2001-12-29 Elena Zannoni <ezannoni@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518
KB
2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
7a78ae4e
ND
37
38#include "bfd/libbfd.h" /* for bfd_default_set_arch_mach */
39#include "coff/internal.h" /* for libcoff.h */
40#include "bfd/libcoff.h" /* for xcoff_data */
41
9aa1e687 42#include "elf-bfd.h"
7a78ae4e 43
6ded7999 44#include "solib-svr4.h"
9aa1e687 45#include "ppc-tdep.h"
7a78ae4e
ND
46
47/* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54#define SIG_FRAME_PC_OFFSET 96
55#define SIG_FRAME_LR_OFFSET 108
56#define SIG_FRAME_FP_OFFSET 284
57
7a78ae4e
ND
58/* To be used by skip_prologue. */
59
60struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
67 int alloca_reg; /* alloca register number (frame ptr) */
68 char frameless; /* true if frameless functions. */
69 char nosavedpc; /* true if pc not saved. */
70 int gpr_offset; /* offset of saved gprs from prev sp */
71 int fpr_offset; /* offset of saved fprs from prev sp */
72 int lr_offset; /* offset of saved lr */
73 int cr_offset; /* offset of saved cr */
74 };
75
76/* Description of a single register. */
77
78struct reg
79 {
80 char *name; /* name of register */
81 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
82 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
83 unsigned char fpr; /* whether register is floating-point */
84 };
85
7a78ae4e
ND
86/* Return the current architecture's gdbarch_tdep structure. */
87
88#define TDEP gdbarch_tdep (current_gdbarch)
c906108c
SS
89
90/* Breakpoint shadows for the single step instructions will be kept here. */
91
c5aa993b
JM
92static struct sstep_breaks
93 {
94 /* Address, or 0 if this is not in use. */
95 CORE_ADDR address;
96 /* Shadow contents. */
97 char data[4];
98 }
99stepBreaks[2];
c906108c
SS
100
101/* Hook for determining the TOC address when calling functions in the
102 inferior under AIX. The initialization code in rs6000-nat.c sets
103 this hook to point to find_toc_address. */
104
7a78ae4e
ND
105CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
106
107/* Hook to set the current architecture when starting a child process.
108 rs6000-nat.c sets this. */
109
110void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
111
112/* Static function prototypes */
113
a14ed312
KB
114static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
115 CORE_ADDR safety);
077276e8
KB
116static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
117 struct rs6000_framedata *);
7a78ae4e
ND
118static void frame_get_saved_regs (struct frame_info * fi,
119 struct rs6000_framedata * fdatap);
120static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 121
7a78ae4e 122/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 123
7a78ae4e
ND
124static CORE_ADDR
125read_memory_addr (CORE_ADDR memaddr, int len)
126{
127 return read_memory_unsigned_integer (memaddr, len);
128}
c906108c 129
7a78ae4e
ND
130static CORE_ADDR
131rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
132{
133 struct rs6000_framedata frame;
077276e8 134 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
135 return pc;
136}
137
138
c906108c
SS
139/* Fill in fi->saved_regs */
140
141struct frame_extra_info
142{
143 /* Functions calling alloca() change the value of the stack
144 pointer. We need to use initial stack pointer (which is saved in
145 r31 by gcc) in such cases. If a compiler emits traceback table,
146 then we should use the alloca register specified in traceback
147 table. FIXME. */
c5aa993b 148 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
149};
150
9aa1e687 151void
7a78ae4e 152rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 153{
c5aa993b 154 fi->extra_info = (struct frame_extra_info *)
c906108c
SS
155 frame_obstack_alloc (sizeof (struct frame_extra_info));
156 fi->extra_info->initial_sp = 0;
157 if (fi->next != (CORE_ADDR) 0
158 && fi->pc < TEXT_SEGMENT_BASE)
7a292a7a 159 /* We're in get_prev_frame */
c906108c
SS
160 /* and this is a special signal frame. */
161 /* (fi->pc will be some low address in the kernel, */
162 /* to which the signal handler returns). */
163 fi->signal_handler_caller = 1;
164}
165
7a78ae4e
ND
166/* Put here the code to store, into a struct frame_saved_regs,
167 the addresses of the saved registers of frame described by FRAME_INFO.
168 This includes special registers such as pc and fp saved in special
169 ways in the stack frame. sp is even more special:
170 the address we return for it IS the sp for the next frame. */
c906108c 171
7a78ae4e
ND
172/* In this implementation for RS/6000, we do *not* save sp. I am
173 not sure if it will be needed. The following function takes care of gpr's
174 and fpr's only. */
175
9aa1e687 176void
7a78ae4e 177rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
178{
179 frame_get_saved_regs (fi, NULL);
180}
181
7a78ae4e
ND
182static CORE_ADDR
183rs6000_frame_args_address (struct frame_info *fi)
c906108c
SS
184{
185 if (fi->extra_info->initial_sp != 0)
186 return fi->extra_info->initial_sp;
187 else
188 return frame_initial_stack_address (fi);
189}
190
7a78ae4e
ND
191/* Immediately after a function call, return the saved pc.
192 Can't go through the frames for this because on some machines
193 the new frame is not set up until the new function executes
194 some instructions. */
195
196static CORE_ADDR
197rs6000_saved_pc_after_call (struct frame_info *fi)
198{
2188cbdd 199 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 200}
c906108c
SS
201
202/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
203
204static CORE_ADDR
7a78ae4e 205branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
206{
207 CORE_ADDR dest;
208 int immediate;
209 int absolute;
210 int ext_op;
211
212 absolute = (int) ((instr >> 1) & 1);
213
c5aa993b
JM
214 switch (opcode)
215 {
216 case 18:
217 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
218 if (absolute)
219 dest = immediate;
220 else
221 dest = pc + immediate;
222 break;
223
224 case 16:
225 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
226 if (absolute)
227 dest = immediate;
228 else
229 dest = pc + immediate;
230 break;
231
232 case 19:
233 ext_op = (instr >> 1) & 0x3ff;
234
235 if (ext_op == 16) /* br conditional register */
236 {
2188cbdd 237 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
238
239 /* If we are about to return from a signal handler, dest is
240 something like 0x3c90. The current frame is a signal handler
241 caller frame, upon completion of the sigreturn system call
242 execution will return to the saved PC in the frame. */
243 if (dest < TEXT_SEGMENT_BASE)
244 {
245 struct frame_info *fi;
246
247 fi = get_current_frame ();
248 if (fi != NULL)
7a78ae4e
ND
249 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
250 TDEP->wordsize);
c5aa993b
JM
251 }
252 }
253
254 else if (ext_op == 528) /* br cond to count reg */
255 {
2188cbdd 256 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
257
258 /* If we are about to execute a system call, dest is something
259 like 0x22fc or 0x3b00. Upon completion the system call
260 will return to the address in the link register. */
261 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 262 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
263 }
264 else
265 return -1;
266 break;
c906108c 267
c5aa993b
JM
268 default:
269 return -1;
270 }
c906108c
SS
271 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
272}
273
274
275/* Sequence of bytes for breakpoint instruction. */
276
277#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
278#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
279
7a78ae4e
ND
280static unsigned char *
281rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
282{
283 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
284 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
285 *bp_size = 4;
286 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
287 return big_breakpoint;
288 else
289 return little_breakpoint;
290}
291
292
293/* AIX does not support PT_STEP. Simulate it. */
294
295void
379d08a1
AC
296rs6000_software_single_step (enum target_signal signal,
297 int insert_breakpoints_p)
c906108c
SS
298{
299#define INSNLEN(OPCODE) 4
300
301 static char le_breakp[] = LITTLE_BREAKPOINT;
302 static char be_breakp[] = BIG_BREAKPOINT;
303 char *breakp = TARGET_BYTE_ORDER == BIG_ENDIAN ? be_breakp : le_breakp;
304 int ii, insn;
305 CORE_ADDR loc;
306 CORE_ADDR breaks[2];
307 int opcode;
308
c5aa993b
JM
309 if (insert_breakpoints_p)
310 {
c906108c 311
c5aa993b 312 loc = read_pc ();
c906108c 313
c5aa993b 314 insn = read_memory_integer (loc, 4);
c906108c 315
c5aa993b
JM
316 breaks[0] = loc + INSNLEN (insn);
317 opcode = insn >> 26;
318 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 319
c5aa993b
JM
320 /* Don't put two breakpoints on the same address. */
321 if (breaks[1] == breaks[0])
322 breaks[1] = -1;
c906108c 323
c5aa993b 324 stepBreaks[1].address = 0;
c906108c 325
c5aa993b
JM
326 for (ii = 0; ii < 2; ++ii)
327 {
c906108c 328
c5aa993b
JM
329 /* ignore invalid breakpoint. */
330 if (breaks[ii] == -1)
331 continue;
c906108c 332
c5aa993b 333 read_memory (breaks[ii], stepBreaks[ii].data, 4);
c906108c 334
c5aa993b
JM
335 write_memory (breaks[ii], breakp, 4);
336 stepBreaks[ii].address = breaks[ii];
337 }
c906108c 338
c5aa993b
JM
339 }
340 else
341 {
c906108c 342
c5aa993b
JM
343 /* remove step breakpoints. */
344 for (ii = 0; ii < 2; ++ii)
345 if (stepBreaks[ii].address != 0)
346 write_memory
347 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
c906108c 348
c5aa993b 349 }
c906108c 350 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 351 /* What errors? {read,write}_memory call error(). */
c906108c
SS
352}
353
354
355/* return pc value after skipping a function prologue and also return
356 information about a function frame.
357
358 in struct rs6000_framedata fdata:
c5aa993b
JM
359 - frameless is TRUE, if function does not have a frame.
360 - nosavedpc is TRUE, if function does not save %pc value in its frame.
361 - offset is the initial size of this stack frame --- the amount by
362 which we decrement the sp to allocate the frame.
363 - saved_gpr is the number of the first saved gpr.
364 - saved_fpr is the number of the first saved fpr.
365 - alloca_reg is the number of the register used for alloca() handling.
366 Otherwise -1.
367 - gpr_offset is the offset of the first saved gpr from the previous frame.
368 - fpr_offset is the offset of the first saved fpr from the previous frame.
369 - lr_offset is the offset of the saved lr
370 - cr_offset is the offset of the saved cr
371 */
c906108c
SS
372
373#define SIGNED_SHORT(x) \
374 ((sizeof (short) == 2) \
375 ? ((int)(short)(x)) \
376 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
377
378#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
379
55d05f3b
KB
380/* Limit the number of skipped non-prologue instructions, as the examining
381 of the prologue is expensive. */
382static int max_skip_non_prologue_insns = 10;
383
384/* Given PC representing the starting address of a function, and
385 LIM_PC which is the (sloppy) limit to which to scan when looking
386 for a prologue, attempt to further refine this limit by using
387 the line data in the symbol table. If successful, a better guess
388 on where the prologue ends is returned, otherwise the previous
389 value of lim_pc is returned. */
390static CORE_ADDR
391refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
392{
393 struct symtab_and_line prologue_sal;
394
395 prologue_sal = find_pc_line (pc, 0);
396 if (prologue_sal.line != 0)
397 {
398 int i;
399 CORE_ADDR addr = prologue_sal.end;
400
401 /* Handle the case in which compiler's optimizer/scheduler
402 has moved instructions into the prologue. We scan ahead
403 in the function looking for address ranges whose corresponding
404 line number is less than or equal to the first one that we
405 found for the function. (It can be less than when the
406 scheduler puts a body instruction before the first prologue
407 instruction.) */
408 for (i = 2 * max_skip_non_prologue_insns;
409 i > 0 && (lim_pc == 0 || addr < lim_pc);
410 i--)
411 {
412 struct symtab_and_line sal;
413
414 sal = find_pc_line (addr, 0);
415 if (sal.line == 0)
416 break;
417 if (sal.line <= prologue_sal.line
418 && sal.symtab == prologue_sal.symtab)
419 {
420 prologue_sal = sal;
421 }
422 addr = sal.end;
423 }
424
425 if (lim_pc == 0 || prologue_sal.end < lim_pc)
426 lim_pc = prologue_sal.end;
427 }
428 return lim_pc;
429}
430
431
7a78ae4e 432static CORE_ADDR
077276e8 433skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
434{
435 CORE_ADDR orig_pc = pc;
55d05f3b 436 CORE_ADDR last_prologue_pc = pc;
c906108c
SS
437 char buf[4];
438 unsigned long op;
439 long offset = 0;
482ca3f5
KB
440 int lr_reg = -1;
441 int cr_reg = -1;
c906108c
SS
442 int reg;
443 int framep = 0;
444 int minimal_toc_loaded = 0;
ddb20c56 445 int prev_insn_was_prologue_insn = 1;
55d05f3b
KB
446 int num_skip_non_prologue_insns = 0;
447
448 /* Attempt to find the end of the prologue when no limit is specified.
449 Note that refine_prologue_limit() has been written so that it may
450 be used to "refine" the limits of non-zero PC values too, but this
451 is only safe if we 1) trust the line information provided by the
452 compiler and 2) iterate enough to actually find the end of the
453 prologue.
454
455 It may become a good idea at some point (for both performance and
456 accuracy) to unconditionally call refine_prologue_limit(). But,
457 until we can make a clear determination that this is beneficial,
458 we'll play it safe and only use it to obtain a limit when none
459 has been specified. */
460 if (lim_pc == 0)
461 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 462
ddb20c56 463 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
464 fdata->saved_gpr = -1;
465 fdata->saved_fpr = -1;
466 fdata->alloca_reg = -1;
467 fdata->frameless = 1;
468 fdata->nosavedpc = 1;
469
55d05f3b 470 for (;; pc += 4)
c906108c 471 {
ddb20c56
KB
472 /* Sometimes it isn't clear if an instruction is a prologue
473 instruction or not. When we encounter one of these ambiguous
474 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
475 Otherwise, we'll assume that it really is a prologue instruction. */
476 if (prev_insn_was_prologue_insn)
477 last_prologue_pc = pc;
55d05f3b
KB
478
479 /* Stop scanning if we've hit the limit. */
480 if (lim_pc != 0 && pc >= lim_pc)
481 break;
482
ddb20c56
KB
483 prev_insn_was_prologue_insn = 1;
484
55d05f3b 485 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
486 if (target_read_memory (pc, buf, 4))
487 break;
488 op = extract_signed_integer (buf, 4);
c906108c 489
c5aa993b
JM
490 if ((op & 0xfc1fffff) == 0x7c0802a6)
491 { /* mflr Rx */
492 lr_reg = (op & 0x03e00000) | 0x90010000;
493 continue;
c906108c 494
c5aa993b
JM
495 }
496 else if ((op & 0xfc1fffff) == 0x7c000026)
497 { /* mfcr Rx */
498 cr_reg = (op & 0x03e00000) | 0x90010000;
499 continue;
c906108c 500
c906108c 501 }
c5aa993b
JM
502 else if ((op & 0xfc1f0000) == 0xd8010000)
503 { /* stfd Rx,NUM(r1) */
504 reg = GET_SRC_REG (op);
505 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
506 {
507 fdata->saved_fpr = reg;
508 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
509 }
510 continue;
c906108c 511
c5aa993b
JM
512 }
513 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
514 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
515 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
516 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
517 {
518
519 reg = GET_SRC_REG (op);
520 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
521 {
522 fdata->saved_gpr = reg;
7a78ae4e
ND
523 if ((op & 0xfc1f0003) == 0xf8010000)
524 op = (op >> 1) << 1;
c5aa993b
JM
525 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
526 }
527 continue;
c906108c 528
ddb20c56
KB
529 }
530 else if ((op & 0xffff0000) == 0x60000000)
531 {
532 /* nop */
533 /* Allow nops in the prologue, but do not consider them to
534 be part of the prologue unless followed by other prologue
535 instructions. */
536 prev_insn_was_prologue_insn = 0;
537 continue;
538
c906108c 539 }
c5aa993b
JM
540 else if ((op & 0xffff0000) == 0x3c000000)
541 { /* addis 0,0,NUM, used
542 for >= 32k frames */
543 fdata->offset = (op & 0x0000ffff) << 16;
544 fdata->frameless = 0;
545 continue;
546
547 }
548 else if ((op & 0xffff0000) == 0x60000000)
549 { /* ori 0,0,NUM, 2nd ha
550 lf of >= 32k frames */
551 fdata->offset |= (op & 0x0000ffff);
552 fdata->frameless = 0;
553 continue;
554
555 }
482ca3f5 556 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
557 { /* st Rx,NUM(r1)
558 where Rx == lr */
559 fdata->lr_offset = SIGNED_SHORT (op) + offset;
560 fdata->nosavedpc = 0;
561 lr_reg = 0;
562 continue;
563
564 }
482ca3f5 565 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
566 { /* st Rx,NUM(r1)
567 where Rx == cr */
568 fdata->cr_offset = SIGNED_SHORT (op) + offset;
569 cr_reg = 0;
570 continue;
571
572 }
573 else if (op == 0x48000005)
574 { /* bl .+4 used in
575 -mrelocatable */
576 continue;
577
578 }
579 else if (op == 0x48000004)
580 { /* b .+4 (xlc) */
581 break;
582
583 }
584 else if (((op & 0xffff0000) == 0x801e0000 || /* lwz 0,NUM(r30), used
c906108c 585 in V.4 -mrelocatable */
c5aa993b
JM
586 op == 0x7fc0f214) && /* add r30,r0,r30, used
587 in V.4 -mrelocatable */
588 lr_reg == 0x901e0000)
589 {
590 continue;
c906108c 591
c5aa993b
JM
592 }
593 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
c906108c 594 in V.4 -mminimal-toc */
c5aa993b
JM
595 (op & 0xffff0000) == 0x3bde0000)
596 { /* addi 30,30,foo@l */
597 continue;
c906108c 598
c5aa993b
JM
599 }
600 else if ((op & 0xfc000001) == 0x48000001)
601 { /* bl foo,
602 to save fprs??? */
c906108c 603
c5aa993b
JM
604 fdata->frameless = 0;
605 /* Don't skip over the subroutine call if it is not within the first
606 three instructions of the prologue. */
607 if ((pc - orig_pc) > 8)
608 break;
609
610 op = read_memory_integer (pc + 4, 4);
611
612 /* At this point, make sure this is not a trampoline function
613 (a function that simply calls another functions, and nothing else).
614 If the next is not a nop, this branch was part of the function
615 prologue. */
616
617 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
618 break; /* don't skip over
619 this branch */
620 continue;
621
622 /* update stack pointer */
623 }
7a78ae4e
ND
624 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
625 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
626 {
c5aa993b 627 fdata->frameless = 0;
7a78ae4e
ND
628 if ((op & 0xffff0003) == 0xf8210001)
629 op = (op >> 1) << 1;
c5aa993b
JM
630 fdata->offset = SIGNED_SHORT (op);
631 offset = fdata->offset;
632 continue;
633
634 }
635 else if (op == 0x7c21016e)
636 { /* stwux 1,1,0 */
637 fdata->frameless = 0;
638 offset = fdata->offset;
639 continue;
640
641 /* Load up minimal toc pointer */
642 }
643 else if ((op >> 22) == 0x20f
644 && !minimal_toc_loaded)
645 { /* l r31,... or l r30,... */
646 minimal_toc_loaded = 1;
647 continue;
648
f6077098
KB
649 /* move parameters from argument registers to local variable
650 registers */
651 }
652 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
653 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
654 (((op >> 21) & 31) <= 10) &&
655 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
656 {
657 continue;
658
c5aa993b
JM
659 /* store parameters in stack */
660 }
661 else if ((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
7a78ae4e 662 (op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 663 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
664 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
665 {
c5aa993b 666 continue;
c906108c 667
c5aa993b
JM
668 /* store parameters in stack via frame pointer */
669 }
670 else if (framep &&
671 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
672 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xfc1f0000))
674 { /* frsp, fp?,NUM(r1) */
675 continue;
676
677 /* Set up frame pointer */
678 }
679 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
680 || op == 0x7c3f0b78)
681 { /* mr r31, r1 */
682 fdata->frameless = 0;
683 framep = 1;
684 fdata->alloca_reg = 31;
685 continue;
686
687 /* Another way to set up the frame pointer. */
688 }
689 else if ((op & 0xfc1fffff) == 0x38010000)
690 { /* addi rX, r1, 0x0 */
691 fdata->frameless = 0;
692 framep = 1;
693 fdata->alloca_reg = (op & ~0x38010000) >> 21;
694 continue;
695
696 }
697 else
698 {
55d05f3b
KB
699 /* Not a recognized prologue instruction.
700 Handle optimizer code motions into the prologue by continuing
701 the search if we have no valid frame yet or if the return
702 address is not yet saved in the frame. */
703 if (fdata->frameless == 0
704 && (lr_reg == -1 || fdata->nosavedpc == 0))
705 break;
706
707 if (op == 0x4e800020 /* blr */
708 || op == 0x4e800420) /* bctr */
709 /* Do not scan past epilogue in frameless functions or
710 trampolines. */
711 break;
712 if ((op & 0xf4000000) == 0x40000000) /* bxx */
713 /* Never skip branches. */
714 break;
715
716 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
717 /* Do not scan too many insns, scanning insns is expensive with
718 remote targets. */
719 break;
720
721 /* Continue scanning. */
722 prev_insn_was_prologue_insn = 0;
723 continue;
c5aa993b 724 }
c906108c
SS
725 }
726
727#if 0
728/* I have problems with skipping over __main() that I need to address
729 * sometime. Previously, I used to use misc_function_vector which
730 * didn't work as well as I wanted to be. -MGO */
731
732 /* If the first thing after skipping a prolog is a branch to a function,
733 this might be a call to an initializer in main(), introduced by gcc2.
734 We'd like to skip over it as well. Fortunately, xlc does some extra
735 work before calling a function right after a prologue, thus we can
736 single out such gcc2 behaviour. */
c906108c 737
c906108c 738
c5aa993b
JM
739 if ((op & 0xfc000001) == 0x48000001)
740 { /* bl foo, an initializer function? */
741 op = read_memory_integer (pc + 4, 4);
742
743 if (op == 0x4def7b82)
744 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 745
c5aa993b
JM
746 /* check and see if we are in main. If so, skip over this initializer
747 function as well. */
c906108c 748
c5aa993b 749 tmp = find_pc_misc_function (pc);
51cc5b07 750 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
751 return pc + 8;
752 }
c906108c 753 }
c906108c 754#endif /* 0 */
c5aa993b
JM
755
756 fdata->offset = -fdata->offset;
ddb20c56 757 return last_prologue_pc;
c906108c
SS
758}
759
760
761/*************************************************************************
f6077098 762 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
763 frames, etc.
764*************************************************************************/
765
c906108c 766
7a78ae4e 767/* Pop the innermost frame, go back to the caller. */
c5aa993b 768
c906108c 769static void
7a78ae4e 770rs6000_pop_frame (void)
c906108c 771{
470d5666 772 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
773 struct rs6000_framedata fdata;
774 struct frame_info *frame = get_current_frame ();
470d5666 775 int ii, wordsize;
c906108c
SS
776
777 pc = read_pc ();
778 sp = FRAME_FP (frame);
779
58223630 780 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 781 {
7a78ae4e
ND
782 generic_pop_dummy_frame ();
783 flush_cached_frames ();
784 return;
c906108c
SS
785 }
786
787 /* Make sure that all registers are valid. */
788 read_register_bytes (0, NULL, REGISTER_BYTES);
789
790 /* figure out previous %pc value. If the function is frameless, it is
791 still in the link register, otherwise walk the frames and retrieve the
792 saved %pc value in the previous frame. */
793
794 addr = get_pc_function_start (frame->pc);
077276e8 795 (void) skip_prologue (addr, frame->pc, &fdata);
c906108c 796
7a78ae4e 797 wordsize = TDEP->wordsize;
c906108c
SS
798 if (fdata.frameless)
799 prev_sp = sp;
800 else
7a78ae4e 801 prev_sp = read_memory_addr (sp, wordsize);
c906108c 802 if (fdata.lr_offset == 0)
2188cbdd 803 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 804 else
7a78ae4e 805 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
806
807 /* reset %pc value. */
808 write_register (PC_REGNUM, lr);
809
810 /* reset register values if any was saved earlier. */
811
812 if (fdata.saved_gpr != -1)
813 {
814 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
815 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
816 {
7a78ae4e
ND
817 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
818 addr += wordsize;
c5aa993b 819 }
c906108c
SS
820 }
821
822 if (fdata.saved_fpr != -1)
823 {
824 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
825 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
826 {
827 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
828 addr += 8;
829 }
c906108c
SS
830 }
831
832 write_register (SP_REGNUM, prev_sp);
833 target_store_registers (-1);
834 flush_cached_frames ();
835}
836
7a78ae4e
ND
837/* Fixup the call sequence of a dummy function, with the real function
838 address. Its arguments will be passed by gdb. */
c906108c 839
7a78ae4e
ND
840static void
841rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 842 int nargs, struct value **args, struct type *type,
7a78ae4e 843 int gcc_p)
c906108c
SS
844{
845#define TOC_ADDR_OFFSET 20
846#define TARGET_ADDR_OFFSET 28
847
848 int ii;
849 CORE_ADDR target_addr;
850
7a78ae4e 851 if (rs6000_find_toc_address_hook != NULL)
f6077098 852 {
7a78ae4e 853 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
854 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
855 tocvalue);
f6077098 856 }
c906108c
SS
857}
858
7a78ae4e 859/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
860 the first eight words of the argument list (that might be less than
861 eight parameters if some parameters occupy more than one word) are
7a78ae4e 862 passed in r3..r10 registers. float and double parameters are
c906108c
SS
863 passed in fpr's, in addition to that. Rest of the parameters if any
864 are passed in user stack. There might be cases in which half of the
865 parameter is copied into registers, the other half is pushed into
866 stack.
867
7a78ae4e
ND
868 Stack must be aligned on 64-bit boundaries when synthesizing
869 function calls.
870
c906108c
SS
871 If the function is returning a structure, then the return address is passed
872 in r3, then the first 7 words of the parameters can be passed in registers,
873 starting from r4. */
874
7a78ae4e 875static CORE_ADDR
ea7c478f 876rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 877 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
878{
879 int ii;
880 int len = 0;
c5aa993b
JM
881 int argno; /* current argument number */
882 int argbytes; /* current argument byte */
883 char tmp_buffer[50];
884 int f_argno = 0; /* current floating point argno */
7a78ae4e 885 int wordsize = TDEP->wordsize;
c906108c 886
ea7c478f 887 struct value *arg = 0;
c906108c
SS
888 struct type *type;
889
890 CORE_ADDR saved_sp;
891
c906108c
SS
892 /* The first eight words of ther arguments are passed in registers. Copy
893 them appropriately.
894
895 If the function is returning a `struct', then the first word (which
896 will be passed in r3) is used for struct return address. In that
897 case we should advance one word and start from r4 register to copy
898 parameters. */
899
c5aa993b 900 ii = struct_return ? 1 : 0;
c906108c
SS
901
902/*
c5aa993b
JM
903 effectively indirect call... gcc does...
904
905 return_val example( float, int);
906
907 eabi:
908 float in fp0, int in r3
909 offset of stack on overflow 8/16
910 for varargs, must go by type.
911 power open:
912 float in r3&r4, int in r5
913 offset of stack on overflow different
914 both:
915 return in r3 or f0. If no float, must study how gcc emulates floats;
916 pay attention to arg promotion.
917 User may have to cast\args to handle promotion correctly
918 since gdb won't know if prototype supplied or not.
919 */
c906108c 920
c5aa993b
JM
921 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
922 {
f6077098 923 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
924
925 arg = args[argno];
926 type = check_typedef (VALUE_TYPE (arg));
927 len = TYPE_LENGTH (type);
928
929 if (TYPE_CODE (type) == TYPE_CODE_FLT)
930 {
931
932 /* floating point arguments are passed in fpr's, as well as gpr's.
933 There are 13 fpr's reserved for passing parameters. At this point
934 there is no way we would run out of them. */
935
936 if (len > 8)
937 printf_unfiltered (
938 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
939
940 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
941 VALUE_CONTENTS (arg),
942 len);
943 ++f_argno;
944 }
945
f6077098 946 if (len > reg_size)
c5aa993b
JM
947 {
948
949 /* Argument takes more than one register. */
950 while (argbytes < len)
951 {
f6077098 952 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
c5aa993b
JM
953 memcpy (&registers[REGISTER_BYTE (ii + 3)],
954 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
955 (len - argbytes) > reg_size
956 ? reg_size : len - argbytes);
957 ++ii, argbytes += reg_size;
c5aa993b
JM
958
959 if (ii >= 8)
960 goto ran_out_of_registers_for_arguments;
961 }
962 argbytes = 0;
963 --ii;
964 }
965 else
966 { /* Argument can fit in one register. No problem. */
f6077098
KB
967 int adj = TARGET_BYTE_ORDER == BIG_ENDIAN ? reg_size - len : 0;
968 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
969 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
970 VALUE_CONTENTS (arg), len);
c5aa993b
JM
971 }
972 ++argno;
c906108c 973 }
c906108c
SS
974
975ran_out_of_registers_for_arguments:
976
7a78ae4e 977 saved_sp = read_sp ();
f6077098 978#ifndef ELF_OBJECT_FORMAT
7a78ae4e
ND
979 /* location for 8 parameters are always reserved. */
980 sp -= wordsize * 8;
f6077098 981
7a78ae4e
ND
982 /* another six words for back chain, TOC register, link register, etc. */
983 sp -= wordsize * 6;
f6077098 984
7a78ae4e
ND
985 /* stack pointer must be quadword aligned */
986 sp &= -16;
f6077098 987#endif
c906108c 988
c906108c
SS
989 /* if there are more arguments, allocate space for them in
990 the stack, then push them starting from the ninth one. */
991
c5aa993b
JM
992 if ((argno < nargs) || argbytes)
993 {
994 int space = 0, jj;
c906108c 995
c5aa993b
JM
996 if (argbytes)
997 {
998 space += ((len - argbytes + 3) & -4);
999 jj = argno + 1;
1000 }
1001 else
1002 jj = argno;
c906108c 1003
c5aa993b
JM
1004 for (; jj < nargs; ++jj)
1005 {
ea7c478f 1006 struct value *val = args[jj];
c5aa993b
JM
1007 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1008 }
c906108c 1009
c5aa993b 1010 /* add location required for the rest of the parameters */
f6077098 1011 space = (space + 15) & -16;
c5aa993b 1012 sp -= space;
c906108c 1013
c5aa993b
JM
1014 /* This is another instance we need to be concerned about securing our
1015 stack space. If we write anything underneath %sp (r1), we might conflict
1016 with the kernel who thinks he is free to use this area. So, update %sp
1017 first before doing anything else. */
c906108c 1018
c5aa993b 1019 write_register (SP_REGNUM, sp);
c906108c 1020
c5aa993b
JM
1021 /* if the last argument copied into the registers didn't fit there
1022 completely, push the rest of it into stack. */
c906108c 1023
c5aa993b
JM
1024 if (argbytes)
1025 {
1026 write_memory (sp + 24 + (ii * 4),
1027 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1028 len - argbytes);
1029 ++argno;
1030 ii += ((len - argbytes + 3) & -4) / 4;
1031 }
c906108c 1032
c5aa993b
JM
1033 /* push the rest of the arguments into stack. */
1034 for (; argno < nargs; ++argno)
1035 {
c906108c 1036
c5aa993b
JM
1037 arg = args[argno];
1038 type = check_typedef (VALUE_TYPE (arg));
1039 len = TYPE_LENGTH (type);
c906108c
SS
1040
1041
c5aa993b
JM
1042 /* float types should be passed in fpr's, as well as in the stack. */
1043 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1044 {
c906108c 1045
c5aa993b
JM
1046 if (len > 8)
1047 printf_unfiltered (
1048 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1049
c5aa993b
JM
1050 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1051 VALUE_CONTENTS (arg),
1052 len);
1053 ++f_argno;
1054 }
c906108c 1055
c5aa993b
JM
1056 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1057 ii += ((len + 3) & -4) / 4;
1058 }
c906108c 1059 }
c906108c
SS
1060 else
1061 /* Secure stack areas first, before doing anything else. */
1062 write_register (SP_REGNUM, sp);
1063
c906108c
SS
1064 /* set back chain properly */
1065 store_address (tmp_buffer, 4, saved_sp);
1066 write_memory (sp, tmp_buffer, 4);
1067
1068 target_store_registers (-1);
1069 return sp;
1070}
c906108c
SS
1071
1072/* Function: ppc_push_return_address (pc, sp)
1073 Set up the return address for the inferior function call. */
1074
7a78ae4e
ND
1075static CORE_ADDR
1076ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1077{
2188cbdd
EZ
1078 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1079 CALL_DUMMY_ADDRESS ());
c906108c
SS
1080 return sp;
1081}
1082
7a78ae4e
ND
1083/* Extract a function return value of type TYPE from raw register array
1084 REGBUF, and copy that return value into VALBUF in virtual format. */
c906108c 1085
7a78ae4e
ND
1086static void
1087rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1088{
1089 int offset = 0;
1090
c5aa993b
JM
1091 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1092 {
c906108c 1093
c5aa993b
JM
1094 double dd;
1095 float ff;
1096 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1097 We need to truncate the return value into float size (4 byte) if
1098 necessary. */
c906108c 1099
c5aa993b
JM
1100 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1101 memcpy (valbuf,
1102 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1103 TYPE_LENGTH (valtype));
1104 else
1105 { /* float */
1106 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1107 ff = (float) dd;
1108 memcpy (valbuf, &ff, sizeof (float));
1109 }
1110 }
1111 else
1112 {
1113 /* return value is copied starting from r3. */
1114 if (TARGET_BYTE_ORDER == BIG_ENDIAN
1115 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1116 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1117
1118 memcpy (valbuf,
1119 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1120 TYPE_LENGTH (valtype));
c906108c 1121 }
c906108c
SS
1122}
1123
7a78ae4e 1124/* Keep structure return address in this variable.
c906108c
SS
1125 FIXME: This is a horrid kludge which should not be allowed to continue
1126 living. This only allows a single nested call to a structure-returning
1127 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1128
7a78ae4e 1129static CORE_ADDR rs6000_struct_return_address;
c906108c 1130
977adac5
ND
1131/* Return whether handle_inferior_event() should proceed through code
1132 starting at PC in function NAME when stepping.
1133
1134 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1135 handle memory references that are too distant to fit in instructions
1136 generated by the compiler. For example, if 'foo' in the following
1137 instruction:
1138
1139 lwz r9,foo(r2)
1140
1141 is greater than 32767, the linker might replace the lwz with a branch to
1142 somewhere in @FIX1 that does the load in 2 instructions and then branches
1143 back to where execution should continue.
1144
1145 GDB should silently step over @FIX code, just like AIX dbx does.
1146 Unfortunately, the linker uses the "b" instruction for the branches,
1147 meaning that the link register doesn't get set. Therefore, GDB's usual
1148 step_over_function() mechanism won't work.
1149
1150 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1151 in handle_inferior_event() to skip past @FIX code. */
1152
1153int
1154rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1155{
1156 return name && !strncmp (name, "@FIX", 4);
1157}
1158
1159/* Skip code that the user doesn't want to see when stepping:
1160
1161 1. Indirect function calls use a piece of trampoline code to do context
1162 switching, i.e. to set the new TOC table. Skip such code if we are on
1163 its first instruction (as when we have single-stepped to here).
1164
1165 2. Skip shared library trampoline code (which is different from
c906108c 1166 indirect function call trampolines).
977adac5
ND
1167
1168 3. Skip bigtoc fixup code.
1169
c906108c 1170 Result is desired PC to step until, or NULL if we are not in
977adac5 1171 code that should be skipped. */
c906108c
SS
1172
1173CORE_ADDR
7a78ae4e 1174rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1175{
1176 register unsigned int ii, op;
977adac5 1177 int rel;
c906108c 1178 CORE_ADDR solib_target_pc;
977adac5 1179 struct minimal_symbol *msymbol;
c906108c 1180
c5aa993b
JM
1181 static unsigned trampoline_code[] =
1182 {
1183 0x800b0000, /* l r0,0x0(r11) */
1184 0x90410014, /* st r2,0x14(r1) */
1185 0x7c0903a6, /* mtctr r0 */
1186 0x804b0004, /* l r2,0x4(r11) */
1187 0x816b0008, /* l r11,0x8(r11) */
1188 0x4e800420, /* bctr */
1189 0x4e800020, /* br */
1190 0
c906108c
SS
1191 };
1192
977adac5
ND
1193 /* Check for bigtoc fixup code. */
1194 msymbol = lookup_minimal_symbol_by_pc (pc);
1195 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1196 {
1197 /* Double-check that the third instruction from PC is relative "b". */
1198 op = read_memory_integer (pc + 8, 4);
1199 if ((op & 0xfc000003) == 0x48000000)
1200 {
1201 /* Extract bits 6-29 as a signed 24-bit relative word address and
1202 add it to the containing PC. */
1203 rel = ((int)(op << 6) >> 6);
1204 return pc + 8 + rel;
1205 }
1206 }
1207
c906108c
SS
1208 /* If pc is in a shared library trampoline, return its target. */
1209 solib_target_pc = find_solib_trampoline_target (pc);
1210 if (solib_target_pc)
1211 return solib_target_pc;
1212
c5aa993b
JM
1213 for (ii = 0; trampoline_code[ii]; ++ii)
1214 {
1215 op = read_memory_integer (pc + (ii * 4), 4);
1216 if (op != trampoline_code[ii])
1217 return 0;
1218 }
1219 ii = read_register (11); /* r11 holds destination addr */
7a78ae4e 1220 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
c906108c
SS
1221 return pc;
1222}
1223
1224/* Determines whether the function FI has a frame on the stack or not. */
1225
9aa1e687 1226int
c877c8e6 1227rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1228{
1229 CORE_ADDR func_start;
1230 struct rs6000_framedata fdata;
1231
1232 /* Don't even think about framelessness except on the innermost frame
1233 or if the function was interrupted by a signal. */
1234 if (fi->next != NULL && !fi->next->signal_handler_caller)
1235 return 0;
c5aa993b 1236
c906108c
SS
1237 func_start = get_pc_function_start (fi->pc);
1238
1239 /* If we failed to find the start of the function, it is a mistake
1240 to inspect the instructions. */
1241
1242 if (!func_start)
1243 {
1244 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b
JM
1245 function pointer, normally causing an immediate core dump of the
1246 inferior. Mark function as frameless, as the inferior has no chance
1247 of setting up a stack frame. */
c906108c
SS
1248 if (fi->pc == 0)
1249 return 1;
1250 else
1251 return 0;
1252 }
1253
077276e8 1254 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1255 return fdata.frameless;
1256}
1257
1258/* Return the PC saved in a frame */
1259
9aa1e687 1260CORE_ADDR
c877c8e6 1261rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1262{
1263 CORE_ADDR func_start;
1264 struct rs6000_framedata fdata;
7a78ae4e 1265 int wordsize = TDEP->wordsize;
c906108c
SS
1266
1267 if (fi->signal_handler_caller)
7a78ae4e 1268 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
c906108c 1269
7a78ae4e
ND
1270 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1271 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
c906108c
SS
1272
1273 func_start = get_pc_function_start (fi->pc);
1274
1275 /* If we failed to find the start of the function, it is a mistake
1276 to inspect the instructions. */
1277 if (!func_start)
1278 return 0;
1279
077276e8 1280 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1281
1282 if (fdata.lr_offset == 0 && fi->next != NULL)
1283 {
1284 if (fi->next->signal_handler_caller)
7a78ae4e
ND
1285 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1286 wordsize);
c906108c 1287 else
7a78ae4e
ND
1288 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1289 wordsize);
c906108c
SS
1290 }
1291
1292 if (fdata.lr_offset == 0)
2188cbdd 1293 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1294
7a78ae4e 1295 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1296}
1297
1298/* If saved registers of frame FI are not known yet, read and cache them.
1299 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1300 in which case the framedata are read. */
1301
1302static void
7a78ae4e 1303frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1304{
c5aa993b 1305 CORE_ADDR frame_addr;
c906108c 1306 struct rs6000_framedata work_fdata;
7a78ae4e 1307 int wordsize = TDEP->wordsize;
c906108c
SS
1308
1309 if (fi->saved_regs)
1310 return;
c5aa993b 1311
c906108c
SS
1312 if (fdatap == NULL)
1313 {
1314 fdatap = &work_fdata;
077276e8 1315 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
c906108c
SS
1316 }
1317
1318 frame_saved_regs_zalloc (fi);
1319
1320 /* If there were any saved registers, figure out parent's stack
1321 pointer. */
1322 /* The following is true only if the frame doesn't have a call to
1323 alloca(), FIXME. */
1324
1325 if (fdatap->saved_fpr == 0 && fdatap->saved_gpr == 0
1326 && fdatap->lr_offset == 0 && fdatap->cr_offset == 0)
1327 frame_addr = 0;
1328 else if (fi->prev && fi->prev->frame)
1329 frame_addr = fi->prev->frame;
1330 else
7a78ae4e 1331 frame_addr = read_memory_addr (fi->frame, wordsize);
c5aa993b 1332
c906108c
SS
1333 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1334 All fpr's from saved_fpr to fp31 are saved. */
1335
1336 if (fdatap->saved_fpr >= 0)
1337 {
1338 int i;
7a78ae4e 1339 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1340 for (i = fdatap->saved_fpr; i < 32; i++)
1341 {
7a78ae4e
ND
1342 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1343 fpr_addr += 8;
c906108c
SS
1344 }
1345 }
1346
1347 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1348 All gpr's from saved_gpr to gpr31 are saved. */
1349
1350 if (fdatap->saved_gpr >= 0)
1351 {
1352 int i;
7a78ae4e 1353 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1354 for (i = fdatap->saved_gpr; i < 32; i++)
1355 {
7a78ae4e
ND
1356 fi->saved_regs[i] = gpr_addr;
1357 gpr_addr += wordsize;
c906108c
SS
1358 }
1359 }
1360
1361 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1362 the CR. */
1363 if (fdatap->cr_offset != 0)
2188cbdd
EZ
1364 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_cr_regnum] =
1365 frame_addr + fdatap->cr_offset;
c906108c
SS
1366
1367 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1368 the LR. */
1369 if (fdatap->lr_offset != 0)
2188cbdd
EZ
1370 fi->saved_regs[gdbarch_tdep (current_gdbarch)->ppc_lr_regnum] =
1371 frame_addr + fdatap->lr_offset;
c906108c
SS
1372}
1373
1374/* Return the address of a frame. This is the inital %sp value when the frame
1375 was first allocated. For functions calling alloca(), it might be saved in
1376 an alloca register. */
1377
1378static CORE_ADDR
7a78ae4e 1379frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1380{
1381 CORE_ADDR tmpaddr;
1382 struct rs6000_framedata fdata;
1383 struct frame_info *callee_fi;
1384
1385 /* if the initial stack pointer (frame address) of this frame is known,
1386 just return it. */
1387
1388 if (fi->extra_info->initial_sp)
1389 return fi->extra_info->initial_sp;
1390
1391 /* find out if this function is using an alloca register.. */
1392
077276e8 1393 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
c906108c
SS
1394
1395 /* if saved registers of this frame are not known yet, read and cache them. */
1396
1397 if (!fi->saved_regs)
1398 frame_get_saved_regs (fi, &fdata);
1399
1400 /* If no alloca register used, then fi->frame is the value of the %sp for
1401 this frame, and it is good enough. */
1402
1403 if (fdata.alloca_reg < 0)
1404 {
1405 fi->extra_info->initial_sp = fi->frame;
1406 return fi->extra_info->initial_sp;
1407 }
1408
1409 /* This function has an alloca register. If this is the top-most frame
1410 (with the lowest address), the value in alloca register is good. */
1411
1412 if (!fi->next)
c5aa993b 1413 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
c906108c
SS
1414
1415 /* Otherwise, this is a caller frame. Callee has usually already saved
1416 registers, but there are exceptions (such as when the callee
1417 has no parameters). Find the address in which caller's alloca
1418 register is saved. */
1419
c5aa993b
JM
1420 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1421 {
c906108c 1422
c5aa993b
JM
1423 if (!callee_fi->saved_regs)
1424 frame_get_saved_regs (callee_fi, NULL);
c906108c 1425
c5aa993b 1426 /* this is the address in which alloca register is saved. */
c906108c 1427
c5aa993b
JM
1428 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1429 if (tmpaddr)
1430 {
7a78ae4e
ND
1431 fi->extra_info->initial_sp =
1432 read_memory_addr (tmpaddr, TDEP->wordsize);
c5aa993b
JM
1433 return fi->extra_info->initial_sp;
1434 }
c906108c 1435
c5aa993b
JM
1436 /* Go look into deeper levels of the frame chain to see if any one of
1437 the callees has saved alloca register. */
1438 }
c906108c
SS
1439
1440 /* If alloca register was not saved, by the callee (or any of its callees)
1441 then the value in the register is still good. */
1442
1443 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1444 return fi->extra_info->initial_sp;
1445}
1446
7a78ae4e
ND
1447/* Describe the pointer in each stack frame to the previous stack frame
1448 (its caller). */
1449
1450/* FRAME_CHAIN takes a frame's nominal address
1451 and produces the frame's chain-pointer. */
1452
1453/* In the case of the RS/6000, the frame's nominal address
1454 is the address of a 4-byte word containing the calling frame's address. */
1455
9aa1e687 1456CORE_ADDR
7a78ae4e 1457rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1458{
7a78ae4e
ND
1459 CORE_ADDR fp, fpp, lr;
1460 int wordsize = TDEP->wordsize;
c906108c 1461
7a78ae4e
ND
1462 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1463 return thisframe->frame; /* dummy frame same as caller's frame */
c906108c 1464
c5aa993b 1465 if (inside_entry_file (thisframe->pc) ||
c906108c
SS
1466 thisframe->pc == entry_point_address ())
1467 return 0;
1468
1469 if (thisframe->signal_handler_caller)
7a78ae4e
ND
1470 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1471 wordsize);
c906108c
SS
1472 else if (thisframe->next != NULL
1473 && thisframe->next->signal_handler_caller
c877c8e6 1474 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1475 /* A frameless function interrupted by a signal did not change the
1476 frame pointer. */
1477 fp = FRAME_FP (thisframe);
1478 else
7a78ae4e 1479 fp = read_memory_addr ((thisframe)->frame, wordsize);
c906108c 1480
2188cbdd 1481 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e
ND
1482 if (lr == entry_point_address ())
1483 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1484 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1485 return fpp;
1486
1487 return fp;
1488}
1489
1490/* Return the size of register REG when words are WORDSIZE bytes long. If REG
1491 isn't available with that word size, return 0. */
1492
1493static int
1494regsize (const struct reg *reg, int wordsize)
1495{
1496 return wordsize == 8 ? reg->sz64 : reg->sz32;
1497}
1498
1499/* Return the name of register number N, or null if no such register exists
1500 in the current architecture. */
1501
1502static char *
1503rs6000_register_name (int n)
1504{
1505 struct gdbarch_tdep *tdep = TDEP;
1506 const struct reg *reg = tdep->regs + n;
1507
1508 if (!regsize (reg, tdep->wordsize))
1509 return NULL;
1510 return reg->name;
1511}
1512
1513/* Index within `registers' of the first byte of the space for
1514 register N. */
1515
1516static int
1517rs6000_register_byte (int n)
1518{
1519 return TDEP->regoff[n];
1520}
1521
1522/* Return the number of bytes of storage in the actual machine representation
1523 for register N if that register is available, else return 0. */
1524
1525static int
1526rs6000_register_raw_size (int n)
1527{
1528 struct gdbarch_tdep *tdep = TDEP;
1529 const struct reg *reg = tdep->regs + n;
1530 return regsize (reg, tdep->wordsize);
1531}
1532
7a78ae4e
ND
1533/* Return the GDB type object for the "standard" data type
1534 of data in register N. */
1535
1536static struct type *
fba45db2 1537rs6000_register_virtual_type (int n)
7a78ae4e
ND
1538{
1539 struct gdbarch_tdep *tdep = TDEP;
1540 const struct reg *reg = tdep->regs + n;
1541
1fcc0bb8
EZ
1542 if (reg->fpr)
1543 return builtin_type_double;
1544 else
1545 {
1546 int size = regsize (reg, tdep->wordsize);
1547 switch (size)
1548 {
1549 case 8:
1550 return builtin_type_int64;
1551 break;
1552 case 16:
1553 return builtin_type_int128;
1554 break;
1555 default:
1556 return builtin_type_int32;
1557 break;
1558 }
1559 }
7a78ae4e
ND
1560}
1561
1562/* For the PowerPC, it appears that the debug info marks float parameters as
1563 floats regardless of whether the function is prototyped, but the actual
1564 values are always passed in as doubles. Tell gdb to always assume that
1565 floats are passed as doubles and then converted in the callee. */
1566
1567static int
1568rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1569{
1570 return 1;
1571}
1572
1573/* Return whether register N requires conversion when moving from raw format
1574 to virtual format.
1575
1576 The register format for RS/6000 floating point registers is always
1577 double, we need a conversion if the memory format is float. */
1578
1579static int
1580rs6000_register_convertible (int n)
1581{
1582 const struct reg *reg = TDEP->regs + n;
1583 return reg->fpr;
1584}
1585
1586/* Convert data from raw format for register N in buffer FROM
1587 to virtual format with type TYPE in buffer TO. */
1588
1589static void
1590rs6000_register_convert_to_virtual (int n, struct type *type,
1591 char *from, char *to)
1592{
1593 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1594 {
7a78ae4e
ND
1595 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1596 store_floating (to, TYPE_LENGTH (type), val);
1597 }
1598 else
1599 memcpy (to, from, REGISTER_RAW_SIZE (n));
1600}
1601
1602/* Convert data from virtual format with type TYPE in buffer FROM
1603 to raw format for register N in buffer TO. */
7a292a7a 1604
7a78ae4e
ND
1605static void
1606rs6000_register_convert_to_raw (struct type *type, int n,
1607 char *from, char *to)
1608{
1609 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1610 {
1611 double val = extract_floating (from, TYPE_LENGTH (type));
1612 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1613 }
7a78ae4e
ND
1614 else
1615 memcpy (to, from, REGISTER_RAW_SIZE (n));
1616}
c906108c 1617
1fcc0bb8
EZ
1618int
1619altivec_register_p (int regno)
1620{
1621 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1622 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1623 return 0;
1624 else
1625 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1626}
1627
1628static void
1629rs6000_do_altivec_registers (int regnum)
1630{
1631 int i;
1632 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1633 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1634 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1635
1636 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1637 {
1638 /* If we want just one reg, check that this is the one we want. */
1639 if (regnum != -1 && i != regnum)
1640 continue;
1641
1642 /* If the register name is empty, it is undefined for this
1643 processor, so don't display anything. */
1644 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1645 continue;
1646
1647 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1648 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1649
1650 /* Get the data in raw format. */
1651 if (read_relative_register_raw_bytes (i, raw_buffer))
1652 {
1653 printf_filtered ("*value not available*\n");
1654 continue;
1655 }
1656
1657 /* Convert raw data to virtual format if necessary. */
1658 if (REGISTER_CONVERTIBLE (i))
1659 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1660 raw_buffer, virtual_buffer);
1661 else
1662 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1663
1664 /* Print as integer in hex only. */
1665 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1666 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1667 printf_filtered ("\n");
1668 }
1669}
1670
1671static void
1672rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1673{
1674 int regnum, numregs;
1675 register char *end;
1676
1677 if (!target_has_registers)
1678 error ("The program has no registers now.");
1679 if (selected_frame == NULL)
1680 error ("No selected frame.");
1681
1682 if (!addr_exp)
1683 {
1684 rs6000_do_altivec_registers (-1);
1685 return;
1686 }
1687
1688 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1689 do
1690 {
1691 if (addr_exp[0] == '$')
1692 addr_exp++;
1693 end = addr_exp;
1694 while (*end != '\0' && *end != ' ' && *end != '\t')
1695 ++end;
1696
1697 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1698 if (regnum < 0)
1699 {
1700 regnum = numregs;
1701 if (*addr_exp >= '0' && *addr_exp <= '9')
1702 regnum = atoi (addr_exp); /* Take a number */
1703 if (regnum >= numregs) /* Bad name, or bad number */
1704 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1705 }
1706
1707 rs6000_do_altivec_registers (regnum);
1708
1709 addr_exp = end;
1710 while (*addr_exp == ' ' || *addr_exp == '\t')
1711 ++addr_exp;
1712 }
1713 while (*addr_exp != '\0');
1714}
1715
1716static void
1717rs6000_do_registers_info (int regnum, int fpregs)
1718{
1719 register int i;
1720 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1721 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1722 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1723
1724 for (i = 0; i < numregs; i++)
1725 {
1726 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1727 if (regnum == -1)
1728 {
1729 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1730 || (altivec_register_p (i) && !fpregs))
1731 continue;
1732 }
1733 else
1734 {
1735 if (i != regnum)
1736 continue;
1737 }
1738
1739 /* If the register name is empty, it is undefined for this
1740 processor, so don't display anything. */
1741 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1742 continue;
1743
1744 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1745 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1746
1747 /* Get the data in raw format. */
1748 if (read_relative_register_raw_bytes (i, raw_buffer))
1749 {
1750 printf_filtered ("*value not available*\n");
1751 continue;
1752 }
1753
1754 /* Convert raw data to virtual format if necessary. */
1755 if (REGISTER_CONVERTIBLE (i))
1756 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1757 raw_buffer, virtual_buffer);
1758 else
1759 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1760
1761 /* If virtual format is floating, print it that way, and in raw hex. */
1762 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1763 {
1764 register int j;
1765
1766#ifdef INVALID_FLOAT
1767 if (INVALID_FLOAT (virtual_buffer, REGISTER_VIRTUAL_SIZE (i)))
1768 printf_filtered ("<invalid float>");
1769 else
1770#endif
1771 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1772 gdb_stdout, 0, 1, 0, Val_pretty_default);
1773
1774 printf_filtered ("\t(raw 0x");
1775 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1776 {
1777 register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
1778 : REGISTER_RAW_SIZE (i) - 1 - j;
1779 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1780 }
1781 printf_filtered (")");
1782 }
1783 else
1784 {
1785 /* Print as integer in hex and in decimal. */
1786 if (!altivec_register_p (i))
1787 {
1788 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1789 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1790 printf_filtered ("\t");
1791 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1792 gdb_stdout, 0, 1, 0, Val_pretty_default);
1793 }
1794 else
1795 /* Print as integer in hex only. */
1796 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1797 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1798 }
1799 printf_filtered ("\n");
1800 }
1801}
1802
2188cbdd
EZ
1803/* Convert a dbx stab register number (from `r' declaration) to a gdb
1804 REGNUM. */
1805static int
1806rs6000_stab_reg_to_regnum (int num)
1807{
1808 int regnum;
1809 switch (num)
1810 {
1811 case 64:
1812 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1813 break;
1814 case 65:
1815 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1816 break;
1817 case 66:
1818 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1819 break;
1820 case 76:
1821 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1822 break;
1823 default:
1824 regnum = num;
1825 break;
1826 }
1827 return regnum;
1828}
1829
7a78ae4e
ND
1830/* Store the address of the place in which to copy the structure the
1831 subroutine will return. This is called from call_function.
1832
1833 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1834 In function return, callee is not responsible of returning this address
1835 back. Since gdb needs to find it, we will store in a designated variable
1836 `rs6000_struct_return_address'. */
1837
1838static void
1839rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1840{
1841 write_register (3, addr);
1842 rs6000_struct_return_address = addr;
1843}
1844
1845/* Write into appropriate registers a function return value
1846 of type TYPE, given in virtual format. */
1847
1848static void
1849rs6000_store_return_value (struct type *type, char *valbuf)
1850{
1851 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1852
1853 /* Floating point values are returned starting from FPR1 and up.
1854 Say a double_double_double type could be returned in
1855 FPR1/FPR2/FPR3 triple. */
1856
1857 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1858 TYPE_LENGTH (type));
1859 else
1860 /* Everything else is returned in GPR3 and up. */
2188cbdd
EZ
1861 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1862 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
1863}
1864
1865/* Extract from an array REGBUF containing the (raw) register state
1866 the address in which a function should return its structure value,
1867 as a CORE_ADDR (or an expression that can be used as one). */
1868
1869static CORE_ADDR
1870rs6000_extract_struct_value_address (char *regbuf)
1871{
1872 return rs6000_struct_return_address;
1873}
1874
1875/* Return whether PC is in a dummy function call.
1876
1877 FIXME: This just checks for the end of the stack, which is broken
1878 for things like stepping through gcc nested function stubs. */
1879
1880static int
1881rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1882{
1883 return sp < pc && pc < fp;
1884}
1885
1886/* Hook called when a new child process is started. */
1887
1888void
1889rs6000_create_inferior (int pid)
1890{
1891 if (rs6000_set_host_arch_hook)
1892 rs6000_set_host_arch_hook (pid);
c906108c
SS
1893}
1894\f
7a78ae4e
ND
1895/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1896
1897 Usually a function pointer's representation is simply the address
1898 of the function. On the RS/6000 however, a function pointer is
1899 represented by a pointer to a TOC entry. This TOC entry contains
1900 three words, the first word is the address of the function, the
1901 second word is the TOC pointer (r2), and the third word is the
1902 static chain value. Throughout GDB it is currently assumed that a
1903 function pointer contains the address of the function, which is not
1904 easy to fix. In addition, the conversion of a function address to
1905 a function pointer would require allocation of a TOC entry in the
1906 inferior's memory space, with all its drawbacks. To be able to
1907 call C++ virtual methods in the inferior (which are called via
f517ea4e 1908 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
1909 function address from a function pointer. */
1910
f517ea4e
PS
1911/* Return real function address if ADDR (a function pointer) is in the data
1912 space and is therefore a special function pointer. */
c906108c 1913
7a78ae4e
ND
1914CORE_ADDR
1915rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
1916{
1917 struct obj_section *s;
1918
1919 s = find_pc_section (addr);
1920 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 1921 return addr;
c906108c 1922
7a78ae4e
ND
1923 /* ADDR is in the data space, so it's a special function pointer. */
1924 return read_memory_addr (addr, TDEP->wordsize);
c906108c 1925}
c906108c 1926\f
c5aa993b 1927
7a78ae4e 1928/* Handling the various POWER/PowerPC variants. */
c906108c
SS
1929
1930
7a78ae4e
ND
1931/* The arrays here called registers_MUMBLE hold information about available
1932 registers.
c906108c
SS
1933
1934 For each family of PPC variants, I've tried to isolate out the
1935 common registers and put them up front, so that as long as you get
1936 the general family right, GDB will correctly identify the registers
1937 common to that family. The common register sets are:
1938
1939 For the 60x family: hid0 hid1 iabr dabr pir
1940
1941 For the 505 and 860 family: eie eid nri
1942
1943 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
1944 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1945 pbu1 pbl2 pbu2
c906108c
SS
1946
1947 Most of these register groups aren't anything formal. I arrived at
1948 them by looking at the registers that occurred in more than one
7a78ae4e
ND
1949 processor. */
1950
1951/* Convenience macros for populating register arrays. */
1952
1953/* Within another macro, convert S to a string. */
1954
1955#define STR(s) #s
1956
1957/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
1958 and 64 bits on 64-bit systems. */
1959#define R(name) { STR(name), 4, 8, 0 }
1960
1961/* Return a struct reg defining register NAME that's 32 bits on all
1962 systems. */
1963#define R4(name) { STR(name), 4, 4, 0 }
1964
1965/* Return a struct reg defining register NAME that's 64 bits on all
1966 systems. */
1967#define R8(name) { STR(name), 8, 8, 0 }
1968
1fcc0bb8
EZ
1969/* Return a struct reg defining register NAME that's 128 bits on all
1970 systems. */
1971#define R16(name) { STR(name), 16, 16, 0 }
1972
7a78ae4e
ND
1973/* Return a struct reg defining floating-point register NAME. */
1974#define F(name) { STR(name), 8, 8, 1 }
1975
1976/* Return a struct reg defining register NAME that's 32 bits on 32-bit
1977 systems and that doesn't exist on 64-bit systems. */
1978#define R32(name) { STR(name), 4, 0, 0 }
1979
1980/* Return a struct reg defining register NAME that's 64 bits on 64-bit
1981 systems and that doesn't exist on 32-bit systems. */
1982#define R64(name) { STR(name), 0, 8, 0 }
1983
1984/* Return a struct reg placeholder for a register that doesn't exist. */
1985#define R0 { 0, 0, 0, 0 }
1986
1987/* UISA registers common across all architectures, including POWER. */
1988
1989#define COMMON_UISA_REGS \
1990 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1991 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1992 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1993 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1994 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1995 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1996 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1997 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1998 /* 64 */ R(pc), R(ps)
1999
2000/* UISA-level SPRs for PowerPC. */
2001#define PPC_UISA_SPRS \
2002 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2003
2004/* Segment registers, for PowerPC. */
2005#define PPC_SEGMENT_REGS \
2006 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2007 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2008 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2009 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2010
2011/* OEA SPRs for PowerPC. */
2012#define PPC_OEA_SPRS \
2013 /* 87 */ R4(pvr), \
2014 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2015 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2016 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2017 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2018 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2019 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2020 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2021 /* 116 */ R4(dec), R(dabr), R4(ear)
2022
1fcc0bb8
EZ
2023/* AltiVec registers */
2024#define PPC_ALTIVEC_REGS \
2025 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2026 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2027 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2028 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2029 /*151*/R4(vscr), R4(vrsave)
2030
7a78ae4e
ND
2031/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2032 user-level SPR's. */
2033static const struct reg registers_power[] =
c906108c 2034{
7a78ae4e
ND
2035 COMMON_UISA_REGS,
2036 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
c906108c
SS
2037};
2038
7a78ae4e
ND
2039/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2040 view of the PowerPC. */
2041static const struct reg registers_powerpc[] =
c906108c 2042{
7a78ae4e 2043 COMMON_UISA_REGS,
1fcc0bb8
EZ
2044 PPC_UISA_SPRS,
2045 PPC_ALTIVEC_REGS
c906108c
SS
2046};
2047
7a78ae4e
ND
2048/* IBM PowerPC 403. */
2049static const struct reg registers_403[] =
c5aa993b 2050{
7a78ae4e
ND
2051 COMMON_UISA_REGS,
2052 PPC_UISA_SPRS,
2053 PPC_SEGMENT_REGS,
2054 PPC_OEA_SPRS,
2055 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2056 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2057 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2058 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2059 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2060 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2061};
2062
7a78ae4e
ND
2063/* IBM PowerPC 403GC. */
2064static const struct reg registers_403GC[] =
c5aa993b 2065{
7a78ae4e
ND
2066 COMMON_UISA_REGS,
2067 PPC_UISA_SPRS,
2068 PPC_SEGMENT_REGS,
2069 PPC_OEA_SPRS,
2070 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2071 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2072 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2073 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2074 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2075 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2076 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2077 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2078};
2079
7a78ae4e
ND
2080/* Motorola PowerPC 505. */
2081static const struct reg registers_505[] =
c5aa993b 2082{
7a78ae4e
ND
2083 COMMON_UISA_REGS,
2084 PPC_UISA_SPRS,
2085 PPC_SEGMENT_REGS,
2086 PPC_OEA_SPRS,
2087 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2088};
2089
7a78ae4e
ND
2090/* Motorola PowerPC 860 or 850. */
2091static const struct reg registers_860[] =
c5aa993b 2092{
7a78ae4e
ND
2093 COMMON_UISA_REGS,
2094 PPC_UISA_SPRS,
2095 PPC_SEGMENT_REGS,
2096 PPC_OEA_SPRS,
2097 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2098 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2099 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2100 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2101 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2102 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2103 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2104 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2105 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2106 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2107 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2108 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2109};
2110
7a78ae4e
ND
2111/* Motorola PowerPC 601. Note that the 601 has different register numbers
2112 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2113 register is the stub's problem. */
7a78ae4e 2114static const struct reg registers_601[] =
c5aa993b 2115{
7a78ae4e
ND
2116 COMMON_UISA_REGS,
2117 PPC_UISA_SPRS,
2118 PPC_SEGMENT_REGS,
2119 PPC_OEA_SPRS,
2120 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2121 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2122};
2123
7a78ae4e
ND
2124/* Motorola PowerPC 602. */
2125static const struct reg registers_602[] =
c5aa993b 2126{
7a78ae4e
ND
2127 COMMON_UISA_REGS,
2128 PPC_UISA_SPRS,
2129 PPC_SEGMENT_REGS,
2130 PPC_OEA_SPRS,
2131 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2132 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2133 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2134};
2135
7a78ae4e
ND
2136/* Motorola/IBM PowerPC 603 or 603e. */
2137static const struct reg registers_603[] =
c5aa993b 2138{
7a78ae4e
ND
2139 COMMON_UISA_REGS,
2140 PPC_UISA_SPRS,
2141 PPC_SEGMENT_REGS,
2142 PPC_OEA_SPRS,
2143 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2144 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2145 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2146};
2147
7a78ae4e
ND
2148/* Motorola PowerPC 604 or 604e. */
2149static const struct reg registers_604[] =
c5aa993b 2150{
7a78ae4e
ND
2151 COMMON_UISA_REGS,
2152 PPC_UISA_SPRS,
2153 PPC_SEGMENT_REGS,
2154 PPC_OEA_SPRS,
2155 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2156 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2157 /* 127 */ R(sia), R(sda)
c906108c
SS
2158};
2159
7a78ae4e
ND
2160/* Motorola/IBM PowerPC 750 or 740. */
2161static const struct reg registers_750[] =
c5aa993b 2162{
7a78ae4e
ND
2163 COMMON_UISA_REGS,
2164 PPC_UISA_SPRS,
2165 PPC_SEGMENT_REGS,
2166 PPC_OEA_SPRS,
2167 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2168 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2169 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2170 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2171 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2172 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2173};
2174
2175
1fcc0bb8
EZ
2176/* Motorola PowerPC 7400. */
2177static const struct reg registers_7400[] =
2178{
2179 /* gpr0-gpr31, fpr0-fpr31 */
2180 COMMON_UISA_REGS,
2181 /* ctr, xre, lr, cr */
2182 PPC_UISA_SPRS,
2183 /* sr0-sr15 */
2184 PPC_SEGMENT_REGS,
2185 PPC_OEA_SPRS,
2186 /* vr0-vr31, vrsave, vscr */
2187 PPC_ALTIVEC_REGS
2188 /* FIXME? Add more registers? */
2189};
2190
c906108c 2191/* Information about a particular processor variant. */
7a78ae4e 2192
c906108c 2193struct variant
c5aa993b
JM
2194 {
2195 /* Name of this variant. */
2196 char *name;
c906108c 2197
c5aa993b
JM
2198 /* English description of the variant. */
2199 char *description;
c906108c 2200
7a78ae4e
ND
2201 /* bfd_arch_info.arch corresponding to variant. */
2202 enum bfd_architecture arch;
2203
2204 /* bfd_arch_info.mach corresponding to variant. */
2205 unsigned long mach;
2206
c5aa993b
JM
2207 /* Table of register names; registers[R] is the name of the register
2208 number R. */
7a78ae4e
ND
2209 int nregs;
2210 const struct reg *regs;
c5aa993b 2211 };
c906108c
SS
2212
2213#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2214
2215
2216/* Information in this table comes from the following web sites:
2217 IBM: http://www.chips.ibm.com:80/products/embedded/
2218 Motorola: http://www.mot.com/SPS/PowerPC/
2219
2220 I'm sure I've got some of the variant descriptions not quite right.
2221 Please report any inaccuracies you find to GDB's maintainer.
2222
2223 If you add entries to this table, please be sure to allow the new
2224 value as an argument to the --with-cpu flag, in configure.in. */
2225
7a78ae4e 2226static const struct variant variants[] =
c906108c 2227{
7a78ae4e
ND
2228 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2229 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2230 {"power", "POWER user-level", bfd_arch_rs6000,
2231 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2232 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2233 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2234 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2235 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2236 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2237 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2238 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2239 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2240 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2241 604, num_registers (registers_604), registers_604},
2242 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2243 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2244 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2245 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2246 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2247 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2248 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2249 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
1fcc0bb8
EZ
2250 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2251 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
7a78ae4e
ND
2252
2253 /* FIXME: I haven't checked the register sets of the following. */
2254 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2255 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2256 {"a35", "PowerPC A35", bfd_arch_powerpc,
2257 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2258 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2259 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2260 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2261 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2262 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2263 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2264
c5aa993b 2265 {0, 0, 0, 0}
c906108c
SS
2266};
2267
7a78ae4e 2268#undef num_registers
c906108c 2269
7a78ae4e
ND
2270/* Look up the variant named NAME in the `variants' table. Return a
2271 pointer to the struct variant, or null if we couldn't find it. */
c906108c 2272
7a78ae4e
ND
2273static const struct variant *
2274find_variant_by_name (char *name)
c906108c 2275{
7a78ae4e 2276 const struct variant *v;
c906108c 2277
7a78ae4e
ND
2278 for (v = variants; v->name; v++)
2279 if (!strcmp (name, v->name))
2280 return v;
c906108c 2281
7a78ae4e 2282 return NULL;
c906108c
SS
2283}
2284
7a78ae4e
ND
2285/* Return the variant corresponding to architecture ARCH and machine number
2286 MACH. If no such variant exists, return null. */
c906108c 2287
7a78ae4e
ND
2288static const struct variant *
2289find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2290{
7a78ae4e 2291 const struct variant *v;
c5aa993b 2292
7a78ae4e
ND
2293 for (v = variants; v->name; v++)
2294 if (arch == v->arch && mach == v->mach)
2295 return v;
c906108c 2296
7a78ae4e 2297 return NULL;
c906108c
SS
2298}
2299
9aa1e687
KB
2300
2301
2302\f
2303static void
2304process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2305{
2306 int *os_ident_ptr = obj;
2307 const char *name;
2308 unsigned int sectsize;
2309
2310 name = bfd_get_section_name (abfd, sect);
2311 sectsize = bfd_section_size (abfd, sect);
2312 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2313 {
2314 unsigned int name_length, data_length, note_type;
2315 char *note = alloca (sectsize);
2316
2317 bfd_get_section_contents (abfd, sect, note,
2318 (file_ptr) 0, (bfd_size_type) sectsize);
2319
2320 name_length = bfd_h_get_32 (abfd, note);
2321 data_length = bfd_h_get_32 (abfd, note + 4);
2322 note_type = bfd_h_get_32 (abfd, note + 8);
2323
2324 if (name_length == 4 && data_length == 16 && note_type == 1
2325 && strcmp (note + 12, "GNU") == 0)
2326 {
2327 int os_number = bfd_h_get_32 (abfd, note + 16);
2328
2329 /* The case numbers are from abi-tags in glibc */
2330 switch (os_number)
2331 {
2332 case 0 :
2333 *os_ident_ptr = ELFOSABI_LINUX;
2334 break;
2335 case 1 :
2336 *os_ident_ptr = ELFOSABI_HURD;
2337 break;
2338 case 2 :
2339 *os_ident_ptr = ELFOSABI_SOLARIS;
2340 break;
2341 default :
8e65ff28
AC
2342 internal_error (__FILE__, __LINE__,
2343 "process_note_abi_sections: unknown OS number %d",
2344 os_number);
9aa1e687
KB
2345 break;
2346 }
2347 }
2348 }
2349}
2350
2351/* Return one of the ELFOSABI_ constants for BFDs representing ELF
2352 executables. If it's not an ELF executable or if the OS/ABI couldn't
2353 be determined, simply return -1. */
2354
2355static int
2356get_elfosabi (bfd *abfd)
2357{
2358 int elfosabi = -1;
2359
2360 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2361 {
2362 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2363
2364 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2365 that we're on a SYSV system. However, GNU/Linux uses a note section
2366 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2367 have to check the note sections too. */
2368 if (elfosabi == 0)
2369 {
2370 bfd_map_over_sections (abfd,
2371 process_note_abi_tag_sections,
2372 &elfosabi);
2373 }
2374 }
2375
2376 return elfosabi;
2377}
2378
7a78ae4e 2379\f
c906108c 2380
7a78ae4e
ND
2381/* Initialize the current architecture based on INFO. If possible, re-use an
2382 architecture from ARCHES, which is a list of architectures already created
2383 during this debugging session.
c906108c 2384
7a78ae4e
ND
2385 Called e.g. at program startup, when reading a core file, and when reading
2386 a binary file. */
c906108c 2387
7a78ae4e
ND
2388static struct gdbarch *
2389rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2390{
2391 struct gdbarch *gdbarch;
2392 struct gdbarch_tdep *tdep;
9aa1e687 2393 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2394 struct reg *regs;
2395 const struct variant *v;
2396 enum bfd_architecture arch;
2397 unsigned long mach;
2398 bfd abfd;
9aa1e687 2399 int osabi, sysv_abi;
7a78ae4e 2400
9aa1e687 2401 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2402 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2403
9aa1e687
KB
2404 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2405 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2406
2407 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2408
2409 osabi = get_elfosabi (info.abfd);
2410
e712c1cf
AC
2411 /* Check word size. If INFO is from a binary file, infer it from
2412 that, else choose a likely default. */
9aa1e687 2413 if (from_xcoff_exec)
c906108c 2414 {
7a78ae4e
ND
2415 if (xcoff_data (info.abfd)->xcoff64)
2416 wordsize = 8;
2417 else
2418 wordsize = 4;
c906108c 2419 }
9aa1e687
KB
2420 else if (from_elf_exec)
2421 {
2422 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2423 wordsize = 8;
2424 else
2425 wordsize = 4;
2426 }
c906108c 2427 else
7a78ae4e 2428 {
e712c1cf 2429 wordsize = 4;
7a78ae4e 2430 }
c906108c 2431
7a78ae4e
ND
2432 /* Find a candidate among extant architectures. */
2433 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2434 arches != NULL;
2435 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2436 {
2437 /* Word size in the various PowerPC bfd_arch_info structs isn't
2438 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2439 separate word size check. */
2440 tdep = gdbarch_tdep (arches->gdbarch);
9aa1e687 2441 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
7a78ae4e
ND
2442 return arches->gdbarch;
2443 }
c906108c 2444
7a78ae4e
ND
2445 /* None found, create a new architecture from INFO, whose bfd_arch_info
2446 validity depends on the source:
2447 - executable useless
2448 - rs6000_host_arch() good
2449 - core file good
2450 - "set arch" trust blindly
2451 - GDB startup useless but harmless */
c906108c 2452
9aa1e687 2453 if (!from_xcoff_exec)
c906108c 2454 {
b732d07d 2455 arch = info.bfd_arch_info->arch;
7a78ae4e 2456 mach = info.bfd_arch_info->mach;
c906108c 2457 }
7a78ae4e 2458 else
c906108c 2459 {
7a78ae4e
ND
2460 arch = bfd_arch_powerpc;
2461 mach = 0;
2462 bfd_default_set_arch_mach (&abfd, arch, mach);
2463 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2464 }
2465 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2466 tdep->wordsize = wordsize;
9aa1e687 2467 tdep->osabi = osabi;
7a78ae4e
ND
2468 gdbarch = gdbarch_alloc (&info, tdep);
2469 power = arch == bfd_arch_rs6000;
2470
2471 /* Select instruction printer. */
2472 tm_print_insn = arch == power ? print_insn_rs6000 :
2473 info.byte_order == BIG_ENDIAN ? print_insn_big_powerpc :
2474 print_insn_little_powerpc;
2475
2476 /* Choose variant. */
2477 v = find_variant_by_arch (arch, mach);
2478 if (!v)
2479 v = find_variant_by_name (power ? "power" : "powerpc");
2480 tdep->regs = v->regs;
2481
2188cbdd
EZ
2482 tdep->ppc_gp0_regnum = 0;
2483 tdep->ppc_gplast_regnum = 31;
2484 tdep->ppc_toc_regnum = 2;
2485 tdep->ppc_ps_regnum = 65;
2486 tdep->ppc_cr_regnum = 66;
2487 tdep->ppc_lr_regnum = 67;
2488 tdep->ppc_ctr_regnum = 68;
2489 tdep->ppc_xer_regnum = 69;
2490 if (v->mach == bfd_mach_ppc_601)
2491 tdep->ppc_mq_regnum = 124;
2492 else
2493 tdep->ppc_mq_regnum = 70;
2494
1fcc0bb8
EZ
2495 if (v->arch == bfd_arch_powerpc)
2496 switch (v->mach)
2497 {
2498 case bfd_mach_ppc:
2499 tdep->ppc_vr0_regnum = 71;
2500 tdep->ppc_vrsave_regnum = 104;
2501 break;
2502 case bfd_mach_ppc_7400:
2503 tdep->ppc_vr0_regnum = 119;
2504 tdep->ppc_vrsave_regnum = 153;
2505 break;
2506 default:
2507 tdep->ppc_vr0_regnum = -1;
2508 tdep->ppc_vrsave_regnum = -1;
2509 break;
2510 }
2511
7a78ae4e
ND
2512 /* Calculate byte offsets in raw register array. */
2513 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2514 for (i = off = 0; i < v->nregs; i++)
2515 {
2516 tdep->regoff[i] = off;
2517 off += regsize (v->regs + i, wordsize);
c906108c
SS
2518 }
2519
7a78ae4e
ND
2520 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2521 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2522 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
2523 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
2524 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2525 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2526
2527 set_gdbarch_num_regs (gdbarch, v->nregs);
2528 set_gdbarch_sp_regnum (gdbarch, 1);
2529 set_gdbarch_fp_regnum (gdbarch, 1);
2530 set_gdbarch_pc_regnum (gdbarch, 64);
2531 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2532 set_gdbarch_register_size (gdbarch, wordsize);
2533 set_gdbarch_register_bytes (gdbarch, off);
2534 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2535 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2536 set_gdbarch_max_register_raw_size (gdbarch, 8);
0e7c5946 2537 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
7a78ae4e
ND
2538 set_gdbarch_max_register_virtual_size (gdbarch, 8);
2539 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
1fcc0bb8 2540 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
7a78ae4e
ND
2541
2542 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2543 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2544 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2545 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2546 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2547 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2548 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2549 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2550 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e
ND
2551
2552 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2553 set_gdbarch_call_dummy_length (gdbarch, 0);
2554 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2555 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2556 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2557 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2558 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
fe794dc6 2559 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
7a78ae4e
ND
2560 set_gdbarch_call_dummy_p (gdbarch, 1);
2561 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2562 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2563 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2564 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2565 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2566 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2567 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2568 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2569
2570 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2571 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2572 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2573 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7a78ae4e
ND
2574
2575 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
9aa1e687
KB
2576
2577 if (sysv_abi)
2578 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2579 else
2580 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e
ND
2581
2582 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2583 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2584 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
2585 set_gdbarch_use_struct_convention (gdbarch, generic_use_struct_convention);
2586
7a78ae4e
ND
2587 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2588
2589 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2590 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2591 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2592 set_gdbarch_function_start_offset (gdbarch, 0);
2593 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2594
2595 /* Not sure on this. FIXMEmgo */
2596 set_gdbarch_frame_args_skip (gdbarch, 8);
2597
7a78ae4e 2598 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
9aa1e687
KB
2599 if (osabi == ELFOSABI_LINUX)
2600 {
2601 set_gdbarch_frameless_function_invocation (gdbarch,
2602 ppc_linux_frameless_function_invocation);
2603 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2604 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2605
2606 set_gdbarch_frame_init_saved_regs (gdbarch,
2607 ppc_linux_frame_init_saved_regs);
2608 set_gdbarch_init_extra_frame_info (gdbarch,
2609 ppc_linux_init_extra_frame_info);
2610
2611 set_gdbarch_memory_remove_breakpoint (gdbarch,
2612 ppc_linux_memory_remove_breakpoint);
6ded7999
KB
2613 set_solib_svr4_fetch_link_map_offsets
2614 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
9aa1e687
KB
2615 }
2616 else
2617 {
2618 set_gdbarch_frameless_function_invocation (gdbarch,
2619 rs6000_frameless_function_invocation);
2620 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2621 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2622
2623 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2624 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
f517ea4e
PS
2625
2626 /* Handle RS/6000 function pointers. */
2627 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2628 rs6000_convert_from_func_ptr_addr);
9aa1e687 2629 }
7a78ae4e
ND
2630 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2631 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2632 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2633
2634 /* We can't tell how many args there are
2635 now that the C compiler delays popping them. */
2636 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2637
2638 return gdbarch;
c906108c
SS
2639}
2640
1fcc0bb8
EZ
2641static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2642
2643static void
2644rs6000_info_powerpc_command (char *args, int from_tty)
2645{
2646 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2647}
2648
c906108c
SS
2649/* Initialization code. */
2650
2651void
fba45db2 2652_initialize_rs6000_tdep (void)
c906108c 2653{
7a78ae4e
ND
2654 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2655 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
1fcc0bb8
EZ
2656
2657 /* Add root prefix command for "info powerpc" commands */
2658 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2659 "Various POWERPC info specific commands.",
2660 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2661
2662 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2663 "Display the contents of the AltiVec registers.",
2664 &info_powerpc_cmdlist);
2665
c906108c 2666}
This page took 0.378312 seconds and 4 git commands to generate.