Move entry for doc/Makefile.in to doc/ChangeLog.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
4fc771b8 43#include "dwarf2-frame.h"
7a78ae4e 44
2fccf04a 45#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
7a78ae4e 52
6ded7999 53#include "solib-svr4.h"
9aa1e687 54#include "ppc-tdep.h"
7a78ae4e 55
338ef23d 56#include "gdb_assert.h"
a89aa300 57#include "dis-asm.h"
338ef23d 58
61a65099
KB
59#include "trad-frame.h"
60#include "frame-unwind.h"
61#include "frame-base.h"
62
1f82754b 63#include "rs6000-tdep.h"
c44ca51c 64
7a78ae4e
ND
65/* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72#define SIG_FRAME_PC_OFFSET 96
73#define SIG_FRAME_LR_OFFSET 108
74#define SIG_FRAME_FP_OFFSET 284
75
7a78ae4e
ND
76/* To be used by skip_prologue. */
77
78struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 85 int saved_vr; /* smallest # of saved vr */
96ff0de4 86 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 92 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 93 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
6be8bc0c 96 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
97 };
98
99/* Description of a single register. */
100
101struct reg
102 {
103 char *name; /* name of register */
0bcc32ae
JB
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 106 unsigned char fpr; /* whether register is floating-point */
489461e2 107 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
7a78ae4e
ND
111 };
112
c906108c
SS
113/* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
7a78ae4e
ND
117CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
c906108c
SS
119/* Static function prototypes */
120
0b1b3e42
UW
121static CORE_ADDR branch_dest (struct frame_info *frame, int opcode,
122 int instr, CORE_ADDR pc, CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
c906108c 125
64b84175
KB
126/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127int
128altivec_register_p (int regno)
129{
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135}
136
383f0f5b 137
867e2dc5
JB
138/* Return true if REGNO is an SPE register, false otherwise. */
139int
140spe_register_p (int regno)
141{
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
6ced10dd
JB
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
867e2dc5
JB
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168}
169
170
383f0f5b
JB
171/* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
173int
174ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175{
383f0f5b
JB
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
0a613259 180}
9f643768 181
09991fa0
JB
182
183/* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
9f643768
JB
190static void
191set_sim_regno (int *table, int gdb_regno, int sim_regno)
192{
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197}
198
09991fa0
JB
199
200/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
203static void
204init_sim_regno_table (struct gdbarch *arch)
205{
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
6ced10dd
JB
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
9f643768
JB
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281}
282
09991fa0
JB
283
284/* Given a GDB register number REG, return the corresponding SIM
285 register number. */
9f643768
JB
286static int
287rs6000_register_sim_regno (int reg)
288{
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
f57d151a
UW
292 gdb_assert (0 <= reg
293 && reg <= gdbarch_num_regs (current_gdbarch)
294 + gdbarch_num_pseudo_regs (current_gdbarch));
9f643768
JB
295 sim_regno = tdep->sim_regno[reg];
296
297 if (sim_regno >= 0)
298 return sim_regno;
299 else
300 return LEGACY_SIM_REGNO_IGNORE;
301}
302
d195bc9f
MK
303\f
304
305/* Register set support functions. */
306
307static void
308ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 309 const gdb_byte *regs, size_t offset)
d195bc9f
MK
310{
311 if (regnum != -1 && offset != -1)
312 regcache_raw_supply (regcache, regnum, regs + offset);
313}
314
315static void
316ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 317 gdb_byte *regs, size_t offset)
d195bc9f
MK
318{
319 if (regnum != -1 && offset != -1)
320 regcache_raw_collect (regcache, regnum, regs + offset);
321}
322
323/* Supply register REGNUM in the general-purpose register set REGSET
324 from the buffer specified by GREGS and LEN to register cache
325 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
326
327void
328ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
329 int regnum, const void *gregs, size_t len)
330{
331 struct gdbarch *gdbarch = get_regcache_arch (regcache);
332 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
333 const struct ppc_reg_offsets *offsets = regset->descr;
334 size_t offset;
335 int i;
336
cdf2c5f5 337 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 338 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 339 i++, offset += 4)
d195bc9f
MK
340 {
341 if (regnum == -1 || regnum == i)
342 ppc_supply_reg (regcache, i, gregs, offset);
343 }
344
345 if (regnum == -1 || regnum == PC_REGNUM)
346 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
347 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
349 gregs, offsets->ps_offset);
350 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
352 gregs, offsets->cr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
355 gregs, offsets->lr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
358 gregs, offsets->ctr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
361 gregs, offsets->cr_offset);
362 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
363 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
364}
365
366/* Supply register REGNUM in the floating-point register set REGSET
367 from the buffer specified by FPREGS and LEN to register cache
368 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
369
370void
371ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
372 int regnum, const void *fpregs, size_t len)
373{
374 struct gdbarch *gdbarch = get_regcache_arch (regcache);
375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
376 const struct ppc_reg_offsets *offsets = regset->descr;
377 size_t offset;
378 int i;
379
383f0f5b
JB
380 gdb_assert (ppc_floating_point_unit_p (gdbarch));
381
d195bc9f 382 offset = offsets->f0_offset;
366f009f
JB
383 for (i = tdep->ppc_fp0_regnum;
384 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 385 i++, offset += 8)
d195bc9f
MK
386 {
387 if (regnum == -1 || regnum == i)
388 ppc_supply_reg (regcache, i, fpregs, offset);
389 }
390
391 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
392 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
393 fpregs, offsets->fpscr_offset);
394}
395
396/* Collect register REGNUM in the general-purpose register set
397 REGSET. from register cache REGCACHE into the buffer specified by
398 GREGS and LEN. If REGNUM is -1, do this for all registers in
399 REGSET. */
400
401void
402ppc_collect_gregset (const struct regset *regset,
403 const struct regcache *regcache,
404 int regnum, void *gregs, size_t len)
405{
406 struct gdbarch *gdbarch = get_regcache_arch (regcache);
407 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
408 const struct ppc_reg_offsets *offsets = regset->descr;
409 size_t offset;
410 int i;
411
412 offset = offsets->r0_offset;
cdf2c5f5 413 for (i = tdep->ppc_gp0_regnum;
063715bf 414 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 415 i++, offset += 4)
d195bc9f
MK
416 {
417 if (regnum == -1 || regnum == i)
2e56e9c1 418 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
419 }
420
421 if (regnum == -1 || regnum == PC_REGNUM)
422 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
423 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
425 gregs, offsets->ps_offset);
426 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
428 gregs, offsets->cr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
431 gregs, offsets->lr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
434 gregs, offsets->ctr_offset);
435 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
437 gregs, offsets->xer_offset);
438 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
439 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
440 gregs, offsets->mq_offset);
441}
442
443/* Collect register REGNUM in the floating-point register set
444 REGSET. from register cache REGCACHE into the buffer specified by
445 FPREGS and LEN. If REGNUM is -1, do this for all registers in
446 REGSET. */
447
448void
449ppc_collect_fpregset (const struct regset *regset,
450 const struct regcache *regcache,
451 int regnum, void *fpregs, size_t len)
452{
453 struct gdbarch *gdbarch = get_regcache_arch (regcache);
454 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
455 const struct ppc_reg_offsets *offsets = regset->descr;
456 size_t offset;
457 int i;
458
383f0f5b
JB
459 gdb_assert (ppc_floating_point_unit_p (gdbarch));
460
d195bc9f 461 offset = offsets->f0_offset;
366f009f
JB
462 for (i = tdep->ppc_fp0_regnum;
463 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 464 i++, offset += 8)
d195bc9f
MK
465 {
466 if (regnum == -1 || regnum == i)
bdbcb8b4 467 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
468 }
469
470 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
471 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
472 fpregs, offsets->fpscr_offset);
473}
474\f
0a613259 475
7a78ae4e 476/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 477
7a78ae4e
ND
478static CORE_ADDR
479read_memory_addr (CORE_ADDR memaddr, int len)
480{
481 return read_memory_unsigned_integer (memaddr, len);
482}
c906108c 483
7a78ae4e
ND
484static CORE_ADDR
485rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
486{
487 struct rs6000_framedata frame;
4e463ff5
DJ
488 CORE_ADDR limit_pc, func_addr;
489
490 /* See if we can determine the end of the prologue via the symbol table.
491 If so, then return either PC, or the PC after the prologue, whichever
492 is greater. */
493 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
494 {
495 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
496 if (post_prologue_pc != 0)
497 return max (pc, post_prologue_pc);
498 }
499
500 /* Can't determine prologue from the symbol table, need to examine
501 instructions. */
502
503 /* Find an upper limit on the function prologue using the debug
504 information. If the debug information could not be used to provide
505 that bound, then use an arbitrary large number as the upper bound. */
506 limit_pc = skip_prologue_using_sal (pc);
507 if (limit_pc == 0)
508 limit_pc = pc + 100; /* Magic. */
509
510 pc = skip_prologue (pc, limit_pc, &frame);
b83266a0
SS
511 return pc;
512}
513
0d1243d9
PG
514static int
515insn_changes_sp_or_jumps (unsigned long insn)
516{
517 int opcode = (insn >> 26) & 0x03f;
518 int sd = (insn >> 21) & 0x01f;
519 int a = (insn >> 16) & 0x01f;
520 int subcode = (insn >> 1) & 0x3ff;
521
522 /* Changes the stack pointer. */
523
524 /* NOTE: There are many ways to change the value of a given register.
525 The ways below are those used when the register is R1, the SP,
526 in a funtion's epilogue. */
527
528 if (opcode == 31 && subcode == 444 && a == 1)
529 return 1; /* mr R1,Rn */
530 if (opcode == 14 && sd == 1)
531 return 1; /* addi R1,Rn,simm */
532 if (opcode == 58 && sd == 1)
533 return 1; /* ld R1,ds(Rn) */
534
535 /* Transfers control. */
536
537 if (opcode == 18)
538 return 1; /* b */
539 if (opcode == 16)
540 return 1; /* bc */
541 if (opcode == 19 && subcode == 16)
542 return 1; /* bclr */
543 if (opcode == 19 && subcode == 528)
544 return 1; /* bcctr */
545
546 return 0;
547}
548
549/* Return true if we are in the function's epilogue, i.e. after the
550 instruction that destroyed the function's stack frame.
551
552 1) scan forward from the point of execution:
553 a) If you find an instruction that modifies the stack pointer
554 or transfers control (except a return), execution is not in
555 an epilogue, return.
556 b) Stop scanning if you find a return instruction or reach the
557 end of the function or reach the hard limit for the size of
558 an epilogue.
559 2) scan backward from the point of execution:
560 a) If you find an instruction that modifies the stack pointer,
561 execution *is* in an epilogue, return.
562 b) Stop scanning if you reach an instruction that transfers
563 control or the beginning of the function or reach the hard
564 limit for the size of an epilogue. */
565
566static int
567rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
568{
569 bfd_byte insn_buf[PPC_INSN_SIZE];
570 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
571 unsigned long insn;
572 struct frame_info *curfrm;
573
574 /* Find the search limits based on function boundaries and hard limit. */
575
576 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
577 return 0;
578
579 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
580 if (epilogue_start < func_start) epilogue_start = func_start;
581
582 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
583 if (epilogue_end > func_end) epilogue_end = func_end;
584
585 curfrm = get_current_frame ();
586
587 /* Scan forward until next 'blr'. */
588
589 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
590 {
591 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
592 return 0;
4e463ff5 593 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
594 if (insn == 0x4e800020)
595 break;
596 if (insn_changes_sp_or_jumps (insn))
597 return 0;
598 }
599
600 /* Scan backward until adjustment to stack pointer (R1). */
601
602 for (scan_pc = pc - PPC_INSN_SIZE;
603 scan_pc >= epilogue_start;
604 scan_pc -= PPC_INSN_SIZE)
605 {
606 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
607 return 0;
4e463ff5 608 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
609 if (insn_changes_sp_or_jumps (insn))
610 return 1;
611 }
612
613 return 0;
614}
615
143985b7 616/* Get the ith function argument for the current function. */
b9362cc7 617static CORE_ADDR
143985b7
AF
618rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
619 struct type *type)
620{
50fd1280 621 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
622}
623
c906108c
SS
624/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
625
626static CORE_ADDR
0b1b3e42
UW
627branch_dest (struct frame_info *frame, int opcode, int instr,
628 CORE_ADDR pc, CORE_ADDR safety)
c906108c 629{
0b1b3e42 630 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
c906108c
SS
631 CORE_ADDR dest;
632 int immediate;
633 int absolute;
634 int ext_op;
635
636 absolute = (int) ((instr >> 1) & 1);
637
c5aa993b
JM
638 switch (opcode)
639 {
640 case 18:
641 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
642 if (absolute)
643 dest = immediate;
644 else
645 dest = pc + immediate;
646 break;
647
648 case 16:
649 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
650 if (absolute)
651 dest = immediate;
652 else
653 dest = pc + immediate;
654 break;
655
656 case 19:
657 ext_op = (instr >> 1) & 0x3ff;
658
659 if (ext_op == 16) /* br conditional register */
660 {
0b1b3e42 661 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
662
663 /* If we are about to return from a signal handler, dest is
664 something like 0x3c90. The current frame is a signal handler
665 caller frame, upon completion of the sigreturn system call
666 execution will return to the saved PC in the frame. */
0b1b3e42
UW
667 if (dest < tdep->text_segment_base)
668 dest = read_memory_addr (get_frame_base (frame) + SIG_FRAME_PC_OFFSET,
669 tdep->wordsize);
c5aa993b
JM
670 }
671
672 else if (ext_op == 528) /* br cond to count reg */
673 {
0b1b3e42 674 dest = get_frame_register_unsigned (frame, tdep->ppc_ctr_regnum) & ~3;
c5aa993b
JM
675
676 /* If we are about to execute a system call, dest is something
677 like 0x22fc or 0x3b00. Upon completion the system call
678 will return to the address in the link register. */
0b1b3e42
UW
679 if (dest < tdep->text_segment_base)
680 dest = get_frame_register_unsigned (frame, tdep->ppc_lr_regnum) & ~3;
c5aa993b
JM
681 }
682 else
683 return -1;
684 break;
c906108c 685
c5aa993b
JM
686 default:
687 return -1;
688 }
0b1b3e42 689 return (dest < tdep->text_segment_base) ? safety : dest;
c906108c
SS
690}
691
692
693/* Sequence of bytes for breakpoint instruction. */
694
f4f9705a 695const static unsigned char *
7a78ae4e 696rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 697{
aaab4dba
AC
698 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
699 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 700 *bp_size = 4;
4c6b5505 701 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
702 return big_breakpoint;
703 else
704 return little_breakpoint;
705}
706
707
ce5eab59
UW
708/* Instruction masks used during single-stepping of atomic sequences. */
709#define LWARX_MASK 0xfc0007fe
710#define LWARX_INSTRUCTION 0x7c000028
711#define LDARX_INSTRUCTION 0x7c0000A8
712#define STWCX_MASK 0xfc0007ff
713#define STWCX_INSTRUCTION 0x7c00012d
714#define STDCX_INSTRUCTION 0x7c0001ad
715#define BC_MASK 0xfc000000
716#define BC_INSTRUCTION 0x40000000
717
718/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
719 instruction and ending with a STWCX/STDCX instruction. If such a sequence
720 is found, attempt to step through it. A breakpoint is placed at the end of
721 the sequence. */
722
723static int
0b1b3e42 724deal_with_atomic_sequence (struct frame_info *frame)
ce5eab59 725{
0b1b3e42 726 CORE_ADDR pc = get_frame_pc (frame);
ce5eab59
UW
727 CORE_ADDR breaks[2] = {-1, -1};
728 CORE_ADDR loc = pc;
729 CORE_ADDR branch_bp; /* Breakpoint at branch instruction's destination. */
24d45690 730 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
ce5eab59
UW
731 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
732 int insn_count;
733 int index;
734 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
735 const int atomic_sequence_length = 16; /* Instruction sequence length. */
24d45690 736 int opcode; /* Branch instruction's OPcode. */
ce5eab59
UW
737 int bc_insn_count = 0; /* Conditional branch instruction count. */
738
739 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
740 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
741 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
742 return 0;
743
744 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
745 instructions. */
746 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
747 {
748 loc += PPC_INSN_SIZE;
749 insn = read_memory_integer (loc, PPC_INSN_SIZE);
750
751 /* Assume that there is at most one conditional branch in the atomic
752 sequence. If a conditional branch is found, put a breakpoint in
753 its destination address. */
754 if ((insn & BC_MASK) == BC_INSTRUCTION)
755 {
756 if (bc_insn_count >= 1)
757 return 0; /* More than one conditional branch found, fallback
758 to the standard single-step code. */
759
24d45690 760 opcode = insn >> 26;
0b1b3e42 761 branch_bp = branch_dest (frame, opcode, insn, pc, breaks[0]);
ce5eab59
UW
762
763 if (branch_bp != -1)
764 {
765 breaks[1] = branch_bp;
766 bc_insn_count++;
767 last_breakpoint++;
768 }
769 }
770
771 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
772 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
773 break;
774 }
775
776 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
777 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
778 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
779 return 0;
780
24d45690 781 closing_insn = loc;
ce5eab59
UW
782 loc += PPC_INSN_SIZE;
783 insn = read_memory_integer (loc, PPC_INSN_SIZE);
784
785 /* Insert a breakpoint right after the end of the atomic sequence. */
786 breaks[0] = loc;
787
24d45690
UW
788 /* Check for duplicated breakpoints. Check also for a breakpoint
789 placed (branch instruction's destination) at the stwcx/stdcx
790 instruction, this resets the reservation and take us back to the
791 lwarx/ldarx instruction at the beginning of the atomic sequence. */
792 if (last_breakpoint && ((breaks[1] == breaks[0])
793 || (breaks[1] == closing_insn)))
ce5eab59
UW
794 last_breakpoint = 0;
795
796 /* Effectively inserts the breakpoints. */
797 for (index = 0; index <= last_breakpoint; index++)
798 insert_single_step_breakpoint (breaks[index]);
799
800 return 1;
801}
802
803/* AIX does not support PT_STEP. Simulate it. */
c906108c 804
e6590a1b 805int
0b1b3e42 806rs6000_software_single_step (struct frame_info *frame)
c906108c 807{
7c40d541
KB
808 CORE_ADDR dummy;
809 int breakp_sz;
50fd1280 810 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
811 int ii, insn;
812 CORE_ADDR loc;
813 CORE_ADDR breaks[2];
814 int opcode;
815
0b1b3e42 816 loc = get_frame_pc (frame);
c906108c 817
e0cd558a 818 insn = read_memory_integer (loc, 4);
c906108c 819
0b1b3e42 820 if (deal_with_atomic_sequence (frame))
ce5eab59
UW
821 return 1;
822
e0cd558a
UW
823 breaks[0] = loc + breakp_sz;
824 opcode = insn >> 26;
0b1b3e42 825 breaks[1] = branch_dest (frame, opcode, insn, loc, breaks[0]);
c906108c 826
e0cd558a
UW
827 /* Don't put two breakpoints on the same address. */
828 if (breaks[1] == breaks[0])
829 breaks[1] = -1;
c906108c 830
e0cd558a
UW
831 for (ii = 0; ii < 2; ++ii)
832 {
833 /* ignore invalid breakpoint. */
834 if (breaks[ii] == -1)
835 continue;
836 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 837 }
c906108c 838
c906108c 839 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 840 /* What errors? {read,write}_memory call error(). */
e6590a1b 841 return 1;
c906108c
SS
842}
843
844
845/* return pc value after skipping a function prologue and also return
846 information about a function frame.
847
848 in struct rs6000_framedata fdata:
c5aa993b
JM
849 - frameless is TRUE, if function does not have a frame.
850 - nosavedpc is TRUE, if function does not save %pc value in its frame.
851 - offset is the initial size of this stack frame --- the amount by
852 which we decrement the sp to allocate the frame.
853 - saved_gpr is the number of the first saved gpr.
854 - saved_fpr is the number of the first saved fpr.
6be8bc0c 855 - saved_vr is the number of the first saved vr.
96ff0de4 856 - saved_ev is the number of the first saved ev.
c5aa993b
JM
857 - alloca_reg is the number of the register used for alloca() handling.
858 Otherwise -1.
859 - gpr_offset is the offset of the first saved gpr from the previous frame.
860 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 861 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 862 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
863 - lr_offset is the offset of the saved lr
864 - cr_offset is the offset of the saved cr
6be8bc0c 865 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 866 */
c906108c
SS
867
868#define SIGNED_SHORT(x) \
869 ((sizeof (short) == 2) \
870 ? ((int)(short)(x)) \
871 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
872
873#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
874
55d05f3b
KB
875/* Limit the number of skipped non-prologue instructions, as the examining
876 of the prologue is expensive. */
877static int max_skip_non_prologue_insns = 10;
878
773df3e5
JB
879/* Return nonzero if the given instruction OP can be part of the prologue
880 of a function and saves a parameter on the stack. FRAMEP should be
881 set if one of the previous instructions in the function has set the
882 Frame Pointer. */
883
884static int
885store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
886{
887 /* Move parameters from argument registers to temporary register. */
888 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
889 {
890 /* Rx must be scratch register r0. */
891 const int rx_regno = (op >> 16) & 31;
892 /* Ry: Only r3 - r10 are used for parameter passing. */
893 const int ry_regno = GET_SRC_REG (op);
894
895 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
896 {
897 *r0_contains_arg = 1;
898 return 1;
899 }
900 else
901 return 0;
902 }
903
904 /* Save a General Purpose Register on stack. */
905
906 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
907 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
908 {
909 /* Rx: Only r3 - r10 are used for parameter passing. */
910 const int rx_regno = GET_SRC_REG (op);
911
912 return (rx_regno >= 3 && rx_regno <= 10);
913 }
914
915 /* Save a General Purpose Register on stack via the Frame Pointer. */
916
917 if (framep &&
918 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
919 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
920 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
921 {
922 /* Rx: Usually, only r3 - r10 are used for parameter passing.
923 However, the compiler sometimes uses r0 to hold an argument. */
924 const int rx_regno = GET_SRC_REG (op);
925
926 return ((rx_regno >= 3 && rx_regno <= 10)
927 || (rx_regno == 0 && *r0_contains_arg));
928 }
929
930 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
931 {
932 /* Only f2 - f8 are used for parameter passing. */
933 const int src_regno = GET_SRC_REG (op);
934
935 return (src_regno >= 2 && src_regno <= 8);
936 }
937
938 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
939 {
940 /* Only f2 - f8 are used for parameter passing. */
941 const int src_regno = GET_SRC_REG (op);
942
943 return (src_regno >= 2 && src_regno <= 8);
944 }
945
946 /* Not an insn that saves a parameter on stack. */
947 return 0;
948}
55d05f3b 949
3c77c82a
DJ
950/* Assuming that INSN is a "bl" instruction located at PC, return
951 nonzero if the destination of the branch is a "blrl" instruction.
952
953 This sequence is sometimes found in certain function prologues.
954 It allows the function to load the LR register with a value that
955 they can use to access PIC data using PC-relative offsets. */
956
957static int
958bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
959{
0b1b3e42
UW
960 CORE_ADDR dest;
961 int immediate;
962 int absolute;
3c77c82a
DJ
963 int dest_insn;
964
0b1b3e42
UW
965 absolute = (int) ((insn >> 1) & 1);
966 immediate = ((insn & ~3) << 6) >> 6;
967 if (absolute)
968 dest = immediate;
969 else
970 dest = pc + immediate;
971
3c77c82a
DJ
972 dest_insn = read_memory_integer (dest, 4);
973 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
974 return 1;
975
976 return 0;
977}
978
7a78ae4e 979static CORE_ADDR
077276e8 980skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
981{
982 CORE_ADDR orig_pc = pc;
55d05f3b 983 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 984 CORE_ADDR li_found_pc = 0;
50fd1280 985 gdb_byte buf[4];
c906108c
SS
986 unsigned long op;
987 long offset = 0;
6be8bc0c 988 long vr_saved_offset = 0;
482ca3f5
KB
989 int lr_reg = -1;
990 int cr_reg = -1;
6be8bc0c 991 int vr_reg = -1;
96ff0de4
EZ
992 int ev_reg = -1;
993 long ev_offset = 0;
6be8bc0c 994 int vrsave_reg = -1;
c906108c
SS
995 int reg;
996 int framep = 0;
997 int minimal_toc_loaded = 0;
ddb20c56 998 int prev_insn_was_prologue_insn = 1;
55d05f3b 999 int num_skip_non_prologue_insns = 0;
773df3e5 1000 int r0_contains_arg = 0;
96ff0de4 1001 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 1002 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1003
ddb20c56 1004 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1005 fdata->saved_gpr = -1;
1006 fdata->saved_fpr = -1;
6be8bc0c 1007 fdata->saved_vr = -1;
96ff0de4 1008 fdata->saved_ev = -1;
c906108c
SS
1009 fdata->alloca_reg = -1;
1010 fdata->frameless = 1;
1011 fdata->nosavedpc = 1;
1012
55d05f3b 1013 for (;; pc += 4)
c906108c 1014 {
ddb20c56
KB
1015 /* Sometimes it isn't clear if an instruction is a prologue
1016 instruction or not. When we encounter one of these ambiguous
1017 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1018 Otherwise, we'll assume that it really is a prologue instruction. */
1019 if (prev_insn_was_prologue_insn)
1020 last_prologue_pc = pc;
55d05f3b
KB
1021
1022 /* Stop scanning if we've hit the limit. */
4e463ff5 1023 if (pc >= lim_pc)
55d05f3b
KB
1024 break;
1025
ddb20c56
KB
1026 prev_insn_was_prologue_insn = 1;
1027
55d05f3b 1028 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1029 if (target_read_memory (pc, buf, 4))
1030 break;
4e463ff5 1031 op = extract_unsigned_integer (buf, 4);
c906108c 1032
c5aa993b
JM
1033 if ((op & 0xfc1fffff) == 0x7c0802a6)
1034 { /* mflr Rx */
43b1ab88
AC
1035 /* Since shared library / PIC code, which needs to get its
1036 address at runtime, can appear to save more than one link
1037 register vis:
1038
1039 *INDENT-OFF*
1040 stwu r1,-304(r1)
1041 mflr r3
1042 bl 0xff570d0 (blrl)
1043 stw r30,296(r1)
1044 mflr r30
1045 stw r31,300(r1)
1046 stw r3,308(r1);
1047 ...
1048 *INDENT-ON*
1049
1050 remember just the first one, but skip over additional
1051 ones. */
721d14ba 1052 if (lr_reg == -1)
43b1ab88 1053 lr_reg = (op & 0x03e00000);
773df3e5
JB
1054 if (lr_reg == 0)
1055 r0_contains_arg = 0;
c5aa993b 1056 continue;
c5aa993b
JM
1057 }
1058 else if ((op & 0xfc1fffff) == 0x7c000026)
1059 { /* mfcr Rx */
98f08d3d 1060 cr_reg = (op & 0x03e00000);
773df3e5
JB
1061 if (cr_reg == 0)
1062 r0_contains_arg = 0;
c5aa993b 1063 continue;
c906108c 1064
c906108c 1065 }
c5aa993b
JM
1066 else if ((op & 0xfc1f0000) == 0xd8010000)
1067 { /* stfd Rx,NUM(r1) */
1068 reg = GET_SRC_REG (op);
1069 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1070 {
1071 fdata->saved_fpr = reg;
1072 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1073 }
1074 continue;
c906108c 1075
c5aa993b
JM
1076 }
1077 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1078 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1079 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1080 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1081 {
1082
1083 reg = GET_SRC_REG (op);
1084 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1085 {
1086 fdata->saved_gpr = reg;
7a78ae4e 1087 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1088 op &= ~3UL;
c5aa993b
JM
1089 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1090 }
1091 continue;
c906108c 1092
ddb20c56
KB
1093 }
1094 else if ((op & 0xffff0000) == 0x60000000)
1095 {
96ff0de4 1096 /* nop */
ddb20c56
KB
1097 /* Allow nops in the prologue, but do not consider them to
1098 be part of the prologue unless followed by other prologue
1099 instructions. */
1100 prev_insn_was_prologue_insn = 0;
1101 continue;
1102
c906108c 1103 }
c5aa993b
JM
1104 else if ((op & 0xffff0000) == 0x3c000000)
1105 { /* addis 0,0,NUM, used
1106 for >= 32k frames */
1107 fdata->offset = (op & 0x0000ffff) << 16;
1108 fdata->frameless = 0;
773df3e5 1109 r0_contains_arg = 0;
c5aa993b
JM
1110 continue;
1111
1112 }
1113 else if ((op & 0xffff0000) == 0x60000000)
1114 { /* ori 0,0,NUM, 2nd ha
1115 lf of >= 32k frames */
1116 fdata->offset |= (op & 0x0000ffff);
1117 fdata->frameless = 0;
773df3e5 1118 r0_contains_arg = 0;
c5aa993b
JM
1119 continue;
1120
1121 }
be723e22 1122 else if (lr_reg >= 0 &&
98f08d3d
KB
1123 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1124 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1125 /* stw Rx, NUM(r1) */
1126 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1127 /* stwu Rx, NUM(r1) */
1128 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1129 { /* where Rx == lr */
1130 fdata->lr_offset = offset;
c5aa993b 1131 fdata->nosavedpc = 0;
be723e22
MS
1132 /* Invalidate lr_reg, but don't set it to -1.
1133 That would mean that it had never been set. */
1134 lr_reg = -2;
98f08d3d
KB
1135 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1136 (op & 0xfc000000) == 0x90000000) /* stw */
1137 {
1138 /* Does not update r1, so add displacement to lr_offset. */
1139 fdata->lr_offset += SIGNED_SHORT (op);
1140 }
c5aa993b
JM
1141 continue;
1142
1143 }
be723e22 1144 else if (cr_reg >= 0 &&
98f08d3d
KB
1145 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1146 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1147 /* stw Rx, NUM(r1) */
1148 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1149 /* stwu Rx, NUM(r1) */
1150 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1151 { /* where Rx == cr */
1152 fdata->cr_offset = offset;
be723e22
MS
1153 /* Invalidate cr_reg, but don't set it to -1.
1154 That would mean that it had never been set. */
1155 cr_reg = -2;
98f08d3d
KB
1156 if ((op & 0xfc000003) == 0xf8000000 ||
1157 (op & 0xfc000000) == 0x90000000)
1158 {
1159 /* Does not update r1, so add displacement to cr_offset. */
1160 fdata->cr_offset += SIGNED_SHORT (op);
1161 }
c5aa993b
JM
1162 continue;
1163
1164 }
721d14ba
DJ
1165 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1166 {
1167 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1168 prediction bits. If the LR has already been saved, we can
1169 skip it. */
1170 continue;
1171 }
c5aa993b
JM
1172 else if (op == 0x48000005)
1173 { /* bl .+4 used in
1174 -mrelocatable */
1175 continue;
1176
1177 }
1178 else if (op == 0x48000004)
1179 { /* b .+4 (xlc) */
1180 break;
1181
c5aa993b 1182 }
6be8bc0c
EZ
1183 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1184 in V.4 -mminimal-toc */
c5aa993b
JM
1185 (op & 0xffff0000) == 0x3bde0000)
1186 { /* addi 30,30,foo@l */
1187 continue;
c906108c 1188
c5aa993b
JM
1189 }
1190 else if ((op & 0xfc000001) == 0x48000001)
1191 { /* bl foo,
1192 to save fprs??? */
c906108c 1193
c5aa993b 1194 fdata->frameless = 0;
3c77c82a
DJ
1195
1196 /* If the return address has already been saved, we can skip
1197 calls to blrl (for PIC). */
1198 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1199 continue;
1200
6be8bc0c 1201 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1202 the first three instructions of the prologue and either
1203 we have no line table information or the line info tells
1204 us that the subroutine call is not part of the line
1205 associated with the prologue. */
c5aa993b 1206 if ((pc - orig_pc) > 8)
ebd98106
FF
1207 {
1208 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1209 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1210
1211 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1212 break;
1213 }
c5aa993b
JM
1214
1215 op = read_memory_integer (pc + 4, 4);
1216
6be8bc0c
EZ
1217 /* At this point, make sure this is not a trampoline
1218 function (a function that simply calls another functions,
1219 and nothing else). If the next is not a nop, this branch
1220 was part of the function prologue. */
c5aa993b
JM
1221
1222 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1223 break; /* don't skip over
1224 this branch */
1225 continue;
1226
c5aa993b 1227 }
98f08d3d
KB
1228 /* update stack pointer */
1229 else if ((op & 0xfc1f0000) == 0x94010000)
1230 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1231 fdata->frameless = 0;
1232 fdata->offset = SIGNED_SHORT (op);
1233 offset = fdata->offset;
1234 continue;
c5aa993b 1235 }
98f08d3d
KB
1236 else if ((op & 0xfc1f016a) == 0x7c01016e)
1237 { /* stwux rX,r1,rY */
1238 /* no way to figure out what r1 is going to be */
1239 fdata->frameless = 0;
1240 offset = fdata->offset;
1241 continue;
1242 }
1243 else if ((op & 0xfc1f0003) == 0xf8010001)
1244 { /* stdu rX,NUM(r1) */
1245 fdata->frameless = 0;
1246 fdata->offset = SIGNED_SHORT (op & ~3UL);
1247 offset = fdata->offset;
1248 continue;
1249 }
1250 else if ((op & 0xfc1f016a) == 0x7c01016a)
1251 { /* stdux rX,r1,rY */
1252 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1253 fdata->frameless = 0;
1254 offset = fdata->offset;
1255 continue;
c5aa993b 1256 }
7313566f
FF
1257 else if ((op & 0xffff0000) == 0x38210000)
1258 { /* addi r1,r1,SIMM */
1259 fdata->frameless = 0;
1260 fdata->offset += SIGNED_SHORT (op);
1261 offset = fdata->offset;
1262 continue;
1263 }
4e463ff5
DJ
1264 /* Load up minimal toc pointer. Do not treat an epilogue restore
1265 of r31 as a minimal TOC load. */
98f08d3d
KB
1266 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1267 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1268 && !framep
c5aa993b 1269 && !minimal_toc_loaded)
98f08d3d 1270 {
c5aa993b
JM
1271 minimal_toc_loaded = 1;
1272 continue;
1273
f6077098
KB
1274 /* move parameters from argument registers to local variable
1275 registers */
1276 }
1277 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1278 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1279 (((op >> 21) & 31) <= 10) &&
96ff0de4 1280 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1281 {
1282 continue;
1283
c5aa993b
JM
1284 /* store parameters in stack */
1285 }
e802b915 1286 /* Move parameters from argument registers to temporary register. */
773df3e5 1287 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1288 {
c5aa993b
JM
1289 continue;
1290
1291 /* Set up frame pointer */
1292 }
1293 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1294 || op == 0x7c3f0b78)
1295 { /* mr r31, r1 */
1296 fdata->frameless = 0;
1297 framep = 1;
6f99cb26 1298 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1299 continue;
1300
1301 /* Another way to set up the frame pointer. */
1302 }
1303 else if ((op & 0xfc1fffff) == 0x38010000)
1304 { /* addi rX, r1, 0x0 */
1305 fdata->frameless = 0;
1306 framep = 1;
6f99cb26
AC
1307 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1308 + ((op & ~0x38010000) >> 21));
c5aa993b 1309 continue;
c5aa993b 1310 }
6be8bc0c
EZ
1311 /* AltiVec related instructions. */
1312 /* Store the vrsave register (spr 256) in another register for
1313 later manipulation, or load a register into the vrsave
1314 register. 2 instructions are used: mfvrsave and
1315 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1316 and mtspr SPR256, Rn. */
1317 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1318 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1319 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1320 {
1321 vrsave_reg = GET_SRC_REG (op);
1322 continue;
1323 }
1324 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1325 {
1326 continue;
1327 }
1328 /* Store the register where vrsave was saved to onto the stack:
1329 rS is the register where vrsave was stored in a previous
1330 instruction. */
1331 /* 100100 sssss 00001 dddddddd dddddddd */
1332 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1333 {
1334 if (vrsave_reg == GET_SRC_REG (op))
1335 {
1336 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1337 vrsave_reg = -1;
1338 }
1339 continue;
1340 }
1341 /* Compute the new value of vrsave, by modifying the register
1342 where vrsave was saved to. */
1343 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1344 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1345 {
1346 continue;
1347 }
1348 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1349 in a pair of insns to save the vector registers on the
1350 stack. */
1351 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1352 /* 001110 01110 00000 iiii iiii iiii iiii */
1353 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1354 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1355 {
773df3e5
JB
1356 if ((op & 0xffff0000) == 0x38000000)
1357 r0_contains_arg = 0;
6be8bc0c
EZ
1358 li_found_pc = pc;
1359 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1360
1361 /* This insn by itself is not part of the prologue, unless
1362 if part of the pair of insns mentioned above. So do not
1363 record this insn as part of the prologue yet. */
1364 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1365 }
1366 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1367 /* 011111 sssss 11111 00000 00111001110 */
1368 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1369 {
1370 if (pc == (li_found_pc + 4))
1371 {
1372 vr_reg = GET_SRC_REG (op);
1373 /* If this is the first vector reg to be saved, or if
1374 it has a lower number than others previously seen,
1375 reupdate the frame info. */
1376 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1377 {
1378 fdata->saved_vr = vr_reg;
1379 fdata->vr_offset = vr_saved_offset + offset;
1380 }
1381 vr_saved_offset = -1;
1382 vr_reg = -1;
1383 li_found_pc = 0;
1384 }
1385 }
1386 /* End AltiVec related instructions. */
96ff0de4
EZ
1387
1388 /* Start BookE related instructions. */
1389 /* Store gen register S at (r31+uimm).
1390 Any register less than r13 is volatile, so we don't care. */
1391 /* 000100 sssss 11111 iiiii 01100100001 */
1392 else if (arch_info->mach == bfd_mach_ppc_e500
1393 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1394 {
1395 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1396 {
1397 unsigned int imm;
1398 ev_reg = GET_SRC_REG (op);
1399 imm = (op >> 11) & 0x1f;
1400 ev_offset = imm * 8;
1401 /* If this is the first vector reg to be saved, or if
1402 it has a lower number than others previously seen,
1403 reupdate the frame info. */
1404 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1405 {
1406 fdata->saved_ev = ev_reg;
1407 fdata->ev_offset = ev_offset + offset;
1408 }
1409 }
1410 continue;
1411 }
1412 /* Store gen register rS at (r1+rB). */
1413 /* 000100 sssss 00001 bbbbb 01100100000 */
1414 else if (arch_info->mach == bfd_mach_ppc_e500
1415 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1416 {
1417 if (pc == (li_found_pc + 4))
1418 {
1419 ev_reg = GET_SRC_REG (op);
1420 /* If this is the first vector reg to be saved, or if
1421 it has a lower number than others previously seen,
1422 reupdate the frame info. */
1423 /* We know the contents of rB from the previous instruction. */
1424 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1425 {
1426 fdata->saved_ev = ev_reg;
1427 fdata->ev_offset = vr_saved_offset + offset;
1428 }
1429 vr_saved_offset = -1;
1430 ev_reg = -1;
1431 li_found_pc = 0;
1432 }
1433 continue;
1434 }
1435 /* Store gen register r31 at (rA+uimm). */
1436 /* 000100 11111 aaaaa iiiii 01100100001 */
1437 else if (arch_info->mach == bfd_mach_ppc_e500
1438 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1439 {
1440 /* Wwe know that the source register is 31 already, but
1441 it can't hurt to compute it. */
1442 ev_reg = GET_SRC_REG (op);
1443 ev_offset = ((op >> 11) & 0x1f) * 8;
1444 /* If this is the first vector reg to be saved, or if
1445 it has a lower number than others previously seen,
1446 reupdate the frame info. */
1447 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1448 {
1449 fdata->saved_ev = ev_reg;
1450 fdata->ev_offset = ev_offset + offset;
1451 }
1452
1453 continue;
1454 }
1455 /* Store gen register S at (r31+r0).
1456 Store param on stack when offset from SP bigger than 4 bytes. */
1457 /* 000100 sssss 11111 00000 01100100000 */
1458 else if (arch_info->mach == bfd_mach_ppc_e500
1459 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1460 {
1461 if (pc == (li_found_pc + 4))
1462 {
1463 if ((op & 0x03e00000) >= 0x01a00000)
1464 {
1465 ev_reg = GET_SRC_REG (op);
1466 /* If this is the first vector reg to be saved, or if
1467 it has a lower number than others previously seen,
1468 reupdate the frame info. */
1469 /* We know the contents of r0 from the previous
1470 instruction. */
1471 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1472 {
1473 fdata->saved_ev = ev_reg;
1474 fdata->ev_offset = vr_saved_offset + offset;
1475 }
1476 ev_reg = -1;
1477 }
1478 vr_saved_offset = -1;
1479 li_found_pc = 0;
1480 continue;
1481 }
1482 }
1483 /* End BookE related instructions. */
1484
c5aa993b
JM
1485 else
1486 {
55d05f3b
KB
1487 /* Not a recognized prologue instruction.
1488 Handle optimizer code motions into the prologue by continuing
1489 the search if we have no valid frame yet or if the return
1490 address is not yet saved in the frame. */
4e463ff5 1491 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
55d05f3b
KB
1492 break;
1493
1494 if (op == 0x4e800020 /* blr */
1495 || op == 0x4e800420) /* bctr */
1496 /* Do not scan past epilogue in frameless functions or
1497 trampolines. */
1498 break;
1499 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1500 /* Never skip branches. */
55d05f3b
KB
1501 break;
1502
1503 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1504 /* Do not scan too many insns, scanning insns is expensive with
1505 remote targets. */
1506 break;
1507
1508 /* Continue scanning. */
1509 prev_insn_was_prologue_insn = 0;
1510 continue;
c5aa993b 1511 }
c906108c
SS
1512 }
1513
1514#if 0
1515/* I have problems with skipping over __main() that I need to address
1516 * sometime. Previously, I used to use misc_function_vector which
1517 * didn't work as well as I wanted to be. -MGO */
1518
1519 /* If the first thing after skipping a prolog is a branch to a function,
1520 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1521 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1522 work before calling a function right after a prologue, thus we can
64366f1c 1523 single out such gcc2 behaviour. */
c906108c 1524
c906108c 1525
c5aa993b
JM
1526 if ((op & 0xfc000001) == 0x48000001)
1527 { /* bl foo, an initializer function? */
1528 op = read_memory_integer (pc + 4, 4);
1529
1530 if (op == 0x4def7b82)
1531 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1532
64366f1c
EZ
1533 /* Check and see if we are in main. If so, skip over this
1534 initializer function as well. */
c906108c 1535
c5aa993b 1536 tmp = find_pc_misc_function (pc);
6314a349
AC
1537 if (tmp >= 0
1538 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1539 return pc + 8;
1540 }
c906108c 1541 }
c906108c 1542#endif /* 0 */
c5aa993b
JM
1543
1544 fdata->offset = -fdata->offset;
ddb20c56 1545 return last_prologue_pc;
c906108c
SS
1546}
1547
1548
1549/*************************************************************************
f6077098 1550 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1551 frames, etc.
1552*************************************************************************/
1553
c906108c 1554
11269d7e
AC
1555/* All the ABI's require 16 byte alignment. */
1556static CORE_ADDR
1557rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1558{
1559 return (addr & -16);
1560}
1561
7a78ae4e 1562/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1563 the first eight words of the argument list (that might be less than
1564 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1565 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1566 passed in fpr's, in addition to that. Rest of the parameters if any
1567 are passed in user stack. There might be cases in which half of the
c906108c
SS
1568 parameter is copied into registers, the other half is pushed into
1569 stack.
1570
7a78ae4e
ND
1571 Stack must be aligned on 64-bit boundaries when synthesizing
1572 function calls.
1573
c906108c
SS
1574 If the function is returning a structure, then the return address is passed
1575 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1576 starting from r4. */
c906108c 1577
7a78ae4e 1578static CORE_ADDR
7d9b040b 1579rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1580 struct regcache *regcache, CORE_ADDR bp_addr,
1581 int nargs, struct value **args, CORE_ADDR sp,
1582 int struct_return, CORE_ADDR struct_addr)
c906108c 1583{
7a41266b 1584 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1585 int ii;
1586 int len = 0;
c5aa993b
JM
1587 int argno; /* current argument number */
1588 int argbytes; /* current argument byte */
50fd1280 1589 gdb_byte tmp_buffer[50];
c5aa993b 1590 int f_argno = 0; /* current floating point argno */
21283beb 1591 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1592 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1593
ea7c478f 1594 struct value *arg = 0;
c906108c
SS
1595 struct type *type;
1596
fb4443d8 1597 ULONGEST saved_sp;
c906108c 1598
383f0f5b
JB
1599 /* The calling convention this function implements assumes the
1600 processor has floating-point registers. We shouldn't be using it
1601 on PPC variants that lack them. */
1602 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1603
64366f1c 1604 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1605 Copy them appropriately. */
1606 ii = 0;
1607
1608 /* If the function is returning a `struct', then the first word
1609 (which will be passed in r3) is used for struct return address.
1610 In that case we should advance one word and start from r4
1611 register to copy parameters. */
1612 if (struct_return)
1613 {
1614 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1615 struct_addr);
1616 ii++;
1617 }
c906108c
SS
1618
1619/*
c5aa993b
JM
1620 effectively indirect call... gcc does...
1621
1622 return_val example( float, int);
1623
1624 eabi:
1625 float in fp0, int in r3
1626 offset of stack on overflow 8/16
1627 for varargs, must go by type.
1628 power open:
1629 float in r3&r4, int in r5
1630 offset of stack on overflow different
1631 both:
1632 return in r3 or f0. If no float, must study how gcc emulates floats;
1633 pay attention to arg promotion.
1634 User may have to cast\args to handle promotion correctly
1635 since gdb won't know if prototype supplied or not.
1636 */
c906108c 1637
c5aa993b
JM
1638 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1639 {
3acba339 1640 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1641
1642 arg = args[argno];
df407dfe 1643 type = check_typedef (value_type (arg));
c5aa993b
JM
1644 len = TYPE_LENGTH (type);
1645
1646 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1647 {
1648
64366f1c 1649 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1650 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1651 there is no way we would run out of them. */
c5aa993b 1652
9f335945
KB
1653 gdb_assert (len <= 8);
1654
1655 regcache_cooked_write (regcache,
1656 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1657 value_contents (arg));
c5aa993b
JM
1658 ++f_argno;
1659 }
1660
f6077098 1661 if (len > reg_size)
c5aa993b
JM
1662 {
1663
64366f1c 1664 /* Argument takes more than one register. */
c5aa993b
JM
1665 while (argbytes < len)
1666 {
50fd1280 1667 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1668 memset (word, 0, reg_size);
1669 memcpy (word,
0fd88904 1670 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1671 (len - argbytes) > reg_size
1672 ? reg_size : len - argbytes);
9f335945
KB
1673 regcache_cooked_write (regcache,
1674 tdep->ppc_gp0_regnum + 3 + ii,
1675 word);
f6077098 1676 ++ii, argbytes += reg_size;
c5aa993b
JM
1677
1678 if (ii >= 8)
1679 goto ran_out_of_registers_for_arguments;
1680 }
1681 argbytes = 0;
1682 --ii;
1683 }
1684 else
64366f1c
EZ
1685 {
1686 /* Argument can fit in one register. No problem. */
4c6b5505
UW
1687 int adj = gdbarch_byte_order (current_gdbarch)
1688 == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1689 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1690
1691 memset (word, 0, reg_size);
0fd88904 1692 memcpy (word, value_contents (arg), len);
9f335945 1693 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1694 }
1695 ++argno;
c906108c 1696 }
c906108c
SS
1697
1698ran_out_of_registers_for_arguments:
1699
fb4443d8 1700 regcache_cooked_read_unsigned (regcache, SP_REGNUM, &saved_sp);
cc9836a8 1701
64366f1c 1702 /* Location for 8 parameters are always reserved. */
7a78ae4e 1703 sp -= wordsize * 8;
f6077098 1704
64366f1c 1705 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1706 sp -= wordsize * 6;
f6077098 1707
64366f1c 1708 /* Stack pointer must be quadword aligned. */
7a78ae4e 1709 sp &= -16;
c906108c 1710
64366f1c
EZ
1711 /* If there are more arguments, allocate space for them in
1712 the stack, then push them starting from the ninth one. */
c906108c 1713
c5aa993b
JM
1714 if ((argno < nargs) || argbytes)
1715 {
1716 int space = 0, jj;
c906108c 1717
c5aa993b
JM
1718 if (argbytes)
1719 {
1720 space += ((len - argbytes + 3) & -4);
1721 jj = argno + 1;
1722 }
1723 else
1724 jj = argno;
c906108c 1725
c5aa993b
JM
1726 for (; jj < nargs; ++jj)
1727 {
ea7c478f 1728 struct value *val = args[jj];
df407dfe 1729 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1730 }
c906108c 1731
64366f1c 1732 /* Add location required for the rest of the parameters. */
f6077098 1733 space = (space + 15) & -16;
c5aa993b 1734 sp -= space;
c906108c 1735
7aea86e6
AC
1736 /* This is another instance we need to be concerned about
1737 securing our stack space. If we write anything underneath %sp
1738 (r1), we might conflict with the kernel who thinks he is free
1739 to use this area. So, update %sp first before doing anything
1740 else. */
1741
1742 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1743
64366f1c
EZ
1744 /* If the last argument copied into the registers didn't fit there
1745 completely, push the rest of it into stack. */
c906108c 1746
c5aa993b
JM
1747 if (argbytes)
1748 {
1749 write_memory (sp + 24 + (ii * 4),
50fd1280 1750 value_contents (arg) + argbytes,
c5aa993b
JM
1751 len - argbytes);
1752 ++argno;
1753 ii += ((len - argbytes + 3) & -4) / 4;
1754 }
c906108c 1755
64366f1c 1756 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1757 for (; argno < nargs; ++argno)
1758 {
c906108c 1759
c5aa993b 1760 arg = args[argno];
df407dfe 1761 type = check_typedef (value_type (arg));
c5aa993b 1762 len = TYPE_LENGTH (type);
c906108c
SS
1763
1764
64366f1c
EZ
1765 /* Float types should be passed in fpr's, as well as in the
1766 stack. */
c5aa993b
JM
1767 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1768 {
c906108c 1769
9f335945 1770 gdb_assert (len <= 8);
c906108c 1771
9f335945
KB
1772 regcache_cooked_write (regcache,
1773 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1774 value_contents (arg));
c5aa993b
JM
1775 ++f_argno;
1776 }
c906108c 1777
50fd1280 1778 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1779 ii += ((len + 3) & -4) / 4;
1780 }
c906108c 1781 }
c906108c 1782
69517000 1783 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1784 be set _before_ the corresponding stack space is used. On AIX,
1785 this even applies when the target has been completely stopped!
1786 Not doing this can lead to conflicts with the kernel which thinks
1787 that it still has control over this not-yet-allocated stack
1788 region. */
33a7c2fc
AC
1789 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1790
7aea86e6 1791 /* Set back chain properly. */
8ba0209f
AM
1792 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1793 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1794
e56a0ecc
AC
1795 /* Point the inferior function call's return address at the dummy's
1796 breakpoint. */
1797 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1798
794a477a
AC
1799 /* Set the TOC register, get the value from the objfile reader
1800 which, in turn, gets it from the VMAP table. */
1801 if (rs6000_find_toc_address_hook != NULL)
1802 {
1803 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1804 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1805 }
1806
56be3814 1807 target_store_registers (regcache, -1);
c906108c
SS
1808 return sp;
1809}
c906108c 1810
d217aaed
MK
1811static enum return_value_convention
1812rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1813 struct regcache *regcache, gdb_byte *readbuf,
1814 const gdb_byte *writebuf)
c906108c 1815{
ace1378a 1816 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
d217aaed 1817 gdb_byte buf[8];
c906108c 1818
383f0f5b
JB
1819 /* The calling convention this function implements assumes the
1820 processor has floating-point registers. We shouldn't be using it
d217aaed 1821 on PowerPC variants that lack them. */
383f0f5b
JB
1822 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1823
d217aaed
MK
1824 /* AltiVec extension: Functions that declare a vector data type as a
1825 return value place that return value in VR2. */
1826 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1827 && TYPE_LENGTH (valtype) == 16)
c5aa993b 1828 {
d217aaed
MK
1829 if (readbuf)
1830 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1831 if (writebuf)
1832 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
c906108c 1833
d217aaed 1834 return RETURN_VALUE_REGISTER_CONVENTION;
c5aa993b 1835 }
d217aaed
MK
1836
1837 /* If the called subprogram returns an aggregate, there exists an
1838 implicit first argument, whose value is the address of a caller-
1839 allocated buffer into which the callee is assumed to store its
1840 return value. All explicit parameters are appropriately
1841 relabeled. */
1842 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1843 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1844 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1845 return RETURN_VALUE_STRUCT_CONVENTION;
1846
1847 /* Scalar floating-point values are returned in FPR1 for float or
1848 double, and in FPR1:FPR2 for quadword precision. Fortran
1849 complex*8 and complex*16 are returned in FPR1:FPR2, and
1850 complex*32 is returned in FPR1:FPR4. */
1851 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1852 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1853 {
1854 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1855 gdb_byte regval[8];
1856
1857 /* FIXME: kettenis/2007-01-01: Add support for quadword
1858 precision and complex. */
1859
1860 if (readbuf)
1861 {
1862 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1863 convert_typed_floating (regval, regtype, readbuf, valtype);
1864 }
1865 if (writebuf)
1866 {
1867 convert_typed_floating (writebuf, valtype, regval, regtype);
1868 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1869 }
1870
1871 return RETURN_VALUE_REGISTER_CONVENTION;
1872 }
1873
1874 /* Values of the types int, long, short, pointer, and char (length
1875 is less than or equal to four bytes), as well as bit values of
1876 lengths less than or equal to 32 bits, must be returned right
1877 justified in GPR3 with signed values sign extended and unsigned
1878 values zero extended, as necessary. */
1879 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
ace1378a 1880 {
d217aaed
MK
1881 if (readbuf)
1882 {
1883 ULONGEST regval;
1884
1885 /* For reading we don't have to worry about sign extension. */
1886 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1887 &regval);
1888 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1889 }
1890 if (writebuf)
1891 {
1892 /* For writing, use unpack_long since that should handle any
1893 required sign extension. */
1894 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1895 unpack_long (valtype, writebuf));
1896 }
1897
1898 return RETURN_VALUE_REGISTER_CONVENTION;
ace1378a 1899 }
d217aaed
MK
1900
1901 /* Eight-byte non-floating-point scalar values must be returned in
1902 GPR3:GPR4. */
1903
1904 if (TYPE_LENGTH (valtype) == 8)
c5aa993b 1905 {
d217aaed
MK
1906 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1907 gdb_assert (tdep->wordsize == 4);
1908
1909 if (readbuf)
1910 {
1911 gdb_byte regval[8];
1912
1913 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1914 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1915 regval + 4);
1916 memcpy (readbuf, regval, 8);
1917 }
1918 if (writebuf)
1919 {
1920 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1921 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1922 writebuf + 4);
1923 }
1924
1925 return RETURN_VALUE_REGISTER_CONVENTION;
c906108c 1926 }
d217aaed
MK
1927
1928 return RETURN_VALUE_STRUCT_CONVENTION;
c906108c
SS
1929}
1930
977adac5
ND
1931/* Return whether handle_inferior_event() should proceed through code
1932 starting at PC in function NAME when stepping.
1933
1934 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1935 handle memory references that are too distant to fit in instructions
1936 generated by the compiler. For example, if 'foo' in the following
1937 instruction:
1938
1939 lwz r9,foo(r2)
1940
1941 is greater than 32767, the linker might replace the lwz with a branch to
1942 somewhere in @FIX1 that does the load in 2 instructions and then branches
1943 back to where execution should continue.
1944
1945 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1946 Unfortunately, the linker uses the "b" instruction for the
1947 branches, meaning that the link register doesn't get set.
1948 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1949
e76f05fa
UW
1950 Instead, use the gdbarch_skip_trampoline_code and
1951 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 1952 @FIX code. */
977adac5
ND
1953
1954int
1955rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1956{
1957 return name && !strncmp (name, "@FIX", 4);
1958}
1959
1960/* Skip code that the user doesn't want to see when stepping:
1961
1962 1. Indirect function calls use a piece of trampoline code to do context
1963 switching, i.e. to set the new TOC table. Skip such code if we are on
1964 its first instruction (as when we have single-stepped to here).
1965
1966 2. Skip shared library trampoline code (which is different from
c906108c 1967 indirect function call trampolines).
977adac5
ND
1968
1969 3. Skip bigtoc fixup code.
1970
c906108c 1971 Result is desired PC to step until, or NULL if we are not in
977adac5 1972 code that should be skipped. */
c906108c
SS
1973
1974CORE_ADDR
52f729a7 1975rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 1976{
52f0bd74 1977 unsigned int ii, op;
977adac5 1978 int rel;
c906108c 1979 CORE_ADDR solib_target_pc;
977adac5 1980 struct minimal_symbol *msymbol;
c906108c 1981
c5aa993b
JM
1982 static unsigned trampoline_code[] =
1983 {
1984 0x800b0000, /* l r0,0x0(r11) */
1985 0x90410014, /* st r2,0x14(r1) */
1986 0x7c0903a6, /* mtctr r0 */
1987 0x804b0004, /* l r2,0x4(r11) */
1988 0x816b0008, /* l r11,0x8(r11) */
1989 0x4e800420, /* bctr */
1990 0x4e800020, /* br */
1991 0
c906108c
SS
1992 };
1993
977adac5
ND
1994 /* Check for bigtoc fixup code. */
1995 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1996 if (msymbol
1997 && rs6000_in_solib_return_trampoline (pc,
1998 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1999 {
2000 /* Double-check that the third instruction from PC is relative "b". */
2001 op = read_memory_integer (pc + 8, 4);
2002 if ((op & 0xfc000003) == 0x48000000)
2003 {
2004 /* Extract bits 6-29 as a signed 24-bit relative word address and
2005 add it to the containing PC. */
2006 rel = ((int)(op << 6) >> 6);
2007 return pc + 8 + rel;
2008 }
2009 }
2010
c906108c 2011 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2012 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2013 if (solib_target_pc)
2014 return solib_target_pc;
2015
c5aa993b
JM
2016 for (ii = 0; trampoline_code[ii]; ++ii)
2017 {
2018 op = read_memory_integer (pc + (ii * 4), 4);
2019 if (op != trampoline_code[ii])
2020 return 0;
2021 }
52f729a7 2022 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
21283beb 2023 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
2024 return pc;
2025}
2026
794ac428
UW
2027/* ISA-specific vector types. */
2028
2029static struct type *
2030rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2031{
2032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2033
2034 if (!tdep->ppc_builtin_type_vec64)
2035 {
2036 /* The type we're building is this: */
2037#if 0
2038 union __gdb_builtin_type_vec64
2039 {
2040 int64_t uint64;
2041 float v2_float[2];
2042 int32_t v2_int32[2];
2043 int16_t v4_int16[4];
2044 int8_t v8_int8[8];
2045 };
2046#endif
2047
2048 struct type *t;
2049
2050 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2051 append_composite_type_field (t, "uint64", builtin_type_int64);
2052 append_composite_type_field (t, "v2_float",
2053 init_vector_type (builtin_type_float, 2));
2054 append_composite_type_field (t, "v2_int32",
2055 init_vector_type (builtin_type_int32, 2));
2056 append_composite_type_field (t, "v4_int16",
2057 init_vector_type (builtin_type_int16, 4));
2058 append_composite_type_field (t, "v8_int8",
2059 init_vector_type (builtin_type_int8, 8));
2060
2061 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2062 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2063 tdep->ppc_builtin_type_vec64 = t;
2064 }
2065
2066 return tdep->ppc_builtin_type_vec64;
2067}
2068
2069static struct type *
2070rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2071{
2072 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2073
2074 if (!tdep->ppc_builtin_type_vec128)
2075 {
2076 /* The type we're building is this: */
2077#if 0
2078 union __gdb_builtin_type_vec128
2079 {
2080 int128_t uint128;
2081 float v4_float[4];
2082 int32_t v4_int32[4];
2083 int16_t v8_int16[8];
2084 int8_t v16_int8[16];
2085 };
2086#endif
2087
2088 struct type *t;
2089
2090 t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2091 append_composite_type_field (t, "uint128", builtin_type_int128);
2092 append_composite_type_field (t, "v4_float",
2093 init_vector_type (builtin_type_float, 4));
2094 append_composite_type_field (t, "v4_int32",
2095 init_vector_type (builtin_type_int32, 4));
2096 append_composite_type_field (t, "v8_int16",
2097 init_vector_type (builtin_type_int16, 8));
2098 append_composite_type_field (t, "v16_int8",
2099 init_vector_type (builtin_type_int8, 16));
2100
2101 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2102 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2103 tdep->ppc_builtin_type_vec128 = t;
2104 }
2105
2106 return tdep->ppc_builtin_type_vec128;
2107}
2108
7a78ae4e 2109/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 2110 isn't available with that word size, return 0. */
7a78ae4e
ND
2111
2112static int
2113regsize (const struct reg *reg, int wordsize)
2114{
2115 return wordsize == 8 ? reg->sz64 : reg->sz32;
2116}
2117
2118/* Return the name of register number N, or null if no such register exists
64366f1c 2119 in the current architecture. */
7a78ae4e 2120
fa88f677 2121static const char *
7a78ae4e
ND
2122rs6000_register_name (int n)
2123{
21283beb 2124 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
2125 const struct reg *reg = tdep->regs + n;
2126
2127 if (!regsize (reg, tdep->wordsize))
2128 return NULL;
2129 return reg->name;
2130}
2131
7a78ae4e
ND
2132/* Return the GDB type object for the "standard" data type
2133 of data in register N. */
2134
2135static struct type *
691d145a 2136rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 2137{
691d145a 2138 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
2139 const struct reg *reg = tdep->regs + n;
2140
1fcc0bb8
EZ
2141 if (reg->fpr)
2142 return builtin_type_double;
2143 else
2144 {
2145 int size = regsize (reg, tdep->wordsize);
2146 switch (size)
2147 {
449a5da4
AC
2148 case 0:
2149 return builtin_type_int0;
2150 case 4:
ed6edd9b 2151 return builtin_type_uint32;
1fcc0bb8 2152 case 8:
c8001721 2153 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
794ac428 2154 return rs6000_builtin_type_vec64 (gdbarch);
c8001721 2155 else
ed6edd9b 2156 return builtin_type_uint64;
1fcc0bb8
EZ
2157 break;
2158 case 16:
794ac428 2159 return rs6000_builtin_type_vec128 (gdbarch);
1fcc0bb8
EZ
2160 break;
2161 default:
e2e0b3e5 2162 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 2163 n, size);
1fcc0bb8
EZ
2164 }
2165 }
7a78ae4e
ND
2166}
2167
c44ca51c
AC
2168/* Is REGNUM a member of REGGROUP? */
2169static int
2170rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2171 struct reggroup *group)
2172{
2173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2174 int float_p;
2175 int vector_p;
2176 int general_p;
2177
c9f4d572
UW
2178 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2179 || *gdbarch_register_name (current_gdbarch, regnum) == '\0')
c44ca51c
AC
2180 return 0;
2181 if (group == all_reggroup)
2182 return 1;
2183
2184 float_p = (regnum == tdep->ppc_fpscr_regnum
2185 || (regnum >= tdep->ppc_fp0_regnum
2186 && regnum < tdep->ppc_fp0_regnum + 32));
2187 if (group == float_reggroup)
2188 return float_p;
2189
826d5376
PG
2190 vector_p = ((tdep->ppc_vr0_regnum >= 0
2191 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 2192 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
2193 || (tdep->ppc_ev0_regnum >= 0
2194 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 2195 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 2196 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
2197 || regnum == tdep->ppc_vrsave_regnum
2198 || regnum == tdep->ppc_acc_regnum
2199 || regnum == tdep->ppc_spefscr_regnum);
2200 if (group == vector_reggroup)
2201 return vector_p;
2202
2203 /* Note that PS aka MSR isn't included - it's a system register (and
2204 besides, due to GCC's CFI foobar you do not want to restore
2205 it). */
2206 general_p = ((regnum >= tdep->ppc_gp0_regnum
2207 && regnum < tdep->ppc_gp0_regnum + 32)
2208 || regnum == tdep->ppc_toc_regnum
2209 || regnum == tdep->ppc_cr_regnum
2210 || regnum == tdep->ppc_lr_regnum
2211 || regnum == tdep->ppc_ctr_regnum
2212 || regnum == tdep->ppc_xer_regnum
2213 || regnum == PC_REGNUM);
2214 if (group == general_reggroup)
2215 return general_p;
2216
2217 if (group == save_reggroup || group == restore_reggroup)
2218 return general_p || vector_p || float_p;
2219
2220 return 0;
2221}
2222
691d145a 2223/* The register format for RS/6000 floating point registers is always
64366f1c 2224 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2225
2226static int
691d145a 2227rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2228{
691d145a
JB
2229 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2230
2231 return (reg->fpr
2232 && TYPE_CODE (type) == TYPE_CODE_FLT
2233 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2234}
2235
7a78ae4e 2236static void
691d145a
JB
2237rs6000_register_to_value (struct frame_info *frame,
2238 int regnum,
2239 struct type *type,
50fd1280 2240 gdb_byte *to)
7a78ae4e 2241{
691d145a 2242 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2243 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2244
2245 gdb_assert (reg->fpr);
2246 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2247
691d145a
JB
2248 get_frame_register (frame, regnum, from);
2249 convert_typed_floating (from, builtin_type_double, to, type);
2250}
7a292a7a 2251
7a78ae4e 2252static void
691d145a
JB
2253rs6000_value_to_register (struct frame_info *frame,
2254 int regnum,
2255 struct type *type,
50fd1280 2256 const gdb_byte *from)
7a78ae4e 2257{
691d145a 2258 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2259 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2260
2261 gdb_assert (reg->fpr);
2262 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2263
2264 convert_typed_floating (from, type, to, builtin_type_double);
2265 put_frame_register (frame, regnum, to);
7a78ae4e 2266}
c906108c 2267
6ced10dd
JB
2268/* Move SPE vector register values between a 64-bit buffer and the two
2269 32-bit raw register halves in a regcache. This function handles
2270 both splitting a 64-bit value into two 32-bit halves, and joining
2271 two halves into a whole 64-bit value, depending on the function
2272 passed as the MOVE argument.
2273
2274 EV_REG must be the number of an SPE evN vector register --- a
2275 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2276 64-bit buffer.
2277
2278 Call MOVE once for each 32-bit half of that register, passing
2279 REGCACHE, the number of the raw register corresponding to that
2280 half, and the address of the appropriate half of BUFFER.
2281
2282 For example, passing 'regcache_raw_read' as the MOVE function will
2283 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2284 'regcache_raw_supply' will supply the contents of BUFFER to the
2285 appropriate pair of raw registers in REGCACHE.
2286
2287 You may need to cast away some 'const' qualifiers when passing
2288 MOVE, since this function can't tell at compile-time which of
2289 REGCACHE or BUFFER is acting as the source of the data. If C had
2290 co-variant type qualifiers, ... */
2291static void
2292e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2293 int regnum, gdb_byte *buf),
6ced10dd 2294 struct regcache *regcache, int ev_reg,
50fd1280 2295 gdb_byte *buffer)
6ced10dd
JB
2296{
2297 struct gdbarch *arch = get_regcache_arch (regcache);
2298 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2299 int reg_index;
50fd1280 2300 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2301
2302 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2303 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2304
2305 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2306
4c6b5505 2307 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
6ced10dd
JB
2308 {
2309 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2310 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2311 }
2312 else
2313 {
2314 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2315 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2316 }
2317}
2318
c8001721
EZ
2319static void
2320e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2321 int reg_nr, gdb_byte *buffer)
c8001721 2322{
6ced10dd 2323 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2324 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2325
6ced10dd
JB
2326 gdb_assert (regcache_arch == gdbarch);
2327
2328 if (tdep->ppc_ev0_regnum <= reg_nr
2329 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2330 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2331 else
a44bddec 2332 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2333 _("e500_pseudo_register_read: "
2334 "called on unexpected register '%s' (%d)"),
a44bddec 2335 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2336}
2337
2338static void
2339e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2340 int reg_nr, const gdb_byte *buffer)
c8001721 2341{
6ced10dd 2342 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2344
6ced10dd
JB
2345 gdb_assert (regcache_arch == gdbarch);
2346
2347 if (tdep->ppc_ev0_regnum <= reg_nr
2348 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2349 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2350 regcache_raw_write,
50fd1280 2351 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2352 else
a44bddec 2353 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2354 _("e500_pseudo_register_read: "
2355 "called on unexpected register '%s' (%d)"),
a44bddec 2356 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2357}
2358
2359/* The E500 needs a custom reggroup function: it has anonymous raw
2360 registers, and default_register_reggroup_p assumes that anonymous
2361 registers are not members of any reggroup. */
2362static int
2363e500_register_reggroup_p (struct gdbarch *gdbarch,
2364 int regnum,
2365 struct reggroup *group)
2366{
2367 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2368
2369 /* The save and restore register groups need to include the
2370 upper-half registers, even though they're anonymous. */
2371 if ((group == save_reggroup
2372 || group == restore_reggroup)
2373 && (tdep->ppc_ev0_upper_regnum <= regnum
2374 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2375 return 1;
2376
2377 /* In all other regards, the default reggroup definition is fine. */
2378 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2379}
2380
18ed0c4e 2381/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2382static int
18ed0c4e 2383rs6000_stab_reg_to_regnum (int num)
c8001721 2384{
9f744501 2385 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2386
9f744501
JB
2387 if (0 <= num && num <= 31)
2388 return tdep->ppc_gp0_regnum + num;
2389 else if (32 <= num && num <= 63)
383f0f5b
JB
2390 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2391 specifies registers the architecture doesn't have? Our
2392 callers don't check the value we return. */
366f009f 2393 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2394 else if (77 <= num && num <= 108)
2395 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2396 else if (1200 <= num && num < 1200 + 32)
2397 return tdep->ppc_ev0_regnum + (num - 1200);
2398 else
2399 switch (num)
2400 {
2401 case 64:
2402 return tdep->ppc_mq_regnum;
2403 case 65:
2404 return tdep->ppc_lr_regnum;
2405 case 66:
2406 return tdep->ppc_ctr_regnum;
2407 case 76:
2408 return tdep->ppc_xer_regnum;
2409 case 109:
2410 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2411 case 110:
2412 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2413 case 111:
18ed0c4e 2414 return tdep->ppc_acc_regnum;
867e2dc5 2415 case 112:
18ed0c4e 2416 return tdep->ppc_spefscr_regnum;
9f744501
JB
2417 default:
2418 return num;
2419 }
18ed0c4e 2420}
9f744501 2421
9f744501 2422
18ed0c4e
JB
2423/* Convert a Dwarf 2 register number to a GDB register number. */
2424static int
2425rs6000_dwarf2_reg_to_regnum (int num)
2426{
2427 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2428
18ed0c4e
JB
2429 if (0 <= num && num <= 31)
2430 return tdep->ppc_gp0_regnum + num;
2431 else if (32 <= num && num <= 63)
2432 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2433 specifies registers the architecture doesn't have? Our
2434 callers don't check the value we return. */
2435 return tdep->ppc_fp0_regnum + (num - 32);
2436 else if (1124 <= num && num < 1124 + 32)
2437 return tdep->ppc_vr0_regnum + (num - 1124);
2438 else if (1200 <= num && num < 1200 + 32)
2439 return tdep->ppc_ev0_regnum + (num - 1200);
2440 else
2441 switch (num)
2442 {
a489f789
AS
2443 case 64:
2444 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2445 case 67:
2446 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2447 case 99:
2448 return tdep->ppc_acc_regnum;
2449 case 100:
2450 return tdep->ppc_mq_regnum;
2451 case 101:
2452 return tdep->ppc_xer_regnum;
2453 case 108:
2454 return tdep->ppc_lr_regnum;
2455 case 109:
2456 return tdep->ppc_ctr_regnum;
2457 case 356:
2458 return tdep->ppc_vrsave_regnum;
2459 case 612:
2460 return tdep->ppc_spefscr_regnum;
2461 default:
2462 return num;
2463 }
2188cbdd
EZ
2464}
2465
4fc771b8
DJ
2466/* Translate a .eh_frame register to DWARF register, or adjust a
2467 .debug_frame register. */
2468
2469static int
2470rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2471{
2472 /* GCC releases before 3.4 use GCC internal register numbering in
2473 .debug_frame (and .debug_info, et cetera). The numbering is
2474 different from the standard SysV numbering for everything except
2475 for GPRs and FPRs. We can not detect this problem in most cases
2476 - to get accurate debug info for variables living in lr, ctr, v0,
2477 et cetera, use a newer version of GCC. But we must detect
2478 one important case - lr is in column 65 in .debug_frame output,
2479 instead of 108.
2480
2481 GCC 3.4, and the "hammer" branch, have a related problem. They
2482 record lr register saves in .debug_frame as 108, but still record
2483 the return column as 65. We fix that up too.
2484
2485 We can do this because 65 is assigned to fpsr, and GCC never
2486 generates debug info referring to it. To add support for
2487 handwritten debug info that restores fpsr, we would need to add a
2488 producer version check to this. */
2489 if (!eh_frame_p)
2490 {
2491 if (num == 65)
2492 return 108;
2493 else
2494 return num;
2495 }
2496
2497 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2498 internal register numbering; translate that to the standard DWARF2
2499 register numbering. */
2500 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2501 return num;
2502 else if (68 <= num && num <= 75) /* cr0-cr8 */
2503 return num - 68 + 86;
2504 else if (77 <= num && num <= 108) /* vr0-vr31 */
2505 return num - 77 + 1124;
2506 else
2507 switch (num)
2508 {
2509 case 64: /* mq */
2510 return 100;
2511 case 65: /* lr */
2512 return 108;
2513 case 66: /* ctr */
2514 return 109;
2515 case 76: /* xer */
2516 return 101;
2517 case 109: /* vrsave */
2518 return 356;
2519 case 110: /* vscr */
2520 return 67;
2521 case 111: /* spe_acc */
2522 return 99;
2523 case 112: /* spefscr */
2524 return 612;
2525 default:
2526 return num;
2527 }
2528}
c906108c 2529\f
e2d0e7eb 2530/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2531
2532 Usually a function pointer's representation is simply the address
2533 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2534 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2535 three words, the first word is the address of the function, the
2536 second word is the TOC pointer (r2), and the third word is the
2537 static chain value. Throughout GDB it is currently assumed that a
2538 function pointer contains the address of the function, which is not
2539 easy to fix. In addition, the conversion of a function address to
8ba0209f 2540 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2541 inferior's memory space, with all its drawbacks. To be able to
2542 call C++ virtual methods in the inferior (which are called via
f517ea4e 2543 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2544 function address from a function pointer. */
2545
f517ea4e
PS
2546/* Return real function address if ADDR (a function pointer) is in the data
2547 space and is therefore a special function pointer. */
c906108c 2548
b9362cc7 2549static CORE_ADDR
e2d0e7eb
AC
2550rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2551 CORE_ADDR addr,
2552 struct target_ops *targ)
c906108c
SS
2553{
2554 struct obj_section *s;
2555
2556 s = find_pc_section (addr);
2557 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2558 return addr;
c906108c 2559
7a78ae4e 2560 /* ADDR is in the data space, so it's a special function pointer. */
7f68ac27 2561 return read_memory_addr (addr, gdbarch_tdep (gdbarch)->wordsize);
c906108c 2562}
c906108c 2563\f
c5aa993b 2564
7a78ae4e 2565/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2566
2567
7a78ae4e
ND
2568/* The arrays here called registers_MUMBLE hold information about available
2569 registers.
c906108c
SS
2570
2571 For each family of PPC variants, I've tried to isolate out the
2572 common registers and put them up front, so that as long as you get
2573 the general family right, GDB will correctly identify the registers
2574 common to that family. The common register sets are:
2575
2576 For the 60x family: hid0 hid1 iabr dabr pir
2577
2578 For the 505 and 860 family: eie eid nri
2579
2580 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2581 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2582 pbu1 pbl2 pbu2
c906108c
SS
2583
2584 Most of these register groups aren't anything formal. I arrived at
2585 them by looking at the registers that occurred in more than one
6f5987a6
KB
2586 processor.
2587
2588 Note: kevinb/2002-04-30: Support for the fpscr register was added
2589 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2590 for Power. For PowerPC, slot 70 was unused and was already in the
2591 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2592 slot 70 was being used for "mq", so the next available slot (71)
2593 was chosen. It would have been nice to be able to make the
2594 register numbers the same across processor cores, but this wasn't
2595 possible without either 1) renumbering some registers for some
2596 processors or 2) assigning fpscr to a really high slot that's
2597 larger than any current register number. Doing (1) is bad because
2598 existing stubs would break. Doing (2) is undesirable because it
2599 would introduce a really large gap between fpscr and the rest of
2600 the registers for most processors. */
7a78ae4e 2601
64366f1c 2602/* Convenience macros for populating register arrays. */
7a78ae4e 2603
64366f1c 2604/* Within another macro, convert S to a string. */
7a78ae4e
ND
2605
2606#define STR(s) #s
2607
2608/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2609 and 64 bits on 64-bit systems. */
13ac140c 2610#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2611
2612/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2613 systems. */
13ac140c 2614#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2615
2616/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2617 systems. */
13ac140c 2618#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2619
1fcc0bb8 2620/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2621 systems. */
13ac140c 2622#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2623
64366f1c 2624/* Return a struct reg defining floating-point register NAME. */
13ac140c 2625#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2626
6ced10dd
JB
2627/* Return a struct reg defining a pseudo register NAME that is 64 bits
2628 long on all systems. */
2629#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2630
2631/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2632 systems and that doesn't exist on 64-bit systems. */
13ac140c 2633#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2634
2635/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2636 systems and that doesn't exist on 32-bit systems. */
13ac140c 2637#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2638
64366f1c 2639/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2640#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2641
6ced10dd
JB
2642/* Return a struct reg defining an anonymous raw register that's 32
2643 bits on all systems. */
2644#define A4 { 0, 4, 4, 0, 0, -1 }
2645
13ac140c
JB
2646/* Return a struct reg defining an SPR named NAME that is 32 bits on
2647 32-bit systems and 64 bits on 64-bit systems. */
2648#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2649
2650/* Return a struct reg defining an SPR named NAME that is 32 bits on
2651 all systems. */
2652#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2653
2654/* Return a struct reg defining an SPR named NAME that is 32 bits on
2655 all systems, and whose SPR number is NUMBER. */
2656#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2657
2658/* Return a struct reg defining an SPR named NAME that's 64 bits on
2659 64-bit systems and that doesn't exist on 32-bit systems. */
2660#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2661
7a78ae4e
ND
2662/* UISA registers common across all architectures, including POWER. */
2663
2664#define COMMON_UISA_REGS \
2665 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2666 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2667 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2668 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2669 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2670 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2671 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2672 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2673 /* 64 */ R(pc), R(ps)
2674
2675/* UISA-level SPRs for PowerPC. */
2676#define PPC_UISA_SPRS \
13ac140c 2677 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2678
c8001721
EZ
2679/* UISA-level SPRs for PowerPC without floating point support. */
2680#define PPC_UISA_NOFP_SPRS \
13ac140c 2681 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2682
7a78ae4e
ND
2683/* Segment registers, for PowerPC. */
2684#define PPC_SEGMENT_REGS \
2685 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2686 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2687 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2688 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2689
2690/* OEA SPRs for PowerPC. */
2691#define PPC_OEA_SPRS \
13ac140c
JB
2692 /* 87 */ S4(pvr), \
2693 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2694 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2695 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2696 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2697 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2698 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2699 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2700 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2701
64366f1c 2702/* AltiVec registers. */
1fcc0bb8
EZ
2703#define PPC_ALTIVEC_REGS \
2704 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2705 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2706 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2707 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2708 /*151*/R4(vscr), R4(vrsave)
2709
c8001721 2710
6ced10dd
JB
2711/* On machines supporting the SPE APU, the general-purpose registers
2712 are 64 bits long. There are SIMD vector instructions to treat them
2713 as pairs of floats, but the rest of the instruction set treats them
2714 as 32-bit registers, and only operates on their lower halves.
2715
2716 In the GDB regcache, we treat their high and low halves as separate
2717 registers. The low halves we present as the general-purpose
2718 registers, and then we have pseudo-registers that stitch together
2719 the upper and lower halves and present them as pseudo-registers. */
2720
2721/* SPE GPR lower halves --- raw registers. */
2722#define PPC_SPE_GP_REGS \
2723 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2724 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2725 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2726 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2727
2728/* SPE GPR upper halves --- anonymous raw registers. */
2729#define PPC_SPE_UPPER_GP_REGS \
2730 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2731 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2732 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2733 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2734
2735/* SPE GPR vector registers --- pseudo registers based on underlying
2736 gprs and the anonymous upper half raw registers. */
2737#define PPC_EV_PSEUDO_REGS \
2738/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2739/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2740/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2741/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2742
7a78ae4e 2743/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2744 user-level SPR's. */
7a78ae4e 2745static const struct reg registers_power[] =
c906108c 2746{
7a78ae4e 2747 COMMON_UISA_REGS,
13ac140c 2748 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2749 /* 71 */ R4(fpscr)
c906108c
SS
2750};
2751
7a78ae4e 2752/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2753 view of the PowerPC. */
7a78ae4e 2754static const struct reg registers_powerpc[] =
c906108c 2755{
7a78ae4e 2756 COMMON_UISA_REGS,
1fcc0bb8
EZ
2757 PPC_UISA_SPRS,
2758 PPC_ALTIVEC_REGS
c906108c
SS
2759};
2760
13ac140c
JB
2761/* IBM PowerPC 403.
2762
2763 Some notes about the "tcr" special-purpose register:
2764 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2765 403's programmable interval timer, fixed interval timer, and
2766 watchdog timer.
2767 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2768 watchdog timer, and nothing else.
2769
2770 Some of the fields are similar between the two, but they're not
2771 compatible with each other. Since the two variants have different
2772 registers, with different numbers, but the same name, we can't
2773 splice the register name to get the SPR number. */
7a78ae4e 2774static const struct reg registers_403[] =
c5aa993b 2775{
7a78ae4e
ND
2776 COMMON_UISA_REGS,
2777 PPC_UISA_SPRS,
2778 PPC_SEGMENT_REGS,
2779 PPC_OEA_SPRS,
13ac140c
JB
2780 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2781 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2782 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2783 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2784 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2785 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2786};
2787
13ac140c
JB
2788/* IBM PowerPC 403GC.
2789 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2790static const struct reg registers_403GC[] =
c5aa993b 2791{
7a78ae4e
ND
2792 COMMON_UISA_REGS,
2793 PPC_UISA_SPRS,
2794 PPC_SEGMENT_REGS,
2795 PPC_OEA_SPRS,
13ac140c
JB
2796 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2797 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2798 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2799 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2800 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2801 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2802 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2803 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2804};
2805
64366f1c 2806/* Motorola PowerPC 505. */
7a78ae4e 2807static const struct reg registers_505[] =
c5aa993b 2808{
7a78ae4e
ND
2809 COMMON_UISA_REGS,
2810 PPC_UISA_SPRS,
2811 PPC_SEGMENT_REGS,
2812 PPC_OEA_SPRS,
13ac140c 2813 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2814};
2815
64366f1c 2816/* Motorola PowerPC 860 or 850. */
7a78ae4e 2817static const struct reg registers_860[] =
c5aa993b 2818{
7a78ae4e
ND
2819 COMMON_UISA_REGS,
2820 PPC_UISA_SPRS,
2821 PPC_SEGMENT_REGS,
2822 PPC_OEA_SPRS,
13ac140c
JB
2823 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2824 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2825 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2826 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2827 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2828 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2829 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2830 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2831 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2832 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2833 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2834 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2835};
2836
7a78ae4e
ND
2837/* Motorola PowerPC 601. Note that the 601 has different register numbers
2838 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2839 register is the stub's problem. */
7a78ae4e 2840static const struct reg registers_601[] =
c5aa993b 2841{
7a78ae4e
ND
2842 COMMON_UISA_REGS,
2843 PPC_UISA_SPRS,
2844 PPC_SEGMENT_REGS,
2845 PPC_OEA_SPRS,
13ac140c
JB
2846 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2847 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2848};
2849
13ac140c
JB
2850/* Motorola PowerPC 602.
2851 See the notes under the 403 about 'tcr'. */
7a78ae4e 2852static const struct reg registers_602[] =
c5aa993b 2853{
7a78ae4e
ND
2854 COMMON_UISA_REGS,
2855 PPC_UISA_SPRS,
2856 PPC_SEGMENT_REGS,
2857 PPC_OEA_SPRS,
13ac140c
JB
2858 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2859 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2860 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2861};
2862
64366f1c 2863/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2864static const struct reg registers_603[] =
c5aa993b 2865{
7a78ae4e
ND
2866 COMMON_UISA_REGS,
2867 PPC_UISA_SPRS,
2868 PPC_SEGMENT_REGS,
2869 PPC_OEA_SPRS,
13ac140c
JB
2870 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2871 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2872 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2873};
2874
64366f1c 2875/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2876static const struct reg registers_604[] =
c5aa993b 2877{
7a78ae4e
ND
2878 COMMON_UISA_REGS,
2879 PPC_UISA_SPRS,
2880 PPC_SEGMENT_REGS,
2881 PPC_OEA_SPRS,
13ac140c
JB
2882 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2883 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2884 /* 127 */ S(sia), S(sda)
c906108c
SS
2885};
2886
64366f1c 2887/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2888static const struct reg registers_750[] =
c5aa993b 2889{
7a78ae4e
ND
2890 COMMON_UISA_REGS,
2891 PPC_UISA_SPRS,
2892 PPC_SEGMENT_REGS,
2893 PPC_OEA_SPRS,
13ac140c
JB
2894 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2895 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2896 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2897 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2898 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2899 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2900};
2901
2902
64366f1c 2903/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2904static const struct reg registers_7400[] =
2905{
2906 /* gpr0-gpr31, fpr0-fpr31 */
2907 COMMON_UISA_REGS,
13c7b1ca 2908 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2909 PPC_UISA_SPRS,
2910 /* sr0-sr15 */
2911 PPC_SEGMENT_REGS,
2912 PPC_OEA_SPRS,
2913 /* vr0-vr31, vrsave, vscr */
2914 PPC_ALTIVEC_REGS
2915 /* FIXME? Add more registers? */
2916};
2917
c8001721
EZ
2918/* Motorola e500. */
2919static const struct reg registers_e500[] =
2920{
6ced10dd
JB
2921 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2922 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2923 /* 64 .. 65 */ R(pc), R(ps),
2924 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2925 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2926 /* NOTE: Add new registers here the end of the raw register
2927 list and just before the first pseudo register. */
6ced10dd 2928 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2929};
2930
c906108c 2931/* Information about a particular processor variant. */
7a78ae4e 2932
c906108c 2933struct variant
c5aa993b
JM
2934 {
2935 /* Name of this variant. */
2936 char *name;
c906108c 2937
c5aa993b
JM
2938 /* English description of the variant. */
2939 char *description;
c906108c 2940
64366f1c 2941 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2942 enum bfd_architecture arch;
2943
64366f1c 2944 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2945 unsigned long mach;
2946
489461e2
EZ
2947 /* Number of real registers. */
2948 int nregs;
2949
2950 /* Number of pseudo registers. */
2951 int npregs;
2952
2953 /* Number of total registers (the sum of nregs and npregs). */
2954 int num_tot_regs;
2955
c5aa993b
JM
2956 /* Table of register names; registers[R] is the name of the register
2957 number R. */
7a78ae4e 2958 const struct reg *regs;
c5aa993b 2959 };
c906108c 2960
489461e2
EZ
2961#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2962
2963static int
2964num_registers (const struct reg *reg_list, int num_tot_regs)
2965{
2966 int i;
2967 int nregs = 0;
2968
2969 for (i = 0; i < num_tot_regs; i++)
2970 if (!reg_list[i].pseudo)
2971 nregs++;
2972
2973 return nregs;
2974}
2975
2976static int
2977num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2978{
2979 int i;
2980 int npregs = 0;
2981
2982 for (i = 0; i < num_tot_regs; i++)
2983 if (reg_list[i].pseudo)
2984 npregs ++;
2985
2986 return npregs;
2987}
c906108c 2988
c906108c
SS
2989/* Information in this table comes from the following web sites:
2990 IBM: http://www.chips.ibm.com:80/products/embedded/
2991 Motorola: http://www.mot.com/SPS/PowerPC/
2992
2993 I'm sure I've got some of the variant descriptions not quite right.
2994 Please report any inaccuracies you find to GDB's maintainer.
2995
2996 If you add entries to this table, please be sure to allow the new
2997 value as an argument to the --with-cpu flag, in configure.in. */
2998
489461e2 2999static struct variant variants[] =
c906108c 3000{
489461e2 3001
7a78ae4e 3002 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
3003 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
3004 registers_powerpc},
7a78ae4e 3005 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
3006 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
3007 registers_power},
7a78ae4e 3008 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
3009 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
3010 registers_403},
7a78ae4e 3011 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
3012 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
3013 registers_601},
7a78ae4e 3014 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
3015 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
3016 registers_602},
7a78ae4e 3017 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
3018 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
3019 registers_603},
7a78ae4e 3020 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
3021 604, -1, -1, tot_num_registers (registers_604),
3022 registers_604},
7a78ae4e 3023 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
3024 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
3025 registers_403GC},
7a78ae4e 3026 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
3027 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
3028 registers_505},
7a78ae4e 3029 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
3030 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
3031 registers_860},
7a78ae4e 3032 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
3033 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
3034 registers_750},
1fcc0bb8 3035 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
3036 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
3037 registers_7400},
c8001721
EZ
3038 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
3039 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
3040 registers_e500},
7a78ae4e 3041
5d57ee30
KB
3042 /* 64-bit */
3043 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
3044 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
3045 registers_powerpc},
7a78ae4e 3046 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
3047 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
3048 registers_powerpc},
5d57ee30 3049 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
3050 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
3051 registers_powerpc},
7a78ae4e 3052 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
3053 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
3054 registers_powerpc},
5d57ee30 3055 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
3056 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
3057 registers_powerpc},
5d57ee30 3058 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
3059 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
3060 registers_powerpc},
5d57ee30 3061
64366f1c 3062 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3063 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
3064 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
3065 registers_power},
7a78ae4e 3066 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
3067 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
3068 registers_power},
7a78ae4e 3069 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
3070 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
3071 registers_power},
7a78ae4e 3072
489461e2 3073 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
3074};
3075
64366f1c 3076/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
3077
3078static void
3079init_variants (void)
3080{
3081 struct variant *v;
3082
3083 for (v = variants; v->name; v++)
3084 {
3085 if (v->nregs == -1)
3086 v->nregs = num_registers (v->regs, v->num_tot_regs);
3087 if (v->npregs == -1)
3088 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
3089 }
3090}
c906108c 3091
7a78ae4e 3092/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3093 MACH. If no such variant exists, return null. */
c906108c 3094
7a78ae4e
ND
3095static const struct variant *
3096find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3097{
7a78ae4e 3098 const struct variant *v;
c5aa993b 3099
7a78ae4e
ND
3100 for (v = variants; v->name; v++)
3101 if (arch == v->arch && mach == v->mach)
3102 return v;
c906108c 3103
7a78ae4e 3104 return NULL;
c906108c 3105}
9364a0ef
EZ
3106
3107static int
3108gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3109{
ee4f0f76
DJ
3110 if (!info->disassembler_options)
3111 info->disassembler_options = "any";
3112
4c6b5505 3113 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
9364a0ef
EZ
3114 return print_insn_big_powerpc (memaddr, info);
3115 else
3116 return print_insn_little_powerpc (memaddr, info);
3117}
7a78ae4e 3118\f
61a65099
KB
3119static CORE_ADDR
3120rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3121{
3122 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
3123}
3124
3125static struct frame_id
3126rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
3127{
3128 return frame_id_build (frame_unwind_register_unsigned (next_frame,
3129 SP_REGNUM),
3130 frame_pc_unwind (next_frame));
3131}
3132
3133struct rs6000_frame_cache
3134{
3135 CORE_ADDR base;
3136 CORE_ADDR initial_sp;
3137 struct trad_frame_saved_reg *saved_regs;
3138};
3139
3140static struct rs6000_frame_cache *
3141rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
3142{
3143 struct rs6000_frame_cache *cache;
3144 struct gdbarch *gdbarch = get_frame_arch (next_frame);
3145 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3146 struct rs6000_framedata fdata;
3147 int wordsize = tdep->wordsize;
e10b1c4c 3148 CORE_ADDR func, pc;
61a65099
KB
3149
3150 if ((*this_cache) != NULL)
3151 return (*this_cache);
3152 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3153 (*this_cache) = cache;
3154 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
3155
93d42b30 3156 func = frame_func_unwind (next_frame, NORMAL_FRAME);
e10b1c4c
DJ
3157 pc = frame_pc_unwind (next_frame);
3158 skip_prologue (func, pc, &fdata);
3159
3160 /* Figure out the parent's stack pointer. */
3161
3162 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3163 address of the current frame. Things might be easier if the
3164 ->frame pointed to the outer-most address of the frame. In
3165 the mean time, the address of the prev frame is used as the
3166 base address of this frame. */
3167 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3168
3169 /* If the function appears to be frameless, check a couple of likely
3170 indicators that we have simply failed to find the frame setup.
3171 Two common cases of this are missing symbols (i.e.
3172 frame_func_unwind returns the wrong address or 0), and assembly
3173 stubs which have a fast exit path but set up a frame on the slow
3174 path.
3175
3176 If the LR appears to return to this function, then presume that
3177 we have an ABI compliant frame that we failed to find. */
3178 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3179 {
e10b1c4c
DJ
3180 CORE_ADDR saved_lr;
3181 int make_frame = 0;
3182
3183 saved_lr = frame_unwind_register_unsigned (next_frame,
3184 tdep->ppc_lr_regnum);
3185 if (func == 0 && saved_lr == pc)
3186 make_frame = 1;
3187 else if (func != 0)
3188 {
3189 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3190 if (func == saved_func)
3191 make_frame = 1;
3192 }
3193
3194 if (make_frame)
3195 {
3196 fdata.frameless = 0;
de6a76fd 3197 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3198 }
61a65099 3199 }
e10b1c4c
DJ
3200
3201 if (!fdata.frameless)
3202 /* Frameless really means stackless. */
3203 cache->base = read_memory_addr (cache->base, wordsize);
3204
61a65099
KB
3205 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3206
3207 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3208 All fpr's from saved_fpr to fp31 are saved. */
3209
3210 if (fdata.saved_fpr >= 0)
3211 {
3212 int i;
3213 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3214
3215 /* If skip_prologue says floating-point registers were saved,
3216 but the current architecture has no floating-point registers,
3217 then that's strange. But we have no indices to even record
3218 the addresses under, so we just ignore it. */
3219 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3220 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3221 {
3222 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3223 fpr_addr += 8;
3224 }
61a65099
KB
3225 }
3226
3227 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3228 All gpr's from saved_gpr to gpr31 are saved. */
3229
3230 if (fdata.saved_gpr >= 0)
3231 {
3232 int i;
3233 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3234 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3235 {
3236 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3237 gpr_addr += wordsize;
3238 }
3239 }
3240
3241 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3242 All vr's from saved_vr to vr31 are saved. */
3243 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3244 {
3245 if (fdata.saved_vr >= 0)
3246 {
3247 int i;
3248 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3249 for (i = fdata.saved_vr; i < 32; i++)
3250 {
3251 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3252 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3253 }
3254 }
3255 }
3256
3257 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3258 All vr's from saved_ev to ev31 are saved. ????? */
3259 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3260 {
3261 if (fdata.saved_ev >= 0)
3262 {
3263 int i;
3264 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3265 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3266 {
3267 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3268 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3269 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3270 }
3271 }
3272 }
3273
3274 /* If != 0, fdata.cr_offset is the offset from the frame that
3275 holds the CR. */
3276 if (fdata.cr_offset != 0)
3277 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3278
3279 /* If != 0, fdata.lr_offset is the offset from the frame that
3280 holds the LR. */
3281 if (fdata.lr_offset != 0)
3282 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3283 /* The PC is found in the link register. */
3284 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3285
3286 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3287 holds the VRSAVE. */
3288 if (fdata.vrsave_offset != 0)
3289 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3290
3291 if (fdata.alloca_reg < 0)
3292 /* If no alloca register used, then fi->frame is the value of the
3293 %sp for this frame, and it is good enough. */
3294 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3295 else
3296 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3297 fdata.alloca_reg);
3298
3299 return cache;
3300}
3301
3302static void
3303rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3304 struct frame_id *this_id)
3305{
3306 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3307 this_cache);
93d42b30
DJ
3308 (*this_id) = frame_id_build (info->base,
3309 frame_func_unwind (next_frame, NORMAL_FRAME));
61a65099
KB
3310}
3311
3312static void
3313rs6000_frame_prev_register (struct frame_info *next_frame,
3314 void **this_cache,
3315 int regnum, int *optimizedp,
3316 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3317 int *realnump, gdb_byte *valuep)
61a65099
KB
3318{
3319 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3320 this_cache);
1f67027d
AC
3321 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3322 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3323}
3324
3325static const struct frame_unwind rs6000_frame_unwind =
3326{
3327 NORMAL_FRAME,
3328 rs6000_frame_this_id,
3329 rs6000_frame_prev_register
3330};
3331
3332static const struct frame_unwind *
3333rs6000_frame_sniffer (struct frame_info *next_frame)
3334{
3335 return &rs6000_frame_unwind;
3336}
3337
3338\f
3339
3340static CORE_ADDR
3341rs6000_frame_base_address (struct frame_info *next_frame,
3342 void **this_cache)
3343{
3344 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3345 this_cache);
3346 return info->initial_sp;
3347}
3348
3349static const struct frame_base rs6000_frame_base = {
3350 &rs6000_frame_unwind,
3351 rs6000_frame_base_address,
3352 rs6000_frame_base_address,
3353 rs6000_frame_base_address
3354};
3355
3356static const struct frame_base *
3357rs6000_frame_base_sniffer (struct frame_info *next_frame)
3358{
3359 return &rs6000_frame_base;
3360}
3361
7a78ae4e
ND
3362/* Initialize the current architecture based on INFO. If possible, re-use an
3363 architecture from ARCHES, which is a list of architectures already created
3364 during this debugging session.
c906108c 3365
7a78ae4e 3366 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3367 a binary file. */
c906108c 3368
7a78ae4e
ND
3369static struct gdbarch *
3370rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3371{
3372 struct gdbarch *gdbarch;
3373 struct gdbarch_tdep *tdep;
708ff411 3374 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3375 struct reg *regs;
3376 const struct variant *v;
3377 enum bfd_architecture arch;
3378 unsigned long mach;
3379 bfd abfd;
7b112f9c 3380 int sysv_abi;
5bf1c677 3381 asection *sect;
7a78ae4e 3382
9aa1e687 3383 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3384 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3385
9aa1e687
KB
3386 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3387 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3388
3389 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3390
e712c1cf 3391 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3392 that, else choose a likely default. */
9aa1e687 3393 if (from_xcoff_exec)
c906108c 3394 {
11ed25ac 3395 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3396 wordsize = 8;
3397 else
3398 wordsize = 4;
c906108c 3399 }
9aa1e687
KB
3400 else if (from_elf_exec)
3401 {
3402 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3403 wordsize = 8;
3404 else
3405 wordsize = 4;
3406 }
c906108c 3407 else
7a78ae4e 3408 {
27b15785
KB
3409 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3410 wordsize = info.bfd_arch_info->bits_per_word /
3411 info.bfd_arch_info->bits_per_byte;
3412 else
3413 wordsize = 4;
7a78ae4e 3414 }
c906108c 3415
13c0b536 3416 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3417 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3418 arches != NULL;
3419 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3420 {
3421 /* Word size in the various PowerPC bfd_arch_info structs isn't
3422 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3423 separate word size check. */
7a78ae4e 3424 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3425 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3426 return arches->gdbarch;
3427 }
c906108c 3428
7a78ae4e
ND
3429 /* None found, create a new architecture from INFO, whose bfd_arch_info
3430 validity depends on the source:
3431 - executable useless
3432 - rs6000_host_arch() good
3433 - core file good
3434 - "set arch" trust blindly
3435 - GDB startup useless but harmless */
c906108c 3436
9aa1e687 3437 if (!from_xcoff_exec)
c906108c 3438 {
b732d07d 3439 arch = info.bfd_arch_info->arch;
7a78ae4e 3440 mach = info.bfd_arch_info->mach;
c906108c 3441 }
7a78ae4e 3442 else
c906108c 3443 {
7a78ae4e 3444 arch = bfd_arch_powerpc;
35cec841 3445 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3446 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3447 mach = info.bfd_arch_info->mach;
7a78ae4e 3448 }
794ac428 3449 tdep = XCALLOC (1, struct gdbarch_tdep);
7a78ae4e 3450 tdep->wordsize = wordsize;
5bf1c677
EZ
3451
3452 /* For e500 executables, the apuinfo section is of help here. Such
3453 section contains the identifier and revision number of each
3454 Application-specific Processing Unit that is present on the
3455 chip. The content of the section is determined by the assembler
3456 which looks at each instruction and determines which unit (and
3457 which version of it) can execute it. In our case we just look for
3458 the existance of the section. */
3459
3460 if (info.abfd)
3461 {
3462 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3463 if (sect)
3464 {
3465 arch = info.bfd_arch_info->arch;
3466 mach = bfd_mach_ppc_e500;
3467 bfd_default_set_arch_mach (&abfd, arch, mach);
3468 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3469 }
3470 }
3471
7a78ae4e 3472 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3473
489461e2
EZ
3474 /* Initialize the number of real and pseudo registers in each variant. */
3475 init_variants ();
3476
64366f1c 3477 /* Choose variant. */
7a78ae4e
ND
3478 v = find_variant_by_arch (arch, mach);
3479 if (!v)
dd47e6fd
EZ
3480 return NULL;
3481
7a78ae4e
ND
3482 tdep->regs = v->regs;
3483
2188cbdd 3484 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3485 tdep->ppc_toc_regnum = 2;
3486 tdep->ppc_ps_regnum = 65;
3487 tdep->ppc_cr_regnum = 66;
3488 tdep->ppc_lr_regnum = 67;
3489 tdep->ppc_ctr_regnum = 68;
3490 tdep->ppc_xer_regnum = 69;
3491 if (v->mach == bfd_mach_ppc_601)
3492 tdep->ppc_mq_regnum = 124;
708ff411 3493 else if (arch == bfd_arch_rs6000)
2188cbdd 3494 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3495 else
3496 tdep->ppc_mq_regnum = -1;
366f009f 3497 tdep->ppc_fp0_regnum = 32;
708ff411 3498 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3499 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3500 tdep->ppc_vr0_regnum = -1;
3501 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3502 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3503 tdep->ppc_ev0_regnum = -1;
3504 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3505 tdep->ppc_acc_regnum = -1;
3506 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3507
c8001721
EZ
3508 set_gdbarch_pc_regnum (gdbarch, 64);
3509 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3510 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
6f7f3f0d 3511 set_gdbarch_fp0_regnum (gdbarch, 32);
9f643768 3512 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3513 if (sysv_abi && wordsize == 8)
05580c65 3514 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3515 else if (sysv_abi && wordsize == 4)
05580c65 3516 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75 3517 else
d217aaed 3518 set_gdbarch_return_value (gdbarch, rs6000_return_value);
c8001721 3519
baffbae0
JB
3520 /* Set lr_frame_offset. */
3521 if (wordsize == 8)
3522 tdep->lr_frame_offset = 16;
3523 else if (sysv_abi)
3524 tdep->lr_frame_offset = 4;
3525 else
3526 tdep->lr_frame_offset = 8;
3527
f86a7158
JB
3528 if (v->arch == bfd_arch_rs6000)
3529 tdep->ppc_sr0_regnum = -1;
3530 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3531 switch (v->mach)
3532 {
3533 case bfd_mach_ppc:
412b3060 3534 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3535 tdep->ppc_vr0_regnum = 71;
3536 tdep->ppc_vrsave_regnum = 104;
3537 break;
3538 case bfd_mach_ppc_7400:
3539 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3540 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3541 break;
3542 case bfd_mach_ppc_e500:
c8001721 3543 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3544 tdep->ppc_ev0_upper_regnum = 32;
3545 tdep->ppc_ev0_regnum = 73;
3546 tdep->ppc_ev31_regnum = 104;
3547 tdep->ppc_acc_regnum = 71;
3548 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3549 tdep->ppc_fp0_regnum = -1;
3550 tdep->ppc_fpscr_regnum = -1;
f86a7158 3551 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3552 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3553 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3554 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3555 break;
f86a7158
JB
3556
3557 case bfd_mach_ppc64:
3558 case bfd_mach_ppc_620:
3559 case bfd_mach_ppc_630:
3560 case bfd_mach_ppc_a35:
3561 case bfd_mach_ppc_rs64ii:
3562 case bfd_mach_ppc_rs64iii:
3563 /* These processor's register sets don't have segment registers. */
3564 tdep->ppc_sr0_regnum = -1;
3565 break;
1fcc0bb8 3566 }
f86a7158
JB
3567 else
3568 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3569 _("rs6000_gdbarch_init: "
3570 "received unexpected BFD 'arch' value"));
1fcc0bb8 3571
e0d24f8d
WZ
3572 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3573
338ef23d
AC
3574 /* Sanity check on registers. */
3575 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3576
56a6dfb9 3577 /* Select instruction printer. */
708ff411 3578 if (arch == bfd_arch_rs6000)
9364a0ef 3579 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3580 else
9364a0ef 3581 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3582
7a78ae4e 3583 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3584 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3585 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3586 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3587 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3588
3589 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3590 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3591 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3592 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3593 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3594 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3595 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3596 if (sysv_abi)
3597 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3598 else
3599 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3600 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3601
11269d7e 3602 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3603 if (sysv_abi && wordsize == 8)
3604 /* PPC64 SYSV. */
3605 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3606 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3607 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3608 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3609 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3610 224. */
3611 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3612
691d145a
JB
3613 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3614 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3615 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3616
18ed0c4e
JB
3617 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3618 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3619
2ea5f656 3620 if (sysv_abi && wordsize == 4)
77b2b6d4 3621 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3622 else if (sysv_abi && wordsize == 8)
3623 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3624 else
77b2b6d4 3625 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3626
7a78ae4e 3627 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3628 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3629
7a78ae4e 3630 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3631 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3632
ce5eab59
UW
3633 /* Handles single stepping of atomic sequences. */
3634 set_gdbarch_software_single_step (gdbarch, deal_with_atomic_sequence);
3635
6066c3de
AC
3636 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3637 for the descriptor and ".FN" for the entry-point -- a user
3638 specifying "break FN" will unexpectedly end up with a breakpoint
3639 on the descriptor and not the function. This architecture method
3640 transforms any breakpoints on descriptors into breakpoints on the
3641 corresponding entry point. */
3642 if (sysv_abi && wordsize == 8)
3643 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3644
7a78ae4e
ND
3645 /* Not sure on this. FIXMEmgo */
3646 set_gdbarch_frame_args_skip (gdbarch, 8);
3647
15813d3f
AC
3648 if (!sysv_abi)
3649 {
3650 /* Handle RS/6000 function pointers (which are really function
3651 descriptors). */
f517ea4e
PS
3652 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3653 rs6000_convert_from_func_ptr_addr);
9aa1e687 3654 }
7a78ae4e 3655
143985b7
AF
3656 /* Helpers for function argument information. */
3657 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3658
6f7f3f0d
UW
3659 /* Trampoline. */
3660 set_gdbarch_in_solib_return_trampoline
3661 (gdbarch, rs6000_in_solib_return_trampoline);
3662 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3663
4fc771b8
DJ
3664 /* Hook in the DWARF CFI frame unwinder. */
3665 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3666 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3667
7b112f9c 3668 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3669 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3670
61a65099
KB
3671 switch (info.osabi)
3672 {
f5aecab8
PG
3673 case GDB_OSABI_LINUX:
3674 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3675 have altivec registers. If not, ptrace will fail the first time it's
3676 called to access one and will not be called again. This wart will
3677 be removed when Daniel Jacobowitz's proposal for autodetecting target
3678 registers is implemented. */
3679 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3680 {
3681 tdep->ppc_vr0_regnum = 71;
3682 tdep->ppc_vrsave_regnum = 104;
3683 }
3684 /* Fall Thru */
61a65099
KB
3685 case GDB_OSABI_NETBSD_AOUT:
3686 case GDB_OSABI_NETBSD_ELF:
3687 case GDB_OSABI_UNKNOWN:
61a65099
KB
3688 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3689 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3690 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3691 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3692 break;
3693 default:
61a65099 3694 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3695
3696 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3697 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3698 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3699 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3700 }
3701
9f643768
JB
3702 init_sim_regno_table (gdbarch);
3703
7a78ae4e 3704 return gdbarch;
c906108c
SS
3705}
3706
7b112f9c
JT
3707static void
3708rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3709{
3710 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3711
3712 if (tdep == NULL)
3713 return;
3714
4be87837 3715 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3716}
3717
c906108c
SS
3718/* Initialization code. */
3719
a78f21af 3720extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3721
c906108c 3722void
fba45db2 3723_initialize_rs6000_tdep (void)
c906108c 3724{
7b112f9c
JT
3725 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3726 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3727}
This page took 1.643115 seconds and 4 git commands to generate.