*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
7a78ae4e
ND
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
c906108c 215{
c9012c71
AC
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
c906108c
SS
219 else
220 return frame_initial_stack_address (fi);
221}
222
7a78ae4e
ND
223/* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
2188cbdd 231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 232}
c906108c 233
143985b7 234/* Get the ith function argument for the current function. */
b9362cc7 235static CORE_ADDR
143985b7
AF
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238{
239 CORE_ADDR addr;
7f5f525d 240 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
241 return addr;
242}
243
c906108c
SS
244/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246static CORE_ADDR
7a78ae4e 247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
248{
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
c5aa993b
JM
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
8b36eed8 291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 292 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
2188cbdd 298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
305 }
306 else
307 return -1;
308 break;
c906108c 309
c5aa993b
JM
310 default:
311 return -1;
312 }
c906108c
SS
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction. */
318
f4f9705a 319const static unsigned char *
7a78ae4e 320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 321{
aaab4dba
AC
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 324 *bp_size = 4;
d7449b42 325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
379d08a1
AC
335rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
c906108c 337{
7c40d541
KB
338 CORE_ADDR dummy;
339 int breakp_sz;
f4f9705a 340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
c5aa993b
JM
346 if (insert_breakpoints_p)
347 {
c906108c 348
c5aa993b 349 loc = read_pc ();
c906108c 350
c5aa993b 351 insn = read_memory_integer (loc, 4);
c906108c 352
7c40d541 353 breaks[0] = loc + breakp_sz;
c5aa993b
JM
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 356
c5aa993b
JM
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
c906108c 360
c5aa993b 361 stepBreaks[1].address = 0;
c906108c 362
c5aa993b
JM
363 for (ii = 0; ii < 2; ++ii)
364 {
c906108c 365
c5aa993b
JM
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
7c40d541 369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
370 stepBreaks[ii].address = breaks[ii];
371 }
c906108c 372
c5aa993b
JM
373 }
374 else
375 {
c906108c 376
c5aa993b
JM
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
7c40d541
KB
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
c5aa993b 382 }
c906108c 383 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 384 /* What errors? {read,write}_memory call error(). */
c906108c
SS
385}
386
387
388/* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
c5aa993b
JM
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
6be8bc0c 398 - saved_vr is the number of the first saved vr.
96ff0de4 399 - saved_ev is the number of the first saved ev.
c5aa993b
JM
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 404 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 405 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
6be8bc0c 408 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 409 */
c906108c
SS
410
411#define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
55d05f3b
KB
418/* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428static CORE_ADDR
429refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430{
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467}
468
469
7a78ae4e 470static CORE_ADDR
077276e8 471skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
472{
473 CORE_ADDR orig_pc = pc;
55d05f3b 474 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 475 CORE_ADDR li_found_pc = 0;
c906108c
SS
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
6be8bc0c 479 long vr_saved_offset = 0;
482ca3f5
KB
480 int lr_reg = -1;
481 int cr_reg = -1;
6be8bc0c 482 int vr_reg = -1;
96ff0de4
EZ
483 int ev_reg = -1;
484 long ev_offset = 0;
6be8bc0c 485 int vrsave_reg = -1;
c906108c
SS
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
ddb20c56 489 int prev_insn_was_prologue_insn = 1;
55d05f3b 490 int num_skip_non_prologue_insns = 0;
96ff0de4 491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 493
55d05f3b
KB
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 508
ddb20c56 509 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
6be8bc0c 512 fdata->saved_vr = -1;
96ff0de4 513 fdata->saved_ev = -1;
c906108c
SS
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
55d05f3b 518 for (;; pc += 4)
c906108c 519 {
ddb20c56
KB
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
55d05f3b
KB
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
ddb20c56
KB
531 prev_insn_was_prologue_insn = 1;
532
55d05f3b 533 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
c906108c 537
c5aa993b
JM
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
98f08d3d 540 lr_reg = (op & 0x03e00000);
c5aa993b 541 continue;
c906108c 542
c5aa993b
JM
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
98f08d3d 546 cr_reg = (op & 0x03e00000);
c5aa993b 547 continue;
c906108c 548
c906108c 549 }
c5aa993b
JM
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
c906108c 559
c5aa993b
JM
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
7a78ae4e 571 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 572 op &= ~3UL;
c5aa993b
JM
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
c906108c 576
ddb20c56
KB
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
96ff0de4 580 /* nop */
ddb20c56
KB
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
c906108c 587 }
c5aa993b
JM
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
98f08d3d
KB
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
c5aa993b
JM
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
98f08d3d
KB
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
c5aa993b
JM
621 continue;
622
623 }
98f08d3d
KB
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
c5aa993b 633 cr_reg = 0;
98f08d3d
KB
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
c5aa993b
JM
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
c5aa993b 653 }
6be8bc0c
EZ
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
c5aa993b
JM
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
c906108c 659
c5aa993b
JM
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
c906108c 664
c5aa993b 665 fdata->frameless = 0;
6be8bc0c
EZ
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
c5aa993b
JM
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
6be8bc0c
EZ
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
c5aa993b
JM
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
c5aa993b 683 }
98f08d3d
KB
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
c5aa993b 691 }
98f08d3d
KB
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
c5aa993b
JM
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
c5aa993b 712 }
98f08d3d
KB
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 716 && !minimal_toc_loaded)
98f08d3d 717 {
c5aa993b
JM
718 minimal_toc_loaded = 1;
719 continue;
720
f6077098
KB
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
96ff0de4 727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
728 {
729 continue;
730
c5aa993b
JM
731 /* store parameters in stack */
732 }
6be8bc0c 733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
c5aa993b 737 continue;
c906108c 738
c5aa993b
JM
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
6f99cb26 755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
6f99cb26
AC
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
c5aa993b 766 continue;
c5aa993b 767 }
6be8bc0c
EZ
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
96ff0de4
EZ
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
c5aa993b
JM
935 else
936 {
55d05f3b
KB
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 951 /* Never skip branches. */
55d05f3b
KB
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
c5aa993b 962 }
c906108c
SS
963 }
964
965#if 0
966/* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 972 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 973 work before calling a function right after a prologue, thus we can
64366f1c 974 single out such gcc2 behaviour. */
c906108c 975
c906108c 976
c5aa993b
JM
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 983
64366f1c
EZ
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
c906108c 986
c5aa993b 987 tmp = find_pc_misc_function (pc);
6314a349
AC
988 if (tmp >= 0
989 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
990 return pc + 8;
991 }
c906108c 992 }
c906108c 993#endif /* 0 */
c5aa993b
JM
994
995 fdata->offset = -fdata->offset;
ddb20c56 996 return last_prologue_pc;
c906108c
SS
997}
998
999
1000/*************************************************************************
f6077098 1001 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1002 frames, etc.
1003*************************************************************************/
1004
c906108c 1005
64366f1c 1006/* Pop the innermost frame, go back to the caller. */
c5aa993b 1007
c906108c 1008static void
7a78ae4e 1009rs6000_pop_frame (void)
c906108c 1010{
470d5666 1011 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1012 struct rs6000_framedata fdata;
1013 struct frame_info *frame = get_current_frame ();
470d5666 1014 int ii, wordsize;
c906108c
SS
1015
1016 pc = read_pc ();
c193f6ac 1017 sp = get_frame_base (frame);
c906108c 1018
bdd78e62 1019 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1020 get_frame_base (frame),
1021 get_frame_base (frame)))
c906108c 1022 {
7a78ae4e
ND
1023 generic_pop_dummy_frame ();
1024 flush_cached_frames ();
1025 return;
c906108c
SS
1026 }
1027
1028 /* Make sure that all registers are valid. */
b8b527c5 1029 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1030
64366f1c 1031 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1032 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1033 saved %pc value in the previous frame. */
c906108c 1034
be41e9f4 1035 addr = get_frame_func (frame);
bdd78e62 1036 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1037
21283beb 1038 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1039 if (fdata.frameless)
1040 prev_sp = sp;
1041 else
7a78ae4e 1042 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1043 if (fdata.lr_offset == 0)
2188cbdd 1044 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1045 else
7a78ae4e 1046 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1047
1048 /* reset %pc value. */
1049 write_register (PC_REGNUM, lr);
1050
64366f1c 1051 /* reset register values if any was saved earlier. */
c906108c
SS
1052
1053 if (fdata.saved_gpr != -1)
1054 {
1055 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1056 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1057 {
62700349 1058 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
524d7c18 1059 wordsize);
7a78ae4e 1060 addr += wordsize;
c5aa993b 1061 }
c906108c
SS
1062 }
1063
1064 if (fdata.saved_fpr != -1)
1065 {
1066 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1067 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1068 {
62700349 1069 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1070 addr += 8;
1071 }
c906108c
SS
1072 }
1073
1074 write_register (SP_REGNUM, prev_sp);
1075 target_store_registers (-1);
1076 flush_cached_frames ();
1077}
1078
11269d7e
AC
1079/* All the ABI's require 16 byte alignment. */
1080static CORE_ADDR
1081rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1082{
1083 return (addr & -16);
1084}
1085
7a78ae4e 1086/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1087 the first eight words of the argument list (that might be less than
1088 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1089 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1090 passed in fpr's, in addition to that. Rest of the parameters if any
1091 are passed in user stack. There might be cases in which half of the
c906108c
SS
1092 parameter is copied into registers, the other half is pushed into
1093 stack.
1094
7a78ae4e
ND
1095 Stack must be aligned on 64-bit boundaries when synthesizing
1096 function calls.
1097
c906108c
SS
1098 If the function is returning a structure, then the return address is passed
1099 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1100 starting from r4. */
c906108c 1101
7a78ae4e 1102static CORE_ADDR
77b2b6d4
AC
1103rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1104 struct regcache *regcache, CORE_ADDR bp_addr,
1105 int nargs, struct value **args, CORE_ADDR sp,
1106 int struct_return, CORE_ADDR struct_addr)
c906108c 1107{
7a41266b 1108 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1109 int ii;
1110 int len = 0;
c5aa993b
JM
1111 int argno; /* current argument number */
1112 int argbytes; /* current argument byte */
1113 char tmp_buffer[50];
1114 int f_argno = 0; /* current floating point argno */
21283beb 1115 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1116
ea7c478f 1117 struct value *arg = 0;
c906108c
SS
1118 struct type *type;
1119
1120 CORE_ADDR saved_sp;
1121
64366f1c 1122 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1123 Copy them appropriately. */
1124 ii = 0;
1125
1126 /* If the function is returning a `struct', then the first word
1127 (which will be passed in r3) is used for struct return address.
1128 In that case we should advance one word and start from r4
1129 register to copy parameters. */
1130 if (struct_return)
1131 {
1132 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1133 struct_addr);
1134 ii++;
1135 }
c906108c
SS
1136
1137/*
c5aa993b
JM
1138 effectively indirect call... gcc does...
1139
1140 return_val example( float, int);
1141
1142 eabi:
1143 float in fp0, int in r3
1144 offset of stack on overflow 8/16
1145 for varargs, must go by type.
1146 power open:
1147 float in r3&r4, int in r5
1148 offset of stack on overflow different
1149 both:
1150 return in r3 or f0. If no float, must study how gcc emulates floats;
1151 pay attention to arg promotion.
1152 User may have to cast\args to handle promotion correctly
1153 since gdb won't know if prototype supplied or not.
1154 */
c906108c 1155
c5aa993b
JM
1156 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1157 {
12c266ea 1158 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1159
1160 arg = args[argno];
1161 type = check_typedef (VALUE_TYPE (arg));
1162 len = TYPE_LENGTH (type);
1163
1164 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1165 {
1166
64366f1c 1167 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1168 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1169 there is no way we would run out of them. */
c5aa993b
JM
1170
1171 if (len > 8)
1172 printf_unfiltered (
1173 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1174
62700349 1175 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1176 VALUE_CONTENTS (arg),
1177 len);
1178 ++f_argno;
1179 }
1180
f6077098 1181 if (len > reg_size)
c5aa993b
JM
1182 {
1183
64366f1c 1184 /* Argument takes more than one register. */
c5aa993b
JM
1185 while (argbytes < len)
1186 {
62700349 1187 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1188 reg_size);
62700349 1189 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1190 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1191 (len - argbytes) > reg_size
1192 ? reg_size : len - argbytes);
1193 ++ii, argbytes += reg_size;
c5aa993b
JM
1194
1195 if (ii >= 8)
1196 goto ran_out_of_registers_for_arguments;
1197 }
1198 argbytes = 0;
1199 --ii;
1200 }
1201 else
64366f1c
EZ
1202 {
1203 /* Argument can fit in one register. No problem. */
d7449b42 1204 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1205 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1206 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1207 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1208 }
1209 ++argno;
c906108c 1210 }
c906108c
SS
1211
1212ran_out_of_registers_for_arguments:
1213
7a78ae4e 1214 saved_sp = read_sp ();
cc9836a8 1215
64366f1c 1216 /* Location for 8 parameters are always reserved. */
7a78ae4e 1217 sp -= wordsize * 8;
f6077098 1218
64366f1c 1219 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1220 sp -= wordsize * 6;
f6077098 1221
64366f1c 1222 /* Stack pointer must be quadword aligned. */
7a78ae4e 1223 sp &= -16;
c906108c 1224
64366f1c
EZ
1225 /* If there are more arguments, allocate space for them in
1226 the stack, then push them starting from the ninth one. */
c906108c 1227
c5aa993b
JM
1228 if ((argno < nargs) || argbytes)
1229 {
1230 int space = 0, jj;
c906108c 1231
c5aa993b
JM
1232 if (argbytes)
1233 {
1234 space += ((len - argbytes + 3) & -4);
1235 jj = argno + 1;
1236 }
1237 else
1238 jj = argno;
c906108c 1239
c5aa993b
JM
1240 for (; jj < nargs; ++jj)
1241 {
ea7c478f 1242 struct value *val = args[jj];
c5aa993b
JM
1243 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1244 }
c906108c 1245
64366f1c 1246 /* Add location required for the rest of the parameters. */
f6077098 1247 space = (space + 15) & -16;
c5aa993b 1248 sp -= space;
c906108c 1249
64366f1c
EZ
1250 /* If the last argument copied into the registers didn't fit there
1251 completely, push the rest of it into stack. */
c906108c 1252
c5aa993b
JM
1253 if (argbytes)
1254 {
1255 write_memory (sp + 24 + (ii * 4),
1256 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1257 len - argbytes);
1258 ++argno;
1259 ii += ((len - argbytes + 3) & -4) / 4;
1260 }
c906108c 1261
64366f1c 1262 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1263 for (; argno < nargs; ++argno)
1264 {
c906108c 1265
c5aa993b
JM
1266 arg = args[argno];
1267 type = check_typedef (VALUE_TYPE (arg));
1268 len = TYPE_LENGTH (type);
c906108c
SS
1269
1270
64366f1c
EZ
1271 /* Float types should be passed in fpr's, as well as in the
1272 stack. */
c5aa993b
JM
1273 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1274 {
c906108c 1275
c5aa993b
JM
1276 if (len > 8)
1277 printf_unfiltered (
1278 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1279
62700349 1280 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1281 VALUE_CONTENTS (arg),
1282 len);
1283 ++f_argno;
1284 }
c906108c 1285
c5aa993b
JM
1286 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1287 ii += ((len + 3) & -4) / 4;
1288 }
c906108c 1289 }
c906108c 1290
c906108c 1291 /* set back chain properly */
fbd9dcd3 1292 store_unsigned_integer (tmp_buffer, 4, saved_sp);
c906108c
SS
1293 write_memory (sp, tmp_buffer, 4);
1294
69517000 1295 /* Set the stack pointer. According to the ABI, the SP is meant to
33a7c2fc 1296 be set _before_ the corresponding stack space is used. No need
69517000
AC
1297 for that here though - the target has been completely stopped -
1298 it isn't possible for an exception handler to stomp on the stack. */
33a7c2fc
AC
1299 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1300
e56a0ecc
AC
1301 /* Point the inferior function call's return address at the dummy's
1302 breakpoint. */
1303 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1304
794a477a
AC
1305 /* Set the TOC register, get the value from the objfile reader
1306 which, in turn, gets it from the VMAP table. */
1307 if (rs6000_find_toc_address_hook != NULL)
1308 {
1309 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1310 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1311 }
1312
c906108c
SS
1313 target_store_registers (-1);
1314 return sp;
1315}
c906108c 1316
b9ff3018
AC
1317/* PowerOpen always puts structures in memory. Vectors, which were
1318 added later, do get returned in a register though. */
1319
1320static int
1321rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1322{
1323 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1324 && TYPE_VECTOR (value_type))
1325 return 0;
1326 return 1;
1327}
1328
7a78ae4e
ND
1329static void
1330rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1331{
1332 int offset = 0;
ace1378a 1333 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1334
c5aa993b
JM
1335 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1336 {
c906108c 1337
c5aa993b
JM
1338 double dd;
1339 float ff;
1340 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1341 We need to truncate the return value into float size (4 byte) if
64366f1c 1342 necessary. */
c906108c 1343
c5aa993b
JM
1344 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1345 memcpy (valbuf,
62700349 1346 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
c5aa993b
JM
1347 TYPE_LENGTH (valtype));
1348 else
1349 { /* float */
62700349 1350 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
c5aa993b
JM
1351 ff = (float) dd;
1352 memcpy (valbuf, &ff, sizeof (float));
1353 }
1354 }
ace1378a
EZ
1355 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1356 && TYPE_LENGTH (valtype) == 16
1357 && TYPE_VECTOR (valtype))
1358 {
62700349 1359 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1360 TYPE_LENGTH (valtype));
1361 }
c5aa993b
JM
1362 else
1363 {
1364 /* return value is copied starting from r3. */
d7449b42 1365 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1366 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1367 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1368
1369 memcpy (valbuf,
62700349 1370 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1371 TYPE_LENGTH (valtype));
c906108c 1372 }
c906108c
SS
1373}
1374
977adac5
ND
1375/* Return whether handle_inferior_event() should proceed through code
1376 starting at PC in function NAME when stepping.
1377
1378 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1379 handle memory references that are too distant to fit in instructions
1380 generated by the compiler. For example, if 'foo' in the following
1381 instruction:
1382
1383 lwz r9,foo(r2)
1384
1385 is greater than 32767, the linker might replace the lwz with a branch to
1386 somewhere in @FIX1 that does the load in 2 instructions and then branches
1387 back to where execution should continue.
1388
1389 GDB should silently step over @FIX code, just like AIX dbx does.
1390 Unfortunately, the linker uses the "b" instruction for the branches,
1391 meaning that the link register doesn't get set. Therefore, GDB's usual
1392 step_over_function() mechanism won't work.
1393
1394 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1395 in handle_inferior_event() to skip past @FIX code. */
1396
1397int
1398rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1399{
1400 return name && !strncmp (name, "@FIX", 4);
1401}
1402
1403/* Skip code that the user doesn't want to see when stepping:
1404
1405 1. Indirect function calls use a piece of trampoline code to do context
1406 switching, i.e. to set the new TOC table. Skip such code if we are on
1407 its first instruction (as when we have single-stepped to here).
1408
1409 2. Skip shared library trampoline code (which is different from
c906108c 1410 indirect function call trampolines).
977adac5
ND
1411
1412 3. Skip bigtoc fixup code.
1413
c906108c 1414 Result is desired PC to step until, or NULL if we are not in
977adac5 1415 code that should be skipped. */
c906108c
SS
1416
1417CORE_ADDR
7a78ae4e 1418rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1419{
52f0bd74 1420 unsigned int ii, op;
977adac5 1421 int rel;
c906108c 1422 CORE_ADDR solib_target_pc;
977adac5 1423 struct minimal_symbol *msymbol;
c906108c 1424
c5aa993b
JM
1425 static unsigned trampoline_code[] =
1426 {
1427 0x800b0000, /* l r0,0x0(r11) */
1428 0x90410014, /* st r2,0x14(r1) */
1429 0x7c0903a6, /* mtctr r0 */
1430 0x804b0004, /* l r2,0x4(r11) */
1431 0x816b0008, /* l r11,0x8(r11) */
1432 0x4e800420, /* bctr */
1433 0x4e800020, /* br */
1434 0
c906108c
SS
1435 };
1436
977adac5
ND
1437 /* Check for bigtoc fixup code. */
1438 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1439 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1440 {
1441 /* Double-check that the third instruction from PC is relative "b". */
1442 op = read_memory_integer (pc + 8, 4);
1443 if ((op & 0xfc000003) == 0x48000000)
1444 {
1445 /* Extract bits 6-29 as a signed 24-bit relative word address and
1446 add it to the containing PC. */
1447 rel = ((int)(op << 6) >> 6);
1448 return pc + 8 + rel;
1449 }
1450 }
1451
c906108c
SS
1452 /* If pc is in a shared library trampoline, return its target. */
1453 solib_target_pc = find_solib_trampoline_target (pc);
1454 if (solib_target_pc)
1455 return solib_target_pc;
1456
c5aa993b
JM
1457 for (ii = 0; trampoline_code[ii]; ++ii)
1458 {
1459 op = read_memory_integer (pc + (ii * 4), 4);
1460 if (op != trampoline_code[ii])
1461 return 0;
1462 }
1463 ii = read_register (11); /* r11 holds destination addr */
21283beb 1464 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1465 return pc;
1466}
1467
1468/* Determines whether the function FI has a frame on the stack or not. */
1469
9aa1e687 1470int
c877c8e6 1471rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1472{
1473 CORE_ADDR func_start;
1474 struct rs6000_framedata fdata;
1475
1476 /* Don't even think about framelessness except on the innermost frame
1477 or if the function was interrupted by a signal. */
75e3c1f9
AC
1478 if (get_next_frame (fi) != NULL
1479 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1480 return 0;
c5aa993b 1481
be41e9f4 1482 func_start = get_frame_func (fi);
c906108c
SS
1483
1484 /* If we failed to find the start of the function, it is a mistake
64366f1c 1485 to inspect the instructions. */
c906108c
SS
1486
1487 if (!func_start)
1488 {
1489 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1490 function pointer, normally causing an immediate core dump of the
64366f1c 1491 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1492 of setting up a stack frame. */
bdd78e62 1493 if (get_frame_pc (fi) == 0)
c906108c
SS
1494 return 1;
1495 else
1496 return 0;
1497 }
1498
bdd78e62 1499 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1500 return fdata.frameless;
1501}
1502
64366f1c 1503/* Return the PC saved in a frame. */
c906108c 1504
9aa1e687 1505CORE_ADDR
c877c8e6 1506rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1507{
1508 CORE_ADDR func_start;
1509 struct rs6000_framedata fdata;
21283beb 1510 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1511 int wordsize = tdep->wordsize;
c906108c 1512
5a203e44 1513 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1514 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1515 wordsize);
c906108c 1516
bdd78e62 1517 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1518 get_frame_base (fi),
1519 get_frame_base (fi)))
bdd78e62 1520 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1521 get_frame_base (fi), PC_REGNUM);
c906108c 1522
be41e9f4 1523 func_start = get_frame_func (fi);
c906108c
SS
1524
1525 /* If we failed to find the start of the function, it is a mistake
64366f1c 1526 to inspect the instructions. */
c906108c
SS
1527 if (!func_start)
1528 return 0;
1529
bdd78e62 1530 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1531
75e3c1f9 1532 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1533 {
75e3c1f9 1534 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1535 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1536 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1537 wordsize);
bdd78e62 1538 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1539 /* The link register wasn't saved by this frame and the next
1540 (inner, newer) frame is a dummy. Get the link register
1541 value by unwinding it from that [dummy] frame. */
1542 {
1543 ULONGEST lr;
1544 frame_unwind_unsigned_register (get_next_frame (fi),
1545 tdep->ppc_lr_regnum, &lr);
1546 return lr;
1547 }
c906108c 1548 else
618ce49f
AC
1549 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1550 + tdep->lr_frame_offset,
7a78ae4e 1551 wordsize);
c906108c
SS
1552 }
1553
1554 if (fdata.lr_offset == 0)
2188cbdd 1555 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1556
618ce49f
AC
1557 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1558 wordsize);
c906108c
SS
1559}
1560
1561/* If saved registers of frame FI are not known yet, read and cache them.
1562 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1563 in which case the framedata are read. */
1564
1565static void
7a78ae4e 1566frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1567{
c5aa993b 1568 CORE_ADDR frame_addr;
c906108c 1569 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1570 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1571 int wordsize = tdep->wordsize;
c906108c 1572
1b1d3794 1573 if (deprecated_get_frame_saved_regs (fi))
c906108c 1574 return;
c5aa993b 1575
c906108c
SS
1576 if (fdatap == NULL)
1577 {
1578 fdatap = &work_fdata;
be41e9f4 1579 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1580 }
1581
1582 frame_saved_regs_zalloc (fi);
1583
1584 /* If there were any saved registers, figure out parent's stack
64366f1c 1585 pointer. */
c906108c 1586 /* The following is true only if the frame doesn't have a call to
64366f1c 1587 alloca(), FIXME. */
c906108c 1588
6be8bc0c
EZ
1589 if (fdatap->saved_fpr == 0
1590 && fdatap->saved_gpr == 0
1591 && fdatap->saved_vr == 0
96ff0de4 1592 && fdatap->saved_ev == 0
6be8bc0c
EZ
1593 && fdatap->lr_offset == 0
1594 && fdatap->cr_offset == 0
96ff0de4
EZ
1595 && fdatap->vr_offset == 0
1596 && fdatap->ev_offset == 0)
c906108c 1597 frame_addr = 0;
c906108c 1598 else
bf75c8c1
AC
1599 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1600 address of the current frame. Things might be easier if the
1601 ->frame pointed to the outer-most address of the frame. In the
1602 mean time, the address of the prev frame is used as the base
1603 address of this frame. */
618ce49f 1604 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1605
c906108c
SS
1606 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1607 All fpr's from saved_fpr to fp31 are saved. */
1608
1609 if (fdatap->saved_fpr >= 0)
1610 {
1611 int i;
7a78ae4e 1612 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1613 for (i = fdatap->saved_fpr; i < 32; i++)
1614 {
1b1d3794 1615 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1616 fpr_addr += 8;
c906108c
SS
1617 }
1618 }
1619
1620 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1621 All gpr's from saved_gpr to gpr31 are saved. */
1622
1623 if (fdatap->saved_gpr >= 0)
1624 {
1625 int i;
7a78ae4e 1626 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1627 for (i = fdatap->saved_gpr; i < 32; i++)
1628 {
1b1d3794 1629 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1630 gpr_addr += wordsize;
c906108c
SS
1631 }
1632 }
1633
6be8bc0c
EZ
1634 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1635 All vr's from saved_vr to vr31 are saved. */
1636 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1637 {
1638 if (fdatap->saved_vr >= 0)
1639 {
1640 int i;
1641 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1642 for (i = fdatap->saved_vr; i < 32; i++)
1643 {
1b1d3794 1644 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
12c266ea 1645 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
6be8bc0c
EZ
1646 }
1647 }
1648 }
1649
96ff0de4
EZ
1650 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1651 All vr's from saved_ev to ev31 are saved. ????? */
1652 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1653 {
1654 if (fdatap->saved_ev >= 0)
1655 {
1656 int i;
1657 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1658 for (i = fdatap->saved_ev; i < 32; i++)
1659 {
1b1d3794
AC
1660 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1661 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
12c266ea 1662 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
96ff0de4
EZ
1663 }
1664 }
1665 }
1666
c906108c
SS
1667 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1668 the CR. */
1669 if (fdatap->cr_offset != 0)
1b1d3794 1670 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1671
1672 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1673 the LR. */
1674 if (fdatap->lr_offset != 0)
1b1d3794 1675 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1676
1677 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1678 the VRSAVE. */
1679 if (fdatap->vrsave_offset != 0)
1b1d3794 1680 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1681}
1682
1683/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1684 was first allocated. For functions calling alloca(), it might be saved in
1685 an alloca register. */
c906108c
SS
1686
1687static CORE_ADDR
7a78ae4e 1688frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1689{
1690 CORE_ADDR tmpaddr;
1691 struct rs6000_framedata fdata;
1692 struct frame_info *callee_fi;
1693
64366f1c
EZ
1694 /* If the initial stack pointer (frame address) of this frame is known,
1695 just return it. */
c906108c 1696
c9012c71
AC
1697 if (get_frame_extra_info (fi)->initial_sp)
1698 return get_frame_extra_info (fi)->initial_sp;
c906108c 1699
64366f1c 1700 /* Find out if this function is using an alloca register. */
c906108c 1701
be41e9f4 1702 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1703
64366f1c
EZ
1704 /* If saved registers of this frame are not known yet, read and
1705 cache them. */
c906108c 1706
1b1d3794 1707 if (!deprecated_get_frame_saved_regs (fi))
c906108c
SS
1708 frame_get_saved_regs (fi, &fdata);
1709
1710 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1711 this frame, and it is good enough. */
c906108c
SS
1712
1713 if (fdata.alloca_reg < 0)
1714 {
c9012c71
AC
1715 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1716 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1717 }
1718
953836b2
AC
1719 /* There is an alloca register, use its value, in the current frame,
1720 as the initial stack pointer. */
1721 {
d9d9c31f 1722 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1723 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1724 {
c9012c71 1725 get_frame_extra_info (fi)->initial_sp
953836b2 1726 = extract_unsigned_integer (tmpbuf,
12c266ea 1727 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
953836b2
AC
1728 }
1729 else
1730 /* NOTE: cagney/2002-04-17: At present the only time
1731 frame_register_read will fail is when the register isn't
1732 available. If that does happen, use the frame. */
c9012c71 1733 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1734 }
c9012c71 1735 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1736}
1737
7a78ae4e
ND
1738/* Describe the pointer in each stack frame to the previous stack frame
1739 (its caller). */
1740
618ce49f
AC
1741/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1742 the frame's chain-pointer. */
7a78ae4e
ND
1743
1744/* In the case of the RS/6000, the frame's nominal address
1745 is the address of a 4-byte word containing the calling frame's address. */
1746
9aa1e687 1747CORE_ADDR
7a78ae4e 1748rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1749{
7a78ae4e 1750 CORE_ADDR fp, fpp, lr;
21283beb 1751 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1752
bdd78e62 1753 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1754 get_frame_base (thisframe),
1755 get_frame_base (thisframe)))
9f3b7f07
AC
1756 /* A dummy frame always correctly chains back to the previous
1757 frame. */
8b36eed8 1758 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1759
627b3ba2 1760 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
bdd78e62 1761 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1762 return 0;
1763
5a203e44 1764 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1765 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1766 wordsize);
75e3c1f9
AC
1767 else if (get_next_frame (thisframe) != NULL
1768 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1769 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1770 /* A frameless function interrupted by a signal did not change the
1771 frame pointer. */
c193f6ac 1772 fp = get_frame_base (thisframe);
c906108c 1773 else
8b36eed8 1774 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1775 return fp;
1776}
1777
1778/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1779 isn't available with that word size, return 0. */
7a78ae4e
ND
1780
1781static int
1782regsize (const struct reg *reg, int wordsize)
1783{
1784 return wordsize == 8 ? reg->sz64 : reg->sz32;
1785}
1786
1787/* Return the name of register number N, or null if no such register exists
64366f1c 1788 in the current architecture. */
7a78ae4e 1789
fa88f677 1790static const char *
7a78ae4e
ND
1791rs6000_register_name (int n)
1792{
21283beb 1793 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1794 const struct reg *reg = tdep->regs + n;
1795
1796 if (!regsize (reg, tdep->wordsize))
1797 return NULL;
1798 return reg->name;
1799}
1800
1801/* Index within `registers' of the first byte of the space for
1802 register N. */
1803
1804static int
1805rs6000_register_byte (int n)
1806{
21283beb 1807 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1808}
1809
1810/* Return the number of bytes of storage in the actual machine representation
64366f1c 1811 for register N if that register is available, else return 0. */
7a78ae4e
ND
1812
1813static int
1814rs6000_register_raw_size (int n)
1815{
21283beb 1816 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1817 const struct reg *reg = tdep->regs + n;
1818 return regsize (reg, tdep->wordsize);
1819}
1820
7a78ae4e
ND
1821/* Return the GDB type object for the "standard" data type
1822 of data in register N. */
1823
1824static struct type *
fba45db2 1825rs6000_register_virtual_type (int n)
7a78ae4e 1826{
21283beb 1827 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1828 const struct reg *reg = tdep->regs + n;
1829
1fcc0bb8
EZ
1830 if (reg->fpr)
1831 return builtin_type_double;
1832 else
1833 {
1834 int size = regsize (reg, tdep->wordsize);
1835 switch (size)
1836 {
449a5da4
AC
1837 case 0:
1838 return builtin_type_int0;
1839 case 4:
1840 return builtin_type_int32;
1fcc0bb8 1841 case 8:
c8001721
EZ
1842 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1843 return builtin_type_vec64;
1844 else
1845 return builtin_type_int64;
1fcc0bb8
EZ
1846 break;
1847 case 16:
08cf96df 1848 return builtin_type_vec128;
1fcc0bb8
EZ
1849 break;
1850 default:
449a5da4
AC
1851 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1852 n, size);
1fcc0bb8
EZ
1853 }
1854 }
7a78ae4e
ND
1855}
1856
7a78ae4e
ND
1857/* Return whether register N requires conversion when moving from raw format
1858 to virtual format.
1859
1860 The register format for RS/6000 floating point registers is always
64366f1c 1861 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1862
1863static int
1864rs6000_register_convertible (int n)
1865{
21283beb 1866 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1867 return reg->fpr;
1868}
1869
1870/* Convert data from raw format for register N in buffer FROM
64366f1c 1871 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1872
1873static void
1874rs6000_register_convert_to_virtual (int n, struct type *type,
1875 char *from, char *to)
1876{
12c266ea 1877 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1878 {
12c266ea 1879 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1880 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1881 }
1882 else
12c266ea 1883 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1884}
1885
1886/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1887 to raw format for register N in buffer TO. */
7a292a7a 1888
7a78ae4e
ND
1889static void
1890rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1891 const char *from, char *to)
7a78ae4e 1892{
12c266ea 1893 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1894 {
f1908289 1895 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1896 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1897 }
7a78ae4e 1898 else
12c266ea 1899 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1900}
c906108c 1901
c8001721
EZ
1902static void
1903e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1904 int reg_nr, void *buffer)
1905{
1906 int base_regnum;
1907 int offset = 0;
d9d9c31f 1908 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1909 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1910
1911 if (reg_nr >= tdep->ppc_gp0_regnum
1912 && reg_nr <= tdep->ppc_gplast_regnum)
1913 {
1914 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1915
1916 /* Build the value in the provided buffer. */
1917 /* Read the raw register of which this one is the lower portion. */
1918 regcache_raw_read (regcache, base_regnum, temp_buffer);
1919 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1920 offset = 4;
1921 memcpy ((char *) buffer, temp_buffer + offset, 4);
1922 }
1923}
1924
1925static void
1926e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1927 int reg_nr, const void *buffer)
1928{
1929 int base_regnum;
1930 int offset = 0;
d9d9c31f 1931 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1932 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1933
1934 if (reg_nr >= tdep->ppc_gp0_regnum
1935 && reg_nr <= tdep->ppc_gplast_regnum)
1936 {
1937 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1938 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1939 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1940 offset = 4;
1941
1942 /* Let's read the value of the base register into a temporary
1943 buffer, so that overwriting the last four bytes with the new
1944 value of the pseudo will leave the upper 4 bytes unchanged. */
1945 regcache_raw_read (regcache, base_regnum, temp_buffer);
1946
1947 /* Write as an 8 byte quantity. */
1948 memcpy (temp_buffer + offset, (char *) buffer, 4);
1949 regcache_raw_write (regcache, base_regnum, temp_buffer);
1950 }
1951}
1952
1953/* Convert a dwarf2 register number to a gdb REGNUM. */
1954static int
1955e500_dwarf2_reg_to_regnum (int num)
1956{
1957 int regnum;
1958 if (0 <= num && num <= 31)
1959 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1960 else
1961 return num;
1962}
1963
2188cbdd 1964/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1965 REGNUM. */
2188cbdd
EZ
1966static int
1967rs6000_stab_reg_to_regnum (int num)
1968{
1969 int regnum;
1970 switch (num)
1971 {
1972 case 64:
1973 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1974 break;
1975 case 65:
1976 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1977 break;
1978 case 66:
1979 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1980 break;
1981 case 76:
1982 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1983 break;
1984 default:
1985 regnum = num;
1986 break;
1987 }
1988 return regnum;
1989}
1990
7a78ae4e
ND
1991static void
1992rs6000_store_return_value (struct type *type, char *valbuf)
1993{
ace1378a
EZ
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1995
7a78ae4e
ND
1996 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1997
1998 /* Floating point values are returned starting from FPR1 and up.
1999 Say a double_double_double type could be returned in
64366f1c 2000 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2001
62700349 2002 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
73937e03 2003 TYPE_LENGTH (type));
ace1378a
EZ
2004 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2005 {
2006 if (TYPE_LENGTH (type) == 16
2007 && TYPE_VECTOR (type))
62700349 2008 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 2009 valbuf, TYPE_LENGTH (type));
ace1378a 2010 }
7a78ae4e 2011 else
64366f1c 2012 /* Everything else is returned in GPR3 and up. */
62700349 2013 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 2014 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2015}
2016
2017/* Extract from an array REGBUF containing the (raw) register state
2018 the address in which a function should return its structure value,
2019 as a CORE_ADDR (or an expression that can be used as one). */
2020
2021static CORE_ADDR
11269d7e
AC
2022rs6000_extract_struct_value_address (struct regcache *regcache)
2023{
2024 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2025 function call GDB knows the address of the struct return value
2026 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2027 the current call_function_by_hand() code only saves the most
2028 recent struct address leading to occasional calls. The code
2029 should instead maintain a stack of such addresses (in the dummy
2030 frame object). */
11269d7e
AC
2031 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2032 really got no idea where the return value is being stored. While
2033 r3, on function entry, contained the address it will have since
2034 been reused (scratch) and hence wouldn't be valid */
2035 return 0;
7a78ae4e
ND
2036}
2037
2038/* Return whether PC is in a dummy function call.
2039
2040 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2041 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2042
2043static int
2044rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2045{
2046 return sp < pc && pc < fp;
2047}
2048
64366f1c 2049/* Hook called when a new child process is started. */
7a78ae4e
ND
2050
2051void
2052rs6000_create_inferior (int pid)
2053{
2054 if (rs6000_set_host_arch_hook)
2055 rs6000_set_host_arch_hook (pid);
c906108c
SS
2056}
2057\f
e2d0e7eb 2058/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2059
2060 Usually a function pointer's representation is simply the address
2061 of the function. On the RS/6000 however, a function pointer is
2062 represented by a pointer to a TOC entry. This TOC entry contains
2063 three words, the first word is the address of the function, the
2064 second word is the TOC pointer (r2), and the third word is the
2065 static chain value. Throughout GDB it is currently assumed that a
2066 function pointer contains the address of the function, which is not
2067 easy to fix. In addition, the conversion of a function address to
2068 a function pointer would require allocation of a TOC entry in the
2069 inferior's memory space, with all its drawbacks. To be able to
2070 call C++ virtual methods in the inferior (which are called via
f517ea4e 2071 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2072 function address from a function pointer. */
2073
f517ea4e
PS
2074/* Return real function address if ADDR (a function pointer) is in the data
2075 space and is therefore a special function pointer. */
c906108c 2076
b9362cc7 2077static CORE_ADDR
e2d0e7eb
AC
2078rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2079 CORE_ADDR addr,
2080 struct target_ops *targ)
c906108c
SS
2081{
2082 struct obj_section *s;
2083
2084 s = find_pc_section (addr);
2085 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2086 return addr;
c906108c 2087
7a78ae4e 2088 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2089 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2090}
c906108c 2091\f
c5aa993b 2092
7a78ae4e 2093/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2094
2095
7a78ae4e
ND
2096/* The arrays here called registers_MUMBLE hold information about available
2097 registers.
c906108c
SS
2098
2099 For each family of PPC variants, I've tried to isolate out the
2100 common registers and put them up front, so that as long as you get
2101 the general family right, GDB will correctly identify the registers
2102 common to that family. The common register sets are:
2103
2104 For the 60x family: hid0 hid1 iabr dabr pir
2105
2106 For the 505 and 860 family: eie eid nri
2107
2108 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2109 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2110 pbu1 pbl2 pbu2
c906108c
SS
2111
2112 Most of these register groups aren't anything formal. I arrived at
2113 them by looking at the registers that occurred in more than one
6f5987a6
KB
2114 processor.
2115
2116 Note: kevinb/2002-04-30: Support for the fpscr register was added
2117 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2118 for Power. For PowerPC, slot 70 was unused and was already in the
2119 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2120 slot 70 was being used for "mq", so the next available slot (71)
2121 was chosen. It would have been nice to be able to make the
2122 register numbers the same across processor cores, but this wasn't
2123 possible without either 1) renumbering some registers for some
2124 processors or 2) assigning fpscr to a really high slot that's
2125 larger than any current register number. Doing (1) is bad because
2126 existing stubs would break. Doing (2) is undesirable because it
2127 would introduce a really large gap between fpscr and the rest of
2128 the registers for most processors. */
7a78ae4e 2129
64366f1c 2130/* Convenience macros for populating register arrays. */
7a78ae4e 2131
64366f1c 2132/* Within another macro, convert S to a string. */
7a78ae4e
ND
2133
2134#define STR(s) #s
2135
2136/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2137 and 64 bits on 64-bit systems. */
489461e2 2138#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2139
2140/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2141 systems. */
489461e2 2142#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2143
2144/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2145 systems. */
489461e2 2146#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2147
1fcc0bb8 2148/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2149 systems. */
489461e2 2150#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2151
64366f1c 2152/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2153#define F(name) { STR(name), 8, 8, 1, 0 }
2154
64366f1c 2155/* Return a struct reg defining a pseudo register NAME. */
489461e2 2156#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2157
2158/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2159 systems and that doesn't exist on 64-bit systems. */
489461e2 2160#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2161
2162/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2163 systems and that doesn't exist on 32-bit systems. */
489461e2 2164#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2165
64366f1c 2166/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2167#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2168
2169/* UISA registers common across all architectures, including POWER. */
2170
2171#define COMMON_UISA_REGS \
2172 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2173 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2174 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2175 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2176 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2177 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2178 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2179 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2180 /* 64 */ R(pc), R(ps)
2181
ebeac11a
EZ
2182#define COMMON_UISA_NOFP_REGS \
2183 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2184 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2185 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2186 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2187 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2188 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2189 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2190 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2191 /* 64 */ R(pc), R(ps)
2192
7a78ae4e
ND
2193/* UISA-level SPRs for PowerPC. */
2194#define PPC_UISA_SPRS \
e3f36dbd 2195 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2196
c8001721
EZ
2197/* UISA-level SPRs for PowerPC without floating point support. */
2198#define PPC_UISA_NOFP_SPRS \
2199 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2200
7a78ae4e
ND
2201/* Segment registers, for PowerPC. */
2202#define PPC_SEGMENT_REGS \
2203 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2204 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2205 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2206 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2207
2208/* OEA SPRs for PowerPC. */
2209#define PPC_OEA_SPRS \
2210 /* 87 */ R4(pvr), \
2211 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2212 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2213 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2214 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2215 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2216 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2217 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2218 /* 116 */ R4(dec), R(dabr), R4(ear)
2219
64366f1c 2220/* AltiVec registers. */
1fcc0bb8
EZ
2221#define PPC_ALTIVEC_REGS \
2222 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2223 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2224 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2225 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2226 /*151*/R4(vscr), R4(vrsave)
2227
c8001721
EZ
2228/* Vectors of hi-lo general purpose registers. */
2229#define PPC_EV_REGS \
2230 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2231 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2232 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2233 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2234
2235/* Lower half of the EV registers. */
2236#define PPC_GPRS_PSEUDO_REGS \
2237 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2238 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2239 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2240 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2241
7a78ae4e 2242/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2243 user-level SPR's. */
7a78ae4e 2244static const struct reg registers_power[] =
c906108c 2245{
7a78ae4e 2246 COMMON_UISA_REGS,
e3f36dbd
KB
2247 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2248 /* 71 */ R4(fpscr)
c906108c
SS
2249};
2250
7a78ae4e 2251/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2252 view of the PowerPC. */
7a78ae4e 2253static const struct reg registers_powerpc[] =
c906108c 2254{
7a78ae4e 2255 COMMON_UISA_REGS,
1fcc0bb8
EZ
2256 PPC_UISA_SPRS,
2257 PPC_ALTIVEC_REGS
c906108c
SS
2258};
2259
ebeac11a
EZ
2260/* PowerPC UISA - a PPC processor as viewed by user-level
2261 code, but without floating point registers. */
2262static const struct reg registers_powerpc_nofp[] =
2263{
2264 COMMON_UISA_NOFP_REGS,
2265 PPC_UISA_SPRS
2266};
2267
64366f1c 2268/* IBM PowerPC 403. */
7a78ae4e 2269static const struct reg registers_403[] =
c5aa993b 2270{
7a78ae4e
ND
2271 COMMON_UISA_REGS,
2272 PPC_UISA_SPRS,
2273 PPC_SEGMENT_REGS,
2274 PPC_OEA_SPRS,
2275 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2276 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2277 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2278 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2279 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2280 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2281};
2282
64366f1c 2283/* IBM PowerPC 403GC. */
7a78ae4e 2284static const struct reg registers_403GC[] =
c5aa993b 2285{
7a78ae4e
ND
2286 COMMON_UISA_REGS,
2287 PPC_UISA_SPRS,
2288 PPC_SEGMENT_REGS,
2289 PPC_OEA_SPRS,
2290 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2291 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2292 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2293 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2294 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2295 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2296 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2297 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2298};
2299
64366f1c 2300/* Motorola PowerPC 505. */
7a78ae4e 2301static const struct reg registers_505[] =
c5aa993b 2302{
7a78ae4e
ND
2303 COMMON_UISA_REGS,
2304 PPC_UISA_SPRS,
2305 PPC_SEGMENT_REGS,
2306 PPC_OEA_SPRS,
2307 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2308};
2309
64366f1c 2310/* Motorola PowerPC 860 or 850. */
7a78ae4e 2311static const struct reg registers_860[] =
c5aa993b 2312{
7a78ae4e
ND
2313 COMMON_UISA_REGS,
2314 PPC_UISA_SPRS,
2315 PPC_SEGMENT_REGS,
2316 PPC_OEA_SPRS,
2317 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2318 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2319 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2320 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2321 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2322 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2323 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2324 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2325 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2326 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2327 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2328 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2329};
2330
7a78ae4e
ND
2331/* Motorola PowerPC 601. Note that the 601 has different register numbers
2332 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2333 register is the stub's problem. */
7a78ae4e 2334static const struct reg registers_601[] =
c5aa993b 2335{
7a78ae4e
ND
2336 COMMON_UISA_REGS,
2337 PPC_UISA_SPRS,
2338 PPC_SEGMENT_REGS,
2339 PPC_OEA_SPRS,
2340 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2341 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2342};
2343
64366f1c 2344/* Motorola PowerPC 602. */
7a78ae4e 2345static const struct reg registers_602[] =
c5aa993b 2346{
7a78ae4e
ND
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2352 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2353 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2354};
2355
64366f1c 2356/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2357static const struct reg registers_603[] =
c5aa993b 2358{
7a78ae4e
ND
2359 COMMON_UISA_REGS,
2360 PPC_UISA_SPRS,
2361 PPC_SEGMENT_REGS,
2362 PPC_OEA_SPRS,
2363 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2364 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2365 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2366};
2367
64366f1c 2368/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2369static const struct reg registers_604[] =
c5aa993b 2370{
7a78ae4e
ND
2371 COMMON_UISA_REGS,
2372 PPC_UISA_SPRS,
2373 PPC_SEGMENT_REGS,
2374 PPC_OEA_SPRS,
2375 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2376 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2377 /* 127 */ R(sia), R(sda)
c906108c
SS
2378};
2379
64366f1c 2380/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2381static const struct reg registers_750[] =
c5aa993b 2382{
7a78ae4e
ND
2383 COMMON_UISA_REGS,
2384 PPC_UISA_SPRS,
2385 PPC_SEGMENT_REGS,
2386 PPC_OEA_SPRS,
2387 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2388 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2389 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2390 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2391 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2392 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2393};
2394
2395
64366f1c 2396/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2397static const struct reg registers_7400[] =
2398{
2399 /* gpr0-gpr31, fpr0-fpr31 */
2400 COMMON_UISA_REGS,
2401 /* ctr, xre, lr, cr */
2402 PPC_UISA_SPRS,
2403 /* sr0-sr15 */
2404 PPC_SEGMENT_REGS,
2405 PPC_OEA_SPRS,
2406 /* vr0-vr31, vrsave, vscr */
2407 PPC_ALTIVEC_REGS
2408 /* FIXME? Add more registers? */
2409};
2410
c8001721
EZ
2411/* Motorola e500. */
2412static const struct reg registers_e500[] =
2413{
2414 R(pc), R(ps),
2415 /* cr, lr, ctr, xer, "" */
2416 PPC_UISA_NOFP_SPRS,
2417 /* 7...38 */
2418 PPC_EV_REGS,
338ef23d
AC
2419 R8(acc), R(spefscr),
2420 /* NOTE: Add new registers here the end of the raw register
2421 list and just before the first pseudo register. */
c8001721
EZ
2422 /* 39...70 */
2423 PPC_GPRS_PSEUDO_REGS
2424};
2425
c906108c 2426/* Information about a particular processor variant. */
7a78ae4e 2427
c906108c 2428struct variant
c5aa993b
JM
2429 {
2430 /* Name of this variant. */
2431 char *name;
c906108c 2432
c5aa993b
JM
2433 /* English description of the variant. */
2434 char *description;
c906108c 2435
64366f1c 2436 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2437 enum bfd_architecture arch;
2438
64366f1c 2439 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2440 unsigned long mach;
2441
489461e2
EZ
2442 /* Number of real registers. */
2443 int nregs;
2444
2445 /* Number of pseudo registers. */
2446 int npregs;
2447
2448 /* Number of total registers (the sum of nregs and npregs). */
2449 int num_tot_regs;
2450
c5aa993b
JM
2451 /* Table of register names; registers[R] is the name of the register
2452 number R. */
7a78ae4e 2453 const struct reg *regs;
c5aa993b 2454 };
c906108c 2455
489461e2
EZ
2456#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2457
2458static int
2459num_registers (const struct reg *reg_list, int num_tot_regs)
2460{
2461 int i;
2462 int nregs = 0;
2463
2464 for (i = 0; i < num_tot_regs; i++)
2465 if (!reg_list[i].pseudo)
2466 nregs++;
2467
2468 return nregs;
2469}
2470
2471static int
2472num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2473{
2474 int i;
2475 int npregs = 0;
2476
2477 for (i = 0; i < num_tot_regs; i++)
2478 if (reg_list[i].pseudo)
2479 npregs ++;
2480
2481 return npregs;
2482}
c906108c 2483
c906108c
SS
2484/* Information in this table comes from the following web sites:
2485 IBM: http://www.chips.ibm.com:80/products/embedded/
2486 Motorola: http://www.mot.com/SPS/PowerPC/
2487
2488 I'm sure I've got some of the variant descriptions not quite right.
2489 Please report any inaccuracies you find to GDB's maintainer.
2490
2491 If you add entries to this table, please be sure to allow the new
2492 value as an argument to the --with-cpu flag, in configure.in. */
2493
489461e2 2494static struct variant variants[] =
c906108c 2495{
489461e2 2496
7a78ae4e 2497 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2498 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2499 registers_powerpc},
7a78ae4e 2500 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2501 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2502 registers_power},
7a78ae4e 2503 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2504 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2505 registers_403},
7a78ae4e 2506 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2507 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2508 registers_601},
7a78ae4e 2509 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2510 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2511 registers_602},
7a78ae4e 2512 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2513 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2514 registers_603},
7a78ae4e 2515 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2516 604, -1, -1, tot_num_registers (registers_604),
2517 registers_604},
7a78ae4e 2518 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2519 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2520 registers_403GC},
7a78ae4e 2521 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2522 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2523 registers_505},
7a78ae4e 2524 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2525 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2526 registers_860},
7a78ae4e 2527 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2528 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2529 registers_750},
1fcc0bb8 2530 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2531 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2532 registers_7400},
c8001721
EZ
2533 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2534 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2535 registers_e500},
7a78ae4e 2536
5d57ee30
KB
2537 /* 64-bit */
2538 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2539 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2540 registers_powerpc},
7a78ae4e 2541 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2542 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2543 registers_powerpc},
5d57ee30 2544 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2545 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2546 registers_powerpc},
7a78ae4e 2547 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2548 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2549 registers_powerpc},
5d57ee30 2550 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2551 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2552 registers_powerpc},
5d57ee30 2553 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2554 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2555 registers_powerpc},
5d57ee30 2556
64366f1c 2557 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2558 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2559 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2560 registers_power},
7a78ae4e 2561 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2562 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2563 registers_power},
7a78ae4e 2564 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2565 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2566 registers_power},
7a78ae4e 2567
489461e2 2568 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2569};
2570
64366f1c 2571/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2572
2573static void
2574init_variants (void)
2575{
2576 struct variant *v;
2577
2578 for (v = variants; v->name; v++)
2579 {
2580 if (v->nregs == -1)
2581 v->nregs = num_registers (v->regs, v->num_tot_regs);
2582 if (v->npregs == -1)
2583 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2584 }
2585}
c906108c 2586
7a78ae4e 2587/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2588 MACH. If no such variant exists, return null. */
c906108c 2589
7a78ae4e
ND
2590static const struct variant *
2591find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2592{
7a78ae4e 2593 const struct variant *v;
c5aa993b 2594
7a78ae4e
ND
2595 for (v = variants; v->name; v++)
2596 if (arch == v->arch && mach == v->mach)
2597 return v;
c906108c 2598
7a78ae4e 2599 return NULL;
c906108c 2600}
9364a0ef
EZ
2601
2602static int
2603gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2604{
2605 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2606 return print_insn_big_powerpc (memaddr, info);
2607 else
2608 return print_insn_little_powerpc (memaddr, info);
2609}
7a78ae4e 2610\f
7a78ae4e
ND
2611/* Initialize the current architecture based on INFO. If possible, re-use an
2612 architecture from ARCHES, which is a list of architectures already created
2613 during this debugging session.
c906108c 2614
7a78ae4e 2615 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2616 a binary file. */
c906108c 2617
7a78ae4e
ND
2618static struct gdbarch *
2619rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2620{
2621 struct gdbarch *gdbarch;
2622 struct gdbarch_tdep *tdep;
9aa1e687 2623 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2624 struct reg *regs;
2625 const struct variant *v;
2626 enum bfd_architecture arch;
2627 unsigned long mach;
2628 bfd abfd;
7b112f9c 2629 int sysv_abi;
5bf1c677 2630 asection *sect;
7a78ae4e 2631
9aa1e687 2632 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2633 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2634
9aa1e687
KB
2635 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2636 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2637
2638 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2639
e712c1cf 2640 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2641 that, else choose a likely default. */
9aa1e687 2642 if (from_xcoff_exec)
c906108c 2643 {
11ed25ac 2644 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2645 wordsize = 8;
2646 else
2647 wordsize = 4;
c906108c 2648 }
9aa1e687
KB
2649 else if (from_elf_exec)
2650 {
2651 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2652 wordsize = 8;
2653 else
2654 wordsize = 4;
2655 }
c906108c 2656 else
7a78ae4e 2657 {
27b15785
KB
2658 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2659 wordsize = info.bfd_arch_info->bits_per_word /
2660 info.bfd_arch_info->bits_per_byte;
2661 else
2662 wordsize = 4;
7a78ae4e 2663 }
c906108c 2664
64366f1c 2665 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2666 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2667 arches != NULL;
2668 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2669 {
2670 /* Word size in the various PowerPC bfd_arch_info structs isn't
2671 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2672 separate word size check. */
7a78ae4e 2673 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2674 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2675 return arches->gdbarch;
2676 }
c906108c 2677
7a78ae4e
ND
2678 /* None found, create a new architecture from INFO, whose bfd_arch_info
2679 validity depends on the source:
2680 - executable useless
2681 - rs6000_host_arch() good
2682 - core file good
2683 - "set arch" trust blindly
2684 - GDB startup useless but harmless */
c906108c 2685
9aa1e687 2686 if (!from_xcoff_exec)
c906108c 2687 {
b732d07d 2688 arch = info.bfd_arch_info->arch;
7a78ae4e 2689 mach = info.bfd_arch_info->mach;
c906108c 2690 }
7a78ae4e 2691 else
c906108c 2692 {
7a78ae4e 2693 arch = bfd_arch_powerpc;
35cec841 2694 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2695 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2696 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2697 }
2698 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2699 tdep->wordsize = wordsize;
5bf1c677
EZ
2700
2701 /* For e500 executables, the apuinfo section is of help here. Such
2702 section contains the identifier and revision number of each
2703 Application-specific Processing Unit that is present on the
2704 chip. The content of the section is determined by the assembler
2705 which looks at each instruction and determines which unit (and
2706 which version of it) can execute it. In our case we just look for
2707 the existance of the section. */
2708
2709 if (info.abfd)
2710 {
2711 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2712 if (sect)
2713 {
2714 arch = info.bfd_arch_info->arch;
2715 mach = bfd_mach_ppc_e500;
2716 bfd_default_set_arch_mach (&abfd, arch, mach);
2717 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2718 }
2719 }
2720
7a78ae4e
ND
2721 gdbarch = gdbarch_alloc (&info, tdep);
2722 power = arch == bfd_arch_rs6000;
2723
489461e2
EZ
2724 /* Initialize the number of real and pseudo registers in each variant. */
2725 init_variants ();
2726
64366f1c 2727 /* Choose variant. */
7a78ae4e
ND
2728 v = find_variant_by_arch (arch, mach);
2729 if (!v)
dd47e6fd
EZ
2730 return NULL;
2731
7a78ae4e
ND
2732 tdep->regs = v->regs;
2733
2188cbdd
EZ
2734 tdep->ppc_gp0_regnum = 0;
2735 tdep->ppc_gplast_regnum = 31;
2736 tdep->ppc_toc_regnum = 2;
2737 tdep->ppc_ps_regnum = 65;
2738 tdep->ppc_cr_regnum = 66;
2739 tdep->ppc_lr_regnum = 67;
2740 tdep->ppc_ctr_regnum = 68;
2741 tdep->ppc_xer_regnum = 69;
2742 if (v->mach == bfd_mach_ppc_601)
2743 tdep->ppc_mq_regnum = 124;
e3f36dbd 2744 else if (power)
2188cbdd 2745 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2746 else
2747 tdep->ppc_mq_regnum = -1;
2748 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2749
c8001721
EZ
2750 set_gdbarch_pc_regnum (gdbarch, 64);
2751 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2752 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75 2753 if (sysv_abi && wordsize == 8)
05580c65 2754 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 2755 else if (sysv_abi && wordsize == 4)
05580c65 2756 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
2757 else
2758 {
2759 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2760 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2761 }
c8001721 2762
1fcc0bb8
EZ
2763 if (v->arch == bfd_arch_powerpc)
2764 switch (v->mach)
2765 {
2766 case bfd_mach_ppc:
2767 tdep->ppc_vr0_regnum = 71;
2768 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2769 tdep->ppc_ev0_regnum = -1;
2770 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2771 break;
2772 case bfd_mach_ppc_7400:
2773 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2774 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2775 tdep->ppc_ev0_regnum = -1;
2776 tdep->ppc_ev31_regnum = -1;
2777 break;
2778 case bfd_mach_ppc_e500:
338ef23d
AC
2779 tdep->ppc_gp0_regnum = 41;
2780 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2781 tdep->ppc_toc_regnum = -1;
2782 tdep->ppc_ps_regnum = 1;
2783 tdep->ppc_cr_regnum = 2;
2784 tdep->ppc_lr_regnum = 3;
2785 tdep->ppc_ctr_regnum = 4;
2786 tdep->ppc_xer_regnum = 5;
2787 tdep->ppc_ev0_regnum = 7;
2788 tdep->ppc_ev31_regnum = 38;
2789 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2790 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2791 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2792 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2793 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2794 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2795 break;
2796 default:
2797 tdep->ppc_vr0_regnum = -1;
2798 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2799 tdep->ppc_ev0_regnum = -1;
2800 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2801 break;
2802 }
2803
338ef23d
AC
2804 /* Sanity check on registers. */
2805 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2806
a88376a3
KB
2807 /* Set lr_frame_offset. */
2808 if (wordsize == 8)
2809 tdep->lr_frame_offset = 16;
2810 else if (sysv_abi)
2811 tdep->lr_frame_offset = 4;
2812 else
2813 tdep->lr_frame_offset = 8;
2814
2815 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2816 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2817 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2818 {
2819 tdep->regoff[i] = off;
2820 off += regsize (v->regs + i, wordsize);
c906108c
SS
2821 }
2822
56a6dfb9
KB
2823 /* Select instruction printer. */
2824 if (arch == power)
9364a0ef 2825 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2826 else
9364a0ef 2827 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2828
7a78ae4e 2829 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2830
2831 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2832 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2833 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2834 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2835 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2836 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2837 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2838 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2839
2840 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2841 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2842 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2843 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2844 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2845 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2846 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2847 if (sysv_abi)
2848 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2849 else
2850 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2851 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2852
11269d7e 2853 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2854 if (sysv_abi && wordsize == 8)
2855 /* PPC64 SYSV. */
2856 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2857 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2858 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2859 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2860 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2861 224. */
2862 set_gdbarch_frame_red_zone_size (gdbarch, 224);
a59fe496 2863 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e 2864 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2865
781a750d
AC
2866 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2867 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2868 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2869 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2870 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2871 is correct for the SysV ABI when the wordsize is 8, but I'm also
2872 fairly certain that ppc_sysv_abi_push_arguments() will give even
2873 worse results since it only works for 32-bit code. So, for the moment,
2874 we're better off calling rs6000_push_arguments() since it works for
2875 64-bit code. At some point in the future, this matter needs to be
2876 revisited. */
2877 if (sysv_abi && wordsize == 4)
77b2b6d4 2878 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2879 else if (sysv_abi && wordsize == 8)
2880 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2881 else
77b2b6d4 2882 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2883
11269d7e 2884 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2885 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2886
2887 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2888 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2889 set_gdbarch_decr_pc_after_break (gdbarch, 0);
7a78ae4e
ND
2890 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2891
6066c3de
AC
2892 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2893 for the descriptor and ".FN" for the entry-point -- a user
2894 specifying "break FN" will unexpectedly end up with a breakpoint
2895 on the descriptor and not the function. This architecture method
2896 transforms any breakpoints on descriptors into breakpoints on the
2897 corresponding entry point. */
2898 if (sysv_abi && wordsize == 8)
2899 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2900
7a78ae4e
ND
2901 /* Not sure on this. FIXMEmgo */
2902 set_gdbarch_frame_args_skip (gdbarch, 8);
2903
05580c65 2904 if (!sysv_abi)
7b112f9c 2905 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2906 rs6000_use_struct_convention);
8e0662df 2907
7b112f9c
JT
2908 set_gdbarch_frameless_function_invocation (gdbarch,
2909 rs6000_frameless_function_invocation);
618ce49f 2910 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2911 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2912
f30ee0bc 2913 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2914 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2915
15813d3f
AC
2916 if (!sysv_abi)
2917 {
2918 /* Handle RS/6000 function pointers (which are really function
2919 descriptors). */
f517ea4e
PS
2920 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2921 rs6000_convert_from_func_ptr_addr);
9aa1e687 2922 }
42efa47a
AC
2923 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2924 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2925 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 2926
143985b7
AF
2927 /* Helpers for function argument information. */
2928 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2929
7b112f9c 2930 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2931 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2932
ef5200c1
AC
2933 if (from_xcoff_exec)
2934 {
2935 /* NOTE: jimix/2003-06-09: This test should really check for
2936 GDB_OSABI_AIX when that is defined and becomes
2937 available. (Actually, once things are properly split apart,
2938 the test goes away.) */
2939 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2940 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2941 }
2942
7a78ae4e 2943 return gdbarch;
c906108c
SS
2944}
2945
7b112f9c
JT
2946static void
2947rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2948{
2949 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2950
2951 if (tdep == NULL)
2952 return;
2953
4be87837 2954 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2955}
2956
1fcc0bb8
EZ
2957static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2958
2959static void
2960rs6000_info_powerpc_command (char *args, int from_tty)
2961{
2962 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2963}
2964
c906108c
SS
2965/* Initialization code. */
2966
a78f21af 2967extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2968
c906108c 2969void
fba45db2 2970_initialize_rs6000_tdep (void)
c906108c 2971{
7b112f9c
JT
2972 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2973 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2974
2975 /* Add root prefix command for "info powerpc" commands */
2976 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2977 "Various POWERPC info specific commands.",
2978 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2979}
This page took 0.776866 seconds and 4 git commands to generate.