From Jimi X <jimix@watson.ibm.com>:
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
2a873819 3 1998, 1999, 2000, 2001, 2002
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
7a78ae4e 37
2fccf04a 38#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 39#include "coff/internal.h" /* for libcoff.h */
2fccf04a 40#include "libcoff.h" /* for xcoff_data */
7a78ae4e 41
9aa1e687 42#include "elf-bfd.h"
7a78ae4e 43
6ded7999 44#include "solib-svr4.h"
9aa1e687 45#include "ppc-tdep.h"
7a78ae4e
ND
46
47/* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54#define SIG_FRAME_PC_OFFSET 96
55#define SIG_FRAME_LR_OFFSET 108
56#define SIG_FRAME_FP_OFFSET 284
57
7a78ae4e
ND
58/* To be used by skip_prologue. */
59
60struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 67 int saved_vr; /* smallest # of saved vr */
7a78ae4e
ND
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 73 int vr_offset; /* offset of saved vrs from prev sp */
7a78ae4e
ND
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
6be8bc0c 76 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
77 };
78
79/* Description of a single register. */
80
81struct reg
82 {
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
87 };
88
7a78ae4e
ND
89/* Return the current architecture's gdbarch_tdep structure. */
90
91#define TDEP gdbarch_tdep (current_gdbarch)
c906108c
SS
92
93/* Breakpoint shadows for the single step instructions will be kept here. */
94
c5aa993b
JM
95static struct sstep_breaks
96 {
97 /* Address, or 0 if this is not in use. */
98 CORE_ADDR address;
99 /* Shadow contents. */
100 char data[4];
101 }
102stepBreaks[2];
c906108c
SS
103
104/* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
107
7a78ae4e
ND
108CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
109
110/* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
112
113void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
114
115/* Static function prototypes */
116
a14ed312
KB
117static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
118 CORE_ADDR safety);
077276e8
KB
119static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
7a78ae4e
ND
121static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 124
7a78ae4e 125/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 126
7a78ae4e
ND
127static CORE_ADDR
128read_memory_addr (CORE_ADDR memaddr, int len)
129{
130 return read_memory_unsigned_integer (memaddr, len);
131}
c906108c 132
7a78ae4e
ND
133static CORE_ADDR
134rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
135{
136 struct rs6000_framedata frame;
077276e8 137 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
138 return pc;
139}
140
141
c906108c
SS
142/* Fill in fi->saved_regs */
143
144struct frame_extra_info
145{
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
150 table. FIXME. */
c5aa993b 151 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
152};
153
9aa1e687 154void
7a78ae4e 155rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 156{
c5aa993b 157 fi->extra_info = (struct frame_extra_info *)
c906108c
SS
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
7a292a7a 162 /* We're in get_prev_frame */
c906108c
SS
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
167}
168
7a78ae4e
ND
169/* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
c906108c 174
7a78ae4e
ND
175/* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
177 and fpr's only. */
178
9aa1e687 179void
7a78ae4e 180rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
181{
182 frame_get_saved_regs (fi, NULL);
183}
184
7a78ae4e
ND
185static CORE_ADDR
186rs6000_frame_args_address (struct frame_info *fi)
c906108c
SS
187{
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
190 else
191 return frame_initial_stack_address (fi);
192}
193
7a78ae4e
ND
194/* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
198
199static CORE_ADDR
200rs6000_saved_pc_after_call (struct frame_info *fi)
201{
2188cbdd 202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 203}
c906108c
SS
204
205/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
206
207static CORE_ADDR
7a78ae4e 208branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
209{
210 CORE_ADDR dest;
211 int immediate;
212 int absolute;
213 int ext_op;
214
215 absolute = (int) ((instr >> 1) & 1);
216
c5aa993b
JM
217 switch (opcode)
218 {
219 case 18:
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
221 if (absolute)
222 dest = immediate;
223 else
224 dest = pc + immediate;
225 break;
226
227 case 16:
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
229 if (absolute)
230 dest = immediate;
231 else
232 dest = pc + immediate;
233 break;
234
235 case 19:
236 ext_op = (instr >> 1) & 0x3ff;
237
238 if (ext_op == 16) /* br conditional register */
239 {
2188cbdd 240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
241
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
247 {
248 struct frame_info *fi;
249
250 fi = get_current_frame ();
251 if (fi != NULL)
7a78ae4e
ND
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
253 TDEP->wordsize);
c5aa993b
JM
254 }
255 }
256
257 else if (ext_op == 528) /* br cond to count reg */
258 {
2188cbdd 259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
260
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
266 }
267 else
268 return -1;
269 break;
c906108c 270
c5aa993b
JM
271 default:
272 return -1;
273 }
c906108c
SS
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
275}
276
277
278/* Sequence of bytes for breakpoint instruction. */
279
280#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
282
7a78ae4e
ND
283static unsigned char *
284rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
285{
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
288 *bp_size = 4;
d7449b42 289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
290 return big_breakpoint;
291 else
292 return little_breakpoint;
293}
294
295
296/* AIX does not support PT_STEP. Simulate it. */
297
298void
379d08a1
AC
299rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
c906108c
SS
301{
302#define INSNLEN(OPCODE) 4
303
304 static char le_breakp[] = LITTLE_BREAKPOINT;
305 static char be_breakp[] = BIG_BREAKPOINT;
d7449b42 306 char *breakp = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? be_breakp : le_breakp;
c906108c
SS
307 int ii, insn;
308 CORE_ADDR loc;
309 CORE_ADDR breaks[2];
310 int opcode;
311
c5aa993b
JM
312 if (insert_breakpoints_p)
313 {
c906108c 314
c5aa993b 315 loc = read_pc ();
c906108c 316
c5aa993b 317 insn = read_memory_integer (loc, 4);
c906108c 318
c5aa993b
JM
319 breaks[0] = loc + INSNLEN (insn);
320 opcode = insn >> 26;
321 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 322
c5aa993b
JM
323 /* Don't put two breakpoints on the same address. */
324 if (breaks[1] == breaks[0])
325 breaks[1] = -1;
c906108c 326
c5aa993b 327 stepBreaks[1].address = 0;
c906108c 328
c5aa993b
JM
329 for (ii = 0; ii < 2; ++ii)
330 {
c906108c 331
c5aa993b
JM
332 /* ignore invalid breakpoint. */
333 if (breaks[ii] == -1)
334 continue;
c906108c 335
c5aa993b 336 read_memory (breaks[ii], stepBreaks[ii].data, 4);
c906108c 337
c5aa993b
JM
338 write_memory (breaks[ii], breakp, 4);
339 stepBreaks[ii].address = breaks[ii];
340 }
c906108c 341
c5aa993b
JM
342 }
343 else
344 {
c906108c 345
c5aa993b
JM
346 /* remove step breakpoints. */
347 for (ii = 0; ii < 2; ++ii)
348 if (stepBreaks[ii].address != 0)
349 write_memory
350 (stepBreaks[ii].address, stepBreaks[ii].data, 4);
c906108c 351
c5aa993b 352 }
c906108c 353 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 354 /* What errors? {read,write}_memory call error(). */
c906108c
SS
355}
356
357
358/* return pc value after skipping a function prologue and also return
359 information about a function frame.
360
361 in struct rs6000_framedata fdata:
c5aa993b
JM
362 - frameless is TRUE, if function does not have a frame.
363 - nosavedpc is TRUE, if function does not save %pc value in its frame.
364 - offset is the initial size of this stack frame --- the amount by
365 which we decrement the sp to allocate the frame.
366 - saved_gpr is the number of the first saved gpr.
367 - saved_fpr is the number of the first saved fpr.
6be8bc0c 368 - saved_vr is the number of the first saved vr.
c5aa993b
JM
369 - alloca_reg is the number of the register used for alloca() handling.
370 Otherwise -1.
371 - gpr_offset is the offset of the first saved gpr from the previous frame.
372 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 373 - vr_offset is the offset of the first saved vr from the previous frame.
c5aa993b
JM
374 - lr_offset is the offset of the saved lr
375 - cr_offset is the offset of the saved cr
6be8bc0c 376 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 377 */
c906108c
SS
378
379#define SIGNED_SHORT(x) \
380 ((sizeof (short) == 2) \
381 ? ((int)(short)(x)) \
382 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
383
384#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
385
55d05f3b
KB
386/* Limit the number of skipped non-prologue instructions, as the examining
387 of the prologue is expensive. */
388static int max_skip_non_prologue_insns = 10;
389
390/* Given PC representing the starting address of a function, and
391 LIM_PC which is the (sloppy) limit to which to scan when looking
392 for a prologue, attempt to further refine this limit by using
393 the line data in the symbol table. If successful, a better guess
394 on where the prologue ends is returned, otherwise the previous
395 value of lim_pc is returned. */
396static CORE_ADDR
397refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
398{
399 struct symtab_and_line prologue_sal;
400
401 prologue_sal = find_pc_line (pc, 0);
402 if (prologue_sal.line != 0)
403 {
404 int i;
405 CORE_ADDR addr = prologue_sal.end;
406
407 /* Handle the case in which compiler's optimizer/scheduler
408 has moved instructions into the prologue. We scan ahead
409 in the function looking for address ranges whose corresponding
410 line number is less than or equal to the first one that we
411 found for the function. (It can be less than when the
412 scheduler puts a body instruction before the first prologue
413 instruction.) */
414 for (i = 2 * max_skip_non_prologue_insns;
415 i > 0 && (lim_pc == 0 || addr < lim_pc);
416 i--)
417 {
418 struct symtab_and_line sal;
419
420 sal = find_pc_line (addr, 0);
421 if (sal.line == 0)
422 break;
423 if (sal.line <= prologue_sal.line
424 && sal.symtab == prologue_sal.symtab)
425 {
426 prologue_sal = sal;
427 }
428 addr = sal.end;
429 }
430
431 if (lim_pc == 0 || prologue_sal.end < lim_pc)
432 lim_pc = prologue_sal.end;
433 }
434 return lim_pc;
435}
436
437
7a78ae4e 438static CORE_ADDR
077276e8 439skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
440{
441 CORE_ADDR orig_pc = pc;
55d05f3b 442 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 443 CORE_ADDR li_found_pc = 0;
c906108c
SS
444 char buf[4];
445 unsigned long op;
446 long offset = 0;
6be8bc0c 447 long vr_saved_offset = 0;
482ca3f5
KB
448 int lr_reg = -1;
449 int cr_reg = -1;
6be8bc0c
EZ
450 int vr_reg = -1;
451 int vrsave_reg = -1;
c906108c
SS
452 int reg;
453 int framep = 0;
454 int minimal_toc_loaded = 0;
ddb20c56 455 int prev_insn_was_prologue_insn = 1;
55d05f3b
KB
456 int num_skip_non_prologue_insns = 0;
457
458 /* Attempt to find the end of the prologue when no limit is specified.
459 Note that refine_prologue_limit() has been written so that it may
460 be used to "refine" the limits of non-zero PC values too, but this
461 is only safe if we 1) trust the line information provided by the
462 compiler and 2) iterate enough to actually find the end of the
463 prologue.
464
465 It may become a good idea at some point (for both performance and
466 accuracy) to unconditionally call refine_prologue_limit(). But,
467 until we can make a clear determination that this is beneficial,
468 we'll play it safe and only use it to obtain a limit when none
469 has been specified. */
470 if (lim_pc == 0)
471 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 472
ddb20c56 473 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
474 fdata->saved_gpr = -1;
475 fdata->saved_fpr = -1;
6be8bc0c 476 fdata->saved_vr = -1;
c906108c
SS
477 fdata->alloca_reg = -1;
478 fdata->frameless = 1;
479 fdata->nosavedpc = 1;
480
55d05f3b 481 for (;; pc += 4)
c906108c 482 {
ddb20c56
KB
483 /* Sometimes it isn't clear if an instruction is a prologue
484 instruction or not. When we encounter one of these ambiguous
485 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
486 Otherwise, we'll assume that it really is a prologue instruction. */
487 if (prev_insn_was_prologue_insn)
488 last_prologue_pc = pc;
55d05f3b
KB
489
490 /* Stop scanning if we've hit the limit. */
491 if (lim_pc != 0 && pc >= lim_pc)
492 break;
493
ddb20c56
KB
494 prev_insn_was_prologue_insn = 1;
495
55d05f3b 496 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
497 if (target_read_memory (pc, buf, 4))
498 break;
499 op = extract_signed_integer (buf, 4);
c906108c 500
c5aa993b
JM
501 if ((op & 0xfc1fffff) == 0x7c0802a6)
502 { /* mflr Rx */
503 lr_reg = (op & 0x03e00000) | 0x90010000;
504 continue;
c906108c 505
c5aa993b
JM
506 }
507 else if ((op & 0xfc1fffff) == 0x7c000026)
508 { /* mfcr Rx */
509 cr_reg = (op & 0x03e00000) | 0x90010000;
510 continue;
c906108c 511
c906108c 512 }
c5aa993b
JM
513 else if ((op & 0xfc1f0000) == 0xd8010000)
514 { /* stfd Rx,NUM(r1) */
515 reg = GET_SRC_REG (op);
516 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
517 {
518 fdata->saved_fpr = reg;
519 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
520 }
521 continue;
c906108c 522
c5aa993b
JM
523 }
524 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
525 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
526 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
527 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
528 {
529
530 reg = GET_SRC_REG (op);
531 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
532 {
533 fdata->saved_gpr = reg;
7a78ae4e
ND
534 if ((op & 0xfc1f0003) == 0xf8010000)
535 op = (op >> 1) << 1;
c5aa993b
JM
536 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
537 }
538 continue;
c906108c 539
ddb20c56
KB
540 }
541 else if ((op & 0xffff0000) == 0x60000000)
542 {
543 /* nop */
544 /* Allow nops in the prologue, but do not consider them to
545 be part of the prologue unless followed by other prologue
546 instructions. */
547 prev_insn_was_prologue_insn = 0;
548 continue;
549
c906108c 550 }
c5aa993b
JM
551 else if ((op & 0xffff0000) == 0x3c000000)
552 { /* addis 0,0,NUM, used
553 for >= 32k frames */
554 fdata->offset = (op & 0x0000ffff) << 16;
555 fdata->frameless = 0;
556 continue;
557
558 }
559 else if ((op & 0xffff0000) == 0x60000000)
560 { /* ori 0,0,NUM, 2nd ha
561 lf of >= 32k frames */
562 fdata->offset |= (op & 0x0000ffff);
563 fdata->frameless = 0;
564 continue;
565
566 }
482ca3f5 567 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
568 { /* st Rx,NUM(r1)
569 where Rx == lr */
570 fdata->lr_offset = SIGNED_SHORT (op) + offset;
571 fdata->nosavedpc = 0;
572 lr_reg = 0;
573 continue;
574
575 }
482ca3f5 576 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
577 { /* st Rx,NUM(r1)
578 where Rx == cr */
579 fdata->cr_offset = SIGNED_SHORT (op) + offset;
580 cr_reg = 0;
581 continue;
582
583 }
584 else if (op == 0x48000005)
585 { /* bl .+4 used in
586 -mrelocatable */
587 continue;
588
589 }
590 else if (op == 0x48000004)
591 { /* b .+4 (xlc) */
592 break;
593
c5aa993b 594 }
6be8bc0c
EZ
595 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
596 in V.4 -mminimal-toc */
c5aa993b
JM
597 (op & 0xffff0000) == 0x3bde0000)
598 { /* addi 30,30,foo@l */
599 continue;
c906108c 600
c5aa993b
JM
601 }
602 else if ((op & 0xfc000001) == 0x48000001)
603 { /* bl foo,
604 to save fprs??? */
c906108c 605
c5aa993b 606 fdata->frameless = 0;
6be8bc0c
EZ
607 /* Don't skip over the subroutine call if it is not within
608 the first three instructions of the prologue. */
c5aa993b
JM
609 if ((pc - orig_pc) > 8)
610 break;
611
612 op = read_memory_integer (pc + 4, 4);
613
6be8bc0c
EZ
614 /* At this point, make sure this is not a trampoline
615 function (a function that simply calls another functions,
616 and nothing else). If the next is not a nop, this branch
617 was part of the function prologue. */
c5aa993b
JM
618
619 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
620 break; /* don't skip over
621 this branch */
622 continue;
623
624 /* update stack pointer */
625 }
7a78ae4e
ND
626 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
627 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
628 {
c5aa993b 629 fdata->frameless = 0;
7a78ae4e
ND
630 if ((op & 0xffff0003) == 0xf8210001)
631 op = (op >> 1) << 1;
c5aa993b
JM
632 fdata->offset = SIGNED_SHORT (op);
633 offset = fdata->offset;
634 continue;
635
636 }
637 else if (op == 0x7c21016e)
638 { /* stwux 1,1,0 */
639 fdata->frameless = 0;
640 offset = fdata->offset;
641 continue;
642
643 /* Load up minimal toc pointer */
644 }
645 else if ((op >> 22) == 0x20f
646 && !minimal_toc_loaded)
647 { /* l r31,... or l r30,... */
648 minimal_toc_loaded = 1;
649 continue;
650
f6077098
KB
651 /* move parameters from argument registers to local variable
652 registers */
653 }
654 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
655 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
656 (((op >> 21) & 31) <= 10) &&
657 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
658 {
659 continue;
660
c5aa993b
JM
661 /* store parameters in stack */
662 }
6be8bc0c 663 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 664 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
665 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
666 {
c5aa993b 667 continue;
c906108c 668
c5aa993b
JM
669 /* store parameters in stack via frame pointer */
670 }
671 else if (framep &&
672 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
673 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
674 (op & 0xfc1f0000) == 0xfc1f0000))
675 { /* frsp, fp?,NUM(r1) */
676 continue;
677
678 /* Set up frame pointer */
679 }
680 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
681 || op == 0x7c3f0b78)
682 { /* mr r31, r1 */
683 fdata->frameless = 0;
684 framep = 1;
685 fdata->alloca_reg = 31;
686 continue;
687
688 /* Another way to set up the frame pointer. */
689 }
690 else if ((op & 0xfc1fffff) == 0x38010000)
691 { /* addi rX, r1, 0x0 */
692 fdata->frameless = 0;
693 framep = 1;
694 fdata->alloca_reg = (op & ~0x38010000) >> 21;
695 continue;
c5aa993b 696 }
6be8bc0c
EZ
697 /* AltiVec related instructions. */
698 /* Store the vrsave register (spr 256) in another register for
699 later manipulation, or load a register into the vrsave
700 register. 2 instructions are used: mfvrsave and
701 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
702 and mtspr SPR256, Rn. */
703 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
704 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
705 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
706 {
707 vrsave_reg = GET_SRC_REG (op);
708 continue;
709 }
710 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
711 {
712 continue;
713 }
714 /* Store the register where vrsave was saved to onto the stack:
715 rS is the register where vrsave was stored in a previous
716 instruction. */
717 /* 100100 sssss 00001 dddddddd dddddddd */
718 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
719 {
720 if (vrsave_reg == GET_SRC_REG (op))
721 {
722 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
723 vrsave_reg = -1;
724 }
725 continue;
726 }
727 /* Compute the new value of vrsave, by modifying the register
728 where vrsave was saved to. */
729 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
730 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
731 {
732 continue;
733 }
734 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
735 in a pair of insns to save the vector registers on the
736 stack. */
737 /* 001110 00000 00000 iiii iiii iiii iiii */
738 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
739 {
740 li_found_pc = pc;
741 vr_saved_offset = SIGNED_SHORT (op);
742 }
743 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
744 /* 011111 sssss 11111 00000 00111001110 */
745 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
746 {
747 if (pc == (li_found_pc + 4))
748 {
749 vr_reg = GET_SRC_REG (op);
750 /* If this is the first vector reg to be saved, or if
751 it has a lower number than others previously seen,
752 reupdate the frame info. */
753 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
754 {
755 fdata->saved_vr = vr_reg;
756 fdata->vr_offset = vr_saved_offset + offset;
757 }
758 vr_saved_offset = -1;
759 vr_reg = -1;
760 li_found_pc = 0;
761 }
762 }
763 /* End AltiVec related instructions. */
c5aa993b
JM
764 else
765 {
55d05f3b
KB
766 /* Not a recognized prologue instruction.
767 Handle optimizer code motions into the prologue by continuing
768 the search if we have no valid frame yet or if the return
769 address is not yet saved in the frame. */
770 if (fdata->frameless == 0
771 && (lr_reg == -1 || fdata->nosavedpc == 0))
772 break;
773
774 if (op == 0x4e800020 /* blr */
775 || op == 0x4e800420) /* bctr */
776 /* Do not scan past epilogue in frameless functions or
777 trampolines. */
778 break;
779 if ((op & 0xf4000000) == 0x40000000) /* bxx */
780 /* Never skip branches. */
781 break;
782
783 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
784 /* Do not scan too many insns, scanning insns is expensive with
785 remote targets. */
786 break;
787
788 /* Continue scanning. */
789 prev_insn_was_prologue_insn = 0;
790 continue;
c5aa993b 791 }
c906108c
SS
792 }
793
794#if 0
795/* I have problems with skipping over __main() that I need to address
796 * sometime. Previously, I used to use misc_function_vector which
797 * didn't work as well as I wanted to be. -MGO */
798
799 /* If the first thing after skipping a prolog is a branch to a function,
800 this might be a call to an initializer in main(), introduced by gcc2.
801 We'd like to skip over it as well. Fortunately, xlc does some extra
802 work before calling a function right after a prologue, thus we can
803 single out such gcc2 behaviour. */
c906108c 804
c906108c 805
c5aa993b
JM
806 if ((op & 0xfc000001) == 0x48000001)
807 { /* bl foo, an initializer function? */
808 op = read_memory_integer (pc + 4, 4);
809
810 if (op == 0x4def7b82)
811 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 812
c5aa993b
JM
813 /* check and see if we are in main. If so, skip over this initializer
814 function as well. */
c906108c 815
c5aa993b 816 tmp = find_pc_misc_function (pc);
51cc5b07 817 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
818 return pc + 8;
819 }
c906108c 820 }
c906108c 821#endif /* 0 */
c5aa993b
JM
822
823 fdata->offset = -fdata->offset;
ddb20c56 824 return last_prologue_pc;
c906108c
SS
825}
826
827
828/*************************************************************************
f6077098 829 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
830 frames, etc.
831*************************************************************************/
832
c906108c 833
7a78ae4e 834/* Pop the innermost frame, go back to the caller. */
c5aa993b 835
c906108c 836static void
7a78ae4e 837rs6000_pop_frame (void)
c906108c 838{
470d5666 839 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
840 struct rs6000_framedata fdata;
841 struct frame_info *frame = get_current_frame ();
470d5666 842 int ii, wordsize;
c906108c
SS
843
844 pc = read_pc ();
845 sp = FRAME_FP (frame);
846
58223630 847 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 848 {
7a78ae4e
ND
849 generic_pop_dummy_frame ();
850 flush_cached_frames ();
851 return;
c906108c
SS
852 }
853
854 /* Make sure that all registers are valid. */
855 read_register_bytes (0, NULL, REGISTER_BYTES);
856
857 /* figure out previous %pc value. If the function is frameless, it is
858 still in the link register, otherwise walk the frames and retrieve the
859 saved %pc value in the previous frame. */
860
861 addr = get_pc_function_start (frame->pc);
077276e8 862 (void) skip_prologue (addr, frame->pc, &fdata);
c906108c 863
7a78ae4e 864 wordsize = TDEP->wordsize;
c906108c
SS
865 if (fdata.frameless)
866 prev_sp = sp;
867 else
7a78ae4e 868 prev_sp = read_memory_addr (sp, wordsize);
c906108c 869 if (fdata.lr_offset == 0)
2188cbdd 870 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 871 else
7a78ae4e 872 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
873
874 /* reset %pc value. */
875 write_register (PC_REGNUM, lr);
876
877 /* reset register values if any was saved earlier. */
878
879 if (fdata.saved_gpr != -1)
880 {
881 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
882 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
883 {
7a78ae4e
ND
884 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
885 addr += wordsize;
c5aa993b 886 }
c906108c
SS
887 }
888
889 if (fdata.saved_fpr != -1)
890 {
891 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
892 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
893 {
894 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
895 addr += 8;
896 }
c906108c
SS
897 }
898
899 write_register (SP_REGNUM, prev_sp);
900 target_store_registers (-1);
901 flush_cached_frames ();
902}
903
7a78ae4e
ND
904/* Fixup the call sequence of a dummy function, with the real function
905 address. Its arguments will be passed by gdb. */
c906108c 906
7a78ae4e
ND
907static void
908rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 909 int nargs, struct value **args, struct type *type,
7a78ae4e 910 int gcc_p)
c906108c 911{
c906108c
SS
912 int ii;
913 CORE_ADDR target_addr;
914
7a78ae4e 915 if (rs6000_find_toc_address_hook != NULL)
f6077098 916 {
7a78ae4e 917 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
918 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
919 tocvalue);
f6077098 920 }
c906108c
SS
921}
922
7a78ae4e 923/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
924 the first eight words of the argument list (that might be less than
925 eight parameters if some parameters occupy more than one word) are
7a78ae4e 926 passed in r3..r10 registers. float and double parameters are
c906108c
SS
927 passed in fpr's, in addition to that. Rest of the parameters if any
928 are passed in user stack. There might be cases in which half of the
929 parameter is copied into registers, the other half is pushed into
930 stack.
931
7a78ae4e
ND
932 Stack must be aligned on 64-bit boundaries when synthesizing
933 function calls.
934
c906108c
SS
935 If the function is returning a structure, then the return address is passed
936 in r3, then the first 7 words of the parameters can be passed in registers,
937 starting from r4. */
938
7a78ae4e 939static CORE_ADDR
ea7c478f 940rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 941 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
942{
943 int ii;
944 int len = 0;
c5aa993b
JM
945 int argno; /* current argument number */
946 int argbytes; /* current argument byte */
947 char tmp_buffer[50];
948 int f_argno = 0; /* current floating point argno */
7a78ae4e 949 int wordsize = TDEP->wordsize;
c906108c 950
ea7c478f 951 struct value *arg = 0;
c906108c
SS
952 struct type *type;
953
954 CORE_ADDR saved_sp;
955
c906108c
SS
956 /* The first eight words of ther arguments are passed in registers. Copy
957 them appropriately.
958
959 If the function is returning a `struct', then the first word (which
960 will be passed in r3) is used for struct return address. In that
961 case we should advance one word and start from r4 register to copy
962 parameters. */
963
c5aa993b 964 ii = struct_return ? 1 : 0;
c906108c
SS
965
966/*
c5aa993b
JM
967 effectively indirect call... gcc does...
968
969 return_val example( float, int);
970
971 eabi:
972 float in fp0, int in r3
973 offset of stack on overflow 8/16
974 for varargs, must go by type.
975 power open:
976 float in r3&r4, int in r5
977 offset of stack on overflow different
978 both:
979 return in r3 or f0. If no float, must study how gcc emulates floats;
980 pay attention to arg promotion.
981 User may have to cast\args to handle promotion correctly
982 since gdb won't know if prototype supplied or not.
983 */
c906108c 984
c5aa993b
JM
985 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
986 {
f6077098 987 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
988
989 arg = args[argno];
990 type = check_typedef (VALUE_TYPE (arg));
991 len = TYPE_LENGTH (type);
992
993 if (TYPE_CODE (type) == TYPE_CODE_FLT)
994 {
995
996 /* floating point arguments are passed in fpr's, as well as gpr's.
997 There are 13 fpr's reserved for passing parameters. At this point
998 there is no way we would run out of them. */
999
1000 if (len > 8)
1001 printf_unfiltered (
1002 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1003
1004 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1005 VALUE_CONTENTS (arg),
1006 len);
1007 ++f_argno;
1008 }
1009
f6077098 1010 if (len > reg_size)
c5aa993b
JM
1011 {
1012
1013 /* Argument takes more than one register. */
1014 while (argbytes < len)
1015 {
f6077098 1016 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
c5aa993b
JM
1017 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1018 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1019 (len - argbytes) > reg_size
1020 ? reg_size : len - argbytes);
1021 ++ii, argbytes += reg_size;
c5aa993b
JM
1022
1023 if (ii >= 8)
1024 goto ran_out_of_registers_for_arguments;
1025 }
1026 argbytes = 0;
1027 --ii;
1028 }
1029 else
1030 { /* Argument can fit in one register. No problem. */
d7449b42 1031 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
f6077098
KB
1032 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1033 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1034 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1035 }
1036 ++argno;
c906108c 1037 }
c906108c
SS
1038
1039ran_out_of_registers_for_arguments:
1040
7a78ae4e 1041 saved_sp = read_sp ();
f6077098 1042#ifndef ELF_OBJECT_FORMAT
7a78ae4e
ND
1043 /* location for 8 parameters are always reserved. */
1044 sp -= wordsize * 8;
f6077098 1045
7a78ae4e
ND
1046 /* another six words for back chain, TOC register, link register, etc. */
1047 sp -= wordsize * 6;
f6077098 1048
7a78ae4e
ND
1049 /* stack pointer must be quadword aligned */
1050 sp &= -16;
f6077098 1051#endif
c906108c 1052
c906108c
SS
1053 /* if there are more arguments, allocate space for them in
1054 the stack, then push them starting from the ninth one. */
1055
c5aa993b
JM
1056 if ((argno < nargs) || argbytes)
1057 {
1058 int space = 0, jj;
c906108c 1059
c5aa993b
JM
1060 if (argbytes)
1061 {
1062 space += ((len - argbytes + 3) & -4);
1063 jj = argno + 1;
1064 }
1065 else
1066 jj = argno;
c906108c 1067
c5aa993b
JM
1068 for (; jj < nargs; ++jj)
1069 {
ea7c478f 1070 struct value *val = args[jj];
c5aa993b
JM
1071 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1072 }
c906108c 1073
c5aa993b 1074 /* add location required for the rest of the parameters */
f6077098 1075 space = (space + 15) & -16;
c5aa993b 1076 sp -= space;
c906108c 1077
c5aa993b
JM
1078 /* This is another instance we need to be concerned about securing our
1079 stack space. If we write anything underneath %sp (r1), we might conflict
1080 with the kernel who thinks he is free to use this area. So, update %sp
1081 first before doing anything else. */
c906108c 1082
c5aa993b 1083 write_register (SP_REGNUM, sp);
c906108c 1084
c5aa993b
JM
1085 /* if the last argument copied into the registers didn't fit there
1086 completely, push the rest of it into stack. */
c906108c 1087
c5aa993b
JM
1088 if (argbytes)
1089 {
1090 write_memory (sp + 24 + (ii * 4),
1091 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1092 len - argbytes);
1093 ++argno;
1094 ii += ((len - argbytes + 3) & -4) / 4;
1095 }
c906108c 1096
c5aa993b
JM
1097 /* push the rest of the arguments into stack. */
1098 for (; argno < nargs; ++argno)
1099 {
c906108c 1100
c5aa993b
JM
1101 arg = args[argno];
1102 type = check_typedef (VALUE_TYPE (arg));
1103 len = TYPE_LENGTH (type);
c906108c
SS
1104
1105
c5aa993b
JM
1106 /* float types should be passed in fpr's, as well as in the stack. */
1107 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1108 {
c906108c 1109
c5aa993b
JM
1110 if (len > 8)
1111 printf_unfiltered (
1112 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1113
c5aa993b
JM
1114 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1115 VALUE_CONTENTS (arg),
1116 len);
1117 ++f_argno;
1118 }
c906108c 1119
c5aa993b
JM
1120 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1121 ii += ((len + 3) & -4) / 4;
1122 }
c906108c 1123 }
c906108c
SS
1124 else
1125 /* Secure stack areas first, before doing anything else. */
1126 write_register (SP_REGNUM, sp);
1127
c906108c
SS
1128 /* set back chain properly */
1129 store_address (tmp_buffer, 4, saved_sp);
1130 write_memory (sp, tmp_buffer, 4);
1131
1132 target_store_registers (-1);
1133 return sp;
1134}
c906108c
SS
1135
1136/* Function: ppc_push_return_address (pc, sp)
1137 Set up the return address for the inferior function call. */
1138
7a78ae4e
ND
1139static CORE_ADDR
1140ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1141{
2188cbdd
EZ
1142 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1143 CALL_DUMMY_ADDRESS ());
c906108c
SS
1144 return sp;
1145}
1146
7a78ae4e
ND
1147/* Extract a function return value of type TYPE from raw register array
1148 REGBUF, and copy that return value into VALBUF in virtual format. */
c906108c 1149
7a78ae4e
ND
1150static void
1151rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1152{
1153 int offset = 0;
1154
c5aa993b
JM
1155 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1156 {
c906108c 1157
c5aa993b
JM
1158 double dd;
1159 float ff;
1160 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1161 We need to truncate the return value into float size (4 byte) if
1162 necessary. */
c906108c 1163
c5aa993b
JM
1164 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1165 memcpy (valbuf,
1166 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1167 TYPE_LENGTH (valtype));
1168 else
1169 { /* float */
1170 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1171 ff = (float) dd;
1172 memcpy (valbuf, &ff, sizeof (float));
1173 }
1174 }
1175 else
1176 {
1177 /* return value is copied starting from r3. */
d7449b42 1178 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1179 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1180 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1181
1182 memcpy (valbuf,
1183 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1184 TYPE_LENGTH (valtype));
c906108c 1185 }
c906108c
SS
1186}
1187
7a78ae4e 1188/* Keep structure return address in this variable.
c906108c
SS
1189 FIXME: This is a horrid kludge which should not be allowed to continue
1190 living. This only allows a single nested call to a structure-returning
1191 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1192
7a78ae4e 1193static CORE_ADDR rs6000_struct_return_address;
c906108c 1194
977adac5
ND
1195/* Return whether handle_inferior_event() should proceed through code
1196 starting at PC in function NAME when stepping.
1197
1198 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1199 handle memory references that are too distant to fit in instructions
1200 generated by the compiler. For example, if 'foo' in the following
1201 instruction:
1202
1203 lwz r9,foo(r2)
1204
1205 is greater than 32767, the linker might replace the lwz with a branch to
1206 somewhere in @FIX1 that does the load in 2 instructions and then branches
1207 back to where execution should continue.
1208
1209 GDB should silently step over @FIX code, just like AIX dbx does.
1210 Unfortunately, the linker uses the "b" instruction for the branches,
1211 meaning that the link register doesn't get set. Therefore, GDB's usual
1212 step_over_function() mechanism won't work.
1213
1214 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1215 in handle_inferior_event() to skip past @FIX code. */
1216
1217int
1218rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1219{
1220 return name && !strncmp (name, "@FIX", 4);
1221}
1222
1223/* Skip code that the user doesn't want to see when stepping:
1224
1225 1. Indirect function calls use a piece of trampoline code to do context
1226 switching, i.e. to set the new TOC table. Skip such code if we are on
1227 its first instruction (as when we have single-stepped to here).
1228
1229 2. Skip shared library trampoline code (which is different from
c906108c 1230 indirect function call trampolines).
977adac5
ND
1231
1232 3. Skip bigtoc fixup code.
1233
c906108c 1234 Result is desired PC to step until, or NULL if we are not in
977adac5 1235 code that should be skipped. */
c906108c
SS
1236
1237CORE_ADDR
7a78ae4e 1238rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1239{
1240 register unsigned int ii, op;
977adac5 1241 int rel;
c906108c 1242 CORE_ADDR solib_target_pc;
977adac5 1243 struct minimal_symbol *msymbol;
c906108c 1244
c5aa993b
JM
1245 static unsigned trampoline_code[] =
1246 {
1247 0x800b0000, /* l r0,0x0(r11) */
1248 0x90410014, /* st r2,0x14(r1) */
1249 0x7c0903a6, /* mtctr r0 */
1250 0x804b0004, /* l r2,0x4(r11) */
1251 0x816b0008, /* l r11,0x8(r11) */
1252 0x4e800420, /* bctr */
1253 0x4e800020, /* br */
1254 0
c906108c
SS
1255 };
1256
977adac5
ND
1257 /* Check for bigtoc fixup code. */
1258 msymbol = lookup_minimal_symbol_by_pc (pc);
1259 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1260 {
1261 /* Double-check that the third instruction from PC is relative "b". */
1262 op = read_memory_integer (pc + 8, 4);
1263 if ((op & 0xfc000003) == 0x48000000)
1264 {
1265 /* Extract bits 6-29 as a signed 24-bit relative word address and
1266 add it to the containing PC. */
1267 rel = ((int)(op << 6) >> 6);
1268 return pc + 8 + rel;
1269 }
1270 }
1271
c906108c
SS
1272 /* If pc is in a shared library trampoline, return its target. */
1273 solib_target_pc = find_solib_trampoline_target (pc);
1274 if (solib_target_pc)
1275 return solib_target_pc;
1276
c5aa993b
JM
1277 for (ii = 0; trampoline_code[ii]; ++ii)
1278 {
1279 op = read_memory_integer (pc + (ii * 4), 4);
1280 if (op != trampoline_code[ii])
1281 return 0;
1282 }
1283 ii = read_register (11); /* r11 holds destination addr */
7a78ae4e 1284 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
c906108c
SS
1285 return pc;
1286}
1287
1288/* Determines whether the function FI has a frame on the stack or not. */
1289
9aa1e687 1290int
c877c8e6 1291rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1292{
1293 CORE_ADDR func_start;
1294 struct rs6000_framedata fdata;
1295
1296 /* Don't even think about framelessness except on the innermost frame
1297 or if the function was interrupted by a signal. */
1298 if (fi->next != NULL && !fi->next->signal_handler_caller)
1299 return 0;
c5aa993b 1300
c906108c
SS
1301 func_start = get_pc_function_start (fi->pc);
1302
1303 /* If we failed to find the start of the function, it is a mistake
1304 to inspect the instructions. */
1305
1306 if (!func_start)
1307 {
1308 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b
JM
1309 function pointer, normally causing an immediate core dump of the
1310 inferior. Mark function as frameless, as the inferior has no chance
1311 of setting up a stack frame. */
c906108c
SS
1312 if (fi->pc == 0)
1313 return 1;
1314 else
1315 return 0;
1316 }
1317
077276e8 1318 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1319 return fdata.frameless;
1320}
1321
1322/* Return the PC saved in a frame */
1323
9aa1e687 1324CORE_ADDR
c877c8e6 1325rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1326{
1327 CORE_ADDR func_start;
1328 struct rs6000_framedata fdata;
7a78ae4e 1329 int wordsize = TDEP->wordsize;
c906108c
SS
1330
1331 if (fi->signal_handler_caller)
7a78ae4e 1332 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
c906108c 1333
7a78ae4e
ND
1334 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1335 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
c906108c
SS
1336
1337 func_start = get_pc_function_start (fi->pc);
1338
1339 /* If we failed to find the start of the function, it is a mistake
1340 to inspect the instructions. */
1341 if (!func_start)
1342 return 0;
1343
077276e8 1344 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1345
1346 if (fdata.lr_offset == 0 && fi->next != NULL)
1347 {
1348 if (fi->next->signal_handler_caller)
7a78ae4e
ND
1349 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1350 wordsize);
c906108c 1351 else
7a78ae4e
ND
1352 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1353 wordsize);
c906108c
SS
1354 }
1355
1356 if (fdata.lr_offset == 0)
2188cbdd 1357 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1358
7a78ae4e 1359 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1360}
1361
1362/* If saved registers of frame FI are not known yet, read and cache them.
1363 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1364 in which case the framedata are read. */
1365
1366static void
7a78ae4e 1367frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1368{
c5aa993b 1369 CORE_ADDR frame_addr;
c906108c 1370 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1371 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1372 int wordsize = tdep->wordsize;
c906108c
SS
1373
1374 if (fi->saved_regs)
1375 return;
c5aa993b 1376
c906108c
SS
1377 if (fdatap == NULL)
1378 {
1379 fdatap = &work_fdata;
077276e8 1380 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
c906108c
SS
1381 }
1382
1383 frame_saved_regs_zalloc (fi);
1384
1385 /* If there were any saved registers, figure out parent's stack
1386 pointer. */
1387 /* The following is true only if the frame doesn't have a call to
1388 alloca(), FIXME. */
1389
6be8bc0c
EZ
1390 if (fdatap->saved_fpr == 0
1391 && fdatap->saved_gpr == 0
1392 && fdatap->saved_vr == 0
1393 && fdatap->lr_offset == 0
1394 && fdatap->cr_offset == 0
1395 && fdatap->vr_offset == 0)
c906108c
SS
1396 frame_addr = 0;
1397 else if (fi->prev && fi->prev->frame)
1398 frame_addr = fi->prev->frame;
1399 else
7a78ae4e 1400 frame_addr = read_memory_addr (fi->frame, wordsize);
c5aa993b 1401
c906108c
SS
1402 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1403 All fpr's from saved_fpr to fp31 are saved. */
1404
1405 if (fdatap->saved_fpr >= 0)
1406 {
1407 int i;
7a78ae4e 1408 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1409 for (i = fdatap->saved_fpr; i < 32; i++)
1410 {
7a78ae4e
ND
1411 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1412 fpr_addr += 8;
c906108c
SS
1413 }
1414 }
1415
1416 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1417 All gpr's from saved_gpr to gpr31 are saved. */
1418
1419 if (fdatap->saved_gpr >= 0)
1420 {
1421 int i;
7a78ae4e 1422 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1423 for (i = fdatap->saved_gpr; i < 32; i++)
1424 {
7a78ae4e
ND
1425 fi->saved_regs[i] = gpr_addr;
1426 gpr_addr += wordsize;
c906108c
SS
1427 }
1428 }
1429
6be8bc0c
EZ
1430 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1431 All vr's from saved_vr to vr31 are saved. */
1432 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1433 {
1434 if (fdatap->saved_vr >= 0)
1435 {
1436 int i;
1437 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1438 for (i = fdatap->saved_vr; i < 32; i++)
1439 {
1440 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1441 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1442 }
1443 }
1444 }
1445
c906108c
SS
1446 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1447 the CR. */
1448 if (fdatap->cr_offset != 0)
6be8bc0c 1449 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1450
1451 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1452 the LR. */
1453 if (fdatap->lr_offset != 0)
6be8bc0c
EZ
1454 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1455
1456 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1457 the VRSAVE. */
1458 if (fdatap->vrsave_offset != 0)
1459 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1460}
1461
1462/* Return the address of a frame. This is the inital %sp value when the frame
1463 was first allocated. For functions calling alloca(), it might be saved in
1464 an alloca register. */
1465
1466static CORE_ADDR
7a78ae4e 1467frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1468{
1469 CORE_ADDR tmpaddr;
1470 struct rs6000_framedata fdata;
1471 struct frame_info *callee_fi;
1472
1473 /* if the initial stack pointer (frame address) of this frame is known,
1474 just return it. */
1475
1476 if (fi->extra_info->initial_sp)
1477 return fi->extra_info->initial_sp;
1478
1479 /* find out if this function is using an alloca register.. */
1480
077276e8 1481 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
c906108c
SS
1482
1483 /* if saved registers of this frame are not known yet, read and cache them. */
1484
1485 if (!fi->saved_regs)
1486 frame_get_saved_regs (fi, &fdata);
1487
1488 /* If no alloca register used, then fi->frame is the value of the %sp for
1489 this frame, and it is good enough. */
1490
1491 if (fdata.alloca_reg < 0)
1492 {
1493 fi->extra_info->initial_sp = fi->frame;
1494 return fi->extra_info->initial_sp;
1495 }
1496
1497 /* This function has an alloca register. If this is the top-most frame
1498 (with the lowest address), the value in alloca register is good. */
1499
1500 if (!fi->next)
c5aa993b 1501 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
c906108c
SS
1502
1503 /* Otherwise, this is a caller frame. Callee has usually already saved
1504 registers, but there are exceptions (such as when the callee
1505 has no parameters). Find the address in which caller's alloca
1506 register is saved. */
1507
c5aa993b
JM
1508 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1509 {
c906108c 1510
c5aa993b
JM
1511 if (!callee_fi->saved_regs)
1512 frame_get_saved_regs (callee_fi, NULL);
c906108c 1513
c5aa993b 1514 /* this is the address in which alloca register is saved. */
c906108c 1515
c5aa993b
JM
1516 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1517 if (tmpaddr)
1518 {
7a78ae4e
ND
1519 fi->extra_info->initial_sp =
1520 read_memory_addr (tmpaddr, TDEP->wordsize);
c5aa993b
JM
1521 return fi->extra_info->initial_sp;
1522 }
c906108c 1523
c5aa993b
JM
1524 /* Go look into deeper levels of the frame chain to see if any one of
1525 the callees has saved alloca register. */
1526 }
c906108c
SS
1527
1528 /* If alloca register was not saved, by the callee (or any of its callees)
1529 then the value in the register is still good. */
1530
1531 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1532 return fi->extra_info->initial_sp;
1533}
1534
7a78ae4e
ND
1535/* Describe the pointer in each stack frame to the previous stack frame
1536 (its caller). */
1537
1538/* FRAME_CHAIN takes a frame's nominal address
1539 and produces the frame's chain-pointer. */
1540
1541/* In the case of the RS/6000, the frame's nominal address
1542 is the address of a 4-byte word containing the calling frame's address. */
1543
9aa1e687 1544CORE_ADDR
7a78ae4e 1545rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1546{
7a78ae4e
ND
1547 CORE_ADDR fp, fpp, lr;
1548 int wordsize = TDEP->wordsize;
c906108c 1549
7a78ae4e
ND
1550 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1551 return thisframe->frame; /* dummy frame same as caller's frame */
c906108c 1552
c5aa993b 1553 if (inside_entry_file (thisframe->pc) ||
c906108c
SS
1554 thisframe->pc == entry_point_address ())
1555 return 0;
1556
1557 if (thisframe->signal_handler_caller)
7a78ae4e
ND
1558 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1559 wordsize);
c906108c
SS
1560 else if (thisframe->next != NULL
1561 && thisframe->next->signal_handler_caller
c877c8e6 1562 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1563 /* A frameless function interrupted by a signal did not change the
1564 frame pointer. */
1565 fp = FRAME_FP (thisframe);
1566 else
7a78ae4e 1567 fp = read_memory_addr ((thisframe)->frame, wordsize);
c906108c 1568
2188cbdd 1569 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e
ND
1570 if (lr == entry_point_address ())
1571 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1572 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1573 return fpp;
1574
1575 return fp;
1576}
1577
1578/* Return the size of register REG when words are WORDSIZE bytes long. If REG
1579 isn't available with that word size, return 0. */
1580
1581static int
1582regsize (const struct reg *reg, int wordsize)
1583{
1584 return wordsize == 8 ? reg->sz64 : reg->sz32;
1585}
1586
1587/* Return the name of register number N, or null if no such register exists
1588 in the current architecture. */
1589
1590static char *
1591rs6000_register_name (int n)
1592{
1593 struct gdbarch_tdep *tdep = TDEP;
1594 const struct reg *reg = tdep->regs + n;
1595
1596 if (!regsize (reg, tdep->wordsize))
1597 return NULL;
1598 return reg->name;
1599}
1600
1601/* Index within `registers' of the first byte of the space for
1602 register N. */
1603
1604static int
1605rs6000_register_byte (int n)
1606{
1607 return TDEP->regoff[n];
1608}
1609
1610/* Return the number of bytes of storage in the actual machine representation
1611 for register N if that register is available, else return 0. */
1612
1613static int
1614rs6000_register_raw_size (int n)
1615{
1616 struct gdbarch_tdep *tdep = TDEP;
1617 const struct reg *reg = tdep->regs + n;
1618 return regsize (reg, tdep->wordsize);
1619}
1620
7a78ae4e
ND
1621/* Return the GDB type object for the "standard" data type
1622 of data in register N. */
1623
1624static struct type *
fba45db2 1625rs6000_register_virtual_type (int n)
7a78ae4e
ND
1626{
1627 struct gdbarch_tdep *tdep = TDEP;
1628 const struct reg *reg = tdep->regs + n;
1629
1fcc0bb8
EZ
1630 if (reg->fpr)
1631 return builtin_type_double;
1632 else
1633 {
1634 int size = regsize (reg, tdep->wordsize);
1635 switch (size)
1636 {
1637 case 8:
1638 return builtin_type_int64;
1639 break;
1640 case 16:
08cf96df 1641 return builtin_type_vec128;
1fcc0bb8
EZ
1642 break;
1643 default:
1644 return builtin_type_int32;
1645 break;
1646 }
1647 }
7a78ae4e
ND
1648}
1649
1650/* For the PowerPC, it appears that the debug info marks float parameters as
1651 floats regardless of whether the function is prototyped, but the actual
1652 values are always passed in as doubles. Tell gdb to always assume that
1653 floats are passed as doubles and then converted in the callee. */
1654
1655static int
1656rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1657{
1658 return 1;
1659}
1660
1661/* Return whether register N requires conversion when moving from raw format
1662 to virtual format.
1663
1664 The register format for RS/6000 floating point registers is always
1665 double, we need a conversion if the memory format is float. */
1666
1667static int
1668rs6000_register_convertible (int n)
1669{
1670 const struct reg *reg = TDEP->regs + n;
1671 return reg->fpr;
1672}
1673
1674/* Convert data from raw format for register N in buffer FROM
1675 to virtual format with type TYPE in buffer TO. */
1676
1677static void
1678rs6000_register_convert_to_virtual (int n, struct type *type,
1679 char *from, char *to)
1680{
1681 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1682 {
7a78ae4e
ND
1683 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1684 store_floating (to, TYPE_LENGTH (type), val);
1685 }
1686 else
1687 memcpy (to, from, REGISTER_RAW_SIZE (n));
1688}
1689
1690/* Convert data from virtual format with type TYPE in buffer FROM
1691 to raw format for register N in buffer TO. */
7a292a7a 1692
7a78ae4e
ND
1693static void
1694rs6000_register_convert_to_raw (struct type *type, int n,
1695 char *from, char *to)
1696{
1697 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1698 {
1699 double val = extract_floating (from, TYPE_LENGTH (type));
1700 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1701 }
7a78ae4e
ND
1702 else
1703 memcpy (to, from, REGISTER_RAW_SIZE (n));
1704}
c906108c 1705
1fcc0bb8
EZ
1706int
1707altivec_register_p (int regno)
1708{
1709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1710 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1711 return 0;
1712 else
1713 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1714}
1715
1716static void
1717rs6000_do_altivec_registers (int regnum)
1718{
1719 int i;
1720 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1721 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1722 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1723
1724 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1725 {
1726 /* If we want just one reg, check that this is the one we want. */
1727 if (regnum != -1 && i != regnum)
1728 continue;
1729
1730 /* If the register name is empty, it is undefined for this
1731 processor, so don't display anything. */
1732 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1733 continue;
1734
1735 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1736 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1737
1738 /* Get the data in raw format. */
1739 if (read_relative_register_raw_bytes (i, raw_buffer))
1740 {
1741 printf_filtered ("*value not available*\n");
1742 continue;
1743 }
1744
1745 /* Convert raw data to virtual format if necessary. */
1746 if (REGISTER_CONVERTIBLE (i))
1747 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1748 raw_buffer, virtual_buffer);
1749 else
1750 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1751
1752 /* Print as integer in hex only. */
1753 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1754 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1755 printf_filtered ("\n");
1756 }
1757}
1758
1759static void
1760rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1761{
1762 int regnum, numregs;
1763 register char *end;
1764
1765 if (!target_has_registers)
1766 error ("The program has no registers now.");
1767 if (selected_frame == NULL)
1768 error ("No selected frame.");
1769
1770 if (!addr_exp)
1771 {
1772 rs6000_do_altivec_registers (-1);
1773 return;
1774 }
1775
1776 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1777 do
1778 {
1779 if (addr_exp[0] == '$')
1780 addr_exp++;
1781 end = addr_exp;
1782 while (*end != '\0' && *end != ' ' && *end != '\t')
1783 ++end;
1784
1785 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1786 if (regnum < 0)
1787 {
1788 regnum = numregs;
1789 if (*addr_exp >= '0' && *addr_exp <= '9')
1790 regnum = atoi (addr_exp); /* Take a number */
1791 if (regnum >= numregs) /* Bad name, or bad number */
1792 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1793 }
1794
1795 rs6000_do_altivec_registers (regnum);
1796
1797 addr_exp = end;
1798 while (*addr_exp == ' ' || *addr_exp == '\t')
1799 ++addr_exp;
1800 }
1801 while (*addr_exp != '\0');
1802}
1803
1804static void
1805rs6000_do_registers_info (int regnum, int fpregs)
1806{
1807 register int i;
1808 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1809 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1810 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1811
1812 for (i = 0; i < numregs; i++)
1813 {
1814 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1815 if (regnum == -1)
1816 {
1817 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1818 || (altivec_register_p (i) && !fpregs))
1819 continue;
1820 }
1821 else
1822 {
1823 if (i != regnum)
1824 continue;
1825 }
1826
1827 /* If the register name is empty, it is undefined for this
1828 processor, so don't display anything. */
1829 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1830 continue;
1831
1832 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1833 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1834
1835 /* Get the data in raw format. */
1836 if (read_relative_register_raw_bytes (i, raw_buffer))
1837 {
1838 printf_filtered ("*value not available*\n");
1839 continue;
1840 }
1841
1842 /* Convert raw data to virtual format if necessary. */
1843 if (REGISTER_CONVERTIBLE (i))
1844 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1845 raw_buffer, virtual_buffer);
1846 else
1847 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1848
1849 /* If virtual format is floating, print it that way, and in raw hex. */
1850 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1851 {
1852 register int j;
1853
75bc7ddf
AC
1854 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1855 gdb_stdout, 0, 1, 0, Val_pretty_default);
1fcc0bb8
EZ
1856
1857 printf_filtered ("\t(raw 0x");
1858 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1859 {
a9011d31 1860 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1fcc0bb8
EZ
1861 : REGISTER_RAW_SIZE (i) - 1 - j;
1862 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1863 }
1864 printf_filtered (")");
1865 }
1866 else
1867 {
1868 /* Print as integer in hex and in decimal. */
1869 if (!altivec_register_p (i))
1870 {
1871 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1872 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1873 printf_filtered ("\t");
1874 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1875 gdb_stdout, 0, 1, 0, Val_pretty_default);
1876 }
1877 else
1878 /* Print as integer in hex only. */
1879 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1880 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1881 }
1882 printf_filtered ("\n");
1883 }
1884}
1885
2188cbdd
EZ
1886/* Convert a dbx stab register number (from `r' declaration) to a gdb
1887 REGNUM. */
1888static int
1889rs6000_stab_reg_to_regnum (int num)
1890{
1891 int regnum;
1892 switch (num)
1893 {
1894 case 64:
1895 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1896 break;
1897 case 65:
1898 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1899 break;
1900 case 66:
1901 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1902 break;
1903 case 76:
1904 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1905 break;
1906 default:
1907 regnum = num;
1908 break;
1909 }
1910 return regnum;
1911}
1912
7a78ae4e
ND
1913/* Store the address of the place in which to copy the structure the
1914 subroutine will return. This is called from call_function.
1915
1916 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1917 In function return, callee is not responsible of returning this address
1918 back. Since gdb needs to find it, we will store in a designated variable
1919 `rs6000_struct_return_address'. */
1920
1921static void
1922rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1923{
1924 write_register (3, addr);
1925 rs6000_struct_return_address = addr;
1926}
1927
1928/* Write into appropriate registers a function return value
1929 of type TYPE, given in virtual format. */
1930
1931static void
1932rs6000_store_return_value (struct type *type, char *valbuf)
1933{
1934 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1935
1936 /* Floating point values are returned starting from FPR1 and up.
1937 Say a double_double_double type could be returned in
1938 FPR1/FPR2/FPR3 triple. */
1939
1940 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1941 TYPE_LENGTH (type));
1942 else
1943 /* Everything else is returned in GPR3 and up. */
2188cbdd
EZ
1944 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1945 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
1946}
1947
1948/* Extract from an array REGBUF containing the (raw) register state
1949 the address in which a function should return its structure value,
1950 as a CORE_ADDR (or an expression that can be used as one). */
1951
1952static CORE_ADDR
1953rs6000_extract_struct_value_address (char *regbuf)
1954{
1955 return rs6000_struct_return_address;
1956}
1957
1958/* Return whether PC is in a dummy function call.
1959
1960 FIXME: This just checks for the end of the stack, which is broken
1961 for things like stepping through gcc nested function stubs. */
1962
1963static int
1964rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1965{
1966 return sp < pc && pc < fp;
1967}
1968
1969/* Hook called when a new child process is started. */
1970
1971void
1972rs6000_create_inferior (int pid)
1973{
1974 if (rs6000_set_host_arch_hook)
1975 rs6000_set_host_arch_hook (pid);
c906108c
SS
1976}
1977\f
7a78ae4e
ND
1978/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1979
1980 Usually a function pointer's representation is simply the address
1981 of the function. On the RS/6000 however, a function pointer is
1982 represented by a pointer to a TOC entry. This TOC entry contains
1983 three words, the first word is the address of the function, the
1984 second word is the TOC pointer (r2), and the third word is the
1985 static chain value. Throughout GDB it is currently assumed that a
1986 function pointer contains the address of the function, which is not
1987 easy to fix. In addition, the conversion of a function address to
1988 a function pointer would require allocation of a TOC entry in the
1989 inferior's memory space, with all its drawbacks. To be able to
1990 call C++ virtual methods in the inferior (which are called via
f517ea4e 1991 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
1992 function address from a function pointer. */
1993
f517ea4e
PS
1994/* Return real function address if ADDR (a function pointer) is in the data
1995 space and is therefore a special function pointer. */
c906108c 1996
7a78ae4e
ND
1997CORE_ADDR
1998rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
1999{
2000 struct obj_section *s;
2001
2002 s = find_pc_section (addr);
2003 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2004 return addr;
c906108c 2005
7a78ae4e
ND
2006 /* ADDR is in the data space, so it's a special function pointer. */
2007 return read_memory_addr (addr, TDEP->wordsize);
c906108c 2008}
c906108c 2009\f
c5aa993b 2010
7a78ae4e 2011/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2012
2013
7a78ae4e
ND
2014/* The arrays here called registers_MUMBLE hold information about available
2015 registers.
c906108c
SS
2016
2017 For each family of PPC variants, I've tried to isolate out the
2018 common registers and put them up front, so that as long as you get
2019 the general family right, GDB will correctly identify the registers
2020 common to that family. The common register sets are:
2021
2022 For the 60x family: hid0 hid1 iabr dabr pir
2023
2024 For the 505 and 860 family: eie eid nri
2025
2026 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2027 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2028 pbu1 pbl2 pbu2
c906108c
SS
2029
2030 Most of these register groups aren't anything formal. I arrived at
2031 them by looking at the registers that occurred in more than one
7a78ae4e
ND
2032 processor. */
2033
2034/* Convenience macros for populating register arrays. */
2035
2036/* Within another macro, convert S to a string. */
2037
2038#define STR(s) #s
2039
2040/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2041 and 64 bits on 64-bit systems. */
2042#define R(name) { STR(name), 4, 8, 0 }
2043
2044/* Return a struct reg defining register NAME that's 32 bits on all
2045 systems. */
2046#define R4(name) { STR(name), 4, 4, 0 }
2047
2048/* Return a struct reg defining register NAME that's 64 bits on all
2049 systems. */
2050#define R8(name) { STR(name), 8, 8, 0 }
2051
1fcc0bb8
EZ
2052/* Return a struct reg defining register NAME that's 128 bits on all
2053 systems. */
2054#define R16(name) { STR(name), 16, 16, 0 }
2055
7a78ae4e
ND
2056/* Return a struct reg defining floating-point register NAME. */
2057#define F(name) { STR(name), 8, 8, 1 }
2058
2059/* Return a struct reg defining register NAME that's 32 bits on 32-bit
2060 systems and that doesn't exist on 64-bit systems. */
2061#define R32(name) { STR(name), 4, 0, 0 }
2062
2063/* Return a struct reg defining register NAME that's 64 bits on 64-bit
2064 systems and that doesn't exist on 32-bit systems. */
2065#define R64(name) { STR(name), 0, 8, 0 }
2066
2067/* Return a struct reg placeholder for a register that doesn't exist. */
2068#define R0 { 0, 0, 0, 0 }
2069
2070/* UISA registers common across all architectures, including POWER. */
2071
2072#define COMMON_UISA_REGS \
2073 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2074 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2075 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2076 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2077 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2078 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2079 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2080 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2081 /* 64 */ R(pc), R(ps)
2082
2083/* UISA-level SPRs for PowerPC. */
2084#define PPC_UISA_SPRS \
2085 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2086
2087/* Segment registers, for PowerPC. */
2088#define PPC_SEGMENT_REGS \
2089 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2090 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2091 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2092 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2093
2094/* OEA SPRs for PowerPC. */
2095#define PPC_OEA_SPRS \
2096 /* 87 */ R4(pvr), \
2097 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2098 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2099 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2100 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2101 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2102 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2103 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2104 /* 116 */ R4(dec), R(dabr), R4(ear)
2105
1fcc0bb8
EZ
2106/* AltiVec registers */
2107#define PPC_ALTIVEC_REGS \
2108 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2109 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2110 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2111 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2112 /*151*/R4(vscr), R4(vrsave)
2113
7a78ae4e
ND
2114/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2115 user-level SPR's. */
2116static const struct reg registers_power[] =
c906108c 2117{
7a78ae4e
ND
2118 COMMON_UISA_REGS,
2119 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq)
c906108c
SS
2120};
2121
7a78ae4e
ND
2122/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2123 view of the PowerPC. */
2124static const struct reg registers_powerpc[] =
c906108c 2125{
7a78ae4e 2126 COMMON_UISA_REGS,
1fcc0bb8
EZ
2127 PPC_UISA_SPRS,
2128 PPC_ALTIVEC_REGS
c906108c
SS
2129};
2130
7a78ae4e
ND
2131/* IBM PowerPC 403. */
2132static const struct reg registers_403[] =
c5aa993b 2133{
7a78ae4e
ND
2134 COMMON_UISA_REGS,
2135 PPC_UISA_SPRS,
2136 PPC_SEGMENT_REGS,
2137 PPC_OEA_SPRS,
2138 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2139 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2140 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2141 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2142 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2143 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2144};
2145
7a78ae4e
ND
2146/* IBM PowerPC 403GC. */
2147static const struct reg registers_403GC[] =
c5aa993b 2148{
7a78ae4e
ND
2149 COMMON_UISA_REGS,
2150 PPC_UISA_SPRS,
2151 PPC_SEGMENT_REGS,
2152 PPC_OEA_SPRS,
2153 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2154 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2155 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2156 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2157 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2158 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2159 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2160 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2161};
2162
7a78ae4e
ND
2163/* Motorola PowerPC 505. */
2164static const struct reg registers_505[] =
c5aa993b 2165{
7a78ae4e
ND
2166 COMMON_UISA_REGS,
2167 PPC_UISA_SPRS,
2168 PPC_SEGMENT_REGS,
2169 PPC_OEA_SPRS,
2170 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2171};
2172
7a78ae4e
ND
2173/* Motorola PowerPC 860 or 850. */
2174static const struct reg registers_860[] =
c5aa993b 2175{
7a78ae4e
ND
2176 COMMON_UISA_REGS,
2177 PPC_UISA_SPRS,
2178 PPC_SEGMENT_REGS,
2179 PPC_OEA_SPRS,
2180 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2181 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2182 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2183 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2184 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2185 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2186 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2187 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2188 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2189 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2190 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2191 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2192};
2193
7a78ae4e
ND
2194/* Motorola PowerPC 601. Note that the 601 has different register numbers
2195 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2196 register is the stub's problem. */
7a78ae4e 2197static const struct reg registers_601[] =
c5aa993b 2198{
7a78ae4e
ND
2199 COMMON_UISA_REGS,
2200 PPC_UISA_SPRS,
2201 PPC_SEGMENT_REGS,
2202 PPC_OEA_SPRS,
2203 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2204 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2205};
2206
7a78ae4e
ND
2207/* Motorola PowerPC 602. */
2208static const struct reg registers_602[] =
c5aa993b 2209{
7a78ae4e
ND
2210 COMMON_UISA_REGS,
2211 PPC_UISA_SPRS,
2212 PPC_SEGMENT_REGS,
2213 PPC_OEA_SPRS,
2214 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2215 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2216 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2217};
2218
7a78ae4e
ND
2219/* Motorola/IBM PowerPC 603 or 603e. */
2220static const struct reg registers_603[] =
c5aa993b 2221{
7a78ae4e
ND
2222 COMMON_UISA_REGS,
2223 PPC_UISA_SPRS,
2224 PPC_SEGMENT_REGS,
2225 PPC_OEA_SPRS,
2226 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2227 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2228 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2229};
2230
7a78ae4e
ND
2231/* Motorola PowerPC 604 or 604e. */
2232static const struct reg registers_604[] =
c5aa993b 2233{
7a78ae4e
ND
2234 COMMON_UISA_REGS,
2235 PPC_UISA_SPRS,
2236 PPC_SEGMENT_REGS,
2237 PPC_OEA_SPRS,
2238 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2239 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2240 /* 127 */ R(sia), R(sda)
c906108c
SS
2241};
2242
7a78ae4e
ND
2243/* Motorola/IBM PowerPC 750 or 740. */
2244static const struct reg registers_750[] =
c5aa993b 2245{
7a78ae4e
ND
2246 COMMON_UISA_REGS,
2247 PPC_UISA_SPRS,
2248 PPC_SEGMENT_REGS,
2249 PPC_OEA_SPRS,
2250 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2251 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2252 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2253 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2254 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2255 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2256};
2257
2258
1fcc0bb8
EZ
2259/* Motorola PowerPC 7400. */
2260static const struct reg registers_7400[] =
2261{
2262 /* gpr0-gpr31, fpr0-fpr31 */
2263 COMMON_UISA_REGS,
2264 /* ctr, xre, lr, cr */
2265 PPC_UISA_SPRS,
2266 /* sr0-sr15 */
2267 PPC_SEGMENT_REGS,
2268 PPC_OEA_SPRS,
2269 /* vr0-vr31, vrsave, vscr */
2270 PPC_ALTIVEC_REGS
2271 /* FIXME? Add more registers? */
2272};
2273
c906108c 2274/* Information about a particular processor variant. */
7a78ae4e 2275
c906108c 2276struct variant
c5aa993b
JM
2277 {
2278 /* Name of this variant. */
2279 char *name;
c906108c 2280
c5aa993b
JM
2281 /* English description of the variant. */
2282 char *description;
c906108c 2283
7a78ae4e
ND
2284 /* bfd_arch_info.arch corresponding to variant. */
2285 enum bfd_architecture arch;
2286
2287 /* bfd_arch_info.mach corresponding to variant. */
2288 unsigned long mach;
2289
c5aa993b
JM
2290 /* Table of register names; registers[R] is the name of the register
2291 number R. */
7a78ae4e
ND
2292 int nregs;
2293 const struct reg *regs;
c5aa993b 2294 };
c906108c
SS
2295
2296#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2297
2298
2299/* Information in this table comes from the following web sites:
2300 IBM: http://www.chips.ibm.com:80/products/embedded/
2301 Motorola: http://www.mot.com/SPS/PowerPC/
2302
2303 I'm sure I've got some of the variant descriptions not quite right.
2304 Please report any inaccuracies you find to GDB's maintainer.
2305
2306 If you add entries to this table, please be sure to allow the new
2307 value as an argument to the --with-cpu flag, in configure.in. */
2308
7a78ae4e 2309static const struct variant variants[] =
c906108c 2310{
7a78ae4e
ND
2311 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2312 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2313 {"power", "POWER user-level", bfd_arch_rs6000,
2314 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2315 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2316 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2317 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2318 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2319 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2320 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2321 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2322 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2323 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2324 604, num_registers (registers_604), registers_604},
2325 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2326 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2327 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2328 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2329 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2330 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2331 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2332 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
1fcc0bb8
EZ
2333 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2334 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
7a78ae4e
ND
2335
2336 /* FIXME: I haven't checked the register sets of the following. */
2337 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2338 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2339 {"a35", "PowerPC A35", bfd_arch_powerpc,
2340 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2341 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2342 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2343 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2344 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2345 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2346 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2347
c5aa993b 2348 {0, 0, 0, 0}
c906108c
SS
2349};
2350
7a78ae4e 2351#undef num_registers
c906108c 2352
7a78ae4e
ND
2353/* Return the variant corresponding to architecture ARCH and machine number
2354 MACH. If no such variant exists, return null. */
c906108c 2355
7a78ae4e
ND
2356static const struct variant *
2357find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2358{
7a78ae4e 2359 const struct variant *v;
c5aa993b 2360
7a78ae4e
ND
2361 for (v = variants; v->name; v++)
2362 if (arch == v->arch && mach == v->mach)
2363 return v;
c906108c 2364
7a78ae4e 2365 return NULL;
c906108c
SS
2366}
2367
9aa1e687
KB
2368
2369
2370\f
2371static void
2372process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2373{
2374 int *os_ident_ptr = obj;
2375 const char *name;
2376 unsigned int sectsize;
2377
2378 name = bfd_get_section_name (abfd, sect);
2379 sectsize = bfd_section_size (abfd, sect);
2380 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2381 {
2382 unsigned int name_length, data_length, note_type;
2383 char *note = alloca (sectsize);
2384
2385 bfd_get_section_contents (abfd, sect, note,
2386 (file_ptr) 0, (bfd_size_type) sectsize);
2387
2388 name_length = bfd_h_get_32 (abfd, note);
2389 data_length = bfd_h_get_32 (abfd, note + 4);
2390 note_type = bfd_h_get_32 (abfd, note + 8);
2391
2392 if (name_length == 4 && data_length == 16 && note_type == 1
2393 && strcmp (note + 12, "GNU") == 0)
2394 {
2395 int os_number = bfd_h_get_32 (abfd, note + 16);
2396
2397 /* The case numbers are from abi-tags in glibc */
2398 switch (os_number)
2399 {
2400 case 0 :
2401 *os_ident_ptr = ELFOSABI_LINUX;
2402 break;
2403 case 1 :
2404 *os_ident_ptr = ELFOSABI_HURD;
2405 break;
2406 case 2 :
2407 *os_ident_ptr = ELFOSABI_SOLARIS;
2408 break;
2409 default :
8e65ff28
AC
2410 internal_error (__FILE__, __LINE__,
2411 "process_note_abi_sections: unknown OS number %d",
2412 os_number);
9aa1e687
KB
2413 break;
2414 }
2415 }
2416 }
2417}
2418
2419/* Return one of the ELFOSABI_ constants for BFDs representing ELF
2420 executables. If it's not an ELF executable or if the OS/ABI couldn't
2421 be determined, simply return -1. */
2422
2423static int
2424get_elfosabi (bfd *abfd)
2425{
2426 int elfosabi = -1;
2427
2428 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2429 {
2430 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2431
2432 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2433 that we're on a SYSV system. However, GNU/Linux uses a note section
2434 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2435 have to check the note sections too. */
2436 if (elfosabi == 0)
2437 {
2438 bfd_map_over_sections (abfd,
2439 process_note_abi_tag_sections,
2440 &elfosabi);
2441 }
2442 }
2443
2444 return elfosabi;
2445}
2446
7a78ae4e 2447\f
c906108c 2448
7a78ae4e
ND
2449/* Initialize the current architecture based on INFO. If possible, re-use an
2450 architecture from ARCHES, which is a list of architectures already created
2451 during this debugging session.
c906108c 2452
7a78ae4e
ND
2453 Called e.g. at program startup, when reading a core file, and when reading
2454 a binary file. */
c906108c 2455
7a78ae4e
ND
2456static struct gdbarch *
2457rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2458{
2459 struct gdbarch *gdbarch;
2460 struct gdbarch_tdep *tdep;
9aa1e687 2461 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2462 struct reg *regs;
2463 const struct variant *v;
2464 enum bfd_architecture arch;
2465 unsigned long mach;
2466 bfd abfd;
9aa1e687 2467 int osabi, sysv_abi;
7a78ae4e 2468
9aa1e687 2469 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2470 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2471
9aa1e687
KB
2472 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2473 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2474
2475 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2476
2477 osabi = get_elfosabi (info.abfd);
2478
e712c1cf
AC
2479 /* Check word size. If INFO is from a binary file, infer it from
2480 that, else choose a likely default. */
9aa1e687 2481 if (from_xcoff_exec)
c906108c 2482 {
7a78ae4e
ND
2483 if (xcoff_data (info.abfd)->xcoff64)
2484 wordsize = 8;
2485 else
2486 wordsize = 4;
c906108c 2487 }
9aa1e687
KB
2488 else if (from_elf_exec)
2489 {
2490 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2491 wordsize = 8;
2492 else
2493 wordsize = 4;
2494 }
c906108c 2495 else
7a78ae4e 2496 {
e712c1cf 2497 wordsize = 4;
7a78ae4e 2498 }
c906108c 2499
7a78ae4e
ND
2500 /* Find a candidate among extant architectures. */
2501 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2502 arches != NULL;
2503 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2504 {
2505 /* Word size in the various PowerPC bfd_arch_info structs isn't
2506 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2507 separate word size check. */
2508 tdep = gdbarch_tdep (arches->gdbarch);
9aa1e687 2509 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
7a78ae4e
ND
2510 return arches->gdbarch;
2511 }
c906108c 2512
7a78ae4e
ND
2513 /* None found, create a new architecture from INFO, whose bfd_arch_info
2514 validity depends on the source:
2515 - executable useless
2516 - rs6000_host_arch() good
2517 - core file good
2518 - "set arch" trust blindly
2519 - GDB startup useless but harmless */
c906108c 2520
9aa1e687 2521 if (!from_xcoff_exec)
c906108c 2522 {
b732d07d 2523 arch = info.bfd_arch_info->arch;
7a78ae4e 2524 mach = info.bfd_arch_info->mach;
c906108c 2525 }
7a78ae4e 2526 else
c906108c 2527 {
7a78ae4e
ND
2528 arch = bfd_arch_powerpc;
2529 mach = 0;
2530 bfd_default_set_arch_mach (&abfd, arch, mach);
2531 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2532 }
2533 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2534 tdep->wordsize = wordsize;
9aa1e687 2535 tdep->osabi = osabi;
7a78ae4e
ND
2536 gdbarch = gdbarch_alloc (&info, tdep);
2537 power = arch == bfd_arch_rs6000;
2538
7a78ae4e
ND
2539 /* Choose variant. */
2540 v = find_variant_by_arch (arch, mach);
2541 if (!v)
dd47e6fd
EZ
2542 return NULL;
2543
7a78ae4e
ND
2544 tdep->regs = v->regs;
2545
2188cbdd
EZ
2546 tdep->ppc_gp0_regnum = 0;
2547 tdep->ppc_gplast_regnum = 31;
2548 tdep->ppc_toc_regnum = 2;
2549 tdep->ppc_ps_regnum = 65;
2550 tdep->ppc_cr_regnum = 66;
2551 tdep->ppc_lr_regnum = 67;
2552 tdep->ppc_ctr_regnum = 68;
2553 tdep->ppc_xer_regnum = 69;
2554 if (v->mach == bfd_mach_ppc_601)
2555 tdep->ppc_mq_regnum = 124;
2556 else
2557 tdep->ppc_mq_regnum = 70;
2558
1fcc0bb8
EZ
2559 if (v->arch == bfd_arch_powerpc)
2560 switch (v->mach)
2561 {
2562 case bfd_mach_ppc:
2563 tdep->ppc_vr0_regnum = 71;
2564 tdep->ppc_vrsave_regnum = 104;
2565 break;
2566 case bfd_mach_ppc_7400:
2567 tdep->ppc_vr0_regnum = 119;
2568 tdep->ppc_vrsave_regnum = 153;
2569 break;
2570 default:
2571 tdep->ppc_vr0_regnum = -1;
2572 tdep->ppc_vrsave_regnum = -1;
2573 break;
2574 }
2575
7a78ae4e
ND
2576 /* Calculate byte offsets in raw register array. */
2577 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2578 for (i = off = 0; i < v->nregs; i++)
2579 {
2580 tdep->regoff[i] = off;
2581 off += regsize (v->regs + i, wordsize);
c906108c
SS
2582 }
2583
7495d1dc
KB
2584 /* Select instruction printer. Note: tm_print_insn is still used by
2585 gdbtk (insight), so we set both tm_print_insn and the gdbarch
2586 method. */
2587 tm_print_insn = arch == power ? print_insn_rs6000 :
2588 info.byte_order == BFD_ENDIAN_BIG ? print_insn_big_powerpc :
2589 print_insn_little_powerpc;
2590 set_gdbarch_print_insn (gdbarch, tm_print_insn);
2591
7a78ae4e
ND
2592 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2593 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2594 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2595 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2596 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2597
2598 set_gdbarch_num_regs (gdbarch, v->nregs);
2599 set_gdbarch_sp_regnum (gdbarch, 1);
2600 set_gdbarch_fp_regnum (gdbarch, 1);
2601 set_gdbarch_pc_regnum (gdbarch, 64);
2602 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2603 set_gdbarch_register_size (gdbarch, wordsize);
2604 set_gdbarch_register_bytes (gdbarch, off);
2605 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2606 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2a873819 2607 set_gdbarch_max_register_raw_size (gdbarch, 16);
0e7c5946 2608 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2a873819 2609 set_gdbarch_max_register_virtual_size (gdbarch, 16);
7a78ae4e 2610 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
1fcc0bb8 2611 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
7a78ae4e
ND
2612
2613 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2614 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2615 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2616 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2617 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2618 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2619 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2620 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2621 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e
ND
2622
2623 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2624 set_gdbarch_call_dummy_length (gdbarch, 0);
2625 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2626 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2627 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2628 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2629 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
fe794dc6 2630 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
7a78ae4e
ND
2631 set_gdbarch_call_dummy_p (gdbarch, 1);
2632 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2633 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2634 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2635 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2636 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2637 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2638 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2639 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2640
2641 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2642 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2643 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2644 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7a78ae4e
ND
2645
2646 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
9aa1e687
KB
2647
2648 if (sysv_abi)
2649 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2650 else
2651 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e
ND
2652
2653 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2654 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2655 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2656 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2657
2658 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2659 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2660 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2661 set_gdbarch_function_start_offset (gdbarch, 0);
2662 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2663
2664 /* Not sure on this. FIXMEmgo */
2665 set_gdbarch_frame_args_skip (gdbarch, 8);
2666
8e0662df
EZ
2667 /* Until November 2001, gcc was not complying to the SYSV ABI for
2668 returning structures less than or equal to 8 bytes in size. It was
2669 returning everything in memory. When this was corrected, it wasn't
2670 fixed for native platforms. */
2671 if (sysv_abi)
2672 {
2673 if (osabi == ELFOSABI_LINUX
2674 || osabi == ELFOSABI_NETBSD
2675 || osabi == ELFOSABI_FREEBSD)
2676 set_gdbarch_use_struct_convention (gdbarch,
2677 generic_use_struct_convention);
2678 else
2679 set_gdbarch_use_struct_convention (gdbarch,
2680 ppc_sysv_abi_use_struct_convention);
2681 }
2682 else
2683 {
2684 set_gdbarch_use_struct_convention (gdbarch,
2685 generic_use_struct_convention);
2686 }
2687
7a78ae4e 2688 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
9aa1e687
KB
2689 if (osabi == ELFOSABI_LINUX)
2690 {
2691 set_gdbarch_frameless_function_invocation (gdbarch,
2692 ppc_linux_frameless_function_invocation);
2693 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2694 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2695
2696 set_gdbarch_frame_init_saved_regs (gdbarch,
2697 ppc_linux_frame_init_saved_regs);
2698 set_gdbarch_init_extra_frame_info (gdbarch,
2699 ppc_linux_init_extra_frame_info);
2700
2701 set_gdbarch_memory_remove_breakpoint (gdbarch,
2702 ppc_linux_memory_remove_breakpoint);
6ded7999
KB
2703 set_solib_svr4_fetch_link_map_offsets
2704 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
9aa1e687
KB
2705 }
2706 else
2707 {
2708 set_gdbarch_frameless_function_invocation (gdbarch,
2709 rs6000_frameless_function_invocation);
2710 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2711 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2712
2713 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2714 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
f517ea4e
PS
2715
2716 /* Handle RS/6000 function pointers. */
2717 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2718 rs6000_convert_from_func_ptr_addr);
9aa1e687 2719 }
7a78ae4e
ND
2720 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2721 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2722 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2723
2724 /* We can't tell how many args there are
2725 now that the C compiler delays popping them. */
2726 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2727
2728 return gdbarch;
c906108c
SS
2729}
2730
1fcc0bb8
EZ
2731static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2732
2733static void
2734rs6000_info_powerpc_command (char *args, int from_tty)
2735{
2736 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2737}
2738
c906108c
SS
2739/* Initialization code. */
2740
2741void
fba45db2 2742_initialize_rs6000_tdep (void)
c906108c 2743{
7a78ae4e
ND
2744 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2745 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
1fcc0bb8
EZ
2746
2747 /* Add root prefix command for "info powerpc" commands */
2748 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2749 "Various POWERPC info specific commands.",
2750 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2751
2752 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2753 "Display the contents of the AltiVec registers.",
2754 &info_powerpc_cmdlist);
2755
c906108c 2756}
This page took 0.372677 seconds and 4 git commands to generate.