
869 const int rx_regno = (op >> 16) & 31;
870 /* Ry: Only r3 - r10 are used for parameter passing. */
871 const int ry_regno = GET_SRC_REG (op);
872
873 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
874 {
875 *r0_contains_arg = 1;
876 return 1;
877 }
878 else
879 return 0;
880 }
881
882 /* Save a General Purpose Register on stack. */
883
884 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
885 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
886 {
887 /* Rx: Only r3 - r10 are used for parameter passing. */
888 const int rx_regno = GET_SRC_REG (op);
889
890 return (rx_regno >= 3 && rx_regno <= 10);
891 }
892
893 /* Save a General Purpose Register on stack via the Frame Pointer. */
894
895 if (framep &&
896 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
897 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
898 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
899 {
900 /* Rx: Usually, only r3 - r10 are used for parameter passing.
901 However, the compiler sometimes uses r0 to hold an argument. */
902 const int rx_regno = GET_SRC_REG (op);
903
904 return ((rx_regno >= 3 && rx_regno <= 10)
905 || (rx_regno == 0 && *r0_contains_arg));
906 }
907
908 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
909 {
910 /* Only f2 - f8 are used for parameter passing. */
911 const int src_regno = GET_SRC_REG (op);
912
913 return (src_regno >= 2 && src_regno <= 8);
914 }
915
916 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
917 {
918 /* Only f2 - f8 are used for parameter passing. */
919 const int src_regno = GET_SRC_REG (op);
920
921 return (src_regno >= 2 && src_regno <= 8);
922 }
923
924 /* Not an insn that saves a parameter on stack. */
925 return 0;
926}
55d05f3b 927
7a78ae4e 928static CORE_ADDR
077276e8 929skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
930{
931 CORE_ADDR orig_pc = pc;
55d05f3b 932 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 933 CORE_ADDR li_found_pc = 0;
50fd1280 934 gdb_byte buf[4];
c906108c
SS
935 unsigned long op;
936 long offset = 0;
6be8bc0c 937 long vr_saved_offset = 0;
482ca3f5
KB
938 int lr_reg = -1;
939 int cr_reg = -1;
6be8bc0c 940 int vr_reg = -1;
96ff0de4
EZ
941 int ev_reg = -1;
942 long ev_offset = 0;
6be8bc0c 943 int vrsave_reg = -1;
c906108c
SS
944 int reg;
945 int framep = 0;
946 int minimal_toc_loaded = 0;
ddb20c56 947 int prev_insn_was_prologue_insn = 1;
55d05f3b 948 int num_skip_non_prologue_insns = 0;
773df3e5 949 int r0_contains_arg = 0;
96ff0de4 950 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 951 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 952
55d05f3b
KB
953 /* Attempt to find the end of the prologue when no limit is specified.
954 Note that refine_prologue_limit() has been written so that it may
955 be used to "refine" the limits of non-zero PC values too, but this
956 is only safe if we 1) trust the line information provided by the
957 compiler and 2) iterate enough to actually find the end of the
958 prologue.
959
960 It may become a good idea at some point (for both performance and
961 accuracy) to unconditionally call refine_prologue_limit(). But,
962 until we can make a clear determination that this is beneficial,
963 we'll play it safe and only use it to obtain a limit when none
964 has been specified. */
965 if (lim_pc == 0)
966 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 967
ddb20c56 968 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
969 fdata->saved_gpr = -1;
970 fdata->saved_fpr = -1;
6be8bc0c 971 fdata->saved_vr = -1;
96ff0de4 972 fdata->saved_ev = -1;
c906108c
SS
973 fdata->alloca_reg = -1;
974 fdata->frameless = 1;
975 fdata->nosavedpc = 1;
976
55d05f3b 977 for (;; pc += 4)
c906108c 978 {
ddb20c56
KB
979 /* Sometimes it isn't clear if an instruction is a prologue
980 instruction or not. When we encounter one of these ambiguous
981 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
982 Otherwise, we'll assume that it really is a prologue instruction. */
983 if (prev_insn_was_prologue_insn)
984 last_prologue_pc = pc;
55d05f3b
KB
985
986 /* Stop scanning if we've hit the limit. */
987 if (lim_pc != 0 && pc >= lim_pc)
988 break;
989
ddb20c56
KB
990 prev_insn_was_prologue_insn = 1;
991
55d05f3b 992 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
993 if (target_read_memory (pc, buf, 4))
994 break;
995 op = extract_signed_integer (buf, 4);
c906108c 996
c5aa993b
JM
997 if ((op & 0xfc1fffff) == 0x7c0802a6)
998 { /* mflr Rx */
43b1ab88
AC
999 /* Since shared library / PIC code, which needs to get its
1000 address at runtime, can appear to save more than one link
1001 register vis:
1002
1003 *INDENT-OFF*
1004 stwu r1,-304(r1)
1005 mflr r3
1006 bl 0xff570d0 (blrl)
1007 stw r30,296(r1)
1008 mflr r30
1009 stw r31,300(r1)
1010 stw r3,308(r1);
1011 ...
1012 *INDENT-ON*
1013
1014 remember just the first one, but skip over additional
1015 ones. */
721d14ba 1016 if (lr_reg == -1)
43b1ab88 1017 lr_reg = (op & 0x03e00000);
773df3e5
JB
1018 if (lr_reg == 0)
1019 r0_contains_arg = 0;
c5aa993b 1020 continue;
c5aa993b
JM
1021 }
1022 else if ((op & 0xfc1fffff) == 0x7c000026)
1023 { /* mfcr Rx */
98f08d3d 1024 cr_reg = (op & 0x03e00000);
773df3e5
JB
1025 if (cr_reg == 0)
1026 r0_contains_arg = 0;
c5aa993b 1027 continue;
c906108c 1028
c906108c 1029 }
c5aa993b
JM
1030 else if ((op & 0xfc1f0000) == 0xd8010000)
1031 { /* stfd Rx,NUM(r1) */
1032 reg = GET_SRC_REG (op);
1033 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1034 {
1035 fdata->saved_fpr = reg;
1036 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1037 }
1038 continue;
c906108c 1039
c5aa993b
JM
1040 }
1041 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1042 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1043 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1044 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1045 {
1046
1047 reg = GET_SRC_REG (op);
1048 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1049 {
1050 fdata->saved_gpr = reg;
7a78ae4e 1051 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1052 op &= ~3UL;
c5aa993b
JM
1053 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1054 }
1055 continue;
c906108c 1056
ddb20c56
KB
1057 }
1058 else if ((op & 0xffff0000) == 0x60000000)
1059 {
96ff0de4 1060 /* nop */
ddb20c56
KB
1061 /* Allow nops in the prologue, but do not consider them to
1062 be part of the prologue unless followed by other prologue
1063 instructions. */
1064 prev_insn_was_prologue_insn = 0;
1065 continue;
1066
c906108c 1067 }
c5aa993b
JM
1068 else if ((op & 0xffff0000) == 0x3c000000)
1069 { /* addis 0,0,NUM, used
1070 for >= 32k frames */
1071 fdata->offset = (op & 0x0000ffff) << 16;
1072 fdata->frameless = 0;
773df3e5 1073 r0_contains_arg = 0;
c5aa993b
JM
1074 continue;
1075
1076 }
1077 else if ((op & 0xffff0000) == 0x60000000)
1078 { /* ori 0,0,NUM, 2nd ha
1079 lf of >= 32k frames */
1080 fdata->offset |= (op & 0x0000ffff);
1081 fdata->frameless = 0;
773df3e5 1082 r0_contains_arg = 0;
c5aa993b
JM
1083 continue;
1084
1085 }
be723e22 1086 else if (lr_reg >= 0 &&
98f08d3d
KB
1087 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1088 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1089 /* stw Rx, NUM(r1) */
1090 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1091 /* stwu Rx, NUM(r1) */
1092 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1093 { /* where Rx == lr */
1094 fdata->lr_offset = offset;
c5aa993b 1095 fdata->nosavedpc = 0;
be723e22
MS
1096 /* Invalidate lr_reg, but don't set it to -1.
1097 That would mean that it had never been set. */
1098 lr_reg = -2;
98f08d3d
KB
1099 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1100 (op & 0xfc000000) == 0x90000000) /* stw */
1101 {
1102 /* Does not update r1, so add displacement to lr_offset. */
1103 fdata->lr_offset += SIGNED_SHORT (op);
1104 }
c5aa993b
JM
1105 continue;
1106
1107 }
be723e22 1108 else if (cr_reg >= 0 &&
98f08d3d
KB
1109 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1110 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1111 /* stw Rx, NUM(r1) */
1112 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1113 /* stwu Rx, NUM(r1) */
1114 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1115 { /* where Rx == cr */
1116 fdata->cr_offset = offset;
be723e22
MS
1117 /* Invalidate cr_reg, but don't set it to -1.
1118 That would mean that it had never been set. */
1119 cr_reg = -2;
98f08d3d
KB
1120 if ((op & 0xfc000003) == 0xf8000000 ||
1121 (op & 0xfc000000) == 0x90000000)
1122 {
1123 /* Does not update r1, so add displacement to cr_offset. */
1124 fdata->cr_offset += SIGNED_SHORT (op);
1125 }
c5aa993b
JM
1126 continue;
1127
1128 }
721d14ba
DJ
1129 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1130 {
1131 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1132 prediction bits. If the LR has already been saved, we can
1133 skip it. */
1134 continue;
1135 }
c5aa993b
JM
1136 else if (op == 0x48000005)
1137 { /* bl .+4 used in
1138 -mrelocatable */
1139 continue;
1140
1141 }
1142 else if (op == 0x48000004)
1143 { /* b .+4 (xlc) */
1144 break;
1145
c5aa993b 1146 }
6be8bc0c
EZ
1147 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1148 in V.4 -mminimal-toc */
c5aa993b
JM
1149 (op & 0xffff0000) == 0x3bde0000)
1150 { /* addi 30,30,foo@l */
1151 continue;
c906108c 1152
c5aa993b
JM
1153 }
1154 else if ((op & 0xfc000001) == 0x48000001)
1155 { /* bl foo,
1156 to save fprs??? */
c906108c 1157
c5aa993b 1158 fdata->frameless = 0;
6be8bc0c 1159 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1160 the first three instructions of the prologue and either
1161 we have no line table information or the line info tells
1162 us that the subroutine call is not part of the line
1163 associated with the prologue. */
c5aa993b 1164 if ((pc - orig_pc) > 8)
ebd98106
FF
1165 {
1166 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1167 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1168
1169 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1170 break;
1171 }
c5aa993b
JM
1172
1173 op = read_memory_integer (pc + 4, 4);
1174
6be8bc0c
EZ
1175 /* At this point, make sure this is not a trampoline
1176 function (a function that simply calls another functions,
1177 and nothing else). If the next is not a nop, this branch
1178 was part of the function prologue. */
c5aa993b
JM
1179
1180 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1181 break; /* don't skip over
1182 this branch */
1183 continue;
1184
c5aa993b 1185 }
98f08d3d
KB
1186 /* update stack pointer */
1187 else if ((op & 0xfc1f0000) == 0x94010000)
1188 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1189 fdata->frameless = 0;
1190 fdata->offset = SIGNED_SHORT (op);
1191 offset = fdata->offset;
1192 continue;
c5aa993b 1193 }
98f08d3d
KB
1194 else if ((op & 0xfc1f016a) == 0x7c01016e)
1195 { /* stwux rX,r1,rY */
1196 /* no way to figure out what r1 is going to be */
1197 fdata->frameless = 0;
1198 offset = fdata->offset;
1199 continue;
1200 }
1201 else if ((op & 0xfc1f0003) == 0xf8010001)
1202 { /* stdu rX,NUM(r1) */
1203 fdata->frameless = 0;
1204 fdata->offset = SIGNED_SHORT (op & ~3UL);
1205 offset = fdata->offset;
1206 continue;
1207 }
1208 else if ((op & 0xfc1f016a) == 0x7c01016a)
1209 { /* stdux rX,r1,rY */
1210 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1211 fdata->frameless = 0;
1212 offset = fdata->offset;
1213 continue;
c5aa993b 1214 }
98f08d3d
KB
1215 /* Load up minimal toc pointer */
1216 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1217 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1218 && !minimal_toc_loaded)
98f08d3d 1219 {
c5aa993b
JM
1220 minimal_toc_loaded = 1;
1221 continue;
1222
f6077098
KB
1223 /* move parameters from argument registers to local variable
1224 registers */
1225 }
1226 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1227 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1228 (((op >> 21) & 31) <= 10) &&
96ff0de4 1229 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1230 {
1231 continue;
1232
c5aa993b
JM
1233 /* store parameters in stack */
1234 }
e802b915 1235 /* Move parameters from argument registers to temporary register. */
773df3e5 1236 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1237 {
c5aa993b
JM
1238 continue;
1239
1240 /* Set up frame pointer */
1241 }
1242 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1243 || op == 0x7c3f0b78)
1244 { /* mr r31, r1 */
1245 fdata->frameless = 0;
1246 framep = 1;
6f99cb26 1247 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1248 continue;
1249
1250 /* Another way to set up the frame pointer. */
1251 }
1252 else if ((op & 0xfc1fffff) == 0x38010000)
1253 { /* addi rX, r1, 0x0 */
1254 fdata->frameless = 0;
1255 framep = 1;
6f99cb26
AC
1256 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1257 + ((op & ~0x38010000) >> 21));
c5aa993b 1258 continue;
c5aa993b 1259 }
6be8bc0c
EZ
1260 /* AltiVec related instructions. */
1261 /* Store the vrsave register (spr 256) in another register for
1262 later manipulation, or load a register into the vrsave
1263 register. 2 instructions are used: mfvrsave and
1264 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1265 and mtspr SPR256, Rn. */
1266 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1267 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1268 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1269 {
1270 vrsave_reg = GET_SRC_REG (op);
1271 continue;
1272 }
1273 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1274 {
1275 continue;
1276 }
1277 /* Store the register where vrsave was saved to onto the stack:
1278 rS is the register where vrsave was stored in a previous
1279 instruction. */
1280 /* 100100 sssss 00001 dddddddd dddddddd */
1281 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1282 {
1283 if (vrsave_reg == GET_SRC_REG (op))
1284 {
1285 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1286 vrsave_reg = -1;
1287 }
1288 continue;
1289 }
1290 /* Compute the new value of vrsave, by modifying the register
1291 where vrsave was saved to. */
1292 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1293 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1294 {
1295 continue;
1296 }
1297 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1298 in a pair of insns to save the vector registers on the
1299 stack. */
1300 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1301 /* 001110 01110 00000 iiii iiii iiii iiii */
1302 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1303 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1304 {
773df3e5
JB
1305 if ((op & 0xffff0000) == 0x38000000)
1306 r0_contains_arg = 0;
6be8bc0c
EZ
1307 li_found_pc = pc;
1308 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1309
1310 /* This insn by itself is not part of the prologue, unless
1311 if part of the pair of insns mentioned above. So do not
1312 record this insn as part of the prologue yet. */
1313 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1314 }
1315 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1316 /* 011111 sssss 11111 00000 00111001110 */
1317 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1318 {
1319 if (pc == (li_found_pc + 4))
1320 {
1321 vr_reg = GET_SRC_REG (op);
1322 /* If this is the first vector reg to be saved, or if
1323 it has a lower number than others previously seen,
1324 reupdate the frame info. */
1325 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1326 {
1327 fdata->saved_vr = vr_reg;
1328 fdata->vr_offset = vr_saved_offset + offset;
1329 }
1330 vr_saved_offset = -1;
1331 vr_reg = -1;
1332 li_found_pc = 0;
1333 }
1334 }
1335 /* End AltiVec related instructions. */
96ff0de4
EZ
1336
1337 /* Start BookE related instructions. */
1338 /* Store gen register S at (r31+uimm).
1339 Any register less than r13 is volatile, so we don't care. */
1340 /* 000100 sssss 11111 iiiii 01100100001 */
1341 else if (arch_info->mach == bfd_mach_ppc_e500
1342 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1343 {
1344 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1345 {
1346 unsigned int imm;
1347 ev_reg = GET_SRC_REG (op);
1348 imm = (op >> 11) & 0x1f;
1349 ev_offset = imm * 8;
1350 /* If this is the first vector reg to be saved, or if
1351 it has a lower number than others previously seen,
1352 reupdate the frame info. */
1353 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1354 {
1355 fdata->saved_ev = ev_reg;
1356 fdata->ev_offset = ev_offset + offset;
1357 }
1358 }
1359 continue;
1360 }
1361 /* Store gen register rS at (r1+rB). */
1362 /* 000100 sssss 00001 bbbbb 01100100000 */
1363 else if (arch_info->mach == bfd_mach_ppc_e500
1364 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1365 {
1366 if (pc == (li_found_pc + 4))
1367 {
1368 ev_reg = GET_SRC_REG (op);
1369 /* If this is the first vector reg to be saved, or if
1370 it has a lower number than others previously seen,
1371 reupdate the frame info. */
1372 /* We know the contents of rB from the previous instruction. */
1373 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1374 {
1375 fdata->saved_ev = ev_reg;
1376 fdata->ev_offset = vr_saved_offset + offset;
1377 }
1378 vr_saved_offset = -1;
1379 ev_reg = -1;
1380 li_found_pc = 0;
1381 }
1382 continue;
1383 }
1384 /* Store gen register r31 at (rA+uimm). */
1385 /* 000100 11111 aaaaa iiiii 01100100001 */
1386 else if (arch_info->mach == bfd_mach_ppc_e500
1387 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1388 {
1389 /* Wwe know that the source register is 31 already, but
1390 it can't hurt to compute it. */
1391 ev_reg = GET_SRC_REG (op);
1392 ev_offset = ((op >> 11) & 0x1f) * 8;
1393 /* If this is the first vector reg to be saved, or if
1394 it has a lower number than others previously seen,
1395 reupdate the frame info. */
1396 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1397 {
1398 fdata->saved_ev = ev_reg;
1399 fdata->ev_offset = ev_offset + offset;
1400 }
1401
1402 continue;
1403 }
1404 /* Store gen register S at (r31+r0).
1405 Store param on stack when offset from SP bigger than 4 bytes. */
1406 /* 000100 sssss 11111 00000 01100100000 */
1407 else if (arch_info->mach == bfd_mach_ppc_e500
1408 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1409 {
1410 if (pc == (li_found_pc + 4))
1411 {
1412 if ((op & 0x03e00000) >= 0x01a00000)
1413 {
1414 ev_reg = GET_SRC_REG (op);
1415 /* If this is the first vector reg to be saved, or if
1416 it has a lower number than others previously seen,
1417 reupdate the frame info. */
1418 /* We know the contents of r0 from the previous
1419 instruction. */
1420 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1421 {
1422 fdata->saved_ev = ev_reg;
1423 fdata->ev_offset = vr_saved_offset + offset;
1424 }
1425 ev_reg = -1;
1426 }
1427 vr_saved_offset = -1;
1428 li_found_pc = 0;
1429 continue;
1430 }
1431 }
1432 /* End BookE related instructions. */
1433
c5aa993b
JM
1434 else
1435 {
55d05f3b
KB
1436 /* Not a recognized prologue instruction.
1437 Handle optimizer code motions into the prologue by continuing
1438 the search if we have no valid frame yet or if the return
1439 address is not yet saved in the frame. */
1440 if (fdata->frameless == 0
1441 && (lr_reg == -1 || fdata->nosavedpc == 0))
1442 break;
1443
1444 if (op == 0x4e800020 /* blr */
1445 || op == 0x4e800420) /* bctr */
1446 /* Do not scan past epilogue in frameless functions or
1447 trampolines. */
1448 break;
1449 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1450 /* Never skip branches. */
55d05f3b
KB
1451 break;
1452
1453 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1454 /* Do not scan too many insns, scanning insns is expensive with
1455 remote targets. */
1456 break;
1457
1458 /* Continue scanning. */
1459 prev_insn_was_prologue_insn = 0;
1460 continue;
c5aa993b 1461 }
c906108c
SS
1462 }
1463
1464#if 0
1465/* I have problems with skipping over __main() that I need to address
1466 * sometime. Previously, I used to use misc_function_vector which
1467 * didn't work as well as I wanted to be. -MGO */
1468
1469 /* If the first thing after skipping a prolog is a branch to a function,
1470 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1471 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1472 work before calling a function right after a prologue, thus we can
64366f1c 1473 single out such gcc2 behaviour. */
c906108c 1474
c906108c 1475
c5aa993b
JM
1476 if ((op & 0xfc000001) == 0x48000001)
1477 { /* bl foo, an initializer function? */
1478 op = read_memory_integer (pc + 4, 4);
1479
1480 if (op == 0x4def7b82)
1481 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1482
64366f1c
EZ
1483 /* Check and see if we are in main. If so, skip over this
1484 initializer function as well. */
c906108c 1485
c5aa993b 1486 tmp = find_pc_misc_function (pc);
6314a349
AC
1487 if (tmp >= 0
1488 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1489 return pc + 8;
1490 }
c906108c 1491 }
c906108c 1492#endif /* 0 */
c5aa993b
JM
1493
1494 fdata->offset = -fdata->offset;
ddb20c56 1495 return last_prologue_pc;
c906108c
SS
1496}
1497
1498
1499/*************************************************************************
f6077098 1500 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1501 frames, etc.
1502*************************************************************************/
1503
c906108c 1504
11269d7e
AC
1505/* All the ABI's require 16 byte alignment. */
1506static CORE_ADDR
1507rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1508{
1509 return (addr & -16);
1510}
1511
7a78ae4e 1512/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1513 the first eight words of the argument list (that might be less than
1514 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1515 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1516 passed in fpr's, in addition to that. Rest of the parameters if any
1517 are passed in user stack. There might be cases in which half of the
c906108c
SS
1518 parameter is copied into registers, the other half is pushed into
1519 stack.
1520
7a78ae4e
ND
1521 Stack must be aligned on 64-bit boundaries when synthesizing
1522 function calls.
1523
c906108c
SS
1524 If the function is returning a structure, then the return address is passed
1525 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1526 starting from r4. */
c906108c 1527
7a78ae4e 1528static CORE_ADDR
7d9b040b 1529rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1530 struct regcache *regcache, CORE_ADDR bp_addr,
1531 int nargs, struct value **args, CORE_ADDR sp,
1532 int struct_return, CORE_ADDR struct_addr)
c906108c 1533{
7a41266b 1534 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1535 int ii;
1536 int len = 0;
c5aa993b
JM
1537 int argno; /* current argument number */
1538 int argbytes; /* current argument byte */
50fd1280 1539 gdb_byte tmp_buffer[50];
c5aa993b 1540 int f_argno = 0; /* current floating point argno */
21283beb 1541 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1542 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1543
ea7c478f 1544 struct value *arg = 0;
c906108c
SS
1545 struct type *type;
1546
1547 CORE_ADDR saved_sp;
1548
383f0f5b
JB
1549 /* The calling convention this function implements assumes the
1550 processor has floating-point registers. We shouldn't be using it
1551 on PPC variants that lack them. */
1552 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1553
64366f1c 1554 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1555 Copy them appropriately. */
1556 ii = 0;
1557
1558 /* If the function is returning a `struct', then the first word
1559 (which will be passed in r3) is used for struct return address.
1560 In that case we should advance one word and start from r4
1561 register to copy parameters. */
1562 if (struct_return)
1563 {
1564 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1565 struct_addr);
1566 ii++;
1567 }
c906108c
SS
1568
1569/*
c5aa993b
JM
1570 effectively indirect call... gcc does...
1571
1572 return_val example( float, int);
1573
1574 eabi:
1575 float in fp0, int in r3
1576 offset of stack on overflow 8/16
1577 for varargs, must go by type.
1578 power open:
1579 float in r3&r4, int in r5
1580 offset of stack on overflow different
1581 both:
1582 return in r3 or f0. If no float, must study how gcc emulates floats;
1583 pay attention to arg promotion.
1584 User may have to cast\args to handle promotion correctly
1585 since gdb won't know if prototype supplied or not.
1586 */
c906108c 1587
c5aa993b
JM
1588 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1589 {
3acba339 1590 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1591
1592 arg = args[argno];
df407dfe 1593 type = check_typedef (value_type (arg));
c5aa993b
JM
1594 len = TYPE_LENGTH (type);
1595
1596 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1597 {
1598
64366f1c 1599 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1600 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1601 there is no way we would run out of them. */
c5aa993b 1602
9f335945
KB
1603 gdb_assert (len <= 8);
1604
1605 regcache_cooked_write (regcache,
1606 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1607 value_contents (arg));
c5aa993b
JM
1608 ++f_argno;
1609 }
1610
f6077098 1611 if (len > reg_size)
c5aa993b
JM
1612 {
1613
64366f1c 1614 /* Argument takes more than one register. */
c5aa993b
JM
1615 while (argbytes < len)
1616 {
50fd1280 1617 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1618 memset (word, 0, reg_size);
1619 memcpy (word,
0fd88904 1620 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1621 (len - argbytes) > reg_size
1622 ? reg_size : len - argbytes);
9f335945
KB
1623 regcache_cooked_write (regcache,
1624 tdep->ppc_gp0_regnum + 3 + ii,
1625 word);
f6077098 1626 ++ii, argbytes += reg_size;
c5aa993b
JM
1627
1628 if (ii >= 8)
1629 goto ran_out_of_registers_for_arguments;
1630 }
1631 argbytes = 0;
1632 --ii;
1633 }
1634 else
64366f1c
EZ
1635 {
1636 /* Argument can fit in one register. No problem. */
d7449b42 1637 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1638 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1639
1640 memset (word, 0, reg_size);
0fd88904 1641 memcpy (word, value_contents (arg), len);
9f335945 1642 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1643 }
1644 ++argno;
c906108c 1645 }
c906108c
SS
1646
1647ran_out_of_registers_for_arguments:
1648
7a78ae4e 1649 saved_sp = read_sp ();
cc9836a8 1650
64366f1c 1651 /* Location for 8 parameters are always reserved. */
7a78ae4e 1652 sp -= wordsize * 8;
f6077098 1653
64366f1c 1654 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1655 sp -= wordsize * 6;
f6077098 1656
64366f1c 1657 /* Stack pointer must be quadword aligned. */
7a78ae4e 1658 sp &= -16;
c906108c 1659
64366f1c
EZ
1660 /* If there are more arguments, allocate space for them in
1661 the stack, then push them starting from the ninth one. */
c906108c 1662
c5aa993b
JM
1663 if ((argno < nargs) || argbytes)
1664 {
1665 int space = 0, jj;
c906108c 1666
c5aa993b
JM
1667 if (argbytes)
1668 {
1669 space += ((len - argbytes + 3) & -4);
1670 jj = argno + 1;
1671 }
1672 else
1673 jj = argno;
c906108c 1674
c5aa993b
JM
1675 for (; jj < nargs; ++jj)
1676 {
ea7c478f 1677 struct value *val = args[jj];
df407dfe 1678 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1679 }
c906108c 1680
64366f1c 1681 /* Add location required for the rest of the parameters. */
f6077098 1682 space = (space + 15) & -16;
c5aa993b 1683 sp -= space;
c906108c 1684
7aea86e6
AC
1685 /* This is another instance we need to be concerned about
1686 securing our stack space. If we write anything underneath %sp
1687 (r1), we might conflict with the kernel who thinks he is free
1688 to use this area. So, update %sp first before doing anything
1689 else. */
1690
1691 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1692
64366f1c
EZ
1693 /* If the last argument copied into the registers didn't fit there
1694 completely, push the rest of it into stack. */
c906108c 1695
c5aa993b
JM
1696 if (argbytes)
1697 {
1698 write_memory (sp + 24 + (ii * 4),
50fd1280 1699 value_contents (arg) + argbytes,
c5aa993b
JM
1700 len - argbytes);
1701 ++argno;
1702 ii += ((len - argbytes + 3) & -4) / 4;
1703 }
c906108c 1704
64366f1c 1705 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1706 for (; argno < nargs; ++argno)
1707 {
c906108c 1708
c5aa993b 1709 arg = args[argno];
df407dfe 1710 type = check_typedef (value_type (arg));
c5aa993b 1711 len = TYPE_LENGTH (type);
c906108c
SS
1712
1713
64366f1c
EZ
1714 /* Float types should be passed in fpr's, as well as in the
1715 stack. */
c5aa993b
JM
1716 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1717 {
c906108c 1718
9f335945 1719 gdb_assert (len <= 8);
c906108c 1720
9f335945
KB
1721 regcache_cooked_write (regcache,
1722 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1723 value_contents (arg));
c5aa993b
JM
1724 ++f_argno;
1725 }
c906108c 1726
50fd1280 1727 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1728 ii += ((len + 3) & -4) / 4;
1729 }
c906108c 1730 }
c906108c 1731
69517000 1732 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1733 be set _before_ the corresponding stack space is used. On AIX,
1734 this even applies when the target has been completely stopped!
1735 Not doing this can lead to conflicts with the kernel which thinks
1736 that it still has control over this not-yet-allocated stack
1737 region. */
33a7c2fc
AC
1738 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1739
7aea86e6 1740 /* Set back chain properly. */
8ba0209f
AM
1741 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1742 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1743
e56a0ecc
AC
1744 /* Point the inferior function call's return address at the dummy's
1745 breakpoint. */
1746 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1747
794a477a
AC
1748 /* Set the TOC register, get the value from the objfile reader
1749 which, in turn, gets it from the VMAP table. */
1750 if (rs6000_find_toc_address_hook != NULL)
1751 {
1752 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1753 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1754 }
1755
c906108c
SS
1756 target_store_registers (-1);
1757 return sp;
1758}
c906108c 1759
b9ff3018
AC
1760/* PowerOpen always puts structures in memory. Vectors, which were
1761 added later, do get returned in a register though. */
1762
1763static int
1764rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1765{
1766 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1767 && TYPE_VECTOR (value_type))
1768 return 0;
1769 return 1;
1770}
1771
7a78ae4e 1772static void
50fd1280
AC
1773rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1774 gdb_byte *valbuf)
c906108c
SS
1775{
1776 int offset = 0;
ace1378a 1777 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1778
383f0f5b
JB
1779 /* The calling convention this function implements assumes the
1780 processor has floating-point registers. We shouldn't be using it
1781 on PPC variants that lack them. */
1782 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1783
c5aa993b
JM
1784 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1785 {
c906108c 1786
c5aa993b
JM
1787 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1788 We need to truncate the return value into float size (4 byte) if
64366f1c 1789 necessary. */
c906108c 1790
65951cd9 1791 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1792 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1793 builtin_type_double,
1794 valbuf,
1795 valtype);
c5aa993b 1796 }
ace1378a
EZ
1797 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1798 && TYPE_LENGTH (valtype) == 16
1799 && TYPE_VECTOR (valtype))
1800 {
62700349 1801 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1802 TYPE_LENGTH (valtype));
1803 }
c5aa993b
JM
1804 else
1805 {
1806 /* return value is copied starting from r3. */
d7449b42 1807 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1808 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1809 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1810
1811 memcpy (valbuf,
62700349 1812 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1813 TYPE_LENGTH (valtype));
c906108c 1814 }
c906108c
SS
1815}
1816
977adac5
ND
1817/* Return whether handle_inferior_event() should proceed through code
1818 starting at PC in function NAME when stepping.
1819
1820 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1821 handle memory references that are too distant to fit in instructions
1822 generated by the compiler. For example, if 'foo' in the following
1823 instruction:
1824
1825 lwz r9,foo(r2)
1826
1827 is greater than 32767, the linker might replace the lwz with a branch to
1828 somewhere in @FIX1 that does the load in 2 instructions and then branches
1829 back to where execution should continue.
1830
1831 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1832 Unfortunately, the linker uses the "b" instruction for the
1833 branches, meaning that the link register doesn't get set.
1834 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1835
2ec664f5
MS
1836 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1837 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1838 @FIX code. */
977adac5
ND
1839
1840int
1841rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1842{
1843 return name && !strncmp (name, "@FIX", 4);
1844}
1845
1846/* Skip code that the user doesn't want to see when stepping:
1847
1848 1. Indirect function calls use a piece of trampoline code to do context
1849 switching, i.e. to set the new TOC table. Skip such code if we are on
1850 its first instruction (as when we have single-stepped to here).
1851
1852 2. Skip shared library trampoline code (which is different from
c906108c 1853 indirect function call trampolines).
977adac5
ND
1854
1855 3. Skip bigtoc fixup code.
1856
c906108c 1857 Result is desired PC to step until, or NULL if we are not in
977adac5 1858 code that should be skipped. */
c906108c
SS
1859
1860CORE_ADDR
7a78ae4e 1861rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1862{
52f0bd74 1863 unsigned int ii, op;
977adac5 1864 int rel;
c906108c 1865 CORE_ADDR solib_target_pc;
977adac5 1866 struct minimal_symbol *msymbol;
c906108c 1867
c5aa993b
JM
1868 static unsigned trampoline_code[] =
1869 {
1870 0x800b0000, /* l r0,0x0(r11) */
1871 0x90410014, /* st r2,0x14(r1) */
1872 0x7c0903a6, /* mtctr r0 */
1873 0x804b0004, /* l r2,0x4(r11) */
1874 0x816b0008, /* l r11,0x8(r11) */
1875 0x4e800420, /* bctr */
1876 0x4e800020, /* br */
1877 0
c906108c
SS
1878 };
1879
977adac5
ND
1880 /* Check for bigtoc fixup code. */
1881 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1882 if (msymbol
1883 && rs6000_in_solib_return_trampoline (pc,
1884 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1885 {
1886 /* Double-check that the third instruction from PC is relative "b". */
1887 op = read_memory_integer (pc + 8, 4);
1888 if ((op & 0xfc000003) == 0x48000000)
1889 {
1890 /* Extract bits 6-29 as a signed 24-bit relative word address and
1891 add it to the containing PC. */
1892 rel = ((int)(op << 6) >> 6);
1893 return pc + 8 + rel;
1894 }
1895 }
1896
c906108c
SS
1897 /* If pc is in a shared library trampoline, return its target. */
1898 solib_target_pc = find_solib_trampoline_target (pc);
1899 if (solib_target_pc)
1900 return solib_target_pc;
1901
c5aa993b
JM
1902 for (ii = 0; trampoline_code[ii]; ++ii)
1903 {
1904 op = read_memory_integer (pc + (ii * 4), 4);
1905 if (op != trampoline_code[ii])
1906 return 0;
1907 }
1908 ii = read_register (11); /* r11 holds destination addr */
21283beb 1909 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1910 return pc;
1911}
1912
7a78ae4e 1913/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1914 isn't available with that word size, return 0. */
7a78ae4e
ND
1915
1916static int
1917regsize (const struct reg *reg, int wordsize)
1918{
1919 return wordsize == 8 ? reg->sz64 : reg->sz32;
1920}
1921
1922/* Return the name of register number N, or null if no such register exists
64366f1c 1923 in the current architecture. */
7a78ae4e 1924
fa88f677 1925static const char *
7a78ae4e
ND
1926rs6000_register_name (int n)
1927{
21283beb 1928 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1929 const struct reg *reg = tdep->regs + n;
1930
1931 if (!regsize (reg, tdep->wordsize))
1932 return NULL;
1933 return reg->name;
1934}
1935
7a78ae4e
ND
1936/* Return the GDB type object for the "standard" data type
1937 of data in register N. */
1938
1939static struct type *
691d145a 1940rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1941{
691d145a 1942 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1943 const struct reg *reg = tdep->regs + n;
1944
1fcc0bb8
EZ
1945 if (reg->fpr)
1946 return builtin_type_double;
1947 else
1948 {
1949 int size = regsize (reg, tdep->wordsize);
1950 switch (size)
1951 {
449a5da4
AC
1952 case 0:
1953 return builtin_type_int0;
1954 case 4:
ed6edd9b 1955 return builtin_type_uint32;
1fcc0bb8 1956 case 8:
c8001721
EZ
1957 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1958 return builtin_type_vec64;
1959 else
ed6edd9b 1960 return builtin_type_uint64;
1fcc0bb8
EZ
1961 break;
1962 case 16:
08cf96df 1963 return builtin_type_vec128;
1fcc0bb8
EZ
1964 break;
1965 default:
e2e0b3e5 1966 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1967 n, size);
1fcc0bb8
EZ
1968 }
1969 }
7a78ae4e
ND
1970}
1971
c44ca51c
AC
1972/* Is REGNUM a member of REGGROUP? */
1973static int
1974rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1975 struct reggroup *group)
1976{
1977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1978 int float_p;
1979 int vector_p;
1980 int general_p;
1981
1982 if (REGISTER_NAME (regnum) == NULL
1983 || *REGISTER_NAME (regnum) == '\0')
1984 return 0;
1985 if (group == all_reggroup)
1986 return 1;
1987
1988 float_p = (regnum == tdep->ppc_fpscr_regnum
1989 || (regnum >= tdep->ppc_fp0_regnum
1990 && regnum < tdep->ppc_fp0_regnum + 32));
1991 if (group == float_reggroup)
1992 return float_p;
1993
826d5376
PG
1994 vector_p = ((tdep->ppc_vr0_regnum >= 0
1995 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 1996 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
1997 || (tdep->ppc_ev0_regnum >= 0
1998 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 1999 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 2000 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
2001 || regnum == tdep->ppc_vrsave_regnum
2002 || regnum == tdep->ppc_acc_regnum
2003 || regnum == tdep->ppc_spefscr_regnum);
2004 if (group == vector_reggroup)
2005 return vector_p;
2006
2007 /* Note that PS aka MSR isn't included - it's a system register (and
2008 besides, due to GCC's CFI foobar you do not want to restore
2009 it). */
2010 general_p = ((regnum >= tdep->ppc_gp0_regnum
2011 && regnum < tdep->ppc_gp0_regnum + 32)
2012 || regnum == tdep->ppc_toc_regnum
2013 || regnum == tdep->ppc_cr_regnum
2014 || regnum == tdep->ppc_lr_regnum
2015 || regnum == tdep->ppc_ctr_regnum
2016 || regnum == tdep->ppc_xer_regnum
2017 || regnum == PC_REGNUM);
2018 if (group == general_reggroup)
2019 return general_p;
2020
2021 if (group == save_reggroup || group == restore_reggroup)
2022 return general_p || vector_p || float_p;
2023
2024 return 0;
2025}
2026
691d145a 2027/* The register format for RS/6000 floating point registers is always
64366f1c 2028 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2029
2030static int
691d145a 2031rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2032{
691d145a
JB
2033 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2034
2035 return (reg->fpr
2036 && TYPE_CODE (type) == TYPE_CODE_FLT
2037 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2038}
2039
7a78ae4e 2040static void
691d145a
JB
2041rs6000_register_to_value (struct frame_info *frame,
2042 int regnum,
2043 struct type *type,
50fd1280 2044 gdb_byte *to)
7a78ae4e 2045{
691d145a 2046 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2047 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2048
2049 gdb_assert (reg->fpr);
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2051
691d145a
JB
2052 get_frame_register (frame, regnum, from);
2053 convert_typed_floating (from, builtin_type_double, to, type);
2054}
7a292a7a 2055
7a78ae4e 2056static void
691d145a
JB
2057rs6000_value_to_register (struct frame_info *frame,
2058 int regnum,
2059 struct type *type,
50fd1280 2060 const gdb_byte *from)
7a78ae4e 2061{
691d145a 2062 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2063 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2064
2065 gdb_assert (reg->fpr);
2066 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2067
2068 convert_typed_floating (from, type, to, builtin_type_double);
2069 put_frame_register (frame, regnum, to);
7a78ae4e 2070}
c906108c 2071
6ced10dd
JB
2072/* Move SPE vector register values between a 64-bit buffer and the two
2073 32-bit raw register halves in a regcache. This function handles
2074 both splitting a 64-bit value into two 32-bit halves, and joining
2075 two halves into a whole 64-bit value, depending on the function
2076 passed as the MOVE argument.
2077
2078 EV_REG must be the number of an SPE evN vector register --- a
2079 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2080 64-bit buffer.
2081
2082 Call MOVE once for each 32-bit half of that register, passing
2083 REGCACHE, the number of the raw register corresponding to that
2084 half, and the address of the appropriate half of BUFFER.
2085
2086 For example, passing 'regcache_raw_read' as the MOVE function will
2087 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2088 'regcache_raw_supply' will supply the contents of BUFFER to the
2089 appropriate pair of raw registers in REGCACHE.
2090
2091 You may need to cast away some 'const' qualifiers when passing
2092 MOVE, since this function can't tell at compile-time which of
2093 REGCACHE or BUFFER is acting as the source of the data. If C had
2094 co-variant type qualifiers, ... */
2095static void
2096e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2097 int regnum, gdb_byte *buf),
6ced10dd 2098 struct regcache *regcache, int ev_reg,
50fd1280 2099 gdb_byte *buffer)
6ced10dd
JB
2100{
2101 struct gdbarch *arch = get_regcache_arch (regcache);
2102 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2103 int reg_index;
50fd1280 2104 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2105
2106 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2107 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2108
2109 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2110
2111 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2112 {
2113 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2114 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2115 }
2116 else
2117 {
2118 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2119 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2120 }
2121}
2122
c8001721
EZ
2123static void
2124e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2125 int reg_nr, gdb_byte *buffer)
c8001721 2126{
6ced10dd 2127 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2128 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2129
6ced10dd
JB
2130 gdb_assert (regcache_arch == gdbarch);
2131
2132 if (tdep->ppc_ev0_regnum <= reg_nr
2133 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2134 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2135 else
a44bddec 2136 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2137 _("e500_pseudo_register_read: "
2138 "called on unexpected register '%s' (%d)"),
a44bddec 2139 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2140}
2141
2142static void
2143e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2144 int reg_nr, const gdb_byte *buffer)
c8001721 2145{
6ced10dd 2146 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2148
6ced10dd
JB
2149 gdb_assert (regcache_arch == gdbarch);
2150
2151 if (tdep->ppc_ev0_regnum <= reg_nr
2152 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2153 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2154 regcache_raw_write,
50fd1280 2155 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2156 else
a44bddec 2157 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2158 _("e500_pseudo_register_read: "
2159 "called on unexpected register '%s' (%d)"),
a44bddec 2160 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2161}
2162
2163/* The E500 needs a custom reggroup function: it has anonymous raw
2164 registers, and default_register_reggroup_p assumes that anonymous
2165 registers are not members of any reggroup. */
2166static int
2167e500_register_reggroup_p (struct gdbarch *gdbarch,
2168 int regnum,
2169 struct reggroup *group)
2170{
2171 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2172
2173 /* The save and restore register groups need to include the
2174 upper-half registers, even though they're anonymous. */
2175 if ((group == save_reggroup
2176 || group == restore_reggroup)
2177 && (tdep->ppc_ev0_upper_regnum <= regnum
2178 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2179 return 1;
2180
2181 /* In all other regards, the default reggroup definition is fine. */
2182 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2183}
2184
18ed0c4e 2185/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2186static int
18ed0c4e 2187rs6000_stab_reg_to_regnum (int num)
c8001721 2188{
9f744501 2189 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2190
9f744501
JB
2191 if (0 <= num && num <= 31)
2192 return tdep->ppc_gp0_regnum + num;
2193 else if (32 <= num && num <= 63)
383f0f5b
JB
2194 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2195 specifies registers the architecture doesn't have? Our
2196 callers don't check the value we return. */
366f009f 2197 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2198 else if (77 <= num && num <= 108)
2199 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2200 else if (1200 <= num && num < 1200 + 32)
2201 return tdep->ppc_ev0_regnum + (num - 1200);
2202 else
2203 switch (num)
2204 {
2205 case 64:
2206 return tdep->ppc_mq_regnum;
2207 case 65:
2208 return tdep->ppc_lr_regnum;
2209 case 66:
2210 return tdep->ppc_ctr_regnum;
2211 case 76:
2212 return tdep->ppc_xer_regnum;
2213 case 109:
2214 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2215 case 110:
2216 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2217 case 111:
18ed0c4e 2218 return tdep->ppc_acc_regnum;
867e2dc5 2219 case 112:
18ed0c4e 2220 return tdep->ppc_spefscr_regnum;
9f744501
JB
2221 default:
2222 return num;
2223 }
18ed0c4e 2224}
9f744501 2225
9f744501 2226
18ed0c4e
JB
2227/* Convert a Dwarf 2 register number to a GDB register number. */
2228static int
2229rs6000_dwarf2_reg_to_regnum (int num)
2230{
2231 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2232
18ed0c4e
JB
2233 if (0 <= num && num <= 31)
2234 return tdep->ppc_gp0_regnum + num;
2235 else if (32 <= num && num <= 63)
2236 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2237 specifies registers the architecture doesn't have? Our
2238 callers don't check the value we return. */
2239 return tdep->ppc_fp0_regnum + (num - 32);
2240 else if (1124 <= num && num < 1124 + 32)
2241 return tdep->ppc_vr0_regnum + (num - 1124);
2242 else if (1200 <= num && num < 1200 + 32)
2243 return tdep->ppc_ev0_regnum + (num - 1200);
2244 else
2245 switch (num)
2246 {
2247 case 67:
2248 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2249 case 99:
2250 return tdep->ppc_acc_regnum;
2251 case 100:
2252 return tdep->ppc_mq_regnum;
2253 case 101:
2254 return tdep->ppc_xer_regnum;
2255 case 108:
2256 return tdep->ppc_lr_regnum;
2257 case 109:
2258 return tdep->ppc_ctr_regnum;
2259 case 356:
2260 return tdep->ppc_vrsave_regnum;
2261 case 612:
2262 return tdep->ppc_spefscr_regnum;
2263 default:
2264 return num;
2265 }
2188cbdd
EZ
2266}
2267
18ed0c4e 2268
7a78ae4e 2269static void
a3c001ce
JB
2270rs6000_store_return_value (struct type *type,
2271 struct regcache *regcache,
50fd1280 2272 const gdb_byte *valbuf)
7a78ae4e 2273{
a3c001ce
JB
2274 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2275 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2276 int regnum = -1;
ace1378a 2277
383f0f5b
JB
2278 /* The calling convention this function implements assumes the
2279 processor has floating-point registers. We shouldn't be using it
2280 on PPC variants that lack them. */
a3c001ce 2281 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2282
7a78ae4e 2283 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2284 /* Floating point values are returned starting from FPR1 and up.
2285 Say a double_double_double type could be returned in
64366f1c 2286 FPR1/FPR2/FPR3 triple. */
a3c001ce 2287 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2288 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2289 {
2290 if (TYPE_LENGTH (type) == 16
2291 && TYPE_VECTOR (type))
a3c001ce
JB
2292 regnum = tdep->ppc_vr0_regnum + 2;
2293 else
a44bddec 2294 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2295 _("rs6000_store_return_value: "
2296 "unexpected array return type"));
ace1378a 2297 }
7a78ae4e 2298 else
64366f1c 2299 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2300 regnum = tdep->ppc_gp0_regnum + 3;
2301
2302 {
2303 size_t bytes_written = 0;
2304
2305 while (bytes_written < TYPE_LENGTH (type))
2306 {
2307 /* How much of this value can we write to this register? */
2308 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2309 register_size (gdbarch, regnum));
2310 regcache_cooked_write_part (regcache, regnum,
2311 0, bytes_to_write,
50fd1280 2312 valbuf + bytes_written);
a3c001ce
JB
2313 regnum++;
2314 bytes_written += bytes_to_write;
2315 }
2316 }
7a78ae4e
ND
2317}
2318
a3c001ce 2319
7a78ae4e
ND
2320/* Extract from an array REGBUF containing the (raw) register state
2321 the address in which a function should return its structure value,
2322 as a CORE_ADDR (or an expression that can be used as one). */
2323
2324static CORE_ADDR
11269d7e
AC
2325rs6000_extract_struct_value_address (struct regcache *regcache)
2326{
2327 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2328 function call GDB knows the address of the struct return value
2329 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2330 the current call_function_by_hand() code only saves the most
2331 recent struct address leading to occasional calls. The code
2332 should instead maintain a stack of such addresses (in the dummy
2333 frame object). */
11269d7e
AC
2334 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2335 really got no idea where the return value is being stored. While
2336 r3, on function entry, contained the address it will have since
2337 been reused (scratch) and hence wouldn't be valid */
2338 return 0;
7a78ae4e
ND
2339}
2340
64366f1c 2341/* Hook called when a new child process is started. */
7a78ae4e
ND
2342
2343void
2344rs6000_create_inferior (int pid)
2345{
2346 if (rs6000_set_host_arch_hook)
2347 rs6000_set_host_arch_hook (pid);
c906108c
SS
2348}
2349\f
e2d0e7eb 2350/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2351
2352 Usually a function pointer's representation is simply the address
2353 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2354 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2355 three words, the first word is the address of the function, the
2356 second word is the TOC pointer (r2), and the third word is the
2357 static chain value. Throughout GDB it is currently assumed that a
2358 function pointer contains the address of the function, which is not
2359 easy to fix. In addition, the conversion of a function address to
8ba0209f 2360 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2361 inferior's memory space, with all its drawbacks. To be able to
2362 call C++ virtual methods in the inferior (which are called via
f517ea4e 2363 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2364 function address from a function pointer. */
2365
f517ea4e
PS
2366/* Return real function address if ADDR (a function pointer) is in the data
2367 space and is therefore a special function pointer. */
c906108c 2368
b9362cc7 2369static CORE_ADDR
e2d0e7eb
AC
2370rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2371 CORE_ADDR addr,
2372 struct target_ops *targ)
c906108c
SS
2373{
2374 struct obj_section *s;
2375
2376 s = find_pc_section (addr);
2377 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2378 return addr;
c906108c 2379
7a78ae4e 2380 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2381 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2382}
c906108c 2383\f
c5aa993b 2384
7a78ae4e 2385/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2386
2387
7a78ae4e
ND
2388/* The arrays here called registers_MUMBLE hold information about available
2389 registers.
c906108c
SS
2390
2391 For each family of PPC variants, I've tried to isolate out the
2392 common registers and put them up front, so that as long as you get
2393 the general family right, GDB will correctly identify the registers
2394 common to that family. The common register sets are:
2395
2396 For the 60x family: hid0 hid1 iabr dabr pir
2397
2398 For the 505 and 860 family: eie eid nri
2399
2400 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2401 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2402 pbu1 pbl2 pbu2
c906108c
SS
2403
2404 Most of these register groups aren't anything formal. I arrived at
2405 them by looking at the registers that occurred in more than one
6f5987a6
KB
2406 processor.
2407
2408 Note: kevinb/2002-04-30: Support for the fpscr register was added
2409 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2410 for Power. For PowerPC, slot 70 was unused and was already in the
2411 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2412 slot 70 was being used for "mq", so the next available slot (71)
2413 was chosen. It would have been nice to be able to make the
2414 register numbers the same across processor cores, but this wasn't
2415 possible without either 1) renumbering some registers for some
2416 processors or 2) assigning fpscr to a really high slot that's
2417 larger than any current register number. Doing (1) is bad because
2418 existing stubs would break. Doing (2) is undesirable because it
2419 would introduce a really large gap between fpscr and the rest of
2420 the registers for most processors. */
7a78ae4e 2421
64366f1c 2422/* Convenience macros for populating register arrays. */
7a78ae4e 2423
64366f1c 2424/* Within another macro, convert S to a string. */
7a78ae4e
ND
2425
2426#define STR(s) #s
2427
2428/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2429 and 64 bits on 64-bit systems. */
13ac140c 2430#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2431
2432/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2433 systems. */
13ac140c 2434#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2435
2436/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2437 systems. */
13ac140c 2438#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2439
1fcc0bb8 2440/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2441 systems. */
13ac140c 2442#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2443
64366f1c 2444/* Return a struct reg defining floating-point register NAME. */
13ac140c 2445#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2446
6ced10dd
JB
2447/* Return a struct reg defining a pseudo register NAME that is 64 bits
2448 long on all systems. */
2449#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2450
2451/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2452 systems and that doesn't exist on 64-bit systems. */
13ac140c 2453#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2454
2455/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2456 systems and that doesn't exist on 32-bit systems. */
13ac140c 2457#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2458
64366f1c 2459/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2460#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2461
6ced10dd
JB
2462/* Return a struct reg defining an anonymous raw register that's 32
2463 bits on all systems. */
2464#define A4 { 0, 4, 4, 0, 0, -1 }
2465
13ac140c
JB
2466/* Return a struct reg defining an SPR named NAME that is 32 bits on
2467 32-bit systems and 64 bits on 64-bit systems. */
2468#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2469
2470/* Return a struct reg defining an SPR named NAME that is 32 bits on
2471 all systems. */
2472#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2473
2474/* Return a struct reg defining an SPR named NAME that is 32 bits on
2475 all systems, and whose SPR number is NUMBER. */
2476#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2477
2478/* Return a struct reg defining an SPR named NAME that's 64 bits on
2479 64-bit systems and that doesn't exist on 32-bit systems. */
2480#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2481
7a78ae4e
ND
2482/* UISA registers common across all architectures, including POWER. */
2483
2484#define COMMON_UISA_REGS \
2485 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2486 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2487 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2488 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2489 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2490 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2491 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2492 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2493 /* 64 */ R(pc), R(ps)
2494
2495/* UISA-level SPRs for PowerPC. */
2496#define PPC_UISA_SPRS \
13ac140c 2497 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2498
c8001721
EZ
2499/* UISA-level SPRs for PowerPC without floating point support. */
2500#define PPC_UISA_NOFP_SPRS \
13ac140c 2501 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2502
7a78ae4e
ND
2503/* Segment registers, for PowerPC. */
2504#define PPC_SEGMENT_REGS \
2505 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2506 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2507 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2508 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2509
2510/* OEA SPRs for PowerPC. */
2511#define PPC_OEA_SPRS \
13ac140c
JB
2512 /* 87 */ S4(pvr), \
2513 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2514 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2515 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2516 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2517 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2518 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2519 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2520 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2521
64366f1c 2522/* AltiVec registers. */
1fcc0bb8
EZ
2523#define PPC_ALTIVEC_REGS \
2524 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2525 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2526 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2527 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2528 /*151*/R4(vscr), R4(vrsave)
2529
c8001721 2530
6ced10dd
JB
2531/* On machines supporting the SPE APU, the general-purpose registers
2532 are 64 bits long. There are SIMD vector instructions to treat them
2533 as pairs of floats, but the rest of the instruction set treats them
2534 as 32-bit registers, and only operates on their lower halves.
2535
2536 In the GDB regcache, we treat their high and low halves as separate
2537 registers. The low halves we present as the general-purpose
2538 registers, and then we have pseudo-registers that stitch together
2539 the upper and lower halves and present them as pseudo-registers. */
2540
2541/* SPE GPR lower halves --- raw registers. */
2542#define PPC_SPE_GP_REGS \
2543 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2544 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2545 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2546 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2547
2548/* SPE GPR upper halves --- anonymous raw registers. */
2549#define PPC_SPE_UPPER_GP_REGS \
2550 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2551 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2552 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2553 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2554
2555/* SPE GPR vector registers --- pseudo registers based on underlying
2556 gprs and the anonymous upper half raw registers. */
2557#define PPC_EV_PSEUDO_REGS \
2558/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2559/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2560/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2561/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2562
7a78ae4e 2563/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2564 user-level SPR's. */
7a78ae4e 2565static const struct reg registers_power[] =
c906108c 2566{
7a78ae4e 2567 COMMON_UISA_REGS,
13ac140c 2568 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2569 /* 71 */ R4(fpscr)
c906108c
SS
2570};
2571
7a78ae4e 2572/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2573 view of the PowerPC. */
7a78ae4e 2574static const struct reg registers_powerpc[] =
c906108c 2575{
7a78ae4e 2576 COMMON_UISA_REGS,
1fcc0bb8
EZ
2577 PPC_UISA_SPRS,
2578 PPC_ALTIVEC_REGS
c906108c
SS
2579};
2580
13ac140c
JB
2581/* IBM PowerPC 403.
2582
2583 Some notes about the "tcr" special-purpose register:
2584 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2585 403's programmable interval timer, fixed interval timer, and
2586 watchdog timer.
2587 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2588 watchdog timer, and nothing else.
2589
2590 Some of the fields are similar between the two, but they're not
2591 compatible with each other. Since the two variants have different
2592 registers, with different numbers, but the same name, we can't
2593 splice the register name to get the SPR number. */
7a78ae4e 2594static const struct reg registers_403[] =
c5aa993b 2595{
7a78ae4e
ND
2596 COMMON_UISA_REGS,
2597 PPC_UISA_SPRS,
2598 PPC_SEGMENT_REGS,
2599 PPC_OEA_SPRS,
13ac140c
JB
2600 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2601 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2602 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2603 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2604 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2605 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2606};
2607
13ac140c
JB
2608/* IBM PowerPC 403GC.
2609 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2610static const struct reg registers_403GC[] =
c5aa993b 2611{
7a78ae4e
ND
2612 COMMON_UISA_REGS,
2613 PPC_UISA_SPRS,
2614 PPC_SEGMENT_REGS,
2615 PPC_OEA_SPRS,
13ac140c
JB
2616 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2617 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2618 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2619 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2620 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2621 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2622 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2623 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2624};
2625
64366f1c 2626/* Motorola PowerPC 505. */
7a78ae4e 2627static const struct reg registers_505[] =
c5aa993b 2628{
7a78ae4e
ND
2629 COMMON_UISA_REGS,
2630 PPC_UISA_SPRS,
2631 PPC_SEGMENT_REGS,
2632 PPC_OEA_SPRS,
13ac140c 2633 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2634};
2635
64366f1c 2636/* Motorola PowerPC 860 or 850. */
7a78ae4e 2637static const struct reg registers_860[] =
c5aa993b 2638{
7a78ae4e
ND
2639 COMMON_UISA_REGS,
2640 PPC_UISA_SPRS,
2641 PPC_SEGMENT_REGS,
2642 PPC_OEA_SPRS,
13ac140c
JB
2643 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2644 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2645 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2646 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2647 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2648 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2649 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2650 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2651 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2652 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2653 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2654 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2655};
2656
7a78ae4e
ND
2657/* Motorola PowerPC 601. Note that the 601 has different register numbers
2658 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2659 register is the stub's problem. */
7a78ae4e 2660static const struct reg registers_601[] =
c5aa993b 2661{
7a78ae4e
ND
2662 COMMON_UISA_REGS,
2663 PPC_UISA_SPRS,
2664 PPC_SEGMENT_REGS,
2665 PPC_OEA_SPRS,
13ac140c
JB
2666 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2667 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2668};
2669
13ac140c
JB
2670/* Motorola PowerPC 602.
2671 See the notes under the 403 about 'tcr'. */
7a78ae4e 2672static const struct reg registers_602[] =
c5aa993b 2673{
7a78ae4e
ND
2674 COMMON_UISA_REGS,
2675 PPC_UISA_SPRS,
2676 PPC_SEGMENT_REGS,
2677 PPC_OEA_SPRS,
13ac140c
JB
2678 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2679 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2680 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2681};
2682
64366f1c 2683/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2684static const struct reg registers_603[] =
c5aa993b 2685{
7a78ae4e
ND
2686 COMMON_UISA_REGS,
2687 PPC_UISA_SPRS,
2688 PPC_SEGMENT_REGS,
2689 PPC_OEA_SPRS,
13ac140c
JB
2690 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2691 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2692 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2693};
2694
64366f1c 2695/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2696static const struct reg registers_604[] =
c5aa993b 2697{
7a78ae4e
ND
2698 COMMON_UISA_REGS,
2699 PPC_UISA_SPRS,
2700 PPC_SEGMENT_REGS,
2701 PPC_OEA_SPRS,
13ac140c
JB
2702 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2703 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2704 /* 127 */ S(sia), S(sda)
c906108c
SS
2705};
2706
64366f1c 2707/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2708static const struct reg registers_750[] =
c5aa993b 2709{
7a78ae4e
ND
2710 COMMON_UISA_REGS,
2711 PPC_UISA_SPRS,
2712 PPC_SEGMENT_REGS,
2713 PPC_OEA_SPRS,
13ac140c
JB
2714 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2715 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2716 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2717 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2718 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2719 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2720};
2721
2722
64366f1c 2723/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2724static const struct reg registers_7400[] =
2725{
2726 /* gpr0-gpr31, fpr0-fpr31 */
2727 COMMON_UISA_REGS,
13c7b1ca 2728 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2729 PPC_UISA_SPRS,
2730 /* sr0-sr15 */
2731 PPC_SEGMENT_REGS,
2732 PPC_OEA_SPRS,
2733 /* vr0-vr31, vrsave, vscr */
2734 PPC_ALTIVEC_REGS
2735 /* FIXME? Add more registers? */
2736};
2737
c8001721
EZ
2738/* Motorola e500. */
2739static const struct reg registers_e500[] =
2740{
6ced10dd
JB
2741 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2742 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2743 /* 64 .. 65 */ R(pc), R(ps),
2744 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2745 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2746 /* NOTE: Add new registers here the end of the raw register
2747 list and just before the first pseudo register. */
6ced10dd 2748 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2749};
2750
c906108c 2751/* Information about a particular processor variant. */
7a78ae4e 2752
c906108c 2753struct variant
c5aa993b
JM
2754 {
2755 /* Name of this variant. */
2756 char *name;
c906108c 2757
c5aa993b
JM
2758 /* English description of the variant. */
2759 char *description;
c906108c 2760
64366f1c 2761 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2762 enum bfd_architecture arch;
2763
64366f1c 2764 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2765 unsigned long mach;
2766
489461e2
EZ
2767 /* Number of real registers. */
2768 int nregs;
2769
2770 /* Number of pseudo registers. */
2771 int npregs;
2772
2773 /* Number of total registers (the sum of nregs and npregs). */
2774 int num_tot_regs;
2775
c5aa993b
JM
2776 /* Table of register names; registers[R] is the name of the register
2777 number R. */
7a78ae4e 2778 const struct reg *regs;
c5aa993b 2779 };
c906108c 2780
489461e2
EZ
2781#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2782
2783static int
2784num_registers (const struct reg *reg_list, int num_tot_regs)
2785{
2786 int i;
2787 int nregs = 0;
2788
2789 for (i = 0; i < num_tot_regs; i++)
2790 if (!reg_list[i].pseudo)
2791 nregs++;
2792
2793 return nregs;
2794}
2795
2796static int
2797num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2798{
2799 int i;
2800 int npregs = 0;
2801
2802 for (i = 0; i < num_tot_regs; i++)
2803 if (reg_list[i].pseudo)
2804 npregs ++;
2805
2806 return npregs;
2807}
c906108c 2808
c906108c
SS
2809/* Information in this table comes from the following web sites:
2810 IBM: http://www.chips.ibm.com:80/products/embedded/
2811 Motorola: http://www.mot.com/SPS/PowerPC/
2812
2813 I'm sure I've got some of the variant descriptions not quite right.
2814 Please report any inaccuracies you find to GDB's maintainer.
2815
2816 If you add entries to this table, please be sure to allow the new
2817 value as an argument to the --with-cpu flag, in configure.in. */
2818
489461e2 2819static struct variant variants[] =
c906108c 2820{
489461e2 2821
7a78ae4e 2822 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2823 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2824 registers_powerpc},
7a78ae4e 2825 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2826 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2827 registers_power},
7a78ae4e 2828 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2829 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2830 registers_403},
7a78ae4e 2831 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2832 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2833 registers_601},
7a78ae4e 2834 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2835 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2836 registers_602},
7a78ae4e 2837 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2838 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2839 registers_603},
7a78ae4e 2840 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2841 604, -1, -1, tot_num_registers (registers_604),
2842 registers_604},
7a78ae4e 2843 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2844 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2845 registers_403GC},
7a78ae4e 2846 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2847 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2848 registers_505},
7a78ae4e 2849 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2850 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2851 registers_860},
7a78ae4e 2852 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2853 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2854 registers_750},
1fcc0bb8 2855 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2856 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2857 registers_7400},
c8001721
EZ
2858 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2859 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2860 registers_e500},
7a78ae4e 2861
5d57ee30
KB
2862 /* 64-bit */
2863 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2864 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2865 registers_powerpc},
7a78ae4e 2866 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2867 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2868 registers_powerpc},
5d57ee30 2869 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2870 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2871 registers_powerpc},
7a78ae4e 2872 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2873 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2874 registers_powerpc},
5d57ee30 2875 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2876 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2877 registers_powerpc},
5d57ee30 2878 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2879 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2880 registers_powerpc},
5d57ee30 2881
64366f1c 2882 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2883 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2884 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2885 registers_power},
7a78ae4e 2886 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2887 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2888 registers_power},
7a78ae4e 2889 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2890 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2891 registers_power},
7a78ae4e 2892
489461e2 2893 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2894};
2895
64366f1c 2896/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2897
2898static void
2899init_variants (void)
2900{
2901 struct variant *v;
2902
2903 for (v = variants; v->name; v++)
2904 {
2905 if (v->nregs == -1)
2906 v->nregs = num_registers (v->regs, v->num_tot_regs);
2907 if (v->npregs == -1)
2908 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2909 }
2910}
c906108c 2911
7a78ae4e 2912/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2913 MACH. If no such variant exists, return null. */
c906108c 2914
7a78ae4e
ND
2915static const struct variant *
2916find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2917{
7a78ae4e 2918 const struct variant *v;
c5aa993b 2919
7a78ae4e
ND
2920 for (v = variants; v->name; v++)
2921 if (arch == v->arch && mach == v->mach)
2922 return v;
c906108c 2923
7a78ae4e 2924 return NULL;
c906108c 2925}
9364a0ef
EZ
2926
2927static int
2928gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2929{
2930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2931 return print_insn_big_powerpc (memaddr, info);
2932 else
2933 return print_insn_little_powerpc (memaddr, info);
2934}
7a78ae4e 2935\f
61a65099
KB
2936static CORE_ADDR
2937rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2938{
2939 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2940}
2941
2942static struct frame_id
2943rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2944{
2945 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2946 SP_REGNUM),
2947 frame_pc_unwind (next_frame));
2948}
2949
2950struct rs6000_frame_cache
2951{
2952 CORE_ADDR base;
2953 CORE_ADDR initial_sp;
2954 struct trad_frame_saved_reg *saved_regs;
2955};
2956
2957static struct rs6000_frame_cache *
2958rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2959{
2960 struct rs6000_frame_cache *cache;
2961 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2962 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2963 struct rs6000_framedata fdata;
2964 int wordsize = tdep->wordsize;
e10b1c4c 2965 CORE_ADDR func, pc;
61a65099
KB
2966
2967 if ((*this_cache) != NULL)
2968 return (*this_cache);
2969 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2970 (*this_cache) = cache;
2971 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2972
e10b1c4c
DJ
2973 func = frame_func_unwind (next_frame);
2974 pc = frame_pc_unwind (next_frame);
2975 skip_prologue (func, pc, &fdata);
2976
2977 /* Figure out the parent's stack pointer. */
2978
2979 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2980 address of the current frame. Things might be easier if the
2981 ->frame pointed to the outer-most address of the frame. In
2982 the mean time, the address of the prev frame is used as the
2983 base address of this frame. */
2984 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2985
2986 /* If the function appears to be frameless, check a couple of likely
2987 indicators that we have simply failed to find the frame setup.
2988 Two common cases of this are missing symbols (i.e.
2989 frame_func_unwind returns the wrong address or 0), and assembly
2990 stubs which have a fast exit path but set up a frame on the slow
2991 path.
2992
2993 If the LR appears to return to this function, then presume that
2994 we have an ABI compliant frame that we failed to find. */
2995 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2996 {
e10b1c4c
DJ
2997 CORE_ADDR saved_lr;
2998 int make_frame = 0;
2999
3000 saved_lr = frame_unwind_register_unsigned (next_frame,
3001 tdep->ppc_lr_regnum);
3002 if (func == 0 && saved_lr == pc)
3003 make_frame = 1;
3004 else if (func != 0)
3005 {
3006 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3007 if (func == saved_func)
3008 make_frame = 1;
3009 }
3010
3011 if (make_frame)
3012 {
3013 fdata.frameless = 0;
3014 fdata.lr_offset = wordsize;
3015 }
61a65099 3016 }
e10b1c4c
DJ
3017
3018 if (!fdata.frameless)
3019 /* Frameless really means stackless. */
3020 cache->base = read_memory_addr (cache->base, wordsize);
3021
61a65099
KB
3022 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3023
3024 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3025 All fpr's from saved_fpr to fp31 are saved. */
3026
3027 if (fdata.saved_fpr >= 0)
3028 {
3029 int i;
3030 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3031
3032 /* If skip_prologue says floating-point registers were saved,
3033 but the current architecture has no floating-point registers,
3034 then that's strange. But we have no indices to even record
3035 the addresses under, so we just ignore it. */
3036 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3037 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3038 {
3039 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3040 fpr_addr += 8;
3041 }
61a65099
KB
3042 }
3043
3044 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3045 All gpr's from saved_gpr to gpr31 are saved. */
3046
3047 if (fdata.saved_gpr >= 0)
3048 {
3049 int i;
3050 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3051 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3052 {
3053 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3054 gpr_addr += wordsize;
3055 }
3056 }
3057
3058 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3059 All vr's from saved_vr to vr31 are saved. */
3060 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3061 {
3062 if (fdata.saved_vr >= 0)
3063 {
3064 int i;
3065 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3066 for (i = fdata.saved_vr; i < 32; i++)
3067 {
3068 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3069 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3070 }
3071 }
3072 }
3073
3074 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3075 All vr's from saved_ev to ev31 are saved. ????? */
3076 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3077 {
3078 if (fdata.saved_ev >= 0)
3079 {
3080 int i;
3081 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3082 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3083 {
3084 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3085 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3086 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3087 }
3088 }
3089 }
3090
3091 /* If != 0, fdata.cr_offset is the offset from the frame that
3092 holds the CR. */
3093 if (fdata.cr_offset != 0)
3094 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3095
3096 /* If != 0, fdata.lr_offset is the offset from the frame that
3097 holds the LR. */
3098 if (fdata.lr_offset != 0)
3099 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3100 /* The PC is found in the link register. */
3101 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3102
3103 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3104 holds the VRSAVE. */
3105 if (fdata.vrsave_offset != 0)
3106 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3107
3108 if (fdata.alloca_reg < 0)
3109 /* If no alloca register used, then fi->frame is the value of the
3110 %sp for this frame, and it is good enough. */
3111 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3112 else
3113 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3114 fdata.alloca_reg);
3115
3116 return cache;
3117}
3118
3119static void
3120rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3121 struct frame_id *this_id)
3122{
3123 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3124 this_cache);
3125 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
3126}
3127
3128static void
3129rs6000_frame_prev_register (struct frame_info *next_frame,
3130 void **this_cache,
3131 int regnum, int *optimizedp,
3132 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3133 int *realnump, gdb_byte *valuep)
61a65099
KB
3134{
3135 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3136 this_cache);
1f67027d
AC
3137 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3138 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3139}
3140
3141static const struct frame_unwind rs6000_frame_unwind =
3142{
3143 NORMAL_FRAME,
3144 rs6000_frame_this_id,
3145 rs6000_frame_prev_register
3146};
3147
3148static const struct frame_unwind *
3149rs6000_frame_sniffer (struct frame_info *next_frame)
3150{
3151 return &rs6000_frame_unwind;
3152}
3153
3154\f
3155
3156static CORE_ADDR
3157rs6000_frame_base_address (struct frame_info *next_frame,
3158 void **this_cache)
3159{
3160 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3161 this_cache);
3162 return info->initial_sp;
3163}
3164
3165static const struct frame_base rs6000_frame_base = {
3166 &rs6000_frame_unwind,
3167 rs6000_frame_base_address,
3168 rs6000_frame_base_address,
3169 rs6000_frame_base_address
3170};
3171
3172static const struct frame_base *
3173rs6000_frame_base_sniffer (struct frame_info *next_frame)
3174{
3175 return &rs6000_frame_base;
3176}
3177
7a78ae4e
ND
3178/* Initialize the current architecture based on INFO. If possible, re-use an
3179 architecture from ARCHES, which is a list of architectures already created
3180 during this debugging session.
c906108c 3181
7a78ae4e 3182 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3183 a binary file. */
c906108c 3184
7a78ae4e
ND
3185static struct gdbarch *
3186rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3187{
3188 struct gdbarch *gdbarch;
3189 struct gdbarch_tdep *tdep;
708ff411 3190 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3191 struct reg *regs;
3192 const struct variant *v;
3193 enum bfd_architecture arch;
3194 unsigned long mach;
3195 bfd abfd;
7b112f9c 3196 int sysv_abi;
5bf1c677 3197 asection *sect;
7a78ae4e 3198
9aa1e687 3199 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3200 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3201
9aa1e687
KB
3202 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3203 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3204
3205 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3206
e712c1cf 3207 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3208 that, else choose a likely default. */
9aa1e687 3209 if (from_xcoff_exec)
c906108c 3210 {
11ed25ac 3211 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3212 wordsize = 8;
3213 else
3214 wordsize = 4;
c906108c 3215 }
9aa1e687
KB
3216 else if (from_elf_exec)
3217 {
3218 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3219 wordsize = 8;
3220 else
3221 wordsize = 4;
3222 }
c906108c 3223 else
7a78ae4e 3224 {
27b15785
KB
3225 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3226 wordsize = info.bfd_arch_info->bits_per_word /
3227 info.bfd_arch_info->bits_per_byte;
3228 else
3229 wordsize = 4;
7a78ae4e 3230 }
c906108c 3231
13c0b536 3232 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3233 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3234 arches != NULL;
3235 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3236 {
3237 /* Word size in the various PowerPC bfd_arch_info structs isn't
3238 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3239 separate word size check. */
7a78ae4e 3240 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3241 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3242 return arches->gdbarch;
3243 }
c906108c 3244
7a78ae4e
ND
3245 /* None found, create a new architecture from INFO, whose bfd_arch_info
3246 validity depends on the source:
3247 - executable useless
3248 - rs6000_host_arch() good
3249 - core file good
3250 - "set arch" trust blindly
3251 - GDB startup useless but harmless */
c906108c 3252
9aa1e687 3253 if (!from_xcoff_exec)
c906108c 3254 {
b732d07d 3255 arch = info.bfd_arch_info->arch;
7a78ae4e 3256 mach = info.bfd_arch_info->mach;
c906108c 3257 }
7a78ae4e 3258 else
c906108c 3259 {
7a78ae4e 3260 arch = bfd_arch_powerpc;
35cec841 3261 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3262 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3263 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3264 }
3265 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3266 tdep->wordsize = wordsize;
5bf1c677
EZ
3267
3268 /* For e500 executables, the apuinfo section is of help here. Such
3269 section contains the identifier and revision number of each
3270 Application-specific Processing Unit that is present on the
3271 chip. The content of the section is determined by the assembler
3272 which looks at each instruction and determines which unit (and
3273 which version of it) can execute it. In our case we just look for
3274 the existance of the section. */
3275
3276 if (info.abfd)
3277 {
3278 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3279 if (sect)
3280 {
3281 arch = info.bfd_arch_info->arch;
3282 mach = bfd_mach_ppc_e500;
3283 bfd_default_set_arch_mach (&abfd, arch, mach);
3284 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3285 }
3286 }
3287
7a78ae4e 3288 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3289
489461e2
EZ
3290 /* Initialize the number of real and pseudo registers in each variant. */
3291 init_variants ();
3292
64366f1c 3293 /* Choose variant. */
7a78ae4e
ND
3294 v = find_variant_by_arch (arch, mach);
3295 if (!v)
dd47e6fd
EZ
3296 return NULL;
3297
7a78ae4e
ND
3298 tdep->regs = v->regs;
3299
2188cbdd 3300 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3301 tdep->ppc_toc_regnum = 2;
3302 tdep->ppc_ps_regnum = 65;
3303 tdep->ppc_cr_regnum = 66;
3304 tdep->ppc_lr_regnum = 67;
3305 tdep->ppc_ctr_regnum = 68;
3306 tdep->ppc_xer_regnum = 69;
3307 if (v->mach == bfd_mach_ppc_601)
3308 tdep->ppc_mq_regnum = 124;
708ff411 3309 else if (arch == bfd_arch_rs6000)
2188cbdd 3310 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3311 else
3312 tdep->ppc_mq_regnum = -1;
366f009f 3313 tdep->ppc_fp0_regnum = 32;
708ff411 3314 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3315 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3316 tdep->ppc_vr0_regnum = -1;
3317 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3318 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3319 tdep->ppc_ev0_regnum = -1;
3320 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3321 tdep->ppc_acc_regnum = -1;
3322 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3323
c8001721
EZ
3324 set_gdbarch_pc_regnum (gdbarch, 64);
3325 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3326 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3327 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3328 if (sysv_abi && wordsize == 8)
05580c65 3329 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3330 else if (sysv_abi && wordsize == 4)
05580c65 3331 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3332 else
3333 {
3334 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3335 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3336 }
c8001721 3337
baffbae0
JB
3338 /* Set lr_frame_offset. */
3339 if (wordsize == 8)
3340 tdep->lr_frame_offset = 16;
3341 else if (sysv_abi)
3342 tdep->lr_frame_offset = 4;
3343 else
3344 tdep->lr_frame_offset = 8;
3345
f86a7158
JB
3346 if (v->arch == bfd_arch_rs6000)
3347 tdep->ppc_sr0_regnum = -1;
3348 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3349 switch (v->mach)
3350 {
3351 case bfd_mach_ppc:
412b3060 3352 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3353 tdep->ppc_vr0_regnum = 71;
3354 tdep->ppc_vrsave_regnum = 104;
3355 break;
3356 case bfd_mach_ppc_7400:
3357 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3358 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3359 break;
3360 case bfd_mach_ppc_e500:
c8001721 3361 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3362 tdep->ppc_ev0_upper_regnum = 32;
3363 tdep->ppc_ev0_regnum = 73;
3364 tdep->ppc_ev31_regnum = 104;
3365 tdep->ppc_acc_regnum = 71;
3366 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3367 tdep->ppc_fp0_regnum = -1;
3368 tdep->ppc_fpscr_regnum = -1;
f86a7158 3369 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3370 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3371 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3372 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3373 break;
f86a7158
JB
3374
3375 case bfd_mach_ppc64:
3376 case bfd_mach_ppc_620:
3377 case bfd_mach_ppc_630:
3378 case bfd_mach_ppc_a35:
3379 case bfd_mach_ppc_rs64ii:
3380 case bfd_mach_ppc_rs64iii:
3381 /* These processor's register sets don't have segment registers. */
3382 tdep->ppc_sr0_regnum = -1;
3383 break;
1fcc0bb8 3384 }
f86a7158
JB
3385 else
3386 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3387 _("rs6000_gdbarch_init: "
3388 "received unexpected BFD 'arch' value"));
1fcc0bb8 3389
338ef23d
AC
3390 /* Sanity check on registers. */
3391 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3392
56a6dfb9 3393 /* Select instruction printer. */
708ff411 3394 if (arch == bfd_arch_rs6000)
9364a0ef 3395 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3396 else
9364a0ef 3397 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3398
7a78ae4e 3399 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3400
3401 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3402 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3403 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3404 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3405 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3406
3407 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3408 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3409 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3410 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3411 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3412 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3413 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3414 if (sysv_abi)
3415 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3416 else
3417 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3418 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3419
11269d7e 3420 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3421 if (sysv_abi && wordsize == 8)
3422 /* PPC64 SYSV. */
3423 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3424 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3425 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3426 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3427 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3428 224. */
3429 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3430
691d145a
JB
3431 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3432 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3433 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3434
18ed0c4e
JB
3435 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3436 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3437 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3438 is correct for the SysV ABI when the wordsize is 8, but I'm also
3439 fairly certain that ppc_sysv_abi_push_arguments() will give even
3440 worse results since it only works for 32-bit code. So, for the moment,
3441 we're better off calling rs6000_push_arguments() since it works for
3442 64-bit code. At some point in the future, this matter needs to be
3443 revisited. */
3444 if (sysv_abi && wordsize == 4)
77b2b6d4 3445 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3446 else if (sysv_abi && wordsize == 8)
3447 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3448 else
77b2b6d4 3449 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3450
74055713 3451 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3452
3453 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3454 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3455
7a78ae4e 3456 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3457 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3458
6066c3de
AC
3459 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3460 for the descriptor and ".FN" for the entry-point -- a user
3461 specifying "break FN" will unexpectedly end up with a breakpoint
3462 on the descriptor and not the function. This architecture method
3463 transforms any breakpoints on descriptors into breakpoints on the
3464 corresponding entry point. */
3465 if (sysv_abi && wordsize == 8)
3466 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3467
7a78ae4e
ND
3468 /* Not sure on this. FIXMEmgo */
3469 set_gdbarch_frame_args_skip (gdbarch, 8);
3470
05580c65 3471 if (!sysv_abi)
b5622e8d 3472 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3473
15813d3f
AC
3474 if (!sysv_abi)
3475 {
3476 /* Handle RS/6000 function pointers (which are really function
3477 descriptors). */
f517ea4e
PS
3478 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3479 rs6000_convert_from_func_ptr_addr);
9aa1e687 3480 }
7a78ae4e 3481
143985b7
AF
3482 /* Helpers for function argument information. */
3483 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3484
7b112f9c 3485 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3486 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3487
61a65099
KB
3488 switch (info.osabi)
3489 {
f5aecab8
PG
3490 case GDB_OSABI_LINUX:
3491 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3492 have altivec registers. If not, ptrace will fail the first time it's
3493 called to access one and will not be called again. This wart will
3494 be removed when Daniel Jacobowitz's proposal for autodetecting target
3495 registers is implemented. */
3496 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3497 {
3498 tdep->ppc_vr0_regnum = 71;
3499 tdep->ppc_vrsave_regnum = 104;
3500 }
3501 /* Fall Thru */
61a65099
KB
3502 case GDB_OSABI_NETBSD_AOUT:
3503 case GDB_OSABI_NETBSD_ELF:
3504 case GDB_OSABI_UNKNOWN:
61a65099
KB
3505 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3506 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3507 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3508 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3509 break;
3510 default:
61a65099 3511 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3512
3513 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3514 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3515 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3516 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3517 }
3518
ef5200c1
AC
3519 if (from_xcoff_exec)
3520 {
3521 /* NOTE: jimix/2003-06-09: This test should really check for
3522 GDB_OSABI_AIX when that is defined and becomes
3523 available. (Actually, once things are properly split apart,
3524 the test goes away.) */
3525 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3526 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3527 }
3528
9f643768
JB
3529 init_sim_regno_table (gdbarch);
3530
7a78ae4e 3531 return gdbarch;
c906108c
SS
3532}
3533
7b112f9c
JT
3534static void
3535rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3536{
3537 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3538
3539 if (tdep == NULL)
3540 return;
3541
4be87837 3542 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3543}
3544
c906108c
SS
3545/* Initialization code. */
3546
a78f21af 3547extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3548
c906108c 3549void
fba45db2 3550_initialize_rs6000_tdep (void)
c906108c 3551{
7b112f9c
JT
3552 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3553 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3554}
This page took 0.814682 seconds and 4 git commands to generate.