* breakpoint.c (insert_breakpoints): Skip disabled breakpoints
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
7a78ae4e 37
2fccf04a 38#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 39#include "coff/internal.h" /* for libcoff.h */
2fccf04a 40#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
41#include "coff/xcoff.h"
42#include "libxcoff.h"
7a78ae4e 43
9aa1e687 44#include "elf-bfd.h"
7a78ae4e 45
6ded7999 46#include "solib-svr4.h"
9aa1e687 47#include "ppc-tdep.h"
7a78ae4e
ND
48
49/* If the kernel has to deliver a signal, it pushes a sigcontext
50 structure on the stack and then calls the signal handler, passing
51 the address of the sigcontext in an argument register. Usually
52 the signal handler doesn't save this register, so we have to
53 access the sigcontext structure via an offset from the signal handler
54 frame.
55 The following constants were determined by experimentation on AIX 3.2. */
56#define SIG_FRAME_PC_OFFSET 96
57#define SIG_FRAME_LR_OFFSET 108
58#define SIG_FRAME_FP_OFFSET 284
59
7a78ae4e
ND
60/* To be used by skip_prologue. */
61
62struct rs6000_framedata
63 {
64 int offset; /* total size of frame --- the distance
65 by which we decrement sp to allocate
66 the frame */
67 int saved_gpr; /* smallest # of saved gpr */
68 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 69 int saved_vr; /* smallest # of saved vr */
96ff0de4 70 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
71 int alloca_reg; /* alloca register number (frame ptr) */
72 char frameless; /* true if frameless functions. */
73 char nosavedpc; /* true if pc not saved. */
74 int gpr_offset; /* offset of saved gprs from prev sp */
75 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 76 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 77 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
78 int lr_offset; /* offset of saved lr */
79 int cr_offset; /* offset of saved cr */
6be8bc0c 80 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
81 };
82
83/* Description of a single register. */
84
85struct reg
86 {
87 char *name; /* name of register */
88 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
89 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
90 unsigned char fpr; /* whether register is floating-point */
489461e2 91 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
92 };
93
c906108c
SS
94/* Breakpoint shadows for the single step instructions will be kept here. */
95
c5aa993b
JM
96static struct sstep_breaks
97 {
98 /* Address, or 0 if this is not in use. */
99 CORE_ADDR address;
100 /* Shadow contents. */
101 char data[4];
102 }
103stepBreaks[2];
c906108c
SS
104
105/* Hook for determining the TOC address when calling functions in the
106 inferior under AIX. The initialization code in rs6000-nat.c sets
107 this hook to point to find_toc_address. */
108
7a78ae4e
ND
109CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
110
111/* Hook to set the current architecture when starting a child process.
112 rs6000-nat.c sets this. */
113
114void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
115
116/* Static function prototypes */
117
a14ed312
KB
118static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
119 CORE_ADDR safety);
077276e8
KB
120static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
121 struct rs6000_framedata *);
7a78ae4e
ND
122static void frame_get_saved_regs (struct frame_info * fi,
123 struct rs6000_framedata * fdatap);
124static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 125
64b84175
KB
126/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127int
128altivec_register_p (int regno)
129{
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135}
136
7a78ae4e 137/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 138
7a78ae4e
ND
139static CORE_ADDR
140read_memory_addr (CORE_ADDR memaddr, int len)
141{
142 return read_memory_unsigned_integer (memaddr, len);
143}
c906108c 144
7a78ae4e
ND
145static CORE_ADDR
146rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
147{
148 struct rs6000_framedata frame;
077276e8 149 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
150 return pc;
151}
152
153
c906108c
SS
154/* Fill in fi->saved_regs */
155
156struct frame_extra_info
157{
158 /* Functions calling alloca() change the value of the stack
159 pointer. We need to use initial stack pointer (which is saved in
160 r31 by gcc) in such cases. If a compiler emits traceback table,
161 then we should use the alloca register specified in traceback
162 table. FIXME. */
c5aa993b 163 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
164};
165
9aa1e687 166void
7a78ae4e 167rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 168{
c9012c71
AC
169 struct frame_extra_info *extra_info =
170 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
171 extra_info->initial_sp = 0;
bdd78e62
AC
172 if (get_next_frame (fi) != NULL
173 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 174 /* We're in get_prev_frame */
c906108c
SS
175 /* and this is a special signal frame. */
176 /* (fi->pc will be some low address in the kernel, */
177 /* to which the signal handler returns). */
5a203e44 178 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
179}
180
7a78ae4e
ND
181/* Put here the code to store, into a struct frame_saved_regs,
182 the addresses of the saved registers of frame described by FRAME_INFO.
183 This includes special registers such as pc and fp saved in special
184 ways in the stack frame. sp is even more special:
185 the address we return for it IS the sp for the next frame. */
c906108c 186
7a78ae4e
ND
187/* In this implementation for RS/6000, we do *not* save sp. I am
188 not sure if it will be needed. The following function takes care of gpr's
189 and fpr's only. */
190
9aa1e687 191void
7a78ae4e 192rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
193{
194 frame_get_saved_regs (fi, NULL);
195}
196
7a78ae4e
ND
197static CORE_ADDR
198rs6000_frame_args_address (struct frame_info *fi)
c906108c 199{
c9012c71
AC
200 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
201 if (extra_info->initial_sp != 0)
202 return extra_info->initial_sp;
c906108c
SS
203 else
204 return frame_initial_stack_address (fi);
205}
206
7a78ae4e
ND
207/* Immediately after a function call, return the saved pc.
208 Can't go through the frames for this because on some machines
209 the new frame is not set up until the new function executes
210 some instructions. */
211
212static CORE_ADDR
213rs6000_saved_pc_after_call (struct frame_info *fi)
214{
2188cbdd 215 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 216}
c906108c
SS
217
218/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
219
220static CORE_ADDR
7a78ae4e 221branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
222{
223 CORE_ADDR dest;
224 int immediate;
225 int absolute;
226 int ext_op;
227
228 absolute = (int) ((instr >> 1) & 1);
229
c5aa993b
JM
230 switch (opcode)
231 {
232 case 18:
233 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
234 if (absolute)
235 dest = immediate;
236 else
237 dest = pc + immediate;
238 break;
239
240 case 16:
241 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
242 if (absolute)
243 dest = immediate;
244 else
245 dest = pc + immediate;
246 break;
247
248 case 19:
249 ext_op = (instr >> 1) & 0x3ff;
250
251 if (ext_op == 16) /* br conditional register */
252 {
2188cbdd 253 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
254
255 /* If we are about to return from a signal handler, dest is
256 something like 0x3c90. The current frame is a signal handler
257 caller frame, upon completion of the sigreturn system call
258 execution will return to the saved PC in the frame. */
259 if (dest < TEXT_SEGMENT_BASE)
260 {
261 struct frame_info *fi;
262
263 fi = get_current_frame ();
264 if (fi != NULL)
8b36eed8 265 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 266 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
267 }
268 }
269
270 else if (ext_op == 528) /* br cond to count reg */
271 {
2188cbdd 272 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
273
274 /* If we are about to execute a system call, dest is something
275 like 0x22fc or 0x3b00. Upon completion the system call
276 will return to the address in the link register. */
277 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 278 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
279 }
280 else
281 return -1;
282 break;
c906108c 283
c5aa993b
JM
284 default:
285 return -1;
286 }
c906108c
SS
287 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
288}
289
290
291/* Sequence of bytes for breakpoint instruction. */
292
293#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
294#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
295
f4f9705a 296const static unsigned char *
7a78ae4e 297rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
298{
299 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
300 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
301 *bp_size = 4;
d7449b42 302 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
303 return big_breakpoint;
304 else
305 return little_breakpoint;
306}
307
308
309/* AIX does not support PT_STEP. Simulate it. */
310
311void
379d08a1
AC
312rs6000_software_single_step (enum target_signal signal,
313 int insert_breakpoints_p)
c906108c 314{
7c40d541
KB
315 CORE_ADDR dummy;
316 int breakp_sz;
f4f9705a 317 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
318 int ii, insn;
319 CORE_ADDR loc;
320 CORE_ADDR breaks[2];
321 int opcode;
322
c5aa993b
JM
323 if (insert_breakpoints_p)
324 {
c906108c 325
c5aa993b 326 loc = read_pc ();
c906108c 327
c5aa993b 328 insn = read_memory_integer (loc, 4);
c906108c 329
7c40d541 330 breaks[0] = loc + breakp_sz;
c5aa993b
JM
331 opcode = insn >> 26;
332 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 333
c5aa993b
JM
334 /* Don't put two breakpoints on the same address. */
335 if (breaks[1] == breaks[0])
336 breaks[1] = -1;
c906108c 337
c5aa993b 338 stepBreaks[1].address = 0;
c906108c 339
c5aa993b
JM
340 for (ii = 0; ii < 2; ++ii)
341 {
c906108c 342
c5aa993b
JM
343 /* ignore invalid breakpoint. */
344 if (breaks[ii] == -1)
345 continue;
7c40d541 346 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
347 stepBreaks[ii].address = breaks[ii];
348 }
c906108c 349
c5aa993b
JM
350 }
351 else
352 {
c906108c 353
c5aa993b
JM
354 /* remove step breakpoints. */
355 for (ii = 0; ii < 2; ++ii)
356 if (stepBreaks[ii].address != 0)
7c40d541
KB
357 target_remove_breakpoint (stepBreaks[ii].address,
358 stepBreaks[ii].data);
c5aa993b 359 }
c906108c 360 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 361 /* What errors? {read,write}_memory call error(). */
c906108c
SS
362}
363
364
365/* return pc value after skipping a function prologue and also return
366 information about a function frame.
367
368 in struct rs6000_framedata fdata:
c5aa993b
JM
369 - frameless is TRUE, if function does not have a frame.
370 - nosavedpc is TRUE, if function does not save %pc value in its frame.
371 - offset is the initial size of this stack frame --- the amount by
372 which we decrement the sp to allocate the frame.
373 - saved_gpr is the number of the first saved gpr.
374 - saved_fpr is the number of the first saved fpr.
6be8bc0c 375 - saved_vr is the number of the first saved vr.
96ff0de4 376 - saved_ev is the number of the first saved ev.
c5aa993b
JM
377 - alloca_reg is the number of the register used for alloca() handling.
378 Otherwise -1.
379 - gpr_offset is the offset of the first saved gpr from the previous frame.
380 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 381 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 382 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
383 - lr_offset is the offset of the saved lr
384 - cr_offset is the offset of the saved cr
6be8bc0c 385 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 386 */
c906108c
SS
387
388#define SIGNED_SHORT(x) \
389 ((sizeof (short) == 2) \
390 ? ((int)(short)(x)) \
391 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
392
393#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
394
55d05f3b
KB
395/* Limit the number of skipped non-prologue instructions, as the examining
396 of the prologue is expensive. */
397static int max_skip_non_prologue_insns = 10;
398
399/* Given PC representing the starting address of a function, and
400 LIM_PC which is the (sloppy) limit to which to scan when looking
401 for a prologue, attempt to further refine this limit by using
402 the line data in the symbol table. If successful, a better guess
403 on where the prologue ends is returned, otherwise the previous
404 value of lim_pc is returned. */
405static CORE_ADDR
406refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
407{
408 struct symtab_and_line prologue_sal;
409
410 prologue_sal = find_pc_line (pc, 0);
411 if (prologue_sal.line != 0)
412 {
413 int i;
414 CORE_ADDR addr = prologue_sal.end;
415
416 /* Handle the case in which compiler's optimizer/scheduler
417 has moved instructions into the prologue. We scan ahead
418 in the function looking for address ranges whose corresponding
419 line number is less than or equal to the first one that we
420 found for the function. (It can be less than when the
421 scheduler puts a body instruction before the first prologue
422 instruction.) */
423 for (i = 2 * max_skip_non_prologue_insns;
424 i > 0 && (lim_pc == 0 || addr < lim_pc);
425 i--)
426 {
427 struct symtab_and_line sal;
428
429 sal = find_pc_line (addr, 0);
430 if (sal.line == 0)
431 break;
432 if (sal.line <= prologue_sal.line
433 && sal.symtab == prologue_sal.symtab)
434 {
435 prologue_sal = sal;
436 }
437 addr = sal.end;
438 }
439
440 if (lim_pc == 0 || prologue_sal.end < lim_pc)
441 lim_pc = prologue_sal.end;
442 }
443 return lim_pc;
444}
445
446
7a78ae4e 447static CORE_ADDR
077276e8 448skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
449{
450 CORE_ADDR orig_pc = pc;
55d05f3b 451 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 452 CORE_ADDR li_found_pc = 0;
c906108c
SS
453 char buf[4];
454 unsigned long op;
455 long offset = 0;
6be8bc0c 456 long vr_saved_offset = 0;
482ca3f5
KB
457 int lr_reg = -1;
458 int cr_reg = -1;
6be8bc0c 459 int vr_reg = -1;
96ff0de4
EZ
460 int ev_reg = -1;
461 long ev_offset = 0;
6be8bc0c 462 int vrsave_reg = -1;
c906108c
SS
463 int reg;
464 int framep = 0;
465 int minimal_toc_loaded = 0;
ddb20c56 466 int prev_insn_was_prologue_insn = 1;
55d05f3b 467 int num_skip_non_prologue_insns = 0;
96ff0de4 468 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 469 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 470
55d05f3b
KB
471 /* Attempt to find the end of the prologue when no limit is specified.
472 Note that refine_prologue_limit() has been written so that it may
473 be used to "refine" the limits of non-zero PC values too, but this
474 is only safe if we 1) trust the line information provided by the
475 compiler and 2) iterate enough to actually find the end of the
476 prologue.
477
478 It may become a good idea at some point (for both performance and
479 accuracy) to unconditionally call refine_prologue_limit(). But,
480 until we can make a clear determination that this is beneficial,
481 we'll play it safe and only use it to obtain a limit when none
482 has been specified. */
483 if (lim_pc == 0)
484 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 485
ddb20c56 486 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
487 fdata->saved_gpr = -1;
488 fdata->saved_fpr = -1;
6be8bc0c 489 fdata->saved_vr = -1;
96ff0de4 490 fdata->saved_ev = -1;
c906108c
SS
491 fdata->alloca_reg = -1;
492 fdata->frameless = 1;
493 fdata->nosavedpc = 1;
494
55d05f3b 495 for (;; pc += 4)
c906108c 496 {
ddb20c56
KB
497 /* Sometimes it isn't clear if an instruction is a prologue
498 instruction or not. When we encounter one of these ambiguous
499 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
500 Otherwise, we'll assume that it really is a prologue instruction. */
501 if (prev_insn_was_prologue_insn)
502 last_prologue_pc = pc;
55d05f3b
KB
503
504 /* Stop scanning if we've hit the limit. */
505 if (lim_pc != 0 && pc >= lim_pc)
506 break;
507
ddb20c56
KB
508 prev_insn_was_prologue_insn = 1;
509
55d05f3b 510 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
511 if (target_read_memory (pc, buf, 4))
512 break;
513 op = extract_signed_integer (buf, 4);
c906108c 514
c5aa993b
JM
515 if ((op & 0xfc1fffff) == 0x7c0802a6)
516 { /* mflr Rx */
517 lr_reg = (op & 0x03e00000) | 0x90010000;
518 continue;
c906108c 519
c5aa993b
JM
520 }
521 else if ((op & 0xfc1fffff) == 0x7c000026)
522 { /* mfcr Rx */
523 cr_reg = (op & 0x03e00000) | 0x90010000;
524 continue;
c906108c 525
c906108c 526 }
c5aa993b
JM
527 else if ((op & 0xfc1f0000) == 0xd8010000)
528 { /* stfd Rx,NUM(r1) */
529 reg = GET_SRC_REG (op);
530 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
531 {
532 fdata->saved_fpr = reg;
533 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
534 }
535 continue;
c906108c 536
c5aa993b
JM
537 }
538 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
539 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
540 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
541 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
542 {
543
544 reg = GET_SRC_REG (op);
545 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
546 {
547 fdata->saved_gpr = reg;
7a78ae4e
ND
548 if ((op & 0xfc1f0003) == 0xf8010000)
549 op = (op >> 1) << 1;
c5aa993b
JM
550 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
551 }
552 continue;
c906108c 553
ddb20c56
KB
554 }
555 else if ((op & 0xffff0000) == 0x60000000)
556 {
96ff0de4 557 /* nop */
ddb20c56
KB
558 /* Allow nops in the prologue, but do not consider them to
559 be part of the prologue unless followed by other prologue
560 instructions. */
561 prev_insn_was_prologue_insn = 0;
562 continue;
563
c906108c 564 }
c5aa993b
JM
565 else if ((op & 0xffff0000) == 0x3c000000)
566 { /* addis 0,0,NUM, used
567 for >= 32k frames */
568 fdata->offset = (op & 0x0000ffff) << 16;
569 fdata->frameless = 0;
570 continue;
571
572 }
573 else if ((op & 0xffff0000) == 0x60000000)
574 { /* ori 0,0,NUM, 2nd ha
575 lf of >= 32k frames */
576 fdata->offset |= (op & 0x0000ffff);
577 fdata->frameless = 0;
578 continue;
579
580 }
482ca3f5 581 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
582 { /* st Rx,NUM(r1)
583 where Rx == lr */
584 fdata->lr_offset = SIGNED_SHORT (op) + offset;
585 fdata->nosavedpc = 0;
586 lr_reg = 0;
587 continue;
588
589 }
482ca3f5 590 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
591 { /* st Rx,NUM(r1)
592 where Rx == cr */
593 fdata->cr_offset = SIGNED_SHORT (op) + offset;
594 cr_reg = 0;
595 continue;
596
597 }
598 else if (op == 0x48000005)
599 { /* bl .+4 used in
600 -mrelocatable */
601 continue;
602
603 }
604 else if (op == 0x48000004)
605 { /* b .+4 (xlc) */
606 break;
607
c5aa993b 608 }
6be8bc0c
EZ
609 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
610 in V.4 -mminimal-toc */
c5aa993b
JM
611 (op & 0xffff0000) == 0x3bde0000)
612 { /* addi 30,30,foo@l */
613 continue;
c906108c 614
c5aa993b
JM
615 }
616 else if ((op & 0xfc000001) == 0x48000001)
617 { /* bl foo,
618 to save fprs??? */
c906108c 619
c5aa993b 620 fdata->frameless = 0;
6be8bc0c
EZ
621 /* Don't skip over the subroutine call if it is not within
622 the first three instructions of the prologue. */
c5aa993b
JM
623 if ((pc - orig_pc) > 8)
624 break;
625
626 op = read_memory_integer (pc + 4, 4);
627
6be8bc0c
EZ
628 /* At this point, make sure this is not a trampoline
629 function (a function that simply calls another functions,
630 and nothing else). If the next is not a nop, this branch
631 was part of the function prologue. */
c5aa993b
JM
632
633 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
634 break; /* don't skip over
635 this branch */
636 continue;
637
638 /* update stack pointer */
639 }
7a78ae4e
ND
640 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
641 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
642 {
c5aa993b 643 fdata->frameless = 0;
7a78ae4e
ND
644 if ((op & 0xffff0003) == 0xf8210001)
645 op = (op >> 1) << 1;
c5aa993b
JM
646 fdata->offset = SIGNED_SHORT (op);
647 offset = fdata->offset;
648 continue;
649
650 }
651 else if (op == 0x7c21016e)
652 { /* stwux 1,1,0 */
653 fdata->frameless = 0;
654 offset = fdata->offset;
655 continue;
656
657 /* Load up minimal toc pointer */
658 }
659 else if ((op >> 22) == 0x20f
660 && !minimal_toc_loaded)
661 { /* l r31,... or l r30,... */
662 minimal_toc_loaded = 1;
663 continue;
664
f6077098
KB
665 /* move parameters from argument registers to local variable
666 registers */
667 }
668 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
669 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
670 (((op >> 21) & 31) <= 10) &&
96ff0de4 671 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
672 {
673 continue;
674
c5aa993b
JM
675 /* store parameters in stack */
676 }
6be8bc0c 677 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 678 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
679 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
680 {
c5aa993b 681 continue;
c906108c 682
c5aa993b
JM
683 /* store parameters in stack via frame pointer */
684 }
685 else if (framep &&
686 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
687 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
688 (op & 0xfc1f0000) == 0xfc1f0000))
689 { /* frsp, fp?,NUM(r1) */
690 continue;
691
692 /* Set up frame pointer */
693 }
694 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
695 || op == 0x7c3f0b78)
696 { /* mr r31, r1 */
697 fdata->frameless = 0;
698 framep = 1;
6f99cb26 699 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
700 continue;
701
702 /* Another way to set up the frame pointer. */
703 }
704 else if ((op & 0xfc1fffff) == 0x38010000)
705 { /* addi rX, r1, 0x0 */
706 fdata->frameless = 0;
707 framep = 1;
6f99cb26
AC
708 fdata->alloca_reg = (tdep->ppc_gp0_regnum
709 + ((op & ~0x38010000) >> 21));
c5aa993b 710 continue;
c5aa993b 711 }
6be8bc0c
EZ
712 /* AltiVec related instructions. */
713 /* Store the vrsave register (spr 256) in another register for
714 later manipulation, or load a register into the vrsave
715 register. 2 instructions are used: mfvrsave and
716 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
717 and mtspr SPR256, Rn. */
718 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
719 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
720 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
721 {
722 vrsave_reg = GET_SRC_REG (op);
723 continue;
724 }
725 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
726 {
727 continue;
728 }
729 /* Store the register where vrsave was saved to onto the stack:
730 rS is the register where vrsave was stored in a previous
731 instruction. */
732 /* 100100 sssss 00001 dddddddd dddddddd */
733 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
734 {
735 if (vrsave_reg == GET_SRC_REG (op))
736 {
737 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
738 vrsave_reg = -1;
739 }
740 continue;
741 }
742 /* Compute the new value of vrsave, by modifying the register
743 where vrsave was saved to. */
744 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
745 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
746 {
747 continue;
748 }
749 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
750 in a pair of insns to save the vector registers on the
751 stack. */
752 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
753 /* 001110 01110 00000 iiii iiii iiii iiii */
754 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
755 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
756 {
757 li_found_pc = pc;
758 vr_saved_offset = SIGNED_SHORT (op);
759 }
760 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
761 /* 011111 sssss 11111 00000 00111001110 */
762 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
763 {
764 if (pc == (li_found_pc + 4))
765 {
766 vr_reg = GET_SRC_REG (op);
767 /* If this is the first vector reg to be saved, or if
768 it has a lower number than others previously seen,
769 reupdate the frame info. */
770 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
771 {
772 fdata->saved_vr = vr_reg;
773 fdata->vr_offset = vr_saved_offset + offset;
774 }
775 vr_saved_offset = -1;
776 vr_reg = -1;
777 li_found_pc = 0;
778 }
779 }
780 /* End AltiVec related instructions. */
96ff0de4
EZ
781
782 /* Start BookE related instructions. */
783 /* Store gen register S at (r31+uimm).
784 Any register less than r13 is volatile, so we don't care. */
785 /* 000100 sssss 11111 iiiii 01100100001 */
786 else if (arch_info->mach == bfd_mach_ppc_e500
787 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
788 {
789 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
790 {
791 unsigned int imm;
792 ev_reg = GET_SRC_REG (op);
793 imm = (op >> 11) & 0x1f;
794 ev_offset = imm * 8;
795 /* If this is the first vector reg to be saved, or if
796 it has a lower number than others previously seen,
797 reupdate the frame info. */
798 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
799 {
800 fdata->saved_ev = ev_reg;
801 fdata->ev_offset = ev_offset + offset;
802 }
803 }
804 continue;
805 }
806 /* Store gen register rS at (r1+rB). */
807 /* 000100 sssss 00001 bbbbb 01100100000 */
808 else if (arch_info->mach == bfd_mach_ppc_e500
809 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
810 {
811 if (pc == (li_found_pc + 4))
812 {
813 ev_reg = GET_SRC_REG (op);
814 /* If this is the first vector reg to be saved, or if
815 it has a lower number than others previously seen,
816 reupdate the frame info. */
817 /* We know the contents of rB from the previous instruction. */
818 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
819 {
820 fdata->saved_ev = ev_reg;
821 fdata->ev_offset = vr_saved_offset + offset;
822 }
823 vr_saved_offset = -1;
824 ev_reg = -1;
825 li_found_pc = 0;
826 }
827 continue;
828 }
829 /* Store gen register r31 at (rA+uimm). */
830 /* 000100 11111 aaaaa iiiii 01100100001 */
831 else if (arch_info->mach == bfd_mach_ppc_e500
832 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
833 {
834 /* Wwe know that the source register is 31 already, but
835 it can't hurt to compute it. */
836 ev_reg = GET_SRC_REG (op);
837 ev_offset = ((op >> 11) & 0x1f) * 8;
838 /* If this is the first vector reg to be saved, or if
839 it has a lower number than others previously seen,
840 reupdate the frame info. */
841 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
842 {
843 fdata->saved_ev = ev_reg;
844 fdata->ev_offset = ev_offset + offset;
845 }
846
847 continue;
848 }
849 /* Store gen register S at (r31+r0).
850 Store param on stack when offset from SP bigger than 4 bytes. */
851 /* 000100 sssss 11111 00000 01100100000 */
852 else if (arch_info->mach == bfd_mach_ppc_e500
853 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
854 {
855 if (pc == (li_found_pc + 4))
856 {
857 if ((op & 0x03e00000) >= 0x01a00000)
858 {
859 ev_reg = GET_SRC_REG (op);
860 /* If this is the first vector reg to be saved, or if
861 it has a lower number than others previously seen,
862 reupdate the frame info. */
863 /* We know the contents of r0 from the previous
864 instruction. */
865 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
866 {
867 fdata->saved_ev = ev_reg;
868 fdata->ev_offset = vr_saved_offset + offset;
869 }
870 ev_reg = -1;
871 }
872 vr_saved_offset = -1;
873 li_found_pc = 0;
874 continue;
875 }
876 }
877 /* End BookE related instructions. */
878
c5aa993b
JM
879 else
880 {
55d05f3b
KB
881 /* Not a recognized prologue instruction.
882 Handle optimizer code motions into the prologue by continuing
883 the search if we have no valid frame yet or if the return
884 address is not yet saved in the frame. */
885 if (fdata->frameless == 0
886 && (lr_reg == -1 || fdata->nosavedpc == 0))
887 break;
888
889 if (op == 0x4e800020 /* blr */
890 || op == 0x4e800420) /* bctr */
891 /* Do not scan past epilogue in frameless functions or
892 trampolines. */
893 break;
894 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 895 /* Never skip branches. */
55d05f3b
KB
896 break;
897
898 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
899 /* Do not scan too many insns, scanning insns is expensive with
900 remote targets. */
901 break;
902
903 /* Continue scanning. */
904 prev_insn_was_prologue_insn = 0;
905 continue;
c5aa993b 906 }
c906108c
SS
907 }
908
909#if 0
910/* I have problems with skipping over __main() that I need to address
911 * sometime. Previously, I used to use misc_function_vector which
912 * didn't work as well as I wanted to be. -MGO */
913
914 /* If the first thing after skipping a prolog is a branch to a function,
915 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 916 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 917 work before calling a function right after a prologue, thus we can
64366f1c 918 single out such gcc2 behaviour. */
c906108c 919
c906108c 920
c5aa993b
JM
921 if ((op & 0xfc000001) == 0x48000001)
922 { /* bl foo, an initializer function? */
923 op = read_memory_integer (pc + 4, 4);
924
925 if (op == 0x4def7b82)
926 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 927
64366f1c
EZ
928 /* Check and see if we are in main. If so, skip over this
929 initializer function as well. */
c906108c 930
c5aa993b 931 tmp = find_pc_misc_function (pc);
51cc5b07 932 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
933 return pc + 8;
934 }
c906108c 935 }
c906108c 936#endif /* 0 */
c5aa993b
JM
937
938 fdata->offset = -fdata->offset;
ddb20c56 939 return last_prologue_pc;
c906108c
SS
940}
941
942
943/*************************************************************************
f6077098 944 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
945 frames, etc.
946*************************************************************************/
947
c906108c 948
64366f1c 949/* Pop the innermost frame, go back to the caller. */
c5aa993b 950
c906108c 951static void
7a78ae4e 952rs6000_pop_frame (void)
c906108c 953{
470d5666 954 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
955 struct rs6000_framedata fdata;
956 struct frame_info *frame = get_current_frame ();
470d5666 957 int ii, wordsize;
c906108c
SS
958
959 pc = read_pc ();
c193f6ac 960 sp = get_frame_base (frame);
c906108c 961
bdd78e62 962 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
963 get_frame_base (frame),
964 get_frame_base (frame)))
c906108c 965 {
7a78ae4e
ND
966 generic_pop_dummy_frame ();
967 flush_cached_frames ();
968 return;
c906108c
SS
969 }
970
971 /* Make sure that all registers are valid. */
73937e03 972 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
c906108c 973
64366f1c 974 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 975 still in the link register, otherwise walk the frames and retrieve the
64366f1c 976 saved %pc value in the previous frame. */
c906108c 977
bdd78e62
AC
978 addr = get_pc_function_start (get_frame_pc (frame));
979 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 980
21283beb 981 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
982 if (fdata.frameless)
983 prev_sp = sp;
984 else
7a78ae4e 985 prev_sp = read_memory_addr (sp, wordsize);
c906108c 986 if (fdata.lr_offset == 0)
2188cbdd 987 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 988 else
7a78ae4e 989 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
990
991 /* reset %pc value. */
992 write_register (PC_REGNUM, lr);
993
64366f1c 994 /* reset register values if any was saved earlier. */
c906108c
SS
995
996 if (fdata.saved_gpr != -1)
997 {
998 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
999 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1000 {
524d7c18
AC
1001 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1002 wordsize);
7a78ae4e 1003 addr += wordsize;
c5aa993b 1004 }
c906108c
SS
1005 }
1006
1007 if (fdata.saved_fpr != -1)
1008 {
1009 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1010 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1011 {
524d7c18 1012 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1013 addr += 8;
1014 }
c906108c
SS
1015 }
1016
1017 write_register (SP_REGNUM, prev_sp);
1018 target_store_registers (-1);
1019 flush_cached_frames ();
1020}
1021
7a78ae4e 1022/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1023 address. Its arguments will be passed by gdb. */
c906108c 1024
7a78ae4e
ND
1025static void
1026rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1027 int nargs, struct value **args, struct type *type,
7a78ae4e 1028 int gcc_p)
c906108c 1029{
c906108c
SS
1030 int ii;
1031 CORE_ADDR target_addr;
1032
7a78ae4e 1033 if (rs6000_find_toc_address_hook != NULL)
f6077098 1034 {
7a78ae4e 1035 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1036 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1037 tocvalue);
f6077098 1038 }
c906108c
SS
1039}
1040
11269d7e
AC
1041/* All the ABI's require 16 byte alignment. */
1042static CORE_ADDR
1043rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1044{
1045 return (addr & -16);
1046}
1047
7a78ae4e 1048/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1049 the first eight words of the argument list (that might be less than
1050 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1051 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1052 passed in fpr's, in addition to that. Rest of the parameters if any
1053 are passed in user stack. There might be cases in which half of the
c906108c
SS
1054 parameter is copied into registers, the other half is pushed into
1055 stack.
1056
7a78ae4e
ND
1057 Stack must be aligned on 64-bit boundaries when synthesizing
1058 function calls.
1059
c906108c
SS
1060 If the function is returning a structure, then the return address is passed
1061 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1062 starting from r4. */
c906108c 1063
7a78ae4e 1064static CORE_ADDR
ea7c478f 1065rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1066 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1067{
1068 int ii;
1069 int len = 0;
c5aa993b
JM
1070 int argno; /* current argument number */
1071 int argbytes; /* current argument byte */
1072 char tmp_buffer[50];
1073 int f_argno = 0; /* current floating point argno */
21283beb 1074 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1075
ea7c478f 1076 struct value *arg = 0;
c906108c
SS
1077 struct type *type;
1078
1079 CORE_ADDR saved_sp;
1080
64366f1c
EZ
1081 /* The first eight words of ther arguments are passed in registers.
1082 Copy them appropriately.
c906108c
SS
1083
1084 If the function is returning a `struct', then the first word (which
64366f1c 1085 will be passed in r3) is used for struct return address. In that
c906108c 1086 case we should advance one word and start from r4 register to copy
64366f1c 1087 parameters. */
c906108c 1088
c5aa993b 1089 ii = struct_return ? 1 : 0;
c906108c
SS
1090
1091/*
c5aa993b
JM
1092 effectively indirect call... gcc does...
1093
1094 return_val example( float, int);
1095
1096 eabi:
1097 float in fp0, int in r3
1098 offset of stack on overflow 8/16
1099 for varargs, must go by type.
1100 power open:
1101 float in r3&r4, int in r5
1102 offset of stack on overflow different
1103 both:
1104 return in r3 or f0. If no float, must study how gcc emulates floats;
1105 pay attention to arg promotion.
1106 User may have to cast\args to handle promotion correctly
1107 since gdb won't know if prototype supplied or not.
1108 */
c906108c 1109
c5aa993b
JM
1110 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1111 {
f6077098 1112 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1113
1114 arg = args[argno];
1115 type = check_typedef (VALUE_TYPE (arg));
1116 len = TYPE_LENGTH (type);
1117
1118 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1119 {
1120
64366f1c 1121 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1122 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1123 there is no way we would run out of them. */
c5aa993b
JM
1124
1125 if (len > 8)
1126 printf_unfiltered (
1127 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1128
524d7c18 1129 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1130 VALUE_CONTENTS (arg),
1131 len);
1132 ++f_argno;
1133 }
1134
f6077098 1135 if (len > reg_size)
c5aa993b
JM
1136 {
1137
64366f1c 1138 /* Argument takes more than one register. */
c5aa993b
JM
1139 while (argbytes < len)
1140 {
524d7c18
AC
1141 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1142 reg_size);
1143 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1144 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1145 (len - argbytes) > reg_size
1146 ? reg_size : len - argbytes);
1147 ++ii, argbytes += reg_size;
c5aa993b
JM
1148
1149 if (ii >= 8)
1150 goto ran_out_of_registers_for_arguments;
1151 }
1152 argbytes = 0;
1153 --ii;
1154 }
1155 else
64366f1c
EZ
1156 {
1157 /* Argument can fit in one register. No problem. */
d7449b42 1158 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1159 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1160 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1161 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1162 }
1163 ++argno;
c906108c 1164 }
c906108c
SS
1165
1166ran_out_of_registers_for_arguments:
1167
7a78ae4e 1168 saved_sp = read_sp ();
cc9836a8 1169
64366f1c 1170 /* Location for 8 parameters are always reserved. */
7a78ae4e 1171 sp -= wordsize * 8;
f6077098 1172
64366f1c 1173 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1174 sp -= wordsize * 6;
f6077098 1175
64366f1c 1176 /* Stack pointer must be quadword aligned. */
7a78ae4e 1177 sp &= -16;
c906108c 1178
64366f1c
EZ
1179 /* If there are more arguments, allocate space for them in
1180 the stack, then push them starting from the ninth one. */
c906108c 1181
c5aa993b
JM
1182 if ((argno < nargs) || argbytes)
1183 {
1184 int space = 0, jj;
c906108c 1185
c5aa993b
JM
1186 if (argbytes)
1187 {
1188 space += ((len - argbytes + 3) & -4);
1189 jj = argno + 1;
1190 }
1191 else
1192 jj = argno;
c906108c 1193
c5aa993b
JM
1194 for (; jj < nargs; ++jj)
1195 {
ea7c478f 1196 struct value *val = args[jj];
c5aa993b
JM
1197 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1198 }
c906108c 1199
64366f1c 1200 /* Add location required for the rest of the parameters. */
f6077098 1201 space = (space + 15) & -16;
c5aa993b 1202 sp -= space;
c906108c 1203
64366f1c
EZ
1204 /* This is another instance we need to be concerned about
1205 securing our stack space. If we write anything underneath %sp
1206 (r1), we might conflict with the kernel who thinks he is free
1207 to use this area. So, update %sp first before doing anything
1208 else. */
c906108c 1209
c5aa993b 1210 write_register (SP_REGNUM, sp);
c906108c 1211
64366f1c
EZ
1212 /* If the last argument copied into the registers didn't fit there
1213 completely, push the rest of it into stack. */
c906108c 1214
c5aa993b
JM
1215 if (argbytes)
1216 {
1217 write_memory (sp + 24 + (ii * 4),
1218 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1219 len - argbytes);
1220 ++argno;
1221 ii += ((len - argbytes + 3) & -4) / 4;
1222 }
c906108c 1223
64366f1c 1224 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1225 for (; argno < nargs; ++argno)
1226 {
c906108c 1227
c5aa993b
JM
1228 arg = args[argno];
1229 type = check_typedef (VALUE_TYPE (arg));
1230 len = TYPE_LENGTH (type);
c906108c
SS
1231
1232
64366f1c
EZ
1233 /* Float types should be passed in fpr's, as well as in the
1234 stack. */
c5aa993b
JM
1235 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1236 {
c906108c 1237
c5aa993b
JM
1238 if (len > 8)
1239 printf_unfiltered (
1240 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1241
524d7c18 1242 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1243 VALUE_CONTENTS (arg),
1244 len);
1245 ++f_argno;
1246 }
c906108c 1247
c5aa993b
JM
1248 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1249 ii += ((len + 3) & -4) / 4;
1250 }
c906108c 1251 }
c906108c 1252 else
64366f1c 1253 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1254 write_register (SP_REGNUM, sp);
1255
c906108c
SS
1256 /* set back chain properly */
1257 store_address (tmp_buffer, 4, saved_sp);
1258 write_memory (sp, tmp_buffer, 4);
1259
1260 target_store_registers (-1);
1261 return sp;
1262}
c906108c
SS
1263
1264/* Function: ppc_push_return_address (pc, sp)
64366f1c 1265 Set up the return address for the inferior function call. */
c906108c 1266
7a78ae4e
ND
1267static CORE_ADDR
1268ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1269{
2188cbdd
EZ
1270 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1271 CALL_DUMMY_ADDRESS ());
c906108c
SS
1272 return sp;
1273}
1274
7a78ae4e 1275/* Extract a function return value of type TYPE from raw register array
64366f1c 1276 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1277static void
46d79c04 1278e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1279{
1280 int offset = 0;
1281 int vallen = TYPE_LENGTH (valtype);
1282 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1283
1284 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1285 && vallen == 8
1286 && TYPE_VECTOR (valtype))
1287 {
1288 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1289 }
1290 else
1291 {
1292 /* Return value is copied starting from r3. Note that r3 for us
1293 is a pseudo register. */
1294 int offset = 0;
1295 int return_regnum = tdep->ppc_gp0_regnum + 3;
1296 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1297 int reg_part_size;
1298 char *val_buffer;
1299 int copied = 0;
1300 int i = 0;
1301
1302 /* Compute where we will start storing the value from. */
1303 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1304 {
1305 if (vallen <= reg_size)
1306 offset = reg_size - vallen;
1307 else
1308 offset = reg_size + (reg_size - vallen);
1309 }
1310
1311 /* How big does the local buffer need to be? */
1312 if (vallen <= reg_size)
1313 val_buffer = alloca (reg_size);
1314 else
1315 val_buffer = alloca (vallen);
1316
1317 /* Read all we need into our private buffer. We copy it in
1318 chunks that are as long as one register, never shorter, even
1319 if the value is smaller than the register. */
1320 while (copied < vallen)
1321 {
1322 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1323 /* It is a pseudo/cooked register. */
1324 regcache_cooked_read (regbuf, return_regnum + i,
1325 val_buffer + copied);
1326 copied += reg_part_size;
1327 i++;
1328 }
1329 /* Put the stuff in the return buffer. */
1330 memcpy (valbuf, val_buffer + offset, vallen);
1331 }
1332}
c906108c 1333
7a78ae4e
ND
1334static void
1335rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1336{
1337 int offset = 0;
ace1378a 1338 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1339
c5aa993b
JM
1340 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1341 {
c906108c 1342
c5aa993b
JM
1343 double dd;
1344 float ff;
1345 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1346 We need to truncate the return value into float size (4 byte) if
64366f1c 1347 necessary. */
c906108c 1348
c5aa993b
JM
1349 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1350 memcpy (valbuf,
1351 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1352 TYPE_LENGTH (valtype));
1353 else
1354 { /* float */
1355 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1356 ff = (float) dd;
1357 memcpy (valbuf, &ff, sizeof (float));
1358 }
1359 }
ace1378a
EZ
1360 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1361 && TYPE_LENGTH (valtype) == 16
1362 && TYPE_VECTOR (valtype))
1363 {
1364 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1365 TYPE_LENGTH (valtype));
1366 }
c5aa993b
JM
1367 else
1368 {
1369 /* return value is copied starting from r3. */
d7449b42 1370 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1371 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1372 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1373
1374 memcpy (valbuf,
1375 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1376 TYPE_LENGTH (valtype));
c906108c 1377 }
c906108c
SS
1378}
1379
977adac5
ND
1380/* Return whether handle_inferior_event() should proceed through code
1381 starting at PC in function NAME when stepping.
1382
1383 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1384 handle memory references that are too distant to fit in instructions
1385 generated by the compiler. For example, if 'foo' in the following
1386 instruction:
1387
1388 lwz r9,foo(r2)
1389
1390 is greater than 32767, the linker might replace the lwz with a branch to
1391 somewhere in @FIX1 that does the load in 2 instructions and then branches
1392 back to where execution should continue.
1393
1394 GDB should silently step over @FIX code, just like AIX dbx does.
1395 Unfortunately, the linker uses the "b" instruction for the branches,
1396 meaning that the link register doesn't get set. Therefore, GDB's usual
1397 step_over_function() mechanism won't work.
1398
1399 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1400 in handle_inferior_event() to skip past @FIX code. */
1401
1402int
1403rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1404{
1405 return name && !strncmp (name, "@FIX", 4);
1406}
1407
1408/* Skip code that the user doesn't want to see when stepping:
1409
1410 1. Indirect function calls use a piece of trampoline code to do context
1411 switching, i.e. to set the new TOC table. Skip such code if we are on
1412 its first instruction (as when we have single-stepped to here).
1413
1414 2. Skip shared library trampoline code (which is different from
c906108c 1415 indirect function call trampolines).
977adac5
ND
1416
1417 3. Skip bigtoc fixup code.
1418
c906108c 1419 Result is desired PC to step until, or NULL if we are not in
977adac5 1420 code that should be skipped. */
c906108c
SS
1421
1422CORE_ADDR
7a78ae4e 1423rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1424{
1425 register unsigned int ii, op;
977adac5 1426 int rel;
c906108c 1427 CORE_ADDR solib_target_pc;
977adac5 1428 struct minimal_symbol *msymbol;
c906108c 1429
c5aa993b
JM
1430 static unsigned trampoline_code[] =
1431 {
1432 0x800b0000, /* l r0,0x0(r11) */
1433 0x90410014, /* st r2,0x14(r1) */
1434 0x7c0903a6, /* mtctr r0 */
1435 0x804b0004, /* l r2,0x4(r11) */
1436 0x816b0008, /* l r11,0x8(r11) */
1437 0x4e800420, /* bctr */
1438 0x4e800020, /* br */
1439 0
c906108c
SS
1440 };
1441
977adac5
ND
1442 /* Check for bigtoc fixup code. */
1443 msymbol = lookup_minimal_symbol_by_pc (pc);
1444 if (msymbol && rs6000_in_solib_return_trampoline (pc, SYMBOL_NAME (msymbol)))
1445 {
1446 /* Double-check that the third instruction from PC is relative "b". */
1447 op = read_memory_integer (pc + 8, 4);
1448 if ((op & 0xfc000003) == 0x48000000)
1449 {
1450 /* Extract bits 6-29 as a signed 24-bit relative word address and
1451 add it to the containing PC. */
1452 rel = ((int)(op << 6) >> 6);
1453 return pc + 8 + rel;
1454 }
1455 }
1456
c906108c
SS
1457 /* If pc is in a shared library trampoline, return its target. */
1458 solib_target_pc = find_solib_trampoline_target (pc);
1459 if (solib_target_pc)
1460 return solib_target_pc;
1461
c5aa993b
JM
1462 for (ii = 0; trampoline_code[ii]; ++ii)
1463 {
1464 op = read_memory_integer (pc + (ii * 4), 4);
1465 if (op != trampoline_code[ii])
1466 return 0;
1467 }
1468 ii = read_register (11); /* r11 holds destination addr */
21283beb 1469 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1470 return pc;
1471}
1472
1473/* Determines whether the function FI has a frame on the stack or not. */
1474
9aa1e687 1475int
c877c8e6 1476rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1477{
1478 CORE_ADDR func_start;
1479 struct rs6000_framedata fdata;
1480
1481 /* Don't even think about framelessness except on the innermost frame
1482 or if the function was interrupted by a signal. */
75e3c1f9
AC
1483 if (get_next_frame (fi) != NULL
1484 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1485 return 0;
c5aa993b 1486
bdd78e62 1487 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1488
1489 /* If we failed to find the start of the function, it is a mistake
64366f1c 1490 to inspect the instructions. */
c906108c
SS
1491
1492 if (!func_start)
1493 {
1494 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1495 function pointer, normally causing an immediate core dump of the
64366f1c 1496 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1497 of setting up a stack frame. */
bdd78e62 1498 if (get_frame_pc (fi) == 0)
c906108c
SS
1499 return 1;
1500 else
1501 return 0;
1502 }
1503
bdd78e62 1504 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1505 return fdata.frameless;
1506}
1507
64366f1c 1508/* Return the PC saved in a frame. */
c906108c 1509
9aa1e687 1510CORE_ADDR
c877c8e6 1511rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1512{
1513 CORE_ADDR func_start;
1514 struct rs6000_framedata fdata;
21283beb 1515 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1516 int wordsize = tdep->wordsize;
c906108c 1517
5a203e44 1518 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1519 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1520 wordsize);
c906108c 1521
bdd78e62 1522 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1523 get_frame_base (fi),
1524 get_frame_base (fi)))
bdd78e62 1525 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1526 get_frame_base (fi), PC_REGNUM);
c906108c 1527
bdd78e62 1528 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1529
1530 /* If we failed to find the start of the function, it is a mistake
64366f1c 1531 to inspect the instructions. */
c906108c
SS
1532 if (!func_start)
1533 return 0;
1534
bdd78e62 1535 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1536
75e3c1f9 1537 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1538 {
75e3c1f9 1539 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1540 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1541 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1542 wordsize);
bdd78e62 1543 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1544 /* The link register wasn't saved by this frame and the next
1545 (inner, newer) frame is a dummy. Get the link register
1546 value by unwinding it from that [dummy] frame. */
1547 {
1548 ULONGEST lr;
1549 frame_unwind_unsigned_register (get_next_frame (fi),
1550 tdep->ppc_lr_regnum, &lr);
1551 return lr;
1552 }
c906108c 1553 else
a88376a3 1554 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
7a78ae4e 1555 wordsize);
c906108c
SS
1556 }
1557
1558 if (fdata.lr_offset == 0)
2188cbdd 1559 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1560
7a78ae4e 1561 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1562}
1563
1564/* If saved registers of frame FI are not known yet, read and cache them.
1565 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1566 in which case the framedata are read. */
1567
1568static void
7a78ae4e 1569frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1570{
c5aa993b 1571 CORE_ADDR frame_addr;
c906108c 1572 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1573 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1574 int wordsize = tdep->wordsize;
c906108c 1575
c9012c71 1576 if (get_frame_saved_regs (fi))
c906108c 1577 return;
c5aa993b 1578
c906108c
SS
1579 if (fdatap == NULL)
1580 {
1581 fdatap = &work_fdata;
bdd78e62
AC
1582 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1583 get_frame_pc (fi), fdatap);
c906108c
SS
1584 }
1585
1586 frame_saved_regs_zalloc (fi);
1587
1588 /* If there were any saved registers, figure out parent's stack
64366f1c 1589 pointer. */
c906108c 1590 /* The following is true only if the frame doesn't have a call to
64366f1c 1591 alloca(), FIXME. */
c906108c 1592
6be8bc0c
EZ
1593 if (fdatap->saved_fpr == 0
1594 && fdatap->saved_gpr == 0
1595 && fdatap->saved_vr == 0
96ff0de4 1596 && fdatap->saved_ev == 0
6be8bc0c
EZ
1597 && fdatap->lr_offset == 0
1598 && fdatap->cr_offset == 0
96ff0de4
EZ
1599 && fdatap->vr_offset == 0
1600 && fdatap->ev_offset == 0)
c906108c 1601 frame_addr = 0;
c906108c 1602 else
bf75c8c1
AC
1603 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1604 address of the current frame. Things might be easier if the
1605 ->frame pointed to the outer-most address of the frame. In the
1606 mean time, the address of the prev frame is used as the base
1607 address of this frame. */
1608 frame_addr = FRAME_CHAIN (fi);
c5aa993b 1609
c906108c
SS
1610 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1611 All fpr's from saved_fpr to fp31 are saved. */
1612
1613 if (fdatap->saved_fpr >= 0)
1614 {
1615 int i;
7a78ae4e 1616 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1617 for (i = fdatap->saved_fpr; i < 32; i++)
1618 {
c9012c71 1619 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1620 fpr_addr += 8;
c906108c
SS
1621 }
1622 }
1623
1624 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1625 All gpr's from saved_gpr to gpr31 are saved. */
1626
1627 if (fdatap->saved_gpr >= 0)
1628 {
1629 int i;
7a78ae4e 1630 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1631 for (i = fdatap->saved_gpr; i < 32; i++)
1632 {
c9012c71 1633 get_frame_saved_regs (fi)[i] = gpr_addr;
7a78ae4e 1634 gpr_addr += wordsize;
c906108c
SS
1635 }
1636 }
1637
6be8bc0c
EZ
1638 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1639 All vr's from saved_vr to vr31 are saved. */
1640 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1641 {
1642 if (fdatap->saved_vr >= 0)
1643 {
1644 int i;
1645 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1646 for (i = fdatap->saved_vr; i < 32; i++)
1647 {
c9012c71 1648 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1649 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1650 }
1651 }
1652 }
1653
96ff0de4
EZ
1654 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1655 All vr's from saved_ev to ev31 are saved. ????? */
1656 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1657 {
1658 if (fdatap->saved_ev >= 0)
1659 {
1660 int i;
1661 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1662 for (i = fdatap->saved_ev; i < 32; i++)
1663 {
c9012c71
AC
1664 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1665 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1666 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1667 }
1668 }
1669 }
1670
c906108c
SS
1671 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1672 the CR. */
1673 if (fdatap->cr_offset != 0)
c9012c71 1674 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1675
1676 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1677 the LR. */
1678 if (fdatap->lr_offset != 0)
c9012c71 1679 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1680
1681 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1682 the VRSAVE. */
1683 if (fdatap->vrsave_offset != 0)
c9012c71 1684 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1685}
1686
1687/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1688 was first allocated. For functions calling alloca(), it might be saved in
1689 an alloca register. */
c906108c
SS
1690
1691static CORE_ADDR
7a78ae4e 1692frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1693{
1694 CORE_ADDR tmpaddr;
1695 struct rs6000_framedata fdata;
1696 struct frame_info *callee_fi;
1697
64366f1c
EZ
1698 /* If the initial stack pointer (frame address) of this frame is known,
1699 just return it. */
c906108c 1700
c9012c71
AC
1701 if (get_frame_extra_info (fi)->initial_sp)
1702 return get_frame_extra_info (fi)->initial_sp;
c906108c 1703
64366f1c 1704 /* Find out if this function is using an alloca register. */
c906108c 1705
bdd78e62
AC
1706 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1707 get_frame_pc (fi), &fdata);
c906108c 1708
64366f1c
EZ
1709 /* If saved registers of this frame are not known yet, read and
1710 cache them. */
c906108c 1711
c9012c71 1712 if (!get_frame_saved_regs (fi))
c906108c
SS
1713 frame_get_saved_regs (fi, &fdata);
1714
1715 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1716 this frame, and it is good enough. */
c906108c
SS
1717
1718 if (fdata.alloca_reg < 0)
1719 {
c9012c71
AC
1720 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1721 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1722 }
1723
953836b2
AC
1724 /* There is an alloca register, use its value, in the current frame,
1725 as the initial stack pointer. */
1726 {
1727 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1728 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1729 {
c9012c71 1730 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1731 = extract_unsigned_integer (tmpbuf,
1732 REGISTER_RAW_SIZE (fdata.alloca_reg));
1733 }
1734 else
1735 /* NOTE: cagney/2002-04-17: At present the only time
1736 frame_register_read will fail is when the register isn't
1737 available. If that does happen, use the frame. */
c9012c71 1738 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1739 }
c9012c71 1740 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1741}
1742
7a78ae4e
ND
1743/* Describe the pointer in each stack frame to the previous stack frame
1744 (its caller). */
1745
1746/* FRAME_CHAIN takes a frame's nominal address
64366f1c 1747 and produces the frame's chain-pointer. */
7a78ae4e
ND
1748
1749/* In the case of the RS/6000, the frame's nominal address
1750 is the address of a 4-byte word containing the calling frame's address. */
1751
9aa1e687 1752CORE_ADDR
7a78ae4e 1753rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1754{
7a78ae4e 1755 CORE_ADDR fp, fpp, lr;
21283beb 1756 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1757
bdd78e62 1758 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1759 get_frame_base (thisframe),
1760 get_frame_base (thisframe)))
9f3b7f07
AC
1761 /* A dummy frame always correctly chains back to the previous
1762 frame. */
8b36eed8 1763 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1764
bdd78e62
AC
1765 if (inside_entry_file (get_frame_pc (thisframe))
1766 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1767 return 0;
1768
5a203e44 1769 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1770 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1771 wordsize);
75e3c1f9
AC
1772 else if (get_next_frame (thisframe) != NULL
1773 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1774 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1775 /* A frameless function interrupted by a signal did not change the
1776 frame pointer. */
c193f6ac 1777 fp = get_frame_base (thisframe);
c906108c 1778 else
8b36eed8 1779 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1780 return fp;
1781}
1782
1783/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1784 isn't available with that word size, return 0. */
7a78ae4e
ND
1785
1786static int
1787regsize (const struct reg *reg, int wordsize)
1788{
1789 return wordsize == 8 ? reg->sz64 : reg->sz32;
1790}
1791
1792/* Return the name of register number N, or null if no such register exists
64366f1c 1793 in the current architecture. */
7a78ae4e 1794
fa88f677 1795static const char *
7a78ae4e
ND
1796rs6000_register_name (int n)
1797{
21283beb 1798 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1799 const struct reg *reg = tdep->regs + n;
1800
1801 if (!regsize (reg, tdep->wordsize))
1802 return NULL;
1803 return reg->name;
1804}
1805
1806/* Index within `registers' of the first byte of the space for
1807 register N. */
1808
1809static int
1810rs6000_register_byte (int n)
1811{
21283beb 1812 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1813}
1814
1815/* Return the number of bytes of storage in the actual machine representation
64366f1c 1816 for register N if that register is available, else return 0. */
7a78ae4e
ND
1817
1818static int
1819rs6000_register_raw_size (int n)
1820{
21283beb 1821 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1822 const struct reg *reg = tdep->regs + n;
1823 return regsize (reg, tdep->wordsize);
1824}
1825
7a78ae4e
ND
1826/* Return the GDB type object for the "standard" data type
1827 of data in register N. */
1828
1829static struct type *
fba45db2 1830rs6000_register_virtual_type (int n)
7a78ae4e 1831{
21283beb 1832 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1833 const struct reg *reg = tdep->regs + n;
1834
1fcc0bb8
EZ
1835 if (reg->fpr)
1836 return builtin_type_double;
1837 else
1838 {
1839 int size = regsize (reg, tdep->wordsize);
1840 switch (size)
1841 {
1842 case 8:
c8001721
EZ
1843 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1844 return builtin_type_vec64;
1845 else
1846 return builtin_type_int64;
1fcc0bb8
EZ
1847 break;
1848 case 16:
08cf96df 1849 return builtin_type_vec128;
1fcc0bb8
EZ
1850 break;
1851 default:
1852 return builtin_type_int32;
1853 break;
1854 }
1855 }
7a78ae4e
ND
1856}
1857
7a78ae4e
ND
1858/* Return whether register N requires conversion when moving from raw format
1859 to virtual format.
1860
1861 The register format for RS/6000 floating point registers is always
64366f1c 1862 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1863
1864static int
1865rs6000_register_convertible (int n)
1866{
21283beb 1867 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1868 return reg->fpr;
1869}
1870
1871/* Convert data from raw format for register N in buffer FROM
64366f1c 1872 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1873
1874static void
1875rs6000_register_convert_to_virtual (int n, struct type *type,
1876 char *from, char *to)
1877{
1878 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1879 {
7a78ae4e
ND
1880 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1881 store_floating (to, TYPE_LENGTH (type), val);
1882 }
1883 else
1884 memcpy (to, from, REGISTER_RAW_SIZE (n));
1885}
1886
1887/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1888 to raw format for register N in buffer TO. */
7a292a7a 1889
7a78ae4e
ND
1890static void
1891rs6000_register_convert_to_raw (struct type *type, int n,
1892 char *from, char *to)
1893{
1894 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1895 {
1896 double val = extract_floating (from, TYPE_LENGTH (type));
1897 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1898 }
7a78ae4e
ND
1899 else
1900 memcpy (to, from, REGISTER_RAW_SIZE (n));
1901}
c906108c 1902
c8001721
EZ
1903static void
1904e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1905 int reg_nr, void *buffer)
1906{
1907 int base_regnum;
1908 int offset = 0;
1909 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1910 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1911
1912 if (reg_nr >= tdep->ppc_gp0_regnum
1913 && reg_nr <= tdep->ppc_gplast_regnum)
1914 {
1915 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1916
1917 /* Build the value in the provided buffer. */
1918 /* Read the raw register of which this one is the lower portion. */
1919 regcache_raw_read (regcache, base_regnum, temp_buffer);
1920 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1921 offset = 4;
1922 memcpy ((char *) buffer, temp_buffer + offset, 4);
1923 }
1924}
1925
1926static void
1927e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1928 int reg_nr, const void *buffer)
1929{
1930 int base_regnum;
1931 int offset = 0;
1932 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1933 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1934
1935 if (reg_nr >= tdep->ppc_gp0_regnum
1936 && reg_nr <= tdep->ppc_gplast_regnum)
1937 {
1938 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1939 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1940 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1941 offset = 4;
1942
1943 /* Let's read the value of the base register into a temporary
1944 buffer, so that overwriting the last four bytes with the new
1945 value of the pseudo will leave the upper 4 bytes unchanged. */
1946 regcache_raw_read (regcache, base_regnum, temp_buffer);
1947
1948 /* Write as an 8 byte quantity. */
1949 memcpy (temp_buffer + offset, (char *) buffer, 4);
1950 regcache_raw_write (regcache, base_regnum, temp_buffer);
1951 }
1952}
1953
1954/* Convert a dwarf2 register number to a gdb REGNUM. */
1955static int
1956e500_dwarf2_reg_to_regnum (int num)
1957{
1958 int regnum;
1959 if (0 <= num && num <= 31)
1960 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1961 else
1962 return num;
1963}
1964
2188cbdd 1965/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1966 REGNUM. */
2188cbdd
EZ
1967static int
1968rs6000_stab_reg_to_regnum (int num)
1969{
1970 int regnum;
1971 switch (num)
1972 {
1973 case 64:
1974 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1975 break;
1976 case 65:
1977 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1978 break;
1979 case 66:
1980 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1981 break;
1982 case 76:
1983 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1984 break;
1985 default:
1986 regnum = num;
1987 break;
1988 }
1989 return regnum;
1990}
1991
7a78ae4e 1992/* Store the address of the place in which to copy the structure the
11269d7e 1993 subroutine will return. */
7a78ae4e
ND
1994
1995static void
1996rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1997{
da3eff49
AC
1998 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1999 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2000}
2001
2002/* Write into appropriate registers a function return value
2003 of type TYPE, given in virtual format. */
96ff0de4
EZ
2004static void
2005e500_store_return_value (struct type *type, char *valbuf)
2006{
2007 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2008
2009 /* Everything is returned in GPR3 and up. */
2010 int copied = 0;
2011 int i = 0;
2012 int len = TYPE_LENGTH (type);
2013 while (copied < len)
2014 {
2015 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2016 int reg_size = REGISTER_RAW_SIZE (regnum);
2017 char *reg_val_buf = alloca (reg_size);
2018
2019 memcpy (reg_val_buf, valbuf + copied, reg_size);
2020 copied += reg_size;
4caf0990 2021 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2022 i++;
2023 }
2024}
7a78ae4e
ND
2025
2026static void
2027rs6000_store_return_value (struct type *type, char *valbuf)
2028{
ace1378a
EZ
2029 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2030
7a78ae4e
ND
2031 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2032
2033 /* Floating point values are returned starting from FPR1 and up.
2034 Say a double_double_double type could be returned in
64366f1c 2035 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2036
73937e03
AC
2037 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2038 TYPE_LENGTH (type));
ace1378a
EZ
2039 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2040 {
2041 if (TYPE_LENGTH (type) == 16
2042 && TYPE_VECTOR (type))
73937e03
AC
2043 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2044 valbuf, TYPE_LENGTH (type));
ace1378a 2045 }
7a78ae4e 2046 else
64366f1c 2047 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2048 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2049 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2050}
2051
2052/* Extract from an array REGBUF containing the (raw) register state
2053 the address in which a function should return its structure value,
2054 as a CORE_ADDR (or an expression that can be used as one). */
2055
2056static CORE_ADDR
11269d7e
AC
2057rs6000_extract_struct_value_address (struct regcache *regcache)
2058{
2059 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2060 function call GDB knows the address of the struct return value
2061 and hence, should not need to call this function. Unfortunately,
2062 the current hand_function_call() code only saves the most recent
2063 struct address leading to occasional calls. The code should
2064 instead maintain a stack of such addresses (in the dummy frame
2065 object). */
2066 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2067 really got no idea where the return value is being stored. While
2068 r3, on function entry, contained the address it will have since
2069 been reused (scratch) and hence wouldn't be valid */
2070 return 0;
7a78ae4e
ND
2071}
2072
2073/* Return whether PC is in a dummy function call.
2074
2075 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2076 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2077
2078static int
2079rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2080{
2081 return sp < pc && pc < fp;
2082}
2083
64366f1c 2084/* Hook called when a new child process is started. */
7a78ae4e
ND
2085
2086void
2087rs6000_create_inferior (int pid)
2088{
2089 if (rs6000_set_host_arch_hook)
2090 rs6000_set_host_arch_hook (pid);
c906108c
SS
2091}
2092\f
7a78ae4e
ND
2093/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2094
2095 Usually a function pointer's representation is simply the address
2096 of the function. On the RS/6000 however, a function pointer is
2097 represented by a pointer to a TOC entry. This TOC entry contains
2098 three words, the first word is the address of the function, the
2099 second word is the TOC pointer (r2), and the third word is the
2100 static chain value. Throughout GDB it is currently assumed that a
2101 function pointer contains the address of the function, which is not
2102 easy to fix. In addition, the conversion of a function address to
2103 a function pointer would require allocation of a TOC entry in the
2104 inferior's memory space, with all its drawbacks. To be able to
2105 call C++ virtual methods in the inferior (which are called via
f517ea4e 2106 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2107 function address from a function pointer. */
2108
f517ea4e
PS
2109/* Return real function address if ADDR (a function pointer) is in the data
2110 space and is therefore a special function pointer. */
c906108c 2111
7a78ae4e
ND
2112CORE_ADDR
2113rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2114{
2115 struct obj_section *s;
2116
2117 s = find_pc_section (addr);
2118 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2119 return addr;
c906108c 2120
7a78ae4e 2121 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2122 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2123}
c906108c 2124\f
c5aa993b 2125
7a78ae4e 2126/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2127
2128
7a78ae4e
ND
2129/* The arrays here called registers_MUMBLE hold information about available
2130 registers.
c906108c
SS
2131
2132 For each family of PPC variants, I've tried to isolate out the
2133 common registers and put them up front, so that as long as you get
2134 the general family right, GDB will correctly identify the registers
2135 common to that family. The common register sets are:
2136
2137 For the 60x family: hid0 hid1 iabr dabr pir
2138
2139 For the 505 and 860 family: eie eid nri
2140
2141 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2142 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2143 pbu1 pbl2 pbu2
c906108c
SS
2144
2145 Most of these register groups aren't anything formal. I arrived at
2146 them by looking at the registers that occurred in more than one
6f5987a6
KB
2147 processor.
2148
2149 Note: kevinb/2002-04-30: Support for the fpscr register was added
2150 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2151 for Power. For PowerPC, slot 70 was unused and was already in the
2152 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2153 slot 70 was being used for "mq", so the next available slot (71)
2154 was chosen. It would have been nice to be able to make the
2155 register numbers the same across processor cores, but this wasn't
2156 possible without either 1) renumbering some registers for some
2157 processors or 2) assigning fpscr to a really high slot that's
2158 larger than any current register number. Doing (1) is bad because
2159 existing stubs would break. Doing (2) is undesirable because it
2160 would introduce a really large gap between fpscr and the rest of
2161 the registers for most processors. */
7a78ae4e 2162
64366f1c 2163/* Convenience macros for populating register arrays. */
7a78ae4e 2164
64366f1c 2165/* Within another macro, convert S to a string. */
7a78ae4e
ND
2166
2167#define STR(s) #s
2168
2169/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2170 and 64 bits on 64-bit systems. */
489461e2 2171#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2172
2173/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2174 systems. */
489461e2 2175#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2176
2177/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2178 systems. */
489461e2 2179#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2180
1fcc0bb8 2181/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2182 systems. */
489461e2 2183#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2184
64366f1c 2185/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2186#define F(name) { STR(name), 8, 8, 1, 0 }
2187
64366f1c 2188/* Return a struct reg defining a pseudo register NAME. */
489461e2 2189#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2190
2191/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2192 systems and that doesn't exist on 64-bit systems. */
489461e2 2193#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2194
2195/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2196 systems and that doesn't exist on 32-bit systems. */
489461e2 2197#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2198
64366f1c 2199/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2200#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2201
2202/* UISA registers common across all architectures, including POWER. */
2203
2204#define COMMON_UISA_REGS \
2205 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2206 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2207 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2208 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2209 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2210 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2211 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2212 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2213 /* 64 */ R(pc), R(ps)
2214
ebeac11a
EZ
2215#define COMMON_UISA_NOFP_REGS \
2216 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2217 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2218 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2219 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2220 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2221 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2222 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2223 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2224 /* 64 */ R(pc), R(ps)
2225
7a78ae4e
ND
2226/* UISA-level SPRs for PowerPC. */
2227#define PPC_UISA_SPRS \
e3f36dbd 2228 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2229
c8001721
EZ
2230/* UISA-level SPRs for PowerPC without floating point support. */
2231#define PPC_UISA_NOFP_SPRS \
2232 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2233
7a78ae4e
ND
2234/* Segment registers, for PowerPC. */
2235#define PPC_SEGMENT_REGS \
2236 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2237 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2238 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2239 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2240
2241/* OEA SPRs for PowerPC. */
2242#define PPC_OEA_SPRS \
2243 /* 87 */ R4(pvr), \
2244 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2245 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2246 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2247 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2248 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2249 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2250 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2251 /* 116 */ R4(dec), R(dabr), R4(ear)
2252
64366f1c 2253/* AltiVec registers. */
1fcc0bb8
EZ
2254#define PPC_ALTIVEC_REGS \
2255 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2256 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2257 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2258 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2259 /*151*/R4(vscr), R4(vrsave)
2260
c8001721
EZ
2261/* Vectors of hi-lo general purpose registers. */
2262#define PPC_EV_REGS \
2263 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2264 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2265 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2266 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2267
2268/* Lower half of the EV registers. */
2269#define PPC_GPRS_PSEUDO_REGS \
2270 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2271 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2272 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
2273 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31), \
2274
7a78ae4e 2275/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2276 user-level SPR's. */
7a78ae4e 2277static const struct reg registers_power[] =
c906108c 2278{
7a78ae4e 2279 COMMON_UISA_REGS,
e3f36dbd
KB
2280 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2281 /* 71 */ R4(fpscr)
c906108c
SS
2282};
2283
7a78ae4e 2284/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2285 view of the PowerPC. */
7a78ae4e 2286static const struct reg registers_powerpc[] =
c906108c 2287{
7a78ae4e 2288 COMMON_UISA_REGS,
1fcc0bb8
EZ
2289 PPC_UISA_SPRS,
2290 PPC_ALTIVEC_REGS
c906108c
SS
2291};
2292
ebeac11a
EZ
2293/* PowerPC UISA - a PPC processor as viewed by user-level
2294 code, but without floating point registers. */
2295static const struct reg registers_powerpc_nofp[] =
2296{
2297 COMMON_UISA_NOFP_REGS,
2298 PPC_UISA_SPRS
2299};
2300
64366f1c 2301/* IBM PowerPC 403. */
7a78ae4e 2302static const struct reg registers_403[] =
c5aa993b 2303{
7a78ae4e
ND
2304 COMMON_UISA_REGS,
2305 PPC_UISA_SPRS,
2306 PPC_SEGMENT_REGS,
2307 PPC_OEA_SPRS,
2308 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2309 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2310 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2311 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2312 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2313 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2314};
2315
64366f1c 2316/* IBM PowerPC 403GC. */
7a78ae4e 2317static const struct reg registers_403GC[] =
c5aa993b 2318{
7a78ae4e
ND
2319 COMMON_UISA_REGS,
2320 PPC_UISA_SPRS,
2321 PPC_SEGMENT_REGS,
2322 PPC_OEA_SPRS,
2323 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2324 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2325 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2326 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2327 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2328 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2329 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2330 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2331};
2332
64366f1c 2333/* Motorola PowerPC 505. */
7a78ae4e 2334static const struct reg registers_505[] =
c5aa993b 2335{
7a78ae4e
ND
2336 COMMON_UISA_REGS,
2337 PPC_UISA_SPRS,
2338 PPC_SEGMENT_REGS,
2339 PPC_OEA_SPRS,
2340 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2341};
2342
64366f1c 2343/* Motorola PowerPC 860 or 850. */
7a78ae4e 2344static const struct reg registers_860[] =
c5aa993b 2345{
7a78ae4e
ND
2346 COMMON_UISA_REGS,
2347 PPC_UISA_SPRS,
2348 PPC_SEGMENT_REGS,
2349 PPC_OEA_SPRS,
2350 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2351 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2352 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2353 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2354 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2355 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2356 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2357 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2358 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2359 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2360 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2361 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2362};
2363
7a78ae4e
ND
2364/* Motorola PowerPC 601. Note that the 601 has different register numbers
2365 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2366 register is the stub's problem. */
7a78ae4e 2367static const struct reg registers_601[] =
c5aa993b 2368{
7a78ae4e
ND
2369 COMMON_UISA_REGS,
2370 PPC_UISA_SPRS,
2371 PPC_SEGMENT_REGS,
2372 PPC_OEA_SPRS,
2373 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2374 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2375};
2376
64366f1c 2377/* Motorola PowerPC 602. */
7a78ae4e 2378static const struct reg registers_602[] =
c5aa993b 2379{
7a78ae4e
ND
2380 COMMON_UISA_REGS,
2381 PPC_UISA_SPRS,
2382 PPC_SEGMENT_REGS,
2383 PPC_OEA_SPRS,
2384 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2385 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2386 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2387};
2388
64366f1c 2389/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2390static const struct reg registers_603[] =
c5aa993b 2391{
7a78ae4e
ND
2392 COMMON_UISA_REGS,
2393 PPC_UISA_SPRS,
2394 PPC_SEGMENT_REGS,
2395 PPC_OEA_SPRS,
2396 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2397 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2398 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2399};
2400
64366f1c 2401/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2402static const struct reg registers_604[] =
c5aa993b 2403{
7a78ae4e
ND
2404 COMMON_UISA_REGS,
2405 PPC_UISA_SPRS,
2406 PPC_SEGMENT_REGS,
2407 PPC_OEA_SPRS,
2408 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2409 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2410 /* 127 */ R(sia), R(sda)
c906108c
SS
2411};
2412
64366f1c 2413/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2414static const struct reg registers_750[] =
c5aa993b 2415{
7a78ae4e
ND
2416 COMMON_UISA_REGS,
2417 PPC_UISA_SPRS,
2418 PPC_SEGMENT_REGS,
2419 PPC_OEA_SPRS,
2420 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2421 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2422 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2423 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2424 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2425 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2426};
2427
2428
64366f1c 2429/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2430static const struct reg registers_7400[] =
2431{
2432 /* gpr0-gpr31, fpr0-fpr31 */
2433 COMMON_UISA_REGS,
2434 /* ctr, xre, lr, cr */
2435 PPC_UISA_SPRS,
2436 /* sr0-sr15 */
2437 PPC_SEGMENT_REGS,
2438 PPC_OEA_SPRS,
2439 /* vr0-vr31, vrsave, vscr */
2440 PPC_ALTIVEC_REGS
2441 /* FIXME? Add more registers? */
2442};
2443
c8001721
EZ
2444/* Motorola e500. */
2445static const struct reg registers_e500[] =
2446{
2447 R(pc), R(ps),
2448 /* cr, lr, ctr, xer, "" */
2449 PPC_UISA_NOFP_SPRS,
2450 /* 7...38 */
2451 PPC_EV_REGS,
2452 /* 39...70 */
2453 PPC_GPRS_PSEUDO_REGS
2454};
2455
c906108c 2456/* Information about a particular processor variant. */
7a78ae4e 2457
c906108c 2458struct variant
c5aa993b
JM
2459 {
2460 /* Name of this variant. */
2461 char *name;
c906108c 2462
c5aa993b
JM
2463 /* English description of the variant. */
2464 char *description;
c906108c 2465
64366f1c 2466 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2467 enum bfd_architecture arch;
2468
64366f1c 2469 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2470 unsigned long mach;
2471
489461e2
EZ
2472 /* Number of real registers. */
2473 int nregs;
2474
2475 /* Number of pseudo registers. */
2476 int npregs;
2477
2478 /* Number of total registers (the sum of nregs and npregs). */
2479 int num_tot_regs;
2480
c5aa993b
JM
2481 /* Table of register names; registers[R] is the name of the register
2482 number R. */
7a78ae4e 2483 const struct reg *regs;
c5aa993b 2484 };
c906108c 2485
489461e2
EZ
2486#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2487
2488static int
2489num_registers (const struct reg *reg_list, int num_tot_regs)
2490{
2491 int i;
2492 int nregs = 0;
2493
2494 for (i = 0; i < num_tot_regs; i++)
2495 if (!reg_list[i].pseudo)
2496 nregs++;
2497
2498 return nregs;
2499}
2500
2501static int
2502num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2503{
2504 int i;
2505 int npregs = 0;
2506
2507 for (i = 0; i < num_tot_regs; i++)
2508 if (reg_list[i].pseudo)
2509 npregs ++;
2510
2511 return npregs;
2512}
c906108c 2513
c906108c
SS
2514/* Information in this table comes from the following web sites:
2515 IBM: http://www.chips.ibm.com:80/products/embedded/
2516 Motorola: http://www.mot.com/SPS/PowerPC/
2517
2518 I'm sure I've got some of the variant descriptions not quite right.
2519 Please report any inaccuracies you find to GDB's maintainer.
2520
2521 If you add entries to this table, please be sure to allow the new
2522 value as an argument to the --with-cpu flag, in configure.in. */
2523
489461e2 2524static struct variant variants[] =
c906108c 2525{
489461e2 2526
7a78ae4e 2527 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2528 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2529 registers_powerpc},
7a78ae4e 2530 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2531 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2532 registers_power},
7a78ae4e 2533 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2534 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2535 registers_403},
7a78ae4e 2536 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2537 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2538 registers_601},
7a78ae4e 2539 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2540 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2541 registers_602},
7a78ae4e 2542 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2543 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2544 registers_603},
7a78ae4e 2545 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2546 604, -1, -1, tot_num_registers (registers_604),
2547 registers_604},
7a78ae4e 2548 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2549 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2550 registers_403GC},
7a78ae4e 2551 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2552 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2553 registers_505},
7a78ae4e 2554 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2555 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2556 registers_860},
7a78ae4e 2557 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2558 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2559 registers_750},
1fcc0bb8 2560 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2561 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2562 registers_7400},
c8001721
EZ
2563 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2564 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2565 registers_e500},
7a78ae4e 2566
5d57ee30
KB
2567 /* 64-bit */
2568 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2569 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2570 registers_powerpc},
7a78ae4e 2571 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2572 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2573 registers_powerpc},
5d57ee30 2574 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2575 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2576 registers_powerpc},
7a78ae4e 2577 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2578 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2579 registers_powerpc},
5d57ee30 2580 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2581 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2582 registers_powerpc},
5d57ee30 2583 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2584 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2585 registers_powerpc},
5d57ee30 2586
64366f1c 2587 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2588 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2589 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2590 registers_power},
7a78ae4e 2591 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2592 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2593 registers_power},
7a78ae4e 2594 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2595 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2596 registers_power},
7a78ae4e 2597
489461e2 2598 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2599};
2600
64366f1c 2601/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2602
2603static void
2604init_variants (void)
2605{
2606 struct variant *v;
2607
2608 for (v = variants; v->name; v++)
2609 {
2610 if (v->nregs == -1)
2611 v->nregs = num_registers (v->regs, v->num_tot_regs);
2612 if (v->npregs == -1)
2613 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2614 }
2615}
c906108c 2616
7a78ae4e 2617/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2618 MACH. If no such variant exists, return null. */
c906108c 2619
7a78ae4e
ND
2620static const struct variant *
2621find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2622{
7a78ae4e 2623 const struct variant *v;
c5aa993b 2624
7a78ae4e
ND
2625 for (v = variants; v->name; v++)
2626 if (arch == v->arch && mach == v->mach)
2627 return v;
c906108c 2628
7a78ae4e 2629 return NULL;
c906108c 2630}
9364a0ef
EZ
2631
2632static int
2633gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2634{
2635 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2636 return print_insn_big_powerpc (memaddr, info);
2637 else
2638 return print_insn_little_powerpc (memaddr, info);
2639}
7a78ae4e 2640\f
7a78ae4e
ND
2641/* Initialize the current architecture based on INFO. If possible, re-use an
2642 architecture from ARCHES, which is a list of architectures already created
2643 during this debugging session.
c906108c 2644
7a78ae4e 2645 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2646 a binary file. */
c906108c 2647
7a78ae4e
ND
2648static struct gdbarch *
2649rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2650{
2651 struct gdbarch *gdbarch;
2652 struct gdbarch_tdep *tdep;
9aa1e687 2653 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2654 struct reg *regs;
2655 const struct variant *v;
2656 enum bfd_architecture arch;
2657 unsigned long mach;
2658 bfd abfd;
7b112f9c
JT
2659 int sysv_abi;
2660 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
5bf1c677 2661 asection *sect;
7a78ae4e 2662
9aa1e687 2663 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2664 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2665
9aa1e687
KB
2666 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2667 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2668
2669 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2670
7b112f9c
JT
2671 if (info.abfd)
2672 osabi = gdbarch_lookup_osabi (info.abfd);
9aa1e687 2673
e712c1cf 2674 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2675 that, else choose a likely default. */
9aa1e687 2676 if (from_xcoff_exec)
c906108c 2677 {
11ed25ac 2678 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2679 wordsize = 8;
2680 else
2681 wordsize = 4;
c906108c 2682 }
9aa1e687
KB
2683 else if (from_elf_exec)
2684 {
2685 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2686 wordsize = 8;
2687 else
2688 wordsize = 4;
2689 }
c906108c 2690 else
7a78ae4e 2691 {
27b15785
KB
2692 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2693 wordsize = info.bfd_arch_info->bits_per_word /
2694 info.bfd_arch_info->bits_per_byte;
2695 else
2696 wordsize = 4;
7a78ae4e 2697 }
c906108c 2698
64366f1c 2699 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2700 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2701 arches != NULL;
2702 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2703 {
2704 /* Word size in the various PowerPC bfd_arch_info structs isn't
2705 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2706 separate word size check. */
7a78ae4e 2707 tdep = gdbarch_tdep (arches->gdbarch);
9aa1e687 2708 if (tdep && tdep->wordsize == wordsize && tdep->osabi == osabi)
7a78ae4e
ND
2709 return arches->gdbarch;
2710 }
c906108c 2711
7a78ae4e
ND
2712 /* None found, create a new architecture from INFO, whose bfd_arch_info
2713 validity depends on the source:
2714 - executable useless
2715 - rs6000_host_arch() good
2716 - core file good
2717 - "set arch" trust blindly
2718 - GDB startup useless but harmless */
c906108c 2719
9aa1e687 2720 if (!from_xcoff_exec)
c906108c 2721 {
b732d07d 2722 arch = info.bfd_arch_info->arch;
7a78ae4e 2723 mach = info.bfd_arch_info->mach;
c906108c 2724 }
7a78ae4e 2725 else
c906108c 2726 {
7a78ae4e
ND
2727 arch = bfd_arch_powerpc;
2728 mach = 0;
2729 bfd_default_set_arch_mach (&abfd, arch, mach);
2730 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2731 }
2732 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2733 tdep->wordsize = wordsize;
9aa1e687 2734 tdep->osabi = osabi;
5bf1c677
EZ
2735
2736 /* For e500 executables, the apuinfo section is of help here. Such
2737 section contains the identifier and revision number of each
2738 Application-specific Processing Unit that is present on the
2739 chip. The content of the section is determined by the assembler
2740 which looks at each instruction and determines which unit (and
2741 which version of it) can execute it. In our case we just look for
2742 the existance of the section. */
2743
2744 if (info.abfd)
2745 {
2746 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2747 if (sect)
2748 {
2749 arch = info.bfd_arch_info->arch;
2750 mach = bfd_mach_ppc_e500;
2751 bfd_default_set_arch_mach (&abfd, arch, mach);
2752 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2753 }
2754 }
2755
7a78ae4e
ND
2756 gdbarch = gdbarch_alloc (&info, tdep);
2757 power = arch == bfd_arch_rs6000;
2758
489461e2
EZ
2759 /* Initialize the number of real and pseudo registers in each variant. */
2760 init_variants ();
2761
64366f1c 2762 /* Choose variant. */
7a78ae4e
ND
2763 v = find_variant_by_arch (arch, mach);
2764 if (!v)
dd47e6fd
EZ
2765 return NULL;
2766
7a78ae4e
ND
2767 tdep->regs = v->regs;
2768
2188cbdd
EZ
2769 tdep->ppc_gp0_regnum = 0;
2770 tdep->ppc_gplast_regnum = 31;
2771 tdep->ppc_toc_regnum = 2;
2772 tdep->ppc_ps_regnum = 65;
2773 tdep->ppc_cr_regnum = 66;
2774 tdep->ppc_lr_regnum = 67;
2775 tdep->ppc_ctr_regnum = 68;
2776 tdep->ppc_xer_regnum = 69;
2777 if (v->mach == bfd_mach_ppc_601)
2778 tdep->ppc_mq_regnum = 124;
e3f36dbd 2779 else if (power)
2188cbdd 2780 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2781 else
2782 tdep->ppc_mq_regnum = -1;
2783 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2784
c8001721
EZ
2785 set_gdbarch_pc_regnum (gdbarch, 64);
2786 set_gdbarch_sp_regnum (gdbarch, 1);
2787 set_gdbarch_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2788 set_gdbarch_deprecated_extract_return_value (gdbarch,
2789 rs6000_extract_return_value);
46d79c04 2790 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2791
1fcc0bb8
EZ
2792 if (v->arch == bfd_arch_powerpc)
2793 switch (v->mach)
2794 {
2795 case bfd_mach_ppc:
2796 tdep->ppc_vr0_regnum = 71;
2797 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2798 tdep->ppc_ev0_regnum = -1;
2799 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2800 break;
2801 case bfd_mach_ppc_7400:
2802 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2803 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2804 tdep->ppc_ev0_regnum = -1;
2805 tdep->ppc_ev31_regnum = -1;
2806 break;
2807 case bfd_mach_ppc_e500:
2808 tdep->ppc_gp0_regnum = 39;
2809 tdep->ppc_gplast_regnum = 70;
2810 tdep->ppc_toc_regnum = -1;
2811 tdep->ppc_ps_regnum = 1;
2812 tdep->ppc_cr_regnum = 2;
2813 tdep->ppc_lr_regnum = 3;
2814 tdep->ppc_ctr_regnum = 4;
2815 tdep->ppc_xer_regnum = 5;
2816 tdep->ppc_ev0_regnum = 7;
2817 tdep->ppc_ev31_regnum = 38;
2818 set_gdbarch_pc_regnum (gdbarch, 0);
2819 set_gdbarch_sp_regnum (gdbarch, 40);
2820 set_gdbarch_fp_regnum (gdbarch, 40);
2821 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2822 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2823 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2824 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2825 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2826 break;
2827 default:
2828 tdep->ppc_vr0_regnum = -1;
2829 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2830 tdep->ppc_ev0_regnum = -1;
2831 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2832 break;
2833 }
2834
a88376a3
KB
2835 /* Set lr_frame_offset. */
2836 if (wordsize == 8)
2837 tdep->lr_frame_offset = 16;
2838 else if (sysv_abi)
2839 tdep->lr_frame_offset = 4;
2840 else
2841 tdep->lr_frame_offset = 8;
2842
2843 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2844 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2845 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2846 {
2847 tdep->regoff[i] = off;
2848 off += regsize (v->regs + i, wordsize);
c906108c
SS
2849 }
2850
56a6dfb9
KB
2851 /* Select instruction printer. */
2852 if (arch == power)
9364a0ef 2853 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2854 else
9364a0ef 2855 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2856
7a78ae4e
ND
2857 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2858 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2859 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2860 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2861 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2862
2863 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2864 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2865 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2866 set_gdbarch_register_size (gdbarch, wordsize);
2867 set_gdbarch_register_bytes (gdbarch, off);
2868 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2869 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
2a873819 2870 set_gdbarch_max_register_raw_size (gdbarch, 16);
b2e75d78 2871 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
2a873819 2872 set_gdbarch_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2873 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2874
2875 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2876 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2877 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2878 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2879 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2880 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2881 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2882 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2883 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2884
7a78ae4e 2885 set_gdbarch_call_dummy_length (gdbarch, 0);
7a78ae4e
ND
2886 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2887 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2888 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2889 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
7a78ae4e
ND
2890 set_gdbarch_call_dummy_p (gdbarch, 1);
2891 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
7a78ae4e 2892 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2893 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
7a78ae4e 2894 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
58223630 2895 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2896 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2897 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e
ND
2898
2899 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2900 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2901 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2902 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2903 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2904 is correct for the SysV ABI when the wordsize is 8, but I'm also
2905 fairly certain that ppc_sysv_abi_push_arguments() will give even
2906 worse results since it only works for 32-bit code. So, for the moment,
2907 we're better off calling rs6000_push_arguments() since it works for
2908 64-bit code. At some point in the future, this matter needs to be
2909 revisited. */
2910 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2911 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2912 else
2913 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2914
d0403e00 2915 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2916 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
2917 set_gdbarch_pop_frame (gdbarch, rs6000_pop_frame);
2918
2919 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2920 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2921 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2922 set_gdbarch_function_start_offset (gdbarch, 0);
2923 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2924
2925 /* Not sure on this. FIXMEmgo */
2926 set_gdbarch_frame_args_skip (gdbarch, 8);
2927
8e0662df 2928 if (sysv_abi)
7b112f9c
JT
2929 set_gdbarch_use_struct_convention (gdbarch,
2930 ppc_sysv_abi_use_struct_convention);
8e0662df 2931 else
7b112f9c
JT
2932 set_gdbarch_use_struct_convention (gdbarch,
2933 generic_use_struct_convention);
8e0662df 2934
7a78ae4e 2935 set_gdbarch_frame_chain_valid (gdbarch, file_frame_chain_valid);
9aa1e687 2936
7b112f9c
JT
2937 set_gdbarch_frameless_function_invocation (gdbarch,
2938 rs6000_frameless_function_invocation);
2939 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
2940 set_gdbarch_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
2941
2942 set_gdbarch_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
2943 set_gdbarch_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
2944
15813d3f
AC
2945 if (!sysv_abi)
2946 {
2947 /* Handle RS/6000 function pointers (which are really function
2948 descriptors). */
f517ea4e
PS
2949 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2950 rs6000_convert_from_func_ptr_addr);
9aa1e687 2951 }
7a78ae4e
ND
2952 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2953 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2954 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2955
2956 /* We can't tell how many args there are
2957 now that the C compiler delays popping them. */
2958 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2959
7b112f9c
JT
2960 /* Hook in ABI-specific overrides, if they have been registered. */
2961 gdbarch_init_osabi (info, gdbarch, osabi);
2962
7a78ae4e 2963 return gdbarch;
c906108c
SS
2964}
2965
7b112f9c
JT
2966static void
2967rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2968{
2969 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2970
2971 if (tdep == NULL)
2972 return;
2973
2974 fprintf_unfiltered (file, "rs6000_dump_tdep: OS ABI = %s\n",
2975 gdbarch_osabi_name (tdep->osabi));
2976}
2977
1fcc0bb8
EZ
2978static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2979
2980static void
2981rs6000_info_powerpc_command (char *args, int from_tty)
2982{
2983 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2984}
2985
c906108c
SS
2986/* Initialization code. */
2987
2988void
fba45db2 2989_initialize_rs6000_tdep (void)
c906108c 2990{
7b112f9c
JT
2991 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2992 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2993
2994 /* Add root prefix command for "info powerpc" commands */
2995 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2996 "Various POWERPC info specific commands.",
2997 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2998}
This page took 0.60024 seconds and 4 git commands to generate.