2003-09-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
7a78ae4e
ND
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
c906108c 215{
c9012c71
AC
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
c906108c
SS
219 else
220 return frame_initial_stack_address (fi);
221}
222
7a78ae4e
ND
223/* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
2188cbdd 231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 232}
c906108c 233
143985b7 234/* Get the ith function argument for the current function. */
b9362cc7 235static CORE_ADDR
143985b7
AF
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238{
239 CORE_ADDR addr;
240 frame_read_register (frame, 3 + argi, &addr);
241 return addr;
242}
243
c906108c
SS
244/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246static CORE_ADDR
7a78ae4e 247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
248{
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
c5aa993b
JM
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
8b36eed8 291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 292 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
2188cbdd 298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
305 }
306 else
307 return -1;
308 break;
c906108c 309
c5aa993b
JM
310 default:
311 return -1;
312 }
c906108c
SS
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction. */
318
f4f9705a 319const static unsigned char *
7a78ae4e 320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 321{
aaab4dba
AC
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 324 *bp_size = 4;
d7449b42 325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
379d08a1
AC
335rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
c906108c 337{
7c40d541
KB
338 CORE_ADDR dummy;
339 int breakp_sz;
f4f9705a 340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
c5aa993b
JM
346 if (insert_breakpoints_p)
347 {
c906108c 348
c5aa993b 349 loc = read_pc ();
c906108c 350
c5aa993b 351 insn = read_memory_integer (loc, 4);
c906108c 352
7c40d541 353 breaks[0] = loc + breakp_sz;
c5aa993b
JM
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 356
c5aa993b
JM
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
c906108c 360
c5aa993b 361 stepBreaks[1].address = 0;
c906108c 362
c5aa993b
JM
363 for (ii = 0; ii < 2; ++ii)
364 {
c906108c 365
c5aa993b
JM
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
7c40d541 369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
370 stepBreaks[ii].address = breaks[ii];
371 }
c906108c 372
c5aa993b
JM
373 }
374 else
375 {
c906108c 376
c5aa993b
JM
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
7c40d541
KB
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
c5aa993b 382 }
c906108c 383 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 384 /* What errors? {read,write}_memory call error(). */
c906108c
SS
385}
386
387
388/* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
c5aa993b
JM
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
6be8bc0c 398 - saved_vr is the number of the first saved vr.
96ff0de4 399 - saved_ev is the number of the first saved ev.
c5aa993b
JM
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 404 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 405 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
6be8bc0c 408 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 409 */
c906108c
SS
410
411#define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
55d05f3b
KB
418/* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428static CORE_ADDR
429refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430{
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467}
468
469
7a78ae4e 470static CORE_ADDR
077276e8 471skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
472{
473 CORE_ADDR orig_pc = pc;
55d05f3b 474 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 475 CORE_ADDR li_found_pc = 0;
c906108c
SS
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
6be8bc0c 479 long vr_saved_offset = 0;
482ca3f5
KB
480 int lr_reg = -1;
481 int cr_reg = -1;
6be8bc0c 482 int vr_reg = -1;
96ff0de4
EZ
483 int ev_reg = -1;
484 long ev_offset = 0;
6be8bc0c 485 int vrsave_reg = -1;
c906108c
SS
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
ddb20c56 489 int prev_insn_was_prologue_insn = 1;
55d05f3b 490 int num_skip_non_prologue_insns = 0;
96ff0de4 491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 493
55d05f3b
KB
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 508
ddb20c56 509 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
6be8bc0c 512 fdata->saved_vr = -1;
96ff0de4 513 fdata->saved_ev = -1;
c906108c
SS
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
55d05f3b 518 for (;; pc += 4)
c906108c 519 {
ddb20c56
KB
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
55d05f3b
KB
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
ddb20c56
KB
531 prev_insn_was_prologue_insn = 1;
532
55d05f3b 533 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
c906108c 537
c5aa993b
JM
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
98f08d3d 540 lr_reg = (op & 0x03e00000);
c5aa993b 541 continue;
c906108c 542
c5aa993b
JM
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
98f08d3d 546 cr_reg = (op & 0x03e00000);
c5aa993b 547 continue;
c906108c 548
c906108c 549 }
c5aa993b
JM
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
c906108c 559
c5aa993b
JM
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
7a78ae4e 571 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 572 op &= ~3UL;
c5aa993b
JM
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
c906108c 576
ddb20c56
KB
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
96ff0de4 580 /* nop */
ddb20c56
KB
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
c906108c 587 }
c5aa993b
JM
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
98f08d3d
KB
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
c5aa993b
JM
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
98f08d3d
KB
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
c5aa993b
JM
621 continue;
622
623 }
98f08d3d
KB
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
c5aa993b 633 cr_reg = 0;
98f08d3d
KB
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
c5aa993b
JM
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
c5aa993b 653 }
6be8bc0c
EZ
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
c5aa993b
JM
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
c906108c 659
c5aa993b
JM
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
c906108c 664
c5aa993b 665 fdata->frameless = 0;
6be8bc0c
EZ
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
c5aa993b
JM
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
6be8bc0c
EZ
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
c5aa993b
JM
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
c5aa993b 683 }
98f08d3d
KB
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
c5aa993b 691 }
98f08d3d
KB
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
c5aa993b
JM
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
c5aa993b 712 }
98f08d3d
KB
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 716 && !minimal_toc_loaded)
98f08d3d 717 {
c5aa993b
JM
718 minimal_toc_loaded = 1;
719 continue;
720
f6077098
KB
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
96ff0de4 727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
728 {
729 continue;
730
c5aa993b
JM
731 /* store parameters in stack */
732 }
6be8bc0c 733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
c5aa993b 737 continue;
c906108c 738
c5aa993b
JM
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
6f99cb26 755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
6f99cb26
AC
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
c5aa993b 766 continue;
c5aa993b 767 }
6be8bc0c
EZ
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
96ff0de4
EZ
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
c5aa993b
JM
935 else
936 {
55d05f3b
KB
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 951 /* Never skip branches. */
55d05f3b
KB
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
c5aa993b 962 }
c906108c
SS
963 }
964
965#if 0
966/* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 972 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 973 work before calling a function right after a prologue, thus we can
64366f1c 974 single out such gcc2 behaviour. */
c906108c 975
c906108c 976
c5aa993b
JM
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 983
64366f1c
EZ
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
c906108c 986
c5aa993b 987 tmp = find_pc_misc_function (pc);
51cc5b07 988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
989 return pc + 8;
990 }
c906108c 991 }
c906108c 992#endif /* 0 */
c5aa993b
JM
993
994 fdata->offset = -fdata->offset;
ddb20c56 995 return last_prologue_pc;
c906108c
SS
996}
997
998
999/*************************************************************************
f6077098 1000 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1001 frames, etc.
1002*************************************************************************/
1003
c906108c 1004
64366f1c 1005/* Pop the innermost frame, go back to the caller. */
c5aa993b 1006
c906108c 1007static void
7a78ae4e 1008rs6000_pop_frame (void)
c906108c 1009{
470d5666 1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
470d5666 1013 int ii, wordsize;
c906108c
SS
1014
1015 pc = read_pc ();
c193f6ac 1016 sp = get_frame_base (frame);
c906108c 1017
bdd78e62 1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
c906108c 1021 {
7a78ae4e
ND
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
c906108c
SS
1025 }
1026
1027 /* Make sure that all registers are valid. */
b8b527c5 1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1029
64366f1c 1030 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1031 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1032 saved %pc value in the previous frame. */
c906108c 1033
be41e9f4 1034 addr = get_frame_func (frame);
bdd78e62 1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1036
21283beb 1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
7a78ae4e 1041 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1042 if (fdata.lr_offset == 0)
2188cbdd 1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1044 else
7a78ae4e 1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
64366f1c 1050 /* reset register values if any was saved earlier. */
c906108c
SS
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
524d7c18
AC
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1058 wordsize);
7a78ae4e 1059 addr += wordsize;
c5aa993b 1060 }
c906108c
SS
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
524d7c18 1068 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1069 addr += 8;
1070 }
c906108c
SS
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076}
1077
7a78ae4e 1078/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1079 address. Its arguments will be passed by gdb. */
c906108c 1080
7a78ae4e
ND
1081static void
1082rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1083 int nargs, struct value **args, struct type *type,
7a78ae4e 1084 int gcc_p)
c906108c 1085{
c906108c
SS
1086 int ii;
1087 CORE_ADDR target_addr;
1088
7a78ae4e 1089 if (rs6000_find_toc_address_hook != NULL)
f6077098 1090 {
7a78ae4e 1091 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1092 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1093 tocvalue);
f6077098 1094 }
c906108c
SS
1095}
1096
11269d7e
AC
1097/* All the ABI's require 16 byte alignment. */
1098static CORE_ADDR
1099rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1100{
1101 return (addr & -16);
1102}
1103
7a78ae4e 1104/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1105 the first eight words of the argument list (that might be less than
1106 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1107 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1108 passed in fpr's, in addition to that. Rest of the parameters if any
1109 are passed in user stack. There might be cases in which half of the
c906108c
SS
1110 parameter is copied into registers, the other half is pushed into
1111 stack.
1112
7a78ae4e
ND
1113 Stack must be aligned on 64-bit boundaries when synthesizing
1114 function calls.
1115
c906108c
SS
1116 If the function is returning a structure, then the return address is passed
1117 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1118 starting from r4. */
c906108c 1119
7a78ae4e 1120static CORE_ADDR
77b2b6d4
AC
1121rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1122 struct regcache *regcache, CORE_ADDR bp_addr,
1123 int nargs, struct value **args, CORE_ADDR sp,
1124 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1125{
1126 int ii;
1127 int len = 0;
c5aa993b
JM
1128 int argno; /* current argument number */
1129 int argbytes; /* current argument byte */
1130 char tmp_buffer[50];
1131 int f_argno = 0; /* current floating point argno */
21283beb 1132 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1133
ea7c478f 1134 struct value *arg = 0;
c906108c
SS
1135 struct type *type;
1136
1137 CORE_ADDR saved_sp;
1138
64366f1c
EZ
1139 /* The first eight words of ther arguments are passed in registers.
1140 Copy them appropriately.
c906108c
SS
1141
1142 If the function is returning a `struct', then the first word (which
64366f1c 1143 will be passed in r3) is used for struct return address. In that
c906108c 1144 case we should advance one word and start from r4 register to copy
64366f1c 1145 parameters. */
c906108c 1146
c5aa993b 1147 ii = struct_return ? 1 : 0;
c906108c
SS
1148
1149/*
c5aa993b
JM
1150 effectively indirect call... gcc does...
1151
1152 return_val example( float, int);
1153
1154 eabi:
1155 float in fp0, int in r3
1156 offset of stack on overflow 8/16
1157 for varargs, must go by type.
1158 power open:
1159 float in r3&r4, int in r5
1160 offset of stack on overflow different
1161 both:
1162 return in r3 or f0. If no float, must study how gcc emulates floats;
1163 pay attention to arg promotion.
1164 User may have to cast\args to handle promotion correctly
1165 since gdb won't know if prototype supplied or not.
1166 */
c906108c 1167
c5aa993b
JM
1168 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1169 {
f6077098 1170 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1171
1172 arg = args[argno];
1173 type = check_typedef (VALUE_TYPE (arg));
1174 len = TYPE_LENGTH (type);
1175
1176 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1177 {
1178
64366f1c 1179 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1180 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1181 there is no way we would run out of them. */
c5aa993b
JM
1182
1183 if (len > 8)
1184 printf_unfiltered (
1185 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1186
524d7c18 1187 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1188 VALUE_CONTENTS (arg),
1189 len);
1190 ++f_argno;
1191 }
1192
f6077098 1193 if (len > reg_size)
c5aa993b
JM
1194 {
1195
64366f1c 1196 /* Argument takes more than one register. */
c5aa993b
JM
1197 while (argbytes < len)
1198 {
524d7c18
AC
1199 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1200 reg_size);
1201 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1202 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1203 (len - argbytes) > reg_size
1204 ? reg_size : len - argbytes);
1205 ++ii, argbytes += reg_size;
c5aa993b
JM
1206
1207 if (ii >= 8)
1208 goto ran_out_of_registers_for_arguments;
1209 }
1210 argbytes = 0;
1211 --ii;
1212 }
1213 else
64366f1c
EZ
1214 {
1215 /* Argument can fit in one register. No problem. */
d7449b42 1216 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1217 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1218 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1219 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1220 }
1221 ++argno;
c906108c 1222 }
c906108c
SS
1223
1224ran_out_of_registers_for_arguments:
1225
7a78ae4e 1226 saved_sp = read_sp ();
cc9836a8 1227
64366f1c 1228 /* Location for 8 parameters are always reserved. */
7a78ae4e 1229 sp -= wordsize * 8;
f6077098 1230
64366f1c 1231 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1232 sp -= wordsize * 6;
f6077098 1233
64366f1c 1234 /* Stack pointer must be quadword aligned. */
7a78ae4e 1235 sp &= -16;
c906108c 1236
64366f1c
EZ
1237 /* If there are more arguments, allocate space for them in
1238 the stack, then push them starting from the ninth one. */
c906108c 1239
c5aa993b
JM
1240 if ((argno < nargs) || argbytes)
1241 {
1242 int space = 0, jj;
c906108c 1243
c5aa993b
JM
1244 if (argbytes)
1245 {
1246 space += ((len - argbytes + 3) & -4);
1247 jj = argno + 1;
1248 }
1249 else
1250 jj = argno;
c906108c 1251
c5aa993b
JM
1252 for (; jj < nargs; ++jj)
1253 {
ea7c478f 1254 struct value *val = args[jj];
c5aa993b
JM
1255 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1256 }
c906108c 1257
64366f1c 1258 /* Add location required for the rest of the parameters. */
f6077098 1259 space = (space + 15) & -16;
c5aa993b 1260 sp -= space;
c906108c 1261
64366f1c
EZ
1262 /* This is another instance we need to be concerned about
1263 securing our stack space. If we write anything underneath %sp
1264 (r1), we might conflict with the kernel who thinks he is free
1265 to use this area. So, update %sp first before doing anything
1266 else. */
c906108c 1267
c5aa993b 1268 write_register (SP_REGNUM, sp);
c906108c 1269
64366f1c
EZ
1270 /* If the last argument copied into the registers didn't fit there
1271 completely, push the rest of it into stack. */
c906108c 1272
c5aa993b
JM
1273 if (argbytes)
1274 {
1275 write_memory (sp + 24 + (ii * 4),
1276 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1277 len - argbytes);
1278 ++argno;
1279 ii += ((len - argbytes + 3) & -4) / 4;
1280 }
c906108c 1281
64366f1c 1282 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1283 for (; argno < nargs; ++argno)
1284 {
c906108c 1285
c5aa993b
JM
1286 arg = args[argno];
1287 type = check_typedef (VALUE_TYPE (arg));
1288 len = TYPE_LENGTH (type);
c906108c
SS
1289
1290
64366f1c
EZ
1291 /* Float types should be passed in fpr's, as well as in the
1292 stack. */
c5aa993b
JM
1293 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1294 {
c906108c 1295
c5aa993b
JM
1296 if (len > 8)
1297 printf_unfiltered (
1298 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1299
524d7c18 1300 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1301 VALUE_CONTENTS (arg),
1302 len);
1303 ++f_argno;
1304 }
c906108c 1305
c5aa993b
JM
1306 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1307 ii += ((len + 3) & -4) / 4;
1308 }
c906108c 1309 }
c906108c 1310 else
64366f1c 1311 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1312 write_register (SP_REGNUM, sp);
1313
c906108c 1314 /* set back chain properly */
fbd9dcd3 1315 store_unsigned_integer (tmp_buffer, 4, saved_sp);
c906108c
SS
1316 write_memory (sp, tmp_buffer, 4);
1317
1318 target_store_registers (-1);
1319 return sp;
1320}
c906108c
SS
1321
1322/* Function: ppc_push_return_address (pc, sp)
64366f1c 1323 Set up the return address for the inferior function call. */
c906108c 1324
7a78ae4e
ND
1325static CORE_ADDR
1326ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1327{
2188cbdd 1328 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
88a82a65 1329 entry_point_address ());
c906108c
SS
1330 return sp;
1331}
1332
7a78ae4e 1333/* Extract a function return value of type TYPE from raw register array
64366f1c 1334 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1335static void
46d79c04 1336e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1337{
1338 int offset = 0;
1339 int vallen = TYPE_LENGTH (valtype);
1340 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1341
1342 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1343 && vallen == 8
1344 && TYPE_VECTOR (valtype))
1345 {
1346 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1347 }
1348 else
1349 {
1350 /* Return value is copied starting from r3. Note that r3 for us
1351 is a pseudo register. */
1352 int offset = 0;
1353 int return_regnum = tdep->ppc_gp0_regnum + 3;
1354 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1355 int reg_part_size;
1356 char *val_buffer;
1357 int copied = 0;
1358 int i = 0;
1359
1360 /* Compute where we will start storing the value from. */
1361 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1362 {
1363 if (vallen <= reg_size)
1364 offset = reg_size - vallen;
1365 else
1366 offset = reg_size + (reg_size - vallen);
1367 }
1368
1369 /* How big does the local buffer need to be? */
1370 if (vallen <= reg_size)
1371 val_buffer = alloca (reg_size);
1372 else
1373 val_buffer = alloca (vallen);
1374
1375 /* Read all we need into our private buffer. We copy it in
1376 chunks that are as long as one register, never shorter, even
1377 if the value is smaller than the register. */
1378 while (copied < vallen)
1379 {
1380 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1381 /* It is a pseudo/cooked register. */
1382 regcache_cooked_read (regbuf, return_regnum + i,
1383 val_buffer + copied);
1384 copied += reg_part_size;
1385 i++;
1386 }
1387 /* Put the stuff in the return buffer. */
1388 memcpy (valbuf, val_buffer + offset, vallen);
1389 }
1390}
c906108c 1391
7a78ae4e
ND
1392static void
1393rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1394{
1395 int offset = 0;
ace1378a 1396 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1397
c5aa993b
JM
1398 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1399 {
c906108c 1400
c5aa993b
JM
1401 double dd;
1402 float ff;
1403 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1404 We need to truncate the return value into float size (4 byte) if
64366f1c 1405 necessary. */
c906108c 1406
c5aa993b
JM
1407 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1408 memcpy (valbuf,
1409 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1410 TYPE_LENGTH (valtype));
1411 else
1412 { /* float */
1413 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1414 ff = (float) dd;
1415 memcpy (valbuf, &ff, sizeof (float));
1416 }
1417 }
ace1378a
EZ
1418 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1419 && TYPE_LENGTH (valtype) == 16
1420 && TYPE_VECTOR (valtype))
1421 {
1422 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1423 TYPE_LENGTH (valtype));
1424 }
c5aa993b
JM
1425 else
1426 {
1427 /* return value is copied starting from r3. */
d7449b42 1428 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1429 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1430 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1431
1432 memcpy (valbuf,
1433 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1434 TYPE_LENGTH (valtype));
c906108c 1435 }
c906108c
SS
1436}
1437
977adac5
ND
1438/* Return whether handle_inferior_event() should proceed through code
1439 starting at PC in function NAME when stepping.
1440
1441 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1442 handle memory references that are too distant to fit in instructions
1443 generated by the compiler. For example, if 'foo' in the following
1444 instruction:
1445
1446 lwz r9,foo(r2)
1447
1448 is greater than 32767, the linker might replace the lwz with a branch to
1449 somewhere in @FIX1 that does the load in 2 instructions and then branches
1450 back to where execution should continue.
1451
1452 GDB should silently step over @FIX code, just like AIX dbx does.
1453 Unfortunately, the linker uses the "b" instruction for the branches,
1454 meaning that the link register doesn't get set. Therefore, GDB's usual
1455 step_over_function() mechanism won't work.
1456
1457 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1458 in handle_inferior_event() to skip past @FIX code. */
1459
1460int
1461rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1462{
1463 return name && !strncmp (name, "@FIX", 4);
1464}
1465
1466/* Skip code that the user doesn't want to see when stepping:
1467
1468 1. Indirect function calls use a piece of trampoline code to do context
1469 switching, i.e. to set the new TOC table. Skip such code if we are on
1470 its first instruction (as when we have single-stepped to here).
1471
1472 2. Skip shared library trampoline code (which is different from
c906108c 1473 indirect function call trampolines).
977adac5
ND
1474
1475 3. Skip bigtoc fixup code.
1476
c906108c 1477 Result is desired PC to step until, or NULL if we are not in
977adac5 1478 code that should be skipped. */
c906108c
SS
1479
1480CORE_ADDR
7a78ae4e 1481rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1482{
1483 register unsigned int ii, op;
977adac5 1484 int rel;
c906108c 1485 CORE_ADDR solib_target_pc;
977adac5 1486 struct minimal_symbol *msymbol;
c906108c 1487
c5aa993b
JM
1488 static unsigned trampoline_code[] =
1489 {
1490 0x800b0000, /* l r0,0x0(r11) */
1491 0x90410014, /* st r2,0x14(r1) */
1492 0x7c0903a6, /* mtctr r0 */
1493 0x804b0004, /* l r2,0x4(r11) */
1494 0x816b0008, /* l r11,0x8(r11) */
1495 0x4e800420, /* bctr */
1496 0x4e800020, /* br */
1497 0
c906108c
SS
1498 };
1499
977adac5
ND
1500 /* Check for bigtoc fixup code. */
1501 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1502 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1503 {
1504 /* Double-check that the third instruction from PC is relative "b". */
1505 op = read_memory_integer (pc + 8, 4);
1506 if ((op & 0xfc000003) == 0x48000000)
1507 {
1508 /* Extract bits 6-29 as a signed 24-bit relative word address and
1509 add it to the containing PC. */
1510 rel = ((int)(op << 6) >> 6);
1511 return pc + 8 + rel;
1512 }
1513 }
1514
c906108c
SS
1515 /* If pc is in a shared library trampoline, return its target. */
1516 solib_target_pc = find_solib_trampoline_target (pc);
1517 if (solib_target_pc)
1518 return solib_target_pc;
1519
c5aa993b
JM
1520 for (ii = 0; trampoline_code[ii]; ++ii)
1521 {
1522 op = read_memory_integer (pc + (ii * 4), 4);
1523 if (op != trampoline_code[ii])
1524 return 0;
1525 }
1526 ii = read_register (11); /* r11 holds destination addr */
21283beb 1527 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1528 return pc;
1529}
1530
1531/* Determines whether the function FI has a frame on the stack or not. */
1532
9aa1e687 1533int
c877c8e6 1534rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1535{
1536 CORE_ADDR func_start;
1537 struct rs6000_framedata fdata;
1538
1539 /* Don't even think about framelessness except on the innermost frame
1540 or if the function was interrupted by a signal. */
75e3c1f9
AC
1541 if (get_next_frame (fi) != NULL
1542 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1543 return 0;
c5aa993b 1544
be41e9f4 1545 func_start = get_frame_func (fi);
c906108c
SS
1546
1547 /* If we failed to find the start of the function, it is a mistake
64366f1c 1548 to inspect the instructions. */
c906108c
SS
1549
1550 if (!func_start)
1551 {
1552 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1553 function pointer, normally causing an immediate core dump of the
64366f1c 1554 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1555 of setting up a stack frame. */
bdd78e62 1556 if (get_frame_pc (fi) == 0)
c906108c
SS
1557 return 1;
1558 else
1559 return 0;
1560 }
1561
bdd78e62 1562 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1563 return fdata.frameless;
1564}
1565
64366f1c 1566/* Return the PC saved in a frame. */
c906108c 1567
9aa1e687 1568CORE_ADDR
c877c8e6 1569rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1570{
1571 CORE_ADDR func_start;
1572 struct rs6000_framedata fdata;
21283beb 1573 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1574 int wordsize = tdep->wordsize;
c906108c 1575
5a203e44 1576 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1577 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1578 wordsize);
c906108c 1579
bdd78e62 1580 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1581 get_frame_base (fi),
1582 get_frame_base (fi)))
bdd78e62 1583 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1584 get_frame_base (fi), PC_REGNUM);
c906108c 1585
be41e9f4 1586 func_start = get_frame_func (fi);
c906108c
SS
1587
1588 /* If we failed to find the start of the function, it is a mistake
64366f1c 1589 to inspect the instructions. */
c906108c
SS
1590 if (!func_start)
1591 return 0;
1592
bdd78e62 1593 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1594
75e3c1f9 1595 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1596 {
75e3c1f9 1597 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1598 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1599 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1600 wordsize);
bdd78e62 1601 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1602 /* The link register wasn't saved by this frame and the next
1603 (inner, newer) frame is a dummy. Get the link register
1604 value by unwinding it from that [dummy] frame. */
1605 {
1606 ULONGEST lr;
1607 frame_unwind_unsigned_register (get_next_frame (fi),
1608 tdep->ppc_lr_regnum, &lr);
1609 return lr;
1610 }
c906108c 1611 else
618ce49f
AC
1612 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1613 + tdep->lr_frame_offset,
7a78ae4e 1614 wordsize);
c906108c
SS
1615 }
1616
1617 if (fdata.lr_offset == 0)
2188cbdd 1618 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1619
618ce49f
AC
1620 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1621 wordsize);
c906108c
SS
1622}
1623
1624/* If saved registers of frame FI are not known yet, read and cache them.
1625 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1626 in which case the framedata are read. */
1627
1628static void
7a78ae4e 1629frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1630{
c5aa993b 1631 CORE_ADDR frame_addr;
c906108c 1632 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1633 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1634 int wordsize = tdep->wordsize;
c906108c 1635
c9012c71 1636 if (get_frame_saved_regs (fi))
c906108c 1637 return;
c5aa993b 1638
c906108c
SS
1639 if (fdatap == NULL)
1640 {
1641 fdatap = &work_fdata;
be41e9f4 1642 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1643 }
1644
1645 frame_saved_regs_zalloc (fi);
1646
1647 /* If there were any saved registers, figure out parent's stack
64366f1c 1648 pointer. */
c906108c 1649 /* The following is true only if the frame doesn't have a call to
64366f1c 1650 alloca(), FIXME. */
c906108c 1651
6be8bc0c
EZ
1652 if (fdatap->saved_fpr == 0
1653 && fdatap->saved_gpr == 0
1654 && fdatap->saved_vr == 0
96ff0de4 1655 && fdatap->saved_ev == 0
6be8bc0c
EZ
1656 && fdatap->lr_offset == 0
1657 && fdatap->cr_offset == 0
96ff0de4
EZ
1658 && fdatap->vr_offset == 0
1659 && fdatap->ev_offset == 0)
c906108c 1660 frame_addr = 0;
c906108c 1661 else
bf75c8c1
AC
1662 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1663 address of the current frame. Things might be easier if the
1664 ->frame pointed to the outer-most address of the frame. In the
1665 mean time, the address of the prev frame is used as the base
1666 address of this frame. */
618ce49f 1667 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1668
c906108c
SS
1669 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1670 All fpr's from saved_fpr to fp31 are saved. */
1671
1672 if (fdatap->saved_fpr >= 0)
1673 {
1674 int i;
7a78ae4e 1675 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1676 for (i = fdatap->saved_fpr; i < 32; i++)
1677 {
c9012c71 1678 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1679 fpr_addr += 8;
c906108c
SS
1680 }
1681 }
1682
1683 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1684 All gpr's from saved_gpr to gpr31 are saved. */
1685
1686 if (fdatap->saved_gpr >= 0)
1687 {
1688 int i;
7a78ae4e 1689 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1690 for (i = fdatap->saved_gpr; i < 32; i++)
1691 {
366cfc9e 1692 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1693 gpr_addr += wordsize;
c906108c
SS
1694 }
1695 }
1696
6be8bc0c
EZ
1697 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1698 All vr's from saved_vr to vr31 are saved. */
1699 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1700 {
1701 if (fdatap->saved_vr >= 0)
1702 {
1703 int i;
1704 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1705 for (i = fdatap->saved_vr; i < 32; i++)
1706 {
c9012c71 1707 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1708 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1709 }
1710 }
1711 }
1712
96ff0de4
EZ
1713 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1714 All vr's from saved_ev to ev31 are saved. ????? */
1715 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1716 {
1717 if (fdatap->saved_ev >= 0)
1718 {
1719 int i;
1720 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1721 for (i = fdatap->saved_ev; i < 32; i++)
1722 {
c9012c71
AC
1723 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1724 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1725 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1726 }
1727 }
1728 }
1729
c906108c
SS
1730 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1731 the CR. */
1732 if (fdatap->cr_offset != 0)
c9012c71 1733 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1734
1735 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1736 the LR. */
1737 if (fdatap->lr_offset != 0)
c9012c71 1738 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1739
1740 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1741 the VRSAVE. */
1742 if (fdatap->vrsave_offset != 0)
c9012c71 1743 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1744}
1745
1746/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1747 was first allocated. For functions calling alloca(), it might be saved in
1748 an alloca register. */
c906108c
SS
1749
1750static CORE_ADDR
7a78ae4e 1751frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1752{
1753 CORE_ADDR tmpaddr;
1754 struct rs6000_framedata fdata;
1755 struct frame_info *callee_fi;
1756
64366f1c
EZ
1757 /* If the initial stack pointer (frame address) of this frame is known,
1758 just return it. */
c906108c 1759
c9012c71
AC
1760 if (get_frame_extra_info (fi)->initial_sp)
1761 return get_frame_extra_info (fi)->initial_sp;
c906108c 1762
64366f1c 1763 /* Find out if this function is using an alloca register. */
c906108c 1764
be41e9f4 1765 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1766
64366f1c
EZ
1767 /* If saved registers of this frame are not known yet, read and
1768 cache them. */
c906108c 1769
c9012c71 1770 if (!get_frame_saved_regs (fi))
c906108c
SS
1771 frame_get_saved_regs (fi, &fdata);
1772
1773 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1774 this frame, and it is good enough. */
c906108c
SS
1775
1776 if (fdata.alloca_reg < 0)
1777 {
c9012c71
AC
1778 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1779 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1780 }
1781
953836b2
AC
1782 /* There is an alloca register, use its value, in the current frame,
1783 as the initial stack pointer. */
1784 {
d9d9c31f 1785 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1786 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1787 {
c9012c71 1788 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1789 = extract_unsigned_integer (tmpbuf,
1790 REGISTER_RAW_SIZE (fdata.alloca_reg));
1791 }
1792 else
1793 /* NOTE: cagney/2002-04-17: At present the only time
1794 frame_register_read will fail is when the register isn't
1795 available. If that does happen, use the frame. */
c9012c71 1796 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1797 }
c9012c71 1798 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1799}
1800
7a78ae4e
ND
1801/* Describe the pointer in each stack frame to the previous stack frame
1802 (its caller). */
1803
618ce49f
AC
1804/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1805 the frame's chain-pointer. */
7a78ae4e
ND
1806
1807/* In the case of the RS/6000, the frame's nominal address
1808 is the address of a 4-byte word containing the calling frame's address. */
1809
9aa1e687 1810CORE_ADDR
7a78ae4e 1811rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1812{
7a78ae4e 1813 CORE_ADDR fp, fpp, lr;
21283beb 1814 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1815
bdd78e62 1816 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1817 get_frame_base (thisframe),
1818 get_frame_base (thisframe)))
9f3b7f07
AC
1819 /* A dummy frame always correctly chains back to the previous
1820 frame. */
8b36eed8 1821 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1822
bdd78e62
AC
1823 if (inside_entry_file (get_frame_pc (thisframe))
1824 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1825 return 0;
1826
5a203e44 1827 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1828 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1829 wordsize);
75e3c1f9
AC
1830 else if (get_next_frame (thisframe) != NULL
1831 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1832 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1833 /* A frameless function interrupted by a signal did not change the
1834 frame pointer. */
c193f6ac 1835 fp = get_frame_base (thisframe);
c906108c 1836 else
8b36eed8 1837 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1838 return fp;
1839}
1840
1841/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1842 isn't available with that word size, return 0. */
7a78ae4e
ND
1843
1844static int
1845regsize (const struct reg *reg, int wordsize)
1846{
1847 return wordsize == 8 ? reg->sz64 : reg->sz32;
1848}
1849
1850/* Return the name of register number N, or null if no such register exists
64366f1c 1851 in the current architecture. */
7a78ae4e 1852
fa88f677 1853static const char *
7a78ae4e
ND
1854rs6000_register_name (int n)
1855{
21283beb 1856 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1857 const struct reg *reg = tdep->regs + n;
1858
1859 if (!regsize (reg, tdep->wordsize))
1860 return NULL;
1861 return reg->name;
1862}
1863
1864/* Index within `registers' of the first byte of the space for
1865 register N. */
1866
1867static int
1868rs6000_register_byte (int n)
1869{
21283beb 1870 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1871}
1872
1873/* Return the number of bytes of storage in the actual machine representation
64366f1c 1874 for register N if that register is available, else return 0. */
7a78ae4e
ND
1875
1876static int
1877rs6000_register_raw_size (int n)
1878{
21283beb 1879 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1880 const struct reg *reg = tdep->regs + n;
1881 return regsize (reg, tdep->wordsize);
1882}
1883
7a78ae4e
ND
1884/* Return the GDB type object for the "standard" data type
1885 of data in register N. */
1886
1887static struct type *
fba45db2 1888rs6000_register_virtual_type (int n)
7a78ae4e 1889{
21283beb 1890 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1891 const struct reg *reg = tdep->regs + n;
1892
1fcc0bb8
EZ
1893 if (reg->fpr)
1894 return builtin_type_double;
1895 else
1896 {
1897 int size = regsize (reg, tdep->wordsize);
1898 switch (size)
1899 {
449a5da4
AC
1900 case 0:
1901 return builtin_type_int0;
1902 case 4:
1903 return builtin_type_int32;
1fcc0bb8 1904 case 8:
c8001721
EZ
1905 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1906 return builtin_type_vec64;
1907 else
1908 return builtin_type_int64;
1fcc0bb8
EZ
1909 break;
1910 case 16:
08cf96df 1911 return builtin_type_vec128;
1fcc0bb8
EZ
1912 break;
1913 default:
449a5da4
AC
1914 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1915 n, size);
1fcc0bb8
EZ
1916 }
1917 }
7a78ae4e
ND
1918}
1919
7a78ae4e
ND
1920/* Return whether register N requires conversion when moving from raw format
1921 to virtual format.
1922
1923 The register format for RS/6000 floating point registers is always
64366f1c 1924 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1925
1926static int
1927rs6000_register_convertible (int n)
1928{
21283beb 1929 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1930 return reg->fpr;
1931}
1932
1933/* Convert data from raw format for register N in buffer FROM
64366f1c 1934 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1935
1936static void
1937rs6000_register_convert_to_virtual (int n, struct type *type,
1938 char *from, char *to)
1939{
1940 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1941 {
f1908289
AC
1942 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1943 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1944 }
1945 else
1946 memcpy (to, from, REGISTER_RAW_SIZE (n));
1947}
1948
1949/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1950 to raw format for register N in buffer TO. */
7a292a7a 1951
7a78ae4e
ND
1952static void
1953rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1954 const char *from, char *to)
7a78ae4e
ND
1955{
1956 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1957 {
f1908289
AC
1958 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1959 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1960 }
7a78ae4e
ND
1961 else
1962 memcpy (to, from, REGISTER_RAW_SIZE (n));
1963}
c906108c 1964
c8001721
EZ
1965static void
1966e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1967 int reg_nr, void *buffer)
1968{
1969 int base_regnum;
1970 int offset = 0;
d9d9c31f 1971 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1973
1974 if (reg_nr >= tdep->ppc_gp0_regnum
1975 && reg_nr <= tdep->ppc_gplast_regnum)
1976 {
1977 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1978
1979 /* Build the value in the provided buffer. */
1980 /* Read the raw register of which this one is the lower portion. */
1981 regcache_raw_read (regcache, base_regnum, temp_buffer);
1982 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1983 offset = 4;
1984 memcpy ((char *) buffer, temp_buffer + offset, 4);
1985 }
1986}
1987
1988static void
1989e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1990 int reg_nr, const void *buffer)
1991{
1992 int base_regnum;
1993 int offset = 0;
d9d9c31f 1994 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1995 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1996
1997 if (reg_nr >= tdep->ppc_gp0_regnum
1998 && reg_nr <= tdep->ppc_gplast_regnum)
1999 {
2000 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
2001 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
2002 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2003 offset = 4;
2004
2005 /* Let's read the value of the base register into a temporary
2006 buffer, so that overwriting the last four bytes with the new
2007 value of the pseudo will leave the upper 4 bytes unchanged. */
2008 regcache_raw_read (regcache, base_regnum, temp_buffer);
2009
2010 /* Write as an 8 byte quantity. */
2011 memcpy (temp_buffer + offset, (char *) buffer, 4);
2012 regcache_raw_write (regcache, base_regnum, temp_buffer);
2013 }
2014}
2015
2016/* Convert a dwarf2 register number to a gdb REGNUM. */
2017static int
2018e500_dwarf2_reg_to_regnum (int num)
2019{
2020 int regnum;
2021 if (0 <= num && num <= 31)
2022 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2023 else
2024 return num;
2025}
2026
2188cbdd 2027/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 2028 REGNUM. */
2188cbdd
EZ
2029static int
2030rs6000_stab_reg_to_regnum (int num)
2031{
2032 int regnum;
2033 switch (num)
2034 {
2035 case 64:
2036 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2037 break;
2038 case 65:
2039 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2040 break;
2041 case 66:
2042 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2043 break;
2044 case 76:
2045 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2046 break;
2047 default:
2048 regnum = num;
2049 break;
2050 }
2051 return regnum;
2052}
2053
7a78ae4e 2054/* Store the address of the place in which to copy the structure the
11269d7e 2055 subroutine will return. */
7a78ae4e
ND
2056
2057static void
2058rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2059{
da3eff49
AC
2060 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2061 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2062}
2063
2064/* Write into appropriate registers a function return value
2065 of type TYPE, given in virtual format. */
96ff0de4
EZ
2066static void
2067e500_store_return_value (struct type *type, char *valbuf)
2068{
2069 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2070
2071 /* Everything is returned in GPR3 and up. */
2072 int copied = 0;
2073 int i = 0;
2074 int len = TYPE_LENGTH (type);
2075 while (copied < len)
2076 {
2077 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2078 int reg_size = REGISTER_RAW_SIZE (regnum);
2079 char *reg_val_buf = alloca (reg_size);
2080
2081 memcpy (reg_val_buf, valbuf + copied, reg_size);
2082 copied += reg_size;
4caf0990 2083 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2084 i++;
2085 }
2086}
7a78ae4e
ND
2087
2088static void
2089rs6000_store_return_value (struct type *type, char *valbuf)
2090{
ace1378a
EZ
2091 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2092
7a78ae4e
ND
2093 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2094
2095 /* Floating point values are returned starting from FPR1 and up.
2096 Say a double_double_double type could be returned in
64366f1c 2097 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2098
73937e03
AC
2099 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2100 TYPE_LENGTH (type));
ace1378a
EZ
2101 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2102 {
2103 if (TYPE_LENGTH (type) == 16
2104 && TYPE_VECTOR (type))
73937e03
AC
2105 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2106 valbuf, TYPE_LENGTH (type));
ace1378a 2107 }
7a78ae4e 2108 else
64366f1c 2109 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2110 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2111 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2112}
2113
2114/* Extract from an array REGBUF containing the (raw) register state
2115 the address in which a function should return its structure value,
2116 as a CORE_ADDR (or an expression that can be used as one). */
2117
2118static CORE_ADDR
11269d7e
AC
2119rs6000_extract_struct_value_address (struct regcache *regcache)
2120{
2121 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2122 function call GDB knows the address of the struct return value
2123 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2124 the current call_function_by_hand() code only saves the most
2125 recent struct address leading to occasional calls. The code
2126 should instead maintain a stack of such addresses (in the dummy
2127 frame object). */
11269d7e
AC
2128 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2129 really got no idea where the return value is being stored. While
2130 r3, on function entry, contained the address it will have since
2131 been reused (scratch) and hence wouldn't be valid */
2132 return 0;
7a78ae4e
ND
2133}
2134
2135/* Return whether PC is in a dummy function call.
2136
2137 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2138 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2139
2140static int
2141rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2142{
2143 return sp < pc && pc < fp;
2144}
2145
64366f1c 2146/* Hook called when a new child process is started. */
7a78ae4e
ND
2147
2148void
2149rs6000_create_inferior (int pid)
2150{
2151 if (rs6000_set_host_arch_hook)
2152 rs6000_set_host_arch_hook (pid);
c906108c
SS
2153}
2154\f
7a78ae4e
ND
2155/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2156
2157 Usually a function pointer's representation is simply the address
2158 of the function. On the RS/6000 however, a function pointer is
2159 represented by a pointer to a TOC entry. This TOC entry contains
2160 three words, the first word is the address of the function, the
2161 second word is the TOC pointer (r2), and the third word is the
2162 static chain value. Throughout GDB it is currently assumed that a
2163 function pointer contains the address of the function, which is not
2164 easy to fix. In addition, the conversion of a function address to
2165 a function pointer would require allocation of a TOC entry in the
2166 inferior's memory space, with all its drawbacks. To be able to
2167 call C++ virtual methods in the inferior (which are called via
f517ea4e 2168 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2169 function address from a function pointer. */
2170
f517ea4e
PS
2171/* Return real function address if ADDR (a function pointer) is in the data
2172 space and is therefore a special function pointer. */
c906108c 2173
b9362cc7 2174static CORE_ADDR
7a78ae4e 2175rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2176{
2177 struct obj_section *s;
2178
2179 s = find_pc_section (addr);
2180 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2181 return addr;
c906108c 2182
7a78ae4e 2183 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2184 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2185}
c906108c 2186\f
c5aa993b 2187
7a78ae4e 2188/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2189
2190
7a78ae4e
ND
2191/* The arrays here called registers_MUMBLE hold information about available
2192 registers.
c906108c
SS
2193
2194 For each family of PPC variants, I've tried to isolate out the
2195 common registers and put them up front, so that as long as you get
2196 the general family right, GDB will correctly identify the registers
2197 common to that family. The common register sets are:
2198
2199 For the 60x family: hid0 hid1 iabr dabr pir
2200
2201 For the 505 and 860 family: eie eid nri
2202
2203 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2204 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2205 pbu1 pbl2 pbu2
c906108c
SS
2206
2207 Most of these register groups aren't anything formal. I arrived at
2208 them by looking at the registers that occurred in more than one
6f5987a6
KB
2209 processor.
2210
2211 Note: kevinb/2002-04-30: Support for the fpscr register was added
2212 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2213 for Power. For PowerPC, slot 70 was unused and was already in the
2214 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2215 slot 70 was being used for "mq", so the next available slot (71)
2216 was chosen. It would have been nice to be able to make the
2217 register numbers the same across processor cores, but this wasn't
2218 possible without either 1) renumbering some registers for some
2219 processors or 2) assigning fpscr to a really high slot that's
2220 larger than any current register number. Doing (1) is bad because
2221 existing stubs would break. Doing (2) is undesirable because it
2222 would introduce a really large gap between fpscr and the rest of
2223 the registers for most processors. */
7a78ae4e 2224
64366f1c 2225/* Convenience macros for populating register arrays. */
7a78ae4e 2226
64366f1c 2227/* Within another macro, convert S to a string. */
7a78ae4e
ND
2228
2229#define STR(s) #s
2230
2231/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2232 and 64 bits on 64-bit systems. */
489461e2 2233#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2234
2235/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2236 systems. */
489461e2 2237#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2238
2239/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2240 systems. */
489461e2 2241#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2242
1fcc0bb8 2243/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2244 systems. */
489461e2 2245#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2246
64366f1c 2247/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2248#define F(name) { STR(name), 8, 8, 1, 0 }
2249
64366f1c 2250/* Return a struct reg defining a pseudo register NAME. */
489461e2 2251#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2252
2253/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2254 systems and that doesn't exist on 64-bit systems. */
489461e2 2255#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2256
2257/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2258 systems and that doesn't exist on 32-bit systems. */
489461e2 2259#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2260
64366f1c 2261/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2262#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2263
2264/* UISA registers common across all architectures, including POWER. */
2265
2266#define COMMON_UISA_REGS \
2267 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2268 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2269 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2270 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2271 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2272 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2273 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2274 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2275 /* 64 */ R(pc), R(ps)
2276
ebeac11a
EZ
2277#define COMMON_UISA_NOFP_REGS \
2278 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2279 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2280 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2281 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2282 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2283 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2284 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2285 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2286 /* 64 */ R(pc), R(ps)
2287
7a78ae4e
ND
2288/* UISA-level SPRs for PowerPC. */
2289#define PPC_UISA_SPRS \
e3f36dbd 2290 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2291
c8001721
EZ
2292/* UISA-level SPRs for PowerPC without floating point support. */
2293#define PPC_UISA_NOFP_SPRS \
2294 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2295
7a78ae4e
ND
2296/* Segment registers, for PowerPC. */
2297#define PPC_SEGMENT_REGS \
2298 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2299 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2300 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2301 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2302
2303/* OEA SPRs for PowerPC. */
2304#define PPC_OEA_SPRS \
2305 /* 87 */ R4(pvr), \
2306 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2307 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2308 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2309 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2310 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2311 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2312 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2313 /* 116 */ R4(dec), R(dabr), R4(ear)
2314
64366f1c 2315/* AltiVec registers. */
1fcc0bb8
EZ
2316#define PPC_ALTIVEC_REGS \
2317 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2318 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2319 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2320 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2321 /*151*/R4(vscr), R4(vrsave)
2322
c8001721
EZ
2323/* Vectors of hi-lo general purpose registers. */
2324#define PPC_EV_REGS \
2325 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2326 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2327 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2328 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2329
2330/* Lower half of the EV registers. */
2331#define PPC_GPRS_PSEUDO_REGS \
2332 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2333 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2334 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2335 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2336
7a78ae4e 2337/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2338 user-level SPR's. */
7a78ae4e 2339static const struct reg registers_power[] =
c906108c 2340{
7a78ae4e 2341 COMMON_UISA_REGS,
e3f36dbd
KB
2342 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2343 /* 71 */ R4(fpscr)
c906108c
SS
2344};
2345
7a78ae4e 2346/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2347 view of the PowerPC. */
7a78ae4e 2348static const struct reg registers_powerpc[] =
c906108c 2349{
7a78ae4e 2350 COMMON_UISA_REGS,
1fcc0bb8
EZ
2351 PPC_UISA_SPRS,
2352 PPC_ALTIVEC_REGS
c906108c
SS
2353};
2354
ebeac11a
EZ
2355/* PowerPC UISA - a PPC processor as viewed by user-level
2356 code, but without floating point registers. */
2357static const struct reg registers_powerpc_nofp[] =
2358{
2359 COMMON_UISA_NOFP_REGS,
2360 PPC_UISA_SPRS
2361};
2362
64366f1c 2363/* IBM PowerPC 403. */
7a78ae4e 2364static const struct reg registers_403[] =
c5aa993b 2365{
7a78ae4e
ND
2366 COMMON_UISA_REGS,
2367 PPC_UISA_SPRS,
2368 PPC_SEGMENT_REGS,
2369 PPC_OEA_SPRS,
2370 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2371 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2372 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2373 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2374 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2375 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2376};
2377
64366f1c 2378/* IBM PowerPC 403GC. */
7a78ae4e 2379static const struct reg registers_403GC[] =
c5aa993b 2380{
7a78ae4e
ND
2381 COMMON_UISA_REGS,
2382 PPC_UISA_SPRS,
2383 PPC_SEGMENT_REGS,
2384 PPC_OEA_SPRS,
2385 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2386 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2387 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2388 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2389 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2390 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2391 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2392 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2393};
2394
64366f1c 2395/* Motorola PowerPC 505. */
7a78ae4e 2396static const struct reg registers_505[] =
c5aa993b 2397{
7a78ae4e
ND
2398 COMMON_UISA_REGS,
2399 PPC_UISA_SPRS,
2400 PPC_SEGMENT_REGS,
2401 PPC_OEA_SPRS,
2402 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2403};
2404
64366f1c 2405/* Motorola PowerPC 860 or 850. */
7a78ae4e 2406static const struct reg registers_860[] =
c5aa993b 2407{
7a78ae4e
ND
2408 COMMON_UISA_REGS,
2409 PPC_UISA_SPRS,
2410 PPC_SEGMENT_REGS,
2411 PPC_OEA_SPRS,
2412 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2413 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2414 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2415 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2416 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2417 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2418 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2419 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2420 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2421 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2422 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2423 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2424};
2425
7a78ae4e
ND
2426/* Motorola PowerPC 601. Note that the 601 has different register numbers
2427 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2428 register is the stub's problem. */
7a78ae4e 2429static const struct reg registers_601[] =
c5aa993b 2430{
7a78ae4e
ND
2431 COMMON_UISA_REGS,
2432 PPC_UISA_SPRS,
2433 PPC_SEGMENT_REGS,
2434 PPC_OEA_SPRS,
2435 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2436 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2437};
2438
64366f1c 2439/* Motorola PowerPC 602. */
7a78ae4e 2440static const struct reg registers_602[] =
c5aa993b 2441{
7a78ae4e
ND
2442 COMMON_UISA_REGS,
2443 PPC_UISA_SPRS,
2444 PPC_SEGMENT_REGS,
2445 PPC_OEA_SPRS,
2446 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2447 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2448 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2449};
2450
64366f1c 2451/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2452static const struct reg registers_603[] =
c5aa993b 2453{
7a78ae4e
ND
2454 COMMON_UISA_REGS,
2455 PPC_UISA_SPRS,
2456 PPC_SEGMENT_REGS,
2457 PPC_OEA_SPRS,
2458 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2459 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2460 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2461};
2462
64366f1c 2463/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2464static const struct reg registers_604[] =
c5aa993b 2465{
7a78ae4e
ND
2466 COMMON_UISA_REGS,
2467 PPC_UISA_SPRS,
2468 PPC_SEGMENT_REGS,
2469 PPC_OEA_SPRS,
2470 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2471 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2472 /* 127 */ R(sia), R(sda)
c906108c
SS
2473};
2474
64366f1c 2475/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2476static const struct reg registers_750[] =
c5aa993b 2477{
7a78ae4e
ND
2478 COMMON_UISA_REGS,
2479 PPC_UISA_SPRS,
2480 PPC_SEGMENT_REGS,
2481 PPC_OEA_SPRS,
2482 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2483 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2484 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2485 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2486 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2487 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2488};
2489
2490
64366f1c 2491/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2492static const struct reg registers_7400[] =
2493{
2494 /* gpr0-gpr31, fpr0-fpr31 */
2495 COMMON_UISA_REGS,
2496 /* ctr, xre, lr, cr */
2497 PPC_UISA_SPRS,
2498 /* sr0-sr15 */
2499 PPC_SEGMENT_REGS,
2500 PPC_OEA_SPRS,
2501 /* vr0-vr31, vrsave, vscr */
2502 PPC_ALTIVEC_REGS
2503 /* FIXME? Add more registers? */
2504};
2505
c8001721
EZ
2506/* Motorola e500. */
2507static const struct reg registers_e500[] =
2508{
2509 R(pc), R(ps),
2510 /* cr, lr, ctr, xer, "" */
2511 PPC_UISA_NOFP_SPRS,
2512 /* 7...38 */
2513 PPC_EV_REGS,
338ef23d
AC
2514 R8(acc), R(spefscr),
2515 /* NOTE: Add new registers here the end of the raw register
2516 list and just before the first pseudo register. */
c8001721
EZ
2517 /* 39...70 */
2518 PPC_GPRS_PSEUDO_REGS
2519};
2520
c906108c 2521/* Information about a particular processor variant. */
7a78ae4e 2522
c906108c 2523struct variant
c5aa993b
JM
2524 {
2525 /* Name of this variant. */
2526 char *name;
c906108c 2527
c5aa993b
JM
2528 /* English description of the variant. */
2529 char *description;
c906108c 2530
64366f1c 2531 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2532 enum bfd_architecture arch;
2533
64366f1c 2534 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2535 unsigned long mach;
2536
489461e2
EZ
2537 /* Number of real registers. */
2538 int nregs;
2539
2540 /* Number of pseudo registers. */
2541 int npregs;
2542
2543 /* Number of total registers (the sum of nregs and npregs). */
2544 int num_tot_regs;
2545
c5aa993b
JM
2546 /* Table of register names; registers[R] is the name of the register
2547 number R. */
7a78ae4e 2548 const struct reg *regs;
c5aa993b 2549 };
c906108c 2550
489461e2
EZ
2551#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2552
2553static int
2554num_registers (const struct reg *reg_list, int num_tot_regs)
2555{
2556 int i;
2557 int nregs = 0;
2558
2559 for (i = 0; i < num_tot_regs; i++)
2560 if (!reg_list[i].pseudo)
2561 nregs++;
2562
2563 return nregs;
2564}
2565
2566static int
2567num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2568{
2569 int i;
2570 int npregs = 0;
2571
2572 for (i = 0; i < num_tot_regs; i++)
2573 if (reg_list[i].pseudo)
2574 npregs ++;
2575
2576 return npregs;
2577}
c906108c 2578
c906108c
SS
2579/* Information in this table comes from the following web sites:
2580 IBM: http://www.chips.ibm.com:80/products/embedded/
2581 Motorola: http://www.mot.com/SPS/PowerPC/
2582
2583 I'm sure I've got some of the variant descriptions not quite right.
2584 Please report any inaccuracies you find to GDB's maintainer.
2585
2586 If you add entries to this table, please be sure to allow the new
2587 value as an argument to the --with-cpu flag, in configure.in. */
2588
489461e2 2589static struct variant variants[] =
c906108c 2590{
489461e2 2591
7a78ae4e 2592 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2593 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2594 registers_powerpc},
7a78ae4e 2595 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2596 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2597 registers_power},
7a78ae4e 2598 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2599 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2600 registers_403},
7a78ae4e 2601 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2602 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2603 registers_601},
7a78ae4e 2604 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2605 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2606 registers_602},
7a78ae4e 2607 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2608 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2609 registers_603},
7a78ae4e 2610 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2611 604, -1, -1, tot_num_registers (registers_604),
2612 registers_604},
7a78ae4e 2613 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2614 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2615 registers_403GC},
7a78ae4e 2616 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2617 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2618 registers_505},
7a78ae4e 2619 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2620 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2621 registers_860},
7a78ae4e 2622 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2623 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2624 registers_750},
1fcc0bb8 2625 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2626 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2627 registers_7400},
c8001721
EZ
2628 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2629 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2630 registers_e500},
7a78ae4e 2631
5d57ee30
KB
2632 /* 64-bit */
2633 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2634 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2635 registers_powerpc},
7a78ae4e 2636 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2637 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2638 registers_powerpc},
5d57ee30 2639 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2640 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2641 registers_powerpc},
7a78ae4e 2642 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2643 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2644 registers_powerpc},
5d57ee30 2645 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2646 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2647 registers_powerpc},
5d57ee30 2648 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2649 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2650 registers_powerpc},
5d57ee30 2651
64366f1c 2652 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2653 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2654 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2655 registers_power},
7a78ae4e 2656 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2657 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2658 registers_power},
7a78ae4e 2659 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2660 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2661 registers_power},
7a78ae4e 2662
489461e2 2663 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2664};
2665
64366f1c 2666/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2667
2668static void
2669init_variants (void)
2670{
2671 struct variant *v;
2672
2673 for (v = variants; v->name; v++)
2674 {
2675 if (v->nregs == -1)
2676 v->nregs = num_registers (v->regs, v->num_tot_regs);
2677 if (v->npregs == -1)
2678 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2679 }
2680}
c906108c 2681
7a78ae4e 2682/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2683 MACH. If no such variant exists, return null. */
c906108c 2684
7a78ae4e
ND
2685static const struct variant *
2686find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2687{
7a78ae4e 2688 const struct variant *v;
c5aa993b 2689
7a78ae4e
ND
2690 for (v = variants; v->name; v++)
2691 if (arch == v->arch && mach == v->mach)
2692 return v;
c906108c 2693
7a78ae4e 2694 return NULL;
c906108c 2695}
9364a0ef
EZ
2696
2697static int
2698gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2699{
2700 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2701 return print_insn_big_powerpc (memaddr, info);
2702 else
2703 return print_insn_little_powerpc (memaddr, info);
2704}
7a78ae4e 2705\f
7a78ae4e
ND
2706/* Initialize the current architecture based on INFO. If possible, re-use an
2707 architecture from ARCHES, which is a list of architectures already created
2708 during this debugging session.
c906108c 2709
7a78ae4e 2710 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2711 a binary file. */
c906108c 2712
7a78ae4e
ND
2713static struct gdbarch *
2714rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2715{
2716 struct gdbarch *gdbarch;
2717 struct gdbarch_tdep *tdep;
9aa1e687 2718 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2719 struct reg *regs;
2720 const struct variant *v;
2721 enum bfd_architecture arch;
2722 unsigned long mach;
2723 bfd abfd;
7b112f9c 2724 int sysv_abi;
5bf1c677 2725 asection *sect;
7a78ae4e 2726
9aa1e687 2727 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2728 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2729
9aa1e687
KB
2730 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2731 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2732
2733 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2734
e712c1cf 2735 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2736 that, else choose a likely default. */
9aa1e687 2737 if (from_xcoff_exec)
c906108c 2738 {
11ed25ac 2739 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2740 wordsize = 8;
2741 else
2742 wordsize = 4;
c906108c 2743 }
9aa1e687
KB
2744 else if (from_elf_exec)
2745 {
2746 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2747 wordsize = 8;
2748 else
2749 wordsize = 4;
2750 }
c906108c 2751 else
7a78ae4e 2752 {
27b15785
KB
2753 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2754 wordsize = info.bfd_arch_info->bits_per_word /
2755 info.bfd_arch_info->bits_per_byte;
2756 else
2757 wordsize = 4;
7a78ae4e 2758 }
c906108c 2759
64366f1c 2760 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2761 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2762 arches != NULL;
2763 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2764 {
2765 /* Word size in the various PowerPC bfd_arch_info structs isn't
2766 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2767 separate word size check. */
7a78ae4e 2768 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2769 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2770 return arches->gdbarch;
2771 }
c906108c 2772
7a78ae4e
ND
2773 /* None found, create a new architecture from INFO, whose bfd_arch_info
2774 validity depends on the source:
2775 - executable useless
2776 - rs6000_host_arch() good
2777 - core file good
2778 - "set arch" trust blindly
2779 - GDB startup useless but harmless */
c906108c 2780
9aa1e687 2781 if (!from_xcoff_exec)
c906108c 2782 {
b732d07d 2783 arch = info.bfd_arch_info->arch;
7a78ae4e 2784 mach = info.bfd_arch_info->mach;
c906108c 2785 }
7a78ae4e 2786 else
c906108c 2787 {
7a78ae4e 2788 arch = bfd_arch_powerpc;
35cec841 2789 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2790 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2791 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2792 }
2793 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2794 tdep->wordsize = wordsize;
5bf1c677
EZ
2795
2796 /* For e500 executables, the apuinfo section is of help here. Such
2797 section contains the identifier and revision number of each
2798 Application-specific Processing Unit that is present on the
2799 chip. The content of the section is determined by the assembler
2800 which looks at each instruction and determines which unit (and
2801 which version of it) can execute it. In our case we just look for
2802 the existance of the section. */
2803
2804 if (info.abfd)
2805 {
2806 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2807 if (sect)
2808 {
2809 arch = info.bfd_arch_info->arch;
2810 mach = bfd_mach_ppc_e500;
2811 bfd_default_set_arch_mach (&abfd, arch, mach);
2812 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2813 }
2814 }
2815
7a78ae4e
ND
2816 gdbarch = gdbarch_alloc (&info, tdep);
2817 power = arch == bfd_arch_rs6000;
2818
489461e2
EZ
2819 /* Initialize the number of real and pseudo registers in each variant. */
2820 init_variants ();
2821
64366f1c 2822 /* Choose variant. */
7a78ae4e
ND
2823 v = find_variant_by_arch (arch, mach);
2824 if (!v)
dd47e6fd
EZ
2825 return NULL;
2826
7a78ae4e
ND
2827 tdep->regs = v->regs;
2828
2188cbdd
EZ
2829 tdep->ppc_gp0_regnum = 0;
2830 tdep->ppc_gplast_regnum = 31;
2831 tdep->ppc_toc_regnum = 2;
2832 tdep->ppc_ps_regnum = 65;
2833 tdep->ppc_cr_regnum = 66;
2834 tdep->ppc_lr_regnum = 67;
2835 tdep->ppc_ctr_regnum = 68;
2836 tdep->ppc_xer_regnum = 69;
2837 if (v->mach == bfd_mach_ppc_601)
2838 tdep->ppc_mq_regnum = 124;
e3f36dbd 2839 else if (power)
2188cbdd 2840 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2841 else
2842 tdep->ppc_mq_regnum = -1;
2843 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2844
c8001721
EZ
2845 set_gdbarch_pc_regnum (gdbarch, 64);
2846 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2847 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2848 set_gdbarch_deprecated_extract_return_value (gdbarch,
2849 rs6000_extract_return_value);
46d79c04 2850 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2851
1fcc0bb8
EZ
2852 if (v->arch == bfd_arch_powerpc)
2853 switch (v->mach)
2854 {
2855 case bfd_mach_ppc:
2856 tdep->ppc_vr0_regnum = 71;
2857 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2858 tdep->ppc_ev0_regnum = -1;
2859 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2860 break;
2861 case bfd_mach_ppc_7400:
2862 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2863 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2864 tdep->ppc_ev0_regnum = -1;
2865 tdep->ppc_ev31_regnum = -1;
2866 break;
2867 case bfd_mach_ppc_e500:
338ef23d
AC
2868 tdep->ppc_gp0_regnum = 41;
2869 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2870 tdep->ppc_toc_regnum = -1;
2871 tdep->ppc_ps_regnum = 1;
2872 tdep->ppc_cr_regnum = 2;
2873 tdep->ppc_lr_regnum = 3;
2874 tdep->ppc_ctr_regnum = 4;
2875 tdep->ppc_xer_regnum = 5;
2876 tdep->ppc_ev0_regnum = 7;
2877 tdep->ppc_ev31_regnum = 38;
2878 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2879 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2880 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2881 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2882 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2883 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2884 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2885 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2886 break;
2887 default:
2888 tdep->ppc_vr0_regnum = -1;
2889 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2890 tdep->ppc_ev0_regnum = -1;
2891 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2892 break;
2893 }
2894
338ef23d
AC
2895 /* Sanity check on registers. */
2896 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2897
a88376a3
KB
2898 /* Set lr_frame_offset. */
2899 if (wordsize == 8)
2900 tdep->lr_frame_offset = 16;
2901 else if (sysv_abi)
2902 tdep->lr_frame_offset = 4;
2903 else
2904 tdep->lr_frame_offset = 8;
2905
2906 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2907 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2908 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2909 {
2910 tdep->regoff[i] = off;
2911 off += regsize (v->regs + i, wordsize);
c906108c
SS
2912 }
2913
56a6dfb9
KB
2914 /* Select instruction printer. */
2915 if (arch == power)
9364a0ef 2916 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2917 else
9364a0ef 2918 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2919
7a78ae4e 2920 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
b46e02f6 2921 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
7a78ae4e
ND
2922
2923 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2924 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2925 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2926 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2927 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2928 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2929 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
a0ed5532 2930 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
9c04cab7 2931 set_gdbarch_deprecated_register_virtual_size (gdbarch, generic_register_size);
a0ed5532 2932 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
9c04cab7 2933 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2934
2935 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2936 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2937 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2938 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2939 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2940 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2941 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2942 if (sysv_abi)
2943 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2944 else
2945 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2946 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2947
b1e29e33 2948 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2949 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2950 if (sysv_abi && wordsize == 8)
2951 /* PPC64 SYSV. */
2952 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2953 else if (!sysv_abi && wordsize == 4)
2954 /* PowerOpen / AIX 32 bit. */
2955 set_gdbarch_frame_red_zone_size (gdbarch, 220);
a59fe496 2956 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
28f617b3 2957 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
7a78ae4e 2958 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2959
781a750d
AC
2960 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2961 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2962 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2963 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2964 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2965 is correct for the SysV ABI when the wordsize is 8, but I'm also
2966 fairly certain that ppc_sysv_abi_push_arguments() will give even
2967 worse results since it only works for 32-bit code. So, for the moment,
2968 we're better off calling rs6000_push_arguments() since it works for
2969 64-bit code. At some point in the future, this matter needs to be
2970 revisited. */
2971 if (sysv_abi && wordsize == 4)
77b2b6d4 2972 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
9aa1e687 2973 else
77b2b6d4 2974 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2975
4183d812 2976 set_gdbarch_deprecated_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2977 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2978 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2979
2980 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2981 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2982 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2983 set_gdbarch_function_start_offset (gdbarch, 0);
2984 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2985
2986 /* Not sure on this. FIXMEmgo */
2987 set_gdbarch_frame_args_skip (gdbarch, 8);
2988
8e0662df 2989 if (sysv_abi)
7b112f9c
JT
2990 set_gdbarch_use_struct_convention (gdbarch,
2991 ppc_sysv_abi_use_struct_convention);
8e0662df 2992 else
7b112f9c
JT
2993 set_gdbarch_use_struct_convention (gdbarch,
2994 generic_use_struct_convention);
8e0662df 2995
7b112f9c
JT
2996 set_gdbarch_frameless_function_invocation (gdbarch,
2997 rs6000_frameless_function_invocation);
618ce49f 2998 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2999 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 3000
f30ee0bc 3001 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 3002 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 3003
15813d3f
AC
3004 if (!sysv_abi)
3005 {
3006 /* Handle RS/6000 function pointers (which are really function
3007 descriptors). */
f517ea4e
PS
3008 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3009 rs6000_convert_from_func_ptr_addr);
9aa1e687 3010 }
42efa47a
AC
3011 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
3012 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 3013 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 3014
143985b7
AF
3015 /* Helpers for function argument information. */
3016 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3017
7b112f9c 3018 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3019 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3020
7a78ae4e 3021 return gdbarch;
c906108c
SS
3022}
3023
7b112f9c
JT
3024static void
3025rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3026{
3027 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3028
3029 if (tdep == NULL)
3030 return;
3031
4be87837 3032 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3033}
3034
1fcc0bb8
EZ
3035static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3036
3037static void
3038rs6000_info_powerpc_command (char *args, int from_tty)
3039{
3040 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3041}
3042
c906108c
SS
3043/* Initialization code. */
3044
a78f21af 3045extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3046
c906108c 3047void
fba45db2 3048_initialize_rs6000_tdep (void)
c906108c 3049{
7b112f9c
JT
3050 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3051 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3052
3053 /* Add root prefix command for "info powerpc" commands */
3054 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3055 "Various POWERPC info specific commands.",
3056 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3057}
This page took 0.551331 seconds and 4 git commands to generate.