2004-01-26 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
31#include "symfile.h"
32#include "objfiles.h"
7a78ae4e 33#include "arch-utils.h"
4e052eda 34#include "regcache.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7a78ae4e 39
2fccf04a 40#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 41#include "coff/internal.h" /* for libcoff.h */
2fccf04a 42#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
43#include "coff/xcoff.h"
44#include "libxcoff.h"
7a78ae4e 45
9aa1e687 46#include "elf-bfd.h"
7a78ae4e 47
6ded7999 48#include "solib-svr4.h"
9aa1e687 49#include "ppc-tdep.h"
7a78ae4e 50
338ef23d 51#include "gdb_assert.h"
a89aa300 52#include "dis-asm.h"
338ef23d 53
7a78ae4e
ND
54/* If the kernel has to deliver a signal, it pushes a sigcontext
55 structure on the stack and then calls the signal handler, passing
56 the address of the sigcontext in an argument register. Usually
57 the signal handler doesn't save this register, so we have to
58 access the sigcontext structure via an offset from the signal handler
59 frame.
60 The following constants were determined by experimentation on AIX 3.2. */
61#define SIG_FRAME_PC_OFFSET 96
62#define SIG_FRAME_LR_OFFSET 108
63#define SIG_FRAME_FP_OFFSET 284
64
7a78ae4e
ND
65/* To be used by skip_prologue. */
66
67struct rs6000_framedata
68 {
69 int offset; /* total size of frame --- the distance
70 by which we decrement sp to allocate
71 the frame */
72 int saved_gpr; /* smallest # of saved gpr */
73 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 74 int saved_vr; /* smallest # of saved vr */
96ff0de4 75 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
76 int alloca_reg; /* alloca register number (frame ptr) */
77 char frameless; /* true if frameless functions. */
78 char nosavedpc; /* true if pc not saved. */
79 int gpr_offset; /* offset of saved gprs from prev sp */
80 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 81 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 82 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
83 int lr_offset; /* offset of saved lr */
84 int cr_offset; /* offset of saved cr */
6be8bc0c 85 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
86 };
87
88/* Description of a single register. */
89
90struct reg
91 {
92 char *name; /* name of register */
93 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
94 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
95 unsigned char fpr; /* whether register is floating-point */
489461e2 96 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
97 };
98
c906108c
SS
99/* Breakpoint shadows for the single step instructions will be kept here. */
100
c5aa993b
JM
101static struct sstep_breaks
102 {
103 /* Address, or 0 if this is not in use. */
104 CORE_ADDR address;
105 /* Shadow contents. */
106 char data[4];
107 }
108stepBreaks[2];
c906108c
SS
109
110/* Hook for determining the TOC address when calling functions in the
111 inferior under AIX. The initialization code in rs6000-nat.c sets
112 this hook to point to find_toc_address. */
113
7a78ae4e
ND
114CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
115
116/* Hook to set the current architecture when starting a child process.
117 rs6000-nat.c sets this. */
118
119void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
120
121/* Static function prototypes */
122
a14ed312
KB
123static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
124 CORE_ADDR safety);
077276e8
KB
125static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
126 struct rs6000_framedata *);
7a78ae4e
ND
127static void frame_get_saved_regs (struct frame_info * fi,
128 struct rs6000_framedata * fdatap);
129static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 130
64b84175
KB
131/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
132int
133altivec_register_p (int regno)
134{
135 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
136 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
137 return 0;
138 else
139 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
140}
141
0a613259
AC
142/* Use the architectures FP registers? */
143int
144ppc_floating_point_unit_p (struct gdbarch *gdbarch)
145{
146 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
147 if (info->arch == bfd_arch_powerpc)
148 return (info->mach != bfd_mach_ppc_e500);
149 if (info->arch == bfd_arch_rs6000)
150 return 1;
151 return 0;
152}
153
7a78ae4e 154/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 155
7a78ae4e
ND
156static CORE_ADDR
157read_memory_addr (CORE_ADDR memaddr, int len)
158{
159 return read_memory_unsigned_integer (memaddr, len);
160}
c906108c 161
7a78ae4e
ND
162static CORE_ADDR
163rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
164{
165 struct rs6000_framedata frame;
077276e8 166 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
167 return pc;
168}
169
170
c906108c
SS
171/* Fill in fi->saved_regs */
172
173struct frame_extra_info
174{
175 /* Functions calling alloca() change the value of the stack
176 pointer. We need to use initial stack pointer (which is saved in
177 r31 by gcc) in such cases. If a compiler emits traceback table,
178 then we should use the alloca register specified in traceback
179 table. FIXME. */
c5aa993b 180 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
181};
182
9aa1e687 183void
7a78ae4e 184rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 185{
c9012c71
AC
186 struct frame_extra_info *extra_info =
187 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
188 extra_info->initial_sp = 0;
bdd78e62
AC
189 if (get_next_frame (fi) != NULL
190 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 191 /* We're in get_prev_frame */
c906108c
SS
192 /* and this is a special signal frame. */
193 /* (fi->pc will be some low address in the kernel, */
194 /* to which the signal handler returns). */
5a203e44 195 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
196}
197
7a78ae4e
ND
198/* Put here the code to store, into a struct frame_saved_regs,
199 the addresses of the saved registers of frame described by FRAME_INFO.
200 This includes special registers such as pc and fp saved in special
201 ways in the stack frame. sp is even more special:
202 the address we return for it IS the sp for the next frame. */
c906108c 203
7a78ae4e
ND
204/* In this implementation for RS/6000, we do *not* save sp. I am
205 not sure if it will be needed. The following function takes care of gpr's
206 and fpr's only. */
207
9aa1e687 208void
7a78ae4e 209rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
210{
211 frame_get_saved_regs (fi, NULL);
212}
213
7a78ae4e
ND
214static CORE_ADDR
215rs6000_frame_args_address (struct frame_info *fi)
c906108c 216{
c9012c71
AC
217 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
218 if (extra_info->initial_sp != 0)
219 return extra_info->initial_sp;
c906108c
SS
220 else
221 return frame_initial_stack_address (fi);
222}
223
7a78ae4e
ND
224/* Immediately after a function call, return the saved pc.
225 Can't go through the frames for this because on some machines
226 the new frame is not set up until the new function executes
227 some instructions. */
228
229static CORE_ADDR
230rs6000_saved_pc_after_call (struct frame_info *fi)
231{
2188cbdd 232 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 233}
c906108c 234
143985b7 235/* Get the ith function argument for the current function. */
b9362cc7 236static CORE_ADDR
143985b7
AF
237rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
238 struct type *type)
239{
240 CORE_ADDR addr;
7f5f525d 241 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
242 return addr;
243}
244
c906108c
SS
245/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
246
247static CORE_ADDR
7a78ae4e 248branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
249{
250 CORE_ADDR dest;
251 int immediate;
252 int absolute;
253 int ext_op;
254
255 absolute = (int) ((instr >> 1) & 1);
256
c5aa993b
JM
257 switch (opcode)
258 {
259 case 18:
260 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
261 if (absolute)
262 dest = immediate;
263 else
264 dest = pc + immediate;
265 break;
266
267 case 16:
268 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
269 if (absolute)
270 dest = immediate;
271 else
272 dest = pc + immediate;
273 break;
274
275 case 19:
276 ext_op = (instr >> 1) & 0x3ff;
277
278 if (ext_op == 16) /* br conditional register */
279 {
2188cbdd 280 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
281
282 /* If we are about to return from a signal handler, dest is
283 something like 0x3c90. The current frame is a signal handler
284 caller frame, upon completion of the sigreturn system call
285 execution will return to the saved PC in the frame. */
286 if (dest < TEXT_SEGMENT_BASE)
287 {
288 struct frame_info *fi;
289
290 fi = get_current_frame ();
291 if (fi != NULL)
8b36eed8 292 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 293 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
294 }
295 }
296
297 else if (ext_op == 528) /* br cond to count reg */
298 {
2188cbdd 299 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
300
301 /* If we are about to execute a system call, dest is something
302 like 0x22fc or 0x3b00. Upon completion the system call
303 will return to the address in the link register. */
304 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 305 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
306 }
307 else
308 return -1;
309 break;
c906108c 310
c5aa993b
JM
311 default:
312 return -1;
313 }
c906108c
SS
314 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
315}
316
317
318/* Sequence of bytes for breakpoint instruction. */
319
f4f9705a 320const static unsigned char *
7a78ae4e 321rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 322{
aaab4dba
AC
323 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
324 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 325 *bp_size = 4;
d7449b42 326 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
327 return big_breakpoint;
328 else
329 return little_breakpoint;
330}
331
332
333/* AIX does not support PT_STEP. Simulate it. */
334
335void
379d08a1
AC
336rs6000_software_single_step (enum target_signal signal,
337 int insert_breakpoints_p)
c906108c 338{
7c40d541
KB
339 CORE_ADDR dummy;
340 int breakp_sz;
f4f9705a 341 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
342 int ii, insn;
343 CORE_ADDR loc;
344 CORE_ADDR breaks[2];
345 int opcode;
346
c5aa993b
JM
347 if (insert_breakpoints_p)
348 {
c906108c 349
c5aa993b 350 loc = read_pc ();
c906108c 351
c5aa993b 352 insn = read_memory_integer (loc, 4);
c906108c 353
7c40d541 354 breaks[0] = loc + breakp_sz;
c5aa993b
JM
355 opcode = insn >> 26;
356 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 357
c5aa993b
JM
358 /* Don't put two breakpoints on the same address. */
359 if (breaks[1] == breaks[0])
360 breaks[1] = -1;
c906108c 361
c5aa993b 362 stepBreaks[1].address = 0;
c906108c 363
c5aa993b
JM
364 for (ii = 0; ii < 2; ++ii)
365 {
c906108c 366
c5aa993b
JM
367 /* ignore invalid breakpoint. */
368 if (breaks[ii] == -1)
369 continue;
7c40d541 370 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
371 stepBreaks[ii].address = breaks[ii];
372 }
c906108c 373
c5aa993b
JM
374 }
375 else
376 {
c906108c 377
c5aa993b
JM
378 /* remove step breakpoints. */
379 for (ii = 0; ii < 2; ++ii)
380 if (stepBreaks[ii].address != 0)
7c40d541
KB
381 target_remove_breakpoint (stepBreaks[ii].address,
382 stepBreaks[ii].data);
c5aa993b 383 }
c906108c 384 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 385 /* What errors? {read,write}_memory call error(). */
c906108c
SS
386}
387
388
389/* return pc value after skipping a function prologue and also return
390 information about a function frame.
391
392 in struct rs6000_framedata fdata:
c5aa993b
JM
393 - frameless is TRUE, if function does not have a frame.
394 - nosavedpc is TRUE, if function does not save %pc value in its frame.
395 - offset is the initial size of this stack frame --- the amount by
396 which we decrement the sp to allocate the frame.
397 - saved_gpr is the number of the first saved gpr.
398 - saved_fpr is the number of the first saved fpr.
6be8bc0c 399 - saved_vr is the number of the first saved vr.
96ff0de4 400 - saved_ev is the number of the first saved ev.
c5aa993b
JM
401 - alloca_reg is the number of the register used for alloca() handling.
402 Otherwise -1.
403 - gpr_offset is the offset of the first saved gpr from the previous frame.
404 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 405 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 406 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
407 - lr_offset is the offset of the saved lr
408 - cr_offset is the offset of the saved cr
6be8bc0c 409 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 410 */
c906108c
SS
411
412#define SIGNED_SHORT(x) \
413 ((sizeof (short) == 2) \
414 ? ((int)(short)(x)) \
415 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
416
417#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
418
55d05f3b
KB
419/* Limit the number of skipped non-prologue instructions, as the examining
420 of the prologue is expensive. */
421static int max_skip_non_prologue_insns = 10;
422
423/* Given PC representing the starting address of a function, and
424 LIM_PC which is the (sloppy) limit to which to scan when looking
425 for a prologue, attempt to further refine this limit by using
426 the line data in the symbol table. If successful, a better guess
427 on where the prologue ends is returned, otherwise the previous
428 value of lim_pc is returned. */
429static CORE_ADDR
430refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
431{
432 struct symtab_and_line prologue_sal;
433
434 prologue_sal = find_pc_line (pc, 0);
435 if (prologue_sal.line != 0)
436 {
437 int i;
438 CORE_ADDR addr = prologue_sal.end;
439
440 /* Handle the case in which compiler's optimizer/scheduler
441 has moved instructions into the prologue. We scan ahead
442 in the function looking for address ranges whose corresponding
443 line number is less than or equal to the first one that we
444 found for the function. (It can be less than when the
445 scheduler puts a body instruction before the first prologue
446 instruction.) */
447 for (i = 2 * max_skip_non_prologue_insns;
448 i > 0 && (lim_pc == 0 || addr < lim_pc);
449 i--)
450 {
451 struct symtab_and_line sal;
452
453 sal = find_pc_line (addr, 0);
454 if (sal.line == 0)
455 break;
456 if (sal.line <= prologue_sal.line
457 && sal.symtab == prologue_sal.symtab)
458 {
459 prologue_sal = sal;
460 }
461 addr = sal.end;
462 }
463
464 if (lim_pc == 0 || prologue_sal.end < lim_pc)
465 lim_pc = prologue_sal.end;
466 }
467 return lim_pc;
468}
469
470
7a78ae4e 471static CORE_ADDR
077276e8 472skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
473{
474 CORE_ADDR orig_pc = pc;
55d05f3b 475 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 476 CORE_ADDR li_found_pc = 0;
c906108c
SS
477 char buf[4];
478 unsigned long op;
479 long offset = 0;
6be8bc0c 480 long vr_saved_offset = 0;
482ca3f5
KB
481 int lr_reg = -1;
482 int cr_reg = -1;
6be8bc0c 483 int vr_reg = -1;
96ff0de4
EZ
484 int ev_reg = -1;
485 long ev_offset = 0;
6be8bc0c 486 int vrsave_reg = -1;
c906108c
SS
487 int reg;
488 int framep = 0;
489 int minimal_toc_loaded = 0;
ddb20c56 490 int prev_insn_was_prologue_insn = 1;
55d05f3b 491 int num_skip_non_prologue_insns = 0;
96ff0de4 492 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 493 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 494
55d05f3b
KB
495 /* Attempt to find the end of the prologue when no limit is specified.
496 Note that refine_prologue_limit() has been written so that it may
497 be used to "refine" the limits of non-zero PC values too, but this
498 is only safe if we 1) trust the line information provided by the
499 compiler and 2) iterate enough to actually find the end of the
500 prologue.
501
502 It may become a good idea at some point (for both performance and
503 accuracy) to unconditionally call refine_prologue_limit(). But,
504 until we can make a clear determination that this is beneficial,
505 we'll play it safe and only use it to obtain a limit when none
506 has been specified. */
507 if (lim_pc == 0)
508 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 509
ddb20c56 510 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
511 fdata->saved_gpr = -1;
512 fdata->saved_fpr = -1;
6be8bc0c 513 fdata->saved_vr = -1;
96ff0de4 514 fdata->saved_ev = -1;
c906108c
SS
515 fdata->alloca_reg = -1;
516 fdata->frameless = 1;
517 fdata->nosavedpc = 1;
518
55d05f3b 519 for (;; pc += 4)
c906108c 520 {
ddb20c56
KB
521 /* Sometimes it isn't clear if an instruction is a prologue
522 instruction or not. When we encounter one of these ambiguous
523 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
524 Otherwise, we'll assume that it really is a prologue instruction. */
525 if (prev_insn_was_prologue_insn)
526 last_prologue_pc = pc;
55d05f3b
KB
527
528 /* Stop scanning if we've hit the limit. */
529 if (lim_pc != 0 && pc >= lim_pc)
530 break;
531
ddb20c56
KB
532 prev_insn_was_prologue_insn = 1;
533
55d05f3b 534 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
535 if (target_read_memory (pc, buf, 4))
536 break;
537 op = extract_signed_integer (buf, 4);
c906108c 538
c5aa993b
JM
539 if ((op & 0xfc1fffff) == 0x7c0802a6)
540 { /* mflr Rx */
98f08d3d 541 lr_reg = (op & 0x03e00000);
c5aa993b 542 continue;
c906108c 543
c5aa993b
JM
544 }
545 else if ((op & 0xfc1fffff) == 0x7c000026)
546 { /* mfcr Rx */
98f08d3d 547 cr_reg = (op & 0x03e00000);
c5aa993b 548 continue;
c906108c 549
c906108c 550 }
c5aa993b
JM
551 else if ((op & 0xfc1f0000) == 0xd8010000)
552 { /* stfd Rx,NUM(r1) */
553 reg = GET_SRC_REG (op);
554 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
555 {
556 fdata->saved_fpr = reg;
557 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
558 }
559 continue;
c906108c 560
c5aa993b
JM
561 }
562 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
563 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
564 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
565 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
566 {
567
568 reg = GET_SRC_REG (op);
569 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
570 {
571 fdata->saved_gpr = reg;
7a78ae4e 572 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 573 op &= ~3UL;
c5aa993b
JM
574 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
575 }
576 continue;
c906108c 577
ddb20c56
KB
578 }
579 else if ((op & 0xffff0000) == 0x60000000)
580 {
96ff0de4 581 /* nop */
ddb20c56
KB
582 /* Allow nops in the prologue, but do not consider them to
583 be part of the prologue unless followed by other prologue
584 instructions. */
585 prev_insn_was_prologue_insn = 0;
586 continue;
587
c906108c 588 }
c5aa993b
JM
589 else if ((op & 0xffff0000) == 0x3c000000)
590 { /* addis 0,0,NUM, used
591 for >= 32k frames */
592 fdata->offset = (op & 0x0000ffff) << 16;
593 fdata->frameless = 0;
594 continue;
595
596 }
597 else if ((op & 0xffff0000) == 0x60000000)
598 { /* ori 0,0,NUM, 2nd ha
599 lf of >= 32k frames */
600 fdata->offset |= (op & 0x0000ffff);
601 fdata->frameless = 0;
602 continue;
603
604 }
98f08d3d
KB
605 else if (lr_reg != -1 &&
606 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
607 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
608 /* stw Rx, NUM(r1) */
609 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
610 /* stwu Rx, NUM(r1) */
611 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
612 { /* where Rx == lr */
613 fdata->lr_offset = offset;
c5aa993b
JM
614 fdata->nosavedpc = 0;
615 lr_reg = 0;
98f08d3d
KB
616 if ((op & 0xfc000003) == 0xf8000000 || /* std */
617 (op & 0xfc000000) == 0x90000000) /* stw */
618 {
619 /* Does not update r1, so add displacement to lr_offset. */
620 fdata->lr_offset += SIGNED_SHORT (op);
621 }
c5aa993b
JM
622 continue;
623
624 }
98f08d3d
KB
625 else if (cr_reg != -1 &&
626 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
627 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
628 /* stw Rx, NUM(r1) */
629 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
630 /* stwu Rx, NUM(r1) */
631 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
632 { /* where Rx == cr */
633 fdata->cr_offset = offset;
c5aa993b 634 cr_reg = 0;
98f08d3d
KB
635 if ((op & 0xfc000003) == 0xf8000000 ||
636 (op & 0xfc000000) == 0x90000000)
637 {
638 /* Does not update r1, so add displacement to cr_offset. */
639 fdata->cr_offset += SIGNED_SHORT (op);
640 }
c5aa993b
JM
641 continue;
642
643 }
644 else if (op == 0x48000005)
645 { /* bl .+4 used in
646 -mrelocatable */
647 continue;
648
649 }
650 else if (op == 0x48000004)
651 { /* b .+4 (xlc) */
652 break;
653
c5aa993b 654 }
6be8bc0c
EZ
655 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
656 in V.4 -mminimal-toc */
c5aa993b
JM
657 (op & 0xffff0000) == 0x3bde0000)
658 { /* addi 30,30,foo@l */
659 continue;
c906108c 660
c5aa993b
JM
661 }
662 else if ((op & 0xfc000001) == 0x48000001)
663 { /* bl foo,
664 to save fprs??? */
c906108c 665
c5aa993b 666 fdata->frameless = 0;
6be8bc0c
EZ
667 /* Don't skip over the subroutine call if it is not within
668 the first three instructions of the prologue. */
c5aa993b
JM
669 if ((pc - orig_pc) > 8)
670 break;
671
672 op = read_memory_integer (pc + 4, 4);
673
6be8bc0c
EZ
674 /* At this point, make sure this is not a trampoline
675 function (a function that simply calls another functions,
676 and nothing else). If the next is not a nop, this branch
677 was part of the function prologue. */
c5aa993b
JM
678
679 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
680 break; /* don't skip over
681 this branch */
682 continue;
683
c5aa993b 684 }
98f08d3d
KB
685 /* update stack pointer */
686 else if ((op & 0xfc1f0000) == 0x94010000)
687 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
688 fdata->frameless = 0;
689 fdata->offset = SIGNED_SHORT (op);
690 offset = fdata->offset;
691 continue;
c5aa993b 692 }
98f08d3d
KB
693 else if ((op & 0xfc1f016a) == 0x7c01016e)
694 { /* stwux rX,r1,rY */
695 /* no way to figure out what r1 is going to be */
696 fdata->frameless = 0;
697 offset = fdata->offset;
698 continue;
699 }
700 else if ((op & 0xfc1f0003) == 0xf8010001)
701 { /* stdu rX,NUM(r1) */
702 fdata->frameless = 0;
703 fdata->offset = SIGNED_SHORT (op & ~3UL);
704 offset = fdata->offset;
705 continue;
706 }
707 else if ((op & 0xfc1f016a) == 0x7c01016a)
708 { /* stdux rX,r1,rY */
709 /* no way to figure out what r1 is going to be */
c5aa993b
JM
710 fdata->frameless = 0;
711 offset = fdata->offset;
712 continue;
c5aa993b 713 }
98f08d3d
KB
714 /* Load up minimal toc pointer */
715 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
716 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 717 && !minimal_toc_loaded)
98f08d3d 718 {
c5aa993b
JM
719 minimal_toc_loaded = 1;
720 continue;
721
f6077098
KB
722 /* move parameters from argument registers to local variable
723 registers */
724 }
725 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
726 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
727 (((op >> 21) & 31) <= 10) &&
96ff0de4 728 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
729 {
730 continue;
731
c5aa993b
JM
732 /* store parameters in stack */
733 }
6be8bc0c 734 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 735 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
736 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
737 {
c5aa993b 738 continue;
c906108c 739
c5aa993b
JM
740 /* store parameters in stack via frame pointer */
741 }
742 else if (framep &&
743 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
745 (op & 0xfc1f0000) == 0xfc1f0000))
746 { /* frsp, fp?,NUM(r1) */
747 continue;
748
749 /* Set up frame pointer */
750 }
751 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
752 || op == 0x7c3f0b78)
753 { /* mr r31, r1 */
754 fdata->frameless = 0;
755 framep = 1;
6f99cb26 756 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
757 continue;
758
759 /* Another way to set up the frame pointer. */
760 }
761 else if ((op & 0xfc1fffff) == 0x38010000)
762 { /* addi rX, r1, 0x0 */
763 fdata->frameless = 0;
764 framep = 1;
6f99cb26
AC
765 fdata->alloca_reg = (tdep->ppc_gp0_regnum
766 + ((op & ~0x38010000) >> 21));
c5aa993b 767 continue;
c5aa993b 768 }
6be8bc0c
EZ
769 /* AltiVec related instructions. */
770 /* Store the vrsave register (spr 256) in another register for
771 later manipulation, or load a register into the vrsave
772 register. 2 instructions are used: mfvrsave and
773 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
774 and mtspr SPR256, Rn. */
775 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
776 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
777 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
778 {
779 vrsave_reg = GET_SRC_REG (op);
780 continue;
781 }
782 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
783 {
784 continue;
785 }
786 /* Store the register where vrsave was saved to onto the stack:
787 rS is the register where vrsave was stored in a previous
788 instruction. */
789 /* 100100 sssss 00001 dddddddd dddddddd */
790 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
791 {
792 if (vrsave_reg == GET_SRC_REG (op))
793 {
794 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
795 vrsave_reg = -1;
796 }
797 continue;
798 }
799 /* Compute the new value of vrsave, by modifying the register
800 where vrsave was saved to. */
801 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
802 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
803 {
804 continue;
805 }
806 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
807 in a pair of insns to save the vector registers on the
808 stack. */
809 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
810 /* 001110 01110 00000 iiii iiii iiii iiii */
811 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
812 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
813 {
814 li_found_pc = pc;
815 vr_saved_offset = SIGNED_SHORT (op);
816 }
817 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
818 /* 011111 sssss 11111 00000 00111001110 */
819 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
820 {
821 if (pc == (li_found_pc + 4))
822 {
823 vr_reg = GET_SRC_REG (op);
824 /* If this is the first vector reg to be saved, or if
825 it has a lower number than others previously seen,
826 reupdate the frame info. */
827 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
828 {
829 fdata->saved_vr = vr_reg;
830 fdata->vr_offset = vr_saved_offset + offset;
831 }
832 vr_saved_offset = -1;
833 vr_reg = -1;
834 li_found_pc = 0;
835 }
836 }
837 /* End AltiVec related instructions. */
96ff0de4
EZ
838
839 /* Start BookE related instructions. */
840 /* Store gen register S at (r31+uimm).
841 Any register less than r13 is volatile, so we don't care. */
842 /* 000100 sssss 11111 iiiii 01100100001 */
843 else if (arch_info->mach == bfd_mach_ppc_e500
844 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
845 {
846 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
847 {
848 unsigned int imm;
849 ev_reg = GET_SRC_REG (op);
850 imm = (op >> 11) & 0x1f;
851 ev_offset = imm * 8;
852 /* If this is the first vector reg to be saved, or if
853 it has a lower number than others previously seen,
854 reupdate the frame info. */
855 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
856 {
857 fdata->saved_ev = ev_reg;
858 fdata->ev_offset = ev_offset + offset;
859 }
860 }
861 continue;
862 }
863 /* Store gen register rS at (r1+rB). */
864 /* 000100 sssss 00001 bbbbb 01100100000 */
865 else if (arch_info->mach == bfd_mach_ppc_e500
866 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
867 {
868 if (pc == (li_found_pc + 4))
869 {
870 ev_reg = GET_SRC_REG (op);
871 /* If this is the first vector reg to be saved, or if
872 it has a lower number than others previously seen,
873 reupdate the frame info. */
874 /* We know the contents of rB from the previous instruction. */
875 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
876 {
877 fdata->saved_ev = ev_reg;
878 fdata->ev_offset = vr_saved_offset + offset;
879 }
880 vr_saved_offset = -1;
881 ev_reg = -1;
882 li_found_pc = 0;
883 }
884 continue;
885 }
886 /* Store gen register r31 at (rA+uimm). */
887 /* 000100 11111 aaaaa iiiii 01100100001 */
888 else if (arch_info->mach == bfd_mach_ppc_e500
889 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
890 {
891 /* Wwe know that the source register is 31 already, but
892 it can't hurt to compute it. */
893 ev_reg = GET_SRC_REG (op);
894 ev_offset = ((op >> 11) & 0x1f) * 8;
895 /* If this is the first vector reg to be saved, or if
896 it has a lower number than others previously seen,
897 reupdate the frame info. */
898 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
899 {
900 fdata->saved_ev = ev_reg;
901 fdata->ev_offset = ev_offset + offset;
902 }
903
904 continue;
905 }
906 /* Store gen register S at (r31+r0).
907 Store param on stack when offset from SP bigger than 4 bytes. */
908 /* 000100 sssss 11111 00000 01100100000 */
909 else if (arch_info->mach == bfd_mach_ppc_e500
910 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
911 {
912 if (pc == (li_found_pc + 4))
913 {
914 if ((op & 0x03e00000) >= 0x01a00000)
915 {
916 ev_reg = GET_SRC_REG (op);
917 /* If this is the first vector reg to be saved, or if
918 it has a lower number than others previously seen,
919 reupdate the frame info. */
920 /* We know the contents of r0 from the previous
921 instruction. */
922 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
923 {
924 fdata->saved_ev = ev_reg;
925 fdata->ev_offset = vr_saved_offset + offset;
926 }
927 ev_reg = -1;
928 }
929 vr_saved_offset = -1;
930 li_found_pc = 0;
931 continue;
932 }
933 }
934 /* End BookE related instructions. */
935
c5aa993b
JM
936 else
937 {
55d05f3b
KB
938 /* Not a recognized prologue instruction.
939 Handle optimizer code motions into the prologue by continuing
940 the search if we have no valid frame yet or if the return
941 address is not yet saved in the frame. */
942 if (fdata->frameless == 0
943 && (lr_reg == -1 || fdata->nosavedpc == 0))
944 break;
945
946 if (op == 0x4e800020 /* blr */
947 || op == 0x4e800420) /* bctr */
948 /* Do not scan past epilogue in frameless functions or
949 trampolines. */
950 break;
951 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 952 /* Never skip branches. */
55d05f3b
KB
953 break;
954
955 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
956 /* Do not scan too many insns, scanning insns is expensive with
957 remote targets. */
958 break;
959
960 /* Continue scanning. */
961 prev_insn_was_prologue_insn = 0;
962 continue;
c5aa993b 963 }
c906108c
SS
964 }
965
966#if 0
967/* I have problems with skipping over __main() that I need to address
968 * sometime. Previously, I used to use misc_function_vector which
969 * didn't work as well as I wanted to be. -MGO */
970
971 /* If the first thing after skipping a prolog is a branch to a function,
972 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 973 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 974 work before calling a function right after a prologue, thus we can
64366f1c 975 single out such gcc2 behaviour. */
c906108c 976
c906108c 977
c5aa993b
JM
978 if ((op & 0xfc000001) == 0x48000001)
979 { /* bl foo, an initializer function? */
980 op = read_memory_integer (pc + 4, 4);
981
982 if (op == 0x4def7b82)
983 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 984
64366f1c
EZ
985 /* Check and see if we are in main. If so, skip over this
986 initializer function as well. */
c906108c 987
c5aa993b 988 tmp = find_pc_misc_function (pc);
6314a349
AC
989 if (tmp >= 0
990 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
991 return pc + 8;
992 }
c906108c 993 }
c906108c 994#endif /* 0 */
c5aa993b
JM
995
996 fdata->offset = -fdata->offset;
ddb20c56 997 return last_prologue_pc;
c906108c
SS
998}
999
1000
1001/*************************************************************************
f6077098 1002 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1003 frames, etc.
1004*************************************************************************/
1005
c906108c 1006
64366f1c 1007/* Pop the innermost frame, go back to the caller. */
c5aa993b 1008
c906108c 1009static void
7a78ae4e 1010rs6000_pop_frame (void)
c906108c 1011{
470d5666 1012 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1013 struct rs6000_framedata fdata;
1014 struct frame_info *frame = get_current_frame ();
470d5666 1015 int ii, wordsize;
c906108c
SS
1016
1017 pc = read_pc ();
c193f6ac 1018 sp = get_frame_base (frame);
c906108c 1019
bdd78e62 1020 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1021 get_frame_base (frame),
1022 get_frame_base (frame)))
c906108c 1023 {
7a78ae4e
ND
1024 generic_pop_dummy_frame ();
1025 flush_cached_frames ();
1026 return;
c906108c
SS
1027 }
1028
1029 /* Make sure that all registers are valid. */
b8b527c5 1030 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1031
64366f1c 1032 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1033 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1034 saved %pc value in the previous frame. */
c906108c 1035
be41e9f4 1036 addr = get_frame_func (frame);
bdd78e62 1037 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1038
21283beb 1039 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1040 if (fdata.frameless)
1041 prev_sp = sp;
1042 else
7a78ae4e 1043 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1044 if (fdata.lr_offset == 0)
2188cbdd 1045 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1046 else
7a78ae4e 1047 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1048
1049 /* reset %pc value. */
1050 write_register (PC_REGNUM, lr);
1051
64366f1c 1052 /* reset register values if any was saved earlier. */
c906108c
SS
1053
1054 if (fdata.saved_gpr != -1)
1055 {
1056 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1057 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1058 {
62700349 1059 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
524d7c18 1060 wordsize);
7a78ae4e 1061 addr += wordsize;
c5aa993b 1062 }
c906108c
SS
1063 }
1064
1065 if (fdata.saved_fpr != -1)
1066 {
1067 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1068 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1069 {
62700349 1070 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1071 addr += 8;
1072 }
c906108c
SS
1073 }
1074
1075 write_register (SP_REGNUM, prev_sp);
1076 target_store_registers (-1);
1077 flush_cached_frames ();
1078}
1079
11269d7e
AC
1080/* All the ABI's require 16 byte alignment. */
1081static CORE_ADDR
1082rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1083{
1084 return (addr & -16);
1085}
1086
7a78ae4e 1087/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1088 the first eight words of the argument list (that might be less than
1089 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1090 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1091 passed in fpr's, in addition to that. Rest of the parameters if any
1092 are passed in user stack. There might be cases in which half of the
c906108c
SS
1093 parameter is copied into registers, the other half is pushed into
1094 stack.
1095
7a78ae4e
ND
1096 Stack must be aligned on 64-bit boundaries when synthesizing
1097 function calls.
1098
c906108c
SS
1099 If the function is returning a structure, then the return address is passed
1100 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1101 starting from r4. */
c906108c 1102
7a78ae4e 1103static CORE_ADDR
77b2b6d4
AC
1104rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1105 struct regcache *regcache, CORE_ADDR bp_addr,
1106 int nargs, struct value **args, CORE_ADDR sp,
1107 int struct_return, CORE_ADDR struct_addr)
c906108c 1108{
7a41266b 1109 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1110 int ii;
1111 int len = 0;
c5aa993b
JM
1112 int argno; /* current argument number */
1113 int argbytes; /* current argument byte */
1114 char tmp_buffer[50];
1115 int f_argno = 0; /* current floating point argno */
21283beb 1116 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1117
ea7c478f 1118 struct value *arg = 0;
c906108c
SS
1119 struct type *type;
1120
1121 CORE_ADDR saved_sp;
1122
64366f1c 1123 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1124 Copy them appropriately. */
1125 ii = 0;
1126
1127 /* If the function is returning a `struct', then the first word
1128 (which will be passed in r3) is used for struct return address.
1129 In that case we should advance one word and start from r4
1130 register to copy parameters. */
1131 if (struct_return)
1132 {
1133 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1134 struct_addr);
1135 ii++;
1136 }
c906108c
SS
1137
1138/*
c5aa993b
JM
1139 effectively indirect call... gcc does...
1140
1141 return_val example( float, int);
1142
1143 eabi:
1144 float in fp0, int in r3
1145 offset of stack on overflow 8/16
1146 for varargs, must go by type.
1147 power open:
1148 float in r3&r4, int in r5
1149 offset of stack on overflow different
1150 both:
1151 return in r3 or f0. If no float, must study how gcc emulates floats;
1152 pay attention to arg promotion.
1153 User may have to cast\args to handle promotion correctly
1154 since gdb won't know if prototype supplied or not.
1155 */
c906108c 1156
c5aa993b
JM
1157 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1158 {
12c266ea 1159 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1160
1161 arg = args[argno];
1162 type = check_typedef (VALUE_TYPE (arg));
1163 len = TYPE_LENGTH (type);
1164
1165 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1166 {
1167
64366f1c 1168 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1169 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1170 there is no way we would run out of them. */
c5aa993b
JM
1171
1172 if (len > 8)
1173 printf_unfiltered (
1174 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1175
62700349 1176 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1177 VALUE_CONTENTS (arg),
1178 len);
1179 ++f_argno;
1180 }
1181
f6077098 1182 if (len > reg_size)
c5aa993b
JM
1183 {
1184
64366f1c 1185 /* Argument takes more than one register. */
c5aa993b
JM
1186 while (argbytes < len)
1187 {
62700349 1188 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1189 reg_size);
62700349 1190 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1191 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1192 (len - argbytes) > reg_size
1193 ? reg_size : len - argbytes);
1194 ++ii, argbytes += reg_size;
c5aa993b
JM
1195
1196 if (ii >= 8)
1197 goto ran_out_of_registers_for_arguments;
1198 }
1199 argbytes = 0;
1200 --ii;
1201 }
1202 else
64366f1c
EZ
1203 {
1204 /* Argument can fit in one register. No problem. */
d7449b42 1205 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1206 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1207 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1208 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1209 }
1210 ++argno;
c906108c 1211 }
c906108c
SS
1212
1213ran_out_of_registers_for_arguments:
1214
7a78ae4e 1215 saved_sp = read_sp ();
cc9836a8 1216
64366f1c 1217 /* Location for 8 parameters are always reserved. */
7a78ae4e 1218 sp -= wordsize * 8;
f6077098 1219
64366f1c 1220 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1221 sp -= wordsize * 6;
f6077098 1222
64366f1c 1223 /* Stack pointer must be quadword aligned. */
7a78ae4e 1224 sp &= -16;
c906108c 1225
64366f1c
EZ
1226 /* If there are more arguments, allocate space for them in
1227 the stack, then push them starting from the ninth one. */
c906108c 1228
c5aa993b
JM
1229 if ((argno < nargs) || argbytes)
1230 {
1231 int space = 0, jj;
c906108c 1232
c5aa993b
JM
1233 if (argbytes)
1234 {
1235 space += ((len - argbytes + 3) & -4);
1236 jj = argno + 1;
1237 }
1238 else
1239 jj = argno;
c906108c 1240
c5aa993b
JM
1241 for (; jj < nargs; ++jj)
1242 {
ea7c478f 1243 struct value *val = args[jj];
c5aa993b
JM
1244 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1245 }
c906108c 1246
64366f1c 1247 /* Add location required for the rest of the parameters. */
f6077098 1248 space = (space + 15) & -16;
c5aa993b 1249 sp -= space;
c906108c 1250
7aea86e6
AC
1251 /* This is another instance we need to be concerned about
1252 securing our stack space. If we write anything underneath %sp
1253 (r1), we might conflict with the kernel who thinks he is free
1254 to use this area. So, update %sp first before doing anything
1255 else. */
1256
1257 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1258
64366f1c
EZ
1259 /* If the last argument copied into the registers didn't fit there
1260 completely, push the rest of it into stack. */
c906108c 1261
c5aa993b
JM
1262 if (argbytes)
1263 {
1264 write_memory (sp + 24 + (ii * 4),
1265 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1266 len - argbytes);
1267 ++argno;
1268 ii += ((len - argbytes + 3) & -4) / 4;
1269 }
c906108c 1270
64366f1c 1271 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1272 for (; argno < nargs; ++argno)
1273 {
c906108c 1274
c5aa993b
JM
1275 arg = args[argno];
1276 type = check_typedef (VALUE_TYPE (arg));
1277 len = TYPE_LENGTH (type);
c906108c
SS
1278
1279
64366f1c
EZ
1280 /* Float types should be passed in fpr's, as well as in the
1281 stack. */
c5aa993b
JM
1282 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1283 {
c906108c 1284
c5aa993b
JM
1285 if (len > 8)
1286 printf_unfiltered (
1287 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1288
62700349 1289 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1290 VALUE_CONTENTS (arg),
1291 len);
1292 ++f_argno;
1293 }
c906108c 1294
c5aa993b
JM
1295 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1296 ii += ((len + 3) & -4) / 4;
1297 }
c906108c 1298 }
c906108c 1299
69517000 1300 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1301 be set _before_ the corresponding stack space is used. On AIX,
1302 this even applies when the target has been completely stopped!
1303 Not doing this can lead to conflicts with the kernel which thinks
1304 that it still has control over this not-yet-allocated stack
1305 region. */
33a7c2fc
AC
1306 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1307
7aea86e6
AC
1308 /* Set back chain properly. */
1309 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1310 write_memory (sp, tmp_buffer, 4);
1311
e56a0ecc
AC
1312 /* Point the inferior function call's return address at the dummy's
1313 breakpoint. */
1314 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1315
794a477a
AC
1316 /* Set the TOC register, get the value from the objfile reader
1317 which, in turn, gets it from the VMAP table. */
1318 if (rs6000_find_toc_address_hook != NULL)
1319 {
1320 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1321 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1322 }
1323
c906108c
SS
1324 target_store_registers (-1);
1325 return sp;
1326}
c906108c 1327
b9ff3018
AC
1328/* PowerOpen always puts structures in memory. Vectors, which were
1329 added later, do get returned in a register though. */
1330
1331static int
1332rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1333{
1334 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1335 && TYPE_VECTOR (value_type))
1336 return 0;
1337 return 1;
1338}
1339
7a78ae4e
ND
1340static void
1341rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1342{
1343 int offset = 0;
ace1378a 1344 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1345
c5aa993b
JM
1346 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1347 {
c906108c 1348
c5aa993b
JM
1349 double dd;
1350 float ff;
1351 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1352 We need to truncate the return value into float size (4 byte) if
64366f1c 1353 necessary. */
c906108c 1354
c5aa993b
JM
1355 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1356 memcpy (valbuf,
62700349 1357 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
c5aa993b
JM
1358 TYPE_LENGTH (valtype));
1359 else
1360 { /* float */
62700349 1361 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
c5aa993b
JM
1362 ff = (float) dd;
1363 memcpy (valbuf, &ff, sizeof (float));
1364 }
1365 }
ace1378a
EZ
1366 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1367 && TYPE_LENGTH (valtype) == 16
1368 && TYPE_VECTOR (valtype))
1369 {
62700349 1370 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1371 TYPE_LENGTH (valtype));
1372 }
c5aa993b
JM
1373 else
1374 {
1375 /* return value is copied starting from r3. */
d7449b42 1376 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1377 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1378 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1379
1380 memcpy (valbuf,
62700349 1381 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1382 TYPE_LENGTH (valtype));
c906108c 1383 }
c906108c
SS
1384}
1385
977adac5
ND
1386/* Return whether handle_inferior_event() should proceed through code
1387 starting at PC in function NAME when stepping.
1388
1389 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1390 handle memory references that are too distant to fit in instructions
1391 generated by the compiler. For example, if 'foo' in the following
1392 instruction:
1393
1394 lwz r9,foo(r2)
1395
1396 is greater than 32767, the linker might replace the lwz with a branch to
1397 somewhere in @FIX1 that does the load in 2 instructions and then branches
1398 back to where execution should continue.
1399
1400 GDB should silently step over @FIX code, just like AIX dbx does.
1401 Unfortunately, the linker uses the "b" instruction for the branches,
1402 meaning that the link register doesn't get set. Therefore, GDB's usual
1403 step_over_function() mechanism won't work.
1404
1405 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1406 in handle_inferior_event() to skip past @FIX code. */
1407
1408int
1409rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1410{
1411 return name && !strncmp (name, "@FIX", 4);
1412}
1413
1414/* Skip code that the user doesn't want to see when stepping:
1415
1416 1. Indirect function calls use a piece of trampoline code to do context
1417 switching, i.e. to set the new TOC table. Skip such code if we are on
1418 its first instruction (as when we have single-stepped to here).
1419
1420 2. Skip shared library trampoline code (which is different from
c906108c 1421 indirect function call trampolines).
977adac5
ND
1422
1423 3. Skip bigtoc fixup code.
1424
c906108c 1425 Result is desired PC to step until, or NULL if we are not in
977adac5 1426 code that should be skipped. */
c906108c
SS
1427
1428CORE_ADDR
7a78ae4e 1429rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1430{
52f0bd74 1431 unsigned int ii, op;
977adac5 1432 int rel;
c906108c 1433 CORE_ADDR solib_target_pc;
977adac5 1434 struct minimal_symbol *msymbol;
c906108c 1435
c5aa993b
JM
1436 static unsigned trampoline_code[] =
1437 {
1438 0x800b0000, /* l r0,0x0(r11) */
1439 0x90410014, /* st r2,0x14(r1) */
1440 0x7c0903a6, /* mtctr r0 */
1441 0x804b0004, /* l r2,0x4(r11) */
1442 0x816b0008, /* l r11,0x8(r11) */
1443 0x4e800420, /* bctr */
1444 0x4e800020, /* br */
1445 0
c906108c
SS
1446 };
1447
977adac5
ND
1448 /* Check for bigtoc fixup code. */
1449 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1450 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1451 {
1452 /* Double-check that the third instruction from PC is relative "b". */
1453 op = read_memory_integer (pc + 8, 4);
1454 if ((op & 0xfc000003) == 0x48000000)
1455 {
1456 /* Extract bits 6-29 as a signed 24-bit relative word address and
1457 add it to the containing PC. */
1458 rel = ((int)(op << 6) >> 6);
1459 return pc + 8 + rel;
1460 }
1461 }
1462
c906108c
SS
1463 /* If pc is in a shared library trampoline, return its target. */
1464 solib_target_pc = find_solib_trampoline_target (pc);
1465 if (solib_target_pc)
1466 return solib_target_pc;
1467
c5aa993b
JM
1468 for (ii = 0; trampoline_code[ii]; ++ii)
1469 {
1470 op = read_memory_integer (pc + (ii * 4), 4);
1471 if (op != trampoline_code[ii])
1472 return 0;
1473 }
1474 ii = read_register (11); /* r11 holds destination addr */
21283beb 1475 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1476 return pc;
1477}
1478
1479/* Determines whether the function FI has a frame on the stack or not. */
1480
9aa1e687 1481int
c877c8e6 1482rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1483{
1484 CORE_ADDR func_start;
1485 struct rs6000_framedata fdata;
1486
1487 /* Don't even think about framelessness except on the innermost frame
1488 or if the function was interrupted by a signal. */
75e3c1f9
AC
1489 if (get_next_frame (fi) != NULL
1490 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1491 return 0;
c5aa993b 1492
be41e9f4 1493 func_start = get_frame_func (fi);
c906108c
SS
1494
1495 /* If we failed to find the start of the function, it is a mistake
64366f1c 1496 to inspect the instructions. */
c906108c
SS
1497
1498 if (!func_start)
1499 {
1500 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1501 function pointer, normally causing an immediate core dump of the
64366f1c 1502 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1503 of setting up a stack frame. */
bdd78e62 1504 if (get_frame_pc (fi) == 0)
c906108c
SS
1505 return 1;
1506 else
1507 return 0;
1508 }
1509
bdd78e62 1510 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1511 return fdata.frameless;
1512}
1513
64366f1c 1514/* Return the PC saved in a frame. */
c906108c 1515
9aa1e687 1516CORE_ADDR
c877c8e6 1517rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1518{
1519 CORE_ADDR func_start;
1520 struct rs6000_framedata fdata;
21283beb 1521 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1522 int wordsize = tdep->wordsize;
c906108c 1523
5a203e44 1524 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1525 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1526 wordsize);
c906108c 1527
bdd78e62 1528 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1529 get_frame_base (fi),
1530 get_frame_base (fi)))
bdd78e62 1531 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1532 get_frame_base (fi), PC_REGNUM);
c906108c 1533
be41e9f4 1534 func_start = get_frame_func (fi);
c906108c
SS
1535
1536 /* If we failed to find the start of the function, it is a mistake
64366f1c 1537 to inspect the instructions. */
c906108c
SS
1538 if (!func_start)
1539 return 0;
1540
bdd78e62 1541 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1542
75e3c1f9 1543 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1544 {
75e3c1f9 1545 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1546 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1547 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1548 wordsize);
bdd78e62 1549 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1550 /* The link register wasn't saved by this frame and the next
1551 (inner, newer) frame is a dummy. Get the link register
1552 value by unwinding it from that [dummy] frame. */
1553 {
1554 ULONGEST lr;
1555 frame_unwind_unsigned_register (get_next_frame (fi),
1556 tdep->ppc_lr_regnum, &lr);
1557 return lr;
1558 }
c906108c 1559 else
618ce49f
AC
1560 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1561 + tdep->lr_frame_offset,
7a78ae4e 1562 wordsize);
c906108c
SS
1563 }
1564
1565 if (fdata.lr_offset == 0)
2188cbdd 1566 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1567
618ce49f
AC
1568 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1569 wordsize);
c906108c
SS
1570}
1571
1572/* If saved registers of frame FI are not known yet, read and cache them.
1573 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1574 in which case the framedata are read. */
1575
1576static void
7a78ae4e 1577frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1578{
c5aa993b 1579 CORE_ADDR frame_addr;
c906108c 1580 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1581 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1582 int wordsize = tdep->wordsize;
c906108c 1583
1b1d3794 1584 if (deprecated_get_frame_saved_regs (fi))
c906108c 1585 return;
c5aa993b 1586
c906108c
SS
1587 if (fdatap == NULL)
1588 {
1589 fdatap = &work_fdata;
be41e9f4 1590 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1591 }
1592
1593 frame_saved_regs_zalloc (fi);
1594
1595 /* If there were any saved registers, figure out parent's stack
64366f1c 1596 pointer. */
c906108c 1597 /* The following is true only if the frame doesn't have a call to
64366f1c 1598 alloca(), FIXME. */
c906108c 1599
6be8bc0c
EZ
1600 if (fdatap->saved_fpr == 0
1601 && fdatap->saved_gpr == 0
1602 && fdatap->saved_vr == 0
96ff0de4 1603 && fdatap->saved_ev == 0
6be8bc0c
EZ
1604 && fdatap->lr_offset == 0
1605 && fdatap->cr_offset == 0
96ff0de4
EZ
1606 && fdatap->vr_offset == 0
1607 && fdatap->ev_offset == 0)
c906108c 1608 frame_addr = 0;
c906108c 1609 else
bf75c8c1
AC
1610 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1611 address of the current frame. Things might be easier if the
1612 ->frame pointed to the outer-most address of the frame. In the
1613 mean time, the address of the prev frame is used as the base
1614 address of this frame. */
618ce49f 1615 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1616
c906108c
SS
1617 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1618 All fpr's from saved_fpr to fp31 are saved. */
1619
1620 if (fdatap->saved_fpr >= 0)
1621 {
1622 int i;
7a78ae4e 1623 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1624 for (i = fdatap->saved_fpr; i < 32; i++)
1625 {
1b1d3794 1626 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1627 fpr_addr += 8;
c906108c
SS
1628 }
1629 }
1630
1631 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1632 All gpr's from saved_gpr to gpr31 are saved. */
1633
1634 if (fdatap->saved_gpr >= 0)
1635 {
1636 int i;
7a78ae4e 1637 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1638 for (i = fdatap->saved_gpr; i < 32; i++)
1639 {
1b1d3794 1640 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1641 gpr_addr += wordsize;
c906108c
SS
1642 }
1643 }
1644
6be8bc0c
EZ
1645 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1646 All vr's from saved_vr to vr31 are saved. */
1647 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1648 {
1649 if (fdatap->saved_vr >= 0)
1650 {
1651 int i;
1652 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1653 for (i = fdatap->saved_vr; i < 32; i++)
1654 {
1b1d3794 1655 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
12c266ea 1656 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
6be8bc0c
EZ
1657 }
1658 }
1659 }
1660
96ff0de4
EZ
1661 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1662 All vr's from saved_ev to ev31 are saved. ????? */
1663 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1664 {
1665 if (fdatap->saved_ev >= 0)
1666 {
1667 int i;
1668 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1669 for (i = fdatap->saved_ev; i < 32; i++)
1670 {
1b1d3794
AC
1671 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1672 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
12c266ea 1673 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
96ff0de4
EZ
1674 }
1675 }
1676 }
1677
c906108c
SS
1678 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1679 the CR. */
1680 if (fdatap->cr_offset != 0)
1b1d3794 1681 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1682
1683 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1684 the LR. */
1685 if (fdatap->lr_offset != 0)
1b1d3794 1686 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1687
1688 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1689 the VRSAVE. */
1690 if (fdatap->vrsave_offset != 0)
1b1d3794 1691 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1692}
1693
1694/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1695 was first allocated. For functions calling alloca(), it might be saved in
1696 an alloca register. */
c906108c
SS
1697
1698static CORE_ADDR
7a78ae4e 1699frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1700{
1701 CORE_ADDR tmpaddr;
1702 struct rs6000_framedata fdata;
1703 struct frame_info *callee_fi;
1704
64366f1c
EZ
1705 /* If the initial stack pointer (frame address) of this frame is known,
1706 just return it. */
c906108c 1707
c9012c71
AC
1708 if (get_frame_extra_info (fi)->initial_sp)
1709 return get_frame_extra_info (fi)->initial_sp;
c906108c 1710
64366f1c 1711 /* Find out if this function is using an alloca register. */
c906108c 1712
be41e9f4 1713 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1714
64366f1c
EZ
1715 /* If saved registers of this frame are not known yet, read and
1716 cache them. */
c906108c 1717
1b1d3794 1718 if (!deprecated_get_frame_saved_regs (fi))
c906108c
SS
1719 frame_get_saved_regs (fi, &fdata);
1720
1721 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1722 this frame, and it is good enough. */
c906108c
SS
1723
1724 if (fdata.alloca_reg < 0)
1725 {
c9012c71
AC
1726 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1727 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1728 }
1729
953836b2
AC
1730 /* There is an alloca register, use its value, in the current frame,
1731 as the initial stack pointer. */
1732 {
d9d9c31f 1733 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1734 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1735 {
c9012c71 1736 get_frame_extra_info (fi)->initial_sp
953836b2 1737 = extract_unsigned_integer (tmpbuf,
12c266ea 1738 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
953836b2
AC
1739 }
1740 else
1741 /* NOTE: cagney/2002-04-17: At present the only time
1742 frame_register_read will fail is when the register isn't
1743 available. If that does happen, use the frame. */
c9012c71 1744 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1745 }
c9012c71 1746 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1747}
1748
7a78ae4e
ND
1749/* Describe the pointer in each stack frame to the previous stack frame
1750 (its caller). */
1751
618ce49f
AC
1752/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1753 the frame's chain-pointer. */
7a78ae4e
ND
1754
1755/* In the case of the RS/6000, the frame's nominal address
1756 is the address of a 4-byte word containing the calling frame's address. */
1757
9aa1e687 1758CORE_ADDR
7a78ae4e 1759rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1760{
7a78ae4e 1761 CORE_ADDR fp, fpp, lr;
21283beb 1762 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1763
bdd78e62 1764 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1765 get_frame_base (thisframe),
1766 get_frame_base (thisframe)))
9f3b7f07
AC
1767 /* A dummy frame always correctly chains back to the previous
1768 frame. */
8b36eed8 1769 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1770
627b3ba2 1771 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
bdd78e62 1772 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1773 return 0;
1774
5a203e44 1775 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1776 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1777 wordsize);
75e3c1f9
AC
1778 else if (get_next_frame (thisframe) != NULL
1779 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1780 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1781 /* A frameless function interrupted by a signal did not change the
1782 frame pointer. */
c193f6ac 1783 fp = get_frame_base (thisframe);
c906108c 1784 else
8b36eed8 1785 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1786 return fp;
1787}
1788
1789/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1790 isn't available with that word size, return 0. */
7a78ae4e
ND
1791
1792static int
1793regsize (const struct reg *reg, int wordsize)
1794{
1795 return wordsize == 8 ? reg->sz64 : reg->sz32;
1796}
1797
1798/* Return the name of register number N, or null if no such register exists
64366f1c 1799 in the current architecture. */
7a78ae4e 1800
fa88f677 1801static const char *
7a78ae4e
ND
1802rs6000_register_name (int n)
1803{
21283beb 1804 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1805 const struct reg *reg = tdep->regs + n;
1806
1807 if (!regsize (reg, tdep->wordsize))
1808 return NULL;
1809 return reg->name;
1810}
1811
1812/* Index within `registers' of the first byte of the space for
1813 register N. */
1814
1815static int
1816rs6000_register_byte (int n)
1817{
21283beb 1818 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1819}
1820
1821/* Return the number of bytes of storage in the actual machine representation
64366f1c 1822 for register N if that register is available, else return 0. */
7a78ae4e
ND
1823
1824static int
1825rs6000_register_raw_size (int n)
1826{
21283beb 1827 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1828 const struct reg *reg = tdep->regs + n;
1829 return regsize (reg, tdep->wordsize);
1830}
1831
7a78ae4e
ND
1832/* Return the GDB type object for the "standard" data type
1833 of data in register N. */
1834
1835static struct type *
fba45db2 1836rs6000_register_virtual_type (int n)
7a78ae4e 1837{
21283beb 1838 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1839 const struct reg *reg = tdep->regs + n;
1840
1fcc0bb8
EZ
1841 if (reg->fpr)
1842 return builtin_type_double;
1843 else
1844 {
1845 int size = regsize (reg, tdep->wordsize);
1846 switch (size)
1847 {
449a5da4
AC
1848 case 0:
1849 return builtin_type_int0;
1850 case 4:
1851 return builtin_type_int32;
1fcc0bb8 1852 case 8:
c8001721
EZ
1853 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1854 return builtin_type_vec64;
1855 else
1856 return builtin_type_int64;
1fcc0bb8
EZ
1857 break;
1858 case 16:
08cf96df 1859 return builtin_type_vec128;
1fcc0bb8
EZ
1860 break;
1861 default:
449a5da4
AC
1862 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1863 n, size);
1fcc0bb8
EZ
1864 }
1865 }
7a78ae4e
ND
1866}
1867
7a78ae4e
ND
1868/* Return whether register N requires conversion when moving from raw format
1869 to virtual format.
1870
1871 The register format for RS/6000 floating point registers is always
64366f1c 1872 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1873
1874static int
1875rs6000_register_convertible (int n)
1876{
21283beb 1877 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1878 return reg->fpr;
1879}
1880
1881/* Convert data from raw format for register N in buffer FROM
64366f1c 1882 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1883
1884static void
1885rs6000_register_convert_to_virtual (int n, struct type *type,
1886 char *from, char *to)
1887{
12c266ea 1888 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1889 {
12c266ea 1890 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1891 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1892 }
1893 else
12c266ea 1894 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1895}
1896
1897/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1898 to raw format for register N in buffer TO. */
7a292a7a 1899
7a78ae4e
ND
1900static void
1901rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1902 const char *from, char *to)
7a78ae4e 1903{
12c266ea 1904 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1905 {
f1908289 1906 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1907 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1908 }
7a78ae4e 1909 else
12c266ea 1910 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1911}
c906108c 1912
c8001721
EZ
1913static void
1914e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1915 int reg_nr, void *buffer)
1916{
1917 int base_regnum;
1918 int offset = 0;
d9d9c31f 1919 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1920 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1921
1922 if (reg_nr >= tdep->ppc_gp0_regnum
1923 && reg_nr <= tdep->ppc_gplast_regnum)
1924 {
1925 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1926
1927 /* Build the value in the provided buffer. */
1928 /* Read the raw register of which this one is the lower portion. */
1929 regcache_raw_read (regcache, base_regnum, temp_buffer);
1930 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1931 offset = 4;
1932 memcpy ((char *) buffer, temp_buffer + offset, 4);
1933 }
1934}
1935
1936static void
1937e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1938 int reg_nr, const void *buffer)
1939{
1940 int base_regnum;
1941 int offset = 0;
d9d9c31f 1942 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1943 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1944
1945 if (reg_nr >= tdep->ppc_gp0_regnum
1946 && reg_nr <= tdep->ppc_gplast_regnum)
1947 {
1948 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1949 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1950 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1951 offset = 4;
1952
1953 /* Let's read the value of the base register into a temporary
1954 buffer, so that overwriting the last four bytes with the new
1955 value of the pseudo will leave the upper 4 bytes unchanged. */
1956 regcache_raw_read (regcache, base_regnum, temp_buffer);
1957
1958 /* Write as an 8 byte quantity. */
1959 memcpy (temp_buffer + offset, (char *) buffer, 4);
1960 regcache_raw_write (regcache, base_regnum, temp_buffer);
1961 }
1962}
1963
1964/* Convert a dwarf2 register number to a gdb REGNUM. */
1965static int
1966e500_dwarf2_reg_to_regnum (int num)
1967{
1968 int regnum;
1969 if (0 <= num && num <= 31)
1970 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1971 else
1972 return num;
1973}
1974
2188cbdd 1975/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1976 REGNUM. */
2188cbdd
EZ
1977static int
1978rs6000_stab_reg_to_regnum (int num)
1979{
1980 int regnum;
1981 switch (num)
1982 {
1983 case 64:
1984 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1985 break;
1986 case 65:
1987 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1988 break;
1989 case 66:
1990 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1991 break;
1992 case 76:
1993 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1994 break;
1995 default:
1996 regnum = num;
1997 break;
1998 }
1999 return regnum;
2000}
2001
7a78ae4e
ND
2002static void
2003rs6000_store_return_value (struct type *type, char *valbuf)
2004{
ace1378a
EZ
2005 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2006
7a78ae4e
ND
2007 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2008
2009 /* Floating point values are returned starting from FPR1 and up.
2010 Say a double_double_double type could be returned in
64366f1c 2011 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2012
62700349 2013 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
73937e03 2014 TYPE_LENGTH (type));
ace1378a
EZ
2015 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2016 {
2017 if (TYPE_LENGTH (type) == 16
2018 && TYPE_VECTOR (type))
62700349 2019 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 2020 valbuf, TYPE_LENGTH (type));
ace1378a 2021 }
7a78ae4e 2022 else
64366f1c 2023 /* Everything else is returned in GPR3 and up. */
62700349 2024 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 2025 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2026}
2027
2028/* Extract from an array REGBUF containing the (raw) register state
2029 the address in which a function should return its structure value,
2030 as a CORE_ADDR (or an expression that can be used as one). */
2031
2032static CORE_ADDR
11269d7e
AC
2033rs6000_extract_struct_value_address (struct regcache *regcache)
2034{
2035 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2036 function call GDB knows the address of the struct return value
2037 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2038 the current call_function_by_hand() code only saves the most
2039 recent struct address leading to occasional calls. The code
2040 should instead maintain a stack of such addresses (in the dummy
2041 frame object). */
11269d7e
AC
2042 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2043 really got no idea where the return value is being stored. While
2044 r3, on function entry, contained the address it will have since
2045 been reused (scratch) and hence wouldn't be valid */
2046 return 0;
7a78ae4e
ND
2047}
2048
2049/* Return whether PC is in a dummy function call.
2050
2051 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2052 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2053
2054static int
2055rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2056{
2057 return sp < pc && pc < fp;
2058}
2059
64366f1c 2060/* Hook called when a new child process is started. */
7a78ae4e
ND
2061
2062void
2063rs6000_create_inferior (int pid)
2064{
2065 if (rs6000_set_host_arch_hook)
2066 rs6000_set_host_arch_hook (pid);
c906108c
SS
2067}
2068\f
e2d0e7eb 2069/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2070
2071 Usually a function pointer's representation is simply the address
2072 of the function. On the RS/6000 however, a function pointer is
2073 represented by a pointer to a TOC entry. This TOC entry contains
2074 three words, the first word is the address of the function, the
2075 second word is the TOC pointer (r2), and the third word is the
2076 static chain value. Throughout GDB it is currently assumed that a
2077 function pointer contains the address of the function, which is not
2078 easy to fix. In addition, the conversion of a function address to
2079 a function pointer would require allocation of a TOC entry in the
2080 inferior's memory space, with all its drawbacks. To be able to
2081 call C++ virtual methods in the inferior (which are called via
f517ea4e 2082 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2083 function address from a function pointer. */
2084
f517ea4e
PS
2085/* Return real function address if ADDR (a function pointer) is in the data
2086 space and is therefore a special function pointer. */
c906108c 2087
b9362cc7 2088static CORE_ADDR
e2d0e7eb
AC
2089rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2090 CORE_ADDR addr,
2091 struct target_ops *targ)
c906108c
SS
2092{
2093 struct obj_section *s;
2094
2095 s = find_pc_section (addr);
2096 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2097 return addr;
c906108c 2098
7a78ae4e 2099 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2100 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2101}
c906108c 2102\f
c5aa993b 2103
7a78ae4e 2104/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2105
2106
7a78ae4e
ND
2107/* The arrays here called registers_MUMBLE hold information about available
2108 registers.
c906108c
SS
2109
2110 For each family of PPC variants, I've tried to isolate out the
2111 common registers and put them up front, so that as long as you get
2112 the general family right, GDB will correctly identify the registers
2113 common to that family. The common register sets are:
2114
2115 For the 60x family: hid0 hid1 iabr dabr pir
2116
2117 For the 505 and 860 family: eie eid nri
2118
2119 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2120 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2121 pbu1 pbl2 pbu2
c906108c
SS
2122
2123 Most of these register groups aren't anything formal. I arrived at
2124 them by looking at the registers that occurred in more than one
6f5987a6
KB
2125 processor.
2126
2127 Note: kevinb/2002-04-30: Support for the fpscr register was added
2128 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2129 for Power. For PowerPC, slot 70 was unused and was already in the
2130 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2131 slot 70 was being used for "mq", so the next available slot (71)
2132 was chosen. It would have been nice to be able to make the
2133 register numbers the same across processor cores, but this wasn't
2134 possible without either 1) renumbering some registers for some
2135 processors or 2) assigning fpscr to a really high slot that's
2136 larger than any current register number. Doing (1) is bad because
2137 existing stubs would break. Doing (2) is undesirable because it
2138 would introduce a really large gap between fpscr and the rest of
2139 the registers for most processors. */
7a78ae4e 2140
64366f1c 2141/* Convenience macros for populating register arrays. */
7a78ae4e 2142
64366f1c 2143/* Within another macro, convert S to a string. */
7a78ae4e
ND
2144
2145#define STR(s) #s
2146
2147/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2148 and 64 bits on 64-bit systems. */
489461e2 2149#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2150
2151/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2152 systems. */
489461e2 2153#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2154
2155/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2156 systems. */
489461e2 2157#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2158
1fcc0bb8 2159/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2160 systems. */
489461e2 2161#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2162
64366f1c 2163/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2164#define F(name) { STR(name), 8, 8, 1, 0 }
2165
64366f1c 2166/* Return a struct reg defining a pseudo register NAME. */
489461e2 2167#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2168
2169/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2170 systems and that doesn't exist on 64-bit systems. */
489461e2 2171#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2172
2173/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2174 systems and that doesn't exist on 32-bit systems. */
489461e2 2175#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2176
64366f1c 2177/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2178#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2179
2180/* UISA registers common across all architectures, including POWER. */
2181
2182#define COMMON_UISA_REGS \
2183 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2184 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2185 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2186 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2187 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2188 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2189 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2190 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2191 /* 64 */ R(pc), R(ps)
2192
ebeac11a
EZ
2193#define COMMON_UISA_NOFP_REGS \
2194 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2195 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2196 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2197 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2198 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2199 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2200 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2201 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2202 /* 64 */ R(pc), R(ps)
2203
7a78ae4e
ND
2204/* UISA-level SPRs for PowerPC. */
2205#define PPC_UISA_SPRS \
e3f36dbd 2206 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2207
c8001721
EZ
2208/* UISA-level SPRs for PowerPC without floating point support. */
2209#define PPC_UISA_NOFP_SPRS \
2210 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2211
7a78ae4e
ND
2212/* Segment registers, for PowerPC. */
2213#define PPC_SEGMENT_REGS \
2214 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2215 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2216 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2217 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2218
2219/* OEA SPRs for PowerPC. */
2220#define PPC_OEA_SPRS \
2221 /* 87 */ R4(pvr), \
2222 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2223 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2224 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2225 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2226 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2227 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2228 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2229 /* 116 */ R4(dec), R(dabr), R4(ear)
2230
64366f1c 2231/* AltiVec registers. */
1fcc0bb8
EZ
2232#define PPC_ALTIVEC_REGS \
2233 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2234 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2235 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2236 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2237 /*151*/R4(vscr), R4(vrsave)
2238
c8001721
EZ
2239/* Vectors of hi-lo general purpose registers. */
2240#define PPC_EV_REGS \
2241 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2242 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2243 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2244 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2245
2246/* Lower half of the EV registers. */
2247#define PPC_GPRS_PSEUDO_REGS \
2248 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2249 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2250 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2251 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2252
7a78ae4e 2253/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2254 user-level SPR's. */
7a78ae4e 2255static const struct reg registers_power[] =
c906108c 2256{
7a78ae4e 2257 COMMON_UISA_REGS,
e3f36dbd
KB
2258 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2259 /* 71 */ R4(fpscr)
c906108c
SS
2260};
2261
7a78ae4e 2262/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2263 view of the PowerPC. */
7a78ae4e 2264static const struct reg registers_powerpc[] =
c906108c 2265{
7a78ae4e 2266 COMMON_UISA_REGS,
1fcc0bb8
EZ
2267 PPC_UISA_SPRS,
2268 PPC_ALTIVEC_REGS
c906108c
SS
2269};
2270
ebeac11a
EZ
2271/* PowerPC UISA - a PPC processor as viewed by user-level
2272 code, but without floating point registers. */
2273static const struct reg registers_powerpc_nofp[] =
2274{
2275 COMMON_UISA_NOFP_REGS,
2276 PPC_UISA_SPRS
2277};
2278
64366f1c 2279/* IBM PowerPC 403. */
7a78ae4e 2280static const struct reg registers_403[] =
c5aa993b 2281{
7a78ae4e
ND
2282 COMMON_UISA_REGS,
2283 PPC_UISA_SPRS,
2284 PPC_SEGMENT_REGS,
2285 PPC_OEA_SPRS,
2286 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2287 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2288 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2289 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2290 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2291 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2292};
2293
64366f1c 2294/* IBM PowerPC 403GC. */
7a78ae4e 2295static const struct reg registers_403GC[] =
c5aa993b 2296{
7a78ae4e
ND
2297 COMMON_UISA_REGS,
2298 PPC_UISA_SPRS,
2299 PPC_SEGMENT_REGS,
2300 PPC_OEA_SPRS,
2301 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2302 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2303 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2304 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2305 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2306 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2307 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2308 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2309};
2310
64366f1c 2311/* Motorola PowerPC 505. */
7a78ae4e 2312static const struct reg registers_505[] =
c5aa993b 2313{
7a78ae4e
ND
2314 COMMON_UISA_REGS,
2315 PPC_UISA_SPRS,
2316 PPC_SEGMENT_REGS,
2317 PPC_OEA_SPRS,
2318 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2319};
2320
64366f1c 2321/* Motorola PowerPC 860 or 850. */
7a78ae4e 2322static const struct reg registers_860[] =
c5aa993b 2323{
7a78ae4e
ND
2324 COMMON_UISA_REGS,
2325 PPC_UISA_SPRS,
2326 PPC_SEGMENT_REGS,
2327 PPC_OEA_SPRS,
2328 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2329 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2330 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2331 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2332 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2333 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2334 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2335 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2336 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2337 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2338 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2339 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2340};
2341
7a78ae4e
ND
2342/* Motorola PowerPC 601. Note that the 601 has different register numbers
2343 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2344 register is the stub's problem. */
7a78ae4e 2345static const struct reg registers_601[] =
c5aa993b 2346{
7a78ae4e
ND
2347 COMMON_UISA_REGS,
2348 PPC_UISA_SPRS,
2349 PPC_SEGMENT_REGS,
2350 PPC_OEA_SPRS,
2351 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2352 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2353};
2354
64366f1c 2355/* Motorola PowerPC 602. */
7a78ae4e 2356static const struct reg registers_602[] =
c5aa993b 2357{
7a78ae4e
ND
2358 COMMON_UISA_REGS,
2359 PPC_UISA_SPRS,
2360 PPC_SEGMENT_REGS,
2361 PPC_OEA_SPRS,
2362 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2363 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2364 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2365};
2366
64366f1c 2367/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2368static const struct reg registers_603[] =
c5aa993b 2369{
7a78ae4e
ND
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2375 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2376 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2377};
2378
64366f1c 2379/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2380static const struct reg registers_604[] =
c5aa993b 2381{
7a78ae4e
ND
2382 COMMON_UISA_REGS,
2383 PPC_UISA_SPRS,
2384 PPC_SEGMENT_REGS,
2385 PPC_OEA_SPRS,
2386 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2387 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2388 /* 127 */ R(sia), R(sda)
c906108c
SS
2389};
2390
64366f1c 2391/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2392static const struct reg registers_750[] =
c5aa993b 2393{
7a78ae4e
ND
2394 COMMON_UISA_REGS,
2395 PPC_UISA_SPRS,
2396 PPC_SEGMENT_REGS,
2397 PPC_OEA_SPRS,
2398 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2399 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2400 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2401 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2402 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2403 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2404};
2405
2406
64366f1c 2407/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2408static const struct reg registers_7400[] =
2409{
2410 /* gpr0-gpr31, fpr0-fpr31 */
2411 COMMON_UISA_REGS,
2412 /* ctr, xre, lr, cr */
2413 PPC_UISA_SPRS,
2414 /* sr0-sr15 */
2415 PPC_SEGMENT_REGS,
2416 PPC_OEA_SPRS,
2417 /* vr0-vr31, vrsave, vscr */
2418 PPC_ALTIVEC_REGS
2419 /* FIXME? Add more registers? */
2420};
2421
c8001721
EZ
2422/* Motorola e500. */
2423static const struct reg registers_e500[] =
2424{
2425 R(pc), R(ps),
2426 /* cr, lr, ctr, xer, "" */
2427 PPC_UISA_NOFP_SPRS,
2428 /* 7...38 */
2429 PPC_EV_REGS,
338ef23d
AC
2430 R8(acc), R(spefscr),
2431 /* NOTE: Add new registers here the end of the raw register
2432 list and just before the first pseudo register. */
c8001721
EZ
2433 /* 39...70 */
2434 PPC_GPRS_PSEUDO_REGS
2435};
2436
c906108c 2437/* Information about a particular processor variant. */
7a78ae4e 2438
c906108c 2439struct variant
c5aa993b
JM
2440 {
2441 /* Name of this variant. */
2442 char *name;
c906108c 2443
c5aa993b
JM
2444 /* English description of the variant. */
2445 char *description;
c906108c 2446
64366f1c 2447 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2448 enum bfd_architecture arch;
2449
64366f1c 2450 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2451 unsigned long mach;
2452
489461e2
EZ
2453 /* Number of real registers. */
2454 int nregs;
2455
2456 /* Number of pseudo registers. */
2457 int npregs;
2458
2459 /* Number of total registers (the sum of nregs and npregs). */
2460 int num_tot_regs;
2461
c5aa993b
JM
2462 /* Table of register names; registers[R] is the name of the register
2463 number R. */
7a78ae4e 2464 const struct reg *regs;
c5aa993b 2465 };
c906108c 2466
489461e2
EZ
2467#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2468
2469static int
2470num_registers (const struct reg *reg_list, int num_tot_regs)
2471{
2472 int i;
2473 int nregs = 0;
2474
2475 for (i = 0; i < num_tot_regs; i++)
2476 if (!reg_list[i].pseudo)
2477 nregs++;
2478
2479 return nregs;
2480}
2481
2482static int
2483num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2484{
2485 int i;
2486 int npregs = 0;
2487
2488 for (i = 0; i < num_tot_regs; i++)
2489 if (reg_list[i].pseudo)
2490 npregs ++;
2491
2492 return npregs;
2493}
c906108c 2494
c906108c
SS
2495/* Information in this table comes from the following web sites:
2496 IBM: http://www.chips.ibm.com:80/products/embedded/
2497 Motorola: http://www.mot.com/SPS/PowerPC/
2498
2499 I'm sure I've got some of the variant descriptions not quite right.
2500 Please report any inaccuracies you find to GDB's maintainer.
2501
2502 If you add entries to this table, please be sure to allow the new
2503 value as an argument to the --with-cpu flag, in configure.in. */
2504
489461e2 2505static struct variant variants[] =
c906108c 2506{
489461e2 2507
7a78ae4e 2508 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2509 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2510 registers_powerpc},
7a78ae4e 2511 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2512 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2513 registers_power},
7a78ae4e 2514 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2515 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2516 registers_403},
7a78ae4e 2517 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2518 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2519 registers_601},
7a78ae4e 2520 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2521 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2522 registers_602},
7a78ae4e 2523 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2524 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2525 registers_603},
7a78ae4e 2526 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2527 604, -1, -1, tot_num_registers (registers_604),
2528 registers_604},
7a78ae4e 2529 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2530 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2531 registers_403GC},
7a78ae4e 2532 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2533 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2534 registers_505},
7a78ae4e 2535 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2536 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2537 registers_860},
7a78ae4e 2538 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2539 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2540 registers_750},
1fcc0bb8 2541 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2542 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2543 registers_7400},
c8001721
EZ
2544 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2545 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2546 registers_e500},
7a78ae4e 2547
5d57ee30
KB
2548 /* 64-bit */
2549 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2550 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2551 registers_powerpc},
7a78ae4e 2552 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2553 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
5d57ee30 2555 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2556 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2557 registers_powerpc},
7a78ae4e 2558 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2559 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2560 registers_powerpc},
5d57ee30 2561 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2562 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2563 registers_powerpc},
5d57ee30 2564 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2565 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2566 registers_powerpc},
5d57ee30 2567
64366f1c 2568 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2569 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2570 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2571 registers_power},
7a78ae4e 2572 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2573 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2574 registers_power},
7a78ae4e 2575 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2576 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2577 registers_power},
7a78ae4e 2578
489461e2 2579 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2580};
2581
64366f1c 2582/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2583
2584static void
2585init_variants (void)
2586{
2587 struct variant *v;
2588
2589 for (v = variants; v->name; v++)
2590 {
2591 if (v->nregs == -1)
2592 v->nregs = num_registers (v->regs, v->num_tot_regs);
2593 if (v->npregs == -1)
2594 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2595 }
2596}
c906108c 2597
7a78ae4e 2598/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2599 MACH. If no such variant exists, return null. */
c906108c 2600
7a78ae4e
ND
2601static const struct variant *
2602find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2603{
7a78ae4e 2604 const struct variant *v;
c5aa993b 2605
7a78ae4e
ND
2606 for (v = variants; v->name; v++)
2607 if (arch == v->arch && mach == v->mach)
2608 return v;
c906108c 2609
7a78ae4e 2610 return NULL;
c906108c 2611}
9364a0ef
EZ
2612
2613static int
2614gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2615{
2616 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2617 return print_insn_big_powerpc (memaddr, info);
2618 else
2619 return print_insn_little_powerpc (memaddr, info);
2620}
7a78ae4e 2621\f
7a78ae4e
ND
2622/* Initialize the current architecture based on INFO. If possible, re-use an
2623 architecture from ARCHES, which is a list of architectures already created
2624 during this debugging session.
c906108c 2625
7a78ae4e 2626 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2627 a binary file. */
c906108c 2628
7a78ae4e
ND
2629static struct gdbarch *
2630rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2631{
2632 struct gdbarch *gdbarch;
2633 struct gdbarch_tdep *tdep;
9aa1e687 2634 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2635 struct reg *regs;
2636 const struct variant *v;
2637 enum bfd_architecture arch;
2638 unsigned long mach;
2639 bfd abfd;
7b112f9c 2640 int sysv_abi;
5bf1c677 2641 asection *sect;
7a78ae4e 2642
9aa1e687 2643 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2644 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2645
9aa1e687
KB
2646 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2647 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2648
2649 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2650
e712c1cf 2651 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2652 that, else choose a likely default. */
9aa1e687 2653 if (from_xcoff_exec)
c906108c 2654 {
11ed25ac 2655 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2656 wordsize = 8;
2657 else
2658 wordsize = 4;
c906108c 2659 }
9aa1e687
KB
2660 else if (from_elf_exec)
2661 {
2662 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2663 wordsize = 8;
2664 else
2665 wordsize = 4;
2666 }
c906108c 2667 else
7a78ae4e 2668 {
27b15785
KB
2669 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2670 wordsize = info.bfd_arch_info->bits_per_word /
2671 info.bfd_arch_info->bits_per_byte;
2672 else
2673 wordsize = 4;
7a78ae4e 2674 }
c906108c 2675
64366f1c 2676 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2677 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2678 arches != NULL;
2679 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2680 {
2681 /* Word size in the various PowerPC bfd_arch_info structs isn't
2682 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2683 separate word size check. */
7a78ae4e 2684 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2685 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2686 return arches->gdbarch;
2687 }
c906108c 2688
7a78ae4e
ND
2689 /* None found, create a new architecture from INFO, whose bfd_arch_info
2690 validity depends on the source:
2691 - executable useless
2692 - rs6000_host_arch() good
2693 - core file good
2694 - "set arch" trust blindly
2695 - GDB startup useless but harmless */
c906108c 2696
9aa1e687 2697 if (!from_xcoff_exec)
c906108c 2698 {
b732d07d 2699 arch = info.bfd_arch_info->arch;
7a78ae4e 2700 mach = info.bfd_arch_info->mach;
c906108c 2701 }
7a78ae4e 2702 else
c906108c 2703 {
7a78ae4e 2704 arch = bfd_arch_powerpc;
35cec841 2705 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2706 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2707 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2708 }
2709 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2710 tdep->wordsize = wordsize;
5bf1c677
EZ
2711
2712 /* For e500 executables, the apuinfo section is of help here. Such
2713 section contains the identifier and revision number of each
2714 Application-specific Processing Unit that is present on the
2715 chip. The content of the section is determined by the assembler
2716 which looks at each instruction and determines which unit (and
2717 which version of it) can execute it. In our case we just look for
2718 the existance of the section. */
2719
2720 if (info.abfd)
2721 {
2722 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2723 if (sect)
2724 {
2725 arch = info.bfd_arch_info->arch;
2726 mach = bfd_mach_ppc_e500;
2727 bfd_default_set_arch_mach (&abfd, arch, mach);
2728 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2729 }
2730 }
2731
7a78ae4e
ND
2732 gdbarch = gdbarch_alloc (&info, tdep);
2733 power = arch == bfd_arch_rs6000;
2734
489461e2
EZ
2735 /* Initialize the number of real and pseudo registers in each variant. */
2736 init_variants ();
2737
64366f1c 2738 /* Choose variant. */
7a78ae4e
ND
2739 v = find_variant_by_arch (arch, mach);
2740 if (!v)
dd47e6fd
EZ
2741 return NULL;
2742
7a78ae4e
ND
2743 tdep->regs = v->regs;
2744
2188cbdd
EZ
2745 tdep->ppc_gp0_regnum = 0;
2746 tdep->ppc_gplast_regnum = 31;
2747 tdep->ppc_toc_regnum = 2;
2748 tdep->ppc_ps_regnum = 65;
2749 tdep->ppc_cr_regnum = 66;
2750 tdep->ppc_lr_regnum = 67;
2751 tdep->ppc_ctr_regnum = 68;
2752 tdep->ppc_xer_regnum = 69;
2753 if (v->mach == bfd_mach_ppc_601)
2754 tdep->ppc_mq_regnum = 124;
e3f36dbd 2755 else if (power)
2188cbdd 2756 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2757 else
2758 tdep->ppc_mq_regnum = -1;
2759 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2760
c8001721
EZ
2761 set_gdbarch_pc_regnum (gdbarch, 64);
2762 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2763 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75 2764 if (sysv_abi && wordsize == 8)
05580c65 2765 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 2766 else if (sysv_abi && wordsize == 4)
05580c65 2767 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
2768 else
2769 {
2770 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2771 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2772 }
c8001721 2773
1fcc0bb8
EZ
2774 if (v->arch == bfd_arch_powerpc)
2775 switch (v->mach)
2776 {
2777 case bfd_mach_ppc:
2778 tdep->ppc_vr0_regnum = 71;
2779 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2780 tdep->ppc_ev0_regnum = -1;
2781 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2782 break;
2783 case bfd_mach_ppc_7400:
2784 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2785 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2786 tdep->ppc_ev0_regnum = -1;
2787 tdep->ppc_ev31_regnum = -1;
2788 break;
2789 case bfd_mach_ppc_e500:
338ef23d
AC
2790 tdep->ppc_gp0_regnum = 41;
2791 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2792 tdep->ppc_toc_regnum = -1;
2793 tdep->ppc_ps_regnum = 1;
2794 tdep->ppc_cr_regnum = 2;
2795 tdep->ppc_lr_regnum = 3;
2796 tdep->ppc_ctr_regnum = 4;
2797 tdep->ppc_xer_regnum = 5;
2798 tdep->ppc_ev0_regnum = 7;
2799 tdep->ppc_ev31_regnum = 38;
2800 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2801 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2802 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2803 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2804 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2805 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2806 break;
2807 default:
2808 tdep->ppc_vr0_regnum = -1;
2809 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2810 tdep->ppc_ev0_regnum = -1;
2811 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2812 break;
2813 }
2814
338ef23d
AC
2815 /* Sanity check on registers. */
2816 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2817
a88376a3
KB
2818 /* Set lr_frame_offset. */
2819 if (wordsize == 8)
2820 tdep->lr_frame_offset = 16;
2821 else if (sysv_abi)
2822 tdep->lr_frame_offset = 4;
2823 else
2824 tdep->lr_frame_offset = 8;
2825
2826 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2827 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2828 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2829 {
2830 tdep->regoff[i] = off;
2831 off += regsize (v->regs + i, wordsize);
c906108c
SS
2832 }
2833
56a6dfb9
KB
2834 /* Select instruction printer. */
2835 if (arch == power)
9364a0ef 2836 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2837 else
9364a0ef 2838 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2839
7a78ae4e 2840 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2841
2842 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2843 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2844 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2845 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2846 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2847 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2848 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2849 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2850
2851 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2852 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2853 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2854 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2855 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2856 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2857 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2858 if (sysv_abi)
2859 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2860 else
2861 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2862 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2863
11269d7e 2864 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2865 if (sysv_abi && wordsize == 8)
2866 /* PPC64 SYSV. */
2867 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2868 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2869 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2870 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2871 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2872 224. */
2873 set_gdbarch_frame_red_zone_size (gdbarch, 224);
a59fe496 2874 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e 2875 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2876
781a750d
AC
2877 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2878 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2879 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2880 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2881 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2882 is correct for the SysV ABI when the wordsize is 8, but I'm also
2883 fairly certain that ppc_sysv_abi_push_arguments() will give even
2884 worse results since it only works for 32-bit code. So, for the moment,
2885 we're better off calling rs6000_push_arguments() since it works for
2886 64-bit code. At some point in the future, this matter needs to be
2887 revisited. */
2888 if (sysv_abi && wordsize == 4)
77b2b6d4 2889 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2890 else if (sysv_abi && wordsize == 8)
2891 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2892 else
77b2b6d4 2893 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2894
11269d7e 2895 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2896 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2897
2898 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2899 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
2900 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2901
6066c3de
AC
2902 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2903 for the descriptor and ".FN" for the entry-point -- a user
2904 specifying "break FN" will unexpectedly end up with a breakpoint
2905 on the descriptor and not the function. This architecture method
2906 transforms any breakpoints on descriptors into breakpoints on the
2907 corresponding entry point. */
2908 if (sysv_abi && wordsize == 8)
2909 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2910
7a78ae4e
ND
2911 /* Not sure on this. FIXMEmgo */
2912 set_gdbarch_frame_args_skip (gdbarch, 8);
2913
05580c65 2914 if (!sysv_abi)
7b112f9c 2915 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2916 rs6000_use_struct_convention);
8e0662df 2917
7b112f9c
JT
2918 set_gdbarch_frameless_function_invocation (gdbarch,
2919 rs6000_frameless_function_invocation);
618ce49f 2920 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2921 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2922
f30ee0bc 2923 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2924 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2925
15813d3f
AC
2926 if (!sysv_abi)
2927 {
2928 /* Handle RS/6000 function pointers (which are really function
2929 descriptors). */
f517ea4e
PS
2930 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2931 rs6000_convert_from_func_ptr_addr);
9aa1e687 2932 }
42efa47a
AC
2933 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2934 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2935 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 2936
143985b7
AF
2937 /* Helpers for function argument information. */
2938 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2939
7b112f9c 2940 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2941 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2942
ef5200c1
AC
2943 if (from_xcoff_exec)
2944 {
2945 /* NOTE: jimix/2003-06-09: This test should really check for
2946 GDB_OSABI_AIX when that is defined and becomes
2947 available. (Actually, once things are properly split apart,
2948 the test goes away.) */
2949 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2950 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2951 }
2952
7a78ae4e 2953 return gdbarch;
c906108c
SS
2954}
2955
7b112f9c
JT
2956static void
2957rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2958{
2959 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2960
2961 if (tdep == NULL)
2962 return;
2963
4be87837 2964 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2965}
2966
1fcc0bb8
EZ
2967static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2968
2969static void
2970rs6000_info_powerpc_command (char *args, int from_tty)
2971{
2972 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2973}
2974
c906108c
SS
2975/* Initialization code. */
2976
a78f21af 2977extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2978
c906108c 2979void
fba45db2 2980_initialize_rs6000_tdep (void)
c906108c 2981{
7b112f9c
JT
2982 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2983 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2984
2985 /* Add root prefix command for "info powerpc" commands */
2986 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2987 "Various POWERPC info specific commands.",
2988 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2989}
This page took 0.593536 seconds and 4 git commands to generate.