* elf.c (prep_headers): Don't zero EI_OSABI, EI_ABIVERSION or
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
2a873819 3 1998, 1999, 2000, 2001, 2002
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
7a78ae4e 37
2fccf04a 38#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 39#include "coff/internal.h" /* for libcoff.h */
2fccf04a 40#include "libcoff.h" /* for xcoff_data */
7a78ae4e 41
9aa1e687 42#include "elf-bfd.h"
7a78ae4e 43
6ded7999 44#include "solib-svr4.h"
9aa1e687 45#include "ppc-tdep.h"
7a78ae4e
ND
46
47/* If the kernel has to deliver a signal, it pushes a sigcontext
48 structure on the stack and then calls the signal handler, passing
49 the address of the sigcontext in an argument register. Usually
50 the signal handler doesn't save this register, so we have to
51 access the sigcontext structure via an offset from the signal handler
52 frame.
53 The following constants were determined by experimentation on AIX 3.2. */
54#define SIG_FRAME_PC_OFFSET 96
55#define SIG_FRAME_LR_OFFSET 108
56#define SIG_FRAME_FP_OFFSET 284
57
7a78ae4e
ND
58/* To be used by skip_prologue. */
59
60struct rs6000_framedata
61 {
62 int offset; /* total size of frame --- the distance
63 by which we decrement sp to allocate
64 the frame */
65 int saved_gpr; /* smallest # of saved gpr */
66 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 67 int saved_vr; /* smallest # of saved vr */
7a78ae4e
ND
68 int alloca_reg; /* alloca register number (frame ptr) */
69 char frameless; /* true if frameless functions. */
70 char nosavedpc; /* true if pc not saved. */
71 int gpr_offset; /* offset of saved gprs from prev sp */
72 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 73 int vr_offset; /* offset of saved vrs from prev sp */
7a78ae4e
ND
74 int lr_offset; /* offset of saved lr */
75 int cr_offset; /* offset of saved cr */
6be8bc0c 76 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
77 };
78
79/* Description of a single register. */
80
81struct reg
82 {
83 char *name; /* name of register */
84 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
85 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
86 unsigned char fpr; /* whether register is floating-point */
87 };
88
7a78ae4e
ND
89/* Return the current architecture's gdbarch_tdep structure. */
90
91#define TDEP gdbarch_tdep (current_gdbarch)
c906108c
SS
92
93/* Breakpoint shadows for the single step instructions will be kept here. */
94
c5aa993b
JM
95static struct sstep_breaks
96 {
97 /* Address, or 0 if this is not in use. */
98 CORE_ADDR address;
99 /* Shadow contents. */
100 char data[4];
101 }
102stepBreaks[2];
c906108c
SS
103
104/* Hook for determining the TOC address when calling functions in the
105 inferior under AIX. The initialization code in rs6000-nat.c sets
106 this hook to point to find_toc_address. */
107
7a78ae4e
ND
108CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
109
110/* Hook to set the current architecture when starting a child process.
111 rs6000-nat.c sets this. */
112
113void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
114
115/* Static function prototypes */
116
a14ed312
KB
117static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
118 CORE_ADDR safety);
077276e8
KB
119static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
120 struct rs6000_framedata *);
7a78ae4e
ND
121static void frame_get_saved_regs (struct frame_info * fi,
122 struct rs6000_framedata * fdatap);
123static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 124
7a78ae4e 125/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 126
7a78ae4e
ND
127static CORE_ADDR
128read_memory_addr (CORE_ADDR memaddr, int len)
129{
130 return read_memory_unsigned_integer (memaddr, len);
131}
c906108c 132
7a78ae4e
ND
133static CORE_ADDR
134rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
135{
136 struct rs6000_framedata frame;
077276e8 137 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
138 return pc;
139}
140
141
c906108c
SS
142/* Fill in fi->saved_regs */
143
144struct frame_extra_info
145{
146 /* Functions calling alloca() change the value of the stack
147 pointer. We need to use initial stack pointer (which is saved in
148 r31 by gcc) in such cases. If a compiler emits traceback table,
149 then we should use the alloca register specified in traceback
150 table. FIXME. */
c5aa993b 151 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
152};
153
9aa1e687 154void
7a78ae4e 155rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 156{
c5aa993b 157 fi->extra_info = (struct frame_extra_info *)
c906108c
SS
158 frame_obstack_alloc (sizeof (struct frame_extra_info));
159 fi->extra_info->initial_sp = 0;
160 if (fi->next != (CORE_ADDR) 0
161 && fi->pc < TEXT_SEGMENT_BASE)
7a292a7a 162 /* We're in get_prev_frame */
c906108c
SS
163 /* and this is a special signal frame. */
164 /* (fi->pc will be some low address in the kernel, */
165 /* to which the signal handler returns). */
166 fi->signal_handler_caller = 1;
167}
168
7a78ae4e
ND
169/* Put here the code to store, into a struct frame_saved_regs,
170 the addresses of the saved registers of frame described by FRAME_INFO.
171 This includes special registers such as pc and fp saved in special
172 ways in the stack frame. sp is even more special:
173 the address we return for it IS the sp for the next frame. */
c906108c 174
7a78ae4e
ND
175/* In this implementation for RS/6000, we do *not* save sp. I am
176 not sure if it will be needed. The following function takes care of gpr's
177 and fpr's only. */
178
9aa1e687 179void
7a78ae4e 180rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
181{
182 frame_get_saved_regs (fi, NULL);
183}
184
7a78ae4e
ND
185static CORE_ADDR
186rs6000_frame_args_address (struct frame_info *fi)
c906108c
SS
187{
188 if (fi->extra_info->initial_sp != 0)
189 return fi->extra_info->initial_sp;
190 else
191 return frame_initial_stack_address (fi);
192}
193
7a78ae4e
ND
194/* Immediately after a function call, return the saved pc.
195 Can't go through the frames for this because on some machines
196 the new frame is not set up until the new function executes
197 some instructions. */
198
199static CORE_ADDR
200rs6000_saved_pc_after_call (struct frame_info *fi)
201{
2188cbdd 202 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 203}
c906108c
SS
204
205/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
206
207static CORE_ADDR
7a78ae4e 208branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
209{
210 CORE_ADDR dest;
211 int immediate;
212 int absolute;
213 int ext_op;
214
215 absolute = (int) ((instr >> 1) & 1);
216
c5aa993b
JM
217 switch (opcode)
218 {
219 case 18:
220 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
221 if (absolute)
222 dest = immediate;
223 else
224 dest = pc + immediate;
225 break;
226
227 case 16:
228 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
229 if (absolute)
230 dest = immediate;
231 else
232 dest = pc + immediate;
233 break;
234
235 case 19:
236 ext_op = (instr >> 1) & 0x3ff;
237
238 if (ext_op == 16) /* br conditional register */
239 {
2188cbdd 240 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
241
242 /* If we are about to return from a signal handler, dest is
243 something like 0x3c90. The current frame is a signal handler
244 caller frame, upon completion of the sigreturn system call
245 execution will return to the saved PC in the frame. */
246 if (dest < TEXT_SEGMENT_BASE)
247 {
248 struct frame_info *fi;
249
250 fi = get_current_frame ();
251 if (fi != NULL)
7a78ae4e
ND
252 dest = read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET,
253 TDEP->wordsize);
c5aa993b
JM
254 }
255 }
256
257 else if (ext_op == 528) /* br cond to count reg */
258 {
2188cbdd 259 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
260
261 /* If we are about to execute a system call, dest is something
262 like 0x22fc or 0x3b00. Upon completion the system call
263 will return to the address in the link register. */
264 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 265 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
266 }
267 else
268 return -1;
269 break;
c906108c 270
c5aa993b
JM
271 default:
272 return -1;
273 }
c906108c
SS
274 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
275}
276
277
278/* Sequence of bytes for breakpoint instruction. */
279
280#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
281#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
282
7a78ae4e
ND
283static unsigned char *
284rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
285{
286 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
287 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
288 *bp_size = 4;
d7449b42 289 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
290 return big_breakpoint;
291 else
292 return little_breakpoint;
293}
294
295
296/* AIX does not support PT_STEP. Simulate it. */
297
298void
379d08a1
AC
299rs6000_software_single_step (enum target_signal signal,
300 int insert_breakpoints_p)
c906108c 301{
7c40d541
KB
302 CORE_ADDR dummy;
303 int breakp_sz;
304 char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
305 int ii, insn;
306 CORE_ADDR loc;
307 CORE_ADDR breaks[2];
308 int opcode;
309
c5aa993b
JM
310 if (insert_breakpoints_p)
311 {
c906108c 312
c5aa993b 313 loc = read_pc ();
c906108c 314
c5aa993b 315 insn = read_memory_integer (loc, 4);
c906108c 316
7c40d541 317 breaks[0] = loc + breakp_sz;
c5aa993b
JM
318 opcode = insn >> 26;
319 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 320
c5aa993b
JM
321 /* Don't put two breakpoints on the same address. */
322 if (breaks[1] == breaks[0])
323 breaks[1] = -1;
c906108c 324
c5aa993b 325 stepBreaks[1].address = 0;
c906108c 326
c5aa993b
JM
327 for (ii = 0; ii < 2; ++ii)
328 {
c906108c 329
c5aa993b
JM
330 /* ignore invalid breakpoint. */
331 if (breaks[ii] == -1)
332 continue;
7c40d541 333 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
334 stepBreaks[ii].address = breaks[ii];
335 }
c906108c 336
c5aa993b
JM
337 }
338 else
339 {
c906108c 340
c5aa993b
JM
341 /* remove step breakpoints. */
342 for (ii = 0; ii < 2; ++ii)
343 if (stepBreaks[ii].address != 0)
7c40d541
KB
344 target_remove_breakpoint (stepBreaks[ii].address,
345 stepBreaks[ii].data);
c5aa993b 346 }
c906108c 347 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 348 /* What errors? {read,write}_memory call error(). */
c906108c
SS
349}
350
351
352/* return pc value after skipping a function prologue and also return
353 information about a function frame.
354
355 in struct rs6000_framedata fdata:
c5aa993b
JM
356 - frameless is TRUE, if function does not have a frame.
357 - nosavedpc is TRUE, if function does not save %pc value in its frame.
358 - offset is the initial size of this stack frame --- the amount by
359 which we decrement the sp to allocate the frame.
360 - saved_gpr is the number of the first saved gpr.
361 - saved_fpr is the number of the first saved fpr.
6be8bc0c 362 - saved_vr is the number of the first saved vr.
c5aa993b
JM
363 - alloca_reg is the number of the register used for alloca() handling.
364 Otherwise -1.
365 - gpr_offset is the offset of the first saved gpr from the previous frame.
366 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 367 - vr_offset is the offset of the first saved vr from the previous frame.
c5aa993b
JM
368 - lr_offset is the offset of the saved lr
369 - cr_offset is the offset of the saved cr
6be8bc0c 370 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 371 */
c906108c
SS
372
373#define SIGNED_SHORT(x) \
374 ((sizeof (short) == 2) \
375 ? ((int)(short)(x)) \
376 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
377
378#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
379
55d05f3b
KB
380/* Limit the number of skipped non-prologue instructions, as the examining
381 of the prologue is expensive. */
382static int max_skip_non_prologue_insns = 10;
383
384/* Given PC representing the starting address of a function, and
385 LIM_PC which is the (sloppy) limit to which to scan when looking
386 for a prologue, attempt to further refine this limit by using
387 the line data in the symbol table. If successful, a better guess
388 on where the prologue ends is returned, otherwise the previous
389 value of lim_pc is returned. */
390static CORE_ADDR
391refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
392{
393 struct symtab_and_line prologue_sal;
394
395 prologue_sal = find_pc_line (pc, 0);
396 if (prologue_sal.line != 0)
397 {
398 int i;
399 CORE_ADDR addr = prologue_sal.end;
400
401 /* Handle the case in which compiler's optimizer/scheduler
402 has moved instructions into the prologue. We scan ahead
403 in the function looking for address ranges whose corresponding
404 line number is less than or equal to the first one that we
405 found for the function. (It can be less than when the
406 scheduler puts a body instruction before the first prologue
407 instruction.) */
408 for (i = 2 * max_skip_non_prologue_insns;
409 i > 0 && (lim_pc == 0 || addr < lim_pc);
410 i--)
411 {
412 struct symtab_and_line sal;
413
414 sal = find_pc_line (addr, 0);
415 if (sal.line == 0)
416 break;
417 if (sal.line <= prologue_sal.line
418 && sal.symtab == prologue_sal.symtab)
419 {
420 prologue_sal = sal;
421 }
422 addr = sal.end;
423 }
424
425 if (lim_pc == 0 || prologue_sal.end < lim_pc)
426 lim_pc = prologue_sal.end;
427 }
428 return lim_pc;
429}
430
431
7a78ae4e 432static CORE_ADDR
077276e8 433skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
434{
435 CORE_ADDR orig_pc = pc;
55d05f3b 436 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 437 CORE_ADDR li_found_pc = 0;
c906108c
SS
438 char buf[4];
439 unsigned long op;
440 long offset = 0;
6be8bc0c 441 long vr_saved_offset = 0;
482ca3f5
KB
442 int lr_reg = -1;
443 int cr_reg = -1;
6be8bc0c
EZ
444 int vr_reg = -1;
445 int vrsave_reg = -1;
c906108c
SS
446 int reg;
447 int framep = 0;
448 int minimal_toc_loaded = 0;
ddb20c56 449 int prev_insn_was_prologue_insn = 1;
55d05f3b
KB
450 int num_skip_non_prologue_insns = 0;
451
452 /* Attempt to find the end of the prologue when no limit is specified.
453 Note that refine_prologue_limit() has been written so that it may
454 be used to "refine" the limits of non-zero PC values too, but this
455 is only safe if we 1) trust the line information provided by the
456 compiler and 2) iterate enough to actually find the end of the
457 prologue.
458
459 It may become a good idea at some point (for both performance and
460 accuracy) to unconditionally call refine_prologue_limit(). But,
461 until we can make a clear determination that this is beneficial,
462 we'll play it safe and only use it to obtain a limit when none
463 has been specified. */
464 if (lim_pc == 0)
465 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 466
ddb20c56 467 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
468 fdata->saved_gpr = -1;
469 fdata->saved_fpr = -1;
6be8bc0c 470 fdata->saved_vr = -1;
c906108c
SS
471 fdata->alloca_reg = -1;
472 fdata->frameless = 1;
473 fdata->nosavedpc = 1;
474
55d05f3b 475 for (;; pc += 4)
c906108c 476 {
ddb20c56
KB
477 /* Sometimes it isn't clear if an instruction is a prologue
478 instruction or not. When we encounter one of these ambiguous
479 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
480 Otherwise, we'll assume that it really is a prologue instruction. */
481 if (prev_insn_was_prologue_insn)
482 last_prologue_pc = pc;
55d05f3b
KB
483
484 /* Stop scanning if we've hit the limit. */
485 if (lim_pc != 0 && pc >= lim_pc)
486 break;
487
ddb20c56
KB
488 prev_insn_was_prologue_insn = 1;
489
55d05f3b 490 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
491 if (target_read_memory (pc, buf, 4))
492 break;
493 op = extract_signed_integer (buf, 4);
c906108c 494
c5aa993b
JM
495 if ((op & 0xfc1fffff) == 0x7c0802a6)
496 { /* mflr Rx */
497 lr_reg = (op & 0x03e00000) | 0x90010000;
498 continue;
c906108c 499
c5aa993b
JM
500 }
501 else if ((op & 0xfc1fffff) == 0x7c000026)
502 { /* mfcr Rx */
503 cr_reg = (op & 0x03e00000) | 0x90010000;
504 continue;
c906108c 505
c906108c 506 }
c5aa993b
JM
507 else if ((op & 0xfc1f0000) == 0xd8010000)
508 { /* stfd Rx,NUM(r1) */
509 reg = GET_SRC_REG (op);
510 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
511 {
512 fdata->saved_fpr = reg;
513 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
514 }
515 continue;
c906108c 516
c5aa993b
JM
517 }
518 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
519 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
520 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
521 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
522 {
523
524 reg = GET_SRC_REG (op);
525 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
526 {
527 fdata->saved_gpr = reg;
7a78ae4e
ND
528 if ((op & 0xfc1f0003) == 0xf8010000)
529 op = (op >> 1) << 1;
c5aa993b
JM
530 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
531 }
532 continue;
c906108c 533
ddb20c56
KB
534 }
535 else if ((op & 0xffff0000) == 0x60000000)
536 {
537 /* nop */
538 /* Allow nops in the prologue, but do not consider them to
539 be part of the prologue unless followed by other prologue
540 instructions. */
541 prev_insn_was_prologue_insn = 0;
542 continue;
543
c906108c 544 }
c5aa993b
JM
545 else if ((op & 0xffff0000) == 0x3c000000)
546 { /* addis 0,0,NUM, used
547 for >= 32k frames */
548 fdata->offset = (op & 0x0000ffff) << 16;
549 fdata->frameless = 0;
550 continue;
551
552 }
553 else if ((op & 0xffff0000) == 0x60000000)
554 { /* ori 0,0,NUM, 2nd ha
555 lf of >= 32k frames */
556 fdata->offset |= (op & 0x0000ffff);
557 fdata->frameless = 0;
558 continue;
559
560 }
482ca3f5 561 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
562 { /* st Rx,NUM(r1)
563 where Rx == lr */
564 fdata->lr_offset = SIGNED_SHORT (op) + offset;
565 fdata->nosavedpc = 0;
566 lr_reg = 0;
567 continue;
568
569 }
482ca3f5 570 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
571 { /* st Rx,NUM(r1)
572 where Rx == cr */
573 fdata->cr_offset = SIGNED_SHORT (op) + offset;
574 cr_reg = 0;
575 continue;
576
577 }
578 else if (op == 0x48000005)
579 { /* bl .+4 used in
580 -mrelocatable */
581 continue;
582
583 }
584 else if (op == 0x48000004)
585 { /* b .+4 (xlc) */
586 break;
587
c5aa993b 588 }
6be8bc0c
EZ
589 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
590 in V.4 -mminimal-toc */
c5aa993b
JM
591 (op & 0xffff0000) == 0x3bde0000)
592 { /* addi 30,30,foo@l */
593 continue;
c906108c 594
c5aa993b
JM
595 }
596 else if ((op & 0xfc000001) == 0x48000001)
597 { /* bl foo,
598 to save fprs??? */
c906108c 599
c5aa993b 600 fdata->frameless = 0;
6be8bc0c
EZ
601 /* Don't skip over the subroutine call if it is not within
602 the first three instructions of the prologue. */
c5aa993b
JM
603 if ((pc - orig_pc) > 8)
604 break;
605
606 op = read_memory_integer (pc + 4, 4);
607
6be8bc0c
EZ
608 /* At this point, make sure this is not a trampoline
609 function (a function that simply calls another functions,
610 and nothing else). If the next is not a nop, this branch
611 was part of the function prologue. */
c5aa993b
JM
612
613 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
614 break; /* don't skip over
615 this branch */
616 continue;
617
618 /* update stack pointer */
619 }
7a78ae4e
ND
620 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
621 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
622 {
c5aa993b 623 fdata->frameless = 0;
7a78ae4e
ND
624 if ((op & 0xffff0003) == 0xf8210001)
625 op = (op >> 1) << 1;
c5aa993b
JM
626 fdata->offset = SIGNED_SHORT (op);
627 offset = fdata->offset;
628 continue;
629
630 }
631 else if (op == 0x7c21016e)
632 { /* stwux 1,1,0 */
633 fdata->frameless = 0;
634 offset = fdata->offset;
635 continue;
636
637 /* Load up minimal toc pointer */
638 }
639 else if ((op >> 22) == 0x20f
640 && !minimal_toc_loaded)
641 { /* l r31,... or l r30,... */
642 minimal_toc_loaded = 1;
643 continue;
644
f6077098
KB
645 /* move parameters from argument registers to local variable
646 registers */
647 }
648 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
649 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
650 (((op >> 21) & 31) <= 10) &&
651 (((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
652 {
653 continue;
654
c5aa993b
JM
655 /* store parameters in stack */
656 }
6be8bc0c 657 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 658 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
659 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
660 {
c5aa993b 661 continue;
c906108c 662
c5aa993b
JM
663 /* store parameters in stack via frame pointer */
664 }
665 else if (framep &&
666 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
667 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
668 (op & 0xfc1f0000) == 0xfc1f0000))
669 { /* frsp, fp?,NUM(r1) */
670 continue;
671
672 /* Set up frame pointer */
673 }
674 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
675 || op == 0x7c3f0b78)
676 { /* mr r31, r1 */
677 fdata->frameless = 0;
678 framep = 1;
679 fdata->alloca_reg = 31;
680 continue;
681
682 /* Another way to set up the frame pointer. */
683 }
684 else if ((op & 0xfc1fffff) == 0x38010000)
685 { /* addi rX, r1, 0x0 */
686 fdata->frameless = 0;
687 framep = 1;
688 fdata->alloca_reg = (op & ~0x38010000) >> 21;
689 continue;
c5aa993b 690 }
6be8bc0c
EZ
691 /* AltiVec related instructions. */
692 /* Store the vrsave register (spr 256) in another register for
693 later manipulation, or load a register into the vrsave
694 register. 2 instructions are used: mfvrsave and
695 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
696 and mtspr SPR256, Rn. */
697 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
698 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
699 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
700 {
701 vrsave_reg = GET_SRC_REG (op);
702 continue;
703 }
704 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
705 {
706 continue;
707 }
708 /* Store the register where vrsave was saved to onto the stack:
709 rS is the register where vrsave was stored in a previous
710 instruction. */
711 /* 100100 sssss 00001 dddddddd dddddddd */
712 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
713 {
714 if (vrsave_reg == GET_SRC_REG (op))
715 {
716 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
717 vrsave_reg = -1;
718 }
719 continue;
720 }
721 /* Compute the new value of vrsave, by modifying the register
722 where vrsave was saved to. */
723 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
724 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
725 {
726 continue;
727 }
728 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
729 in a pair of insns to save the vector registers on the
730 stack. */
731 /* 001110 00000 00000 iiii iiii iiii iiii */
732 else if ((op & 0xffff0000) == 0x38000000) /* li r0, SIMM */
733 {
734 li_found_pc = pc;
735 vr_saved_offset = SIGNED_SHORT (op);
736 }
737 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
738 /* 011111 sssss 11111 00000 00111001110 */
739 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
740 {
741 if (pc == (li_found_pc + 4))
742 {
743 vr_reg = GET_SRC_REG (op);
744 /* If this is the first vector reg to be saved, or if
745 it has a lower number than others previously seen,
746 reupdate the frame info. */
747 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
748 {
749 fdata->saved_vr = vr_reg;
750 fdata->vr_offset = vr_saved_offset + offset;
751 }
752 vr_saved_offset = -1;
753 vr_reg = -1;
754 li_found_pc = 0;
755 }
756 }
757 /* End AltiVec related instructions. */
c5aa993b
JM
758 else
759 {
55d05f3b
KB
760 /* Not a recognized prologue instruction.
761 Handle optimizer code motions into the prologue by continuing
762 the search if we have no valid frame yet or if the return
763 address is not yet saved in the frame. */
764 if (fdata->frameless == 0
765 && (lr_reg == -1 || fdata->nosavedpc == 0))
766 break;
767
768 if (op == 0x4e800020 /* blr */
769 || op == 0x4e800420) /* bctr */
770 /* Do not scan past epilogue in frameless functions or
771 trampolines. */
772 break;
773 if ((op & 0xf4000000) == 0x40000000) /* bxx */
774 /* Never skip branches. */
775 break;
776
777 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
778 /* Do not scan too many insns, scanning insns is expensive with
779 remote targets. */
780 break;
781
782 /* Continue scanning. */
783 prev_insn_was_prologue_insn = 0;
784 continue;
c5aa993b 785 }
c906108c
SS
786 }
787
788#if 0
789/* I have problems with skipping over __main() that I need to address
790 * sometime. Previously, I used to use misc_function_vector which
791 * didn't work as well as I wanted to be. -MGO */
792
793 /* If the first thing after skipping a prolog is a branch to a function,
794 this might be a call to an initializer in main(), introduced by gcc2.
795 We'd like to skip over it as well. Fortunately, xlc does some extra
796 work before calling a function right after a prologue, thus we can
797 single out such gcc2 behaviour. */
c906108c 798
c906108c 799
c5aa993b
JM
800 if ((op & 0xfc000001) == 0x48000001)
801 { /* bl foo, an initializer function? */
802 op = read_memory_integer (pc + 4, 4);
803
804 if (op == 0x4def7b82)
805 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 806
c5aa993b
JM
807 /* check and see if we are in main. If so, skip over this initializer
808 function as well. */
c906108c 809
c5aa993b 810 tmp = find_pc_misc_function (pc);
51cc5b07 811 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
812 return pc + 8;
813 }
c906108c 814 }
c906108c 815#endif /* 0 */
c5aa993b
JM
816
817 fdata->offset = -fdata->offset;
ddb20c56 818 return last_prologue_pc;
c906108c
SS
819}
820
821
822/*************************************************************************
f6077098 823 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
824 frames, etc.
825*************************************************************************/
826
c906108c 827
7a78ae4e 828/* Pop the innermost frame, go back to the caller. */
c5aa993b 829
c906108c 830static void
7a78ae4e 831rs6000_pop_frame (void)
c906108c 832{
470d5666 833 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
834 struct rs6000_framedata fdata;
835 struct frame_info *frame = get_current_frame ();
470d5666 836 int ii, wordsize;
c906108c
SS
837
838 pc = read_pc ();
839 sp = FRAME_FP (frame);
840
58223630 841 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
c906108c 842 {
7a78ae4e
ND
843 generic_pop_dummy_frame ();
844 flush_cached_frames ();
845 return;
c906108c
SS
846 }
847
848 /* Make sure that all registers are valid. */
849 read_register_bytes (0, NULL, REGISTER_BYTES);
850
851 /* figure out previous %pc value. If the function is frameless, it is
852 still in the link register, otherwise walk the frames and retrieve the
853 saved %pc value in the previous frame. */
854
855 addr = get_pc_function_start (frame->pc);
077276e8 856 (void) skip_prologue (addr, frame->pc, &fdata);
c906108c 857
7a78ae4e 858 wordsize = TDEP->wordsize;
c906108c
SS
859 if (fdata.frameless)
860 prev_sp = sp;
861 else
7a78ae4e 862 prev_sp = read_memory_addr (sp, wordsize);
c906108c 863 if (fdata.lr_offset == 0)
2188cbdd 864 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 865 else
7a78ae4e 866 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
867
868 /* reset %pc value. */
869 write_register (PC_REGNUM, lr);
870
871 /* reset register values if any was saved earlier. */
872
873 if (fdata.saved_gpr != -1)
874 {
875 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
876 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
877 {
7a78ae4e
ND
878 read_memory (addr, &registers[REGISTER_BYTE (ii)], wordsize);
879 addr += wordsize;
c5aa993b 880 }
c906108c
SS
881 }
882
883 if (fdata.saved_fpr != -1)
884 {
885 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
886 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
887 {
888 read_memory (addr, &registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
889 addr += 8;
890 }
c906108c
SS
891 }
892
893 write_register (SP_REGNUM, prev_sp);
894 target_store_registers (-1);
895 flush_cached_frames ();
896}
897
7a78ae4e
ND
898/* Fixup the call sequence of a dummy function, with the real function
899 address. Its arguments will be passed by gdb. */
c906108c 900
7a78ae4e
ND
901static void
902rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 903 int nargs, struct value **args, struct type *type,
7a78ae4e 904 int gcc_p)
c906108c 905{
c906108c
SS
906 int ii;
907 CORE_ADDR target_addr;
908
7a78ae4e 909 if (rs6000_find_toc_address_hook != NULL)
f6077098 910 {
7a78ae4e 911 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
912 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
913 tocvalue);
f6077098 914 }
c906108c
SS
915}
916
7a78ae4e 917/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
918 the first eight words of the argument list (that might be less than
919 eight parameters if some parameters occupy more than one word) are
7a78ae4e 920 passed in r3..r10 registers. float and double parameters are
c906108c
SS
921 passed in fpr's, in addition to that. Rest of the parameters if any
922 are passed in user stack. There might be cases in which half of the
923 parameter is copied into registers, the other half is pushed into
924 stack.
925
7a78ae4e
ND
926 Stack must be aligned on 64-bit boundaries when synthesizing
927 function calls.
928
c906108c
SS
929 If the function is returning a structure, then the return address is passed
930 in r3, then the first 7 words of the parameters can be passed in registers,
931 starting from r4. */
932
7a78ae4e 933static CORE_ADDR
ea7c478f 934rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 935 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
936{
937 int ii;
938 int len = 0;
c5aa993b
JM
939 int argno; /* current argument number */
940 int argbytes; /* current argument byte */
941 char tmp_buffer[50];
942 int f_argno = 0; /* current floating point argno */
7a78ae4e 943 int wordsize = TDEP->wordsize;
c906108c 944
ea7c478f 945 struct value *arg = 0;
c906108c
SS
946 struct type *type;
947
948 CORE_ADDR saved_sp;
949
c906108c
SS
950 /* The first eight words of ther arguments are passed in registers. Copy
951 them appropriately.
952
953 If the function is returning a `struct', then the first word (which
954 will be passed in r3) is used for struct return address. In that
955 case we should advance one word and start from r4 register to copy
956 parameters. */
957
c5aa993b 958 ii = struct_return ? 1 : 0;
c906108c
SS
959
960/*
c5aa993b
JM
961 effectively indirect call... gcc does...
962
963 return_val example( float, int);
964
965 eabi:
966 float in fp0, int in r3
967 offset of stack on overflow 8/16
968 for varargs, must go by type.
969 power open:
970 float in r3&r4, int in r5
971 offset of stack on overflow different
972 both:
973 return in r3 or f0. If no float, must study how gcc emulates floats;
974 pay attention to arg promotion.
975 User may have to cast\args to handle promotion correctly
976 since gdb won't know if prototype supplied or not.
977 */
c906108c 978
c5aa993b
JM
979 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
980 {
f6077098 981 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
982
983 arg = args[argno];
984 type = check_typedef (VALUE_TYPE (arg));
985 len = TYPE_LENGTH (type);
986
987 if (TYPE_CODE (type) == TYPE_CODE_FLT)
988 {
989
990 /* floating point arguments are passed in fpr's, as well as gpr's.
991 There are 13 fpr's reserved for passing parameters. At this point
992 there is no way we would run out of them. */
993
994 if (len > 8)
995 printf_unfiltered (
996 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
997
998 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
999 VALUE_CONTENTS (arg),
1000 len);
1001 ++f_argno;
1002 }
1003
f6077098 1004 if (len > reg_size)
c5aa993b
JM
1005 {
1006
1007 /* Argument takes more than one register. */
1008 while (argbytes < len)
1009 {
f6077098 1010 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
c5aa993b
JM
1011 memcpy (&registers[REGISTER_BYTE (ii + 3)],
1012 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1013 (len - argbytes) > reg_size
1014 ? reg_size : len - argbytes);
1015 ++ii, argbytes += reg_size;
c5aa993b
JM
1016
1017 if (ii >= 8)
1018 goto ran_out_of_registers_for_arguments;
1019 }
1020 argbytes = 0;
1021 --ii;
1022 }
1023 else
1024 { /* Argument can fit in one register. No problem. */
d7449b42 1025 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
f6077098
KB
1026 memset (&registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1027 memcpy ((char *)&registers[REGISTER_BYTE (ii + 3)] + adj,
1028 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1029 }
1030 ++argno;
c906108c 1031 }
c906108c
SS
1032
1033ran_out_of_registers_for_arguments:
1034
7a78ae4e 1035 saved_sp = read_sp ();
cc9836a8 1036
7a78ae4e
ND
1037 /* location for 8 parameters are always reserved. */
1038 sp -= wordsize * 8;
f6077098 1039
7a78ae4e
ND
1040 /* another six words for back chain, TOC register, link register, etc. */
1041 sp -= wordsize * 6;
f6077098 1042
7a78ae4e
ND
1043 /* stack pointer must be quadword aligned */
1044 sp &= -16;
c906108c 1045
c906108c
SS
1046 /* if there are more arguments, allocate space for them in
1047 the stack, then push them starting from the ninth one. */
1048
c5aa993b
JM
1049 if ((argno < nargs) || argbytes)
1050 {
1051 int space = 0, jj;
c906108c 1052
c5aa993b
JM
1053 if (argbytes)
1054 {
1055 space += ((len - argbytes + 3) & -4);
1056 jj = argno + 1;
1057 }
1058 else
1059 jj = argno;
c906108c 1060
c5aa993b
JM
1061 for (; jj < nargs; ++jj)
1062 {
ea7c478f 1063 struct value *val = args[jj];
c5aa993b
JM
1064 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1065 }
c906108c 1066
c5aa993b 1067 /* add location required for the rest of the parameters */
f6077098 1068 space = (space + 15) & -16;
c5aa993b 1069 sp -= space;
c906108c 1070
c5aa993b
JM
1071 /* This is another instance we need to be concerned about securing our
1072 stack space. If we write anything underneath %sp (r1), we might conflict
1073 with the kernel who thinks he is free to use this area. So, update %sp
1074 first before doing anything else. */
c906108c 1075
c5aa993b 1076 write_register (SP_REGNUM, sp);
c906108c 1077
c5aa993b
JM
1078 /* if the last argument copied into the registers didn't fit there
1079 completely, push the rest of it into stack. */
c906108c 1080
c5aa993b
JM
1081 if (argbytes)
1082 {
1083 write_memory (sp + 24 + (ii * 4),
1084 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1085 len - argbytes);
1086 ++argno;
1087 ii += ((len - argbytes + 3) & -4) / 4;
1088 }
c906108c 1089
c5aa993b
JM
1090 /* push the rest of the arguments into stack. */
1091 for (; argno < nargs; ++argno)
1092 {
c906108c 1093
c5aa993b
JM
1094 arg = args[argno];
1095 type = check_typedef (VALUE_TYPE (arg));
1096 len = TYPE_LENGTH (type);
c906108c
SS
1097
1098
c5aa993b
JM
1099 /* float types should be passed in fpr's, as well as in the stack. */
1100 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1101 {
c906108c 1102
c5aa993b
JM
1103 if (len > 8)
1104 printf_unfiltered (
1105 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1106
c5aa993b
JM
1107 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
1108 VALUE_CONTENTS (arg),
1109 len);
1110 ++f_argno;
1111 }
c906108c 1112
c5aa993b
JM
1113 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1114 ii += ((len + 3) & -4) / 4;
1115 }
c906108c 1116 }
c906108c
SS
1117 else
1118 /* Secure stack areas first, before doing anything else. */
1119 write_register (SP_REGNUM, sp);
1120
c906108c
SS
1121 /* set back chain properly */
1122 store_address (tmp_buffer, 4, saved_sp);
1123 write_memory (sp, tmp_buffer, 4);
1124
1125 target_store_registers (-1);
1126 return sp;
1127}
c906108c
SS
1128
1129/* Function: ppc_push_return_address (pc, sp)
1130 Set up the return address for the inferior function call. */
1131
7a78ae4e
ND
1132static CORE_ADDR
1133ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1134{
2188cbdd
EZ
1135 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1136 CALL_DUMMY_ADDRESS ());
c906108c
SS
1137 return sp;
1138}
1139
7a78ae4e
ND
1140/* Extract a function return value of type TYPE from raw register array
1141 REGBUF, and copy that return value into VALBUF in virtual format. */
c906108c 1142
7a78ae4e
ND
1143static void
1144rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1145{
1146 int offset = 0;
1147
c5aa993b
JM
1148 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1149 {
c906108c 1150
c5aa993b
JM
1151 double dd;
1152 float ff;
1153 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1154 We need to truncate the return value into float size (4 byte) if
1155 necessary. */
c906108c 1156
c5aa993b
JM
1157 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1158 memcpy (valbuf,
1159 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1160 TYPE_LENGTH (valtype));
1161 else
1162 { /* float */
1163 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1164 ff = (float) dd;
1165 memcpy (valbuf, &ff, sizeof (float));
1166 }
1167 }
1168 else
1169 {
1170 /* return value is copied starting from r3. */
d7449b42 1171 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1172 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1173 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1174
1175 memcpy (valbuf,
1176 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1177 TYPE_LENGTH (valtype));
c906108c 1178 }
c906108c
SS
1179}
1180
7a78ae4e 1181/* Keep structure return address in this variable.
c906108c
SS
1182 FIXME: This is a horrid kludge which should not be allowed to continue
1183 living. This only allows a single nested call to a structure-returning
1184 function. Come on, guys! -- gnu@cygnus.com, Aug 92 */
1185
7a78ae4e 1186static CORE_ADDR rs6000_struct_return_address;
c906108c 1187
977adac5
ND
1188/* Return whether handle_inferior_event() should proceed through code
1189 starting at PC in function NAME when stepping.
1190
1191 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1192 handle memory references that are too distant to fit in instructions
1193 generated by the compiler. For example, if 'foo' in the following
1194 instruction:
1195
1196 lwz r9,foo(r2)
1197
1198 is greater than 32767, the linker might replace the lwz with a branch to
1199 somewhere in @FIX1 that does the load in 2 instructions and then branches
1200 back to where execution should continue.
1201
1202 GDB should silently step over @FIX code, just like AIX dbx does.
1203 Unfortunately, the linker uses the "b" instruction for the branches,
1204 meaning that the link register doesn't get set. Therefore, GDB's usual
1205 step_over_function() mechanism won't work.
1206
1207 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1208 in handle_inferior_event() to skip past @FIX code. */
1209
1210int
1211rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1212{
1213 return name && !strncmp (name, "@FIX", 4);
1214}
1215
1216/* Skip code that the user doesn't want to see when stepping:
1217
1218 1. Indirect function calls use a piece of trampoline code to do context
1219 switching, i.e. to set the new TOC table. Skip such code if we are on
1220 its first instruction (as when we have single-stepped to here).
1221
1222 2. Skip shared library trampoline code (which is different from
c906108c 1223 indirect function call trampolines).
977adac5
ND
1224
1225 3. Skip bigtoc fixup code.
1226
c906108c 1227 Result is desired PC to step until, or NULL if we are not in
977adac5 1228 code that should be skipped. */
c906108c
SS
1229
1230CORE_ADDR
7a78ae4e 1231rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1232{
1233 register unsigned int ii, op;
977adac5 1234 int rel;
c906108c 1235 CORE_ADDR solib_target_pc;
977adac5 1236 struct minimal_symbol *msymbol;
c906108c 1237
c5aa993b
JM
1238 static unsigned trampoline_code[] =
1239 {
1240 0x800b0000, /* l r0,0x0(r11) */
1241 0x90410014, /* st r2,0x14(r1) */
1242 0x7c0903a6, /* mtctr r0 */
1243 0x804b0004, /* l r2,0x4(r11) */
1244 0x816b0008, /* l r11,0x8(r11) */
1245 0x4e800420, /* bctr */
1246 0x4e800020, /* br */
1247 0
c906108c
SS
1248 };
1249
977adac5
ND
1250 /* Check for bigtoc fixup code. */
1251 msymbol = lookup_minimal_symbol_by_pc (pc);
1252 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1253 {
1254 /* Double-check that the third instruction from PC is relative "b". */
1255 op = read_memory_integer (pc + 8, 4);
1256 if ((op & 0xfc000003) == 0x48000000)
1257 {
1258 /* Extract bits 6-29 as a signed 24-bit relative word address and
1259 add it to the containing PC. */
1260 rel = ((int)(op << 6) >> 6);
1261 return pc + 8 + rel;
1262 }
1263 }
1264
c906108c
SS
1265 /* If pc is in a shared library trampoline, return its target. */
1266 solib_target_pc = find_solib_trampoline_target (pc);
1267 if (solib_target_pc)
1268 return solib_target_pc;
1269
c5aa993b
JM
1270 for (ii = 0; trampoline_code[ii]; ++ii)
1271 {
1272 op = read_memory_integer (pc + (ii * 4), 4);
1273 if (op != trampoline_code[ii])
1274 return 0;
1275 }
1276 ii = read_register (11); /* r11 holds destination addr */
7a78ae4e 1277 pc = read_memory_addr (ii, TDEP->wordsize); /* (r11) value */
c906108c
SS
1278 return pc;
1279}
1280
1281/* Determines whether the function FI has a frame on the stack or not. */
1282
9aa1e687 1283int
c877c8e6 1284rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1285{
1286 CORE_ADDR func_start;
1287 struct rs6000_framedata fdata;
1288
1289 /* Don't even think about framelessness except on the innermost frame
1290 or if the function was interrupted by a signal. */
1291 if (fi->next != NULL && !fi->next->signal_handler_caller)
1292 return 0;
c5aa993b 1293
c906108c
SS
1294 func_start = get_pc_function_start (fi->pc);
1295
1296 /* If we failed to find the start of the function, it is a mistake
1297 to inspect the instructions. */
1298
1299 if (!func_start)
1300 {
1301 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b
JM
1302 function pointer, normally causing an immediate core dump of the
1303 inferior. Mark function as frameless, as the inferior has no chance
1304 of setting up a stack frame. */
c906108c
SS
1305 if (fi->pc == 0)
1306 return 1;
1307 else
1308 return 0;
1309 }
1310
077276e8 1311 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1312 return fdata.frameless;
1313}
1314
1315/* Return the PC saved in a frame */
1316
9aa1e687 1317CORE_ADDR
c877c8e6 1318rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1319{
1320 CORE_ADDR func_start;
1321 struct rs6000_framedata fdata;
7a78ae4e 1322 int wordsize = TDEP->wordsize;
c906108c
SS
1323
1324 if (fi->signal_handler_caller)
7a78ae4e 1325 return read_memory_addr (fi->frame + SIG_FRAME_PC_OFFSET, wordsize);
c906108c 1326
7a78ae4e
ND
1327 if (PC_IN_CALL_DUMMY (fi->pc, fi->frame, fi->frame))
1328 return generic_read_register_dummy (fi->pc, fi->frame, PC_REGNUM);
c906108c
SS
1329
1330 func_start = get_pc_function_start (fi->pc);
1331
1332 /* If we failed to find the start of the function, it is a mistake
1333 to inspect the instructions. */
1334 if (!func_start)
1335 return 0;
1336
077276e8 1337 (void) skip_prologue (func_start, fi->pc, &fdata);
c906108c
SS
1338
1339 if (fdata.lr_offset == 0 && fi->next != NULL)
1340 {
1341 if (fi->next->signal_handler_caller)
7a78ae4e
ND
1342 return read_memory_addr (fi->next->frame + SIG_FRAME_LR_OFFSET,
1343 wordsize);
c906108c 1344 else
7a78ae4e
ND
1345 return read_memory_addr (FRAME_CHAIN (fi) + DEFAULT_LR_SAVE,
1346 wordsize);
c906108c
SS
1347 }
1348
1349 if (fdata.lr_offset == 0)
2188cbdd 1350 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1351
7a78ae4e 1352 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1353}
1354
1355/* If saved registers of frame FI are not known yet, read and cache them.
1356 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1357 in which case the framedata are read. */
1358
1359static void
7a78ae4e 1360frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1361{
c5aa993b 1362 CORE_ADDR frame_addr;
c906108c 1363 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1364 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1365 int wordsize = tdep->wordsize;
c906108c
SS
1366
1367 if (fi->saved_regs)
1368 return;
c5aa993b 1369
c906108c
SS
1370 if (fdatap == NULL)
1371 {
1372 fdatap = &work_fdata;
077276e8 1373 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, fdatap);
c906108c
SS
1374 }
1375
1376 frame_saved_regs_zalloc (fi);
1377
1378 /* If there were any saved registers, figure out parent's stack
1379 pointer. */
1380 /* The following is true only if the frame doesn't have a call to
1381 alloca(), FIXME. */
1382
6be8bc0c
EZ
1383 if (fdatap->saved_fpr == 0
1384 && fdatap->saved_gpr == 0
1385 && fdatap->saved_vr == 0
1386 && fdatap->lr_offset == 0
1387 && fdatap->cr_offset == 0
1388 && fdatap->vr_offset == 0)
c906108c
SS
1389 frame_addr = 0;
1390 else if (fi->prev && fi->prev->frame)
1391 frame_addr = fi->prev->frame;
1392 else
7a78ae4e 1393 frame_addr = read_memory_addr (fi->frame, wordsize);
c5aa993b 1394
c906108c
SS
1395 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1396 All fpr's from saved_fpr to fp31 are saved. */
1397
1398 if (fdatap->saved_fpr >= 0)
1399 {
1400 int i;
7a78ae4e 1401 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1402 for (i = fdatap->saved_fpr; i < 32; i++)
1403 {
7a78ae4e
ND
1404 fi->saved_regs[FP0_REGNUM + i] = fpr_addr;
1405 fpr_addr += 8;
c906108c
SS
1406 }
1407 }
1408
1409 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1410 All gpr's from saved_gpr to gpr31 are saved. */
1411
1412 if (fdatap->saved_gpr >= 0)
1413 {
1414 int i;
7a78ae4e 1415 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1416 for (i = fdatap->saved_gpr; i < 32; i++)
1417 {
7a78ae4e
ND
1418 fi->saved_regs[i] = gpr_addr;
1419 gpr_addr += wordsize;
c906108c
SS
1420 }
1421 }
1422
6be8bc0c
EZ
1423 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1424 All vr's from saved_vr to vr31 are saved. */
1425 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1426 {
1427 if (fdatap->saved_vr >= 0)
1428 {
1429 int i;
1430 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1431 for (i = fdatap->saved_vr; i < 32; i++)
1432 {
1433 fi->saved_regs[tdep->ppc_vr0_regnum + i] = vr_addr;
1434 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1435 }
1436 }
1437 }
1438
c906108c
SS
1439 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1440 the CR. */
1441 if (fdatap->cr_offset != 0)
6be8bc0c 1442 fi->saved_regs[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1443
1444 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1445 the LR. */
1446 if (fdatap->lr_offset != 0)
6be8bc0c
EZ
1447 fi->saved_regs[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
1448
1449 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1450 the VRSAVE. */
1451 if (fdatap->vrsave_offset != 0)
1452 fi->saved_regs[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1453}
1454
1455/* Return the address of a frame. This is the inital %sp value when the frame
1456 was first allocated. For functions calling alloca(), it might be saved in
1457 an alloca register. */
1458
1459static CORE_ADDR
7a78ae4e 1460frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1461{
1462 CORE_ADDR tmpaddr;
1463 struct rs6000_framedata fdata;
1464 struct frame_info *callee_fi;
1465
1466 /* if the initial stack pointer (frame address) of this frame is known,
1467 just return it. */
1468
1469 if (fi->extra_info->initial_sp)
1470 return fi->extra_info->initial_sp;
1471
1472 /* find out if this function is using an alloca register.. */
1473
077276e8 1474 (void) skip_prologue (get_pc_function_start (fi->pc), fi->pc, &fdata);
c906108c
SS
1475
1476 /* if saved registers of this frame are not known yet, read and cache them. */
1477
1478 if (!fi->saved_regs)
1479 frame_get_saved_regs (fi, &fdata);
1480
1481 /* If no alloca register used, then fi->frame is the value of the %sp for
1482 this frame, and it is good enough. */
1483
1484 if (fdata.alloca_reg < 0)
1485 {
1486 fi->extra_info->initial_sp = fi->frame;
1487 return fi->extra_info->initial_sp;
1488 }
1489
1490 /* This function has an alloca register. If this is the top-most frame
1491 (with the lowest address), the value in alloca register is good. */
1492
1493 if (!fi->next)
c5aa993b 1494 return fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
c906108c
SS
1495
1496 /* Otherwise, this is a caller frame. Callee has usually already saved
1497 registers, but there are exceptions (such as when the callee
1498 has no parameters). Find the address in which caller's alloca
1499 register is saved. */
1500
c5aa993b
JM
1501 for (callee_fi = fi->next; callee_fi; callee_fi = callee_fi->next)
1502 {
c906108c 1503
c5aa993b
JM
1504 if (!callee_fi->saved_regs)
1505 frame_get_saved_regs (callee_fi, NULL);
c906108c 1506
c5aa993b 1507 /* this is the address in which alloca register is saved. */
c906108c 1508
c5aa993b
JM
1509 tmpaddr = callee_fi->saved_regs[fdata.alloca_reg];
1510 if (tmpaddr)
1511 {
7a78ae4e
ND
1512 fi->extra_info->initial_sp =
1513 read_memory_addr (tmpaddr, TDEP->wordsize);
c5aa993b
JM
1514 return fi->extra_info->initial_sp;
1515 }
c906108c 1516
c5aa993b
JM
1517 /* Go look into deeper levels of the frame chain to see if any one of
1518 the callees has saved alloca register. */
1519 }
c906108c
SS
1520
1521 /* If alloca register was not saved, by the callee (or any of its callees)
1522 then the value in the register is still good. */
1523
1524 fi->extra_info->initial_sp = read_register (fdata.alloca_reg);
1525 return fi->extra_info->initial_sp;
1526}
1527
7a78ae4e
ND
1528/* Describe the pointer in each stack frame to the previous stack frame
1529 (its caller). */
1530
1531/* FRAME_CHAIN takes a frame's nominal address
1532 and produces the frame's chain-pointer. */
1533
1534/* In the case of the RS/6000, the frame's nominal address
1535 is the address of a 4-byte word containing the calling frame's address. */
1536
9aa1e687 1537CORE_ADDR
7a78ae4e 1538rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1539{
7a78ae4e
ND
1540 CORE_ADDR fp, fpp, lr;
1541 int wordsize = TDEP->wordsize;
c906108c 1542
7a78ae4e
ND
1543 if (PC_IN_CALL_DUMMY (thisframe->pc, thisframe->frame, thisframe->frame))
1544 return thisframe->frame; /* dummy frame same as caller's frame */
c906108c 1545
c5aa993b 1546 if (inside_entry_file (thisframe->pc) ||
c906108c
SS
1547 thisframe->pc == entry_point_address ())
1548 return 0;
1549
1550 if (thisframe->signal_handler_caller)
7a78ae4e
ND
1551 fp = read_memory_addr (thisframe->frame + SIG_FRAME_FP_OFFSET,
1552 wordsize);
c906108c
SS
1553 else if (thisframe->next != NULL
1554 && thisframe->next->signal_handler_caller
c877c8e6 1555 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1556 /* A frameless function interrupted by a signal did not change the
1557 frame pointer. */
1558 fp = FRAME_FP (thisframe);
1559 else
7a78ae4e 1560 fp = read_memory_addr ((thisframe)->frame, wordsize);
c906108c 1561
2188cbdd 1562 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e
ND
1563 if (lr == entry_point_address ())
1564 if (fp != 0 && (fpp = read_memory_addr (fp, wordsize)) != 0)
1565 if (PC_IN_CALL_DUMMY (lr, fpp, fpp))
1566 return fpp;
1567
1568 return fp;
1569}
1570
1571/* Return the size of register REG when words are WORDSIZE bytes long. If REG
1572 isn't available with that word size, return 0. */
1573
1574static int
1575regsize (const struct reg *reg, int wordsize)
1576{
1577 return wordsize == 8 ? reg->sz64 : reg->sz32;
1578}
1579
1580/* Return the name of register number N, or null if no such register exists
1581 in the current architecture. */
1582
1583static char *
1584rs6000_register_name (int n)
1585{
1586 struct gdbarch_tdep *tdep = TDEP;
1587 const struct reg *reg = tdep->regs + n;
1588
1589 if (!regsize (reg, tdep->wordsize))
1590 return NULL;
1591 return reg->name;
1592}
1593
1594/* Index within `registers' of the first byte of the space for
1595 register N. */
1596
1597static int
1598rs6000_register_byte (int n)
1599{
1600 return TDEP->regoff[n];
1601}
1602
1603/* Return the number of bytes of storage in the actual machine representation
1604 for register N if that register is available, else return 0. */
1605
1606static int
1607rs6000_register_raw_size (int n)
1608{
1609 struct gdbarch_tdep *tdep = TDEP;
1610 const struct reg *reg = tdep->regs + n;
1611 return regsize (reg, tdep->wordsize);
1612}
1613
7a78ae4e
ND
1614/* Return the GDB type object for the "standard" data type
1615 of data in register N. */
1616
1617static struct type *
fba45db2 1618rs6000_register_virtual_type (int n)
7a78ae4e
ND
1619{
1620 struct gdbarch_tdep *tdep = TDEP;
1621 const struct reg *reg = tdep->regs + n;
1622
1fcc0bb8
EZ
1623 if (reg->fpr)
1624 return builtin_type_double;
1625 else
1626 {
1627 int size = regsize (reg, tdep->wordsize);
1628 switch (size)
1629 {
1630 case 8:
1631 return builtin_type_int64;
1632 break;
1633 case 16:
08cf96df 1634 return builtin_type_vec128;
1fcc0bb8
EZ
1635 break;
1636 default:
1637 return builtin_type_int32;
1638 break;
1639 }
1640 }
7a78ae4e
ND
1641}
1642
1643/* For the PowerPC, it appears that the debug info marks float parameters as
1644 floats regardless of whether the function is prototyped, but the actual
1645 values are always passed in as doubles. Tell gdb to always assume that
1646 floats are passed as doubles and then converted in the callee. */
1647
1648static int
1649rs6000_coerce_float_to_double (struct type *formal, struct type *actual)
1650{
1651 return 1;
1652}
1653
1654/* Return whether register N requires conversion when moving from raw format
1655 to virtual format.
1656
1657 The register format for RS/6000 floating point registers is always
1658 double, we need a conversion if the memory format is float. */
1659
1660static int
1661rs6000_register_convertible (int n)
1662{
1663 const struct reg *reg = TDEP->regs + n;
1664 return reg->fpr;
1665}
1666
1667/* Convert data from raw format for register N in buffer FROM
1668 to virtual format with type TYPE in buffer TO. */
1669
1670static void
1671rs6000_register_convert_to_virtual (int n, struct type *type,
1672 char *from, char *to)
1673{
1674 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1675 {
7a78ae4e
ND
1676 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1677 store_floating (to, TYPE_LENGTH (type), val);
1678 }
1679 else
1680 memcpy (to, from, REGISTER_RAW_SIZE (n));
1681}
1682
1683/* Convert data from virtual format with type TYPE in buffer FROM
1684 to raw format for register N in buffer TO. */
7a292a7a 1685
7a78ae4e
ND
1686static void
1687rs6000_register_convert_to_raw (struct type *type, int n,
1688 char *from, char *to)
1689{
1690 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1691 {
1692 double val = extract_floating (from, TYPE_LENGTH (type));
1693 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1694 }
7a78ae4e
ND
1695 else
1696 memcpy (to, from, REGISTER_RAW_SIZE (n));
1697}
c906108c 1698
1fcc0bb8
EZ
1699int
1700altivec_register_p (int regno)
1701{
1702 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1703 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
1704 return 0;
1705 else
1706 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
1707}
1708
1709static void
1710rs6000_do_altivec_registers (int regnum)
1711{
1712 int i;
1713 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1714 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1715 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1716
1717 for (i = tdep->ppc_vr0_regnum; i <= tdep->ppc_vrsave_regnum; i++)
1718 {
1719 /* If we want just one reg, check that this is the one we want. */
1720 if (regnum != -1 && i != regnum)
1721 continue;
1722
1723 /* If the register name is empty, it is undefined for this
1724 processor, so don't display anything. */
1725 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1726 continue;
1727
1728 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1729 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1730
1731 /* Get the data in raw format. */
1732 if (read_relative_register_raw_bytes (i, raw_buffer))
1733 {
1734 printf_filtered ("*value not available*\n");
1735 continue;
1736 }
1737
1738 /* Convert raw data to virtual format if necessary. */
1739 if (REGISTER_CONVERTIBLE (i))
1740 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1741 raw_buffer, virtual_buffer);
1742 else
1743 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1744
1745 /* Print as integer in hex only. */
1746 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1747 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1748 printf_filtered ("\n");
1749 }
1750}
1751
1752static void
1753rs6000_altivec_registers_info (char *addr_exp, int from_tty)
1754{
1755 int regnum, numregs;
1756 register char *end;
1757
1758 if (!target_has_registers)
1759 error ("The program has no registers now.");
1760 if (selected_frame == NULL)
1761 error ("No selected frame.");
1762
1763 if (!addr_exp)
1764 {
1765 rs6000_do_altivec_registers (-1);
1766 return;
1767 }
1768
1769 numregs = NUM_REGS + NUM_PSEUDO_REGS;
1770 do
1771 {
1772 if (addr_exp[0] == '$')
1773 addr_exp++;
1774 end = addr_exp;
1775 while (*end != '\0' && *end != ' ' && *end != '\t')
1776 ++end;
1777
1778 regnum = target_map_name_to_register (addr_exp, end - addr_exp);
1779 if (regnum < 0)
1780 {
1781 regnum = numregs;
1782 if (*addr_exp >= '0' && *addr_exp <= '9')
1783 regnum = atoi (addr_exp); /* Take a number */
1784 if (regnum >= numregs) /* Bad name, or bad number */
1785 error ("%.*s: invalid register", end - addr_exp, addr_exp);
1786 }
1787
1788 rs6000_do_altivec_registers (regnum);
1789
1790 addr_exp = end;
1791 while (*addr_exp == ' ' || *addr_exp == '\t')
1792 ++addr_exp;
1793 }
1794 while (*addr_exp != '\0');
1795}
1796
1797static void
1798rs6000_do_registers_info (int regnum, int fpregs)
1799{
1800 register int i;
1801 int numregs = NUM_REGS + NUM_PSEUDO_REGS;
1802 char *raw_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1803 char *virtual_buffer = (char*) alloca (MAX_REGISTER_VIRTUAL_SIZE);
1804
1805 for (i = 0; i < numregs; i++)
1806 {
1807 /* Decide between printing all regs, nonfloat regs, or specific reg. */
1808 if (regnum == -1)
1809 {
1810 if ((TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT && !fpregs)
1811 || (altivec_register_p (i) && !fpregs))
1812 continue;
1813 }
1814 else
1815 {
1816 if (i != regnum)
1817 continue;
1818 }
1819
1820 /* If the register name is empty, it is undefined for this
1821 processor, so don't display anything. */
1822 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
1823 continue;
1824
1825 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
1826 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), gdb_stdout);
1827
1828 /* Get the data in raw format. */
1829 if (read_relative_register_raw_bytes (i, raw_buffer))
1830 {
1831 printf_filtered ("*value not available*\n");
1832 continue;
1833 }
1834
1835 /* Convert raw data to virtual format if necessary. */
1836 if (REGISTER_CONVERTIBLE (i))
1837 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
1838 raw_buffer, virtual_buffer);
1839 else
1840 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (i));
1841
1842 /* If virtual format is floating, print it that way, and in raw hex. */
1843 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
1844 {
1845 register int j;
1846
75bc7ddf
AC
1847 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1848 gdb_stdout, 0, 1, 0, Val_pretty_default);
1fcc0bb8
EZ
1849
1850 printf_filtered ("\t(raw 0x");
1851 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
1852 {
a9011d31 1853 register int idx = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? j
1fcc0bb8
EZ
1854 : REGISTER_RAW_SIZE (i) - 1 - j;
1855 printf_filtered ("%02x", (unsigned char) raw_buffer[idx]);
1856 }
1857 printf_filtered (")");
1858 }
1859 else
1860 {
1861 /* Print as integer in hex and in decimal. */
1862 if (!altivec_register_p (i))
1863 {
1864 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1865 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1866 printf_filtered ("\t");
1867 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1868 gdb_stdout, 0, 1, 0, Val_pretty_default);
1869 }
1870 else
1871 /* Print as integer in hex only. */
1872 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
1873 gdb_stdout, 'x', 1, 0, Val_pretty_default);
1874 }
1875 printf_filtered ("\n");
1876 }
1877}
1878
2188cbdd
EZ
1879/* Convert a dbx stab register number (from `r' declaration) to a gdb
1880 REGNUM. */
1881static int
1882rs6000_stab_reg_to_regnum (int num)
1883{
1884 int regnum;
1885 switch (num)
1886 {
1887 case 64:
1888 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1889 break;
1890 case 65:
1891 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1892 break;
1893 case 66:
1894 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1895 break;
1896 case 76:
1897 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1898 break;
1899 default:
1900 regnum = num;
1901 break;
1902 }
1903 return regnum;
1904}
1905
7a78ae4e
ND
1906/* Store the address of the place in which to copy the structure the
1907 subroutine will return. This is called from call_function.
1908
1909 In RS/6000, struct return addresses are passed as an extra parameter in r3.
1910 In function return, callee is not responsible of returning this address
1911 back. Since gdb needs to find it, we will store in a designated variable
1912 `rs6000_struct_return_address'. */
1913
1914static void
1915rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1916{
1917 write_register (3, addr);
1918 rs6000_struct_return_address = addr;
1919}
1920
1921/* Write into appropriate registers a function return value
1922 of type TYPE, given in virtual format. */
1923
1924static void
1925rs6000_store_return_value (struct type *type, char *valbuf)
1926{
1927 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1928
1929 /* Floating point values are returned starting from FPR1 and up.
1930 Say a double_double_double type could be returned in
1931 FPR1/FPR2/FPR3 triple. */
1932
1933 write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
1934 TYPE_LENGTH (type));
1935 else
1936 /* Everything else is returned in GPR3 and up. */
2188cbdd
EZ
1937 write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
1938 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
1939}
1940
1941/* Extract from an array REGBUF containing the (raw) register state
1942 the address in which a function should return its structure value,
1943 as a CORE_ADDR (or an expression that can be used as one). */
1944
1945static CORE_ADDR
1946rs6000_extract_struct_value_address (char *regbuf)
1947{
1948 return rs6000_struct_return_address;
1949}
1950
1951/* Return whether PC is in a dummy function call.
1952
1953 FIXME: This just checks for the end of the stack, which is broken
1954 for things like stepping through gcc nested function stubs. */
1955
1956static int
1957rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
1958{
1959 return sp < pc && pc < fp;
1960}
1961
1962/* Hook called when a new child process is started. */
1963
1964void
1965rs6000_create_inferior (int pid)
1966{
1967 if (rs6000_set_host_arch_hook)
1968 rs6000_set_host_arch_hook (pid);
c906108c
SS
1969}
1970\f
7a78ae4e
ND
1971/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
1972
1973 Usually a function pointer's representation is simply the address
1974 of the function. On the RS/6000 however, a function pointer is
1975 represented by a pointer to a TOC entry. This TOC entry contains
1976 three words, the first word is the address of the function, the
1977 second word is the TOC pointer (r2), and the third word is the
1978 static chain value. Throughout GDB it is currently assumed that a
1979 function pointer contains the address of the function, which is not
1980 easy to fix. In addition, the conversion of a function address to
1981 a function pointer would require allocation of a TOC entry in the
1982 inferior's memory space, with all its drawbacks. To be able to
1983 call C++ virtual methods in the inferior (which are called via
f517ea4e 1984 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
1985 function address from a function pointer. */
1986
f517ea4e
PS
1987/* Return real function address if ADDR (a function pointer) is in the data
1988 space and is therefore a special function pointer. */
c906108c 1989
7a78ae4e
ND
1990CORE_ADDR
1991rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
1992{
1993 struct obj_section *s;
1994
1995 s = find_pc_section (addr);
1996 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 1997 return addr;
c906108c 1998
7a78ae4e
ND
1999 /* ADDR is in the data space, so it's a special function pointer. */
2000 return read_memory_addr (addr, TDEP->wordsize);
c906108c 2001}
c906108c 2002\f
c5aa993b 2003
7a78ae4e 2004/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2005
2006
7a78ae4e
ND
2007/* The arrays here called registers_MUMBLE hold information about available
2008 registers.
c906108c
SS
2009
2010 For each family of PPC variants, I've tried to isolate out the
2011 common registers and put them up front, so that as long as you get
2012 the general family right, GDB will correctly identify the registers
2013 common to that family. The common register sets are:
2014
2015 For the 60x family: hid0 hid1 iabr dabr pir
2016
2017 For the 505 and 860 family: eie eid nri
2018
2019 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2020 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2021 pbu1 pbl2 pbu2
c906108c
SS
2022
2023 Most of these register groups aren't anything formal. I arrived at
2024 them by looking at the registers that occurred in more than one
7a78ae4e
ND
2025 processor. */
2026
2027/* Convenience macros for populating register arrays. */
2028
2029/* Within another macro, convert S to a string. */
2030
2031#define STR(s) #s
2032
2033/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
2034 and 64 bits on 64-bit systems. */
2035#define R(name) { STR(name), 4, 8, 0 }
2036
2037/* Return a struct reg defining register NAME that's 32 bits on all
2038 systems. */
2039#define R4(name) { STR(name), 4, 4, 0 }
2040
2041/* Return a struct reg defining register NAME that's 64 bits on all
2042 systems. */
2043#define R8(name) { STR(name), 8, 8, 0 }
2044
1fcc0bb8
EZ
2045/* Return a struct reg defining register NAME that's 128 bits on all
2046 systems. */
2047#define R16(name) { STR(name), 16, 16, 0 }
2048
7a78ae4e
ND
2049/* Return a struct reg defining floating-point register NAME. */
2050#define F(name) { STR(name), 8, 8, 1 }
2051
2052/* Return a struct reg defining register NAME that's 32 bits on 32-bit
2053 systems and that doesn't exist on 64-bit systems. */
2054#define R32(name) { STR(name), 4, 0, 0 }
2055
2056/* Return a struct reg defining register NAME that's 64 bits on 64-bit
2057 systems and that doesn't exist on 32-bit systems. */
2058#define R64(name) { STR(name), 0, 8, 0 }
2059
2060/* Return a struct reg placeholder for a register that doesn't exist. */
2061#define R0 { 0, 0, 0, 0 }
2062
2063/* UISA registers common across all architectures, including POWER. */
2064
2065#define COMMON_UISA_REGS \
2066 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2067 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2068 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2069 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2070 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2071 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2072 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2073 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2074 /* 64 */ R(pc), R(ps)
2075
2076/* UISA-level SPRs for PowerPC. */
2077#define PPC_UISA_SPRS \
e3f36dbd 2078 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e
ND
2079
2080/* Segment registers, for PowerPC. */
2081#define PPC_SEGMENT_REGS \
2082 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2083 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2084 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2085 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2086
2087/* OEA SPRs for PowerPC. */
2088#define PPC_OEA_SPRS \
2089 /* 87 */ R4(pvr), \
2090 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2091 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2092 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2093 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2094 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2095 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2096 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2097 /* 116 */ R4(dec), R(dabr), R4(ear)
2098
1fcc0bb8
EZ
2099/* AltiVec registers */
2100#define PPC_ALTIVEC_REGS \
2101 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2102 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2103 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2104 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2105 /*151*/R4(vscr), R4(vrsave)
2106
7a78ae4e
ND
2107/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
2108 user-level SPR's. */
2109static const struct reg registers_power[] =
c906108c 2110{
7a78ae4e 2111 COMMON_UISA_REGS,
e3f36dbd
KB
2112 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2113 /* 71 */ R4(fpscr)
c906108c
SS
2114};
2115
7a78ae4e
ND
2116/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
2117 view of the PowerPC. */
2118static const struct reg registers_powerpc[] =
c906108c 2119{
7a78ae4e 2120 COMMON_UISA_REGS,
1fcc0bb8
EZ
2121 PPC_UISA_SPRS,
2122 PPC_ALTIVEC_REGS
c906108c
SS
2123};
2124
7a78ae4e
ND
2125/* IBM PowerPC 403. */
2126static const struct reg registers_403[] =
c5aa993b 2127{
7a78ae4e
ND
2128 COMMON_UISA_REGS,
2129 PPC_UISA_SPRS,
2130 PPC_SEGMENT_REGS,
2131 PPC_OEA_SPRS,
2132 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2133 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2134 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2135 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2136 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2137 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2138};
2139
7a78ae4e
ND
2140/* IBM PowerPC 403GC. */
2141static const struct reg registers_403GC[] =
c5aa993b 2142{
7a78ae4e
ND
2143 COMMON_UISA_REGS,
2144 PPC_UISA_SPRS,
2145 PPC_SEGMENT_REGS,
2146 PPC_OEA_SPRS,
2147 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2148 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2149 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2150 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2151 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2152 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2153 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2154 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2155};
2156
7a78ae4e
ND
2157/* Motorola PowerPC 505. */
2158static const struct reg registers_505[] =
c5aa993b 2159{
7a78ae4e
ND
2160 COMMON_UISA_REGS,
2161 PPC_UISA_SPRS,
2162 PPC_SEGMENT_REGS,
2163 PPC_OEA_SPRS,
2164 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2165};
2166
7a78ae4e
ND
2167/* Motorola PowerPC 860 or 850. */
2168static const struct reg registers_860[] =
c5aa993b 2169{
7a78ae4e
ND
2170 COMMON_UISA_REGS,
2171 PPC_UISA_SPRS,
2172 PPC_SEGMENT_REGS,
2173 PPC_OEA_SPRS,
2174 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2175 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2176 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2177 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2178 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2179 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2180 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2181 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2182 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2183 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2184 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2185 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2186};
2187
7a78ae4e
ND
2188/* Motorola PowerPC 601. Note that the 601 has different register numbers
2189 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2190 register is the stub's problem. */
7a78ae4e 2191static const struct reg registers_601[] =
c5aa993b 2192{
7a78ae4e
ND
2193 COMMON_UISA_REGS,
2194 PPC_UISA_SPRS,
2195 PPC_SEGMENT_REGS,
2196 PPC_OEA_SPRS,
2197 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2198 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2199};
2200
7a78ae4e
ND
2201/* Motorola PowerPC 602. */
2202static const struct reg registers_602[] =
c5aa993b 2203{
7a78ae4e
ND
2204 COMMON_UISA_REGS,
2205 PPC_UISA_SPRS,
2206 PPC_SEGMENT_REGS,
2207 PPC_OEA_SPRS,
2208 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2209 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2210 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2211};
2212
7a78ae4e
ND
2213/* Motorola/IBM PowerPC 603 or 603e. */
2214static const struct reg registers_603[] =
c5aa993b 2215{
7a78ae4e
ND
2216 COMMON_UISA_REGS,
2217 PPC_UISA_SPRS,
2218 PPC_SEGMENT_REGS,
2219 PPC_OEA_SPRS,
2220 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2221 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2222 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2223};
2224
7a78ae4e
ND
2225/* Motorola PowerPC 604 or 604e. */
2226static const struct reg registers_604[] =
c5aa993b 2227{
7a78ae4e
ND
2228 COMMON_UISA_REGS,
2229 PPC_UISA_SPRS,
2230 PPC_SEGMENT_REGS,
2231 PPC_OEA_SPRS,
2232 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2233 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2234 /* 127 */ R(sia), R(sda)
c906108c
SS
2235};
2236
7a78ae4e
ND
2237/* Motorola/IBM PowerPC 750 or 740. */
2238static const struct reg registers_750[] =
c5aa993b 2239{
7a78ae4e
ND
2240 COMMON_UISA_REGS,
2241 PPC_UISA_SPRS,
2242 PPC_SEGMENT_REGS,
2243 PPC_OEA_SPRS,
2244 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2245 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2246 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2247 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2248 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2249 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2250};
2251
2252
1fcc0bb8
EZ
2253/* Motorola PowerPC 7400. */
2254static const struct reg registers_7400[] =
2255{
2256 /* gpr0-gpr31, fpr0-fpr31 */
2257 COMMON_UISA_REGS,
2258 /* ctr, xre, lr, cr */
2259 PPC_UISA_SPRS,
2260 /* sr0-sr15 */
2261 PPC_SEGMENT_REGS,
2262 PPC_OEA_SPRS,
2263 /* vr0-vr31, vrsave, vscr */
2264 PPC_ALTIVEC_REGS
2265 /* FIXME? Add more registers? */
2266};
2267
c906108c 2268/* Information about a particular processor variant. */
7a78ae4e 2269
c906108c 2270struct variant
c5aa993b
JM
2271 {
2272 /* Name of this variant. */
2273 char *name;
c906108c 2274
c5aa993b
JM
2275 /* English description of the variant. */
2276 char *description;
c906108c 2277
7a78ae4e
ND
2278 /* bfd_arch_info.arch corresponding to variant. */
2279 enum bfd_architecture arch;
2280
2281 /* bfd_arch_info.mach corresponding to variant. */
2282 unsigned long mach;
2283
c5aa993b
JM
2284 /* Table of register names; registers[R] is the name of the register
2285 number R. */
7a78ae4e
ND
2286 int nregs;
2287 const struct reg *regs;
c5aa993b 2288 };
c906108c
SS
2289
2290#define num_registers(list) (sizeof (list) / sizeof((list)[0]))
2291
2292
2293/* Information in this table comes from the following web sites:
2294 IBM: http://www.chips.ibm.com:80/products/embedded/
2295 Motorola: http://www.mot.com/SPS/PowerPC/
2296
2297 I'm sure I've got some of the variant descriptions not quite right.
2298 Please report any inaccuracies you find to GDB's maintainer.
2299
2300 If you add entries to this table, please be sure to allow the new
2301 value as an argument to the --with-cpu flag, in configure.in. */
2302
7a78ae4e 2303static const struct variant variants[] =
c906108c 2304{
7a78ae4e
ND
2305 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
2306 bfd_mach_ppc, num_registers (registers_powerpc), registers_powerpc},
2307 {"power", "POWER user-level", bfd_arch_rs6000,
2308 bfd_mach_rs6k, num_registers (registers_power), registers_power},
2309 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
2310 bfd_mach_ppc_403, num_registers (registers_403), registers_403},
2311 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
2312 bfd_mach_ppc_601, num_registers (registers_601), registers_601},
2313 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
2314 bfd_mach_ppc_602, num_registers (registers_602), registers_602},
2315 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
2316 bfd_mach_ppc_603, num_registers (registers_603), registers_603},
2317 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
2318 604, num_registers (registers_604), registers_604},
2319 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
2320 bfd_mach_ppc_403gc, num_registers (registers_403GC), registers_403GC},
2321 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
2322 bfd_mach_ppc_505, num_registers (registers_505), registers_505},
2323 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
2324 bfd_mach_ppc_860, num_registers (registers_860), registers_860},
2325 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
2326 bfd_mach_ppc_750, num_registers (registers_750), registers_750},
1fcc0bb8
EZ
2327 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
2328 bfd_mach_ppc_7400, num_registers (registers_7400), registers_7400},
7a78ae4e
ND
2329
2330 /* FIXME: I haven't checked the register sets of the following. */
2331 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
2332 bfd_mach_ppc_620, num_registers (registers_powerpc), registers_powerpc},
2333 {"a35", "PowerPC A35", bfd_arch_powerpc,
2334 bfd_mach_ppc_a35, num_registers (registers_powerpc), registers_powerpc},
2335 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
2336 bfd_mach_rs6k_rs1, num_registers (registers_power), registers_power},
2337 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
2338 bfd_mach_rs6k_rsc, num_registers (registers_power), registers_power},
2339 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
2340 bfd_mach_rs6k_rs2, num_registers (registers_power), registers_power},
2341
c5aa993b 2342 {0, 0, 0, 0}
c906108c
SS
2343};
2344
7a78ae4e 2345#undef num_registers
c906108c 2346
7a78ae4e
ND
2347/* Return the variant corresponding to architecture ARCH and machine number
2348 MACH. If no such variant exists, return null. */
c906108c 2349
7a78ae4e
ND
2350static const struct variant *
2351find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2352{
7a78ae4e 2353 const struct variant *v;
c5aa993b 2354
7a78ae4e
ND
2355 for (v = variants; v->name; v++)
2356 if (arch == v->arch && mach == v->mach)
2357 return v;
c906108c 2358
7a78ae4e 2359 return NULL;
c906108c
SS
2360}
2361
9aa1e687
KB
2362
2363
2364\f
2365static void
2366process_note_abi_tag_sections (bfd *abfd, asection *sect, void *obj)
2367{
2368 int *os_ident_ptr = obj;
2369 const char *name;
2370 unsigned int sectsize;
2371
2372 name = bfd_get_section_name (abfd, sect);
2373 sectsize = bfd_section_size (abfd, sect);
2374 if (strcmp (name, ".note.ABI-tag") == 0 && sectsize > 0)
2375 {
2376 unsigned int name_length, data_length, note_type;
2377 char *note = alloca (sectsize);
2378
2379 bfd_get_section_contents (abfd, sect, note,
2380 (file_ptr) 0, (bfd_size_type) sectsize);
2381
2382 name_length = bfd_h_get_32 (abfd, note);
2383 data_length = bfd_h_get_32 (abfd, note + 4);
2384 note_type = bfd_h_get_32 (abfd, note + 8);
2385
2386 if (name_length == 4 && data_length == 16 && note_type == 1
2387 && strcmp (note + 12, "GNU") == 0)
2388 {
2389 int os_number = bfd_h_get_32 (abfd, note + 16);
2390
2391 /* The case numbers are from abi-tags in glibc */
2392 switch (os_number)
2393 {
2394 case 0 :
2395 *os_ident_ptr = ELFOSABI_LINUX;
2396 break;
2397 case 1 :
2398 *os_ident_ptr = ELFOSABI_HURD;
2399 break;
2400 case 2 :
2401 *os_ident_ptr = ELFOSABI_SOLARIS;
2402 break;
2403 default :
8e65ff28
AC
2404 internal_error (__FILE__, __LINE__,
2405 "process_note_abi_sections: unknown OS number %d",
2406 os_number);
9aa1e687
KB
2407 break;
2408 }
2409 }
2410 }
2411}
2412
2413/* Return one of the ELFOSABI_ constants for BFDs representing ELF
2414 executables. If it's not an ELF executable or if the OS/ABI couldn't
2415 be determined, simply return -1. */
2416
2417static int
2418get_elfosabi (bfd *abfd)
2419{
2420 int elfosabi = -1;
2421
2422 if (abfd != NULL && bfd_get_flavour (abfd) == bfd_target_elf_flavour)
2423 {
2424 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2425
2426 /* When elfosabi is 0 (ELFOSABI_NONE), this is supposed to indicate
2427 that we're on a SYSV system. However, GNU/Linux uses a note section
2428 to record OS/ABI info, but leaves e_ident[EI_OSABI] zero. So we
2429 have to check the note sections too. */
2430 if (elfosabi == 0)
2431 {
2432 bfd_map_over_sections (abfd,
2433 process_note_abi_tag_sections,
2434 &elfosabi);
2435 }
2436 }
2437
2438 return elfosabi;
2439}
2440
7a78ae4e 2441\f
c906108c 2442
7a78ae4e
ND
2443/* Initialize the current architecture based on INFO. If possible, re-use an
2444 architecture from ARCHES, which is a list of architectures already created
2445 during this debugging session.
c906108c 2446
7a78ae4e
ND
2447 Called e.g. at program startup, when reading a core file, and when reading
2448 a binary file. */
c906108c 2449
7a78ae4e
ND
2450static struct gdbarch *
2451rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2452{
2453 struct gdbarch *gdbarch;
2454 struct gdbarch_tdep *tdep;
9aa1e687 2455 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2456 struct reg *regs;
2457 const struct variant *v;
2458 enum bfd_architecture arch;
2459 unsigned long mach;
2460 bfd abfd;
9aa1e687 2461 int osabi, sysv_abi;
56a6dfb9 2462 gdbarch_print_insn_ftype *print_insn;
7a78ae4e 2463
9aa1e687 2464 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2465 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2466
9aa1e687
KB
2467 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2468 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2469
2470 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2471
2472 osabi = get_elfosabi (info.abfd);
2473
e712c1cf
AC
2474 /* Check word size. If INFO is from a binary file, infer it from
2475 that, else choose a likely default. */
9aa1e687 2476 if (from_xcoff_exec)
c906108c 2477 {
7a78ae4e
ND
2478 if (xcoff_data (info.abfd)->xcoff64)
2479 wordsize = 8;
2480 else
2481 wordsize = 4;
c906108c 2482 }
9aa1e687
KB
2483 else if (from_elf_exec)
2484 {
2485 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2486 wordsize = 8;
2487 else
2488 wordsize = 4;
2489 }
c906108c 2490 else
7a78ae4e 2491 {
e712c1cf 2492 wordsize = 4;
7a78ae4e 2493 }
c906108c 2494
7a78ae4e
ND
2495 /* Find a candidate among extant architectures. */
2496 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2497 arches != NULL;
2498 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2499 {
2500 /* Word size in the various PowerPC bfd_arch_info structs isn't
2501 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
2502 separate word size check. */
2503 tdep = gdbarch_tdep (arches->gdbarch);
9aa1e687 2504 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
7a78ae4e
ND
2505 return arches->gdbarch;
2506 }
c906108c 2507
7a78ae4e
ND
2508 /* None found, create a new architecture from INFO, whose bfd_arch_info
2509 validity depends on the source:
2510 - executable useless
2511 - rs6000_host_arch() good
2512 - core file good
2513 - "set arch" trust blindly
2514 - GDB startup useless but harmless */
c906108c 2515
9aa1e687 2516 if (!from_xcoff_exec)
c906108c 2517 {
b732d07d 2518 arch = info.bfd_arch_info->arch;
7a78ae4e 2519 mach = info.bfd_arch_info->mach;
c906108c 2520 }
7a78ae4e 2521 else
c906108c 2522 {
7a78ae4e
ND
2523 arch = bfd_arch_powerpc;
2524 mach = 0;
2525 bfd_default_set_arch_mach (&abfd, arch, mach);
2526 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2527 }
2528 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2529 tdep->wordsize = wordsize;
9aa1e687 2530 tdep->osabi = osabi;
7a78ae4e
ND
2531 gdbarch = gdbarch_alloc (&info, tdep);
2532 power = arch == bfd_arch_rs6000;
2533
7a78ae4e
ND
2534 /* Choose variant. */
2535 v = find_variant_by_arch (arch, mach);
2536 if (!v)
dd47e6fd
EZ
2537 return NULL;
2538
7a78ae4e
ND
2539 tdep->regs = v->regs;
2540
2188cbdd
EZ
2541 tdep->ppc_gp0_regnum = 0;
2542 tdep->ppc_gplast_regnum = 31;
2543 tdep->ppc_toc_regnum = 2;
2544 tdep->ppc_ps_regnum = 65;
2545 tdep->ppc_cr_regnum = 66;
2546 tdep->ppc_lr_regnum = 67;
2547 tdep->ppc_ctr_regnum = 68;
2548 tdep->ppc_xer_regnum = 69;
2549 if (v->mach == bfd_mach_ppc_601)
2550 tdep->ppc_mq_regnum = 124;
e3f36dbd 2551 else if (power)
2188cbdd 2552 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2553 else
2554 tdep->ppc_mq_regnum = -1;
2555 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2556
1fcc0bb8
EZ
2557 if (v->arch == bfd_arch_powerpc)
2558 switch (v->mach)
2559 {
2560 case bfd_mach_ppc:
2561 tdep->ppc_vr0_regnum = 71;
2562 tdep->ppc_vrsave_regnum = 104;
2563 break;
2564 case bfd_mach_ppc_7400:
2565 tdep->ppc_vr0_regnum = 119;
2566 tdep->ppc_vrsave_regnum = 153;
2567 break;
2568 default:
2569 tdep->ppc_vr0_regnum = -1;
2570 tdep->ppc_vrsave_regnum = -1;
2571 break;
2572 }
2573
7a78ae4e
ND
2574 /* Calculate byte offsets in raw register array. */
2575 tdep->regoff = xmalloc (v->nregs * sizeof (int));
2576 for (i = off = 0; i < v->nregs; i++)
2577 {
2578 tdep->regoff[i] = off;
2579 off += regsize (v->regs + i, wordsize);
c906108c
SS
2580 }
2581
56a6dfb9
KB
2582 /* Select instruction printer. */
2583 if (arch == power)
2584 print_insn = print_insn_rs6000;
2585 else if (info.byte_order == BFD_ENDIAN_BIG)
2586 print_insn = print_insn_big_powerpc;
2587 else
2588 print_insn = print_insn_little_powerpc;
2589 set_gdbarch_print_insn (gdbarch, print_insn);
7495d1dc 2590
7a78ae4e
ND
2591 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2592 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2593 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2594 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2595 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2596
2597 set_gdbarch_num_regs (gdbarch, v->nregs);
2598 set_gdbarch_sp_regnum (gdbarch, 1);
2599 set_gdbarch_fp_regnum (gdbarch, 1);
2600 set_gdbarch_pc_regnum (gdbarch, 64);
2601 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2602 set_gdbarch_register_size (gdbarch, wordsize);
2603 set_gdbarch_register_bytes (gdbarch, off);
2604 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2605 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2a873819 2606 set_gdbarch_max_register_raw_size (gdbarch, 16);
0e7c5946 2607 set_gdbarch_register_virtual_size (gdbarch, generic_register_virtual_size);
2a873819 2608 set_gdbarch_max_register_virtual_size (gdbarch, 16);
7a78ae4e 2609 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
1fcc0bb8 2610 set_gdbarch_do_registers_info (gdbarch, rs6000_do_registers_info);
7a78ae4e
ND
2611
2612 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2613 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2614 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2615 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2616 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2617 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2618 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2619 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2620 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e
ND
2621
2622 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
2623 set_gdbarch_call_dummy_length (gdbarch, 0);
2624 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
2625 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2626 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2627 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2628 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
fe794dc6 2629 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
7a78ae4e
ND
2630 set_gdbarch_call_dummy_p (gdbarch, 1);
2631 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
2632 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
2633 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
2634 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2635 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2636 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2637 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2638 set_gdbarch_coerce_float_to_double (gdbarch, rs6000_coerce_float_to_double);
2639
2640 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2641 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2642 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2643 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
7a78ae4e
ND
2644
2645 set_gdbarch_extract_return_value (gdbarch, rs6000_extract_return_value);
9aa1e687
KB
2646
2647 if (sysv_abi)
2648 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2649 else
2650 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e
ND
2651
2652 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
2653 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
2654 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2655 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2656
2657 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2658 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2659 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2660 set_gdbarch_function_start_offset (gdbarch, 0);
2661 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2662
2663 /* Not sure on this. FIXMEmgo */
2664 set_gdbarch_frame_args_skip (gdbarch, 8);
2665
8e0662df
EZ
2666 /* Until November 2001, gcc was not complying to the SYSV ABI for
2667 returning structures less than or equal to 8 bytes in size. It was
2668 returning everything in memory. When this was corrected, it wasn't
2669 fixed for native platforms. */
2670 if (sysv_abi)
2671 {
2672 if (osabi == ELFOSABI_LINUX
2673 || osabi == ELFOSABI_NETBSD
2674 || osabi == ELFOSABI_FREEBSD)
2675 set_gdbarch_use_struct_convention (gdbarch,
2676 generic_use_struct_convention);
2677 else
2678 set_gdbarch_use_struct_convention (gdbarch,
2679 ppc_sysv_abi_use_struct_convention);
2680 }
2681 else
2682 {
2683 set_gdbarch_use_struct_convention (gdbarch,
2684 generic_use_struct_convention);
2685 }
2686
7a78ae4e 2687 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
9aa1e687
KB
2688 if (osabi == ELFOSABI_LINUX)
2689 {
2690 set_gdbarch_frameless_function_invocation (gdbarch,
2691 ppc_linux_frameless_function_invocation);
2692 set_gdbarch_frame_chain (gdbarch, ppc_linux_frame_chain);
2693 set_gdbarch_frame_saved_pc (gdbarch, ppc_linux_frame_saved_pc);
2694
2695 set_gdbarch_frame_init_saved_regs (gdbarch,
2696 ppc_linux_frame_init_saved_regs);
2697 set_gdbarch_init_extra_frame_info (gdbarch,
2698 ppc_linux_init_extra_frame_info);
2699
2700 set_gdbarch_memory_remove_breakpoint (gdbarch,
2701 ppc_linux_memory_remove_breakpoint);
6ded7999
KB
2702 set_solib_svr4_fetch_link_map_offsets
2703 (gdbarch, ppc_linux_svr4_fetch_link_map_offsets);
9aa1e687
KB
2704 }
2705 else
2706 {
2707 set_gdbarch_frameless_function_invocation (gdbarch,
2708 rs6000_frameless_function_invocation);
2709 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2710 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2711
2712 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2713 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
f517ea4e
PS
2714
2715 /* Handle RS/6000 function pointers. */
2716 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2717 rs6000_convert_from_func_ptr_addr);
9aa1e687 2718 }
7a78ae4e
ND
2719 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2720 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2721 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2722
2723 /* We can't tell how many args there are
2724 now that the C compiler delays popping them. */
2725 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2726
2727 return gdbarch;
c906108c
SS
2728}
2729
1fcc0bb8
EZ
2730static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2731
2732static void
2733rs6000_info_powerpc_command (char *args, int from_tty)
2734{
2735 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2736}
2737
c906108c
SS
2738/* Initialization code. */
2739
2740void
fba45db2 2741_initialize_rs6000_tdep (void)
c906108c 2742{
7a78ae4e
ND
2743 register_gdbarch_init (bfd_arch_rs6000, rs6000_gdbarch_init);
2744 register_gdbarch_init (bfd_arch_powerpc, rs6000_gdbarch_init);
1fcc0bb8
EZ
2745
2746 /* Add root prefix command for "info powerpc" commands */
2747 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2748 "Various POWERPC info specific commands.",
2749 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
2750
2751 add_cmd ("altivec", class_info, rs6000_altivec_registers_info,
2752 "Display the contents of the AltiVec registers.",
2753 &info_powerpc_cmdlist);
2754
c906108c 2755}
This page took 0.314036 seconds and 4 git commands to generate.