* gdb.ada/exec_changed.exp: Avoid "set confirm off".
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
1f82754b 62#include "rs6000-tdep.h"
c44ca51c 63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
0bcc32ae
JB
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Hook for determining the TOC address when calling functions in the
113 inferior under AIX. The initialization code in rs6000-nat.c sets
114 this hook to point to find_toc_address. */
115
7a78ae4e
ND
116CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
117
c906108c
SS
118/* Static function prototypes */
119
a14ed312
KB
120static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
121 CORE_ADDR safety);
077276e8
KB
122static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
123 struct rs6000_framedata *);
c906108c 124
64b84175
KB
125/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
126int
127altivec_register_p (int regno)
128{
129 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
130 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
131 return 0;
132 else
133 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
134}
135
383f0f5b 136
867e2dc5
JB
137/* Return true if REGNO is an SPE register, false otherwise. */
138int
139spe_register_p (int regno)
140{
141 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
142
143 /* Is it a reference to EV0 -- EV31, and do we have those? */
144 if (tdep->ppc_ev0_regnum >= 0
145 && tdep->ppc_ev31_regnum >= 0
146 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
147 return 1;
148
6ced10dd
JB
149 /* Is it a reference to one of the raw upper GPR halves? */
150 if (tdep->ppc_ev0_upper_regnum >= 0
151 && tdep->ppc_ev0_upper_regnum <= regno
152 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
153 return 1;
154
867e2dc5
JB
155 /* Is it a reference to the 64-bit accumulator, and do we have that? */
156 if (tdep->ppc_acc_regnum >= 0
157 && tdep->ppc_acc_regnum == regno)
158 return 1;
159
160 /* Is it a reference to the SPE floating-point status and control register,
161 and do we have that? */
162 if (tdep->ppc_spefscr_regnum >= 0
163 && tdep->ppc_spefscr_regnum == regno)
164 return 1;
165
166 return 0;
167}
168
169
383f0f5b
JB
170/* Return non-zero if the architecture described by GDBARCH has
171 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
172int
173ppc_floating_point_unit_p (struct gdbarch *gdbarch)
174{
383f0f5b
JB
175 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
176
177 return (tdep->ppc_fp0_regnum >= 0
178 && tdep->ppc_fpscr_regnum >= 0);
0a613259 179}
9f643768 180
09991fa0
JB
181
182/* Check that TABLE[GDB_REGNO] is not already initialized, and then
183 set it to SIM_REGNO.
184
185 This is a helper function for init_sim_regno_table, constructing
186 the table mapping GDB register numbers to sim register numbers; we
187 initialize every element in that table to -1 before we start
188 filling it in. */
9f643768
JB
189static void
190set_sim_regno (int *table, int gdb_regno, int sim_regno)
191{
192 /* Make sure we don't try to assign any given GDB register a sim
193 register number more than once. */
194 gdb_assert (table[gdb_regno] == -1);
195 table[gdb_regno] = sim_regno;
196}
197
09991fa0
JB
198
199/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
200 numbers to simulator register numbers, based on the values placed
201 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
202static void
203init_sim_regno_table (struct gdbarch *arch)
204{
205 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
206 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
207 const struct reg *regs = tdep->regs;
208 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
209 int i;
210
211 /* Presume that all registers not explicitly mentioned below are
212 unavailable from the sim. */
213 for (i = 0; i < total_regs; i++)
214 sim_regno[i] = -1;
215
216 /* General-purpose registers. */
217 for (i = 0; i < ppc_num_gprs; i++)
218 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
219
220 /* Floating-point registers. */
221 if (tdep->ppc_fp0_regnum >= 0)
222 for (i = 0; i < ppc_num_fprs; i++)
223 set_sim_regno (sim_regno,
224 tdep->ppc_fp0_regnum + i,
225 sim_ppc_f0_regnum + i);
226 if (tdep->ppc_fpscr_regnum >= 0)
227 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
228
229 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
230 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
232
233 /* Segment registers. */
234 if (tdep->ppc_sr0_regnum >= 0)
235 for (i = 0; i < ppc_num_srs; i++)
236 set_sim_regno (sim_regno,
237 tdep->ppc_sr0_regnum + i,
238 sim_ppc_sr0_regnum + i);
239
240 /* Altivec registers. */
241 if (tdep->ppc_vr0_regnum >= 0)
242 {
243 for (i = 0; i < ppc_num_vrs; i++)
244 set_sim_regno (sim_regno,
245 tdep->ppc_vr0_regnum + i,
246 sim_ppc_vr0_regnum + i);
247
248 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
249 we can treat this more like the other cases. */
250 set_sim_regno (sim_regno,
251 tdep->ppc_vr0_regnum + ppc_num_vrs,
252 sim_ppc_vscr_regnum);
253 }
254 /* vsave is a special-purpose register, so the code below handles it. */
255
256 /* SPE APU (E500) registers. */
257 if (tdep->ppc_ev0_regnum >= 0)
258 for (i = 0; i < ppc_num_gprs; i++)
259 set_sim_regno (sim_regno,
260 tdep->ppc_ev0_regnum + i,
261 sim_ppc_ev0_regnum + i);
6ced10dd
JB
262 if (tdep->ppc_ev0_upper_regnum >= 0)
263 for (i = 0; i < ppc_num_gprs; i++)
264 set_sim_regno (sim_regno,
265 tdep->ppc_ev0_upper_regnum + i,
266 sim_ppc_rh0_regnum + i);
9f643768
JB
267 if (tdep->ppc_acc_regnum >= 0)
268 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
269 /* spefscr is a special-purpose register, so the code below handles it. */
270
271 /* Now handle all special-purpose registers. Verify that they
272 haven't mistakenly been assigned numbers by any of the above
273 code). */
274 for (i = 0; i < total_regs; i++)
275 if (regs[i].spr_num >= 0)
276 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
277
278 /* Drop the initialized array into place. */
279 tdep->sim_regno = sim_regno;
280}
281
09991fa0
JB
282
283/* Given a GDB register number REG, return the corresponding SIM
284 register number. */
9f643768
JB
285static int
286rs6000_register_sim_regno (int reg)
287{
288 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
289 int sim_regno;
290
291 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
292 sim_regno = tdep->sim_regno[reg];
293
294 if (sim_regno >= 0)
295 return sim_regno;
296 else
297 return LEGACY_SIM_REGNO_IGNORE;
298}
299
d195bc9f
MK
300\f
301
302/* Register set support functions. */
303
304static void
305ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 306 const gdb_byte *regs, size_t offset)
d195bc9f
MK
307{
308 if (regnum != -1 && offset != -1)
309 regcache_raw_supply (regcache, regnum, regs + offset);
310}
311
312static void
313ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 314 gdb_byte *regs, size_t offset)
d195bc9f
MK
315{
316 if (regnum != -1 && offset != -1)
317 regcache_raw_collect (regcache, regnum, regs + offset);
318}
319
320/* Supply register REGNUM in the general-purpose register set REGSET
321 from the buffer specified by GREGS and LEN to register cache
322 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
323
324void
325ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
326 int regnum, const void *gregs, size_t len)
327{
328 struct gdbarch *gdbarch = get_regcache_arch (regcache);
329 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
330 const struct ppc_reg_offsets *offsets = regset->descr;
331 size_t offset;
332 int i;
333
cdf2c5f5 334 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 335 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 336 i++, offset += 4)
d195bc9f
MK
337 {
338 if (regnum == -1 || regnum == i)
339 ppc_supply_reg (regcache, i, gregs, offset);
340 }
341
342 if (regnum == -1 || regnum == PC_REGNUM)
343 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
344 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
345 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
346 gregs, offsets->ps_offset);
347 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
348 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
349 gregs, offsets->cr_offset);
350 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
351 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
352 gregs, offsets->lr_offset);
353 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
354 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
355 gregs, offsets->ctr_offset);
356 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
357 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
358 gregs, offsets->cr_offset);
359 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
360 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
361}
362
363/* Supply register REGNUM in the floating-point register set REGSET
364 from the buffer specified by FPREGS and LEN to register cache
365 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
366
367void
368ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
369 int regnum, const void *fpregs, size_t len)
370{
371 struct gdbarch *gdbarch = get_regcache_arch (regcache);
372 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
373 const struct ppc_reg_offsets *offsets = regset->descr;
374 size_t offset;
375 int i;
376
383f0f5b
JB
377 gdb_assert (ppc_floating_point_unit_p (gdbarch));
378
d195bc9f 379 offset = offsets->f0_offset;
366f009f
JB
380 for (i = tdep->ppc_fp0_regnum;
381 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 382 i++, offset += 8)
d195bc9f
MK
383 {
384 if (regnum == -1 || regnum == i)
385 ppc_supply_reg (regcache, i, fpregs, offset);
386 }
387
388 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
389 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
390 fpregs, offsets->fpscr_offset);
391}
392
393/* Collect register REGNUM in the general-purpose register set
394 REGSET. from register cache REGCACHE into the buffer specified by
395 GREGS and LEN. If REGNUM is -1, do this for all registers in
396 REGSET. */
397
398void
399ppc_collect_gregset (const struct regset *regset,
400 const struct regcache *regcache,
401 int regnum, void *gregs, size_t len)
402{
403 struct gdbarch *gdbarch = get_regcache_arch (regcache);
404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
405 const struct ppc_reg_offsets *offsets = regset->descr;
406 size_t offset;
407 int i;
408
409 offset = offsets->r0_offset;
cdf2c5f5 410 for (i = tdep->ppc_gp0_regnum;
063715bf 411 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 412 i++, offset += 4)
d195bc9f
MK
413 {
414 if (regnum == -1 || regnum == i)
2e56e9c1 415 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
416 }
417
418 if (regnum == -1 || regnum == PC_REGNUM)
419 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
420 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
421 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
422 gregs, offsets->ps_offset);
423 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
424 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
425 gregs, offsets->cr_offset);
426 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
427 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
428 gregs, offsets->lr_offset);
429 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
430 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
431 gregs, offsets->ctr_offset);
432 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
433 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
434 gregs, offsets->xer_offset);
435 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
436 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
437 gregs, offsets->mq_offset);
438}
439
440/* Collect register REGNUM in the floating-point register set
441 REGSET. from register cache REGCACHE into the buffer specified by
442 FPREGS and LEN. If REGNUM is -1, do this for all registers in
443 REGSET. */
444
445void
446ppc_collect_fpregset (const struct regset *regset,
447 const struct regcache *regcache,
448 int regnum, void *fpregs, size_t len)
449{
450 struct gdbarch *gdbarch = get_regcache_arch (regcache);
451 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
452 const struct ppc_reg_offsets *offsets = regset->descr;
453 size_t offset;
454 int i;
455
383f0f5b
JB
456 gdb_assert (ppc_floating_point_unit_p (gdbarch));
457
d195bc9f 458 offset = offsets->f0_offset;
366f009f
JB
459 for (i = tdep->ppc_fp0_regnum;
460 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 461 i++, offset += 8)
d195bc9f
MK
462 {
463 if (regnum == -1 || regnum == i)
bdbcb8b4 464 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
465 }
466
467 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
468 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
469 fpregs, offsets->fpscr_offset);
470}
471\f
0a613259 472
7a78ae4e 473/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 474
7a78ae4e
ND
475static CORE_ADDR
476read_memory_addr (CORE_ADDR memaddr, int len)
477{
478 return read_memory_unsigned_integer (memaddr, len);
479}
c906108c 480
7a78ae4e
ND
481static CORE_ADDR
482rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
483{
484 struct rs6000_framedata frame;
4e463ff5
DJ
485 CORE_ADDR limit_pc, func_addr;
486
487 /* See if we can determine the end of the prologue via the symbol table.
488 If so, then return either PC, or the PC after the prologue, whichever
489 is greater. */
490 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
491 {
492 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
493 if (post_prologue_pc != 0)
494 return max (pc, post_prologue_pc);
495 }
496
497 /* Can't determine prologue from the symbol table, need to examine
498 instructions. */
499
500 /* Find an upper limit on the function prologue using the debug
501 information. If the debug information could not be used to provide
502 that bound, then use an arbitrary large number as the upper bound. */
503 limit_pc = skip_prologue_using_sal (pc);
504 if (limit_pc == 0)
505 limit_pc = pc + 100; /* Magic. */
506
507 pc = skip_prologue (pc, limit_pc, &frame);
b83266a0
SS
508 return pc;
509}
510
0d1243d9
PG
511static int
512insn_changes_sp_or_jumps (unsigned long insn)
513{
514 int opcode = (insn >> 26) & 0x03f;
515 int sd = (insn >> 21) & 0x01f;
516 int a = (insn >> 16) & 0x01f;
517 int subcode = (insn >> 1) & 0x3ff;
518
519 /* Changes the stack pointer. */
520
521 /* NOTE: There are many ways to change the value of a given register.
522 The ways below are those used when the register is R1, the SP,
523 in a funtion's epilogue. */
524
525 if (opcode == 31 && subcode == 444 && a == 1)
526 return 1; /* mr R1,Rn */
527 if (opcode == 14 && sd == 1)
528 return 1; /* addi R1,Rn,simm */
529 if (opcode == 58 && sd == 1)
530 return 1; /* ld R1,ds(Rn) */
531
532 /* Transfers control. */
533
534 if (opcode == 18)
535 return 1; /* b */
536 if (opcode == 16)
537 return 1; /* bc */
538 if (opcode == 19 && subcode == 16)
539 return 1; /* bclr */
540 if (opcode == 19 && subcode == 528)
541 return 1; /* bcctr */
542
543 return 0;
544}
545
546/* Return true if we are in the function's epilogue, i.e. after the
547 instruction that destroyed the function's stack frame.
548
549 1) scan forward from the point of execution:
550 a) If you find an instruction that modifies the stack pointer
551 or transfers control (except a return), execution is not in
552 an epilogue, return.
553 b) Stop scanning if you find a return instruction or reach the
554 end of the function or reach the hard limit for the size of
555 an epilogue.
556 2) scan backward from the point of execution:
557 a) If you find an instruction that modifies the stack pointer,
558 execution *is* in an epilogue, return.
559 b) Stop scanning if you reach an instruction that transfers
560 control or the beginning of the function or reach the hard
561 limit for the size of an epilogue. */
562
563static int
564rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
565{
566 bfd_byte insn_buf[PPC_INSN_SIZE];
567 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
568 unsigned long insn;
569 struct frame_info *curfrm;
570
571 /* Find the search limits based on function boundaries and hard limit. */
572
573 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
574 return 0;
575
576 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
577 if (epilogue_start < func_start) epilogue_start = func_start;
578
579 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
580 if (epilogue_end > func_end) epilogue_end = func_end;
581
582 curfrm = get_current_frame ();
583
584 /* Scan forward until next 'blr'. */
585
586 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
587 {
588 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
589 return 0;
4e463ff5 590 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
591 if (insn == 0x4e800020)
592 break;
593 if (insn_changes_sp_or_jumps (insn))
594 return 0;
595 }
596
597 /* Scan backward until adjustment to stack pointer (R1). */
598
599 for (scan_pc = pc - PPC_INSN_SIZE;
600 scan_pc >= epilogue_start;
601 scan_pc -= PPC_INSN_SIZE)
602 {
603 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
604 return 0;
4e463ff5 605 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
606 if (insn_changes_sp_or_jumps (insn))
607 return 1;
608 }
609
610 return 0;
611}
612
b83266a0 613
c906108c
SS
614/* Fill in fi->saved_regs */
615
616struct frame_extra_info
617{
618 /* Functions calling alloca() change the value of the stack
619 pointer. We need to use initial stack pointer (which is saved in
620 r31 by gcc) in such cases. If a compiler emits traceback table,
621 then we should use the alloca register specified in traceback
622 table. FIXME. */
c5aa993b 623 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
624};
625
143985b7 626/* Get the ith function argument for the current function. */
b9362cc7 627static CORE_ADDR
143985b7
AF
628rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
629 struct type *type)
630{
50fd1280 631 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
632}
633
c906108c
SS
634/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
635
636static CORE_ADDR
7a78ae4e 637branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
638{
639 CORE_ADDR dest;
640 int immediate;
641 int absolute;
642 int ext_op;
643
644 absolute = (int) ((instr >> 1) & 1);
645
c5aa993b
JM
646 switch (opcode)
647 {
648 case 18:
649 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
650 if (absolute)
651 dest = immediate;
652 else
653 dest = pc + immediate;
654 break;
655
656 case 16:
657 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
658 if (absolute)
659 dest = immediate;
660 else
661 dest = pc + immediate;
662 break;
663
664 case 19:
665 ext_op = (instr >> 1) & 0x3ff;
666
667 if (ext_op == 16) /* br conditional register */
668 {
2188cbdd 669 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
670
671 /* If we are about to return from a signal handler, dest is
672 something like 0x3c90. The current frame is a signal handler
673 caller frame, upon completion of the sigreturn system call
674 execution will return to the saved PC in the frame. */
6f7f3f0d 675 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
c5aa993b
JM
676 {
677 struct frame_info *fi;
678
679 fi = get_current_frame ();
680 if (fi != NULL)
8b36eed8 681 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 682 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
683 }
684 }
685
686 else if (ext_op == 528) /* br cond to count reg */
687 {
2188cbdd 688 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
689
690 /* If we are about to execute a system call, dest is something
691 like 0x22fc or 0x3b00. Upon completion the system call
692 will return to the address in the link register. */
6f7f3f0d 693 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
2188cbdd 694 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
695 }
696 else
697 return -1;
698 break;
c906108c 699
c5aa993b
JM
700 default:
701 return -1;
702 }
6f7f3f0d 703 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
c906108c
SS
704}
705
706
707/* Sequence of bytes for breakpoint instruction. */
708
f4f9705a 709const static unsigned char *
7a78ae4e 710rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 711{
aaab4dba
AC
712 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
713 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 714 *bp_size = 4;
d7449b42 715 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
716 return big_breakpoint;
717 else
718 return little_breakpoint;
719}
720
721
722/* AIX does not support PT_STEP. Simulate it. */
723
724void
379d08a1
AC
725rs6000_software_single_step (enum target_signal signal,
726 int insert_breakpoints_p)
c906108c 727{
7c40d541
KB
728 CORE_ADDR dummy;
729 int breakp_sz;
50fd1280 730 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
731 int ii, insn;
732 CORE_ADDR loc;
733 CORE_ADDR breaks[2];
734 int opcode;
735
c5aa993b
JM
736 if (insert_breakpoints_p)
737 {
c5aa993b 738 loc = read_pc ();
c906108c 739
c5aa993b 740 insn = read_memory_integer (loc, 4);
c906108c 741
7c40d541 742 breaks[0] = loc + breakp_sz;
c5aa993b
JM
743 opcode = insn >> 26;
744 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 745
c5aa993b
JM
746 /* Don't put two breakpoints on the same address. */
747 if (breaks[1] == breaks[0])
748 breaks[1] = -1;
c906108c 749
c5aa993b
JM
750 for (ii = 0; ii < 2; ++ii)
751 {
c5aa993b
JM
752 /* ignore invalid breakpoint. */
753 if (breaks[ii] == -1)
754 continue;
8181d85f 755 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 756 }
c5aa993b
JM
757 }
758 else
8181d85f 759 remove_single_step_breakpoints ();
c906108c 760
c906108c 761 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 762 /* What errors? {read,write}_memory call error(). */
c906108c
SS
763}
764
765
766/* return pc value after skipping a function prologue and also return
767 information about a function frame.
768
769 in struct rs6000_framedata fdata:
c5aa993b
JM
770 - frameless is TRUE, if function does not have a frame.
771 - nosavedpc is TRUE, if function does not save %pc value in its frame.
772 - offset is the initial size of this stack frame --- the amount by
773 which we decrement the sp to allocate the frame.
774 - saved_gpr is the number of the first saved gpr.
775 - saved_fpr is the number of the first saved fpr.
6be8bc0c 776 - saved_vr is the number of the first saved vr.
96ff0de4 777 - saved_ev is the number of the first saved ev.
c5aa993b
JM
778 - alloca_reg is the number of the register used for alloca() handling.
779 Otherwise -1.
780 - gpr_offset is the offset of the first saved gpr from the previous frame.
781 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 782 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 783 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
784 - lr_offset is the offset of the saved lr
785 - cr_offset is the offset of the saved cr
6be8bc0c 786 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 787 */
c906108c
SS
788
789#define SIGNED_SHORT(x) \
790 ((sizeof (short) == 2) \
791 ? ((int)(short)(x)) \
792 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
793
794#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
795
55d05f3b
KB
796/* Limit the number of skipped non-prologue instructions, as the examining
797 of the prologue is expensive. */
798static int max_skip_non_prologue_insns = 10;
799
773df3e5
JB
800/* Return nonzero if the given instruction OP can be part of the prologue
801 of a function and saves a parameter on the stack. FRAMEP should be
802 set if one of the previous instructions in the function has set the
803 Frame Pointer. */
804
805static int
806store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
807{
808 /* Move parameters from argument registers to temporary register. */
809 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
810 {
811 /* Rx must be scratch register r0. */
812 const int rx_regno = (op >> 16) & 31;
813 /* Ry: Only r3 - r10 are used for parameter passing. */
814 const int ry_regno = GET_SRC_REG (op);
815
816 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
817 {
818 *r0_contains_arg = 1;
819 return 1;
820 }
821 else
822 return 0;
823 }
824
825 /* Save a General Purpose Register on stack. */
826
827 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
828 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
829 {
830 /* Rx: Only r3 - r10 are used for parameter passing. */
831 const int rx_regno = GET_SRC_REG (op);
832
833 return (rx_regno >= 3 && rx_regno <= 10);
834 }
835
836 /* Save a General Purpose Register on stack via the Frame Pointer. */
837
838 if (framep &&
839 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
840 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
841 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
842 {
843 /* Rx: Usually, only r3 - r10 are used for parameter passing.
844 However, the compiler sometimes uses r0 to hold an argument. */
845 const int rx_regno = GET_SRC_REG (op);
846
847 return ((rx_regno >= 3 && rx_regno <= 10)
848 || (rx_regno == 0 && *r0_contains_arg));
849 }
850
851 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
852 {
853 /* Only f2 - f8 are used for parameter passing. */
854 const int src_regno = GET_SRC_REG (op);
855
856 return (src_regno >= 2 && src_regno <= 8);
857 }
858
859 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
860 {
861 /* Only f2 - f8 are used for parameter passing. */
862 const int src_regno = GET_SRC_REG (op);
863
864 return (src_regno >= 2 && src_regno <= 8);
865 }
866
867 /* Not an insn that saves a parameter on stack. */
868 return 0;
869}
55d05f3b 870
3c77c82a
DJ
871/* Assuming that INSN is a "bl" instruction located at PC, return
872 nonzero if the destination of the branch is a "blrl" instruction.
873
874 This sequence is sometimes found in certain function prologues.
875 It allows the function to load the LR register with a value that
876 they can use to access PIC data using PC-relative offsets. */
877
878static int
879bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
880{
881 const int opcode = 18;
882 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
883 int dest_insn;
884
885 if (dest == -1)
886 return 0; /* Should never happen, but just return zero to be safe. */
887
888 dest_insn = read_memory_integer (dest, 4);
889 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
890 return 1;
891
892 return 0;
893}
894
7a78ae4e 895static CORE_ADDR
077276e8 896skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
897{
898 CORE_ADDR orig_pc = pc;
55d05f3b 899 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 900 CORE_ADDR li_found_pc = 0;
50fd1280 901 gdb_byte buf[4];
c906108c
SS
902 unsigned long op;
903 long offset = 0;
6be8bc0c 904 long vr_saved_offset = 0;
482ca3f5
KB
905 int lr_reg = -1;
906 int cr_reg = -1;
6be8bc0c 907 int vr_reg = -1;
96ff0de4
EZ
908 int ev_reg = -1;
909 long ev_offset = 0;
6be8bc0c 910 int vrsave_reg = -1;
c906108c
SS
911 int reg;
912 int framep = 0;
913 int minimal_toc_loaded = 0;
ddb20c56 914 int prev_insn_was_prologue_insn = 1;
55d05f3b 915 int num_skip_non_prologue_insns = 0;
773df3e5 916 int r0_contains_arg = 0;
96ff0de4 917 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 918 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 919
ddb20c56 920 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
921 fdata->saved_gpr = -1;
922 fdata->saved_fpr = -1;
6be8bc0c 923 fdata->saved_vr = -1;
96ff0de4 924 fdata->saved_ev = -1;
c906108c
SS
925 fdata->alloca_reg = -1;
926 fdata->frameless = 1;
927 fdata->nosavedpc = 1;
928
55d05f3b 929 for (;; pc += 4)
c906108c 930 {
ddb20c56
KB
931 /* Sometimes it isn't clear if an instruction is a prologue
932 instruction or not. When we encounter one of these ambiguous
933 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
934 Otherwise, we'll assume that it really is a prologue instruction. */
935 if (prev_insn_was_prologue_insn)
936 last_prologue_pc = pc;
55d05f3b
KB
937
938 /* Stop scanning if we've hit the limit. */
4e463ff5 939 if (pc >= lim_pc)
55d05f3b
KB
940 break;
941
ddb20c56
KB
942 prev_insn_was_prologue_insn = 1;
943
55d05f3b 944 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
945 if (target_read_memory (pc, buf, 4))
946 break;
4e463ff5 947 op = extract_unsigned_integer (buf, 4);
c906108c 948
c5aa993b
JM
949 if ((op & 0xfc1fffff) == 0x7c0802a6)
950 { /* mflr Rx */
43b1ab88
AC
951 /* Since shared library / PIC code, which needs to get its
952 address at runtime, can appear to save more than one link
953 register vis:
954
955 *INDENT-OFF*
956 stwu r1,-304(r1)
957 mflr r3
958 bl 0xff570d0 (blrl)
959 stw r30,296(r1)
960 mflr r30
961 stw r31,300(r1)
962 stw r3,308(r1);
963 ...
964 *INDENT-ON*
965
966 remember just the first one, but skip over additional
967 ones. */
721d14ba 968 if (lr_reg == -1)
43b1ab88 969 lr_reg = (op & 0x03e00000);
773df3e5
JB
970 if (lr_reg == 0)
971 r0_contains_arg = 0;
c5aa993b 972 continue;
c5aa993b
JM
973 }
974 else if ((op & 0xfc1fffff) == 0x7c000026)
975 { /* mfcr Rx */
98f08d3d 976 cr_reg = (op & 0x03e00000);
773df3e5
JB
977 if (cr_reg == 0)
978 r0_contains_arg = 0;
c5aa993b 979 continue;
c906108c 980
c906108c 981 }
c5aa993b
JM
982 else if ((op & 0xfc1f0000) == 0xd8010000)
983 { /* stfd Rx,NUM(r1) */
984 reg = GET_SRC_REG (op);
985 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
986 {
987 fdata->saved_fpr = reg;
988 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
989 }
990 continue;
c906108c 991
c5aa993b
JM
992 }
993 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
994 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
995 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
996 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
997 {
998
999 reg = GET_SRC_REG (op);
1000 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1001 {
1002 fdata->saved_gpr = reg;
7a78ae4e 1003 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1004 op &= ~3UL;
c5aa993b
JM
1005 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1006 }
1007 continue;
c906108c 1008
ddb20c56
KB
1009 }
1010 else if ((op & 0xffff0000) == 0x60000000)
1011 {
96ff0de4 1012 /* nop */
ddb20c56
KB
1013 /* Allow nops in the prologue, but do not consider them to
1014 be part of the prologue unless followed by other prologue
1015 instructions. */
1016 prev_insn_was_prologue_insn = 0;
1017 continue;
1018
c906108c 1019 }
c5aa993b
JM
1020 else if ((op & 0xffff0000) == 0x3c000000)
1021 { /* addis 0,0,NUM, used
1022 for >= 32k frames */
1023 fdata->offset = (op & 0x0000ffff) << 16;
1024 fdata->frameless = 0;
773df3e5 1025 r0_contains_arg = 0;
c5aa993b
JM
1026 continue;
1027
1028 }
1029 else if ((op & 0xffff0000) == 0x60000000)
1030 { /* ori 0,0,NUM, 2nd ha
1031 lf of >= 32k frames */
1032 fdata->offset |= (op & 0x0000ffff);
1033 fdata->frameless = 0;
773df3e5 1034 r0_contains_arg = 0;
c5aa993b
JM
1035 continue;
1036
1037 }
be723e22 1038 else if (lr_reg >= 0 &&
98f08d3d
KB
1039 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1040 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1041 /* stw Rx, NUM(r1) */
1042 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1043 /* stwu Rx, NUM(r1) */
1044 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1045 { /* where Rx == lr */
1046 fdata->lr_offset = offset;
c5aa993b 1047 fdata->nosavedpc = 0;
be723e22
MS
1048 /* Invalidate lr_reg, but don't set it to -1.
1049 That would mean that it had never been set. */
1050 lr_reg = -2;
98f08d3d
KB
1051 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1052 (op & 0xfc000000) == 0x90000000) /* stw */
1053 {
1054 /* Does not update r1, so add displacement to lr_offset. */
1055 fdata->lr_offset += SIGNED_SHORT (op);
1056 }
c5aa993b
JM
1057 continue;
1058
1059 }
be723e22 1060 else if (cr_reg >= 0 &&
98f08d3d
KB
1061 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1062 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1063 /* stw Rx, NUM(r1) */
1064 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1065 /* stwu Rx, NUM(r1) */
1066 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1067 { /* where Rx == cr */
1068 fdata->cr_offset = offset;
be723e22
MS
1069 /* Invalidate cr_reg, but don't set it to -1.
1070 That would mean that it had never been set. */
1071 cr_reg = -2;
98f08d3d
KB
1072 if ((op & 0xfc000003) == 0xf8000000 ||
1073 (op & 0xfc000000) == 0x90000000)
1074 {
1075 /* Does not update r1, so add displacement to cr_offset. */
1076 fdata->cr_offset += SIGNED_SHORT (op);
1077 }
c5aa993b
JM
1078 continue;
1079
1080 }
721d14ba
DJ
1081 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1082 {
1083 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1084 prediction bits. If the LR has already been saved, we can
1085 skip it. */
1086 continue;
1087 }
c5aa993b
JM
1088 else if (op == 0x48000005)
1089 { /* bl .+4 used in
1090 -mrelocatable */
1091 continue;
1092
1093 }
1094 else if (op == 0x48000004)
1095 { /* b .+4 (xlc) */
1096 break;
1097
c5aa993b 1098 }
6be8bc0c
EZ
1099 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1100 in V.4 -mminimal-toc */
c5aa993b
JM
1101 (op & 0xffff0000) == 0x3bde0000)
1102 { /* addi 30,30,foo@l */
1103 continue;
c906108c 1104
c5aa993b
JM
1105 }
1106 else if ((op & 0xfc000001) == 0x48000001)
1107 { /* bl foo,
1108 to save fprs??? */
c906108c 1109
c5aa993b 1110 fdata->frameless = 0;
3c77c82a
DJ
1111
1112 /* If the return address has already been saved, we can skip
1113 calls to blrl (for PIC). */
1114 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1115 continue;
1116
6be8bc0c 1117 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1118 the first three instructions of the prologue and either
1119 we have no line table information or the line info tells
1120 us that the subroutine call is not part of the line
1121 associated with the prologue. */
c5aa993b 1122 if ((pc - orig_pc) > 8)
ebd98106
FF
1123 {
1124 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1125 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1126
1127 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1128 break;
1129 }
c5aa993b
JM
1130
1131 op = read_memory_integer (pc + 4, 4);
1132
6be8bc0c
EZ
1133 /* At this point, make sure this is not a trampoline
1134 function (a function that simply calls another functions,
1135 and nothing else). If the next is not a nop, this branch
1136 was part of the function prologue. */
c5aa993b
JM
1137
1138 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1139 break; /* don't skip over
1140 this branch */
1141 continue;
1142
c5aa993b 1143 }
98f08d3d
KB
1144 /* update stack pointer */
1145 else if ((op & 0xfc1f0000) == 0x94010000)
1146 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1147 fdata->frameless = 0;
1148 fdata->offset = SIGNED_SHORT (op);
1149 offset = fdata->offset;
1150 continue;
c5aa993b 1151 }
98f08d3d
KB
1152 else if ((op & 0xfc1f016a) == 0x7c01016e)
1153 { /* stwux rX,r1,rY */
1154 /* no way to figure out what r1 is going to be */
1155 fdata->frameless = 0;
1156 offset = fdata->offset;
1157 continue;
1158 }
1159 else if ((op & 0xfc1f0003) == 0xf8010001)
1160 { /* stdu rX,NUM(r1) */
1161 fdata->frameless = 0;
1162 fdata->offset = SIGNED_SHORT (op & ~3UL);
1163 offset = fdata->offset;
1164 continue;
1165 }
1166 else if ((op & 0xfc1f016a) == 0x7c01016a)
1167 { /* stdux rX,r1,rY */
1168 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1169 fdata->frameless = 0;
1170 offset = fdata->offset;
1171 continue;
c5aa993b 1172 }
7313566f
FF
1173 else if ((op & 0xffff0000) == 0x38210000)
1174 { /* addi r1,r1,SIMM */
1175 fdata->frameless = 0;
1176 fdata->offset += SIGNED_SHORT (op);
1177 offset = fdata->offset;
1178 continue;
1179 }
4e463ff5
DJ
1180 /* Load up minimal toc pointer. Do not treat an epilogue restore
1181 of r31 as a minimal TOC load. */
98f08d3d
KB
1182 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1183 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1184 && !framep
c5aa993b 1185 && !minimal_toc_loaded)
98f08d3d 1186 {
c5aa993b
JM
1187 minimal_toc_loaded = 1;
1188 continue;
1189
f6077098
KB
1190 /* move parameters from argument registers to local variable
1191 registers */
1192 }
1193 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1194 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1195 (((op >> 21) & 31) <= 10) &&
96ff0de4 1196 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1197 {
1198 continue;
1199
c5aa993b
JM
1200 /* store parameters in stack */
1201 }
e802b915 1202 /* Move parameters from argument registers to temporary register. */
773df3e5 1203 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1204 {
c5aa993b
JM
1205 continue;
1206
1207 /* Set up frame pointer */
1208 }
1209 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1210 || op == 0x7c3f0b78)
1211 { /* mr r31, r1 */
1212 fdata->frameless = 0;
1213 framep = 1;
6f99cb26 1214 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1215 continue;
1216
1217 /* Another way to set up the frame pointer. */
1218 }
1219 else if ((op & 0xfc1fffff) == 0x38010000)
1220 { /* addi rX, r1, 0x0 */
1221 fdata->frameless = 0;
1222 framep = 1;
6f99cb26
AC
1223 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1224 + ((op & ~0x38010000) >> 21));
c5aa993b 1225 continue;
c5aa993b 1226 }
6be8bc0c
EZ
1227 /* AltiVec related instructions. */
1228 /* Store the vrsave register (spr 256) in another register for
1229 later manipulation, or load a register into the vrsave
1230 register. 2 instructions are used: mfvrsave and
1231 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1232 and mtspr SPR256, Rn. */
1233 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1234 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1235 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1236 {
1237 vrsave_reg = GET_SRC_REG (op);
1238 continue;
1239 }
1240 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1241 {
1242 continue;
1243 }
1244 /* Store the register where vrsave was saved to onto the stack:
1245 rS is the register where vrsave was stored in a previous
1246 instruction. */
1247 /* 100100 sssss 00001 dddddddd dddddddd */
1248 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1249 {
1250 if (vrsave_reg == GET_SRC_REG (op))
1251 {
1252 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1253 vrsave_reg = -1;
1254 }
1255 continue;
1256 }
1257 /* Compute the new value of vrsave, by modifying the register
1258 where vrsave was saved to. */
1259 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1260 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1261 {
1262 continue;
1263 }
1264 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1265 in a pair of insns to save the vector registers on the
1266 stack. */
1267 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1268 /* 001110 01110 00000 iiii iiii iiii iiii */
1269 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1270 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1271 {
773df3e5
JB
1272 if ((op & 0xffff0000) == 0x38000000)
1273 r0_contains_arg = 0;
6be8bc0c
EZ
1274 li_found_pc = pc;
1275 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1276
1277 /* This insn by itself is not part of the prologue, unless
1278 if part of the pair of insns mentioned above. So do not
1279 record this insn as part of the prologue yet. */
1280 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1281 }
1282 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1283 /* 011111 sssss 11111 00000 00111001110 */
1284 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1285 {
1286 if (pc == (li_found_pc + 4))
1287 {
1288 vr_reg = GET_SRC_REG (op);
1289 /* If this is the first vector reg to be saved, or if
1290 it has a lower number than others previously seen,
1291 reupdate the frame info. */
1292 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1293 {
1294 fdata->saved_vr = vr_reg;
1295 fdata->vr_offset = vr_saved_offset + offset;
1296 }
1297 vr_saved_offset = -1;
1298 vr_reg = -1;
1299 li_found_pc = 0;
1300 }
1301 }
1302 /* End AltiVec related instructions. */
96ff0de4
EZ
1303
1304 /* Start BookE related instructions. */
1305 /* Store gen register S at (r31+uimm).
1306 Any register less than r13 is volatile, so we don't care. */
1307 /* 000100 sssss 11111 iiiii 01100100001 */
1308 else if (arch_info->mach == bfd_mach_ppc_e500
1309 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1310 {
1311 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1312 {
1313 unsigned int imm;
1314 ev_reg = GET_SRC_REG (op);
1315 imm = (op >> 11) & 0x1f;
1316 ev_offset = imm * 8;
1317 /* If this is the first vector reg to be saved, or if
1318 it has a lower number than others previously seen,
1319 reupdate the frame info. */
1320 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1321 {
1322 fdata->saved_ev = ev_reg;
1323 fdata->ev_offset = ev_offset + offset;
1324 }
1325 }
1326 continue;
1327 }
1328 /* Store gen register rS at (r1+rB). */
1329 /* 000100 sssss 00001 bbbbb 01100100000 */
1330 else if (arch_info->mach == bfd_mach_ppc_e500
1331 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1332 {
1333 if (pc == (li_found_pc + 4))
1334 {
1335 ev_reg = GET_SRC_REG (op);
1336 /* If this is the first vector reg to be saved, or if
1337 it has a lower number than others previously seen,
1338 reupdate the frame info. */
1339 /* We know the contents of rB from the previous instruction. */
1340 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1341 {
1342 fdata->saved_ev = ev_reg;
1343 fdata->ev_offset = vr_saved_offset + offset;
1344 }
1345 vr_saved_offset = -1;
1346 ev_reg = -1;
1347 li_found_pc = 0;
1348 }
1349 continue;
1350 }
1351 /* Store gen register r31 at (rA+uimm). */
1352 /* 000100 11111 aaaaa iiiii 01100100001 */
1353 else if (arch_info->mach == bfd_mach_ppc_e500
1354 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1355 {
1356 /* Wwe know that the source register is 31 already, but
1357 it can't hurt to compute it. */
1358 ev_reg = GET_SRC_REG (op);
1359 ev_offset = ((op >> 11) & 0x1f) * 8;
1360 /* If this is the first vector reg to be saved, or if
1361 it has a lower number than others previously seen,
1362 reupdate the frame info. */
1363 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1364 {
1365 fdata->saved_ev = ev_reg;
1366 fdata->ev_offset = ev_offset + offset;
1367 }
1368
1369 continue;
1370 }
1371 /* Store gen register S at (r31+r0).
1372 Store param on stack when offset from SP bigger than 4 bytes. */
1373 /* 000100 sssss 11111 00000 01100100000 */
1374 else if (arch_info->mach == bfd_mach_ppc_e500
1375 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1376 {
1377 if (pc == (li_found_pc + 4))
1378 {
1379 if ((op & 0x03e00000) >= 0x01a00000)
1380 {
1381 ev_reg = GET_SRC_REG (op);
1382 /* If this is the first vector reg to be saved, or if
1383 it has a lower number than others previously seen,
1384 reupdate the frame info. */
1385 /* We know the contents of r0 from the previous
1386 instruction. */
1387 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1388 {
1389 fdata->saved_ev = ev_reg;
1390 fdata->ev_offset = vr_saved_offset + offset;
1391 }
1392 ev_reg = -1;
1393 }
1394 vr_saved_offset = -1;
1395 li_found_pc = 0;
1396 continue;
1397 }
1398 }
1399 /* End BookE related instructions. */
1400
c5aa993b
JM
1401 else
1402 {
55d05f3b
KB
1403 /* Not a recognized prologue instruction.
1404 Handle optimizer code motions into the prologue by continuing
1405 the search if we have no valid frame yet or if the return
1406 address is not yet saved in the frame. */
4e463ff5 1407 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
55d05f3b
KB
1408 break;
1409
1410 if (op == 0x4e800020 /* blr */
1411 || op == 0x4e800420) /* bctr */
1412 /* Do not scan past epilogue in frameless functions or
1413 trampolines. */
1414 break;
1415 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1416 /* Never skip branches. */
55d05f3b
KB
1417 break;
1418
1419 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1420 /* Do not scan too many insns, scanning insns is expensive with
1421 remote targets. */
1422 break;
1423
1424 /* Continue scanning. */
1425 prev_insn_was_prologue_insn = 0;
1426 continue;
c5aa993b 1427 }
c906108c
SS
1428 }
1429
1430#if 0
1431/* I have problems with skipping over __main() that I need to address
1432 * sometime. Previously, I used to use misc_function_vector which
1433 * didn't work as well as I wanted to be. -MGO */
1434
1435 /* If the first thing after skipping a prolog is a branch to a function,
1436 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1437 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1438 work before calling a function right after a prologue, thus we can
64366f1c 1439 single out such gcc2 behaviour. */
c906108c 1440
c906108c 1441
c5aa993b
JM
1442 if ((op & 0xfc000001) == 0x48000001)
1443 { /* bl foo, an initializer function? */
1444 op = read_memory_integer (pc + 4, 4);
1445
1446 if (op == 0x4def7b82)
1447 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1448
64366f1c
EZ
1449 /* Check and see if we are in main. If so, skip over this
1450 initializer function as well. */
c906108c 1451
c5aa993b 1452 tmp = find_pc_misc_function (pc);
6314a349
AC
1453 if (tmp >= 0
1454 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1455 return pc + 8;
1456 }
c906108c 1457 }
c906108c 1458#endif /* 0 */
c5aa993b
JM
1459
1460 fdata->offset = -fdata->offset;
ddb20c56 1461 return last_prologue_pc;
c906108c
SS
1462}
1463
1464
1465/*************************************************************************
f6077098 1466 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1467 frames, etc.
1468*************************************************************************/
1469
c906108c 1470
11269d7e
AC
1471/* All the ABI's require 16 byte alignment. */
1472static CORE_ADDR
1473rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1474{
1475 return (addr & -16);
1476}
1477
7a78ae4e 1478/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1479 the first eight words of the argument list (that might be less than
1480 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1481 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1482 passed in fpr's, in addition to that. Rest of the parameters if any
1483 are passed in user stack. There might be cases in which half of the
c906108c
SS
1484 parameter is copied into registers, the other half is pushed into
1485 stack.
1486
7a78ae4e
ND
1487 Stack must be aligned on 64-bit boundaries when synthesizing
1488 function calls.
1489
c906108c
SS
1490 If the function is returning a structure, then the return address is passed
1491 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1492 starting from r4. */
c906108c 1493
7a78ae4e 1494static CORE_ADDR
7d9b040b 1495rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1496 struct regcache *regcache, CORE_ADDR bp_addr,
1497 int nargs, struct value **args, CORE_ADDR sp,
1498 int struct_return, CORE_ADDR struct_addr)
c906108c 1499{
7a41266b 1500 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1501 int ii;
1502 int len = 0;
c5aa993b
JM
1503 int argno; /* current argument number */
1504 int argbytes; /* current argument byte */
50fd1280 1505 gdb_byte tmp_buffer[50];
c5aa993b 1506 int f_argno = 0; /* current floating point argno */
21283beb 1507 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1508 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1509
ea7c478f 1510 struct value *arg = 0;
c906108c
SS
1511 struct type *type;
1512
1513 CORE_ADDR saved_sp;
1514
383f0f5b
JB
1515 /* The calling convention this function implements assumes the
1516 processor has floating-point registers. We shouldn't be using it
1517 on PPC variants that lack them. */
1518 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1519
64366f1c 1520 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1521 Copy them appropriately. */
1522 ii = 0;
1523
1524 /* If the function is returning a `struct', then the first word
1525 (which will be passed in r3) is used for struct return address.
1526 In that case we should advance one word and start from r4
1527 register to copy parameters. */
1528 if (struct_return)
1529 {
1530 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1531 struct_addr);
1532 ii++;
1533 }
c906108c
SS
1534
1535/*
c5aa993b
JM
1536 effectively indirect call... gcc does...
1537
1538 return_val example( float, int);
1539
1540 eabi:
1541 float in fp0, int in r3
1542 offset of stack on overflow 8/16
1543 for varargs, must go by type.
1544 power open:
1545 float in r3&r4, int in r5
1546 offset of stack on overflow different
1547 both:
1548 return in r3 or f0. If no float, must study how gcc emulates floats;
1549 pay attention to arg promotion.
1550 User may have to cast\args to handle promotion correctly
1551 since gdb won't know if prototype supplied or not.
1552 */
c906108c 1553
c5aa993b
JM
1554 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1555 {
3acba339 1556 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1557
1558 arg = args[argno];
df407dfe 1559 type = check_typedef (value_type (arg));
c5aa993b
JM
1560 len = TYPE_LENGTH (type);
1561
1562 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1563 {
1564
64366f1c 1565 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1566 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1567 there is no way we would run out of them. */
c5aa993b 1568
9f335945
KB
1569 gdb_assert (len <= 8);
1570
1571 regcache_cooked_write (regcache,
1572 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1573 value_contents (arg));
c5aa993b
JM
1574 ++f_argno;
1575 }
1576
f6077098 1577 if (len > reg_size)
c5aa993b
JM
1578 {
1579
64366f1c 1580 /* Argument takes more than one register. */
c5aa993b
JM
1581 while (argbytes < len)
1582 {
50fd1280 1583 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1584 memset (word, 0, reg_size);
1585 memcpy (word,
0fd88904 1586 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1587 (len - argbytes) > reg_size
1588 ? reg_size : len - argbytes);
9f335945
KB
1589 regcache_cooked_write (regcache,
1590 tdep->ppc_gp0_regnum + 3 + ii,
1591 word);
f6077098 1592 ++ii, argbytes += reg_size;
c5aa993b
JM
1593
1594 if (ii >= 8)
1595 goto ran_out_of_registers_for_arguments;
1596 }
1597 argbytes = 0;
1598 --ii;
1599 }
1600 else
64366f1c
EZ
1601 {
1602 /* Argument can fit in one register. No problem. */
d7449b42 1603 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1604 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1605
1606 memset (word, 0, reg_size);
0fd88904 1607 memcpy (word, value_contents (arg), len);
9f335945 1608 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1609 }
1610 ++argno;
c906108c 1611 }
c906108c
SS
1612
1613ran_out_of_registers_for_arguments:
1614
7a78ae4e 1615 saved_sp = read_sp ();
cc9836a8 1616
64366f1c 1617 /* Location for 8 parameters are always reserved. */
7a78ae4e 1618 sp -= wordsize * 8;
f6077098 1619
64366f1c 1620 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1621 sp -= wordsize * 6;
f6077098 1622
64366f1c 1623 /* Stack pointer must be quadword aligned. */
7a78ae4e 1624 sp &= -16;
c906108c 1625
64366f1c
EZ
1626 /* If there are more arguments, allocate space for them in
1627 the stack, then push them starting from the ninth one. */
c906108c 1628
c5aa993b
JM
1629 if ((argno < nargs) || argbytes)
1630 {
1631 int space = 0, jj;
c906108c 1632
c5aa993b
JM
1633 if (argbytes)
1634 {
1635 space += ((len - argbytes + 3) & -4);
1636 jj = argno + 1;
1637 }
1638 else
1639 jj = argno;
c906108c 1640
c5aa993b
JM
1641 for (; jj < nargs; ++jj)
1642 {
ea7c478f 1643 struct value *val = args[jj];
df407dfe 1644 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1645 }
c906108c 1646
64366f1c 1647 /* Add location required for the rest of the parameters. */
f6077098 1648 space = (space + 15) & -16;
c5aa993b 1649 sp -= space;
c906108c 1650
7aea86e6
AC
1651 /* This is another instance we need to be concerned about
1652 securing our stack space. If we write anything underneath %sp
1653 (r1), we might conflict with the kernel who thinks he is free
1654 to use this area. So, update %sp first before doing anything
1655 else. */
1656
1657 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1658
64366f1c
EZ
1659 /* If the last argument copied into the registers didn't fit there
1660 completely, push the rest of it into stack. */
c906108c 1661
c5aa993b
JM
1662 if (argbytes)
1663 {
1664 write_memory (sp + 24 + (ii * 4),
50fd1280 1665 value_contents (arg) + argbytes,
c5aa993b
JM
1666 len - argbytes);
1667 ++argno;
1668 ii += ((len - argbytes + 3) & -4) / 4;
1669 }
c906108c 1670
64366f1c 1671 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1672 for (; argno < nargs; ++argno)
1673 {
c906108c 1674
c5aa993b 1675 arg = args[argno];
df407dfe 1676 type = check_typedef (value_type (arg));
c5aa993b 1677 len = TYPE_LENGTH (type);
c906108c
SS
1678
1679
64366f1c
EZ
1680 /* Float types should be passed in fpr's, as well as in the
1681 stack. */
c5aa993b
JM
1682 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1683 {
c906108c 1684
9f335945 1685 gdb_assert (len <= 8);
c906108c 1686
9f335945
KB
1687 regcache_cooked_write (regcache,
1688 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1689 value_contents (arg));
c5aa993b
JM
1690 ++f_argno;
1691 }
c906108c 1692
50fd1280 1693 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1694 ii += ((len + 3) & -4) / 4;
1695 }
c906108c 1696 }
c906108c 1697
69517000 1698 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1699 be set _before_ the corresponding stack space is used. On AIX,
1700 this even applies when the target has been completely stopped!
1701 Not doing this can lead to conflicts with the kernel which thinks
1702 that it still has control over this not-yet-allocated stack
1703 region. */
33a7c2fc
AC
1704 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1705
7aea86e6 1706 /* Set back chain properly. */
8ba0209f
AM
1707 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1708 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1709
e56a0ecc
AC
1710 /* Point the inferior function call's return address at the dummy's
1711 breakpoint. */
1712 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1713
794a477a
AC
1714 /* Set the TOC register, get the value from the objfile reader
1715 which, in turn, gets it from the VMAP table. */
1716 if (rs6000_find_toc_address_hook != NULL)
1717 {
1718 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1719 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1720 }
1721
c906108c
SS
1722 target_store_registers (-1);
1723 return sp;
1724}
c906108c 1725
d217aaed
MK
1726static enum return_value_convention
1727rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1728 struct regcache *regcache, gdb_byte *readbuf,
1729 const gdb_byte *writebuf)
c906108c 1730{
ace1378a 1731 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
d217aaed 1732 gdb_byte buf[8];
c906108c 1733
383f0f5b
JB
1734 /* The calling convention this function implements assumes the
1735 processor has floating-point registers. We shouldn't be using it
d217aaed 1736 on PowerPC variants that lack them. */
383f0f5b
JB
1737 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1738
d217aaed
MK
1739 /* AltiVec extension: Functions that declare a vector data type as a
1740 return value place that return value in VR2. */
1741 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1742 && TYPE_LENGTH (valtype) == 16)
c5aa993b 1743 {
d217aaed
MK
1744 if (readbuf)
1745 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1746 if (writebuf)
1747 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
c906108c 1748
d217aaed 1749 return RETURN_VALUE_REGISTER_CONVENTION;
c5aa993b 1750 }
d217aaed
MK
1751
1752 /* If the called subprogram returns an aggregate, there exists an
1753 implicit first argument, whose value is the address of a caller-
1754 allocated buffer into which the callee is assumed to store its
1755 return value. All explicit parameters are appropriately
1756 relabeled. */
1757 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1758 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1759 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1760 return RETURN_VALUE_STRUCT_CONVENTION;
1761
1762 /* Scalar floating-point values are returned in FPR1 for float or
1763 double, and in FPR1:FPR2 for quadword precision. Fortran
1764 complex*8 and complex*16 are returned in FPR1:FPR2, and
1765 complex*32 is returned in FPR1:FPR4. */
1766 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1767 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1768 {
1769 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1770 gdb_byte regval[8];
1771
1772 /* FIXME: kettenis/2007-01-01: Add support for quadword
1773 precision and complex. */
1774
1775 if (readbuf)
1776 {
1777 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1778 convert_typed_floating (regval, regtype, readbuf, valtype);
1779 }
1780 if (writebuf)
1781 {
1782 convert_typed_floating (writebuf, valtype, regval, regtype);
1783 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1784 }
1785
1786 return RETURN_VALUE_REGISTER_CONVENTION;
1787 }
1788
1789 /* Values of the types int, long, short, pointer, and char (length
1790 is less than or equal to four bytes), as well as bit values of
1791 lengths less than or equal to 32 bits, must be returned right
1792 justified in GPR3 with signed values sign extended and unsigned
1793 values zero extended, as necessary. */
1794 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
ace1378a 1795 {
d217aaed
MK
1796 if (readbuf)
1797 {
1798 ULONGEST regval;
1799
1800 /* For reading we don't have to worry about sign extension. */
1801 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1802 &regval);
1803 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1804 }
1805 if (writebuf)
1806 {
1807 /* For writing, use unpack_long since that should handle any
1808 required sign extension. */
1809 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1810 unpack_long (valtype, writebuf));
1811 }
1812
1813 return RETURN_VALUE_REGISTER_CONVENTION;
ace1378a 1814 }
d217aaed
MK
1815
1816 /* Eight-byte non-floating-point scalar values must be returned in
1817 GPR3:GPR4. */
1818
1819 if (TYPE_LENGTH (valtype) == 8)
c5aa993b 1820 {
d217aaed
MK
1821 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1822 gdb_assert (tdep->wordsize == 4);
1823
1824 if (readbuf)
1825 {
1826 gdb_byte regval[8];
1827
1828 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1829 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1830 regval + 4);
1831 memcpy (readbuf, regval, 8);
1832 }
1833 if (writebuf)
1834 {
1835 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1836 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1837 writebuf + 4);
1838 }
1839
1840 return RETURN_VALUE_REGISTER_CONVENTION;
c906108c 1841 }
d217aaed
MK
1842
1843 return RETURN_VALUE_STRUCT_CONVENTION;
c906108c
SS
1844}
1845
977adac5
ND
1846/* Return whether handle_inferior_event() should proceed through code
1847 starting at PC in function NAME when stepping.
1848
1849 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1850 handle memory references that are too distant to fit in instructions
1851 generated by the compiler. For example, if 'foo' in the following
1852 instruction:
1853
1854 lwz r9,foo(r2)
1855
1856 is greater than 32767, the linker might replace the lwz with a branch to
1857 somewhere in @FIX1 that does the load in 2 instructions and then branches
1858 back to where execution should continue.
1859
1860 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1861 Unfortunately, the linker uses the "b" instruction for the
1862 branches, meaning that the link register doesn't get set.
1863 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1864
2ec664f5
MS
1865 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1866 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1867 @FIX code. */
977adac5
ND
1868
1869int
1870rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1871{
1872 return name && !strncmp (name, "@FIX", 4);
1873}
1874
1875/* Skip code that the user doesn't want to see when stepping:
1876
1877 1. Indirect function calls use a piece of trampoline code to do context
1878 switching, i.e. to set the new TOC table. Skip such code if we are on
1879 its first instruction (as when we have single-stepped to here).
1880
1881 2. Skip shared library trampoline code (which is different from
c906108c 1882 indirect function call trampolines).
977adac5
ND
1883
1884 3. Skip bigtoc fixup code.
1885
c906108c 1886 Result is desired PC to step until, or NULL if we are not in
977adac5 1887 code that should be skipped. */
c906108c
SS
1888
1889CORE_ADDR
7a78ae4e 1890rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1891{
52f0bd74 1892 unsigned int ii, op;
977adac5 1893 int rel;
c906108c 1894 CORE_ADDR solib_target_pc;
977adac5 1895 struct minimal_symbol *msymbol;
c906108c 1896
c5aa993b
JM
1897 static unsigned trampoline_code[] =
1898 {
1899 0x800b0000, /* l r0,0x0(r11) */
1900 0x90410014, /* st r2,0x14(r1) */
1901 0x7c0903a6, /* mtctr r0 */
1902 0x804b0004, /* l r2,0x4(r11) */
1903 0x816b0008, /* l r11,0x8(r11) */
1904 0x4e800420, /* bctr */
1905 0x4e800020, /* br */
1906 0
c906108c
SS
1907 };
1908
977adac5
ND
1909 /* Check for bigtoc fixup code. */
1910 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1911 if (msymbol
1912 && rs6000_in_solib_return_trampoline (pc,
1913 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1914 {
1915 /* Double-check that the third instruction from PC is relative "b". */
1916 op = read_memory_integer (pc + 8, 4);
1917 if ((op & 0xfc000003) == 0x48000000)
1918 {
1919 /* Extract bits 6-29 as a signed 24-bit relative word address and
1920 add it to the containing PC. */
1921 rel = ((int)(op << 6) >> 6);
1922 return pc + 8 + rel;
1923 }
1924 }
1925
c906108c
SS
1926 /* If pc is in a shared library trampoline, return its target. */
1927 solib_target_pc = find_solib_trampoline_target (pc);
1928 if (solib_target_pc)
1929 return solib_target_pc;
1930
c5aa993b
JM
1931 for (ii = 0; trampoline_code[ii]; ++ii)
1932 {
1933 op = read_memory_integer (pc + (ii * 4), 4);
1934 if (op != trampoline_code[ii])
1935 return 0;
1936 }
1937 ii = read_register (11); /* r11 holds destination addr */
21283beb 1938 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1939 return pc;
1940}
1941
7a78ae4e 1942/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1943 isn't available with that word size, return 0. */
7a78ae4e
ND
1944
1945static int
1946regsize (const struct reg *reg, int wordsize)
1947{
1948 return wordsize == 8 ? reg->sz64 : reg->sz32;
1949}
1950
1951/* Return the name of register number N, or null if no such register exists
64366f1c 1952 in the current architecture. */
7a78ae4e 1953
fa88f677 1954static const char *
7a78ae4e
ND
1955rs6000_register_name (int n)
1956{
21283beb 1957 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1958 const struct reg *reg = tdep->regs + n;
1959
1960 if (!regsize (reg, tdep->wordsize))
1961 return NULL;
1962 return reg->name;
1963}
1964
7a78ae4e
ND
1965/* Return the GDB type object for the "standard" data type
1966 of data in register N. */
1967
1968static struct type *
691d145a 1969rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1970{
691d145a 1971 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1972 const struct reg *reg = tdep->regs + n;
1973
1fcc0bb8
EZ
1974 if (reg->fpr)
1975 return builtin_type_double;
1976 else
1977 {
1978 int size = regsize (reg, tdep->wordsize);
1979 switch (size)
1980 {
449a5da4
AC
1981 case 0:
1982 return builtin_type_int0;
1983 case 4:
ed6edd9b 1984 return builtin_type_uint32;
1fcc0bb8 1985 case 8:
c8001721
EZ
1986 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1987 return builtin_type_vec64;
1988 else
ed6edd9b 1989 return builtin_type_uint64;
1fcc0bb8
EZ
1990 break;
1991 case 16:
08cf96df 1992 return builtin_type_vec128;
1fcc0bb8
EZ
1993 break;
1994 default:
e2e0b3e5 1995 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1996 n, size);
1fcc0bb8
EZ
1997 }
1998 }
7a78ae4e
ND
1999}
2000
c44ca51c
AC
2001/* Is REGNUM a member of REGGROUP? */
2002static int
2003rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2004 struct reggroup *group)
2005{
2006 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2007 int float_p;
2008 int vector_p;
2009 int general_p;
2010
2011 if (REGISTER_NAME (regnum) == NULL
2012 || *REGISTER_NAME (regnum) == '\0')
2013 return 0;
2014 if (group == all_reggroup)
2015 return 1;
2016
2017 float_p = (regnum == tdep->ppc_fpscr_regnum
2018 || (regnum >= tdep->ppc_fp0_regnum
2019 && regnum < tdep->ppc_fp0_regnum + 32));
2020 if (group == float_reggroup)
2021 return float_p;
2022
826d5376
PG
2023 vector_p = ((tdep->ppc_vr0_regnum >= 0
2024 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 2025 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
2026 || (tdep->ppc_ev0_regnum >= 0
2027 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 2028 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 2029 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
2030 || regnum == tdep->ppc_vrsave_regnum
2031 || regnum == tdep->ppc_acc_regnum
2032 || regnum == tdep->ppc_spefscr_regnum);
2033 if (group == vector_reggroup)
2034 return vector_p;
2035
2036 /* Note that PS aka MSR isn't included - it's a system register (and
2037 besides, due to GCC's CFI foobar you do not want to restore
2038 it). */
2039 general_p = ((regnum >= tdep->ppc_gp0_regnum
2040 && regnum < tdep->ppc_gp0_regnum + 32)
2041 || regnum == tdep->ppc_toc_regnum
2042 || regnum == tdep->ppc_cr_regnum
2043 || regnum == tdep->ppc_lr_regnum
2044 || regnum == tdep->ppc_ctr_regnum
2045 || regnum == tdep->ppc_xer_regnum
2046 || regnum == PC_REGNUM);
2047 if (group == general_reggroup)
2048 return general_p;
2049
2050 if (group == save_reggroup || group == restore_reggroup)
2051 return general_p || vector_p || float_p;
2052
2053 return 0;
2054}
2055
691d145a 2056/* The register format for RS/6000 floating point registers is always
64366f1c 2057 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2058
2059static int
691d145a 2060rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2061{
691d145a
JB
2062 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2063
2064 return (reg->fpr
2065 && TYPE_CODE (type) == TYPE_CODE_FLT
2066 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2067}
2068
7a78ae4e 2069static void
691d145a
JB
2070rs6000_register_to_value (struct frame_info *frame,
2071 int regnum,
2072 struct type *type,
50fd1280 2073 gdb_byte *to)
7a78ae4e 2074{
691d145a 2075 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2076 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2077
2078 gdb_assert (reg->fpr);
2079 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2080
691d145a
JB
2081 get_frame_register (frame, regnum, from);
2082 convert_typed_floating (from, builtin_type_double, to, type);
2083}
7a292a7a 2084
7a78ae4e 2085static void
691d145a
JB
2086rs6000_value_to_register (struct frame_info *frame,
2087 int regnum,
2088 struct type *type,
50fd1280 2089 const gdb_byte *from)
7a78ae4e 2090{
691d145a 2091 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2092 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2093
2094 gdb_assert (reg->fpr);
2095 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2096
2097 convert_typed_floating (from, type, to, builtin_type_double);
2098 put_frame_register (frame, regnum, to);
7a78ae4e 2099}
c906108c 2100
6ced10dd
JB
2101/* Move SPE vector register values between a 64-bit buffer and the two
2102 32-bit raw register halves in a regcache. This function handles
2103 both splitting a 64-bit value into two 32-bit halves, and joining
2104 two halves into a whole 64-bit value, depending on the function
2105 passed as the MOVE argument.
2106
2107 EV_REG must be the number of an SPE evN vector register --- a
2108 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2109 64-bit buffer.
2110
2111 Call MOVE once for each 32-bit half of that register, passing
2112 REGCACHE, the number of the raw register corresponding to that
2113 half, and the address of the appropriate half of BUFFER.
2114
2115 For example, passing 'regcache_raw_read' as the MOVE function will
2116 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2117 'regcache_raw_supply' will supply the contents of BUFFER to the
2118 appropriate pair of raw registers in REGCACHE.
2119
2120 You may need to cast away some 'const' qualifiers when passing
2121 MOVE, since this function can't tell at compile-time which of
2122 REGCACHE or BUFFER is acting as the source of the data. If C had
2123 co-variant type qualifiers, ... */
2124static void
2125e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2126 int regnum, gdb_byte *buf),
6ced10dd 2127 struct regcache *regcache, int ev_reg,
50fd1280 2128 gdb_byte *buffer)
6ced10dd
JB
2129{
2130 struct gdbarch *arch = get_regcache_arch (regcache);
2131 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2132 int reg_index;
50fd1280 2133 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2134
2135 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2136 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2137
2138 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2139
2140 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2141 {
2142 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2143 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2144 }
2145 else
2146 {
2147 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2148 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2149 }
2150}
2151
c8001721
EZ
2152static void
2153e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2154 int reg_nr, gdb_byte *buffer)
c8001721 2155{
6ced10dd 2156 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2157 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2158
6ced10dd
JB
2159 gdb_assert (regcache_arch == gdbarch);
2160
2161 if (tdep->ppc_ev0_regnum <= reg_nr
2162 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2163 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2164 else
a44bddec 2165 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2166 _("e500_pseudo_register_read: "
2167 "called on unexpected register '%s' (%d)"),
a44bddec 2168 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2169}
2170
2171static void
2172e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2173 int reg_nr, const gdb_byte *buffer)
c8001721 2174{
6ced10dd 2175 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2177
6ced10dd
JB
2178 gdb_assert (regcache_arch == gdbarch);
2179
2180 if (tdep->ppc_ev0_regnum <= reg_nr
2181 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2182 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2183 regcache_raw_write,
50fd1280 2184 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2185 else
a44bddec 2186 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2187 _("e500_pseudo_register_read: "
2188 "called on unexpected register '%s' (%d)"),
a44bddec 2189 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2190}
2191
2192/* The E500 needs a custom reggroup function: it has anonymous raw
2193 registers, and default_register_reggroup_p assumes that anonymous
2194 registers are not members of any reggroup. */
2195static int
2196e500_register_reggroup_p (struct gdbarch *gdbarch,
2197 int regnum,
2198 struct reggroup *group)
2199{
2200 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2201
2202 /* The save and restore register groups need to include the
2203 upper-half registers, even though they're anonymous. */
2204 if ((group == save_reggroup
2205 || group == restore_reggroup)
2206 && (tdep->ppc_ev0_upper_regnum <= regnum
2207 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2208 return 1;
2209
2210 /* In all other regards, the default reggroup definition is fine. */
2211 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2212}
2213
18ed0c4e 2214/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2215static int
18ed0c4e 2216rs6000_stab_reg_to_regnum (int num)
c8001721 2217{
9f744501 2218 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2219
9f744501
JB
2220 if (0 <= num && num <= 31)
2221 return tdep->ppc_gp0_regnum + num;
2222 else if (32 <= num && num <= 63)
383f0f5b
JB
2223 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2224 specifies registers the architecture doesn't have? Our
2225 callers don't check the value we return. */
366f009f 2226 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2227 else if (77 <= num && num <= 108)
2228 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2229 else if (1200 <= num && num < 1200 + 32)
2230 return tdep->ppc_ev0_regnum + (num - 1200);
2231 else
2232 switch (num)
2233 {
2234 case 64:
2235 return tdep->ppc_mq_regnum;
2236 case 65:
2237 return tdep->ppc_lr_regnum;
2238 case 66:
2239 return tdep->ppc_ctr_regnum;
2240 case 76:
2241 return tdep->ppc_xer_regnum;
2242 case 109:
2243 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2244 case 110:
2245 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2246 case 111:
18ed0c4e 2247 return tdep->ppc_acc_regnum;
867e2dc5 2248 case 112:
18ed0c4e 2249 return tdep->ppc_spefscr_regnum;
9f744501
JB
2250 default:
2251 return num;
2252 }
18ed0c4e 2253}
9f744501 2254
9f744501 2255
18ed0c4e
JB
2256/* Convert a Dwarf 2 register number to a GDB register number. */
2257static int
2258rs6000_dwarf2_reg_to_regnum (int num)
2259{
2260 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2261
18ed0c4e
JB
2262 if (0 <= num && num <= 31)
2263 return tdep->ppc_gp0_regnum + num;
2264 else if (32 <= num && num <= 63)
2265 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2266 specifies registers the architecture doesn't have? Our
2267 callers don't check the value we return. */
2268 return tdep->ppc_fp0_regnum + (num - 32);
2269 else if (1124 <= num && num < 1124 + 32)
2270 return tdep->ppc_vr0_regnum + (num - 1124);
2271 else if (1200 <= num && num < 1200 + 32)
2272 return tdep->ppc_ev0_regnum + (num - 1200);
2273 else
2274 switch (num)
2275 {
2276 case 67:
2277 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2278 case 99:
2279 return tdep->ppc_acc_regnum;
2280 case 100:
2281 return tdep->ppc_mq_regnum;
2282 case 101:
2283 return tdep->ppc_xer_regnum;
2284 case 108:
2285 return tdep->ppc_lr_regnum;
2286 case 109:
2287 return tdep->ppc_ctr_regnum;
2288 case 356:
2289 return tdep->ppc_vrsave_regnum;
2290 case 612:
2291 return tdep->ppc_spefscr_regnum;
2292 default:
2293 return num;
2294 }
2188cbdd
EZ
2295}
2296
c906108c 2297\f
e2d0e7eb 2298/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2299
2300 Usually a function pointer's representation is simply the address
2301 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2302 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2303 three words, the first word is the address of the function, the
2304 second word is the TOC pointer (r2), and the third word is the
2305 static chain value. Throughout GDB it is currently assumed that a
2306 function pointer contains the address of the function, which is not
2307 easy to fix. In addition, the conversion of a function address to
8ba0209f 2308 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2309 inferior's memory space, with all its drawbacks. To be able to
2310 call C++ virtual methods in the inferior (which are called via
f517ea4e 2311 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2312 function address from a function pointer. */
2313
f517ea4e
PS
2314/* Return real function address if ADDR (a function pointer) is in the data
2315 space and is therefore a special function pointer. */
c906108c 2316
b9362cc7 2317static CORE_ADDR
e2d0e7eb
AC
2318rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2319 CORE_ADDR addr,
2320 struct target_ops *targ)
c906108c
SS
2321{
2322 struct obj_section *s;
2323
2324 s = find_pc_section (addr);
2325 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2326 return addr;
c906108c 2327
7a78ae4e 2328 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2329 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2330}
c906108c 2331\f
c5aa993b 2332
7a78ae4e 2333/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2334
2335
7a78ae4e
ND
2336/* The arrays here called registers_MUMBLE hold information about available
2337 registers.
c906108c
SS
2338
2339 For each family of PPC variants, I've tried to isolate out the
2340 common registers and put them up front, so that as long as you get
2341 the general family right, GDB will correctly identify the registers
2342 common to that family. The common register sets are:
2343
2344 For the 60x family: hid0 hid1 iabr dabr pir
2345
2346 For the 505 and 860 family: eie eid nri
2347
2348 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2349 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2350 pbu1 pbl2 pbu2
c906108c
SS
2351
2352 Most of these register groups aren't anything formal. I arrived at
2353 them by looking at the registers that occurred in more than one
6f5987a6
KB
2354 processor.
2355
2356 Note: kevinb/2002-04-30: Support for the fpscr register was added
2357 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2358 for Power. For PowerPC, slot 70 was unused and was already in the
2359 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2360 slot 70 was being used for "mq", so the next available slot (71)
2361 was chosen. It would have been nice to be able to make the
2362 register numbers the same across processor cores, but this wasn't
2363 possible without either 1) renumbering some registers for some
2364 processors or 2) assigning fpscr to a really high slot that's
2365 larger than any current register number. Doing (1) is bad because
2366 existing stubs would break. Doing (2) is undesirable because it
2367 would introduce a really large gap between fpscr and the rest of
2368 the registers for most processors. */
7a78ae4e 2369
64366f1c 2370/* Convenience macros for populating register arrays. */
7a78ae4e 2371
64366f1c 2372/* Within another macro, convert S to a string. */
7a78ae4e
ND
2373
2374#define STR(s) #s
2375
2376/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2377 and 64 bits on 64-bit systems. */
13ac140c 2378#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2379
2380/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2381 systems. */
13ac140c 2382#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2383
2384/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2385 systems. */
13ac140c 2386#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2387
1fcc0bb8 2388/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2389 systems. */
13ac140c 2390#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2391
64366f1c 2392/* Return a struct reg defining floating-point register NAME. */
13ac140c 2393#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2394
6ced10dd
JB
2395/* Return a struct reg defining a pseudo register NAME that is 64 bits
2396 long on all systems. */
2397#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2398
2399/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2400 systems and that doesn't exist on 64-bit systems. */
13ac140c 2401#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2402
2403/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2404 systems and that doesn't exist on 32-bit systems. */
13ac140c 2405#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2406
64366f1c 2407/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2408#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2409
6ced10dd
JB
2410/* Return a struct reg defining an anonymous raw register that's 32
2411 bits on all systems. */
2412#define A4 { 0, 4, 4, 0, 0, -1 }
2413
13ac140c
JB
2414/* Return a struct reg defining an SPR named NAME that is 32 bits on
2415 32-bit systems and 64 bits on 64-bit systems. */
2416#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2417
2418/* Return a struct reg defining an SPR named NAME that is 32 bits on
2419 all systems. */
2420#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2421
2422/* Return a struct reg defining an SPR named NAME that is 32 bits on
2423 all systems, and whose SPR number is NUMBER. */
2424#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2425
2426/* Return a struct reg defining an SPR named NAME that's 64 bits on
2427 64-bit systems and that doesn't exist on 32-bit systems. */
2428#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2429
7a78ae4e
ND
2430/* UISA registers common across all architectures, including POWER. */
2431
2432#define COMMON_UISA_REGS \
2433 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2434 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2435 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2436 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2437 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2438 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2439 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2440 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2441 /* 64 */ R(pc), R(ps)
2442
2443/* UISA-level SPRs for PowerPC. */
2444#define PPC_UISA_SPRS \
13ac140c 2445 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2446
c8001721
EZ
2447/* UISA-level SPRs for PowerPC without floating point support. */
2448#define PPC_UISA_NOFP_SPRS \
13ac140c 2449 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2450
7a78ae4e
ND
2451/* Segment registers, for PowerPC. */
2452#define PPC_SEGMENT_REGS \
2453 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2454 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2455 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2456 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2457
2458/* OEA SPRs for PowerPC. */
2459#define PPC_OEA_SPRS \
13ac140c
JB
2460 /* 87 */ S4(pvr), \
2461 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2462 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2463 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2464 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2465 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2466 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2467 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2468 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2469
64366f1c 2470/* AltiVec registers. */
1fcc0bb8
EZ
2471#define PPC_ALTIVEC_REGS \
2472 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2473 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2474 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2475 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2476 /*151*/R4(vscr), R4(vrsave)
2477
c8001721 2478
6ced10dd
JB
2479/* On machines supporting the SPE APU, the general-purpose registers
2480 are 64 bits long. There are SIMD vector instructions to treat them
2481 as pairs of floats, but the rest of the instruction set treats them
2482 as 32-bit registers, and only operates on their lower halves.
2483
2484 In the GDB regcache, we treat their high and low halves as separate
2485 registers. The low halves we present as the general-purpose
2486 registers, and then we have pseudo-registers that stitch together
2487 the upper and lower halves and present them as pseudo-registers. */
2488
2489/* SPE GPR lower halves --- raw registers. */
2490#define PPC_SPE_GP_REGS \
2491 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2492 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2493 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2494 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2495
2496/* SPE GPR upper halves --- anonymous raw registers. */
2497#define PPC_SPE_UPPER_GP_REGS \
2498 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2499 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2500 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2501 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2502
2503/* SPE GPR vector registers --- pseudo registers based on underlying
2504 gprs and the anonymous upper half raw registers. */
2505#define PPC_EV_PSEUDO_REGS \
2506/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2507/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2508/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2509/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2510
7a78ae4e 2511/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2512 user-level SPR's. */
7a78ae4e 2513static const struct reg registers_power[] =
c906108c 2514{
7a78ae4e 2515 COMMON_UISA_REGS,
13ac140c 2516 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2517 /* 71 */ R4(fpscr)
c906108c
SS
2518};
2519
7a78ae4e 2520/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2521 view of the PowerPC. */
7a78ae4e 2522static const struct reg registers_powerpc[] =
c906108c 2523{
7a78ae4e 2524 COMMON_UISA_REGS,
1fcc0bb8
EZ
2525 PPC_UISA_SPRS,
2526 PPC_ALTIVEC_REGS
c906108c
SS
2527};
2528
13ac140c
JB
2529/* IBM PowerPC 403.
2530
2531 Some notes about the "tcr" special-purpose register:
2532 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2533 403's programmable interval timer, fixed interval timer, and
2534 watchdog timer.
2535 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2536 watchdog timer, and nothing else.
2537
2538 Some of the fields are similar between the two, but they're not
2539 compatible with each other. Since the two variants have different
2540 registers, with different numbers, but the same name, we can't
2541 splice the register name to get the SPR number. */
7a78ae4e 2542static const struct reg registers_403[] =
c5aa993b 2543{
7a78ae4e
ND
2544 COMMON_UISA_REGS,
2545 PPC_UISA_SPRS,
2546 PPC_SEGMENT_REGS,
2547 PPC_OEA_SPRS,
13ac140c
JB
2548 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2549 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2550 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2551 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2552 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2553 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2554};
2555
13ac140c
JB
2556/* IBM PowerPC 403GC.
2557 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2558static const struct reg registers_403GC[] =
c5aa993b 2559{
7a78ae4e
ND
2560 COMMON_UISA_REGS,
2561 PPC_UISA_SPRS,
2562 PPC_SEGMENT_REGS,
2563 PPC_OEA_SPRS,
13ac140c
JB
2564 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2565 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2566 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2567 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2568 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2569 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2570 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2571 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2572};
2573
64366f1c 2574/* Motorola PowerPC 505. */
7a78ae4e 2575static const struct reg registers_505[] =
c5aa993b 2576{
7a78ae4e
ND
2577 COMMON_UISA_REGS,
2578 PPC_UISA_SPRS,
2579 PPC_SEGMENT_REGS,
2580 PPC_OEA_SPRS,
13ac140c 2581 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2582};
2583
64366f1c 2584/* Motorola PowerPC 860 or 850. */
7a78ae4e 2585static const struct reg registers_860[] =
c5aa993b 2586{
7a78ae4e
ND
2587 COMMON_UISA_REGS,
2588 PPC_UISA_SPRS,
2589 PPC_SEGMENT_REGS,
2590 PPC_OEA_SPRS,
13ac140c
JB
2591 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2592 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2593 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2594 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2595 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2596 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2597 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2598 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2599 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2600 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2601 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2602 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2603};
2604
7a78ae4e
ND
2605/* Motorola PowerPC 601. Note that the 601 has different register numbers
2606 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2607 register is the stub's problem. */
7a78ae4e 2608static const struct reg registers_601[] =
c5aa993b 2609{
7a78ae4e
ND
2610 COMMON_UISA_REGS,
2611 PPC_UISA_SPRS,
2612 PPC_SEGMENT_REGS,
2613 PPC_OEA_SPRS,
13ac140c
JB
2614 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2615 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2616};
2617
13ac140c
JB
2618/* Motorola PowerPC 602.
2619 See the notes under the 403 about 'tcr'. */
7a78ae4e 2620static const struct reg registers_602[] =
c5aa993b 2621{
7a78ae4e
ND
2622 COMMON_UISA_REGS,
2623 PPC_UISA_SPRS,
2624 PPC_SEGMENT_REGS,
2625 PPC_OEA_SPRS,
13ac140c
JB
2626 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2627 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2628 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2629};
2630
64366f1c 2631/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2632static const struct reg registers_603[] =
c5aa993b 2633{
7a78ae4e
ND
2634 COMMON_UISA_REGS,
2635 PPC_UISA_SPRS,
2636 PPC_SEGMENT_REGS,
2637 PPC_OEA_SPRS,
13ac140c
JB
2638 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2639 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2640 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2641};
2642
64366f1c 2643/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2644static const struct reg registers_604[] =
c5aa993b 2645{
7a78ae4e
ND
2646 COMMON_UISA_REGS,
2647 PPC_UISA_SPRS,
2648 PPC_SEGMENT_REGS,
2649 PPC_OEA_SPRS,
13ac140c
JB
2650 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2651 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2652 /* 127 */ S(sia), S(sda)
c906108c
SS
2653};
2654
64366f1c 2655/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2656static const struct reg registers_750[] =
c5aa993b 2657{
7a78ae4e
ND
2658 COMMON_UISA_REGS,
2659 PPC_UISA_SPRS,
2660 PPC_SEGMENT_REGS,
2661 PPC_OEA_SPRS,
13ac140c
JB
2662 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2663 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2664 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2665 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2666 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2667 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2668};
2669
2670
64366f1c 2671/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2672static const struct reg registers_7400[] =
2673{
2674 /* gpr0-gpr31, fpr0-fpr31 */
2675 COMMON_UISA_REGS,
13c7b1ca 2676 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2677 PPC_UISA_SPRS,
2678 /* sr0-sr15 */
2679 PPC_SEGMENT_REGS,
2680 PPC_OEA_SPRS,
2681 /* vr0-vr31, vrsave, vscr */
2682 PPC_ALTIVEC_REGS
2683 /* FIXME? Add more registers? */
2684};
2685
c8001721
EZ
2686/* Motorola e500. */
2687static const struct reg registers_e500[] =
2688{
6ced10dd
JB
2689 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2690 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2691 /* 64 .. 65 */ R(pc), R(ps),
2692 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2693 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2694 /* NOTE: Add new registers here the end of the raw register
2695 list and just before the first pseudo register. */
6ced10dd 2696 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2697};
2698
c906108c 2699/* Information about a particular processor variant. */
7a78ae4e 2700
c906108c 2701struct variant
c5aa993b
JM
2702 {
2703 /* Name of this variant. */
2704 char *name;
c906108c 2705
c5aa993b
JM
2706 /* English description of the variant. */
2707 char *description;
c906108c 2708
64366f1c 2709 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2710 enum bfd_architecture arch;
2711
64366f1c 2712 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2713 unsigned long mach;
2714
489461e2
EZ
2715 /* Number of real registers. */
2716 int nregs;
2717
2718 /* Number of pseudo registers. */
2719 int npregs;
2720
2721 /* Number of total registers (the sum of nregs and npregs). */
2722 int num_tot_regs;
2723
c5aa993b
JM
2724 /* Table of register names; registers[R] is the name of the register
2725 number R. */
7a78ae4e 2726 const struct reg *regs;
c5aa993b 2727 };
c906108c 2728
489461e2
EZ
2729#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2730
2731static int
2732num_registers (const struct reg *reg_list, int num_tot_regs)
2733{
2734 int i;
2735 int nregs = 0;
2736
2737 for (i = 0; i < num_tot_regs; i++)
2738 if (!reg_list[i].pseudo)
2739 nregs++;
2740
2741 return nregs;
2742}
2743
2744static int
2745num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2746{
2747 int i;
2748 int npregs = 0;
2749
2750 for (i = 0; i < num_tot_regs; i++)
2751 if (reg_list[i].pseudo)
2752 npregs ++;
2753
2754 return npregs;
2755}
c906108c 2756
c906108c
SS
2757/* Information in this table comes from the following web sites:
2758 IBM: http://www.chips.ibm.com:80/products/embedded/
2759 Motorola: http://www.mot.com/SPS/PowerPC/
2760
2761 I'm sure I've got some of the variant descriptions not quite right.
2762 Please report any inaccuracies you find to GDB's maintainer.
2763
2764 If you add entries to this table, please be sure to allow the new
2765 value as an argument to the --with-cpu flag, in configure.in. */
2766
489461e2 2767static struct variant variants[] =
c906108c 2768{
489461e2 2769
7a78ae4e 2770 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2771 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2772 registers_powerpc},
7a78ae4e 2773 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2774 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2775 registers_power},
7a78ae4e 2776 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2777 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2778 registers_403},
7a78ae4e 2779 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2780 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2781 registers_601},
7a78ae4e 2782 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2783 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2784 registers_602},
7a78ae4e 2785 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2786 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2787 registers_603},
7a78ae4e 2788 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2789 604, -1, -1, tot_num_registers (registers_604),
2790 registers_604},
7a78ae4e 2791 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2792 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2793 registers_403GC},
7a78ae4e 2794 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2795 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2796 registers_505},
7a78ae4e 2797 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2798 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2799 registers_860},
7a78ae4e 2800 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2801 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2802 registers_750},
1fcc0bb8 2803 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2804 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2805 registers_7400},
c8001721
EZ
2806 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2807 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2808 registers_e500},
7a78ae4e 2809
5d57ee30
KB
2810 /* 64-bit */
2811 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2812 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2813 registers_powerpc},
7a78ae4e 2814 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2815 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2816 registers_powerpc},
5d57ee30 2817 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2818 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2819 registers_powerpc},
7a78ae4e 2820 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2821 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2822 registers_powerpc},
5d57ee30 2823 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2824 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2825 registers_powerpc},
5d57ee30 2826 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2827 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2828 registers_powerpc},
5d57ee30 2829
64366f1c 2830 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2831 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2832 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2833 registers_power},
7a78ae4e 2834 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2835 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2836 registers_power},
7a78ae4e 2837 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2838 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2839 registers_power},
7a78ae4e 2840
489461e2 2841 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2842};
2843
64366f1c 2844/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2845
2846static void
2847init_variants (void)
2848{
2849 struct variant *v;
2850
2851 for (v = variants; v->name; v++)
2852 {
2853 if (v->nregs == -1)
2854 v->nregs = num_registers (v->regs, v->num_tot_regs);
2855 if (v->npregs == -1)
2856 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2857 }
2858}
c906108c 2859
7a78ae4e 2860/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2861 MACH. If no such variant exists, return null. */
c906108c 2862
7a78ae4e
ND
2863static const struct variant *
2864find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2865{
7a78ae4e 2866 const struct variant *v;
c5aa993b 2867
7a78ae4e
ND
2868 for (v = variants; v->name; v++)
2869 if (arch == v->arch && mach == v->mach)
2870 return v;
c906108c 2871
7a78ae4e 2872 return NULL;
c906108c 2873}
9364a0ef
EZ
2874
2875static int
2876gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2877{
ee4f0f76
DJ
2878 if (!info->disassembler_options)
2879 info->disassembler_options = "any";
2880
9364a0ef
EZ
2881 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2882 return print_insn_big_powerpc (memaddr, info);
2883 else
2884 return print_insn_little_powerpc (memaddr, info);
2885}
7a78ae4e 2886\f
61a65099
KB
2887static CORE_ADDR
2888rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2889{
2890 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2891}
2892
2893static struct frame_id
2894rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2895{
2896 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2897 SP_REGNUM),
2898 frame_pc_unwind (next_frame));
2899}
2900
2901struct rs6000_frame_cache
2902{
2903 CORE_ADDR base;
2904 CORE_ADDR initial_sp;
2905 struct trad_frame_saved_reg *saved_regs;
2906};
2907
2908static struct rs6000_frame_cache *
2909rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2910{
2911 struct rs6000_frame_cache *cache;
2912 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2914 struct rs6000_framedata fdata;
2915 int wordsize = tdep->wordsize;
e10b1c4c 2916 CORE_ADDR func, pc;
61a65099
KB
2917
2918 if ((*this_cache) != NULL)
2919 return (*this_cache);
2920 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2921 (*this_cache) = cache;
2922 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2923
93d42b30 2924 func = frame_func_unwind (next_frame, NORMAL_FRAME);
e10b1c4c
DJ
2925 pc = frame_pc_unwind (next_frame);
2926 skip_prologue (func, pc, &fdata);
2927
2928 /* Figure out the parent's stack pointer. */
2929
2930 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2931 address of the current frame. Things might be easier if the
2932 ->frame pointed to the outer-most address of the frame. In
2933 the mean time, the address of the prev frame is used as the
2934 base address of this frame. */
2935 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2936
2937 /* If the function appears to be frameless, check a couple of likely
2938 indicators that we have simply failed to find the frame setup.
2939 Two common cases of this are missing symbols (i.e.
2940 frame_func_unwind returns the wrong address or 0), and assembly
2941 stubs which have a fast exit path but set up a frame on the slow
2942 path.
2943
2944 If the LR appears to return to this function, then presume that
2945 we have an ABI compliant frame that we failed to find. */
2946 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2947 {
e10b1c4c
DJ
2948 CORE_ADDR saved_lr;
2949 int make_frame = 0;
2950
2951 saved_lr = frame_unwind_register_unsigned (next_frame,
2952 tdep->ppc_lr_regnum);
2953 if (func == 0 && saved_lr == pc)
2954 make_frame = 1;
2955 else if (func != 0)
2956 {
2957 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2958 if (func == saved_func)
2959 make_frame = 1;
2960 }
2961
2962 if (make_frame)
2963 {
2964 fdata.frameless = 0;
2965 fdata.lr_offset = wordsize;
2966 }
61a65099 2967 }
e10b1c4c
DJ
2968
2969 if (!fdata.frameless)
2970 /* Frameless really means stackless. */
2971 cache->base = read_memory_addr (cache->base, wordsize);
2972
61a65099
KB
2973 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2974
2975 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2976 All fpr's from saved_fpr to fp31 are saved. */
2977
2978 if (fdata.saved_fpr >= 0)
2979 {
2980 int i;
2981 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2982
2983 /* If skip_prologue says floating-point registers were saved,
2984 but the current architecture has no floating-point registers,
2985 then that's strange. But we have no indices to even record
2986 the addresses under, so we just ignore it. */
2987 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2988 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2989 {
2990 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2991 fpr_addr += 8;
2992 }
61a65099
KB
2993 }
2994
2995 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2996 All gpr's from saved_gpr to gpr31 are saved. */
2997
2998 if (fdata.saved_gpr >= 0)
2999 {
3000 int i;
3001 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3002 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3003 {
3004 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3005 gpr_addr += wordsize;
3006 }
3007 }
3008
3009 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3010 All vr's from saved_vr to vr31 are saved. */
3011 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3012 {
3013 if (fdata.saved_vr >= 0)
3014 {
3015 int i;
3016 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3017 for (i = fdata.saved_vr; i < 32; i++)
3018 {
3019 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3020 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3021 }
3022 }
3023 }
3024
3025 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3026 All vr's from saved_ev to ev31 are saved. ????? */
3027 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3028 {
3029 if (fdata.saved_ev >= 0)
3030 {
3031 int i;
3032 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3033 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3034 {
3035 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3036 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3037 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3038 }
3039 }
3040 }
3041
3042 /* If != 0, fdata.cr_offset is the offset from the frame that
3043 holds the CR. */
3044 if (fdata.cr_offset != 0)
3045 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3046
3047 /* If != 0, fdata.lr_offset is the offset from the frame that
3048 holds the LR. */
3049 if (fdata.lr_offset != 0)
3050 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3051 /* The PC is found in the link register. */
3052 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3053
3054 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3055 holds the VRSAVE. */
3056 if (fdata.vrsave_offset != 0)
3057 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3058
3059 if (fdata.alloca_reg < 0)
3060 /* If no alloca register used, then fi->frame is the value of the
3061 %sp for this frame, and it is good enough. */
3062 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3063 else
3064 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3065 fdata.alloca_reg);
3066
3067 return cache;
3068}
3069
3070static void
3071rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3072 struct frame_id *this_id)
3073{
3074 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3075 this_cache);
93d42b30
DJ
3076 (*this_id) = frame_id_build (info->base,
3077 frame_func_unwind (next_frame, NORMAL_FRAME));
61a65099
KB
3078}
3079
3080static void
3081rs6000_frame_prev_register (struct frame_info *next_frame,
3082 void **this_cache,
3083 int regnum, int *optimizedp,
3084 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3085 int *realnump, gdb_byte *valuep)
61a65099
KB
3086{
3087 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3088 this_cache);
1f67027d
AC
3089 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3090 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3091}
3092
3093static const struct frame_unwind rs6000_frame_unwind =
3094{
3095 NORMAL_FRAME,
3096 rs6000_frame_this_id,
3097 rs6000_frame_prev_register
3098};
3099
3100static const struct frame_unwind *
3101rs6000_frame_sniffer (struct frame_info *next_frame)
3102{
3103 return &rs6000_frame_unwind;
3104}
3105
3106\f
3107
3108static CORE_ADDR
3109rs6000_frame_base_address (struct frame_info *next_frame,
3110 void **this_cache)
3111{
3112 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3113 this_cache);
3114 return info->initial_sp;
3115}
3116
3117static const struct frame_base rs6000_frame_base = {
3118 &rs6000_frame_unwind,
3119 rs6000_frame_base_address,
3120 rs6000_frame_base_address,
3121 rs6000_frame_base_address
3122};
3123
3124static const struct frame_base *
3125rs6000_frame_base_sniffer (struct frame_info *next_frame)
3126{
3127 return &rs6000_frame_base;
3128}
3129
7a78ae4e
ND
3130/* Initialize the current architecture based on INFO. If possible, re-use an
3131 architecture from ARCHES, which is a list of architectures already created
3132 during this debugging session.
c906108c 3133
7a78ae4e 3134 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3135 a binary file. */
c906108c 3136
7a78ae4e
ND
3137static struct gdbarch *
3138rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3139{
3140 struct gdbarch *gdbarch;
3141 struct gdbarch_tdep *tdep;
708ff411 3142 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3143 struct reg *regs;
3144 const struct variant *v;
3145 enum bfd_architecture arch;
3146 unsigned long mach;
3147 bfd abfd;
7b112f9c 3148 int sysv_abi;
5bf1c677 3149 asection *sect;
7a78ae4e 3150
9aa1e687 3151 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3152 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3153
9aa1e687
KB
3154 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3155 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3156
3157 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3158
e712c1cf 3159 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3160 that, else choose a likely default. */
9aa1e687 3161 if (from_xcoff_exec)
c906108c 3162 {
11ed25ac 3163 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3164 wordsize = 8;
3165 else
3166 wordsize = 4;
c906108c 3167 }
9aa1e687
KB
3168 else if (from_elf_exec)
3169 {
3170 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3171 wordsize = 8;
3172 else
3173 wordsize = 4;
3174 }
c906108c 3175 else
7a78ae4e 3176 {
27b15785
KB
3177 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3178 wordsize = info.bfd_arch_info->bits_per_word /
3179 info.bfd_arch_info->bits_per_byte;
3180 else
3181 wordsize = 4;
7a78ae4e 3182 }
c906108c 3183
13c0b536 3184 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3185 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3186 arches != NULL;
3187 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3188 {
3189 /* Word size in the various PowerPC bfd_arch_info structs isn't
3190 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3191 separate word size check. */
7a78ae4e 3192 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3193 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3194 return arches->gdbarch;
3195 }
c906108c 3196
7a78ae4e
ND
3197 /* None found, create a new architecture from INFO, whose bfd_arch_info
3198 validity depends on the source:
3199 - executable useless
3200 - rs6000_host_arch() good
3201 - core file good
3202 - "set arch" trust blindly
3203 - GDB startup useless but harmless */
c906108c 3204
9aa1e687 3205 if (!from_xcoff_exec)
c906108c 3206 {
b732d07d 3207 arch = info.bfd_arch_info->arch;
7a78ae4e 3208 mach = info.bfd_arch_info->mach;
c906108c 3209 }
7a78ae4e 3210 else
c906108c 3211 {
7a78ae4e 3212 arch = bfd_arch_powerpc;
35cec841 3213 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3214 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3215 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3216 }
3217 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3218 tdep->wordsize = wordsize;
5bf1c677
EZ
3219
3220 /* For e500 executables, the apuinfo section is of help here. Such
3221 section contains the identifier and revision number of each
3222 Application-specific Processing Unit that is present on the
3223 chip. The content of the section is determined by the assembler
3224 which looks at each instruction and determines which unit (and
3225 which version of it) can execute it. In our case we just look for
3226 the existance of the section. */
3227
3228 if (info.abfd)
3229 {
3230 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3231 if (sect)
3232 {
3233 arch = info.bfd_arch_info->arch;
3234 mach = bfd_mach_ppc_e500;
3235 bfd_default_set_arch_mach (&abfd, arch, mach);
3236 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3237 }
3238 }
3239
7a78ae4e 3240 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3241
489461e2
EZ
3242 /* Initialize the number of real and pseudo registers in each variant. */
3243 init_variants ();
3244
64366f1c 3245 /* Choose variant. */
7a78ae4e
ND
3246 v = find_variant_by_arch (arch, mach);
3247 if (!v)
dd47e6fd
EZ
3248 return NULL;
3249
7a78ae4e
ND
3250 tdep->regs = v->regs;
3251
2188cbdd 3252 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3253 tdep->ppc_toc_regnum = 2;
3254 tdep->ppc_ps_regnum = 65;
3255 tdep->ppc_cr_regnum = 66;
3256 tdep->ppc_lr_regnum = 67;
3257 tdep->ppc_ctr_regnum = 68;
3258 tdep->ppc_xer_regnum = 69;
3259 if (v->mach == bfd_mach_ppc_601)
3260 tdep->ppc_mq_regnum = 124;
708ff411 3261 else if (arch == bfd_arch_rs6000)
2188cbdd 3262 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3263 else
3264 tdep->ppc_mq_regnum = -1;
366f009f 3265 tdep->ppc_fp0_regnum = 32;
708ff411 3266 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3267 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3268 tdep->ppc_vr0_regnum = -1;
3269 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3270 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3271 tdep->ppc_ev0_regnum = -1;
3272 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3273 tdep->ppc_acc_regnum = -1;
3274 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3275
c8001721
EZ
3276 set_gdbarch_pc_regnum (gdbarch, 64);
3277 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3278 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
6f7f3f0d 3279 set_gdbarch_fp0_regnum (gdbarch, 32);
9f643768 3280 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3281 if (sysv_abi && wordsize == 8)
05580c65 3282 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3283 else if (sysv_abi && wordsize == 4)
05580c65 3284 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75 3285 else
d217aaed 3286 set_gdbarch_return_value (gdbarch, rs6000_return_value);
c8001721 3287
baffbae0
JB
3288 /* Set lr_frame_offset. */
3289 if (wordsize == 8)
3290 tdep->lr_frame_offset = 16;
3291 else if (sysv_abi)
3292 tdep->lr_frame_offset = 4;
3293 else
3294 tdep->lr_frame_offset = 8;
3295
f86a7158
JB
3296 if (v->arch == bfd_arch_rs6000)
3297 tdep->ppc_sr0_regnum = -1;
3298 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3299 switch (v->mach)
3300 {
3301 case bfd_mach_ppc:
412b3060 3302 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3303 tdep->ppc_vr0_regnum = 71;
3304 tdep->ppc_vrsave_regnum = 104;
3305 break;
3306 case bfd_mach_ppc_7400:
3307 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3308 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3309 break;
3310 case bfd_mach_ppc_e500:
c8001721 3311 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3312 tdep->ppc_ev0_upper_regnum = 32;
3313 tdep->ppc_ev0_regnum = 73;
3314 tdep->ppc_ev31_regnum = 104;
3315 tdep->ppc_acc_regnum = 71;
3316 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3317 tdep->ppc_fp0_regnum = -1;
3318 tdep->ppc_fpscr_regnum = -1;
f86a7158 3319 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3320 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3321 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3322 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3323 break;
f86a7158
JB
3324
3325 case bfd_mach_ppc64:
3326 case bfd_mach_ppc_620:
3327 case bfd_mach_ppc_630:
3328 case bfd_mach_ppc_a35:
3329 case bfd_mach_ppc_rs64ii:
3330 case bfd_mach_ppc_rs64iii:
3331 /* These processor's register sets don't have segment registers. */
3332 tdep->ppc_sr0_regnum = -1;
3333 break;
1fcc0bb8 3334 }
f86a7158
JB
3335 else
3336 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3337 _("rs6000_gdbarch_init: "
3338 "received unexpected BFD 'arch' value"));
1fcc0bb8 3339
e0d24f8d
WZ
3340 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3341
338ef23d
AC
3342 /* Sanity check on registers. */
3343 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3344
56a6dfb9 3345 /* Select instruction printer. */
708ff411 3346 if (arch == bfd_arch_rs6000)
9364a0ef 3347 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3348 else
9364a0ef 3349 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3350
7a78ae4e 3351 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3352
3353 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3354 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3355 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3356 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3357 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3358
3359 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3360 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3361 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3362 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3363 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3364 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3365 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3366 if (sysv_abi)
3367 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3368 else
3369 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3370 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3371
11269d7e 3372 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3373 if (sysv_abi && wordsize == 8)
3374 /* PPC64 SYSV. */
3375 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3376 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3377 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3378 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3379 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3380 224. */
3381 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3382
691d145a
JB
3383 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3384 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3385 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3386
18ed0c4e
JB
3387 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3388 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3389
2ea5f656 3390 if (sysv_abi && wordsize == 4)
77b2b6d4 3391 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3392 else if (sysv_abi && wordsize == 8)
3393 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3394 else
77b2b6d4 3395 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3396
7a78ae4e 3397 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3398 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3399
7a78ae4e 3400 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3401 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3402
6066c3de
AC
3403 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3404 for the descriptor and ".FN" for the entry-point -- a user
3405 specifying "break FN" will unexpectedly end up with a breakpoint
3406 on the descriptor and not the function. This architecture method
3407 transforms any breakpoints on descriptors into breakpoints on the
3408 corresponding entry point. */
3409 if (sysv_abi && wordsize == 8)
3410 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3411
7a78ae4e
ND
3412 /* Not sure on this. FIXMEmgo */
3413 set_gdbarch_frame_args_skip (gdbarch, 8);
3414
15813d3f
AC
3415 if (!sysv_abi)
3416 {
3417 /* Handle RS/6000 function pointers (which are really function
3418 descriptors). */
f517ea4e
PS
3419 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3420 rs6000_convert_from_func_ptr_addr);
9aa1e687 3421 }
7a78ae4e 3422
143985b7
AF
3423 /* Helpers for function argument information. */
3424 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3425
6f7f3f0d
UW
3426 /* Trampoline. */
3427 set_gdbarch_in_solib_return_trampoline
3428 (gdbarch, rs6000_in_solib_return_trampoline);
3429 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3430
7b112f9c 3431 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3432 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3433
61a65099
KB
3434 switch (info.osabi)
3435 {
f5aecab8
PG
3436 case GDB_OSABI_LINUX:
3437 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3438 have altivec registers. If not, ptrace will fail the first time it's
3439 called to access one and will not be called again. This wart will
3440 be removed when Daniel Jacobowitz's proposal for autodetecting target
3441 registers is implemented. */
3442 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3443 {
3444 tdep->ppc_vr0_regnum = 71;
3445 tdep->ppc_vrsave_regnum = 104;
3446 }
3447 /* Fall Thru */
61a65099
KB
3448 case GDB_OSABI_NETBSD_AOUT:
3449 case GDB_OSABI_NETBSD_ELF:
3450 case GDB_OSABI_UNKNOWN:
61a65099
KB
3451 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3452 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3453 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3454 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3455 break;
3456 default:
61a65099 3457 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3458
3459 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3460 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3461 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3462 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3463 }
3464
9f643768
JB
3465 init_sim_regno_table (gdbarch);
3466
7a78ae4e 3467 return gdbarch;
c906108c
SS
3468}
3469
7b112f9c
JT
3470static void
3471rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3472{
3473 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3474
3475 if (tdep == NULL)
3476 return;
3477
4be87837 3478 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3479}
3480
c906108c
SS
3481/* Initialization code. */
3482
a78f21af 3483extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3484
c906108c 3485void
fba45db2 3486_initialize_rs6000_tdep (void)
c906108c 3487{
7b112f9c
JT
3488 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3489 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3490}
This page took 0.862632 seconds and 4 git commands to generate.