Back out change. The NetBSD changes need Jason Thorpe's approval, but
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7a78ae4e 39
2fccf04a 40#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 41#include "coff/internal.h" /* for libcoff.h */
2fccf04a 42#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
43#include "coff/xcoff.h"
44#include "libxcoff.h"
7a78ae4e 45
9aa1e687 46#include "elf-bfd.h"
7a78ae4e 47
6ded7999 48#include "solib-svr4.h"
9aa1e687 49#include "ppc-tdep.h"
7a78ae4e 50
338ef23d 51#include "gdb_assert.h"
a89aa300 52#include "dis-asm.h"
338ef23d 53
61a65099
KB
54#include "trad-frame.h"
55#include "frame-unwind.h"
56#include "frame-base.h"
57
7a78ae4e
ND
58/* If the kernel has to deliver a signal, it pushes a sigcontext
59 structure on the stack and then calls the signal handler, passing
60 the address of the sigcontext in an argument register. Usually
61 the signal handler doesn't save this register, so we have to
62 access the sigcontext structure via an offset from the signal handler
63 frame.
64 The following constants were determined by experimentation on AIX 3.2. */
65#define SIG_FRAME_PC_OFFSET 96
66#define SIG_FRAME_LR_OFFSET 108
67#define SIG_FRAME_FP_OFFSET 284
68
7a78ae4e
ND
69/* To be used by skip_prologue. */
70
71struct rs6000_framedata
72 {
73 int offset; /* total size of frame --- the distance
74 by which we decrement sp to allocate
75 the frame */
76 int saved_gpr; /* smallest # of saved gpr */
77 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 78 int saved_vr; /* smallest # of saved vr */
96ff0de4 79 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
80 int alloca_reg; /* alloca register number (frame ptr) */
81 char frameless; /* true if frameless functions. */
82 char nosavedpc; /* true if pc not saved. */
83 int gpr_offset; /* offset of saved gprs from prev sp */
84 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 85 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 86 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
87 int lr_offset; /* offset of saved lr */
88 int cr_offset; /* offset of saved cr */
6be8bc0c 89 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
90 };
91
92/* Description of a single register. */
93
94struct reg
95 {
96 char *name; /* name of register */
97 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
98 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
99 unsigned char fpr; /* whether register is floating-point */
489461e2 100 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
101 };
102
c906108c
SS
103/* Breakpoint shadows for the single step instructions will be kept here. */
104
c5aa993b
JM
105static struct sstep_breaks
106 {
107 /* Address, or 0 if this is not in use. */
108 CORE_ADDR address;
109 /* Shadow contents. */
110 char data[4];
111 }
112stepBreaks[2];
c906108c
SS
113
114/* Hook for determining the TOC address when calling functions in the
115 inferior under AIX. The initialization code in rs6000-nat.c sets
116 this hook to point to find_toc_address. */
117
7a78ae4e
ND
118CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
119
120/* Hook to set the current architecture when starting a child process.
121 rs6000-nat.c sets this. */
122
123void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
124
125/* Static function prototypes */
126
a14ed312
KB
127static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
128 CORE_ADDR safety);
077276e8
KB
129static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
130 struct rs6000_framedata *);
c906108c 131
64b84175
KB
132/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
133int
134altivec_register_p (int regno)
135{
136 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
137 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
138 return 0;
139 else
140 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
141}
142
7bcda025 143/* Use the architectures FP registers? */
0a613259
AC
144int
145ppc_floating_point_unit_p (struct gdbarch *gdbarch)
146{
7bcda025
JB
147 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
148 if (info->arch == bfd_arch_powerpc)
149 return (info->mach != bfd_mach_ppc_e500);
150 if (info->arch == bfd_arch_rs6000)
151 return 1;
152 return 0;
0a613259 153}
d195bc9f
MK
154\f
155
156/* Register set support functions. */
157
158static void
159ppc_supply_reg (struct regcache *regcache, int regnum,
160 const char *regs, size_t offset)
161{
162 if (regnum != -1 && offset != -1)
163 regcache_raw_supply (regcache, regnum, regs + offset);
164}
165
166static void
167ppc_collect_reg (const struct regcache *regcache, int regnum,
168 char *regs, size_t offset)
169{
170 if (regnum != -1 && offset != -1)
171 regcache_raw_collect (regcache, regnum, regs + offset);
172}
173
174/* Supply register REGNUM in the general-purpose register set REGSET
175 from the buffer specified by GREGS and LEN to register cache
176 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
177
178void
179ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
180 int regnum, const void *gregs, size_t len)
181{
182 struct gdbarch *gdbarch = get_regcache_arch (regcache);
183 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
184 const struct ppc_reg_offsets *offsets = regset->descr;
185 size_t offset;
186 int i;
187
188 for (i = 0, offset = offsets->r0_offset; i < 32; i++, offset += 4)
189 {
190 if (regnum == -1 || regnum == i)
191 ppc_supply_reg (regcache, i, gregs, offset);
192 }
193
194 if (regnum == -1 || regnum == PC_REGNUM)
195 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
196 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
197 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
198 gregs, offsets->ps_offset);
199 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
200 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
201 gregs, offsets->cr_offset);
202 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
203 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
204 gregs, offsets->lr_offset);
205 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
206 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
207 gregs, offsets->ctr_offset);
208 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
209 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
210 gregs, offsets->cr_offset);
211 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
212 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
213}
214
215/* Supply register REGNUM in the floating-point register set REGSET
216 from the buffer specified by FPREGS and LEN to register cache
217 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
218
219void
220ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
221 int regnum, const void *fpregs, size_t len)
222{
223 struct gdbarch *gdbarch = get_regcache_arch (regcache);
224 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
225 const struct ppc_reg_offsets *offsets = regset->descr;
226 size_t offset;
227 int i;
228
229 offset = offsets->f0_offset;
366f009f
JB
230 for (i = tdep->ppc_fp0_regnum;
231 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
232 i++, offset += 4)
d195bc9f
MK
233 {
234 if (regnum == -1 || regnum == i)
235 ppc_supply_reg (regcache, i, fpregs, offset);
236 }
237
238 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
239 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
240 fpregs, offsets->fpscr_offset);
241}
242
243/* Collect register REGNUM in the general-purpose register set
244 REGSET. from register cache REGCACHE into the buffer specified by
245 GREGS and LEN. If REGNUM is -1, do this for all registers in
246 REGSET. */
247
248void
249ppc_collect_gregset (const struct regset *regset,
250 const struct regcache *regcache,
251 int regnum, void *gregs, size_t len)
252{
253 struct gdbarch *gdbarch = get_regcache_arch (regcache);
254 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
255 const struct ppc_reg_offsets *offsets = regset->descr;
256 size_t offset;
257 int i;
258
259 offset = offsets->r0_offset;
26c0b942 260 for (i = 0; i < 32; i++, offset += 4)
d195bc9f
MK
261 {
262 if (regnum == -1 || regnum == i)
2e56e9c1 263 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
264 }
265
266 if (regnum == -1 || regnum == PC_REGNUM)
267 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
268 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
269 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
270 gregs, offsets->ps_offset);
271 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
272 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
273 gregs, offsets->cr_offset);
274 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
275 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
276 gregs, offsets->lr_offset);
277 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
278 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
279 gregs, offsets->ctr_offset);
280 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
281 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
282 gregs, offsets->xer_offset);
283 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
284 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
285 gregs, offsets->mq_offset);
286}
287
288/* Collect register REGNUM in the floating-point register set
289 REGSET. from register cache REGCACHE into the buffer specified by
290 FPREGS and LEN. If REGNUM is -1, do this for all registers in
291 REGSET. */
292
293void
294ppc_collect_fpregset (const struct regset *regset,
295 const struct regcache *regcache,
296 int regnum, void *fpregs, size_t len)
297{
298 struct gdbarch *gdbarch = get_regcache_arch (regcache);
299 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
300 const struct ppc_reg_offsets *offsets = regset->descr;
301 size_t offset;
302 int i;
303
304 offset = offsets->f0_offset;
366f009f
JB
305 for (i = tdep->ppc_fp0_regnum;
306 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
307 i++, offset += 4)
d195bc9f
MK
308 {
309 if (regnum == -1 || regnum == i)
310 ppc_collect_reg (regcache, regnum, fpregs, offset);
311 }
312
313 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
314 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
315 fpregs, offsets->fpscr_offset);
316}
317\f
0a613259 318
7a78ae4e 319/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 320
7a78ae4e
ND
321static CORE_ADDR
322read_memory_addr (CORE_ADDR memaddr, int len)
323{
324 return read_memory_unsigned_integer (memaddr, len);
325}
c906108c 326
7a78ae4e
ND
327static CORE_ADDR
328rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
329{
330 struct rs6000_framedata frame;
077276e8 331 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
332 return pc;
333}
334
335
c906108c
SS
336/* Fill in fi->saved_regs */
337
338struct frame_extra_info
339{
340 /* Functions calling alloca() change the value of the stack
341 pointer. We need to use initial stack pointer (which is saved in
342 r31 by gcc) in such cases. If a compiler emits traceback table,
343 then we should use the alloca register specified in traceback
344 table. FIXME. */
c5aa993b 345 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
346};
347
143985b7 348/* Get the ith function argument for the current function. */
b9362cc7 349static CORE_ADDR
143985b7
AF
350rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
351 struct type *type)
352{
353 CORE_ADDR addr;
7f5f525d 354 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
355 return addr;
356}
357
c906108c
SS
358/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
359
360static CORE_ADDR
7a78ae4e 361branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
362{
363 CORE_ADDR dest;
364 int immediate;
365 int absolute;
366 int ext_op;
367
368 absolute = (int) ((instr >> 1) & 1);
369
c5aa993b
JM
370 switch (opcode)
371 {
372 case 18:
373 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
374 if (absolute)
375 dest = immediate;
376 else
377 dest = pc + immediate;
378 break;
379
380 case 16:
381 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
382 if (absolute)
383 dest = immediate;
384 else
385 dest = pc + immediate;
386 break;
387
388 case 19:
389 ext_op = (instr >> 1) & 0x3ff;
390
391 if (ext_op == 16) /* br conditional register */
392 {
2188cbdd 393 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
394
395 /* If we are about to return from a signal handler, dest is
396 something like 0x3c90. The current frame is a signal handler
397 caller frame, upon completion of the sigreturn system call
398 execution will return to the saved PC in the frame. */
399 if (dest < TEXT_SEGMENT_BASE)
400 {
401 struct frame_info *fi;
402
403 fi = get_current_frame ();
404 if (fi != NULL)
8b36eed8 405 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 406 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
407 }
408 }
409
410 else if (ext_op == 528) /* br cond to count reg */
411 {
2188cbdd 412 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
413
414 /* If we are about to execute a system call, dest is something
415 like 0x22fc or 0x3b00. Upon completion the system call
416 will return to the address in the link register. */
417 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 418 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
419 }
420 else
421 return -1;
422 break;
c906108c 423
c5aa993b
JM
424 default:
425 return -1;
426 }
c906108c
SS
427 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
428}
429
430
431/* Sequence of bytes for breakpoint instruction. */
432
f4f9705a 433const static unsigned char *
7a78ae4e 434rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 435{
aaab4dba
AC
436 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
437 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 438 *bp_size = 4;
d7449b42 439 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
440 return big_breakpoint;
441 else
442 return little_breakpoint;
443}
444
445
446/* AIX does not support PT_STEP. Simulate it. */
447
448void
379d08a1
AC
449rs6000_software_single_step (enum target_signal signal,
450 int insert_breakpoints_p)
c906108c 451{
7c40d541
KB
452 CORE_ADDR dummy;
453 int breakp_sz;
f4f9705a 454 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
455 int ii, insn;
456 CORE_ADDR loc;
457 CORE_ADDR breaks[2];
458 int opcode;
459
c5aa993b
JM
460 if (insert_breakpoints_p)
461 {
c906108c 462
c5aa993b 463 loc = read_pc ();
c906108c 464
c5aa993b 465 insn = read_memory_integer (loc, 4);
c906108c 466
7c40d541 467 breaks[0] = loc + breakp_sz;
c5aa993b
JM
468 opcode = insn >> 26;
469 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 470
c5aa993b
JM
471 /* Don't put two breakpoints on the same address. */
472 if (breaks[1] == breaks[0])
473 breaks[1] = -1;
c906108c 474
c5aa993b 475 stepBreaks[1].address = 0;
c906108c 476
c5aa993b
JM
477 for (ii = 0; ii < 2; ++ii)
478 {
c906108c 479
c5aa993b
JM
480 /* ignore invalid breakpoint. */
481 if (breaks[ii] == -1)
482 continue;
7c40d541 483 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
484 stepBreaks[ii].address = breaks[ii];
485 }
c906108c 486
c5aa993b
JM
487 }
488 else
489 {
c906108c 490
c5aa993b
JM
491 /* remove step breakpoints. */
492 for (ii = 0; ii < 2; ++ii)
493 if (stepBreaks[ii].address != 0)
7c40d541
KB
494 target_remove_breakpoint (stepBreaks[ii].address,
495 stepBreaks[ii].data);
c5aa993b 496 }
c906108c 497 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 498 /* What errors? {read,write}_memory call error(). */
c906108c
SS
499}
500
501
502/* return pc value after skipping a function prologue and also return
503 information about a function frame.
504
505 in struct rs6000_framedata fdata:
c5aa993b
JM
506 - frameless is TRUE, if function does not have a frame.
507 - nosavedpc is TRUE, if function does not save %pc value in its frame.
508 - offset is the initial size of this stack frame --- the amount by
509 which we decrement the sp to allocate the frame.
510 - saved_gpr is the number of the first saved gpr.
511 - saved_fpr is the number of the first saved fpr.
6be8bc0c 512 - saved_vr is the number of the first saved vr.
96ff0de4 513 - saved_ev is the number of the first saved ev.
c5aa993b
JM
514 - alloca_reg is the number of the register used for alloca() handling.
515 Otherwise -1.
516 - gpr_offset is the offset of the first saved gpr from the previous frame.
517 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 518 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 519 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
520 - lr_offset is the offset of the saved lr
521 - cr_offset is the offset of the saved cr
6be8bc0c 522 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 523 */
c906108c
SS
524
525#define SIGNED_SHORT(x) \
526 ((sizeof (short) == 2) \
527 ? ((int)(short)(x)) \
528 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
529
530#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
531
55d05f3b
KB
532/* Limit the number of skipped non-prologue instructions, as the examining
533 of the prologue is expensive. */
534static int max_skip_non_prologue_insns = 10;
535
536/* Given PC representing the starting address of a function, and
537 LIM_PC which is the (sloppy) limit to which to scan when looking
538 for a prologue, attempt to further refine this limit by using
539 the line data in the symbol table. If successful, a better guess
540 on where the prologue ends is returned, otherwise the previous
541 value of lim_pc is returned. */
634aa483
AC
542
543/* FIXME: cagney/2004-02-14: This function and logic have largely been
544 superseded by skip_prologue_using_sal. */
545
55d05f3b
KB
546static CORE_ADDR
547refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
548{
549 struct symtab_and_line prologue_sal;
550
551 prologue_sal = find_pc_line (pc, 0);
552 if (prologue_sal.line != 0)
553 {
554 int i;
555 CORE_ADDR addr = prologue_sal.end;
556
557 /* Handle the case in which compiler's optimizer/scheduler
558 has moved instructions into the prologue. We scan ahead
559 in the function looking for address ranges whose corresponding
560 line number is less than or equal to the first one that we
561 found for the function. (It can be less than when the
562 scheduler puts a body instruction before the first prologue
563 instruction.) */
564 for (i = 2 * max_skip_non_prologue_insns;
565 i > 0 && (lim_pc == 0 || addr < lim_pc);
566 i--)
567 {
568 struct symtab_and_line sal;
569
570 sal = find_pc_line (addr, 0);
571 if (sal.line == 0)
572 break;
573 if (sal.line <= prologue_sal.line
574 && sal.symtab == prologue_sal.symtab)
575 {
576 prologue_sal = sal;
577 }
578 addr = sal.end;
579 }
580
581 if (lim_pc == 0 || prologue_sal.end < lim_pc)
582 lim_pc = prologue_sal.end;
583 }
584 return lim_pc;
585}
586
587
7a78ae4e 588static CORE_ADDR
077276e8 589skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
590{
591 CORE_ADDR orig_pc = pc;
55d05f3b 592 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 593 CORE_ADDR li_found_pc = 0;
c906108c
SS
594 char buf[4];
595 unsigned long op;
596 long offset = 0;
6be8bc0c 597 long vr_saved_offset = 0;
482ca3f5
KB
598 int lr_reg = -1;
599 int cr_reg = -1;
6be8bc0c 600 int vr_reg = -1;
96ff0de4
EZ
601 int ev_reg = -1;
602 long ev_offset = 0;
6be8bc0c 603 int vrsave_reg = -1;
c906108c
SS
604 int reg;
605 int framep = 0;
606 int minimal_toc_loaded = 0;
ddb20c56 607 int prev_insn_was_prologue_insn = 1;
55d05f3b 608 int num_skip_non_prologue_insns = 0;
96ff0de4 609 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 610 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 611
55d05f3b
KB
612 /* Attempt to find the end of the prologue when no limit is specified.
613 Note that refine_prologue_limit() has been written so that it may
614 be used to "refine" the limits of non-zero PC values too, but this
615 is only safe if we 1) trust the line information provided by the
616 compiler and 2) iterate enough to actually find the end of the
617 prologue.
618
619 It may become a good idea at some point (for both performance and
620 accuracy) to unconditionally call refine_prologue_limit(). But,
621 until we can make a clear determination that this is beneficial,
622 we'll play it safe and only use it to obtain a limit when none
623 has been specified. */
624 if (lim_pc == 0)
625 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 626
ddb20c56 627 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
628 fdata->saved_gpr = -1;
629 fdata->saved_fpr = -1;
6be8bc0c 630 fdata->saved_vr = -1;
96ff0de4 631 fdata->saved_ev = -1;
c906108c
SS
632 fdata->alloca_reg = -1;
633 fdata->frameless = 1;
634 fdata->nosavedpc = 1;
635
55d05f3b 636 for (;; pc += 4)
c906108c 637 {
ddb20c56
KB
638 /* Sometimes it isn't clear if an instruction is a prologue
639 instruction or not. When we encounter one of these ambiguous
640 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
641 Otherwise, we'll assume that it really is a prologue instruction. */
642 if (prev_insn_was_prologue_insn)
643 last_prologue_pc = pc;
55d05f3b
KB
644
645 /* Stop scanning if we've hit the limit. */
646 if (lim_pc != 0 && pc >= lim_pc)
647 break;
648
ddb20c56
KB
649 prev_insn_was_prologue_insn = 1;
650
55d05f3b 651 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
652 if (target_read_memory (pc, buf, 4))
653 break;
654 op = extract_signed_integer (buf, 4);
c906108c 655
c5aa993b
JM
656 if ((op & 0xfc1fffff) == 0x7c0802a6)
657 { /* mflr Rx */
43b1ab88
AC
658 /* Since shared library / PIC code, which needs to get its
659 address at runtime, can appear to save more than one link
660 register vis:
661
662 *INDENT-OFF*
663 stwu r1,-304(r1)
664 mflr r3
665 bl 0xff570d0 (blrl)
666 stw r30,296(r1)
667 mflr r30
668 stw r31,300(r1)
669 stw r3,308(r1);
670 ...
671 *INDENT-ON*
672
673 remember just the first one, but skip over additional
674 ones. */
675 if (lr_reg < 0)
676 lr_reg = (op & 0x03e00000);
c5aa993b 677 continue;
c5aa993b
JM
678 }
679 else if ((op & 0xfc1fffff) == 0x7c000026)
680 { /* mfcr Rx */
98f08d3d 681 cr_reg = (op & 0x03e00000);
c5aa993b 682 continue;
c906108c 683
c906108c 684 }
c5aa993b
JM
685 else if ((op & 0xfc1f0000) == 0xd8010000)
686 { /* stfd Rx,NUM(r1) */
687 reg = GET_SRC_REG (op);
688 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
689 {
690 fdata->saved_fpr = reg;
691 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
692 }
693 continue;
c906108c 694
c5aa993b
JM
695 }
696 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
697 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
698 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
699 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
700 {
701
702 reg = GET_SRC_REG (op);
703 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
704 {
705 fdata->saved_gpr = reg;
7a78ae4e 706 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 707 op &= ~3UL;
c5aa993b
JM
708 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
709 }
710 continue;
c906108c 711
ddb20c56
KB
712 }
713 else if ((op & 0xffff0000) == 0x60000000)
714 {
96ff0de4 715 /* nop */
ddb20c56
KB
716 /* Allow nops in the prologue, but do not consider them to
717 be part of the prologue unless followed by other prologue
718 instructions. */
719 prev_insn_was_prologue_insn = 0;
720 continue;
721
c906108c 722 }
c5aa993b
JM
723 else if ((op & 0xffff0000) == 0x3c000000)
724 { /* addis 0,0,NUM, used
725 for >= 32k frames */
726 fdata->offset = (op & 0x0000ffff) << 16;
727 fdata->frameless = 0;
728 continue;
729
730 }
731 else if ((op & 0xffff0000) == 0x60000000)
732 { /* ori 0,0,NUM, 2nd ha
733 lf of >= 32k frames */
734 fdata->offset |= (op & 0x0000ffff);
735 fdata->frameless = 0;
736 continue;
737
738 }
98f08d3d
KB
739 else if (lr_reg != -1 &&
740 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
741 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
742 /* stw Rx, NUM(r1) */
743 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
744 /* stwu Rx, NUM(r1) */
745 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
746 { /* where Rx == lr */
747 fdata->lr_offset = offset;
c5aa993b
JM
748 fdata->nosavedpc = 0;
749 lr_reg = 0;
98f08d3d
KB
750 if ((op & 0xfc000003) == 0xf8000000 || /* std */
751 (op & 0xfc000000) == 0x90000000) /* stw */
752 {
753 /* Does not update r1, so add displacement to lr_offset. */
754 fdata->lr_offset += SIGNED_SHORT (op);
755 }
c5aa993b
JM
756 continue;
757
758 }
98f08d3d
KB
759 else if (cr_reg != -1 &&
760 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
761 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
762 /* stw Rx, NUM(r1) */
763 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
764 /* stwu Rx, NUM(r1) */
765 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
766 { /* where Rx == cr */
767 fdata->cr_offset = offset;
c5aa993b 768 cr_reg = 0;
98f08d3d
KB
769 if ((op & 0xfc000003) == 0xf8000000 ||
770 (op & 0xfc000000) == 0x90000000)
771 {
772 /* Does not update r1, so add displacement to cr_offset. */
773 fdata->cr_offset += SIGNED_SHORT (op);
774 }
c5aa993b
JM
775 continue;
776
777 }
778 else if (op == 0x48000005)
779 { /* bl .+4 used in
780 -mrelocatable */
781 continue;
782
783 }
784 else if (op == 0x48000004)
785 { /* b .+4 (xlc) */
786 break;
787
c5aa993b 788 }
6be8bc0c
EZ
789 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
790 in V.4 -mminimal-toc */
c5aa993b
JM
791 (op & 0xffff0000) == 0x3bde0000)
792 { /* addi 30,30,foo@l */
793 continue;
c906108c 794
c5aa993b
JM
795 }
796 else if ((op & 0xfc000001) == 0x48000001)
797 { /* bl foo,
798 to save fprs??? */
c906108c 799
c5aa993b 800 fdata->frameless = 0;
6be8bc0c
EZ
801 /* Don't skip over the subroutine call if it is not within
802 the first three instructions of the prologue. */
c5aa993b
JM
803 if ((pc - orig_pc) > 8)
804 break;
805
806 op = read_memory_integer (pc + 4, 4);
807
6be8bc0c
EZ
808 /* At this point, make sure this is not a trampoline
809 function (a function that simply calls another functions,
810 and nothing else). If the next is not a nop, this branch
811 was part of the function prologue. */
c5aa993b
JM
812
813 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
814 break; /* don't skip over
815 this branch */
816 continue;
817
c5aa993b 818 }
98f08d3d
KB
819 /* update stack pointer */
820 else if ((op & 0xfc1f0000) == 0x94010000)
821 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
822 fdata->frameless = 0;
823 fdata->offset = SIGNED_SHORT (op);
824 offset = fdata->offset;
825 continue;
c5aa993b 826 }
98f08d3d
KB
827 else if ((op & 0xfc1f016a) == 0x7c01016e)
828 { /* stwux rX,r1,rY */
829 /* no way to figure out what r1 is going to be */
830 fdata->frameless = 0;
831 offset = fdata->offset;
832 continue;
833 }
834 else if ((op & 0xfc1f0003) == 0xf8010001)
835 { /* stdu rX,NUM(r1) */
836 fdata->frameless = 0;
837 fdata->offset = SIGNED_SHORT (op & ~3UL);
838 offset = fdata->offset;
839 continue;
840 }
841 else if ((op & 0xfc1f016a) == 0x7c01016a)
842 { /* stdux rX,r1,rY */
843 /* no way to figure out what r1 is going to be */
c5aa993b
JM
844 fdata->frameless = 0;
845 offset = fdata->offset;
846 continue;
c5aa993b 847 }
98f08d3d
KB
848 /* Load up minimal toc pointer */
849 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
850 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 851 && !minimal_toc_loaded)
98f08d3d 852 {
c5aa993b
JM
853 minimal_toc_loaded = 1;
854 continue;
855
f6077098
KB
856 /* move parameters from argument registers to local variable
857 registers */
858 }
859 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
860 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
861 (((op >> 21) & 31) <= 10) &&
96ff0de4 862 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
863 {
864 continue;
865
c5aa993b
JM
866 /* store parameters in stack */
867 }
e802b915
JB
868 /* Move parameters from argument registers to temporary register. */
869 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
870 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
871 (((op >> 21) & 31) <= 10) &&
872 (((op >> 16) & 31) == 0)) /* Rx: scratch register r0 */
873 {
874 continue;
875 }
6be8bc0c 876 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 877 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
878 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
879 {
c5aa993b 880 continue;
c906108c 881
c5aa993b
JM
882 /* store parameters in stack via frame pointer */
883 }
884 else if (framep &&
e802b915
JB
885 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
886 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
887 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r31) */
888 (op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
889 {
c5aa993b
JM
890 continue;
891
892 /* Set up frame pointer */
893 }
894 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
895 || op == 0x7c3f0b78)
896 { /* mr r31, r1 */
897 fdata->frameless = 0;
898 framep = 1;
6f99cb26 899 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
900 continue;
901
902 /* Another way to set up the frame pointer. */
903 }
904 else if ((op & 0xfc1fffff) == 0x38010000)
905 { /* addi rX, r1, 0x0 */
906 fdata->frameless = 0;
907 framep = 1;
6f99cb26
AC
908 fdata->alloca_reg = (tdep->ppc_gp0_regnum
909 + ((op & ~0x38010000) >> 21));
c5aa993b 910 continue;
c5aa993b 911 }
6be8bc0c
EZ
912 /* AltiVec related instructions. */
913 /* Store the vrsave register (spr 256) in another register for
914 later manipulation, or load a register into the vrsave
915 register. 2 instructions are used: mfvrsave and
916 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
917 and mtspr SPR256, Rn. */
918 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
919 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
920 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
921 {
922 vrsave_reg = GET_SRC_REG (op);
923 continue;
924 }
925 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
926 {
927 continue;
928 }
929 /* Store the register where vrsave was saved to onto the stack:
930 rS is the register where vrsave was stored in a previous
931 instruction. */
932 /* 100100 sssss 00001 dddddddd dddddddd */
933 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
934 {
935 if (vrsave_reg == GET_SRC_REG (op))
936 {
937 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
938 vrsave_reg = -1;
939 }
940 continue;
941 }
942 /* Compute the new value of vrsave, by modifying the register
943 where vrsave was saved to. */
944 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
945 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
946 {
947 continue;
948 }
949 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
950 in a pair of insns to save the vector registers on the
951 stack. */
952 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
953 /* 001110 01110 00000 iiii iiii iiii iiii */
954 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
955 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
956 {
957 li_found_pc = pc;
958 vr_saved_offset = SIGNED_SHORT (op);
959 }
960 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
961 /* 011111 sssss 11111 00000 00111001110 */
962 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
963 {
964 if (pc == (li_found_pc + 4))
965 {
966 vr_reg = GET_SRC_REG (op);
967 /* If this is the first vector reg to be saved, or if
968 it has a lower number than others previously seen,
969 reupdate the frame info. */
970 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
971 {
972 fdata->saved_vr = vr_reg;
973 fdata->vr_offset = vr_saved_offset + offset;
974 }
975 vr_saved_offset = -1;
976 vr_reg = -1;
977 li_found_pc = 0;
978 }
979 }
980 /* End AltiVec related instructions. */
96ff0de4
EZ
981
982 /* Start BookE related instructions. */
983 /* Store gen register S at (r31+uimm).
984 Any register less than r13 is volatile, so we don't care. */
985 /* 000100 sssss 11111 iiiii 01100100001 */
986 else if (arch_info->mach == bfd_mach_ppc_e500
987 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
988 {
989 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
990 {
991 unsigned int imm;
992 ev_reg = GET_SRC_REG (op);
993 imm = (op >> 11) & 0x1f;
994 ev_offset = imm * 8;
995 /* If this is the first vector reg to be saved, or if
996 it has a lower number than others previously seen,
997 reupdate the frame info. */
998 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
999 {
1000 fdata->saved_ev = ev_reg;
1001 fdata->ev_offset = ev_offset + offset;
1002 }
1003 }
1004 continue;
1005 }
1006 /* Store gen register rS at (r1+rB). */
1007 /* 000100 sssss 00001 bbbbb 01100100000 */
1008 else if (arch_info->mach == bfd_mach_ppc_e500
1009 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1010 {
1011 if (pc == (li_found_pc + 4))
1012 {
1013 ev_reg = GET_SRC_REG (op);
1014 /* If this is the first vector reg to be saved, or if
1015 it has a lower number than others previously seen,
1016 reupdate the frame info. */
1017 /* We know the contents of rB from the previous instruction. */
1018 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1019 {
1020 fdata->saved_ev = ev_reg;
1021 fdata->ev_offset = vr_saved_offset + offset;
1022 }
1023 vr_saved_offset = -1;
1024 ev_reg = -1;
1025 li_found_pc = 0;
1026 }
1027 continue;
1028 }
1029 /* Store gen register r31 at (rA+uimm). */
1030 /* 000100 11111 aaaaa iiiii 01100100001 */
1031 else if (arch_info->mach == bfd_mach_ppc_e500
1032 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1033 {
1034 /* Wwe know that the source register is 31 already, but
1035 it can't hurt to compute it. */
1036 ev_reg = GET_SRC_REG (op);
1037 ev_offset = ((op >> 11) & 0x1f) * 8;
1038 /* If this is the first vector reg to be saved, or if
1039 it has a lower number than others previously seen,
1040 reupdate the frame info. */
1041 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1042 {
1043 fdata->saved_ev = ev_reg;
1044 fdata->ev_offset = ev_offset + offset;
1045 }
1046
1047 continue;
1048 }
1049 /* Store gen register S at (r31+r0).
1050 Store param on stack when offset from SP bigger than 4 bytes. */
1051 /* 000100 sssss 11111 00000 01100100000 */
1052 else if (arch_info->mach == bfd_mach_ppc_e500
1053 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1054 {
1055 if (pc == (li_found_pc + 4))
1056 {
1057 if ((op & 0x03e00000) >= 0x01a00000)
1058 {
1059 ev_reg = GET_SRC_REG (op);
1060 /* If this is the first vector reg to be saved, or if
1061 it has a lower number than others previously seen,
1062 reupdate the frame info. */
1063 /* We know the contents of r0 from the previous
1064 instruction. */
1065 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1066 {
1067 fdata->saved_ev = ev_reg;
1068 fdata->ev_offset = vr_saved_offset + offset;
1069 }
1070 ev_reg = -1;
1071 }
1072 vr_saved_offset = -1;
1073 li_found_pc = 0;
1074 continue;
1075 }
1076 }
1077 /* End BookE related instructions. */
1078
c5aa993b
JM
1079 else
1080 {
55d05f3b
KB
1081 /* Not a recognized prologue instruction.
1082 Handle optimizer code motions into the prologue by continuing
1083 the search if we have no valid frame yet or if the return
1084 address is not yet saved in the frame. */
1085 if (fdata->frameless == 0
1086 && (lr_reg == -1 || fdata->nosavedpc == 0))
1087 break;
1088
1089 if (op == 0x4e800020 /* blr */
1090 || op == 0x4e800420) /* bctr */
1091 /* Do not scan past epilogue in frameless functions or
1092 trampolines. */
1093 break;
1094 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1095 /* Never skip branches. */
55d05f3b
KB
1096 break;
1097
1098 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1099 /* Do not scan too many insns, scanning insns is expensive with
1100 remote targets. */
1101 break;
1102
1103 /* Continue scanning. */
1104 prev_insn_was_prologue_insn = 0;
1105 continue;
c5aa993b 1106 }
c906108c
SS
1107 }
1108
1109#if 0
1110/* I have problems with skipping over __main() that I need to address
1111 * sometime. Previously, I used to use misc_function_vector which
1112 * didn't work as well as I wanted to be. -MGO */
1113
1114 /* If the first thing after skipping a prolog is a branch to a function,
1115 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1116 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1117 work before calling a function right after a prologue, thus we can
64366f1c 1118 single out such gcc2 behaviour. */
c906108c 1119
c906108c 1120
c5aa993b
JM
1121 if ((op & 0xfc000001) == 0x48000001)
1122 { /* bl foo, an initializer function? */
1123 op = read_memory_integer (pc + 4, 4);
1124
1125 if (op == 0x4def7b82)
1126 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1127
64366f1c
EZ
1128 /* Check and see if we are in main. If so, skip over this
1129 initializer function as well. */
c906108c 1130
c5aa993b 1131 tmp = find_pc_misc_function (pc);
6314a349
AC
1132 if (tmp >= 0
1133 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1134 return pc + 8;
1135 }
c906108c 1136 }
c906108c 1137#endif /* 0 */
c5aa993b
JM
1138
1139 fdata->offset = -fdata->offset;
ddb20c56 1140 return last_prologue_pc;
c906108c
SS
1141}
1142
1143
1144/*************************************************************************
f6077098 1145 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1146 frames, etc.
1147*************************************************************************/
1148
c906108c 1149
11269d7e
AC
1150/* All the ABI's require 16 byte alignment. */
1151static CORE_ADDR
1152rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1153{
1154 return (addr & -16);
1155}
1156
7a78ae4e 1157/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1158 the first eight words of the argument list (that might be less than
1159 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1160 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1161 passed in fpr's, in addition to that. Rest of the parameters if any
1162 are passed in user stack. There might be cases in which half of the
c906108c
SS
1163 parameter is copied into registers, the other half is pushed into
1164 stack.
1165
7a78ae4e
ND
1166 Stack must be aligned on 64-bit boundaries when synthesizing
1167 function calls.
1168
c906108c
SS
1169 If the function is returning a structure, then the return address is passed
1170 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1171 starting from r4. */
c906108c 1172
7a78ae4e 1173static CORE_ADDR
77b2b6d4
AC
1174rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1175 struct regcache *regcache, CORE_ADDR bp_addr,
1176 int nargs, struct value **args, CORE_ADDR sp,
1177 int struct_return, CORE_ADDR struct_addr)
c906108c 1178{
7a41266b 1179 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1180 int ii;
1181 int len = 0;
c5aa993b
JM
1182 int argno; /* current argument number */
1183 int argbytes; /* current argument byte */
1184 char tmp_buffer[50];
1185 int f_argno = 0; /* current floating point argno */
21283beb 1186 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1187
ea7c478f 1188 struct value *arg = 0;
c906108c
SS
1189 struct type *type;
1190
1191 CORE_ADDR saved_sp;
1192
64366f1c 1193 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1194 Copy them appropriately. */
1195 ii = 0;
1196
1197 /* If the function is returning a `struct', then the first word
1198 (which will be passed in r3) is used for struct return address.
1199 In that case we should advance one word and start from r4
1200 register to copy parameters. */
1201 if (struct_return)
1202 {
1203 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1204 struct_addr);
1205 ii++;
1206 }
c906108c
SS
1207
1208/*
c5aa993b
JM
1209 effectively indirect call... gcc does...
1210
1211 return_val example( float, int);
1212
1213 eabi:
1214 float in fp0, int in r3
1215 offset of stack on overflow 8/16
1216 for varargs, must go by type.
1217 power open:
1218 float in r3&r4, int in r5
1219 offset of stack on overflow different
1220 both:
1221 return in r3 or f0. If no float, must study how gcc emulates floats;
1222 pay attention to arg promotion.
1223 User may have to cast\args to handle promotion correctly
1224 since gdb won't know if prototype supplied or not.
1225 */
c906108c 1226
c5aa993b
JM
1227 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1228 {
12c266ea 1229 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1230
1231 arg = args[argno];
1232 type = check_typedef (VALUE_TYPE (arg));
1233 len = TYPE_LENGTH (type);
1234
1235 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1236 {
1237
64366f1c 1238 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1239 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1240 there is no way we would run out of them. */
c5aa993b
JM
1241
1242 if (len > 8)
1243 printf_unfiltered (
1244 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1245
366f009f
JB
1246 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1247 (tdep->ppc_fp0_regnum + 1 + f_argno)],
c5aa993b
JM
1248 VALUE_CONTENTS (arg),
1249 len);
1250 ++f_argno;
1251 }
1252
f6077098 1253 if (len > reg_size)
c5aa993b
JM
1254 {
1255
64366f1c 1256 /* Argument takes more than one register. */
c5aa993b
JM
1257 while (argbytes < len)
1258 {
62700349 1259 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1260 reg_size);
62700349 1261 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1262 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1263 (len - argbytes) > reg_size
1264 ? reg_size : len - argbytes);
1265 ++ii, argbytes += reg_size;
c5aa993b
JM
1266
1267 if (ii >= 8)
1268 goto ran_out_of_registers_for_arguments;
1269 }
1270 argbytes = 0;
1271 --ii;
1272 }
1273 else
64366f1c
EZ
1274 {
1275 /* Argument can fit in one register. No problem. */
d7449b42 1276 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1277 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1278 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1279 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1280 }
1281 ++argno;
c906108c 1282 }
c906108c
SS
1283
1284ran_out_of_registers_for_arguments:
1285
7a78ae4e 1286 saved_sp = read_sp ();
cc9836a8 1287
64366f1c 1288 /* Location for 8 parameters are always reserved. */
7a78ae4e 1289 sp -= wordsize * 8;
f6077098 1290
64366f1c 1291 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1292 sp -= wordsize * 6;
f6077098 1293
64366f1c 1294 /* Stack pointer must be quadword aligned. */
7a78ae4e 1295 sp &= -16;
c906108c 1296
64366f1c
EZ
1297 /* If there are more arguments, allocate space for them in
1298 the stack, then push them starting from the ninth one. */
c906108c 1299
c5aa993b
JM
1300 if ((argno < nargs) || argbytes)
1301 {
1302 int space = 0, jj;
c906108c 1303
c5aa993b
JM
1304 if (argbytes)
1305 {
1306 space += ((len - argbytes + 3) & -4);
1307 jj = argno + 1;
1308 }
1309 else
1310 jj = argno;
c906108c 1311
c5aa993b
JM
1312 for (; jj < nargs; ++jj)
1313 {
ea7c478f 1314 struct value *val = args[jj];
c5aa993b
JM
1315 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1316 }
c906108c 1317
64366f1c 1318 /* Add location required for the rest of the parameters. */
f6077098 1319 space = (space + 15) & -16;
c5aa993b 1320 sp -= space;
c906108c 1321
7aea86e6
AC
1322 /* This is another instance we need to be concerned about
1323 securing our stack space. If we write anything underneath %sp
1324 (r1), we might conflict with the kernel who thinks he is free
1325 to use this area. So, update %sp first before doing anything
1326 else. */
1327
1328 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1329
64366f1c
EZ
1330 /* If the last argument copied into the registers didn't fit there
1331 completely, push the rest of it into stack. */
c906108c 1332
c5aa993b
JM
1333 if (argbytes)
1334 {
1335 write_memory (sp + 24 + (ii * 4),
1336 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1337 len - argbytes);
1338 ++argno;
1339 ii += ((len - argbytes + 3) & -4) / 4;
1340 }
c906108c 1341
64366f1c 1342 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1343 for (; argno < nargs; ++argno)
1344 {
c906108c 1345
c5aa993b
JM
1346 arg = args[argno];
1347 type = check_typedef (VALUE_TYPE (arg));
1348 len = TYPE_LENGTH (type);
c906108c
SS
1349
1350
64366f1c
EZ
1351 /* Float types should be passed in fpr's, as well as in the
1352 stack. */
c5aa993b
JM
1353 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1354 {
c906108c 1355
c5aa993b
JM
1356 if (len > 8)
1357 printf_unfiltered (
1358 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1359
366f009f
JB
1360 memcpy (&(deprecated_registers
1361 [DEPRECATED_REGISTER_BYTE
1362 (tdep->ppc_fp0_regnum + 1 + f_argno)]),
c5aa993b
JM
1363 VALUE_CONTENTS (arg),
1364 len);
1365 ++f_argno;
1366 }
c906108c 1367
c5aa993b
JM
1368 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1369 ii += ((len + 3) & -4) / 4;
1370 }
c906108c 1371 }
c906108c 1372
69517000 1373 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1374 be set _before_ the corresponding stack space is used. On AIX,
1375 this even applies when the target has been completely stopped!
1376 Not doing this can lead to conflicts with the kernel which thinks
1377 that it still has control over this not-yet-allocated stack
1378 region. */
33a7c2fc
AC
1379 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1380
7aea86e6
AC
1381 /* Set back chain properly. */
1382 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1383 write_memory (sp, tmp_buffer, 4);
1384
e56a0ecc
AC
1385 /* Point the inferior function call's return address at the dummy's
1386 breakpoint. */
1387 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1388
794a477a
AC
1389 /* Set the TOC register, get the value from the objfile reader
1390 which, in turn, gets it from the VMAP table. */
1391 if (rs6000_find_toc_address_hook != NULL)
1392 {
1393 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1394 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1395 }
1396
c906108c
SS
1397 target_store_registers (-1);
1398 return sp;
1399}
c906108c 1400
b9ff3018
AC
1401/* PowerOpen always puts structures in memory. Vectors, which were
1402 added later, do get returned in a register though. */
1403
1404static int
1405rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1406{
1407 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1408 && TYPE_VECTOR (value_type))
1409 return 0;
1410 return 1;
1411}
1412
7a78ae4e
ND
1413static void
1414rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1415{
1416 int offset = 0;
ace1378a 1417 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1418
c5aa993b
JM
1419 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1420 {
c906108c 1421
c5aa993b
JM
1422 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1423 We need to truncate the return value into float size (4 byte) if
64366f1c 1424 necessary. */
c906108c 1425
65951cd9 1426 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1427 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1428 builtin_type_double,
1429 valbuf,
1430 valtype);
c5aa993b 1431 }
ace1378a
EZ
1432 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1433 && TYPE_LENGTH (valtype) == 16
1434 && TYPE_VECTOR (valtype))
1435 {
62700349 1436 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1437 TYPE_LENGTH (valtype));
1438 }
c5aa993b
JM
1439 else
1440 {
1441 /* return value is copied starting from r3. */
d7449b42 1442 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1443 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1444 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1445
1446 memcpy (valbuf,
62700349 1447 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1448 TYPE_LENGTH (valtype));
c906108c 1449 }
c906108c
SS
1450}
1451
977adac5
ND
1452/* Return whether handle_inferior_event() should proceed through code
1453 starting at PC in function NAME when stepping.
1454
1455 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1456 handle memory references that are too distant to fit in instructions
1457 generated by the compiler. For example, if 'foo' in the following
1458 instruction:
1459
1460 lwz r9,foo(r2)
1461
1462 is greater than 32767, the linker might replace the lwz with a branch to
1463 somewhere in @FIX1 that does the load in 2 instructions and then branches
1464 back to where execution should continue.
1465
1466 GDB should silently step over @FIX code, just like AIX dbx does.
1467 Unfortunately, the linker uses the "b" instruction for the branches,
1468 meaning that the link register doesn't get set. Therefore, GDB's usual
1469 step_over_function() mechanism won't work.
1470
1471 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1472 in handle_inferior_event() to skip past @FIX code. */
1473
1474int
1475rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1476{
1477 return name && !strncmp (name, "@FIX", 4);
1478}
1479
1480/* Skip code that the user doesn't want to see when stepping:
1481
1482 1. Indirect function calls use a piece of trampoline code to do context
1483 switching, i.e. to set the new TOC table. Skip such code if we are on
1484 its first instruction (as when we have single-stepped to here).
1485
1486 2. Skip shared library trampoline code (which is different from
c906108c 1487 indirect function call trampolines).
977adac5
ND
1488
1489 3. Skip bigtoc fixup code.
1490
c906108c 1491 Result is desired PC to step until, or NULL if we are not in
977adac5 1492 code that should be skipped. */
c906108c
SS
1493
1494CORE_ADDR
7a78ae4e 1495rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1496{
52f0bd74 1497 unsigned int ii, op;
977adac5 1498 int rel;
c906108c 1499 CORE_ADDR solib_target_pc;
977adac5 1500 struct minimal_symbol *msymbol;
c906108c 1501
c5aa993b
JM
1502 static unsigned trampoline_code[] =
1503 {
1504 0x800b0000, /* l r0,0x0(r11) */
1505 0x90410014, /* st r2,0x14(r1) */
1506 0x7c0903a6, /* mtctr r0 */
1507 0x804b0004, /* l r2,0x4(r11) */
1508 0x816b0008, /* l r11,0x8(r11) */
1509 0x4e800420, /* bctr */
1510 0x4e800020, /* br */
1511 0
c906108c
SS
1512 };
1513
977adac5
ND
1514 /* Check for bigtoc fixup code. */
1515 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1516 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1517 {
1518 /* Double-check that the third instruction from PC is relative "b". */
1519 op = read_memory_integer (pc + 8, 4);
1520 if ((op & 0xfc000003) == 0x48000000)
1521 {
1522 /* Extract bits 6-29 as a signed 24-bit relative word address and
1523 add it to the containing PC. */
1524 rel = ((int)(op << 6) >> 6);
1525 return pc + 8 + rel;
1526 }
1527 }
1528
c906108c
SS
1529 /* If pc is in a shared library trampoline, return its target. */
1530 solib_target_pc = find_solib_trampoline_target (pc);
1531 if (solib_target_pc)
1532 return solib_target_pc;
1533
c5aa993b
JM
1534 for (ii = 0; trampoline_code[ii]; ++ii)
1535 {
1536 op = read_memory_integer (pc + (ii * 4), 4);
1537 if (op != trampoline_code[ii])
1538 return 0;
1539 }
1540 ii = read_register (11); /* r11 holds destination addr */
21283beb 1541 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1542 return pc;
1543}
1544
7a78ae4e 1545/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1546 isn't available with that word size, return 0. */
7a78ae4e
ND
1547
1548static int
1549regsize (const struct reg *reg, int wordsize)
1550{
1551 return wordsize == 8 ? reg->sz64 : reg->sz32;
1552}
1553
1554/* Return the name of register number N, or null if no such register exists
64366f1c 1555 in the current architecture. */
7a78ae4e 1556
fa88f677 1557static const char *
7a78ae4e
ND
1558rs6000_register_name (int n)
1559{
21283beb 1560 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1561 const struct reg *reg = tdep->regs + n;
1562
1563 if (!regsize (reg, tdep->wordsize))
1564 return NULL;
1565 return reg->name;
1566}
1567
1568/* Index within `registers' of the first byte of the space for
1569 register N. */
1570
1571static int
1572rs6000_register_byte (int n)
1573{
21283beb 1574 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1575}
1576
1577/* Return the number of bytes of storage in the actual machine representation
64366f1c 1578 for register N if that register is available, else return 0. */
7a78ae4e
ND
1579
1580static int
1581rs6000_register_raw_size (int n)
1582{
21283beb 1583 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1584 const struct reg *reg = tdep->regs + n;
1585 return regsize (reg, tdep->wordsize);
1586}
1587
7a78ae4e
ND
1588/* Return the GDB type object for the "standard" data type
1589 of data in register N. */
1590
1591static struct type *
fba45db2 1592rs6000_register_virtual_type (int n)
7a78ae4e 1593{
21283beb 1594 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1595 const struct reg *reg = tdep->regs + n;
1596
1fcc0bb8
EZ
1597 if (reg->fpr)
1598 return builtin_type_double;
1599 else
1600 {
1601 int size = regsize (reg, tdep->wordsize);
1602 switch (size)
1603 {
449a5da4
AC
1604 case 0:
1605 return builtin_type_int0;
1606 case 4:
ed6edd9b 1607 return builtin_type_uint32;
1fcc0bb8 1608 case 8:
c8001721
EZ
1609 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1610 return builtin_type_vec64;
1611 else
ed6edd9b 1612 return builtin_type_uint64;
1fcc0bb8
EZ
1613 break;
1614 case 16:
08cf96df 1615 return builtin_type_vec128;
1fcc0bb8
EZ
1616 break;
1617 default:
449a5da4
AC
1618 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1619 n, size);
1fcc0bb8
EZ
1620 }
1621 }
7a78ae4e
ND
1622}
1623
7a78ae4e
ND
1624/* Return whether register N requires conversion when moving from raw format
1625 to virtual format.
1626
1627 The register format for RS/6000 floating point registers is always
64366f1c 1628 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1629
1630static int
1631rs6000_register_convertible (int n)
1632{
21283beb 1633 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1634 return reg->fpr;
1635}
1636
1637/* Convert data from raw format for register N in buffer FROM
64366f1c 1638 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1639
1640static void
1641rs6000_register_convert_to_virtual (int n, struct type *type,
1642 char *from, char *to)
1643{
12c266ea 1644 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1645 {
12c266ea 1646 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1647 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1648 }
1649 else
12c266ea 1650 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1651}
1652
1653/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1654 to raw format for register N in buffer TO. */
7a292a7a 1655
7a78ae4e
ND
1656static void
1657rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1658 const char *from, char *to)
7a78ae4e 1659{
12c266ea 1660 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1661 {
f1908289 1662 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1663 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1664 }
7a78ae4e 1665 else
12c266ea 1666 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1667}
c906108c 1668
c8001721
EZ
1669static void
1670e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1671 int reg_nr, void *buffer)
1672{
1673 int base_regnum;
1674 int offset = 0;
d9d9c31f 1675 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1676 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1677
1678 if (reg_nr >= tdep->ppc_gp0_regnum
8bf659e8 1679 && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
c8001721
EZ
1680 {
1681 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1682
1683 /* Build the value in the provided buffer. */
1684 /* Read the raw register of which this one is the lower portion. */
1685 regcache_raw_read (regcache, base_regnum, temp_buffer);
1686 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1687 offset = 4;
1688 memcpy ((char *) buffer, temp_buffer + offset, 4);
1689 }
1690}
1691
1692static void
1693e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1694 int reg_nr, const void *buffer)
1695{
1696 int base_regnum;
1697 int offset = 0;
d9d9c31f 1698 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1699 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1700
1701 if (reg_nr >= tdep->ppc_gp0_regnum
8bf659e8 1702 && reg_nr < tdep->ppc_gp0_regnum + ppc_num_gprs)
c8001721
EZ
1703 {
1704 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1705 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1706 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1707 offset = 4;
1708
1709 /* Let's read the value of the base register into a temporary
1710 buffer, so that overwriting the last four bytes with the new
1711 value of the pseudo will leave the upper 4 bytes unchanged. */
1712 regcache_raw_read (regcache, base_regnum, temp_buffer);
1713
1714 /* Write as an 8 byte quantity. */
1715 memcpy (temp_buffer + offset, (char *) buffer, 4);
1716 regcache_raw_write (regcache, base_regnum, temp_buffer);
1717 }
1718}
1719
9f744501
JB
1720/* Convert a dbx stab or Dwarf 2 register number (from `r'
1721 declaration) to a gdb REGNUM. */
c8001721 1722static int
9f744501 1723rs6000_dwarf2_stab_reg_to_regnum (int num)
c8001721 1724{
9f744501 1725 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 1726
9f744501
JB
1727 if (0 <= num && num <= 31)
1728 return tdep->ppc_gp0_regnum + num;
1729 else if (32 <= num && num <= 63)
366f009f 1730 return tdep->ppc_fp0_regnum + (num - 32);
9f744501
JB
1731 else if (1200 <= num && num < 1200 + 32)
1732 return tdep->ppc_ev0_regnum + (num - 1200);
1733 else
1734 switch (num)
1735 {
1736 case 64:
1737 return tdep->ppc_mq_regnum;
1738 case 65:
1739 return tdep->ppc_lr_regnum;
1740 case 66:
1741 return tdep->ppc_ctr_regnum;
1742 case 76:
1743 return tdep->ppc_xer_regnum;
1744 case 109:
1745 return tdep->ppc_vrsave_regnum;
1746 default:
1747 return num;
1748 }
1749
1750 /* FIXME: jimb/2004-03-28: Doesn't something need to be done here
1751 for the Altivec registers, too?
1752
1753 Looking at GCC, the headers in config/rs6000 never define a
1754 DBX_REGISTER_NUMBER macro, so the debug info uses the same
1755 numbers GCC does internally. Then, looking at the REGISTER_NAMES
1756 macro defined in config/rs6000/rs6000.h, it seems that GCC gives
1757 v0 -- v31 the numbers 77 -- 108. But we number them 119 -- 150.
1758
1759 I don't have a way to test this ready to hand, but I noticed it
1760 and thought I should include a note. */
2188cbdd
EZ
1761}
1762
7a78ae4e
ND
1763static void
1764rs6000_store_return_value (struct type *type, char *valbuf)
1765{
ace1378a
EZ
1766 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1767
7a78ae4e
ND
1768 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1769
1770 /* Floating point values are returned starting from FPR1 and up.
1771 Say a double_double_double type could be returned in
64366f1c 1772 FPR1/FPR2/FPR3 triple. */
7a78ae4e 1773
366f009f
JB
1774 deprecated_write_register_bytes
1775 (DEPRECATED_REGISTER_BYTE (tdep->ppc_fp0_regnum + 1),
1776 valbuf,
1777 TYPE_LENGTH (type));
ace1378a
EZ
1778 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
1779 {
1780 if (TYPE_LENGTH (type) == 16
1781 && TYPE_VECTOR (type))
62700349 1782 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 1783 valbuf, TYPE_LENGTH (type));
ace1378a 1784 }
7a78ae4e 1785 else
64366f1c 1786 /* Everything else is returned in GPR3 and up. */
62700349 1787 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 1788 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
1789}
1790
1791/* Extract from an array REGBUF containing the (raw) register state
1792 the address in which a function should return its structure value,
1793 as a CORE_ADDR (or an expression that can be used as one). */
1794
1795static CORE_ADDR
11269d7e
AC
1796rs6000_extract_struct_value_address (struct regcache *regcache)
1797{
1798 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
1799 function call GDB knows the address of the struct return value
1800 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
1801 the current call_function_by_hand() code only saves the most
1802 recent struct address leading to occasional calls. The code
1803 should instead maintain a stack of such addresses (in the dummy
1804 frame object). */
11269d7e
AC
1805 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
1806 really got no idea where the return value is being stored. While
1807 r3, on function entry, contained the address it will have since
1808 been reused (scratch) and hence wouldn't be valid */
1809 return 0;
7a78ae4e
ND
1810}
1811
64366f1c 1812/* Hook called when a new child process is started. */
7a78ae4e
ND
1813
1814void
1815rs6000_create_inferior (int pid)
1816{
1817 if (rs6000_set_host_arch_hook)
1818 rs6000_set_host_arch_hook (pid);
c906108c
SS
1819}
1820\f
e2d0e7eb 1821/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
1822
1823 Usually a function pointer's representation is simply the address
1824 of the function. On the RS/6000 however, a function pointer is
1825 represented by a pointer to a TOC entry. This TOC entry contains
1826 three words, the first word is the address of the function, the
1827 second word is the TOC pointer (r2), and the third word is the
1828 static chain value. Throughout GDB it is currently assumed that a
1829 function pointer contains the address of the function, which is not
1830 easy to fix. In addition, the conversion of a function address to
1831 a function pointer would require allocation of a TOC entry in the
1832 inferior's memory space, with all its drawbacks. To be able to
1833 call C++ virtual methods in the inferior (which are called via
f517ea4e 1834 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
1835 function address from a function pointer. */
1836
f517ea4e
PS
1837/* Return real function address if ADDR (a function pointer) is in the data
1838 space and is therefore a special function pointer. */
c906108c 1839
b9362cc7 1840static CORE_ADDR
e2d0e7eb
AC
1841rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1842 CORE_ADDR addr,
1843 struct target_ops *targ)
c906108c
SS
1844{
1845 struct obj_section *s;
1846
1847 s = find_pc_section (addr);
1848 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 1849 return addr;
c906108c 1850
7a78ae4e 1851 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 1852 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 1853}
c906108c 1854\f
c5aa993b 1855
7a78ae4e 1856/* Handling the various POWER/PowerPC variants. */
c906108c
SS
1857
1858
7a78ae4e
ND
1859/* The arrays here called registers_MUMBLE hold information about available
1860 registers.
c906108c
SS
1861
1862 For each family of PPC variants, I've tried to isolate out the
1863 common registers and put them up front, so that as long as you get
1864 the general family right, GDB will correctly identify the registers
1865 common to that family. The common register sets are:
1866
1867 For the 60x family: hid0 hid1 iabr dabr pir
1868
1869 For the 505 and 860 family: eie eid nri
1870
1871 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
1872 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
1873 pbu1 pbl2 pbu2
c906108c
SS
1874
1875 Most of these register groups aren't anything formal. I arrived at
1876 them by looking at the registers that occurred in more than one
6f5987a6
KB
1877 processor.
1878
1879 Note: kevinb/2002-04-30: Support for the fpscr register was added
1880 during April, 2002. Slot 70 is being used for PowerPC and slot 71
1881 for Power. For PowerPC, slot 70 was unused and was already in the
1882 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
1883 slot 70 was being used for "mq", so the next available slot (71)
1884 was chosen. It would have been nice to be able to make the
1885 register numbers the same across processor cores, but this wasn't
1886 possible without either 1) renumbering some registers for some
1887 processors or 2) assigning fpscr to a really high slot that's
1888 larger than any current register number. Doing (1) is bad because
1889 existing stubs would break. Doing (2) is undesirable because it
1890 would introduce a really large gap between fpscr and the rest of
1891 the registers for most processors. */
7a78ae4e 1892
64366f1c 1893/* Convenience macros for populating register arrays. */
7a78ae4e 1894
64366f1c 1895/* Within another macro, convert S to a string. */
7a78ae4e
ND
1896
1897#define STR(s) #s
1898
1899/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 1900 and 64 bits on 64-bit systems. */
489461e2 1901#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
1902
1903/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 1904 systems. */
489461e2 1905#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
1906
1907/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 1908 systems. */
489461e2 1909#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 1910
1fcc0bb8 1911/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 1912 systems. */
489461e2 1913#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 1914
64366f1c 1915/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
1916#define F(name) { STR(name), 8, 8, 1, 0 }
1917
64366f1c 1918/* Return a struct reg defining a pseudo register NAME. */
489461e2 1919#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
1920
1921/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 1922 systems and that doesn't exist on 64-bit systems. */
489461e2 1923#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
1924
1925/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 1926 systems and that doesn't exist on 32-bit systems. */
489461e2 1927#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 1928
64366f1c 1929/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 1930#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
1931
1932/* UISA registers common across all architectures, including POWER. */
1933
1934#define COMMON_UISA_REGS \
1935 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1936 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1937 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1938 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1939 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
1940 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
1941 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
1942 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
1943 /* 64 */ R(pc), R(ps)
1944
ebeac11a
EZ
1945#define COMMON_UISA_NOFP_REGS \
1946 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
1947 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
1948 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
1949 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
1950 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1951 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1952 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1953 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
1954 /* 64 */ R(pc), R(ps)
1955
7a78ae4e
ND
1956/* UISA-level SPRs for PowerPC. */
1957#define PPC_UISA_SPRS \
e3f36dbd 1958 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 1959
c8001721
EZ
1960/* UISA-level SPRs for PowerPC without floating point support. */
1961#define PPC_UISA_NOFP_SPRS \
1962 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
1963
7a78ae4e
ND
1964/* Segment registers, for PowerPC. */
1965#define PPC_SEGMENT_REGS \
1966 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
1967 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
1968 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
1969 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
1970
1971/* OEA SPRs for PowerPC. */
1972#define PPC_OEA_SPRS \
1973 /* 87 */ R4(pvr), \
1974 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
1975 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
1976 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
1977 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
1978 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
1979 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
1980 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
1981 /* 116 */ R4(dec), R(dabr), R4(ear)
1982
64366f1c 1983/* AltiVec registers. */
1fcc0bb8
EZ
1984#define PPC_ALTIVEC_REGS \
1985 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
1986 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
1987 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
1988 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
1989 /*151*/R4(vscr), R4(vrsave)
1990
c8001721
EZ
1991/* Vectors of hi-lo general purpose registers. */
1992#define PPC_EV_REGS \
1993 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
1994 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
1995 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
1996 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
1997
1998/* Lower half of the EV registers. */
1999#define PPC_GPRS_PSEUDO_REGS \
2000 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2001 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2002 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2003 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2004
7a78ae4e 2005/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2006 user-level SPR's. */
7a78ae4e 2007static const struct reg registers_power[] =
c906108c 2008{
7a78ae4e 2009 COMMON_UISA_REGS,
e3f36dbd
KB
2010 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2011 /* 71 */ R4(fpscr)
c906108c
SS
2012};
2013
7a78ae4e 2014/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2015 view of the PowerPC. */
7a78ae4e 2016static const struct reg registers_powerpc[] =
c906108c 2017{
7a78ae4e 2018 COMMON_UISA_REGS,
1fcc0bb8
EZ
2019 PPC_UISA_SPRS,
2020 PPC_ALTIVEC_REGS
c906108c
SS
2021};
2022
ebeac11a
EZ
2023/* PowerPC UISA - a PPC processor as viewed by user-level
2024 code, but without floating point registers. */
2025static const struct reg registers_powerpc_nofp[] =
2026{
2027 COMMON_UISA_NOFP_REGS,
2028 PPC_UISA_SPRS
2029};
2030
64366f1c 2031/* IBM PowerPC 403. */
7a78ae4e 2032static const struct reg registers_403[] =
c5aa993b 2033{
7a78ae4e
ND
2034 COMMON_UISA_REGS,
2035 PPC_UISA_SPRS,
2036 PPC_SEGMENT_REGS,
2037 PPC_OEA_SPRS,
2038 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2039 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2040 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2041 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2042 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2043 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2044};
2045
64366f1c 2046/* IBM PowerPC 403GC. */
7a78ae4e 2047static const struct reg registers_403GC[] =
c5aa993b 2048{
7a78ae4e
ND
2049 COMMON_UISA_REGS,
2050 PPC_UISA_SPRS,
2051 PPC_SEGMENT_REGS,
2052 PPC_OEA_SPRS,
2053 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2054 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2055 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2056 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2057 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2058 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2059 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2060 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2061};
2062
64366f1c 2063/* Motorola PowerPC 505. */
7a78ae4e 2064static const struct reg registers_505[] =
c5aa993b 2065{
7a78ae4e
ND
2066 COMMON_UISA_REGS,
2067 PPC_UISA_SPRS,
2068 PPC_SEGMENT_REGS,
2069 PPC_OEA_SPRS,
2070 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2071};
2072
64366f1c 2073/* Motorola PowerPC 860 or 850. */
7a78ae4e 2074static const struct reg registers_860[] =
c5aa993b 2075{
7a78ae4e
ND
2076 COMMON_UISA_REGS,
2077 PPC_UISA_SPRS,
2078 PPC_SEGMENT_REGS,
2079 PPC_OEA_SPRS,
2080 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2081 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2082 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2083 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2084 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2085 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2086 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2087 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2088 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2089 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2090 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2091 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2092};
2093
7a78ae4e
ND
2094/* Motorola PowerPC 601. Note that the 601 has different register numbers
2095 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2096 register is the stub's problem. */
7a78ae4e 2097static const struct reg registers_601[] =
c5aa993b 2098{
7a78ae4e
ND
2099 COMMON_UISA_REGS,
2100 PPC_UISA_SPRS,
2101 PPC_SEGMENT_REGS,
2102 PPC_OEA_SPRS,
2103 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2104 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2105};
2106
64366f1c 2107/* Motorola PowerPC 602. */
7a78ae4e 2108static const struct reg registers_602[] =
c5aa993b 2109{
7a78ae4e
ND
2110 COMMON_UISA_REGS,
2111 PPC_UISA_SPRS,
2112 PPC_SEGMENT_REGS,
2113 PPC_OEA_SPRS,
2114 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2115 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2116 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2117};
2118
64366f1c 2119/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2120static const struct reg registers_603[] =
c5aa993b 2121{
7a78ae4e
ND
2122 COMMON_UISA_REGS,
2123 PPC_UISA_SPRS,
2124 PPC_SEGMENT_REGS,
2125 PPC_OEA_SPRS,
2126 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2127 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2128 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2129};
2130
64366f1c 2131/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2132static const struct reg registers_604[] =
c5aa993b 2133{
7a78ae4e
ND
2134 COMMON_UISA_REGS,
2135 PPC_UISA_SPRS,
2136 PPC_SEGMENT_REGS,
2137 PPC_OEA_SPRS,
2138 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2139 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2140 /* 127 */ R(sia), R(sda)
c906108c
SS
2141};
2142
64366f1c 2143/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2144static const struct reg registers_750[] =
c5aa993b 2145{
7a78ae4e
ND
2146 COMMON_UISA_REGS,
2147 PPC_UISA_SPRS,
2148 PPC_SEGMENT_REGS,
2149 PPC_OEA_SPRS,
2150 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2151 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2152 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2153 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2154 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2155 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2156};
2157
2158
64366f1c 2159/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2160static const struct reg registers_7400[] =
2161{
2162 /* gpr0-gpr31, fpr0-fpr31 */
2163 COMMON_UISA_REGS,
13c7b1ca 2164 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2165 PPC_UISA_SPRS,
2166 /* sr0-sr15 */
2167 PPC_SEGMENT_REGS,
2168 PPC_OEA_SPRS,
2169 /* vr0-vr31, vrsave, vscr */
2170 PPC_ALTIVEC_REGS
2171 /* FIXME? Add more registers? */
2172};
2173
c8001721
EZ
2174/* Motorola e500. */
2175static const struct reg registers_e500[] =
2176{
2177 R(pc), R(ps),
2178 /* cr, lr, ctr, xer, "" */
2179 PPC_UISA_NOFP_SPRS,
2180 /* 7...38 */
2181 PPC_EV_REGS,
338ef23d
AC
2182 R8(acc), R(spefscr),
2183 /* NOTE: Add new registers here the end of the raw register
2184 list and just before the first pseudo register. */
13c7b1ca 2185 /* 41...72 */
c8001721
EZ
2186 PPC_GPRS_PSEUDO_REGS
2187};
2188
c906108c 2189/* Information about a particular processor variant. */
7a78ae4e 2190
c906108c 2191struct variant
c5aa993b
JM
2192 {
2193 /* Name of this variant. */
2194 char *name;
c906108c 2195
c5aa993b
JM
2196 /* English description of the variant. */
2197 char *description;
c906108c 2198
64366f1c 2199 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2200 enum bfd_architecture arch;
2201
64366f1c 2202 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2203 unsigned long mach;
2204
489461e2
EZ
2205 /* Number of real registers. */
2206 int nregs;
2207
2208 /* Number of pseudo registers. */
2209 int npregs;
2210
2211 /* Number of total registers (the sum of nregs and npregs). */
2212 int num_tot_regs;
2213
c5aa993b
JM
2214 /* Table of register names; registers[R] is the name of the register
2215 number R. */
7a78ae4e 2216 const struct reg *regs;
c5aa993b 2217 };
c906108c 2218
489461e2
EZ
2219#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2220
2221static int
2222num_registers (const struct reg *reg_list, int num_tot_regs)
2223{
2224 int i;
2225 int nregs = 0;
2226
2227 for (i = 0; i < num_tot_regs; i++)
2228 if (!reg_list[i].pseudo)
2229 nregs++;
2230
2231 return nregs;
2232}
2233
2234static int
2235num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2236{
2237 int i;
2238 int npregs = 0;
2239
2240 for (i = 0; i < num_tot_regs; i++)
2241 if (reg_list[i].pseudo)
2242 npregs ++;
2243
2244 return npregs;
2245}
c906108c 2246
c906108c
SS
2247/* Information in this table comes from the following web sites:
2248 IBM: http://www.chips.ibm.com:80/products/embedded/
2249 Motorola: http://www.mot.com/SPS/PowerPC/
2250
2251 I'm sure I've got some of the variant descriptions not quite right.
2252 Please report any inaccuracies you find to GDB's maintainer.
2253
2254 If you add entries to this table, please be sure to allow the new
2255 value as an argument to the --with-cpu flag, in configure.in. */
2256
489461e2 2257static struct variant variants[] =
c906108c 2258{
489461e2 2259
7a78ae4e 2260 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2261 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2262 registers_powerpc},
7a78ae4e 2263 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2264 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2265 registers_power},
7a78ae4e 2266 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2267 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2268 registers_403},
7a78ae4e 2269 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2270 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2271 registers_601},
7a78ae4e 2272 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2273 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2274 registers_602},
7a78ae4e 2275 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2276 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2277 registers_603},
7a78ae4e 2278 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2279 604, -1, -1, tot_num_registers (registers_604),
2280 registers_604},
7a78ae4e 2281 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2282 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2283 registers_403GC},
7a78ae4e 2284 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2285 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2286 registers_505},
7a78ae4e 2287 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2288 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2289 registers_860},
7a78ae4e 2290 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2291 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2292 registers_750},
1fcc0bb8 2293 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2294 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2295 registers_7400},
c8001721
EZ
2296 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2297 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2298 registers_e500},
7a78ae4e 2299
5d57ee30
KB
2300 /* 64-bit */
2301 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2302 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2303 registers_powerpc},
7a78ae4e 2304 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2305 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2306 registers_powerpc},
5d57ee30 2307 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2308 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2309 registers_powerpc},
7a78ae4e 2310 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2311 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2312 registers_powerpc},
5d57ee30 2313 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2314 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2315 registers_powerpc},
5d57ee30 2316 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2317 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2318 registers_powerpc},
5d57ee30 2319
64366f1c 2320 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2321 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2322 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2323 registers_power},
7a78ae4e 2324 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2325 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2326 registers_power},
7a78ae4e 2327 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2328 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2329 registers_power},
7a78ae4e 2330
489461e2 2331 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2332};
2333
64366f1c 2334/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2335
2336static void
2337init_variants (void)
2338{
2339 struct variant *v;
2340
2341 for (v = variants; v->name; v++)
2342 {
2343 if (v->nregs == -1)
2344 v->nregs = num_registers (v->regs, v->num_tot_regs);
2345 if (v->npregs == -1)
2346 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2347 }
2348}
c906108c 2349
7a78ae4e 2350/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2351 MACH. If no such variant exists, return null. */
c906108c 2352
7a78ae4e
ND
2353static const struct variant *
2354find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2355{
7a78ae4e 2356 const struct variant *v;
c5aa993b 2357
7a78ae4e
ND
2358 for (v = variants; v->name; v++)
2359 if (arch == v->arch && mach == v->mach)
2360 return v;
c906108c 2361
7a78ae4e 2362 return NULL;
c906108c 2363}
9364a0ef
EZ
2364
2365static int
2366gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2367{
2368 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2369 return print_insn_big_powerpc (memaddr, info);
2370 else
2371 return print_insn_little_powerpc (memaddr, info);
2372}
7a78ae4e 2373\f
61a65099
KB
2374static CORE_ADDR
2375rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2376{
2377 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2378}
2379
2380static struct frame_id
2381rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2382{
2383 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2384 SP_REGNUM),
2385 frame_pc_unwind (next_frame));
2386}
2387
2388struct rs6000_frame_cache
2389{
2390 CORE_ADDR base;
2391 CORE_ADDR initial_sp;
2392 struct trad_frame_saved_reg *saved_regs;
2393};
2394
2395static struct rs6000_frame_cache *
2396rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2397{
2398 struct rs6000_frame_cache *cache;
2399 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2400 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2401 struct rs6000_framedata fdata;
2402 int wordsize = tdep->wordsize;
2403
2404 if ((*this_cache) != NULL)
2405 return (*this_cache);
2406 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2407 (*this_cache) = cache;
2408 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2409
2410 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2411 &fdata);
2412
2413 /* If there were any saved registers, figure out parent's stack
2414 pointer. */
2415 /* The following is true only if the frame doesn't have a call to
2416 alloca(), FIXME. */
2417
2418 if (fdata.saved_fpr == 0
2419 && fdata.saved_gpr == 0
2420 && fdata.saved_vr == 0
2421 && fdata.saved_ev == 0
2422 && fdata.lr_offset == 0
2423 && fdata.cr_offset == 0
2424 && fdata.vr_offset == 0
2425 && fdata.ev_offset == 0)
2426 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2427 else
2428 {
2429 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2430 address of the current frame. Things might be easier if the
2431 ->frame pointed to the outer-most address of the frame. In
2432 the mean time, the address of the prev frame is used as the
2433 base address of this frame. */
2434 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2435 if (!fdata.frameless)
2436 /* Frameless really means stackless. */
2437 cache->base = read_memory_addr (cache->base, wordsize);
2438 }
2439 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2440
2441 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2442 All fpr's from saved_fpr to fp31 are saved. */
2443
2444 if (fdata.saved_fpr >= 0)
2445 {
2446 int i;
2447 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
7bcda025
JB
2448 for (i = fdata.saved_fpr; i < 32; i++)
2449 {
2450 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2451 fpr_addr += 8;
2452 }
61a65099
KB
2453 }
2454
2455 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2456 All gpr's from saved_gpr to gpr31 are saved. */
2457
2458 if (fdata.saved_gpr >= 0)
2459 {
2460 int i;
2461 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
2462 for (i = fdata.saved_gpr; i < 32; i++)
2463 {
2464 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2465 gpr_addr += wordsize;
2466 }
2467 }
2468
2469 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2470 All vr's from saved_vr to vr31 are saved. */
2471 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2472 {
2473 if (fdata.saved_vr >= 0)
2474 {
2475 int i;
2476 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2477 for (i = fdata.saved_vr; i < 32; i++)
2478 {
2479 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2480 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2481 }
2482 }
2483 }
2484
2485 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2486 All vr's from saved_ev to ev31 are saved. ????? */
2487 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2488 {
2489 if (fdata.saved_ev >= 0)
2490 {
2491 int i;
2492 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
2493 for (i = fdata.saved_ev; i < 32; i++)
2494 {
2495 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2496 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2497 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2498 }
2499 }
2500 }
2501
2502 /* If != 0, fdata.cr_offset is the offset from the frame that
2503 holds the CR. */
2504 if (fdata.cr_offset != 0)
2505 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2506
2507 /* If != 0, fdata.lr_offset is the offset from the frame that
2508 holds the LR. */
2509 if (fdata.lr_offset != 0)
2510 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2511 /* The PC is found in the link register. */
2512 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2513
2514 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2515 holds the VRSAVE. */
2516 if (fdata.vrsave_offset != 0)
2517 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2518
2519 if (fdata.alloca_reg < 0)
2520 /* If no alloca register used, then fi->frame is the value of the
2521 %sp for this frame, and it is good enough. */
2522 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2523 else
2524 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2525 fdata.alloca_reg);
2526
2527 return cache;
2528}
2529
2530static void
2531rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2532 struct frame_id *this_id)
2533{
2534 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2535 this_cache);
2536 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2537}
2538
2539static void
2540rs6000_frame_prev_register (struct frame_info *next_frame,
2541 void **this_cache,
2542 int regnum, int *optimizedp,
2543 enum lval_type *lvalp, CORE_ADDR *addrp,
2544 int *realnump, void *valuep)
2545{
2546 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2547 this_cache);
2548 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
2549 optimizedp, lvalp, addrp, realnump, valuep);
2550}
2551
2552static const struct frame_unwind rs6000_frame_unwind =
2553{
2554 NORMAL_FRAME,
2555 rs6000_frame_this_id,
2556 rs6000_frame_prev_register
2557};
2558
2559static const struct frame_unwind *
2560rs6000_frame_sniffer (struct frame_info *next_frame)
2561{
2562 return &rs6000_frame_unwind;
2563}
2564
2565\f
2566
2567static CORE_ADDR
2568rs6000_frame_base_address (struct frame_info *next_frame,
2569 void **this_cache)
2570{
2571 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2572 this_cache);
2573 return info->initial_sp;
2574}
2575
2576static const struct frame_base rs6000_frame_base = {
2577 &rs6000_frame_unwind,
2578 rs6000_frame_base_address,
2579 rs6000_frame_base_address,
2580 rs6000_frame_base_address
2581};
2582
2583static const struct frame_base *
2584rs6000_frame_base_sniffer (struct frame_info *next_frame)
2585{
2586 return &rs6000_frame_base;
2587}
2588
7a78ae4e
ND
2589/* Initialize the current architecture based on INFO. If possible, re-use an
2590 architecture from ARCHES, which is a list of architectures already created
2591 during this debugging session.
c906108c 2592
7a78ae4e 2593 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2594 a binary file. */
c906108c 2595
7a78ae4e
ND
2596static struct gdbarch *
2597rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2598{
2599 struct gdbarch *gdbarch;
2600 struct gdbarch_tdep *tdep;
9aa1e687 2601 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2602 struct reg *regs;
2603 const struct variant *v;
2604 enum bfd_architecture arch;
2605 unsigned long mach;
2606 bfd abfd;
7b112f9c 2607 int sysv_abi;
5bf1c677 2608 asection *sect;
7a78ae4e 2609
9aa1e687 2610 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2611 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2612
9aa1e687
KB
2613 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2614 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2615
2616 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2617
e712c1cf 2618 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2619 that, else choose a likely default. */
9aa1e687 2620 if (from_xcoff_exec)
c906108c 2621 {
11ed25ac 2622 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2623 wordsize = 8;
2624 else
2625 wordsize = 4;
c906108c 2626 }
9aa1e687
KB
2627 else if (from_elf_exec)
2628 {
2629 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2630 wordsize = 8;
2631 else
2632 wordsize = 4;
2633 }
c906108c 2634 else
7a78ae4e 2635 {
27b15785
KB
2636 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2637 wordsize = info.bfd_arch_info->bits_per_word /
2638 info.bfd_arch_info->bits_per_byte;
2639 else
2640 wordsize = 4;
7a78ae4e 2641 }
c906108c 2642
64366f1c 2643 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2644 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2645 arches != NULL;
2646 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2647 {
2648 /* Word size in the various PowerPC bfd_arch_info structs isn't
2649 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2650 separate word size check. */
7a78ae4e 2651 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2652 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2653 return arches->gdbarch;
2654 }
c906108c 2655
7a78ae4e
ND
2656 /* None found, create a new architecture from INFO, whose bfd_arch_info
2657 validity depends on the source:
2658 - executable useless
2659 - rs6000_host_arch() good
2660 - core file good
2661 - "set arch" trust blindly
2662 - GDB startup useless but harmless */
c906108c 2663
9aa1e687 2664 if (!from_xcoff_exec)
c906108c 2665 {
b732d07d 2666 arch = info.bfd_arch_info->arch;
7a78ae4e 2667 mach = info.bfd_arch_info->mach;
c906108c 2668 }
7a78ae4e 2669 else
c906108c 2670 {
7a78ae4e 2671 arch = bfd_arch_powerpc;
35cec841 2672 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2673 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2674 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2675 }
2676 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2677 tdep->wordsize = wordsize;
5bf1c677
EZ
2678
2679 /* For e500 executables, the apuinfo section is of help here. Such
2680 section contains the identifier and revision number of each
2681 Application-specific Processing Unit that is present on the
2682 chip. The content of the section is determined by the assembler
2683 which looks at each instruction and determines which unit (and
2684 which version of it) can execute it. In our case we just look for
2685 the existance of the section. */
2686
2687 if (info.abfd)
2688 {
2689 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2690 if (sect)
2691 {
2692 arch = info.bfd_arch_info->arch;
2693 mach = bfd_mach_ppc_e500;
2694 bfd_default_set_arch_mach (&abfd, arch, mach);
2695 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2696 }
2697 }
2698
7a78ae4e
ND
2699 gdbarch = gdbarch_alloc (&info, tdep);
2700 power = arch == bfd_arch_rs6000;
2701
489461e2
EZ
2702 /* Initialize the number of real and pseudo registers in each variant. */
2703 init_variants ();
2704
64366f1c 2705 /* Choose variant. */
7a78ae4e
ND
2706 v = find_variant_by_arch (arch, mach);
2707 if (!v)
dd47e6fd
EZ
2708 return NULL;
2709
7a78ae4e
ND
2710 tdep->regs = v->regs;
2711
2188cbdd 2712 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
2713 tdep->ppc_toc_regnum = 2;
2714 tdep->ppc_ps_regnum = 65;
2715 tdep->ppc_cr_regnum = 66;
2716 tdep->ppc_lr_regnum = 67;
2717 tdep->ppc_ctr_regnum = 68;
2718 tdep->ppc_xer_regnum = 69;
2719 if (v->mach == bfd_mach_ppc_601)
2720 tdep->ppc_mq_regnum = 124;
e3f36dbd 2721 else if (power)
2188cbdd 2722 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2723 else
2724 tdep->ppc_mq_regnum = -1;
366f009f 2725 tdep->ppc_fp0_regnum = 32;
e3f36dbd 2726 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2727
c8001721
EZ
2728 set_gdbarch_pc_regnum (gdbarch, 64);
2729 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2730 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75 2731 if (sysv_abi && wordsize == 8)
05580c65 2732 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 2733 else if (sysv_abi && wordsize == 4)
05580c65 2734 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
2735 else
2736 {
2737 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2738 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2739 }
c8001721 2740
1fcc0bb8
EZ
2741 if (v->arch == bfd_arch_powerpc)
2742 switch (v->mach)
2743 {
2744 case bfd_mach_ppc:
2745 tdep->ppc_vr0_regnum = 71;
2746 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2747 tdep->ppc_ev0_regnum = -1;
2748 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2749 break;
2750 case bfd_mach_ppc_7400:
2751 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2752 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2753 tdep->ppc_ev0_regnum = -1;
2754 tdep->ppc_ev31_regnum = -1;
2755 break;
2756 case bfd_mach_ppc_e500:
338ef23d 2757 tdep->ppc_gp0_regnum = 41;
c8001721
EZ
2758 tdep->ppc_toc_regnum = -1;
2759 tdep->ppc_ps_regnum = 1;
2760 tdep->ppc_cr_regnum = 2;
2761 tdep->ppc_lr_regnum = 3;
2762 tdep->ppc_ctr_regnum = 4;
2763 tdep->ppc_xer_regnum = 5;
2764 tdep->ppc_ev0_regnum = 7;
2765 tdep->ppc_ev31_regnum = 38;
2766 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2767 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2768 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2769 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2770 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2771 break;
2772 default:
2773 tdep->ppc_vr0_regnum = -1;
2774 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2775 tdep->ppc_ev0_regnum = -1;
2776 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2777 break;
2778 }
2779
338ef23d
AC
2780 /* Sanity check on registers. */
2781 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2782
a88376a3
KB
2783 /* Set lr_frame_offset. */
2784 if (wordsize == 8)
2785 tdep->lr_frame_offset = 16;
2786 else if (sysv_abi)
2787 tdep->lr_frame_offset = 4;
2788 else
2789 tdep->lr_frame_offset = 8;
2790
2791 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2792 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2793 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2794 {
2795 tdep->regoff[i] = off;
2796 off += regsize (v->regs + i, wordsize);
c906108c
SS
2797 }
2798
56a6dfb9
KB
2799 /* Select instruction printer. */
2800 if (arch == power)
9364a0ef 2801 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2802 else
9364a0ef 2803 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2804
7a78ae4e 2805 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2806
2807 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2808 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2809 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2810 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2811 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2812 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2813 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2814 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2815
2816 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2817 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2818 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2819 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2820 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2821 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2822 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2823 if (sysv_abi)
2824 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2825 else
2826 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2827 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2828
11269d7e 2829 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2830 if (sysv_abi && wordsize == 8)
2831 /* PPC64 SYSV. */
2832 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2833 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2834 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2835 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2836 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2837 224. */
2838 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 2839
781a750d
AC
2840 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2841 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2842 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
9f744501
JB
2843 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2844 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_stab_reg_to_regnum);
2ea5f656
KB
2845 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2846 is correct for the SysV ABI when the wordsize is 8, but I'm also
2847 fairly certain that ppc_sysv_abi_push_arguments() will give even
2848 worse results since it only works for 32-bit code. So, for the moment,
2849 we're better off calling rs6000_push_arguments() since it works for
2850 64-bit code. At some point in the future, this matter needs to be
2851 revisited. */
2852 if (sysv_abi && wordsize == 4)
77b2b6d4 2853 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2854 else if (sysv_abi && wordsize == 8)
2855 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2856 else
77b2b6d4 2857 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2858
74055713 2859 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2860
2861 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2862 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
2863 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2864
6066c3de
AC
2865 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2866 for the descriptor and ".FN" for the entry-point -- a user
2867 specifying "break FN" will unexpectedly end up with a breakpoint
2868 on the descriptor and not the function. This architecture method
2869 transforms any breakpoints on descriptors into breakpoints on the
2870 corresponding entry point. */
2871 if (sysv_abi && wordsize == 8)
2872 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2873
7a78ae4e
ND
2874 /* Not sure on this. FIXMEmgo */
2875 set_gdbarch_frame_args_skip (gdbarch, 8);
2876
05580c65 2877 if (!sysv_abi)
7b112f9c 2878 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2879 rs6000_use_struct_convention);
8e0662df 2880
15813d3f
AC
2881 if (!sysv_abi)
2882 {
2883 /* Handle RS/6000 function pointers (which are really function
2884 descriptors). */
f517ea4e
PS
2885 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2886 rs6000_convert_from_func_ptr_addr);
9aa1e687 2887 }
7a78ae4e 2888
143985b7
AF
2889 /* Helpers for function argument information. */
2890 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2891
7b112f9c 2892 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2893 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2894
61a65099
KB
2895 switch (info.osabi)
2896 {
2897 case GDB_OSABI_NETBSD_AOUT:
2898 case GDB_OSABI_NETBSD_ELF:
2899 case GDB_OSABI_UNKNOWN:
2900 case GDB_OSABI_LINUX:
2901 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2902 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
2903 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
2904 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
2905 break;
2906 default:
61a65099 2907 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
2908
2909 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2910 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
2911 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
2912 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
2913 }
2914
ef5200c1
AC
2915 if (from_xcoff_exec)
2916 {
2917 /* NOTE: jimix/2003-06-09: This test should really check for
2918 GDB_OSABI_AIX when that is defined and becomes
2919 available. (Actually, once things are properly split apart,
2920 the test goes away.) */
2921 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2922 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2923 }
2924
7a78ae4e 2925 return gdbarch;
c906108c
SS
2926}
2927
7b112f9c
JT
2928static void
2929rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2930{
2931 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2932
2933 if (tdep == NULL)
2934 return;
2935
4be87837 2936 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2937}
2938
1fcc0bb8
EZ
2939static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2940
2941static void
2942rs6000_info_powerpc_command (char *args, int from_tty)
2943{
2944 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2945}
2946
c906108c
SS
2947/* Initialization code. */
2948
a78f21af 2949extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2950
c906108c 2951void
fba45db2 2952_initialize_rs6000_tdep (void)
c906108c 2953{
7b112f9c
JT
2954 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2955 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2956
2957 /* Add root prefix command for "info powerpc" commands */
2958 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2959 "Various POWERPC info specific commands.",
2960 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2961}
This page took 0.606263 seconds and 4 git commands to generate.