2003-03-25 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d
AC
50#include "gdb_assert.h"
51
7a78ae4e
ND
52/* If the kernel has to deliver a signal, it pushes a sigcontext
53 structure on the stack and then calls the signal handler, passing
54 the address of the sigcontext in an argument register. Usually
55 the signal handler doesn't save this register, so we have to
56 access the sigcontext structure via an offset from the signal handler
57 frame.
58 The following constants were determined by experimentation on AIX 3.2. */
59#define SIG_FRAME_PC_OFFSET 96
60#define SIG_FRAME_LR_OFFSET 108
61#define SIG_FRAME_FP_OFFSET 284
62
7a78ae4e
ND
63/* To be used by skip_prologue. */
64
65struct rs6000_framedata
66 {
67 int offset; /* total size of frame --- the distance
68 by which we decrement sp to allocate
69 the frame */
70 int saved_gpr; /* smallest # of saved gpr */
71 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 72 int saved_vr; /* smallest # of saved vr */
96ff0de4 73 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 79 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 80 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
81 int lr_offset; /* offset of saved lr */
82 int cr_offset; /* offset of saved cr */
6be8bc0c 83 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
84 };
85
86/* Description of a single register. */
87
88struct reg
89 {
90 char *name; /* name of register */
91 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
92 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
93 unsigned char fpr; /* whether register is floating-point */
489461e2 94 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
95 };
96
c906108c
SS
97/* Breakpoint shadows for the single step instructions will be kept here. */
98
c5aa993b
JM
99static struct sstep_breaks
100 {
101 /* Address, or 0 if this is not in use. */
102 CORE_ADDR address;
103 /* Shadow contents. */
104 char data[4];
105 }
106stepBreaks[2];
c906108c
SS
107
108/* Hook for determining the TOC address when calling functions in the
109 inferior under AIX. The initialization code in rs6000-nat.c sets
110 this hook to point to find_toc_address. */
111
7a78ae4e
ND
112CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113
114/* Hook to set the current architecture when starting a child process.
115 rs6000-nat.c sets this. */
116
117void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
118
119/* Static function prototypes */
120
a14ed312
KB
121static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
7a78ae4e
ND
125static void frame_get_saved_regs (struct frame_info * fi,
126 struct rs6000_framedata * fdatap);
127static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 128
64b84175
KB
129/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
130int
131altivec_register_p (int regno)
132{
133 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
134 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
135 return 0;
136 else
137 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138}
139
0a613259
AC
140/* Use the architectures FP registers? */
141int
142ppc_floating_point_unit_p (struct gdbarch *gdbarch)
143{
144 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
145 if (info->arch == bfd_arch_powerpc)
146 return (info->mach != bfd_mach_ppc_e500);
147 if (info->arch == bfd_arch_rs6000)
148 return 1;
149 return 0;
150}
151
7a78ae4e 152/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 153
7a78ae4e
ND
154static CORE_ADDR
155read_memory_addr (CORE_ADDR memaddr, int len)
156{
157 return read_memory_unsigned_integer (memaddr, len);
158}
c906108c 159
7a78ae4e
ND
160static CORE_ADDR
161rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
162{
163 struct rs6000_framedata frame;
077276e8 164 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
165 return pc;
166}
167
168
c906108c
SS
169/* Fill in fi->saved_regs */
170
171struct frame_extra_info
172{
173 /* Functions calling alloca() change the value of the stack
174 pointer. We need to use initial stack pointer (which is saved in
175 r31 by gcc) in such cases. If a compiler emits traceback table,
176 then we should use the alloca register specified in traceback
177 table. FIXME. */
c5aa993b 178 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
179};
180
9aa1e687 181void
7a78ae4e 182rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 183{
c9012c71
AC
184 struct frame_extra_info *extra_info =
185 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
186 extra_info->initial_sp = 0;
bdd78e62
AC
187 if (get_next_frame (fi) != NULL
188 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 189 /* We're in get_prev_frame */
c906108c
SS
190 /* and this is a special signal frame. */
191 /* (fi->pc will be some low address in the kernel, */
192 /* to which the signal handler returns). */
5a203e44 193 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
194}
195
7a78ae4e
ND
196/* Put here the code to store, into a struct frame_saved_regs,
197 the addresses of the saved registers of frame described by FRAME_INFO.
198 This includes special registers such as pc and fp saved in special
199 ways in the stack frame. sp is even more special:
200 the address we return for it IS the sp for the next frame. */
c906108c 201
7a78ae4e
ND
202/* In this implementation for RS/6000, we do *not* save sp. I am
203 not sure if it will be needed. The following function takes care of gpr's
204 and fpr's only. */
205
9aa1e687 206void
7a78ae4e 207rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
208{
209 frame_get_saved_regs (fi, NULL);
210}
211
7a78ae4e
ND
212static CORE_ADDR
213rs6000_frame_args_address (struct frame_info *fi)
c906108c 214{
c9012c71
AC
215 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
216 if (extra_info->initial_sp != 0)
217 return extra_info->initial_sp;
c906108c
SS
218 else
219 return frame_initial_stack_address (fi);
220}
221
7a78ae4e
ND
222/* Immediately after a function call, return the saved pc.
223 Can't go through the frames for this because on some machines
224 the new frame is not set up until the new function executes
225 some instructions. */
226
227static CORE_ADDR
228rs6000_saved_pc_after_call (struct frame_info *fi)
229{
2188cbdd 230 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 231}
c906108c
SS
232
233/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
234
235static CORE_ADDR
7a78ae4e 236branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
237{
238 CORE_ADDR dest;
239 int immediate;
240 int absolute;
241 int ext_op;
242
243 absolute = (int) ((instr >> 1) & 1);
244
c5aa993b
JM
245 switch (opcode)
246 {
247 case 18:
248 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
249 if (absolute)
250 dest = immediate;
251 else
252 dest = pc + immediate;
253 break;
254
255 case 16:
256 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
257 if (absolute)
258 dest = immediate;
259 else
260 dest = pc + immediate;
261 break;
262
263 case 19:
264 ext_op = (instr >> 1) & 0x3ff;
265
266 if (ext_op == 16) /* br conditional register */
267 {
2188cbdd 268 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
269
270 /* If we are about to return from a signal handler, dest is
271 something like 0x3c90. The current frame is a signal handler
272 caller frame, upon completion of the sigreturn system call
273 execution will return to the saved PC in the frame. */
274 if (dest < TEXT_SEGMENT_BASE)
275 {
276 struct frame_info *fi;
277
278 fi = get_current_frame ();
279 if (fi != NULL)
8b36eed8 280 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 281 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
282 }
283 }
284
285 else if (ext_op == 528) /* br cond to count reg */
286 {
2188cbdd 287 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
288
289 /* If we are about to execute a system call, dest is something
290 like 0x22fc or 0x3b00. Upon completion the system call
291 will return to the address in the link register. */
292 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 293 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
294 }
295 else
296 return -1;
297 break;
c906108c 298
c5aa993b
JM
299 default:
300 return -1;
301 }
c906108c
SS
302 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
303}
304
305
306/* Sequence of bytes for breakpoint instruction. */
307
308#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
309#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
310
f4f9705a 311const static unsigned char *
7a78ae4e 312rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
313{
314 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
315 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
316 *bp_size = 4;
d7449b42 317 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
318 return big_breakpoint;
319 else
320 return little_breakpoint;
321}
322
323
324/* AIX does not support PT_STEP. Simulate it. */
325
326void
379d08a1
AC
327rs6000_software_single_step (enum target_signal signal,
328 int insert_breakpoints_p)
c906108c 329{
7c40d541
KB
330 CORE_ADDR dummy;
331 int breakp_sz;
f4f9705a 332 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
333 int ii, insn;
334 CORE_ADDR loc;
335 CORE_ADDR breaks[2];
336 int opcode;
337
c5aa993b
JM
338 if (insert_breakpoints_p)
339 {
c906108c 340
c5aa993b 341 loc = read_pc ();
c906108c 342
c5aa993b 343 insn = read_memory_integer (loc, 4);
c906108c 344
7c40d541 345 breaks[0] = loc + breakp_sz;
c5aa993b
JM
346 opcode = insn >> 26;
347 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 348
c5aa993b
JM
349 /* Don't put two breakpoints on the same address. */
350 if (breaks[1] == breaks[0])
351 breaks[1] = -1;
c906108c 352
c5aa993b 353 stepBreaks[1].address = 0;
c906108c 354
c5aa993b
JM
355 for (ii = 0; ii < 2; ++ii)
356 {
c906108c 357
c5aa993b
JM
358 /* ignore invalid breakpoint. */
359 if (breaks[ii] == -1)
360 continue;
7c40d541 361 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
362 stepBreaks[ii].address = breaks[ii];
363 }
c906108c 364
c5aa993b
JM
365 }
366 else
367 {
c906108c 368
c5aa993b
JM
369 /* remove step breakpoints. */
370 for (ii = 0; ii < 2; ++ii)
371 if (stepBreaks[ii].address != 0)
7c40d541
KB
372 target_remove_breakpoint (stepBreaks[ii].address,
373 stepBreaks[ii].data);
c5aa993b 374 }
c906108c 375 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 376 /* What errors? {read,write}_memory call error(). */
c906108c
SS
377}
378
379
380/* return pc value after skipping a function prologue and also return
381 information about a function frame.
382
383 in struct rs6000_framedata fdata:
c5aa993b
JM
384 - frameless is TRUE, if function does not have a frame.
385 - nosavedpc is TRUE, if function does not save %pc value in its frame.
386 - offset is the initial size of this stack frame --- the amount by
387 which we decrement the sp to allocate the frame.
388 - saved_gpr is the number of the first saved gpr.
389 - saved_fpr is the number of the first saved fpr.
6be8bc0c 390 - saved_vr is the number of the first saved vr.
96ff0de4 391 - saved_ev is the number of the first saved ev.
c5aa993b
JM
392 - alloca_reg is the number of the register used for alloca() handling.
393 Otherwise -1.
394 - gpr_offset is the offset of the first saved gpr from the previous frame.
395 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 396 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 397 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
398 - lr_offset is the offset of the saved lr
399 - cr_offset is the offset of the saved cr
6be8bc0c 400 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 401 */
c906108c
SS
402
403#define SIGNED_SHORT(x) \
404 ((sizeof (short) == 2) \
405 ? ((int)(short)(x)) \
406 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
407
408#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
409
55d05f3b
KB
410/* Limit the number of skipped non-prologue instructions, as the examining
411 of the prologue is expensive. */
412static int max_skip_non_prologue_insns = 10;
413
414/* Given PC representing the starting address of a function, and
415 LIM_PC which is the (sloppy) limit to which to scan when looking
416 for a prologue, attempt to further refine this limit by using
417 the line data in the symbol table. If successful, a better guess
418 on where the prologue ends is returned, otherwise the previous
419 value of lim_pc is returned. */
420static CORE_ADDR
421refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
422{
423 struct symtab_and_line prologue_sal;
424
425 prologue_sal = find_pc_line (pc, 0);
426 if (prologue_sal.line != 0)
427 {
428 int i;
429 CORE_ADDR addr = prologue_sal.end;
430
431 /* Handle the case in which compiler's optimizer/scheduler
432 has moved instructions into the prologue. We scan ahead
433 in the function looking for address ranges whose corresponding
434 line number is less than or equal to the first one that we
435 found for the function. (It can be less than when the
436 scheduler puts a body instruction before the first prologue
437 instruction.) */
438 for (i = 2 * max_skip_non_prologue_insns;
439 i > 0 && (lim_pc == 0 || addr < lim_pc);
440 i--)
441 {
442 struct symtab_and_line sal;
443
444 sal = find_pc_line (addr, 0);
445 if (sal.line == 0)
446 break;
447 if (sal.line <= prologue_sal.line
448 && sal.symtab == prologue_sal.symtab)
449 {
450 prologue_sal = sal;
451 }
452 addr = sal.end;
453 }
454
455 if (lim_pc == 0 || prologue_sal.end < lim_pc)
456 lim_pc = prologue_sal.end;
457 }
458 return lim_pc;
459}
460
461
7a78ae4e 462static CORE_ADDR
077276e8 463skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
464{
465 CORE_ADDR orig_pc = pc;
55d05f3b 466 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 467 CORE_ADDR li_found_pc = 0;
c906108c
SS
468 char buf[4];
469 unsigned long op;
470 long offset = 0;
6be8bc0c 471 long vr_saved_offset = 0;
482ca3f5
KB
472 int lr_reg = -1;
473 int cr_reg = -1;
6be8bc0c 474 int vr_reg = -1;
96ff0de4
EZ
475 int ev_reg = -1;
476 long ev_offset = 0;
6be8bc0c 477 int vrsave_reg = -1;
c906108c
SS
478 int reg;
479 int framep = 0;
480 int minimal_toc_loaded = 0;
ddb20c56 481 int prev_insn_was_prologue_insn = 1;
55d05f3b 482 int num_skip_non_prologue_insns = 0;
96ff0de4 483 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 484 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 485
55d05f3b
KB
486 /* Attempt to find the end of the prologue when no limit is specified.
487 Note that refine_prologue_limit() has been written so that it may
488 be used to "refine" the limits of non-zero PC values too, but this
489 is only safe if we 1) trust the line information provided by the
490 compiler and 2) iterate enough to actually find the end of the
491 prologue.
492
493 It may become a good idea at some point (for both performance and
494 accuracy) to unconditionally call refine_prologue_limit(). But,
495 until we can make a clear determination that this is beneficial,
496 we'll play it safe and only use it to obtain a limit when none
497 has been specified. */
498 if (lim_pc == 0)
499 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 500
ddb20c56 501 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
502 fdata->saved_gpr = -1;
503 fdata->saved_fpr = -1;
6be8bc0c 504 fdata->saved_vr = -1;
96ff0de4 505 fdata->saved_ev = -1;
c906108c
SS
506 fdata->alloca_reg = -1;
507 fdata->frameless = 1;
508 fdata->nosavedpc = 1;
509
55d05f3b 510 for (;; pc += 4)
c906108c 511 {
ddb20c56
KB
512 /* Sometimes it isn't clear if an instruction is a prologue
513 instruction or not. When we encounter one of these ambiguous
514 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
515 Otherwise, we'll assume that it really is a prologue instruction. */
516 if (prev_insn_was_prologue_insn)
517 last_prologue_pc = pc;
55d05f3b
KB
518
519 /* Stop scanning if we've hit the limit. */
520 if (lim_pc != 0 && pc >= lim_pc)
521 break;
522
ddb20c56
KB
523 prev_insn_was_prologue_insn = 1;
524
55d05f3b 525 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
526 if (target_read_memory (pc, buf, 4))
527 break;
528 op = extract_signed_integer (buf, 4);
c906108c 529
c5aa993b
JM
530 if ((op & 0xfc1fffff) == 0x7c0802a6)
531 { /* mflr Rx */
532 lr_reg = (op & 0x03e00000) | 0x90010000;
533 continue;
c906108c 534
c5aa993b
JM
535 }
536 else if ((op & 0xfc1fffff) == 0x7c000026)
537 { /* mfcr Rx */
538 cr_reg = (op & 0x03e00000) | 0x90010000;
539 continue;
c906108c 540
c906108c 541 }
c5aa993b
JM
542 else if ((op & 0xfc1f0000) == 0xd8010000)
543 { /* stfd Rx,NUM(r1) */
544 reg = GET_SRC_REG (op);
545 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
546 {
547 fdata->saved_fpr = reg;
548 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
549 }
550 continue;
c906108c 551
c5aa993b
JM
552 }
553 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
554 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
555 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
556 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
557 {
558
559 reg = GET_SRC_REG (op);
560 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
561 {
562 fdata->saved_gpr = reg;
7a78ae4e
ND
563 if ((op & 0xfc1f0003) == 0xf8010000)
564 op = (op >> 1) << 1;
c5aa993b
JM
565 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
566 }
567 continue;
c906108c 568
ddb20c56
KB
569 }
570 else if ((op & 0xffff0000) == 0x60000000)
571 {
96ff0de4 572 /* nop */
ddb20c56
KB
573 /* Allow nops in the prologue, but do not consider them to
574 be part of the prologue unless followed by other prologue
575 instructions. */
576 prev_insn_was_prologue_insn = 0;
577 continue;
578
c906108c 579 }
c5aa993b
JM
580 else if ((op & 0xffff0000) == 0x3c000000)
581 { /* addis 0,0,NUM, used
582 for >= 32k frames */
583 fdata->offset = (op & 0x0000ffff) << 16;
584 fdata->frameless = 0;
585 continue;
586
587 }
588 else if ((op & 0xffff0000) == 0x60000000)
589 { /* ori 0,0,NUM, 2nd ha
590 lf of >= 32k frames */
591 fdata->offset |= (op & 0x0000ffff);
592 fdata->frameless = 0;
593 continue;
594
595 }
482ca3f5 596 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
597 { /* st Rx,NUM(r1)
598 where Rx == lr */
599 fdata->lr_offset = SIGNED_SHORT (op) + offset;
600 fdata->nosavedpc = 0;
601 lr_reg = 0;
602 continue;
603
604 }
482ca3f5 605 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
606 { /* st Rx,NUM(r1)
607 where Rx == cr */
608 fdata->cr_offset = SIGNED_SHORT (op) + offset;
609 cr_reg = 0;
610 continue;
611
612 }
613 else if (op == 0x48000005)
614 { /* bl .+4 used in
615 -mrelocatable */
616 continue;
617
618 }
619 else if (op == 0x48000004)
620 { /* b .+4 (xlc) */
621 break;
622
c5aa993b 623 }
6be8bc0c
EZ
624 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
625 in V.4 -mminimal-toc */
c5aa993b
JM
626 (op & 0xffff0000) == 0x3bde0000)
627 { /* addi 30,30,foo@l */
628 continue;
c906108c 629
c5aa993b
JM
630 }
631 else if ((op & 0xfc000001) == 0x48000001)
632 { /* bl foo,
633 to save fprs??? */
c906108c 634
c5aa993b 635 fdata->frameless = 0;
6be8bc0c
EZ
636 /* Don't skip over the subroutine call if it is not within
637 the first three instructions of the prologue. */
c5aa993b
JM
638 if ((pc - orig_pc) > 8)
639 break;
640
641 op = read_memory_integer (pc + 4, 4);
642
6be8bc0c
EZ
643 /* At this point, make sure this is not a trampoline
644 function (a function that simply calls another functions,
645 and nothing else). If the next is not a nop, this branch
646 was part of the function prologue. */
c5aa993b
JM
647
648 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
649 break; /* don't skip over
650 this branch */
651 continue;
652
653 /* update stack pointer */
654 }
7a78ae4e
ND
655 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
656 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
657 {
c5aa993b 658 fdata->frameless = 0;
7a78ae4e
ND
659 if ((op & 0xffff0003) == 0xf8210001)
660 op = (op >> 1) << 1;
c5aa993b
JM
661 fdata->offset = SIGNED_SHORT (op);
662 offset = fdata->offset;
663 continue;
664
665 }
666 else if (op == 0x7c21016e)
667 { /* stwux 1,1,0 */
668 fdata->frameless = 0;
669 offset = fdata->offset;
670 continue;
671
672 /* Load up minimal toc pointer */
673 }
674 else if ((op >> 22) == 0x20f
675 && !minimal_toc_loaded)
676 { /* l r31,... or l r30,... */
677 minimal_toc_loaded = 1;
678 continue;
679
f6077098
KB
680 /* move parameters from argument registers to local variable
681 registers */
682 }
683 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
684 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
685 (((op >> 21) & 31) <= 10) &&
96ff0de4 686 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
687 {
688 continue;
689
c5aa993b
JM
690 /* store parameters in stack */
691 }
6be8bc0c 692 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 693 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
694 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
695 {
c5aa993b 696 continue;
c906108c 697
c5aa993b
JM
698 /* store parameters in stack via frame pointer */
699 }
700 else if (framep &&
701 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
702 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
703 (op & 0xfc1f0000) == 0xfc1f0000))
704 { /* frsp, fp?,NUM(r1) */
705 continue;
706
707 /* Set up frame pointer */
708 }
709 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
710 || op == 0x7c3f0b78)
711 { /* mr r31, r1 */
712 fdata->frameless = 0;
713 framep = 1;
6f99cb26 714 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
715 continue;
716
717 /* Another way to set up the frame pointer. */
718 }
719 else if ((op & 0xfc1fffff) == 0x38010000)
720 { /* addi rX, r1, 0x0 */
721 fdata->frameless = 0;
722 framep = 1;
6f99cb26
AC
723 fdata->alloca_reg = (tdep->ppc_gp0_regnum
724 + ((op & ~0x38010000) >> 21));
c5aa993b 725 continue;
c5aa993b 726 }
6be8bc0c
EZ
727 /* AltiVec related instructions. */
728 /* Store the vrsave register (spr 256) in another register for
729 later manipulation, or load a register into the vrsave
730 register. 2 instructions are used: mfvrsave and
731 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
732 and mtspr SPR256, Rn. */
733 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
734 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
735 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
736 {
737 vrsave_reg = GET_SRC_REG (op);
738 continue;
739 }
740 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
741 {
742 continue;
743 }
744 /* Store the register where vrsave was saved to onto the stack:
745 rS is the register where vrsave was stored in a previous
746 instruction. */
747 /* 100100 sssss 00001 dddddddd dddddddd */
748 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
749 {
750 if (vrsave_reg == GET_SRC_REG (op))
751 {
752 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
753 vrsave_reg = -1;
754 }
755 continue;
756 }
757 /* Compute the new value of vrsave, by modifying the register
758 where vrsave was saved to. */
759 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
760 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
761 {
762 continue;
763 }
764 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
765 in a pair of insns to save the vector registers on the
766 stack. */
767 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
768 /* 001110 01110 00000 iiii iiii iiii iiii */
769 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
770 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
771 {
772 li_found_pc = pc;
773 vr_saved_offset = SIGNED_SHORT (op);
774 }
775 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
776 /* 011111 sssss 11111 00000 00111001110 */
777 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
778 {
779 if (pc == (li_found_pc + 4))
780 {
781 vr_reg = GET_SRC_REG (op);
782 /* If this is the first vector reg to be saved, or if
783 it has a lower number than others previously seen,
784 reupdate the frame info. */
785 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
786 {
787 fdata->saved_vr = vr_reg;
788 fdata->vr_offset = vr_saved_offset + offset;
789 }
790 vr_saved_offset = -1;
791 vr_reg = -1;
792 li_found_pc = 0;
793 }
794 }
795 /* End AltiVec related instructions. */
96ff0de4
EZ
796
797 /* Start BookE related instructions. */
798 /* Store gen register S at (r31+uimm).
799 Any register less than r13 is volatile, so we don't care. */
800 /* 000100 sssss 11111 iiiii 01100100001 */
801 else if (arch_info->mach == bfd_mach_ppc_e500
802 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
803 {
804 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
805 {
806 unsigned int imm;
807 ev_reg = GET_SRC_REG (op);
808 imm = (op >> 11) & 0x1f;
809 ev_offset = imm * 8;
810 /* If this is the first vector reg to be saved, or if
811 it has a lower number than others previously seen,
812 reupdate the frame info. */
813 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
814 {
815 fdata->saved_ev = ev_reg;
816 fdata->ev_offset = ev_offset + offset;
817 }
818 }
819 continue;
820 }
821 /* Store gen register rS at (r1+rB). */
822 /* 000100 sssss 00001 bbbbb 01100100000 */
823 else if (arch_info->mach == bfd_mach_ppc_e500
824 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
825 {
826 if (pc == (li_found_pc + 4))
827 {
828 ev_reg = GET_SRC_REG (op);
829 /* If this is the first vector reg to be saved, or if
830 it has a lower number than others previously seen,
831 reupdate the frame info. */
832 /* We know the contents of rB from the previous instruction. */
833 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
834 {
835 fdata->saved_ev = ev_reg;
836 fdata->ev_offset = vr_saved_offset + offset;
837 }
838 vr_saved_offset = -1;
839 ev_reg = -1;
840 li_found_pc = 0;
841 }
842 continue;
843 }
844 /* Store gen register r31 at (rA+uimm). */
845 /* 000100 11111 aaaaa iiiii 01100100001 */
846 else if (arch_info->mach == bfd_mach_ppc_e500
847 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
848 {
849 /* Wwe know that the source register is 31 already, but
850 it can't hurt to compute it. */
851 ev_reg = GET_SRC_REG (op);
852 ev_offset = ((op >> 11) & 0x1f) * 8;
853 /* If this is the first vector reg to be saved, or if
854 it has a lower number than others previously seen,
855 reupdate the frame info. */
856 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
857 {
858 fdata->saved_ev = ev_reg;
859 fdata->ev_offset = ev_offset + offset;
860 }
861
862 continue;
863 }
864 /* Store gen register S at (r31+r0).
865 Store param on stack when offset from SP bigger than 4 bytes. */
866 /* 000100 sssss 11111 00000 01100100000 */
867 else if (arch_info->mach == bfd_mach_ppc_e500
868 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
869 {
870 if (pc == (li_found_pc + 4))
871 {
872 if ((op & 0x03e00000) >= 0x01a00000)
873 {
874 ev_reg = GET_SRC_REG (op);
875 /* If this is the first vector reg to be saved, or if
876 it has a lower number than others previously seen,
877 reupdate the frame info. */
878 /* We know the contents of r0 from the previous
879 instruction. */
880 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
881 {
882 fdata->saved_ev = ev_reg;
883 fdata->ev_offset = vr_saved_offset + offset;
884 }
885 ev_reg = -1;
886 }
887 vr_saved_offset = -1;
888 li_found_pc = 0;
889 continue;
890 }
891 }
892 /* End BookE related instructions. */
893
c5aa993b
JM
894 else
895 {
55d05f3b
KB
896 /* Not a recognized prologue instruction.
897 Handle optimizer code motions into the prologue by continuing
898 the search if we have no valid frame yet or if the return
899 address is not yet saved in the frame. */
900 if (fdata->frameless == 0
901 && (lr_reg == -1 || fdata->nosavedpc == 0))
902 break;
903
904 if (op == 0x4e800020 /* blr */
905 || op == 0x4e800420) /* bctr */
906 /* Do not scan past epilogue in frameless functions or
907 trampolines. */
908 break;
909 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 910 /* Never skip branches. */
55d05f3b
KB
911 break;
912
913 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
914 /* Do not scan too many insns, scanning insns is expensive with
915 remote targets. */
916 break;
917
918 /* Continue scanning. */
919 prev_insn_was_prologue_insn = 0;
920 continue;
c5aa993b 921 }
c906108c
SS
922 }
923
924#if 0
925/* I have problems with skipping over __main() that I need to address
926 * sometime. Previously, I used to use misc_function_vector which
927 * didn't work as well as I wanted to be. -MGO */
928
929 /* If the first thing after skipping a prolog is a branch to a function,
930 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 931 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 932 work before calling a function right after a prologue, thus we can
64366f1c 933 single out such gcc2 behaviour. */
c906108c 934
c906108c 935
c5aa993b
JM
936 if ((op & 0xfc000001) == 0x48000001)
937 { /* bl foo, an initializer function? */
938 op = read_memory_integer (pc + 4, 4);
939
940 if (op == 0x4def7b82)
941 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 942
64366f1c
EZ
943 /* Check and see if we are in main. If so, skip over this
944 initializer function as well. */
c906108c 945
c5aa993b 946 tmp = find_pc_misc_function (pc);
51cc5b07 947 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
948 return pc + 8;
949 }
c906108c 950 }
c906108c 951#endif /* 0 */
c5aa993b
JM
952
953 fdata->offset = -fdata->offset;
ddb20c56 954 return last_prologue_pc;
c906108c
SS
955}
956
957
958/*************************************************************************
f6077098 959 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
960 frames, etc.
961*************************************************************************/
962
c906108c 963
64366f1c 964/* Pop the innermost frame, go back to the caller. */
c5aa993b 965
c906108c 966static void
7a78ae4e 967rs6000_pop_frame (void)
c906108c 968{
470d5666 969 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
970 struct rs6000_framedata fdata;
971 struct frame_info *frame = get_current_frame ();
470d5666 972 int ii, wordsize;
c906108c
SS
973
974 pc = read_pc ();
c193f6ac 975 sp = get_frame_base (frame);
c906108c 976
bdd78e62 977 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
978 get_frame_base (frame),
979 get_frame_base (frame)))
c906108c 980 {
7a78ae4e
ND
981 generic_pop_dummy_frame ();
982 flush_cached_frames ();
983 return;
c906108c
SS
984 }
985
986 /* Make sure that all registers are valid. */
73937e03 987 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
c906108c 988
64366f1c 989 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 990 still in the link register, otherwise walk the frames and retrieve the
64366f1c 991 saved %pc value in the previous frame. */
c906108c 992
bdd78e62
AC
993 addr = get_pc_function_start (get_frame_pc (frame));
994 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 995
21283beb 996 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
997 if (fdata.frameless)
998 prev_sp = sp;
999 else
7a78ae4e 1000 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1001 if (fdata.lr_offset == 0)
2188cbdd 1002 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1003 else
7a78ae4e 1004 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1005
1006 /* reset %pc value. */
1007 write_register (PC_REGNUM, lr);
1008
64366f1c 1009 /* reset register values if any was saved earlier. */
c906108c
SS
1010
1011 if (fdata.saved_gpr != -1)
1012 {
1013 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1014 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1015 {
524d7c18
AC
1016 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1017 wordsize);
7a78ae4e 1018 addr += wordsize;
c5aa993b 1019 }
c906108c
SS
1020 }
1021
1022 if (fdata.saved_fpr != -1)
1023 {
1024 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1025 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1026 {
524d7c18 1027 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1028 addr += 8;
1029 }
c906108c
SS
1030 }
1031
1032 write_register (SP_REGNUM, prev_sp);
1033 target_store_registers (-1);
1034 flush_cached_frames ();
1035}
1036
7a78ae4e 1037/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1038 address. Its arguments will be passed by gdb. */
c906108c 1039
7a78ae4e
ND
1040static void
1041rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1042 int nargs, struct value **args, struct type *type,
7a78ae4e 1043 int gcc_p)
c906108c 1044{
c906108c
SS
1045 int ii;
1046 CORE_ADDR target_addr;
1047
7a78ae4e 1048 if (rs6000_find_toc_address_hook != NULL)
f6077098 1049 {
7a78ae4e 1050 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1051 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1052 tocvalue);
f6077098 1053 }
c906108c
SS
1054}
1055
11269d7e
AC
1056/* All the ABI's require 16 byte alignment. */
1057static CORE_ADDR
1058rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1059{
1060 return (addr & -16);
1061}
1062
7a78ae4e 1063/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1064 the first eight words of the argument list (that might be less than
1065 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1066 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1067 passed in fpr's, in addition to that. Rest of the parameters if any
1068 are passed in user stack. There might be cases in which half of the
c906108c
SS
1069 parameter is copied into registers, the other half is pushed into
1070 stack.
1071
7a78ae4e
ND
1072 Stack must be aligned on 64-bit boundaries when synthesizing
1073 function calls.
1074
c906108c
SS
1075 If the function is returning a structure, then the return address is passed
1076 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1077 starting from r4. */
c906108c 1078
7a78ae4e 1079static CORE_ADDR
ea7c478f 1080rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1081 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1082{
1083 int ii;
1084 int len = 0;
c5aa993b
JM
1085 int argno; /* current argument number */
1086 int argbytes; /* current argument byte */
1087 char tmp_buffer[50];
1088 int f_argno = 0; /* current floating point argno */
21283beb 1089 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1090
ea7c478f 1091 struct value *arg = 0;
c906108c
SS
1092 struct type *type;
1093
1094 CORE_ADDR saved_sp;
1095
64366f1c
EZ
1096 /* The first eight words of ther arguments are passed in registers.
1097 Copy them appropriately.
c906108c
SS
1098
1099 If the function is returning a `struct', then the first word (which
64366f1c 1100 will be passed in r3) is used for struct return address. In that
c906108c 1101 case we should advance one word and start from r4 register to copy
64366f1c 1102 parameters. */
c906108c 1103
c5aa993b 1104 ii = struct_return ? 1 : 0;
c906108c
SS
1105
1106/*
c5aa993b
JM
1107 effectively indirect call... gcc does...
1108
1109 return_val example( float, int);
1110
1111 eabi:
1112 float in fp0, int in r3
1113 offset of stack on overflow 8/16
1114 for varargs, must go by type.
1115 power open:
1116 float in r3&r4, int in r5
1117 offset of stack on overflow different
1118 both:
1119 return in r3 or f0. If no float, must study how gcc emulates floats;
1120 pay attention to arg promotion.
1121 User may have to cast\args to handle promotion correctly
1122 since gdb won't know if prototype supplied or not.
1123 */
c906108c 1124
c5aa993b
JM
1125 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1126 {
f6077098 1127 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1128
1129 arg = args[argno];
1130 type = check_typedef (VALUE_TYPE (arg));
1131 len = TYPE_LENGTH (type);
1132
1133 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1134 {
1135
64366f1c 1136 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1137 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1138 there is no way we would run out of them. */
c5aa993b
JM
1139
1140 if (len > 8)
1141 printf_unfiltered (
1142 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1143
524d7c18 1144 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1145 VALUE_CONTENTS (arg),
1146 len);
1147 ++f_argno;
1148 }
1149
f6077098 1150 if (len > reg_size)
c5aa993b
JM
1151 {
1152
64366f1c 1153 /* Argument takes more than one register. */
c5aa993b
JM
1154 while (argbytes < len)
1155 {
524d7c18
AC
1156 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1157 reg_size);
1158 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1159 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1160 (len - argbytes) > reg_size
1161 ? reg_size : len - argbytes);
1162 ++ii, argbytes += reg_size;
c5aa993b
JM
1163
1164 if (ii >= 8)
1165 goto ran_out_of_registers_for_arguments;
1166 }
1167 argbytes = 0;
1168 --ii;
1169 }
1170 else
64366f1c
EZ
1171 {
1172 /* Argument can fit in one register. No problem. */
d7449b42 1173 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1174 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1175 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1176 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1177 }
1178 ++argno;
c906108c 1179 }
c906108c
SS
1180
1181ran_out_of_registers_for_arguments:
1182
7a78ae4e 1183 saved_sp = read_sp ();
cc9836a8 1184
64366f1c 1185 /* Location for 8 parameters are always reserved. */
7a78ae4e 1186 sp -= wordsize * 8;
f6077098 1187
64366f1c 1188 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1189 sp -= wordsize * 6;
f6077098 1190
64366f1c 1191 /* Stack pointer must be quadword aligned. */
7a78ae4e 1192 sp &= -16;
c906108c 1193
64366f1c
EZ
1194 /* If there are more arguments, allocate space for them in
1195 the stack, then push them starting from the ninth one. */
c906108c 1196
c5aa993b
JM
1197 if ((argno < nargs) || argbytes)
1198 {
1199 int space = 0, jj;
c906108c 1200
c5aa993b
JM
1201 if (argbytes)
1202 {
1203 space += ((len - argbytes + 3) & -4);
1204 jj = argno + 1;
1205 }
1206 else
1207 jj = argno;
c906108c 1208
c5aa993b
JM
1209 for (; jj < nargs; ++jj)
1210 {
ea7c478f 1211 struct value *val = args[jj];
c5aa993b
JM
1212 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1213 }
c906108c 1214
64366f1c 1215 /* Add location required for the rest of the parameters. */
f6077098 1216 space = (space + 15) & -16;
c5aa993b 1217 sp -= space;
c906108c 1218
64366f1c
EZ
1219 /* This is another instance we need to be concerned about
1220 securing our stack space. If we write anything underneath %sp
1221 (r1), we might conflict with the kernel who thinks he is free
1222 to use this area. So, update %sp first before doing anything
1223 else. */
c906108c 1224
c5aa993b 1225 write_register (SP_REGNUM, sp);
c906108c 1226
64366f1c
EZ
1227 /* If the last argument copied into the registers didn't fit there
1228 completely, push the rest of it into stack. */
c906108c 1229
c5aa993b
JM
1230 if (argbytes)
1231 {
1232 write_memory (sp + 24 + (ii * 4),
1233 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1234 len - argbytes);
1235 ++argno;
1236 ii += ((len - argbytes + 3) & -4) / 4;
1237 }
c906108c 1238
64366f1c 1239 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1240 for (; argno < nargs; ++argno)
1241 {
c906108c 1242
c5aa993b
JM
1243 arg = args[argno];
1244 type = check_typedef (VALUE_TYPE (arg));
1245 len = TYPE_LENGTH (type);
c906108c
SS
1246
1247
64366f1c
EZ
1248 /* Float types should be passed in fpr's, as well as in the
1249 stack. */
c5aa993b
JM
1250 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1251 {
c906108c 1252
c5aa993b
JM
1253 if (len > 8)
1254 printf_unfiltered (
1255 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1256
524d7c18 1257 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1258 VALUE_CONTENTS (arg),
1259 len);
1260 ++f_argno;
1261 }
c906108c 1262
c5aa993b
JM
1263 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1264 ii += ((len + 3) & -4) / 4;
1265 }
c906108c 1266 }
c906108c 1267 else
64366f1c 1268 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1269 write_register (SP_REGNUM, sp);
1270
c906108c
SS
1271 /* set back chain properly */
1272 store_address (tmp_buffer, 4, saved_sp);
1273 write_memory (sp, tmp_buffer, 4);
1274
1275 target_store_registers (-1);
1276 return sp;
1277}
c906108c
SS
1278
1279/* Function: ppc_push_return_address (pc, sp)
64366f1c 1280 Set up the return address for the inferior function call. */
c906108c 1281
7a78ae4e
ND
1282static CORE_ADDR
1283ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1284{
2188cbdd
EZ
1285 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1286 CALL_DUMMY_ADDRESS ());
c906108c
SS
1287 return sp;
1288}
1289
7a78ae4e 1290/* Extract a function return value of type TYPE from raw register array
64366f1c 1291 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1292static void
46d79c04 1293e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1294{
1295 int offset = 0;
1296 int vallen = TYPE_LENGTH (valtype);
1297 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1298
1299 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1300 && vallen == 8
1301 && TYPE_VECTOR (valtype))
1302 {
1303 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1304 }
1305 else
1306 {
1307 /* Return value is copied starting from r3. Note that r3 for us
1308 is a pseudo register. */
1309 int offset = 0;
1310 int return_regnum = tdep->ppc_gp0_regnum + 3;
1311 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1312 int reg_part_size;
1313 char *val_buffer;
1314 int copied = 0;
1315 int i = 0;
1316
1317 /* Compute where we will start storing the value from. */
1318 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1319 {
1320 if (vallen <= reg_size)
1321 offset = reg_size - vallen;
1322 else
1323 offset = reg_size + (reg_size - vallen);
1324 }
1325
1326 /* How big does the local buffer need to be? */
1327 if (vallen <= reg_size)
1328 val_buffer = alloca (reg_size);
1329 else
1330 val_buffer = alloca (vallen);
1331
1332 /* Read all we need into our private buffer. We copy it in
1333 chunks that are as long as one register, never shorter, even
1334 if the value is smaller than the register. */
1335 while (copied < vallen)
1336 {
1337 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1338 /* It is a pseudo/cooked register. */
1339 regcache_cooked_read (regbuf, return_regnum + i,
1340 val_buffer + copied);
1341 copied += reg_part_size;
1342 i++;
1343 }
1344 /* Put the stuff in the return buffer. */
1345 memcpy (valbuf, val_buffer + offset, vallen);
1346 }
1347}
c906108c 1348
7a78ae4e
ND
1349static void
1350rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1351{
1352 int offset = 0;
ace1378a 1353 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1354
c5aa993b
JM
1355 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1356 {
c906108c 1357
c5aa993b
JM
1358 double dd;
1359 float ff;
1360 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1361 We need to truncate the return value into float size (4 byte) if
64366f1c 1362 necessary. */
c906108c 1363
c5aa993b
JM
1364 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1365 memcpy (valbuf,
1366 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1367 TYPE_LENGTH (valtype));
1368 else
1369 { /* float */
1370 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1371 ff = (float) dd;
1372 memcpy (valbuf, &ff, sizeof (float));
1373 }
1374 }
ace1378a
EZ
1375 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1376 && TYPE_LENGTH (valtype) == 16
1377 && TYPE_VECTOR (valtype))
1378 {
1379 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1380 TYPE_LENGTH (valtype));
1381 }
c5aa993b
JM
1382 else
1383 {
1384 /* return value is copied starting from r3. */
d7449b42 1385 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1386 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1387 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1388
1389 memcpy (valbuf,
1390 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1391 TYPE_LENGTH (valtype));
c906108c 1392 }
c906108c
SS
1393}
1394
977adac5
ND
1395/* Return whether handle_inferior_event() should proceed through code
1396 starting at PC in function NAME when stepping.
1397
1398 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1399 handle memory references that are too distant to fit in instructions
1400 generated by the compiler. For example, if 'foo' in the following
1401 instruction:
1402
1403 lwz r9,foo(r2)
1404
1405 is greater than 32767, the linker might replace the lwz with a branch to
1406 somewhere in @FIX1 that does the load in 2 instructions and then branches
1407 back to where execution should continue.
1408
1409 GDB should silently step over @FIX code, just like AIX dbx does.
1410 Unfortunately, the linker uses the "b" instruction for the branches,
1411 meaning that the link register doesn't get set. Therefore, GDB's usual
1412 step_over_function() mechanism won't work.
1413
1414 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1415 in handle_inferior_event() to skip past @FIX code. */
1416
1417int
1418rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1419{
1420 return name && !strncmp (name, "@FIX", 4);
1421}
1422
1423/* Skip code that the user doesn't want to see when stepping:
1424
1425 1. Indirect function calls use a piece of trampoline code to do context
1426 switching, i.e. to set the new TOC table. Skip such code if we are on
1427 its first instruction (as when we have single-stepped to here).
1428
1429 2. Skip shared library trampoline code (which is different from
c906108c 1430 indirect function call trampolines).
977adac5
ND
1431
1432 3. Skip bigtoc fixup code.
1433
c906108c 1434 Result is desired PC to step until, or NULL if we are not in
977adac5 1435 code that should be skipped. */
c906108c
SS
1436
1437CORE_ADDR
7a78ae4e 1438rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1439{
1440 register unsigned int ii, op;
977adac5 1441 int rel;
c906108c 1442 CORE_ADDR solib_target_pc;
977adac5 1443 struct minimal_symbol *msymbol;
c906108c 1444
c5aa993b
JM
1445 static unsigned trampoline_code[] =
1446 {
1447 0x800b0000, /* l r0,0x0(r11) */
1448 0x90410014, /* st r2,0x14(r1) */
1449 0x7c0903a6, /* mtctr r0 */
1450 0x804b0004, /* l r2,0x4(r11) */
1451 0x816b0008, /* l r11,0x8(r11) */
1452 0x4e800420, /* bctr */
1453 0x4e800020, /* br */
1454 0
c906108c
SS
1455 };
1456
977adac5
ND
1457 /* Check for bigtoc fixup code. */
1458 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1459 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1460 {
1461 /* Double-check that the third instruction from PC is relative "b". */
1462 op = read_memory_integer (pc + 8, 4);
1463 if ((op & 0xfc000003) == 0x48000000)
1464 {
1465 /* Extract bits 6-29 as a signed 24-bit relative word address and
1466 add it to the containing PC. */
1467 rel = ((int)(op << 6) >> 6);
1468 return pc + 8 + rel;
1469 }
1470 }
1471
c906108c
SS
1472 /* If pc is in a shared library trampoline, return its target. */
1473 solib_target_pc = find_solib_trampoline_target (pc);
1474 if (solib_target_pc)
1475 return solib_target_pc;
1476
c5aa993b
JM
1477 for (ii = 0; trampoline_code[ii]; ++ii)
1478 {
1479 op = read_memory_integer (pc + (ii * 4), 4);
1480 if (op != trampoline_code[ii])
1481 return 0;
1482 }
1483 ii = read_register (11); /* r11 holds destination addr */
21283beb 1484 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1485 return pc;
1486}
1487
1488/* Determines whether the function FI has a frame on the stack or not. */
1489
9aa1e687 1490int
c877c8e6 1491rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1492{
1493 CORE_ADDR func_start;
1494 struct rs6000_framedata fdata;
1495
1496 /* Don't even think about framelessness except on the innermost frame
1497 or if the function was interrupted by a signal. */
75e3c1f9
AC
1498 if (get_next_frame (fi) != NULL
1499 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1500 return 0;
c5aa993b 1501
bdd78e62 1502 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1503
1504 /* If we failed to find the start of the function, it is a mistake
64366f1c 1505 to inspect the instructions. */
c906108c
SS
1506
1507 if (!func_start)
1508 {
1509 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1510 function pointer, normally causing an immediate core dump of the
64366f1c 1511 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1512 of setting up a stack frame. */
bdd78e62 1513 if (get_frame_pc (fi) == 0)
c906108c
SS
1514 return 1;
1515 else
1516 return 0;
1517 }
1518
bdd78e62 1519 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1520 return fdata.frameless;
1521}
1522
64366f1c 1523/* Return the PC saved in a frame. */
c906108c 1524
9aa1e687 1525CORE_ADDR
c877c8e6 1526rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1527{
1528 CORE_ADDR func_start;
1529 struct rs6000_framedata fdata;
21283beb 1530 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1531 int wordsize = tdep->wordsize;
c906108c 1532
5a203e44 1533 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1534 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1535 wordsize);
c906108c 1536
bdd78e62 1537 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1538 get_frame_base (fi),
1539 get_frame_base (fi)))
bdd78e62 1540 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1541 get_frame_base (fi), PC_REGNUM);
c906108c 1542
bdd78e62 1543 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1544
1545 /* If we failed to find the start of the function, it is a mistake
64366f1c 1546 to inspect the instructions. */
c906108c
SS
1547 if (!func_start)
1548 return 0;
1549
bdd78e62 1550 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1551
75e3c1f9 1552 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1553 {
75e3c1f9 1554 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1555 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1556 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1557 wordsize);
bdd78e62 1558 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1559 /* The link register wasn't saved by this frame and the next
1560 (inner, newer) frame is a dummy. Get the link register
1561 value by unwinding it from that [dummy] frame. */
1562 {
1563 ULONGEST lr;
1564 frame_unwind_unsigned_register (get_next_frame (fi),
1565 tdep->ppc_lr_regnum, &lr);
1566 return lr;
1567 }
c906108c 1568 else
618ce49f
AC
1569 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1570 + tdep->lr_frame_offset,
7a78ae4e 1571 wordsize);
c906108c
SS
1572 }
1573
1574 if (fdata.lr_offset == 0)
2188cbdd 1575 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1576
618ce49f
AC
1577 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1578 wordsize);
c906108c
SS
1579}
1580
1581/* If saved registers of frame FI are not known yet, read and cache them.
1582 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1583 in which case the framedata are read. */
1584
1585static void
7a78ae4e 1586frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1587{
c5aa993b 1588 CORE_ADDR frame_addr;
c906108c 1589 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1590 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1591 int wordsize = tdep->wordsize;
c906108c 1592
c9012c71 1593 if (get_frame_saved_regs (fi))
c906108c 1594 return;
c5aa993b 1595
c906108c
SS
1596 if (fdatap == NULL)
1597 {
1598 fdatap = &work_fdata;
bdd78e62
AC
1599 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1600 get_frame_pc (fi), fdatap);
c906108c
SS
1601 }
1602
1603 frame_saved_regs_zalloc (fi);
1604
1605 /* If there were any saved registers, figure out parent's stack
64366f1c 1606 pointer. */
c906108c 1607 /* The following is true only if the frame doesn't have a call to
64366f1c 1608 alloca(), FIXME. */
c906108c 1609
6be8bc0c
EZ
1610 if (fdatap->saved_fpr == 0
1611 && fdatap->saved_gpr == 0
1612 && fdatap->saved_vr == 0
96ff0de4 1613 && fdatap->saved_ev == 0
6be8bc0c
EZ
1614 && fdatap->lr_offset == 0
1615 && fdatap->cr_offset == 0
96ff0de4
EZ
1616 && fdatap->vr_offset == 0
1617 && fdatap->ev_offset == 0)
c906108c 1618 frame_addr = 0;
c906108c 1619 else
bf75c8c1
AC
1620 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1621 address of the current frame. Things might be easier if the
1622 ->frame pointed to the outer-most address of the frame. In the
1623 mean time, the address of the prev frame is used as the base
1624 address of this frame. */
618ce49f 1625 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1626
c906108c
SS
1627 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1628 All fpr's from saved_fpr to fp31 are saved. */
1629
1630 if (fdatap->saved_fpr >= 0)
1631 {
1632 int i;
7a78ae4e 1633 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1634 for (i = fdatap->saved_fpr; i < 32; i++)
1635 {
c9012c71 1636 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1637 fpr_addr += 8;
c906108c
SS
1638 }
1639 }
1640
1641 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1642 All gpr's from saved_gpr to gpr31 are saved. */
1643
1644 if (fdatap->saved_gpr >= 0)
1645 {
1646 int i;
7a78ae4e 1647 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1648 for (i = fdatap->saved_gpr; i < 32; i++)
1649 {
c9012c71 1650 get_frame_saved_regs (fi)[i] = gpr_addr;
7a78ae4e 1651 gpr_addr += wordsize;
c906108c
SS
1652 }
1653 }
1654
6be8bc0c
EZ
1655 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1656 All vr's from saved_vr to vr31 are saved. */
1657 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1658 {
1659 if (fdatap->saved_vr >= 0)
1660 {
1661 int i;
1662 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1663 for (i = fdatap->saved_vr; i < 32; i++)
1664 {
c9012c71 1665 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1666 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1667 }
1668 }
1669 }
1670
96ff0de4
EZ
1671 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1672 All vr's from saved_ev to ev31 are saved. ????? */
1673 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1674 {
1675 if (fdatap->saved_ev >= 0)
1676 {
1677 int i;
1678 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1679 for (i = fdatap->saved_ev; i < 32; i++)
1680 {
c9012c71
AC
1681 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1682 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1683 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1684 }
1685 }
1686 }
1687
c906108c
SS
1688 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1689 the CR. */
1690 if (fdatap->cr_offset != 0)
c9012c71 1691 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1692
1693 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1694 the LR. */
1695 if (fdatap->lr_offset != 0)
c9012c71 1696 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1697
1698 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1699 the VRSAVE. */
1700 if (fdatap->vrsave_offset != 0)
c9012c71 1701 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1702}
1703
1704/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1705 was first allocated. For functions calling alloca(), it might be saved in
1706 an alloca register. */
c906108c
SS
1707
1708static CORE_ADDR
7a78ae4e 1709frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1710{
1711 CORE_ADDR tmpaddr;
1712 struct rs6000_framedata fdata;
1713 struct frame_info *callee_fi;
1714
64366f1c
EZ
1715 /* If the initial stack pointer (frame address) of this frame is known,
1716 just return it. */
c906108c 1717
c9012c71
AC
1718 if (get_frame_extra_info (fi)->initial_sp)
1719 return get_frame_extra_info (fi)->initial_sp;
c906108c 1720
64366f1c 1721 /* Find out if this function is using an alloca register. */
c906108c 1722
bdd78e62
AC
1723 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1724 get_frame_pc (fi), &fdata);
c906108c 1725
64366f1c
EZ
1726 /* If saved registers of this frame are not known yet, read and
1727 cache them. */
c906108c 1728
c9012c71 1729 if (!get_frame_saved_regs (fi))
c906108c
SS
1730 frame_get_saved_regs (fi, &fdata);
1731
1732 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1733 this frame, and it is good enough. */
c906108c
SS
1734
1735 if (fdata.alloca_reg < 0)
1736 {
c9012c71
AC
1737 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1738 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1739 }
1740
953836b2
AC
1741 /* There is an alloca register, use its value, in the current frame,
1742 as the initial stack pointer. */
1743 {
1744 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1745 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1746 {
c9012c71 1747 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1748 = extract_unsigned_integer (tmpbuf,
1749 REGISTER_RAW_SIZE (fdata.alloca_reg));
1750 }
1751 else
1752 /* NOTE: cagney/2002-04-17: At present the only time
1753 frame_register_read will fail is when the register isn't
1754 available. If that does happen, use the frame. */
c9012c71 1755 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1756 }
c9012c71 1757 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1758}
1759
7a78ae4e
ND
1760/* Describe the pointer in each stack frame to the previous stack frame
1761 (its caller). */
1762
618ce49f
AC
1763/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1764 the frame's chain-pointer. */
7a78ae4e
ND
1765
1766/* In the case of the RS/6000, the frame's nominal address
1767 is the address of a 4-byte word containing the calling frame's address. */
1768
9aa1e687 1769CORE_ADDR
7a78ae4e 1770rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1771{
7a78ae4e 1772 CORE_ADDR fp, fpp, lr;
21283beb 1773 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1774
bdd78e62 1775 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1776 get_frame_base (thisframe),
1777 get_frame_base (thisframe)))
9f3b7f07
AC
1778 /* A dummy frame always correctly chains back to the previous
1779 frame. */
8b36eed8 1780 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1781
bdd78e62
AC
1782 if (inside_entry_file (get_frame_pc (thisframe))
1783 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1784 return 0;
1785
5a203e44 1786 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1787 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1788 wordsize);
75e3c1f9
AC
1789 else if (get_next_frame (thisframe) != NULL
1790 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1791 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1792 /* A frameless function interrupted by a signal did not change the
1793 frame pointer. */
c193f6ac 1794 fp = get_frame_base (thisframe);
c906108c 1795 else
8b36eed8 1796 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1797 return fp;
1798}
1799
1800/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1801 isn't available with that word size, return 0. */
7a78ae4e
ND
1802
1803static int
1804regsize (const struct reg *reg, int wordsize)
1805{
1806 return wordsize == 8 ? reg->sz64 : reg->sz32;
1807}
1808
1809/* Return the name of register number N, or null if no such register exists
64366f1c 1810 in the current architecture. */
7a78ae4e 1811
fa88f677 1812static const char *
7a78ae4e
ND
1813rs6000_register_name (int n)
1814{
21283beb 1815 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1816 const struct reg *reg = tdep->regs + n;
1817
1818 if (!regsize (reg, tdep->wordsize))
1819 return NULL;
1820 return reg->name;
1821}
1822
1823/* Index within `registers' of the first byte of the space for
1824 register N. */
1825
1826static int
1827rs6000_register_byte (int n)
1828{
21283beb 1829 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1830}
1831
1832/* Return the number of bytes of storage in the actual machine representation
64366f1c 1833 for register N if that register is available, else return 0. */
7a78ae4e
ND
1834
1835static int
1836rs6000_register_raw_size (int n)
1837{
21283beb 1838 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1839 const struct reg *reg = tdep->regs + n;
1840 return regsize (reg, tdep->wordsize);
1841}
1842
7a78ae4e
ND
1843/* Return the GDB type object for the "standard" data type
1844 of data in register N. */
1845
1846static struct type *
fba45db2 1847rs6000_register_virtual_type (int n)
7a78ae4e 1848{
21283beb 1849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1850 const struct reg *reg = tdep->regs + n;
1851
1fcc0bb8
EZ
1852 if (reg->fpr)
1853 return builtin_type_double;
1854 else
1855 {
1856 int size = regsize (reg, tdep->wordsize);
1857 switch (size)
1858 {
1859 case 8:
c8001721
EZ
1860 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1861 return builtin_type_vec64;
1862 else
1863 return builtin_type_int64;
1fcc0bb8
EZ
1864 break;
1865 case 16:
08cf96df 1866 return builtin_type_vec128;
1fcc0bb8
EZ
1867 break;
1868 default:
1869 return builtin_type_int32;
1870 break;
1871 }
1872 }
7a78ae4e
ND
1873}
1874
7a78ae4e
ND
1875/* Return whether register N requires conversion when moving from raw format
1876 to virtual format.
1877
1878 The register format for RS/6000 floating point registers is always
64366f1c 1879 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1880
1881static int
1882rs6000_register_convertible (int n)
1883{
21283beb 1884 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1885 return reg->fpr;
1886}
1887
1888/* Convert data from raw format for register N in buffer FROM
64366f1c 1889 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1890
1891static void
1892rs6000_register_convert_to_virtual (int n, struct type *type,
1893 char *from, char *to)
1894{
1895 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1896 {
7a78ae4e
ND
1897 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1898 store_floating (to, TYPE_LENGTH (type), val);
1899 }
1900 else
1901 memcpy (to, from, REGISTER_RAW_SIZE (n));
1902}
1903
1904/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1905 to raw format for register N in buffer TO. */
7a292a7a 1906
7a78ae4e
ND
1907static void
1908rs6000_register_convert_to_raw (struct type *type, int n,
1909 char *from, char *to)
1910{
1911 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1912 {
1913 double val = extract_floating (from, TYPE_LENGTH (type));
1914 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1915 }
7a78ae4e
ND
1916 else
1917 memcpy (to, from, REGISTER_RAW_SIZE (n));
1918}
c906108c 1919
c8001721
EZ
1920static void
1921e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1922 int reg_nr, void *buffer)
1923{
1924 int base_regnum;
1925 int offset = 0;
1926 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1927 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1928
1929 if (reg_nr >= tdep->ppc_gp0_regnum
1930 && reg_nr <= tdep->ppc_gplast_regnum)
1931 {
1932 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1933
1934 /* Build the value in the provided buffer. */
1935 /* Read the raw register of which this one is the lower portion. */
1936 regcache_raw_read (regcache, base_regnum, temp_buffer);
1937 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1938 offset = 4;
1939 memcpy ((char *) buffer, temp_buffer + offset, 4);
1940 }
1941}
1942
1943static void
1944e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1945 int reg_nr, const void *buffer)
1946{
1947 int base_regnum;
1948 int offset = 0;
1949 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1950 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1951
1952 if (reg_nr >= tdep->ppc_gp0_regnum
1953 && reg_nr <= tdep->ppc_gplast_regnum)
1954 {
1955 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1956 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1957 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1958 offset = 4;
1959
1960 /* Let's read the value of the base register into a temporary
1961 buffer, so that overwriting the last four bytes with the new
1962 value of the pseudo will leave the upper 4 bytes unchanged. */
1963 regcache_raw_read (regcache, base_regnum, temp_buffer);
1964
1965 /* Write as an 8 byte quantity. */
1966 memcpy (temp_buffer + offset, (char *) buffer, 4);
1967 regcache_raw_write (regcache, base_regnum, temp_buffer);
1968 }
1969}
1970
1971/* Convert a dwarf2 register number to a gdb REGNUM. */
1972static int
1973e500_dwarf2_reg_to_regnum (int num)
1974{
1975 int regnum;
1976 if (0 <= num && num <= 31)
1977 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1978 else
1979 return num;
1980}
1981
2188cbdd 1982/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1983 REGNUM. */
2188cbdd
EZ
1984static int
1985rs6000_stab_reg_to_regnum (int num)
1986{
1987 int regnum;
1988 switch (num)
1989 {
1990 case 64:
1991 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1992 break;
1993 case 65:
1994 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1995 break;
1996 case 66:
1997 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1998 break;
1999 case 76:
2000 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2001 break;
2002 default:
2003 regnum = num;
2004 break;
2005 }
2006 return regnum;
2007}
2008
7a78ae4e 2009/* Store the address of the place in which to copy the structure the
11269d7e 2010 subroutine will return. */
7a78ae4e
ND
2011
2012static void
2013rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2014{
da3eff49
AC
2015 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2016 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2017}
2018
2019/* Write into appropriate registers a function return value
2020 of type TYPE, given in virtual format. */
96ff0de4
EZ
2021static void
2022e500_store_return_value (struct type *type, char *valbuf)
2023{
2024 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2025
2026 /* Everything is returned in GPR3 and up. */
2027 int copied = 0;
2028 int i = 0;
2029 int len = TYPE_LENGTH (type);
2030 while (copied < len)
2031 {
2032 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2033 int reg_size = REGISTER_RAW_SIZE (regnum);
2034 char *reg_val_buf = alloca (reg_size);
2035
2036 memcpy (reg_val_buf, valbuf + copied, reg_size);
2037 copied += reg_size;
4caf0990 2038 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2039 i++;
2040 }
2041}
7a78ae4e
ND
2042
2043static void
2044rs6000_store_return_value (struct type *type, char *valbuf)
2045{
ace1378a
EZ
2046 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2047
7a78ae4e
ND
2048 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2049
2050 /* Floating point values are returned starting from FPR1 and up.
2051 Say a double_double_double type could be returned in
64366f1c 2052 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2053
73937e03
AC
2054 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2055 TYPE_LENGTH (type));
ace1378a
EZ
2056 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2057 {
2058 if (TYPE_LENGTH (type) == 16
2059 && TYPE_VECTOR (type))
73937e03
AC
2060 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2061 valbuf, TYPE_LENGTH (type));
ace1378a 2062 }
7a78ae4e 2063 else
64366f1c 2064 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2065 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2066 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2067}
2068
2069/* Extract from an array REGBUF containing the (raw) register state
2070 the address in which a function should return its structure value,
2071 as a CORE_ADDR (or an expression that can be used as one). */
2072
2073static CORE_ADDR
11269d7e
AC
2074rs6000_extract_struct_value_address (struct regcache *regcache)
2075{
2076 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2077 function call GDB knows the address of the struct return value
2078 and hence, should not need to call this function. Unfortunately,
2079 the current hand_function_call() code only saves the most recent
2080 struct address leading to occasional calls. The code should
2081 instead maintain a stack of such addresses (in the dummy frame
2082 object). */
2083 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2084 really got no idea where the return value is being stored. While
2085 r3, on function entry, contained the address it will have since
2086 been reused (scratch) and hence wouldn't be valid */
2087 return 0;
7a78ae4e
ND
2088}
2089
2090/* Return whether PC is in a dummy function call.
2091
2092 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2093 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2094
2095static int
2096rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2097{
2098 return sp < pc && pc < fp;
2099}
2100
64366f1c 2101/* Hook called when a new child process is started. */
7a78ae4e
ND
2102
2103void
2104rs6000_create_inferior (int pid)
2105{
2106 if (rs6000_set_host_arch_hook)
2107 rs6000_set_host_arch_hook (pid);
c906108c
SS
2108}
2109\f
7a78ae4e
ND
2110/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2111
2112 Usually a function pointer's representation is simply the address
2113 of the function. On the RS/6000 however, a function pointer is
2114 represented by a pointer to a TOC entry. This TOC entry contains
2115 three words, the first word is the address of the function, the
2116 second word is the TOC pointer (r2), and the third word is the
2117 static chain value. Throughout GDB it is currently assumed that a
2118 function pointer contains the address of the function, which is not
2119 easy to fix. In addition, the conversion of a function address to
2120 a function pointer would require allocation of a TOC entry in the
2121 inferior's memory space, with all its drawbacks. To be able to
2122 call C++ virtual methods in the inferior (which are called via
f517ea4e 2123 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2124 function address from a function pointer. */
2125
f517ea4e
PS
2126/* Return real function address if ADDR (a function pointer) is in the data
2127 space and is therefore a special function pointer. */
c906108c 2128
7a78ae4e
ND
2129CORE_ADDR
2130rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2131{
2132 struct obj_section *s;
2133
2134 s = find_pc_section (addr);
2135 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2136 return addr;
c906108c 2137
7a78ae4e 2138 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2139 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2140}
c906108c 2141\f
c5aa993b 2142
7a78ae4e 2143/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2144
2145
7a78ae4e
ND
2146/* The arrays here called registers_MUMBLE hold information about available
2147 registers.
c906108c
SS
2148
2149 For each family of PPC variants, I've tried to isolate out the
2150 common registers and put them up front, so that as long as you get
2151 the general family right, GDB will correctly identify the registers
2152 common to that family. The common register sets are:
2153
2154 For the 60x family: hid0 hid1 iabr dabr pir
2155
2156 For the 505 and 860 family: eie eid nri
2157
2158 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2159 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2160 pbu1 pbl2 pbu2
c906108c
SS
2161
2162 Most of these register groups aren't anything formal. I arrived at
2163 them by looking at the registers that occurred in more than one
6f5987a6
KB
2164 processor.
2165
2166 Note: kevinb/2002-04-30: Support for the fpscr register was added
2167 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2168 for Power. For PowerPC, slot 70 was unused and was already in the
2169 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2170 slot 70 was being used for "mq", so the next available slot (71)
2171 was chosen. It would have been nice to be able to make the
2172 register numbers the same across processor cores, but this wasn't
2173 possible without either 1) renumbering some registers for some
2174 processors or 2) assigning fpscr to a really high slot that's
2175 larger than any current register number. Doing (1) is bad because
2176 existing stubs would break. Doing (2) is undesirable because it
2177 would introduce a really large gap between fpscr and the rest of
2178 the registers for most processors. */
7a78ae4e 2179
64366f1c 2180/* Convenience macros for populating register arrays. */
7a78ae4e 2181
64366f1c 2182/* Within another macro, convert S to a string. */
7a78ae4e
ND
2183
2184#define STR(s) #s
2185
2186/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2187 and 64 bits on 64-bit systems. */
489461e2 2188#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2189
2190/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2191 systems. */
489461e2 2192#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2193
2194/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2195 systems. */
489461e2 2196#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2197
1fcc0bb8 2198/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2199 systems. */
489461e2 2200#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2201
64366f1c 2202/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2203#define F(name) { STR(name), 8, 8, 1, 0 }
2204
64366f1c 2205/* Return a struct reg defining a pseudo register NAME. */
489461e2 2206#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2207
2208/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2209 systems and that doesn't exist on 64-bit systems. */
489461e2 2210#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2211
2212/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2213 systems and that doesn't exist on 32-bit systems. */
489461e2 2214#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2215
64366f1c 2216/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2217#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2218
2219/* UISA registers common across all architectures, including POWER. */
2220
2221#define COMMON_UISA_REGS \
2222 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2223 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2224 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2225 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2226 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2227 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2228 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2229 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2230 /* 64 */ R(pc), R(ps)
2231
ebeac11a
EZ
2232#define COMMON_UISA_NOFP_REGS \
2233 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2234 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2235 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2236 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2237 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2238 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2239 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2240 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2241 /* 64 */ R(pc), R(ps)
2242
7a78ae4e
ND
2243/* UISA-level SPRs for PowerPC. */
2244#define PPC_UISA_SPRS \
e3f36dbd 2245 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2246
c8001721
EZ
2247/* UISA-level SPRs for PowerPC without floating point support. */
2248#define PPC_UISA_NOFP_SPRS \
2249 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2250
7a78ae4e
ND
2251/* Segment registers, for PowerPC. */
2252#define PPC_SEGMENT_REGS \
2253 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2254 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2255 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2256 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2257
2258/* OEA SPRs for PowerPC. */
2259#define PPC_OEA_SPRS \
2260 /* 87 */ R4(pvr), \
2261 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2262 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2263 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2264 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2265 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2266 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2267 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2268 /* 116 */ R4(dec), R(dabr), R4(ear)
2269
64366f1c 2270/* AltiVec registers. */
1fcc0bb8
EZ
2271#define PPC_ALTIVEC_REGS \
2272 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2273 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2274 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2275 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2276 /*151*/R4(vscr), R4(vrsave)
2277
c8001721
EZ
2278/* Vectors of hi-lo general purpose registers. */
2279#define PPC_EV_REGS \
2280 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2281 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2282 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2283 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2284
2285/* Lower half of the EV registers. */
2286#define PPC_GPRS_PSEUDO_REGS \
2287 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2288 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2289 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2290 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2291
7a78ae4e 2292/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2293 user-level SPR's. */
7a78ae4e 2294static const struct reg registers_power[] =
c906108c 2295{
7a78ae4e 2296 COMMON_UISA_REGS,
e3f36dbd
KB
2297 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2298 /* 71 */ R4(fpscr)
c906108c
SS
2299};
2300
7a78ae4e 2301/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2302 view of the PowerPC. */
7a78ae4e 2303static const struct reg registers_powerpc[] =
c906108c 2304{
7a78ae4e 2305 COMMON_UISA_REGS,
1fcc0bb8
EZ
2306 PPC_UISA_SPRS,
2307 PPC_ALTIVEC_REGS
c906108c
SS
2308};
2309
ebeac11a
EZ
2310/* PowerPC UISA - a PPC processor as viewed by user-level
2311 code, but without floating point registers. */
2312static const struct reg registers_powerpc_nofp[] =
2313{
2314 COMMON_UISA_NOFP_REGS,
2315 PPC_UISA_SPRS
2316};
2317
64366f1c 2318/* IBM PowerPC 403. */
7a78ae4e 2319static const struct reg registers_403[] =
c5aa993b 2320{
7a78ae4e
ND
2321 COMMON_UISA_REGS,
2322 PPC_UISA_SPRS,
2323 PPC_SEGMENT_REGS,
2324 PPC_OEA_SPRS,
2325 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2326 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2327 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2328 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2329 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2330 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2331};
2332
64366f1c 2333/* IBM PowerPC 403GC. */
7a78ae4e 2334static const struct reg registers_403GC[] =
c5aa993b 2335{
7a78ae4e
ND
2336 COMMON_UISA_REGS,
2337 PPC_UISA_SPRS,
2338 PPC_SEGMENT_REGS,
2339 PPC_OEA_SPRS,
2340 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2341 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2342 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2343 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2344 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2345 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2346 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2347 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2348};
2349
64366f1c 2350/* Motorola PowerPC 505. */
7a78ae4e 2351static const struct reg registers_505[] =
c5aa993b 2352{
7a78ae4e
ND
2353 COMMON_UISA_REGS,
2354 PPC_UISA_SPRS,
2355 PPC_SEGMENT_REGS,
2356 PPC_OEA_SPRS,
2357 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2358};
2359
64366f1c 2360/* Motorola PowerPC 860 or 850. */
7a78ae4e 2361static const struct reg registers_860[] =
c5aa993b 2362{
7a78ae4e
ND
2363 COMMON_UISA_REGS,
2364 PPC_UISA_SPRS,
2365 PPC_SEGMENT_REGS,
2366 PPC_OEA_SPRS,
2367 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2368 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2369 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2370 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2371 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2372 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2373 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2374 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2375 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2376 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2377 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2378 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2379};
2380
7a78ae4e
ND
2381/* Motorola PowerPC 601. Note that the 601 has different register numbers
2382 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2383 register is the stub's problem. */
7a78ae4e 2384static const struct reg registers_601[] =
c5aa993b 2385{
7a78ae4e
ND
2386 COMMON_UISA_REGS,
2387 PPC_UISA_SPRS,
2388 PPC_SEGMENT_REGS,
2389 PPC_OEA_SPRS,
2390 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2391 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2392};
2393
64366f1c 2394/* Motorola PowerPC 602. */
7a78ae4e 2395static const struct reg registers_602[] =
c5aa993b 2396{
7a78ae4e
ND
2397 COMMON_UISA_REGS,
2398 PPC_UISA_SPRS,
2399 PPC_SEGMENT_REGS,
2400 PPC_OEA_SPRS,
2401 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2402 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2403 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2404};
2405
64366f1c 2406/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2407static const struct reg registers_603[] =
c5aa993b 2408{
7a78ae4e
ND
2409 COMMON_UISA_REGS,
2410 PPC_UISA_SPRS,
2411 PPC_SEGMENT_REGS,
2412 PPC_OEA_SPRS,
2413 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2414 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2415 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2416};
2417
64366f1c 2418/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2419static const struct reg registers_604[] =
c5aa993b 2420{
7a78ae4e
ND
2421 COMMON_UISA_REGS,
2422 PPC_UISA_SPRS,
2423 PPC_SEGMENT_REGS,
2424 PPC_OEA_SPRS,
2425 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2426 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2427 /* 127 */ R(sia), R(sda)
c906108c
SS
2428};
2429
64366f1c 2430/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2431static const struct reg registers_750[] =
c5aa993b 2432{
7a78ae4e
ND
2433 COMMON_UISA_REGS,
2434 PPC_UISA_SPRS,
2435 PPC_SEGMENT_REGS,
2436 PPC_OEA_SPRS,
2437 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2438 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2439 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2440 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2441 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2442 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2443};
2444
2445
64366f1c 2446/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2447static const struct reg registers_7400[] =
2448{
2449 /* gpr0-gpr31, fpr0-fpr31 */
2450 COMMON_UISA_REGS,
2451 /* ctr, xre, lr, cr */
2452 PPC_UISA_SPRS,
2453 /* sr0-sr15 */
2454 PPC_SEGMENT_REGS,
2455 PPC_OEA_SPRS,
2456 /* vr0-vr31, vrsave, vscr */
2457 PPC_ALTIVEC_REGS
2458 /* FIXME? Add more registers? */
2459};
2460
c8001721
EZ
2461/* Motorola e500. */
2462static const struct reg registers_e500[] =
2463{
2464 R(pc), R(ps),
2465 /* cr, lr, ctr, xer, "" */
2466 PPC_UISA_NOFP_SPRS,
2467 /* 7...38 */
2468 PPC_EV_REGS,
338ef23d
AC
2469 R8(acc), R(spefscr),
2470 /* NOTE: Add new registers here the end of the raw register
2471 list and just before the first pseudo register. */
c8001721
EZ
2472 /* 39...70 */
2473 PPC_GPRS_PSEUDO_REGS
2474};
2475
c906108c 2476/* Information about a particular processor variant. */
7a78ae4e 2477
c906108c 2478struct variant
c5aa993b
JM
2479 {
2480 /* Name of this variant. */
2481 char *name;
c906108c 2482
c5aa993b
JM
2483 /* English description of the variant. */
2484 char *description;
c906108c 2485
64366f1c 2486 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2487 enum bfd_architecture arch;
2488
64366f1c 2489 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2490 unsigned long mach;
2491
489461e2
EZ
2492 /* Number of real registers. */
2493 int nregs;
2494
2495 /* Number of pseudo registers. */
2496 int npregs;
2497
2498 /* Number of total registers (the sum of nregs and npregs). */
2499 int num_tot_regs;
2500
c5aa993b
JM
2501 /* Table of register names; registers[R] is the name of the register
2502 number R. */
7a78ae4e 2503 const struct reg *regs;
c5aa993b 2504 };
c906108c 2505
489461e2
EZ
2506#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2507
2508static int
2509num_registers (const struct reg *reg_list, int num_tot_regs)
2510{
2511 int i;
2512 int nregs = 0;
2513
2514 for (i = 0; i < num_tot_regs; i++)
2515 if (!reg_list[i].pseudo)
2516 nregs++;
2517
2518 return nregs;
2519}
2520
2521static int
2522num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2523{
2524 int i;
2525 int npregs = 0;
2526
2527 for (i = 0; i < num_tot_regs; i++)
2528 if (reg_list[i].pseudo)
2529 npregs ++;
2530
2531 return npregs;
2532}
c906108c 2533
c906108c
SS
2534/* Information in this table comes from the following web sites:
2535 IBM: http://www.chips.ibm.com:80/products/embedded/
2536 Motorola: http://www.mot.com/SPS/PowerPC/
2537
2538 I'm sure I've got some of the variant descriptions not quite right.
2539 Please report any inaccuracies you find to GDB's maintainer.
2540
2541 If you add entries to this table, please be sure to allow the new
2542 value as an argument to the --with-cpu flag, in configure.in. */
2543
489461e2 2544static struct variant variants[] =
c906108c 2545{
489461e2 2546
7a78ae4e 2547 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2548 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2549 registers_powerpc},
7a78ae4e 2550 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2551 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2552 registers_power},
7a78ae4e 2553 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2554 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2555 registers_403},
7a78ae4e 2556 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2557 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2558 registers_601},
7a78ae4e 2559 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2560 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2561 registers_602},
7a78ae4e 2562 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2563 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2564 registers_603},
7a78ae4e 2565 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2566 604, -1, -1, tot_num_registers (registers_604),
2567 registers_604},
7a78ae4e 2568 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2569 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2570 registers_403GC},
7a78ae4e 2571 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2572 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2573 registers_505},
7a78ae4e 2574 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2575 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2576 registers_860},
7a78ae4e 2577 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2578 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2579 registers_750},
1fcc0bb8 2580 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2581 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2582 registers_7400},
c8001721
EZ
2583 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2584 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2585 registers_e500},
7a78ae4e 2586
5d57ee30
KB
2587 /* 64-bit */
2588 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2589 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2590 registers_powerpc},
7a78ae4e 2591 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2592 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2593 registers_powerpc},
5d57ee30 2594 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2595 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2596 registers_powerpc},
7a78ae4e 2597 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2598 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2599 registers_powerpc},
5d57ee30 2600 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2601 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2602 registers_powerpc},
5d57ee30 2603 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2604 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2605 registers_powerpc},
5d57ee30 2606
64366f1c 2607 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2608 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2609 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2610 registers_power},
7a78ae4e 2611 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2612 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2613 registers_power},
7a78ae4e 2614 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2615 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2616 registers_power},
7a78ae4e 2617
489461e2 2618 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2619};
2620
64366f1c 2621/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2622
2623static void
2624init_variants (void)
2625{
2626 struct variant *v;
2627
2628 for (v = variants; v->name; v++)
2629 {
2630 if (v->nregs == -1)
2631 v->nregs = num_registers (v->regs, v->num_tot_regs);
2632 if (v->npregs == -1)
2633 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2634 }
2635}
c906108c 2636
7a78ae4e 2637/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2638 MACH. If no such variant exists, return null. */
c906108c 2639
7a78ae4e
ND
2640static const struct variant *
2641find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2642{
7a78ae4e 2643 const struct variant *v;
c5aa993b 2644
7a78ae4e
ND
2645 for (v = variants; v->name; v++)
2646 if (arch == v->arch && mach == v->mach)
2647 return v;
c906108c 2648
7a78ae4e 2649 return NULL;
c906108c 2650}
9364a0ef
EZ
2651
2652static int
2653gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2654{
2655 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2656 return print_insn_big_powerpc (memaddr, info);
2657 else
2658 return print_insn_little_powerpc (memaddr, info);
2659}
7a78ae4e 2660\f
7a78ae4e
ND
2661/* Initialize the current architecture based on INFO. If possible, re-use an
2662 architecture from ARCHES, which is a list of architectures already created
2663 during this debugging session.
c906108c 2664
7a78ae4e 2665 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2666 a binary file. */
c906108c 2667
7a78ae4e
ND
2668static struct gdbarch *
2669rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2670{
2671 struct gdbarch *gdbarch;
2672 struct gdbarch_tdep *tdep;
9aa1e687 2673 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2674 struct reg *regs;
2675 const struct variant *v;
2676 enum bfd_architecture arch;
2677 unsigned long mach;
2678 bfd abfd;
7b112f9c 2679 int sysv_abi;
5bf1c677 2680 asection *sect;
7a78ae4e 2681
9aa1e687 2682 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2683 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2684
9aa1e687
KB
2685 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2686 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2687
2688 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2689
e712c1cf 2690 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2691 that, else choose a likely default. */
9aa1e687 2692 if (from_xcoff_exec)
c906108c 2693 {
11ed25ac 2694 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2695 wordsize = 8;
2696 else
2697 wordsize = 4;
c906108c 2698 }
9aa1e687
KB
2699 else if (from_elf_exec)
2700 {
2701 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2702 wordsize = 8;
2703 else
2704 wordsize = 4;
2705 }
c906108c 2706 else
7a78ae4e 2707 {
27b15785
KB
2708 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2709 wordsize = info.bfd_arch_info->bits_per_word /
2710 info.bfd_arch_info->bits_per_byte;
2711 else
2712 wordsize = 4;
7a78ae4e 2713 }
c906108c 2714
64366f1c 2715 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2716 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2717 arches != NULL;
2718 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2719 {
2720 /* Word size in the various PowerPC bfd_arch_info structs isn't
2721 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2722 separate word size check. */
7a78ae4e 2723 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2724 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2725 return arches->gdbarch;
2726 }
c906108c 2727
7a78ae4e
ND
2728 /* None found, create a new architecture from INFO, whose bfd_arch_info
2729 validity depends on the source:
2730 - executable useless
2731 - rs6000_host_arch() good
2732 - core file good
2733 - "set arch" trust blindly
2734 - GDB startup useless but harmless */
c906108c 2735
9aa1e687 2736 if (!from_xcoff_exec)
c906108c 2737 {
b732d07d 2738 arch = info.bfd_arch_info->arch;
7a78ae4e 2739 mach = info.bfd_arch_info->mach;
c906108c 2740 }
7a78ae4e 2741 else
c906108c 2742 {
7a78ae4e
ND
2743 arch = bfd_arch_powerpc;
2744 mach = 0;
2745 bfd_default_set_arch_mach (&abfd, arch, mach);
2746 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2747 }
2748 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2749 tdep->wordsize = wordsize;
5bf1c677
EZ
2750
2751 /* For e500 executables, the apuinfo section is of help here. Such
2752 section contains the identifier and revision number of each
2753 Application-specific Processing Unit that is present on the
2754 chip. The content of the section is determined by the assembler
2755 which looks at each instruction and determines which unit (and
2756 which version of it) can execute it. In our case we just look for
2757 the existance of the section. */
2758
2759 if (info.abfd)
2760 {
2761 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2762 if (sect)
2763 {
2764 arch = info.bfd_arch_info->arch;
2765 mach = bfd_mach_ppc_e500;
2766 bfd_default_set_arch_mach (&abfd, arch, mach);
2767 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2768 }
2769 }
2770
7a78ae4e
ND
2771 gdbarch = gdbarch_alloc (&info, tdep);
2772 power = arch == bfd_arch_rs6000;
2773
489461e2
EZ
2774 /* Initialize the number of real and pseudo registers in each variant. */
2775 init_variants ();
2776
64366f1c 2777 /* Choose variant. */
7a78ae4e
ND
2778 v = find_variant_by_arch (arch, mach);
2779 if (!v)
dd47e6fd
EZ
2780 return NULL;
2781
7a78ae4e
ND
2782 tdep->regs = v->regs;
2783
2188cbdd
EZ
2784 tdep->ppc_gp0_regnum = 0;
2785 tdep->ppc_gplast_regnum = 31;
2786 tdep->ppc_toc_regnum = 2;
2787 tdep->ppc_ps_regnum = 65;
2788 tdep->ppc_cr_regnum = 66;
2789 tdep->ppc_lr_regnum = 67;
2790 tdep->ppc_ctr_regnum = 68;
2791 tdep->ppc_xer_regnum = 69;
2792 if (v->mach == bfd_mach_ppc_601)
2793 tdep->ppc_mq_regnum = 124;
e3f36dbd 2794 else if (power)
2188cbdd 2795 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2796 else
2797 tdep->ppc_mq_regnum = -1;
2798 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2799
c8001721
EZ
2800 set_gdbarch_pc_regnum (gdbarch, 64);
2801 set_gdbarch_sp_regnum (gdbarch, 1);
2802 set_gdbarch_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2803 set_gdbarch_deprecated_extract_return_value (gdbarch,
2804 rs6000_extract_return_value);
46d79c04 2805 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2806
1fcc0bb8
EZ
2807 if (v->arch == bfd_arch_powerpc)
2808 switch (v->mach)
2809 {
2810 case bfd_mach_ppc:
2811 tdep->ppc_vr0_regnum = 71;
2812 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2813 tdep->ppc_ev0_regnum = -1;
2814 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2815 break;
2816 case bfd_mach_ppc_7400:
2817 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2818 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2819 tdep->ppc_ev0_regnum = -1;
2820 tdep->ppc_ev31_regnum = -1;
2821 break;
2822 case bfd_mach_ppc_e500:
338ef23d
AC
2823 tdep->ppc_gp0_regnum = 41;
2824 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2825 tdep->ppc_toc_regnum = -1;
2826 tdep->ppc_ps_regnum = 1;
2827 tdep->ppc_cr_regnum = 2;
2828 tdep->ppc_lr_regnum = 3;
2829 tdep->ppc_ctr_regnum = 4;
2830 tdep->ppc_xer_regnum = 5;
2831 tdep->ppc_ev0_regnum = 7;
2832 tdep->ppc_ev31_regnum = 38;
2833 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d
AC
2834 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2835 set_gdbarch_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2836 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2837 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2838 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2839 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2840 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2841 break;
2842 default:
2843 tdep->ppc_vr0_regnum = -1;
2844 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2845 tdep->ppc_ev0_regnum = -1;
2846 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2847 break;
2848 }
2849
338ef23d
AC
2850 /* Sanity check on registers. */
2851 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2852
a88376a3
KB
2853 /* Set lr_frame_offset. */
2854 if (wordsize == 8)
2855 tdep->lr_frame_offset = 16;
2856 else if (sysv_abi)
2857 tdep->lr_frame_offset = 4;
2858 else
2859 tdep->lr_frame_offset = 8;
2860
2861 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2862 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2863 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2864 {
2865 tdep->regoff[i] = off;
2866 off += regsize (v->regs + i, wordsize);
c906108c
SS
2867 }
2868
56a6dfb9
KB
2869 /* Select instruction printer. */
2870 if (arch == power)
9364a0ef 2871 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2872 else
9364a0ef 2873 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2874
7a78ae4e
ND
2875 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2876 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2877 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2878 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2879 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2880
2881 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2882 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2883 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2884 set_gdbarch_register_size (gdbarch, wordsize);
2885 set_gdbarch_register_bytes (gdbarch, off);
2886 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2887 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
a0ed5532 2888 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
b2e75d78 2889 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
a0ed5532 2890 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2891 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2892
2893 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2894 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2895 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2896 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2897 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2898 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2899 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2900 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2901 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2902
7a78ae4e 2903 set_gdbarch_call_dummy_length (gdbarch, 0);
7a78ae4e
ND
2904 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2905 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2906 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2907 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
7a78ae4e 2908 set_gdbarch_call_dummy_p (gdbarch, 1);
7a78ae4e 2909 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2910 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
58223630 2911 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2912 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2913 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e
ND
2914
2915 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2916 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2917 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2918 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2919 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2920 is correct for the SysV ABI when the wordsize is 8, but I'm also
2921 fairly certain that ppc_sysv_abi_push_arguments() will give even
2922 worse results since it only works for 32-bit code. So, for the moment,
2923 we're better off calling rs6000_push_arguments() since it works for
2924 64-bit code. At some point in the future, this matter needs to be
2925 revisited. */
2926 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2927 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2928 else
2929 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2930
d0403e00 2931 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2932 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2933 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2934
2935 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2936 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2937 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2938 set_gdbarch_function_start_offset (gdbarch, 0);
2939 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2940
2941 /* Not sure on this. FIXMEmgo */
2942 set_gdbarch_frame_args_skip (gdbarch, 8);
2943
8e0662df 2944 if (sysv_abi)
7b112f9c
JT
2945 set_gdbarch_use_struct_convention (gdbarch,
2946 ppc_sysv_abi_use_struct_convention);
8e0662df 2947 else
7b112f9c
JT
2948 set_gdbarch_use_struct_convention (gdbarch,
2949 generic_use_struct_convention);
8e0662df 2950
7b112f9c
JT
2951 set_gdbarch_frameless_function_invocation (gdbarch,
2952 rs6000_frameless_function_invocation);
618ce49f 2953 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2954 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2955
f30ee0bc 2956 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2957 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2958
15813d3f
AC
2959 if (!sysv_abi)
2960 {
2961 /* Handle RS/6000 function pointers (which are really function
2962 descriptors). */
f517ea4e
PS
2963 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2964 rs6000_convert_from_func_ptr_addr);
9aa1e687 2965 }
7a78ae4e
ND
2966 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2967 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2968 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2969
2970 /* We can't tell how many args there are
2971 now that the C compiler delays popping them. */
2972 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2973
7b112f9c 2974 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2975 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2976
7a78ae4e 2977 return gdbarch;
c906108c
SS
2978}
2979
7b112f9c
JT
2980static void
2981rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2982{
2983 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2984
2985 if (tdep == NULL)
2986 return;
2987
4be87837 2988 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2989}
2990
1fcc0bb8
EZ
2991static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2992
2993static void
2994rs6000_info_powerpc_command (char *args, int from_tty)
2995{
2996 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2997}
2998
c906108c
SS
2999/* Initialization code. */
3000
3001void
fba45db2 3002_initialize_rs6000_tdep (void)
c906108c 3003{
7b112f9c
JT
3004 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3005 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3006
3007 /* Add root prefix command for "info powerpc" commands */
3008 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3009 "Various POWERPC info specific commands.",
3010 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3011}
This page took 0.478276 seconds and 4 git commands to generate.