*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca 3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
9b254dd1 4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "frame.h"
24#include "inferior.h"
25#include "symtab.h"
26#include "target.h"
27#include "gdbcore.h"
28#include "gdbcmd.h"
c906108c 29#include "objfiles.h"
7a78ae4e 30#include "arch-utils.h"
4e052eda 31#include "regcache.h"
d195bc9f 32#include "regset.h"
d16aafd8 33#include "doublest.h"
fd0407d6 34#include "value.h"
1fcc0bb8 35#include "parser-defs.h"
4be87837 36#include "osabi.h"
7d9b040b 37#include "infcall.h"
9f643768
JB
38#include "sim-regno.h"
39#include "gdb/sim-ppc.h"
6ced10dd 40#include "reggroups.h"
4fc771b8 41#include "dwarf2-frame.h"
7cc46491
DJ
42#include "target-descriptions.h"
43#include "user-regs.h"
7a78ae4e 44
2fccf04a 45#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
55eddb0f 52#include "elf/ppc.h"
7a78ae4e 53
6ded7999 54#include "solib-svr4.h"
9aa1e687 55#include "ppc-tdep.h"
7a78ae4e 56
338ef23d 57#include "gdb_assert.h"
a89aa300 58#include "dis-asm.h"
338ef23d 59
61a65099
KB
60#include "trad-frame.h"
61#include "frame-unwind.h"
62#include "frame-base.h"
63
7cc46491 64#include "features/rs6000/powerpc-32.c"
7284e1be 65#include "features/rs6000/powerpc-altivec32.c"
604c2f83 66#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
67#include "features/rs6000/powerpc-403.c"
68#include "features/rs6000/powerpc-403gc.c"
69#include "features/rs6000/powerpc-505.c"
70#include "features/rs6000/powerpc-601.c"
71#include "features/rs6000/powerpc-602.c"
72#include "features/rs6000/powerpc-603.c"
73#include "features/rs6000/powerpc-604.c"
74#include "features/rs6000/powerpc-64.c"
7284e1be 75#include "features/rs6000/powerpc-altivec64.c"
604c2f83 76#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
77#include "features/rs6000/powerpc-7400.c"
78#include "features/rs6000/powerpc-750.c"
79#include "features/rs6000/powerpc-860.c"
80#include "features/rs6000/powerpc-e500.c"
81#include "features/rs6000/rs6000.c"
82
5a9e69ba
TJB
83/* Determine if regnum is an SPE pseudo-register. */
84#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
85 && (regnum) >= (tdep)->ppc_ev0_regnum \
86 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
87
f949c649
TJB
88/* Determine if regnum is a decimal float pseudo-register. */
89#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
90 && (regnum) >= (tdep)->ppc_dl0_regnum \
91 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
92
604c2f83
LM
93/* Determine if regnum is a POWER7 VSX register. */
94#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
95 && (regnum) >= (tdep)->ppc_vsr0_regnum \
96 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
97
98/* Determine if regnum is a POWER7 Extended FP register. */
99#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
100 && (regnum) >= (tdep)->ppc_efpr0_regnum \
101 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_fprs)
102
55eddb0f
DJ
103/* The list of available "set powerpc ..." and "show powerpc ..."
104 commands. */
105static struct cmd_list_element *setpowerpccmdlist = NULL;
106static struct cmd_list_element *showpowerpccmdlist = NULL;
107
108static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
109
110/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
111static const char *powerpc_vector_strings[] =
112{
113 "auto",
114 "generic",
115 "altivec",
116 "spe",
117 NULL
118};
119
120/* A variable that can be configured by the user. */
121static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
122static const char *powerpc_vector_abi_string = "auto";
123
7a78ae4e
ND
124/* To be used by skip_prologue. */
125
126struct rs6000_framedata
127 {
128 int offset; /* total size of frame --- the distance
129 by which we decrement sp to allocate
130 the frame */
131 int saved_gpr; /* smallest # of saved gpr */
132 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 133 int saved_vr; /* smallest # of saved vr */
96ff0de4 134 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
135 int alloca_reg; /* alloca register number (frame ptr) */
136 char frameless; /* true if frameless functions. */
137 char nosavedpc; /* true if pc not saved. */
138 int gpr_offset; /* offset of saved gprs from prev sp */
139 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 140 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 141 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
142 int lr_offset; /* offset of saved lr */
143 int cr_offset; /* offset of saved cr */
6be8bc0c 144 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
145 };
146
c906108c 147
604c2f83
LM
148/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
149int
150vsx_register_p (struct gdbarch *gdbarch, int regno)
151{
152 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
153 if (tdep->ppc_vsr0_regnum < 0)
154 return 0;
155 else
156 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
157 <= tdep->ppc_vsr0_upper_regnum + 31);
158}
159
64b84175
KB
160/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
161int
be8626e0 162altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 163{
be8626e0 164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
165 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
166 return 0;
167 else
168 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
169}
170
383f0f5b 171
867e2dc5
JB
172/* Return true if REGNO is an SPE register, false otherwise. */
173int
be8626e0 174spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 175{
be8626e0 176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
177
178 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 179 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
180 return 1;
181
6ced10dd
JB
182 /* Is it a reference to one of the raw upper GPR halves? */
183 if (tdep->ppc_ev0_upper_regnum >= 0
184 && tdep->ppc_ev0_upper_regnum <= regno
185 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
186 return 1;
187
867e2dc5
JB
188 /* Is it a reference to the 64-bit accumulator, and do we have that? */
189 if (tdep->ppc_acc_regnum >= 0
190 && tdep->ppc_acc_regnum == regno)
191 return 1;
192
193 /* Is it a reference to the SPE floating-point status and control register,
194 and do we have that? */
195 if (tdep->ppc_spefscr_regnum >= 0
196 && tdep->ppc_spefscr_regnum == regno)
197 return 1;
198
199 return 0;
200}
201
202
383f0f5b
JB
203/* Return non-zero if the architecture described by GDBARCH has
204 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
205int
206ppc_floating_point_unit_p (struct gdbarch *gdbarch)
207{
383f0f5b
JB
208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
209
210 return (tdep->ppc_fp0_regnum >= 0
211 && tdep->ppc_fpscr_regnum >= 0);
0a613259 212}
9f643768 213
604c2f83
LM
214/* Return non-zero if the architecture described by GDBARCH has
215 VSX registers (vsr0 --- vsr63). */
216int
217ppc_vsx_support_p (struct gdbarch *gdbarch)
218{
219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
220
221 return tdep->ppc_vsr0_regnum >= 0;
222}
223
06caf7d2
CES
224/* Return non-zero if the architecture described by GDBARCH has
225 Altivec registers (vr0 --- vr31, vrsave and vscr). */
226int
227ppc_altivec_support_p (struct gdbarch *gdbarch)
228{
229 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
230
231 return (tdep->ppc_vr0_regnum >= 0
232 && tdep->ppc_vrsave_regnum >= 0);
233}
09991fa0
JB
234
235/* Check that TABLE[GDB_REGNO] is not already initialized, and then
236 set it to SIM_REGNO.
237
238 This is a helper function for init_sim_regno_table, constructing
239 the table mapping GDB register numbers to sim register numbers; we
240 initialize every element in that table to -1 before we start
241 filling it in. */
9f643768
JB
242static void
243set_sim_regno (int *table, int gdb_regno, int sim_regno)
244{
245 /* Make sure we don't try to assign any given GDB register a sim
246 register number more than once. */
247 gdb_assert (table[gdb_regno] == -1);
248 table[gdb_regno] = sim_regno;
249}
250
09991fa0
JB
251
252/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
253 numbers to simulator register numbers, based on the values placed
254 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
255static void
256init_sim_regno_table (struct gdbarch *arch)
257{
258 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 259 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
260 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
261 int i;
7cc46491
DJ
262 static const char *const segment_regs[] = {
263 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
264 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
265 };
9f643768
JB
266
267 /* Presume that all registers not explicitly mentioned below are
268 unavailable from the sim. */
269 for (i = 0; i < total_regs; i++)
270 sim_regno[i] = -1;
271
272 /* General-purpose registers. */
273 for (i = 0; i < ppc_num_gprs; i++)
274 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
275
276 /* Floating-point registers. */
277 if (tdep->ppc_fp0_regnum >= 0)
278 for (i = 0; i < ppc_num_fprs; i++)
279 set_sim_regno (sim_regno,
280 tdep->ppc_fp0_regnum + i,
281 sim_ppc_f0_regnum + i);
282 if (tdep->ppc_fpscr_regnum >= 0)
283 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
284
285 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
286 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
287 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
288
289 /* Segment registers. */
7cc46491
DJ
290 for (i = 0; i < ppc_num_srs; i++)
291 {
292 int gdb_regno;
293
294 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
295 if (gdb_regno >= 0)
296 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
297 }
9f643768
JB
298
299 /* Altivec registers. */
300 if (tdep->ppc_vr0_regnum >= 0)
301 {
302 for (i = 0; i < ppc_num_vrs; i++)
303 set_sim_regno (sim_regno,
304 tdep->ppc_vr0_regnum + i,
305 sim_ppc_vr0_regnum + i);
306
307 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
308 we can treat this more like the other cases. */
309 set_sim_regno (sim_regno,
310 tdep->ppc_vr0_regnum + ppc_num_vrs,
311 sim_ppc_vscr_regnum);
312 }
313 /* vsave is a special-purpose register, so the code below handles it. */
314
315 /* SPE APU (E500) registers. */
6ced10dd
JB
316 if (tdep->ppc_ev0_upper_regnum >= 0)
317 for (i = 0; i < ppc_num_gprs; i++)
318 set_sim_regno (sim_regno,
319 tdep->ppc_ev0_upper_regnum + i,
320 sim_ppc_rh0_regnum + i);
9f643768
JB
321 if (tdep->ppc_acc_regnum >= 0)
322 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
323 /* spefscr is a special-purpose register, so the code below handles it. */
324
7cc46491 325#ifdef WITH_SIM
9f643768
JB
326 /* Now handle all special-purpose registers. Verify that they
327 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
328 code. */
329 for (i = 0; i < sim_ppc_num_sprs; i++)
330 {
331 const char *spr_name = sim_spr_register_name (i);
332 int gdb_regno = -1;
333
334 if (spr_name != NULL)
335 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
336
337 if (gdb_regno != -1)
338 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
339 }
340#endif
9f643768
JB
341
342 /* Drop the initialized array into place. */
343 tdep->sim_regno = sim_regno;
344}
345
09991fa0
JB
346
347/* Given a GDB register number REG, return the corresponding SIM
348 register number. */
9f643768 349static int
e7faf938 350rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 351{
e7faf938 352 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
353 int sim_regno;
354
7cc46491 355 if (tdep->sim_regno == NULL)
e7faf938 356 init_sim_regno_table (gdbarch);
7cc46491 357
f57d151a 358 gdb_assert (0 <= reg
e7faf938
MD
359 && reg <= gdbarch_num_regs (gdbarch)
360 + gdbarch_num_pseudo_regs (gdbarch));
9f643768
JB
361 sim_regno = tdep->sim_regno[reg];
362
363 if (sim_regno >= 0)
364 return sim_regno;
365 else
366 return LEGACY_SIM_REGNO_IGNORE;
367}
368
d195bc9f
MK
369\f
370
371/* Register set support functions. */
372
f2db237a
AM
373/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
374 Write the register to REGCACHE. */
375
7284e1be 376void
d195bc9f 377ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 378 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
379{
380 if (regnum != -1 && offset != -1)
f2db237a
AM
381 {
382 if (regsize > 4)
383 {
384 struct gdbarch *gdbarch = get_regcache_arch (regcache);
385 int gdb_regsize = register_size (gdbarch, regnum);
386 if (gdb_regsize < regsize
387 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
388 offset += regsize - gdb_regsize;
389 }
390 regcache_raw_supply (regcache, regnum, regs + offset);
391 }
d195bc9f
MK
392}
393
f2db237a
AM
394/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
395 in a field REGSIZE wide. Zero pad as necessary. */
396
7284e1be 397void
d195bc9f 398ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 399 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
400{
401 if (regnum != -1 && offset != -1)
f2db237a
AM
402 {
403 if (regsize > 4)
404 {
405 struct gdbarch *gdbarch = get_regcache_arch (regcache);
406 int gdb_regsize = register_size (gdbarch, regnum);
407 if (gdb_regsize < regsize)
408 {
409 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
410 {
411 memset (regs + offset, 0, regsize - gdb_regsize);
412 offset += regsize - gdb_regsize;
413 }
414 else
415 memset (regs + offset + regsize - gdb_regsize, 0,
416 regsize - gdb_regsize);
417 }
418 }
419 regcache_raw_collect (regcache, regnum, regs + offset);
420 }
d195bc9f
MK
421}
422
f2db237a
AM
423static int
424ppc_greg_offset (struct gdbarch *gdbarch,
425 struct gdbarch_tdep *tdep,
426 const struct ppc_reg_offsets *offsets,
427 int regnum,
428 int *regsize)
429{
430 *regsize = offsets->gpr_size;
431 if (regnum >= tdep->ppc_gp0_regnum
432 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
433 return (offsets->r0_offset
434 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
435
436 if (regnum == gdbarch_pc_regnum (gdbarch))
437 return offsets->pc_offset;
438
439 if (regnum == tdep->ppc_ps_regnum)
440 return offsets->ps_offset;
441
442 if (regnum == tdep->ppc_lr_regnum)
443 return offsets->lr_offset;
444
445 if (regnum == tdep->ppc_ctr_regnum)
446 return offsets->ctr_offset;
447
448 *regsize = offsets->xr_size;
449 if (regnum == tdep->ppc_cr_regnum)
450 return offsets->cr_offset;
451
452 if (regnum == tdep->ppc_xer_regnum)
453 return offsets->xer_offset;
454
455 if (regnum == tdep->ppc_mq_regnum)
456 return offsets->mq_offset;
457
458 return -1;
459}
460
461static int
462ppc_fpreg_offset (struct gdbarch_tdep *tdep,
463 const struct ppc_reg_offsets *offsets,
464 int regnum)
465{
466 if (regnum >= tdep->ppc_fp0_regnum
467 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
468 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
469
470 if (regnum == tdep->ppc_fpscr_regnum)
471 return offsets->fpscr_offset;
472
473 return -1;
474}
475
06caf7d2
CES
476static int
477ppc_vrreg_offset (struct gdbarch_tdep *tdep,
478 const struct ppc_reg_offsets *offsets,
479 int regnum)
480{
481 if (regnum >= tdep->ppc_vr0_regnum
482 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
483 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
484
485 if (regnum == tdep->ppc_vrsave_regnum - 1)
486 return offsets->vscr_offset;
487
488 if (regnum == tdep->ppc_vrsave_regnum)
489 return offsets->vrsave_offset;
490
491 return -1;
492}
493
d195bc9f
MK
494/* Supply register REGNUM in the general-purpose register set REGSET
495 from the buffer specified by GREGS and LEN to register cache
496 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
497
498void
499ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
500 int regnum, const void *gregs, size_t len)
501{
502 struct gdbarch *gdbarch = get_regcache_arch (regcache);
503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
504 const struct ppc_reg_offsets *offsets = regset->descr;
505 size_t offset;
f2db237a 506 int regsize;
d195bc9f 507
f2db237a 508 if (regnum == -1)
d195bc9f 509 {
f2db237a
AM
510 int i;
511 int gpr_size = offsets->gpr_size;
512
513 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
514 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
515 i++, offset += gpr_size)
516 ppc_supply_reg (regcache, i, gregs, offset, gpr_size);
517
518 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
519 gregs, offsets->pc_offset, gpr_size);
520 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
521 gregs, offsets->ps_offset, gpr_size);
522 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
523 gregs, offsets->lr_offset, gpr_size);
524 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
525 gregs, offsets->ctr_offset, gpr_size);
526 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
527 gregs, offsets->cr_offset, offsets->xr_size);
528 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
529 gregs, offsets->xer_offset, offsets->xr_size);
530 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
531 gregs, offsets->mq_offset, offsets->xr_size);
532 return;
d195bc9f
MK
533 }
534
f2db237a
AM
535 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
536 ppc_supply_reg (regcache, regnum, gregs, offset, regsize);
d195bc9f
MK
537}
538
539/* Supply register REGNUM in the floating-point register set REGSET
540 from the buffer specified by FPREGS and LEN to register cache
541 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
542
543void
544ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
545 int regnum, const void *fpregs, size_t len)
546{
547 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
548 struct gdbarch_tdep *tdep;
549 const struct ppc_reg_offsets *offsets;
d195bc9f 550 size_t offset;
d195bc9f 551
f2db237a
AM
552 if (!ppc_floating_point_unit_p (gdbarch))
553 return;
383f0f5b 554
f2db237a
AM
555 tdep = gdbarch_tdep (gdbarch);
556 offsets = regset->descr;
557 if (regnum == -1)
d195bc9f 558 {
f2db237a
AM
559 int i;
560
561 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
562 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
563 i++, offset += 8)
564 ppc_supply_reg (regcache, i, fpregs, offset, 8);
565
566 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
567 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
568 return;
d195bc9f
MK
569 }
570
f2db237a
AM
571 offset = ppc_fpreg_offset (tdep, offsets, regnum);
572 ppc_supply_reg (regcache, regnum, fpregs, offset,
573 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
574}
575
604c2f83
LM
576/* Supply register REGNUM in the VSX register set REGSET
577 from the buffer specified by VSXREGS and LEN to register cache
578 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
579
580void
581ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
582 int regnum, const void *vsxregs, size_t len)
583{
584 struct gdbarch *gdbarch = get_regcache_arch (regcache);
585 struct gdbarch_tdep *tdep;
586
587 if (!ppc_vsx_support_p (gdbarch))
588 return;
589
590 tdep = gdbarch_tdep (gdbarch);
591
592 if (regnum == -1)
593 {
594 int i;
595
596 for (i = tdep->ppc_vsr0_upper_regnum;
597 i < tdep->ppc_vsr0_upper_regnum + 32;
598 i++)
599 ppc_supply_reg (regcache, i, vsxregs, 0, 8);
600
601 return;
602 }
603 else
604 ppc_supply_reg (regcache, regnum, vsxregs, 0, 8);
605}
606
06caf7d2
CES
607/* Supply register REGNUM in the Altivec register set REGSET
608 from the buffer specified by VRREGS and LEN to register cache
609 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
610
611void
612ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
613 int regnum, const void *vrregs, size_t len)
614{
615 struct gdbarch *gdbarch = get_regcache_arch (regcache);
616 struct gdbarch_tdep *tdep;
617 const struct ppc_reg_offsets *offsets;
618 size_t offset;
619
620 if (!ppc_altivec_support_p (gdbarch))
621 return;
622
623 tdep = gdbarch_tdep (gdbarch);
624 offsets = regset->descr;
625 if (regnum == -1)
626 {
627 int i;
628
629 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
630 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
631 i++, offset += 16)
632 ppc_supply_reg (regcache, i, vrregs, offset, 16);
633
634 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
635 vrregs, offsets->vscr_offset, 4);
636
637 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
638 vrregs, offsets->vrsave_offset, 4);
639 return;
640 }
641
642 offset = ppc_vrreg_offset (tdep, offsets, regnum);
643 if (regnum != tdep->ppc_vrsave_regnum
644 && regnum != tdep->ppc_vrsave_regnum - 1)
645 ppc_supply_reg (regcache, regnum, vrregs, offset, 16);
646 else
647 ppc_supply_reg (regcache, regnum,
648 vrregs, offset, 4);
649}
650
d195bc9f 651/* Collect register REGNUM in the general-purpose register set
f2db237a 652 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
653 GREGS and LEN. If REGNUM is -1, do this for all registers in
654 REGSET. */
655
656void
657ppc_collect_gregset (const struct regset *regset,
658 const struct regcache *regcache,
659 int regnum, void *gregs, size_t len)
660{
661 struct gdbarch *gdbarch = get_regcache_arch (regcache);
662 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
663 const struct ppc_reg_offsets *offsets = regset->descr;
664 size_t offset;
f2db237a 665 int regsize;
d195bc9f 666
f2db237a 667 if (regnum == -1)
d195bc9f 668 {
f2db237a
AM
669 int i;
670 int gpr_size = offsets->gpr_size;
671
672 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
673 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
674 i++, offset += gpr_size)
675 ppc_collect_reg (regcache, i, gregs, offset, gpr_size);
676
677 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
678 gregs, offsets->pc_offset, gpr_size);
679 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
680 gregs, offsets->ps_offset, gpr_size);
681 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
682 gregs, offsets->lr_offset, gpr_size);
683 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
684 gregs, offsets->ctr_offset, gpr_size);
685 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
686 gregs, offsets->cr_offset, offsets->xr_size);
687 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
688 gregs, offsets->xer_offset, offsets->xr_size);
689 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
690 gregs, offsets->mq_offset, offsets->xr_size);
691 return;
d195bc9f
MK
692 }
693
f2db237a
AM
694 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
695 ppc_collect_reg (regcache, regnum, gregs, offset, regsize);
d195bc9f
MK
696}
697
698/* Collect register REGNUM in the floating-point register set
f2db237a 699 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
700 FPREGS and LEN. If REGNUM is -1, do this for all registers in
701 REGSET. */
702
703void
704ppc_collect_fpregset (const struct regset *regset,
705 const struct regcache *regcache,
706 int regnum, void *fpregs, size_t len)
707{
708 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
709 struct gdbarch_tdep *tdep;
710 const struct ppc_reg_offsets *offsets;
d195bc9f 711 size_t offset;
d195bc9f 712
f2db237a
AM
713 if (!ppc_floating_point_unit_p (gdbarch))
714 return;
383f0f5b 715
f2db237a
AM
716 tdep = gdbarch_tdep (gdbarch);
717 offsets = regset->descr;
718 if (regnum == -1)
d195bc9f 719 {
f2db237a
AM
720 int i;
721
722 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
723 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
724 i++, offset += 8)
725 ppc_collect_reg (regcache, i, fpregs, offset, 8);
726
727 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
728 fpregs, offsets->fpscr_offset, offsets->fpscr_size);
729 return;
d195bc9f
MK
730 }
731
f2db237a
AM
732 offset = ppc_fpreg_offset (tdep, offsets, regnum);
733 ppc_collect_reg (regcache, regnum, fpregs, offset,
734 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 735}
06caf7d2 736
604c2f83
LM
737/* Collect register REGNUM in the VSX register set
738 REGSET from register cache REGCACHE into the buffer specified by
739 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
740 REGSET. */
741
742void
743ppc_collect_vsxregset (const struct regset *regset,
744 const struct regcache *regcache,
745 int regnum, void *vsxregs, size_t len)
746{
747 struct gdbarch *gdbarch = get_regcache_arch (regcache);
748 struct gdbarch_tdep *tdep;
749
750 if (!ppc_vsx_support_p (gdbarch))
751 return;
752
753 tdep = gdbarch_tdep (gdbarch);
754
755 if (regnum == -1)
756 {
757 int i;
758
759 for (i = tdep->ppc_vsr0_upper_regnum;
760 i < tdep->ppc_vsr0_upper_regnum + 32;
761 i++)
762 ppc_collect_reg (regcache, i, vsxregs, 0, 8);
763
764 return;
765 }
766 else
767 ppc_collect_reg (regcache, regnum, vsxregs, 0, 8);
768}
769
770
06caf7d2
CES
771/* Collect register REGNUM in the Altivec register set
772 REGSET from register cache REGCACHE into the buffer specified by
773 VRREGS and LEN. If REGNUM is -1, do this for all registers in
774 REGSET. */
775
776void
777ppc_collect_vrregset (const struct regset *regset,
778 const struct regcache *regcache,
779 int regnum, void *vrregs, size_t len)
780{
781 struct gdbarch *gdbarch = get_regcache_arch (regcache);
782 struct gdbarch_tdep *tdep;
783 const struct ppc_reg_offsets *offsets;
784 size_t offset;
785
786 if (!ppc_altivec_support_p (gdbarch))
787 return;
788
789 tdep = gdbarch_tdep (gdbarch);
790 offsets = regset->descr;
791 if (regnum == -1)
792 {
793 int i;
794
795 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
796 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
797 i++, offset += 16)
798 ppc_collect_reg (regcache, i, vrregs, offset, 16);
799
800 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
801 vrregs, offsets->vscr_offset, 4);
802
803 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
804 vrregs, offsets->vrsave_offset, 4);
805 return;
806 }
807
808 offset = ppc_vrreg_offset (tdep, offsets, regnum);
809 if (regnum != tdep->ppc_vrsave_regnum
810 && regnum != tdep->ppc_vrsave_regnum - 1)
811 ppc_collect_reg (regcache, regnum, vrregs, offset, 16);
812 else
813 ppc_collect_reg (regcache, regnum,
814 vrregs, offset, 4);
815}
d195bc9f 816\f
0a613259 817
0d1243d9
PG
818static int
819insn_changes_sp_or_jumps (unsigned long insn)
820{
821 int opcode = (insn >> 26) & 0x03f;
822 int sd = (insn >> 21) & 0x01f;
823 int a = (insn >> 16) & 0x01f;
824 int subcode = (insn >> 1) & 0x3ff;
825
826 /* Changes the stack pointer. */
827
828 /* NOTE: There are many ways to change the value of a given register.
829 The ways below are those used when the register is R1, the SP,
830 in a funtion's epilogue. */
831
832 if (opcode == 31 && subcode == 444 && a == 1)
833 return 1; /* mr R1,Rn */
834 if (opcode == 14 && sd == 1)
835 return 1; /* addi R1,Rn,simm */
836 if (opcode == 58 && sd == 1)
837 return 1; /* ld R1,ds(Rn) */
838
839 /* Transfers control. */
840
841 if (opcode == 18)
842 return 1; /* b */
843 if (opcode == 16)
844 return 1; /* bc */
845 if (opcode == 19 && subcode == 16)
846 return 1; /* bclr */
847 if (opcode == 19 && subcode == 528)
848 return 1; /* bcctr */
849
850 return 0;
851}
852
853/* Return true if we are in the function's epilogue, i.e. after the
854 instruction that destroyed the function's stack frame.
855
856 1) scan forward from the point of execution:
857 a) If you find an instruction that modifies the stack pointer
858 or transfers control (except a return), execution is not in
859 an epilogue, return.
860 b) Stop scanning if you find a return instruction or reach the
861 end of the function or reach the hard limit for the size of
862 an epilogue.
863 2) scan backward from the point of execution:
864 a) If you find an instruction that modifies the stack pointer,
865 execution *is* in an epilogue, return.
866 b) Stop scanning if you reach an instruction that transfers
867 control or the beginning of the function or reach the hard
868 limit for the size of an epilogue. */
869
870static int
871rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
872{
873 bfd_byte insn_buf[PPC_INSN_SIZE];
874 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
875 unsigned long insn;
876 struct frame_info *curfrm;
877
878 /* Find the search limits based on function boundaries and hard limit. */
879
880 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
881 return 0;
882
883 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
884 if (epilogue_start < func_start) epilogue_start = func_start;
885
886 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
887 if (epilogue_end > func_end) epilogue_end = func_end;
888
889 curfrm = get_current_frame ();
890
891 /* Scan forward until next 'blr'. */
892
893 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
894 {
895 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
896 return 0;
4e463ff5 897 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
898 if (insn == 0x4e800020)
899 break;
900 if (insn_changes_sp_or_jumps (insn))
901 return 0;
902 }
903
904 /* Scan backward until adjustment to stack pointer (R1). */
905
906 for (scan_pc = pc - PPC_INSN_SIZE;
907 scan_pc >= epilogue_start;
908 scan_pc -= PPC_INSN_SIZE)
909 {
910 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
911 return 0;
4e463ff5 912 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
913 if (insn_changes_sp_or_jumps (insn))
914 return 1;
915 }
916
917 return 0;
918}
919
143985b7 920/* Get the ith function argument for the current function. */
b9362cc7 921static CORE_ADDR
143985b7
AF
922rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
923 struct type *type)
924{
50fd1280 925 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
926}
927
c906108c
SS
928/* Sequence of bytes for breakpoint instruction. */
929
f4f9705a 930const static unsigned char *
67d57894
MD
931rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
932 int *bp_size)
c906108c 933{
aaab4dba
AC
934 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
935 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 936 *bp_size = 4;
67d57894 937 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
938 return big_breakpoint;
939 else
940 return little_breakpoint;
941}
942
f74c6cad
LM
943/* Instruction masks for displaced stepping. */
944#define BRANCH_MASK 0xfc000000
945#define BP_MASK 0xFC0007FE
946#define B_INSN 0x48000000
947#define BC_INSN 0x40000000
948#define BXL_INSN 0x4c000000
949#define BP_INSN 0x7C000008
950
951/* Fix up the state of registers and memory after having single-stepped
952 a displaced instruction. */
953void
954ppc_displaced_step_fixup (struct gdbarch *gdbarch,
955 struct displaced_step_closure *closure,
956 CORE_ADDR from, CORE_ADDR to,
957 struct regcache *regs)
958{
959 /* Since we use simple_displaced_step_copy_insn, our closure is a
960 copy of the instruction. */
961 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
962 PPC_INSN_SIZE);
963 ULONGEST opcode = 0;
964 /* Offset for non PC-relative instructions. */
965 LONGEST offset = PPC_INSN_SIZE;
966
967 opcode = insn & BRANCH_MASK;
968
969 if (debug_displaced)
970 fprintf_unfiltered (gdb_stdlog,
971 "displaced: (ppc) fixup (0x%s, 0x%s)\n",
972 paddr_nz (from), paddr_nz (to));
973
974
975 /* Handle PC-relative branch instructions. */
976 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
977 {
a4fafde3 978 ULONGEST current_pc;
f74c6cad
LM
979
980 /* Read the current PC value after the instruction has been executed
981 in a displaced location. Calculate the offset to be applied to the
982 original PC value before the displaced stepping. */
983 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
984 &current_pc);
985 offset = current_pc - to;
986
987 if (opcode != BXL_INSN)
988 {
989 /* Check for AA bit indicating whether this is an absolute
990 addressing or PC-relative (1: absolute, 0: relative). */
991 if (!(insn & 0x2))
992 {
993 /* PC-relative addressing is being used in the branch. */
994 if (debug_displaced)
995 fprintf_unfiltered
996 (gdb_stdlog,
997 "displaced: (ppc) branch instruction: 0x%s\n"
998 "displaced: (ppc) adjusted PC from 0x%s to 0x%s\n",
999 paddr_nz (insn), paddr_nz (current_pc),
1000 paddr_nz (from + offset));
1001
1002 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1003 from + offset);
1004 }
1005 }
1006 else
1007 {
1008 /* If we're here, it means we have a branch to LR or CTR. If the
1009 branch was taken, the offset is probably greater than 4 (the next
1010 instruction), so it's safe to assume that an offset of 4 means we
1011 did not take the branch. */
1012 if (offset == PPC_INSN_SIZE)
1013 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1014 from + PPC_INSN_SIZE);
1015 }
1016
1017 /* Check for LK bit indicating whether we should set the link
1018 register to point to the next instruction
1019 (1: Set, 0: Don't set). */
1020 if (insn & 0x1)
1021 {
1022 /* Link register needs to be set to the next instruction's PC. */
1023 regcache_cooked_write_unsigned (regs,
1024 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1025 from + PPC_INSN_SIZE);
1026 if (debug_displaced)
1027 fprintf_unfiltered (gdb_stdlog,
1028 "displaced: (ppc) adjusted LR to 0x%s\n",
1029 paddr_nz (from + PPC_INSN_SIZE));
1030
1031 }
1032 }
1033 /* Check for breakpoints in the inferior. If we've found one, place the PC
1034 right at the breakpoint instruction. */
1035 else if ((insn & BP_MASK) == BP_INSN)
1036 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1037 else
1038 /* Handle any other instructions that do not fit in the categories above. */
1039 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1040 from + offset);
1041}
c906108c 1042
ce5eab59
UW
1043/* Instruction masks used during single-stepping of atomic sequences. */
1044#define LWARX_MASK 0xfc0007fe
1045#define LWARX_INSTRUCTION 0x7c000028
1046#define LDARX_INSTRUCTION 0x7c0000A8
1047#define STWCX_MASK 0xfc0007ff
1048#define STWCX_INSTRUCTION 0x7c00012d
1049#define STDCX_INSTRUCTION 0x7c0001ad
ce5eab59
UW
1050
1051/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1052 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1053 is found, attempt to step through it. A breakpoint is placed at the end of
1054 the sequence. */
1055
4a7622d1
UW
1056int
1057ppc_deal_with_atomic_sequence (struct frame_info *frame)
ce5eab59 1058{
0b1b3e42 1059 CORE_ADDR pc = get_frame_pc (frame);
ce5eab59
UW
1060 CORE_ADDR breaks[2] = {-1, -1};
1061 CORE_ADDR loc = pc;
24d45690 1062 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
ce5eab59
UW
1063 int insn = read_memory_integer (loc, PPC_INSN_SIZE);
1064 int insn_count;
1065 int index;
1066 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1067 const int atomic_sequence_length = 16; /* Instruction sequence length. */
24d45690 1068 int opcode; /* Branch instruction's OPcode. */
ce5eab59
UW
1069 int bc_insn_count = 0; /* Conditional branch instruction count. */
1070
1071 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1072 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1073 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1074 return 0;
1075
1076 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1077 instructions. */
1078 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1079 {
1080 loc += PPC_INSN_SIZE;
1081 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1082
1083 /* Assume that there is at most one conditional branch in the atomic
1084 sequence. If a conditional branch is found, put a breakpoint in
1085 its destination address. */
f74c6cad 1086 if ((insn & BRANCH_MASK) == BC_INSN)
ce5eab59 1087 {
4a7622d1
UW
1088 int immediate = ((insn & ~3) << 16) >> 16;
1089 int absolute = ((insn >> 1) & 1);
1090
ce5eab59
UW
1091 if (bc_insn_count >= 1)
1092 return 0; /* More than one conditional branch found, fallback
1093 to the standard single-step code. */
4a7622d1
UW
1094
1095 if (absolute)
1096 breaks[1] = immediate;
1097 else
1098 breaks[1] = pc + immediate;
1099
1100 bc_insn_count++;
1101 last_breakpoint++;
ce5eab59
UW
1102 }
1103
1104 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1105 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1106 break;
1107 }
1108
1109 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1110 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1111 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1112 return 0;
1113
24d45690 1114 closing_insn = loc;
ce5eab59
UW
1115 loc += PPC_INSN_SIZE;
1116 insn = read_memory_integer (loc, PPC_INSN_SIZE);
1117
1118 /* Insert a breakpoint right after the end of the atomic sequence. */
1119 breaks[0] = loc;
1120
24d45690
UW
1121 /* Check for duplicated breakpoints. Check also for a breakpoint
1122 placed (branch instruction's destination) at the stwcx/stdcx
1123 instruction, this resets the reservation and take us back to the
1124 lwarx/ldarx instruction at the beginning of the atomic sequence. */
1125 if (last_breakpoint && ((breaks[1] == breaks[0])
1126 || (breaks[1] == closing_insn)))
ce5eab59
UW
1127 last_breakpoint = 0;
1128
1129 /* Effectively inserts the breakpoints. */
1130 for (index = 0; index <= last_breakpoint; index++)
1131 insert_single_step_breakpoint (breaks[index]);
1132
1133 return 1;
1134}
1135
c906108c 1136
c906108c
SS
1137#define SIGNED_SHORT(x) \
1138 ((sizeof (short) == 2) \
1139 ? ((int)(short)(x)) \
1140 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1141
1142#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1143
55d05f3b
KB
1144/* Limit the number of skipped non-prologue instructions, as the examining
1145 of the prologue is expensive. */
1146static int max_skip_non_prologue_insns = 10;
1147
773df3e5
JB
1148/* Return nonzero if the given instruction OP can be part of the prologue
1149 of a function and saves a parameter on the stack. FRAMEP should be
1150 set if one of the previous instructions in the function has set the
1151 Frame Pointer. */
1152
1153static int
1154store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1155{
1156 /* Move parameters from argument registers to temporary register. */
1157 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1158 {
1159 /* Rx must be scratch register r0. */
1160 const int rx_regno = (op >> 16) & 31;
1161 /* Ry: Only r3 - r10 are used for parameter passing. */
1162 const int ry_regno = GET_SRC_REG (op);
1163
1164 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1165 {
1166 *r0_contains_arg = 1;
1167 return 1;
1168 }
1169 else
1170 return 0;
1171 }
1172
1173 /* Save a General Purpose Register on stack. */
1174
1175 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1176 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1177 {
1178 /* Rx: Only r3 - r10 are used for parameter passing. */
1179 const int rx_regno = GET_SRC_REG (op);
1180
1181 return (rx_regno >= 3 && rx_regno <= 10);
1182 }
1183
1184 /* Save a General Purpose Register on stack via the Frame Pointer. */
1185
1186 if (framep &&
1187 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1188 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1189 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1190 {
1191 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1192 However, the compiler sometimes uses r0 to hold an argument. */
1193 const int rx_regno = GET_SRC_REG (op);
1194
1195 return ((rx_regno >= 3 && rx_regno <= 10)
1196 || (rx_regno == 0 && *r0_contains_arg));
1197 }
1198
1199 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1200 {
1201 /* Only f2 - f8 are used for parameter passing. */
1202 const int src_regno = GET_SRC_REG (op);
1203
1204 return (src_regno >= 2 && src_regno <= 8);
1205 }
1206
1207 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1208 {
1209 /* Only f2 - f8 are used for parameter passing. */
1210 const int src_regno = GET_SRC_REG (op);
1211
1212 return (src_regno >= 2 && src_regno <= 8);
1213 }
1214
1215 /* Not an insn that saves a parameter on stack. */
1216 return 0;
1217}
55d05f3b 1218
3c77c82a
DJ
1219/* Assuming that INSN is a "bl" instruction located at PC, return
1220 nonzero if the destination of the branch is a "blrl" instruction.
1221
1222 This sequence is sometimes found in certain function prologues.
1223 It allows the function to load the LR register with a value that
1224 they can use to access PIC data using PC-relative offsets. */
1225
1226static int
1227bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
1228{
0b1b3e42
UW
1229 CORE_ADDR dest;
1230 int immediate;
1231 int absolute;
3c77c82a
DJ
1232 int dest_insn;
1233
0b1b3e42
UW
1234 absolute = (int) ((insn >> 1) & 1);
1235 immediate = ((insn & ~3) << 6) >> 6;
1236 if (absolute)
1237 dest = immediate;
1238 else
1239 dest = pc + immediate;
1240
3c77c82a
DJ
1241 dest_insn = read_memory_integer (dest, 4);
1242 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1243 return 1;
1244
1245 return 0;
1246}
1247
8ab3d180
KB
1248/* Masks for decoding a branch-and-link (bl) instruction.
1249
1250 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1251 The former is anded with the opcode in question; if the result of
1252 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1253 question is a ``bl'' instruction.
1254
1255 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1256 the branch displacement. */
1257
1258#define BL_MASK 0xfc000001
1259#define BL_INSTRUCTION 0x48000001
1260#define BL_DISPLACEMENT_MASK 0x03fffffc
1261
6a16c029
TJB
1262/* return pc value after skipping a function prologue and also return
1263 information about a function frame.
1264
1265 in struct rs6000_framedata fdata:
1266 - frameless is TRUE, if function does not have a frame.
1267 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1268 - offset is the initial size of this stack frame --- the amount by
1269 which we decrement the sp to allocate the frame.
1270 - saved_gpr is the number of the first saved gpr.
1271 - saved_fpr is the number of the first saved fpr.
1272 - saved_vr is the number of the first saved vr.
1273 - saved_ev is the number of the first saved ev.
1274 - alloca_reg is the number of the register used for alloca() handling.
1275 Otherwise -1.
1276 - gpr_offset is the offset of the first saved gpr from the previous frame.
1277 - fpr_offset is the offset of the first saved fpr from the previous frame.
1278 - vr_offset is the offset of the first saved vr from the previous frame.
1279 - ev_offset is the offset of the first saved ev from the previous frame.
1280 - lr_offset is the offset of the saved lr
1281 - cr_offset is the offset of the saved cr
1282 - vrsave_offset is the offset of the saved vrsave register
1283 */
1284
7a78ae4e 1285static CORE_ADDR
be8626e0
MD
1286skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1287 struct rs6000_framedata *fdata)
c906108c
SS
1288{
1289 CORE_ADDR orig_pc = pc;
55d05f3b 1290 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1291 CORE_ADDR li_found_pc = 0;
50fd1280 1292 gdb_byte buf[4];
c906108c
SS
1293 unsigned long op;
1294 long offset = 0;
6be8bc0c 1295 long vr_saved_offset = 0;
482ca3f5
KB
1296 int lr_reg = -1;
1297 int cr_reg = -1;
6be8bc0c 1298 int vr_reg = -1;
96ff0de4
EZ
1299 int ev_reg = -1;
1300 long ev_offset = 0;
6be8bc0c 1301 int vrsave_reg = -1;
c906108c
SS
1302 int reg;
1303 int framep = 0;
1304 int minimal_toc_loaded = 0;
ddb20c56 1305 int prev_insn_was_prologue_insn = 1;
55d05f3b 1306 int num_skip_non_prologue_insns = 0;
773df3e5 1307 int r0_contains_arg = 0;
be8626e0
MD
1308 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1309 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c906108c 1310
ddb20c56 1311 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1312 fdata->saved_gpr = -1;
1313 fdata->saved_fpr = -1;
6be8bc0c 1314 fdata->saved_vr = -1;
96ff0de4 1315 fdata->saved_ev = -1;
c906108c
SS
1316 fdata->alloca_reg = -1;
1317 fdata->frameless = 1;
1318 fdata->nosavedpc = 1;
1319
55d05f3b 1320 for (;; pc += 4)
c906108c 1321 {
ddb20c56
KB
1322 /* Sometimes it isn't clear if an instruction is a prologue
1323 instruction or not. When we encounter one of these ambiguous
1324 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
1325 Otherwise, we'll assume that it really is a prologue instruction. */
1326 if (prev_insn_was_prologue_insn)
1327 last_prologue_pc = pc;
55d05f3b
KB
1328
1329 /* Stop scanning if we've hit the limit. */
4e463ff5 1330 if (pc >= lim_pc)
55d05f3b
KB
1331 break;
1332
ddb20c56
KB
1333 prev_insn_was_prologue_insn = 1;
1334
55d05f3b 1335 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1336 if (target_read_memory (pc, buf, 4))
1337 break;
4e463ff5 1338 op = extract_unsigned_integer (buf, 4);
c906108c 1339
c5aa993b
JM
1340 if ((op & 0xfc1fffff) == 0x7c0802a6)
1341 { /* mflr Rx */
43b1ab88
AC
1342 /* Since shared library / PIC code, which needs to get its
1343 address at runtime, can appear to save more than one link
1344 register vis:
1345
1346 *INDENT-OFF*
1347 stwu r1,-304(r1)
1348 mflr r3
1349 bl 0xff570d0 (blrl)
1350 stw r30,296(r1)
1351 mflr r30
1352 stw r31,300(r1)
1353 stw r3,308(r1);
1354 ...
1355 *INDENT-ON*
1356
1357 remember just the first one, but skip over additional
1358 ones. */
721d14ba 1359 if (lr_reg == -1)
43b1ab88 1360 lr_reg = (op & 0x03e00000);
773df3e5
JB
1361 if (lr_reg == 0)
1362 r0_contains_arg = 0;
c5aa993b 1363 continue;
c5aa993b
JM
1364 }
1365 else if ((op & 0xfc1fffff) == 0x7c000026)
1366 { /* mfcr Rx */
98f08d3d 1367 cr_reg = (op & 0x03e00000);
773df3e5
JB
1368 if (cr_reg == 0)
1369 r0_contains_arg = 0;
c5aa993b 1370 continue;
c906108c 1371
c906108c 1372 }
c5aa993b
JM
1373 else if ((op & 0xfc1f0000) == 0xd8010000)
1374 { /* stfd Rx,NUM(r1) */
1375 reg = GET_SRC_REG (op);
1376 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1377 {
1378 fdata->saved_fpr = reg;
1379 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1380 }
1381 continue;
c906108c 1382
c5aa993b
JM
1383 }
1384 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1385 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1386 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1387 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1388 {
1389
1390 reg = GET_SRC_REG (op);
1391 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1392 {
1393 fdata->saved_gpr = reg;
7a78ae4e 1394 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1395 op &= ~3UL;
c5aa993b
JM
1396 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1397 }
1398 continue;
c906108c 1399
ddb20c56
KB
1400 }
1401 else if ((op & 0xffff0000) == 0x60000000)
1402 {
96ff0de4 1403 /* nop */
ddb20c56
KB
1404 /* Allow nops in the prologue, but do not consider them to
1405 be part of the prologue unless followed by other prologue
1406 instructions. */
1407 prev_insn_was_prologue_insn = 0;
1408 continue;
1409
c906108c 1410 }
c5aa993b
JM
1411 else if ((op & 0xffff0000) == 0x3c000000)
1412 { /* addis 0,0,NUM, used
1413 for >= 32k frames */
1414 fdata->offset = (op & 0x0000ffff) << 16;
1415 fdata->frameless = 0;
773df3e5 1416 r0_contains_arg = 0;
c5aa993b
JM
1417 continue;
1418
1419 }
1420 else if ((op & 0xffff0000) == 0x60000000)
1421 { /* ori 0,0,NUM, 2nd ha
1422 lf of >= 32k frames */
1423 fdata->offset |= (op & 0x0000ffff);
1424 fdata->frameless = 0;
773df3e5 1425 r0_contains_arg = 0;
c5aa993b
JM
1426 continue;
1427
1428 }
be723e22 1429 else if (lr_reg >= 0 &&
98f08d3d
KB
1430 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1431 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1432 /* stw Rx, NUM(r1) */
1433 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1434 /* stwu Rx, NUM(r1) */
1435 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1436 { /* where Rx == lr */
1437 fdata->lr_offset = offset;
c5aa993b 1438 fdata->nosavedpc = 0;
be723e22
MS
1439 /* Invalidate lr_reg, but don't set it to -1.
1440 That would mean that it had never been set. */
1441 lr_reg = -2;
98f08d3d
KB
1442 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1443 (op & 0xfc000000) == 0x90000000) /* stw */
1444 {
1445 /* Does not update r1, so add displacement to lr_offset. */
1446 fdata->lr_offset += SIGNED_SHORT (op);
1447 }
c5aa993b
JM
1448 continue;
1449
1450 }
be723e22 1451 else if (cr_reg >= 0 &&
98f08d3d
KB
1452 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1453 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1454 /* stw Rx, NUM(r1) */
1455 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1456 /* stwu Rx, NUM(r1) */
1457 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1458 { /* where Rx == cr */
1459 fdata->cr_offset = offset;
be723e22
MS
1460 /* Invalidate cr_reg, but don't set it to -1.
1461 That would mean that it had never been set. */
1462 cr_reg = -2;
98f08d3d
KB
1463 if ((op & 0xfc000003) == 0xf8000000 ||
1464 (op & 0xfc000000) == 0x90000000)
1465 {
1466 /* Does not update r1, so add displacement to cr_offset. */
1467 fdata->cr_offset += SIGNED_SHORT (op);
1468 }
c5aa993b
JM
1469 continue;
1470
1471 }
721d14ba
DJ
1472 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1473 {
1474 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1475 prediction bits. If the LR has already been saved, we can
1476 skip it. */
1477 continue;
1478 }
c5aa993b
JM
1479 else if (op == 0x48000005)
1480 { /* bl .+4 used in
1481 -mrelocatable */
1482 continue;
1483
1484 }
1485 else if (op == 0x48000004)
1486 { /* b .+4 (xlc) */
1487 break;
1488
c5aa993b 1489 }
6be8bc0c
EZ
1490 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1491 in V.4 -mminimal-toc */
c5aa993b
JM
1492 (op & 0xffff0000) == 0x3bde0000)
1493 { /* addi 30,30,foo@l */
1494 continue;
c906108c 1495
c5aa993b
JM
1496 }
1497 else if ((op & 0xfc000001) == 0x48000001)
1498 { /* bl foo,
1499 to save fprs??? */
c906108c 1500
c5aa993b 1501 fdata->frameless = 0;
3c77c82a
DJ
1502
1503 /* If the return address has already been saved, we can skip
1504 calls to blrl (for PIC). */
1505 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1506 continue;
1507
6be8bc0c 1508 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1509 the first three instructions of the prologue and either
1510 we have no line table information or the line info tells
1511 us that the subroutine call is not part of the line
1512 associated with the prologue. */
c5aa993b 1513 if ((pc - orig_pc) > 8)
ebd98106
FF
1514 {
1515 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1516 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1517
1518 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1519 break;
1520 }
c5aa993b
JM
1521
1522 op = read_memory_integer (pc + 4, 4);
1523
6be8bc0c
EZ
1524 /* At this point, make sure this is not a trampoline
1525 function (a function that simply calls another functions,
1526 and nothing else). If the next is not a nop, this branch
1527 was part of the function prologue. */
c5aa993b
JM
1528
1529 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1530 break; /* don't skip over
1531 this branch */
1532 continue;
1533
c5aa993b 1534 }
98f08d3d
KB
1535 /* update stack pointer */
1536 else if ((op & 0xfc1f0000) == 0x94010000)
1537 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1538 fdata->frameless = 0;
1539 fdata->offset = SIGNED_SHORT (op);
1540 offset = fdata->offset;
1541 continue;
c5aa993b 1542 }
98f08d3d
KB
1543 else if ((op & 0xfc1f016a) == 0x7c01016e)
1544 { /* stwux rX,r1,rY */
1545 /* no way to figure out what r1 is going to be */
1546 fdata->frameless = 0;
1547 offset = fdata->offset;
1548 continue;
1549 }
1550 else if ((op & 0xfc1f0003) == 0xf8010001)
1551 { /* stdu rX,NUM(r1) */
1552 fdata->frameless = 0;
1553 fdata->offset = SIGNED_SHORT (op & ~3UL);
1554 offset = fdata->offset;
1555 continue;
1556 }
1557 else if ((op & 0xfc1f016a) == 0x7c01016a)
1558 { /* stdux rX,r1,rY */
1559 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1560 fdata->frameless = 0;
1561 offset = fdata->offset;
1562 continue;
c5aa993b 1563 }
7313566f
FF
1564 else if ((op & 0xffff0000) == 0x38210000)
1565 { /* addi r1,r1,SIMM */
1566 fdata->frameless = 0;
1567 fdata->offset += SIGNED_SHORT (op);
1568 offset = fdata->offset;
1569 continue;
1570 }
4e463ff5
DJ
1571 /* Load up minimal toc pointer. Do not treat an epilogue restore
1572 of r31 as a minimal TOC load. */
98f08d3d
KB
1573 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1574 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1575 && !framep
c5aa993b 1576 && !minimal_toc_loaded)
98f08d3d 1577 {
c5aa993b
JM
1578 minimal_toc_loaded = 1;
1579 continue;
1580
f6077098
KB
1581 /* move parameters from argument registers to local variable
1582 registers */
1583 }
1584 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1585 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1586 (((op >> 21) & 31) <= 10) &&
96ff0de4 1587 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1588 {
1589 continue;
1590
c5aa993b
JM
1591 /* store parameters in stack */
1592 }
e802b915 1593 /* Move parameters from argument registers to temporary register. */
773df3e5 1594 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1595 {
c5aa993b
JM
1596 continue;
1597
1598 /* Set up frame pointer */
1599 }
1600 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1601 || op == 0x7c3f0b78)
1602 { /* mr r31, r1 */
1603 fdata->frameless = 0;
1604 framep = 1;
6f99cb26 1605 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1606 continue;
1607
1608 /* Another way to set up the frame pointer. */
1609 }
1610 else if ((op & 0xfc1fffff) == 0x38010000)
1611 { /* addi rX, r1, 0x0 */
1612 fdata->frameless = 0;
1613 framep = 1;
6f99cb26
AC
1614 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1615 + ((op & ~0x38010000) >> 21));
c5aa993b 1616 continue;
c5aa993b 1617 }
6be8bc0c
EZ
1618 /* AltiVec related instructions. */
1619 /* Store the vrsave register (spr 256) in another register for
1620 later manipulation, or load a register into the vrsave
1621 register. 2 instructions are used: mfvrsave and
1622 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1623 and mtspr SPR256, Rn. */
1624 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1625 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1626 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1627 {
1628 vrsave_reg = GET_SRC_REG (op);
1629 continue;
1630 }
1631 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1632 {
1633 continue;
1634 }
1635 /* Store the register where vrsave was saved to onto the stack:
1636 rS is the register where vrsave was stored in a previous
1637 instruction. */
1638 /* 100100 sssss 00001 dddddddd dddddddd */
1639 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1640 {
1641 if (vrsave_reg == GET_SRC_REG (op))
1642 {
1643 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1644 vrsave_reg = -1;
1645 }
1646 continue;
1647 }
1648 /* Compute the new value of vrsave, by modifying the register
1649 where vrsave was saved to. */
1650 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1651 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1652 {
1653 continue;
1654 }
1655 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1656 in a pair of insns to save the vector registers on the
1657 stack. */
1658 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1659 /* 001110 01110 00000 iiii iiii iiii iiii */
1660 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1661 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1662 {
773df3e5
JB
1663 if ((op & 0xffff0000) == 0x38000000)
1664 r0_contains_arg = 0;
6be8bc0c
EZ
1665 li_found_pc = pc;
1666 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1667
1668 /* This insn by itself is not part of the prologue, unless
1669 if part of the pair of insns mentioned above. So do not
1670 record this insn as part of the prologue yet. */
1671 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1672 }
1673 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1674 /* 011111 sssss 11111 00000 00111001110 */
1675 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1676 {
1677 if (pc == (li_found_pc + 4))
1678 {
1679 vr_reg = GET_SRC_REG (op);
1680 /* If this is the first vector reg to be saved, or if
1681 it has a lower number than others previously seen,
1682 reupdate the frame info. */
1683 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1684 {
1685 fdata->saved_vr = vr_reg;
1686 fdata->vr_offset = vr_saved_offset + offset;
1687 }
1688 vr_saved_offset = -1;
1689 vr_reg = -1;
1690 li_found_pc = 0;
1691 }
1692 }
1693 /* End AltiVec related instructions. */
96ff0de4
EZ
1694
1695 /* Start BookE related instructions. */
1696 /* Store gen register S at (r31+uimm).
1697 Any register less than r13 is volatile, so we don't care. */
1698 /* 000100 sssss 11111 iiiii 01100100001 */
1699 else if (arch_info->mach == bfd_mach_ppc_e500
1700 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1701 {
1702 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1703 {
1704 unsigned int imm;
1705 ev_reg = GET_SRC_REG (op);
1706 imm = (op >> 11) & 0x1f;
1707 ev_offset = imm * 8;
1708 /* If this is the first vector reg to be saved, or if
1709 it has a lower number than others previously seen,
1710 reupdate the frame info. */
1711 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1712 {
1713 fdata->saved_ev = ev_reg;
1714 fdata->ev_offset = ev_offset + offset;
1715 }
1716 }
1717 continue;
1718 }
1719 /* Store gen register rS at (r1+rB). */
1720 /* 000100 sssss 00001 bbbbb 01100100000 */
1721 else if (arch_info->mach == bfd_mach_ppc_e500
1722 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1723 {
1724 if (pc == (li_found_pc + 4))
1725 {
1726 ev_reg = GET_SRC_REG (op);
1727 /* If this is the first vector reg to be saved, or if
1728 it has a lower number than others previously seen,
1729 reupdate the frame info. */
1730 /* We know the contents of rB from the previous instruction. */
1731 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1732 {
1733 fdata->saved_ev = ev_reg;
1734 fdata->ev_offset = vr_saved_offset + offset;
1735 }
1736 vr_saved_offset = -1;
1737 ev_reg = -1;
1738 li_found_pc = 0;
1739 }
1740 continue;
1741 }
1742 /* Store gen register r31 at (rA+uimm). */
1743 /* 000100 11111 aaaaa iiiii 01100100001 */
1744 else if (arch_info->mach == bfd_mach_ppc_e500
1745 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1746 {
1747 /* Wwe know that the source register is 31 already, but
1748 it can't hurt to compute it. */
1749 ev_reg = GET_SRC_REG (op);
1750 ev_offset = ((op >> 11) & 0x1f) * 8;
1751 /* If this is the first vector reg to be saved, or if
1752 it has a lower number than others previously seen,
1753 reupdate the frame info. */
1754 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1755 {
1756 fdata->saved_ev = ev_reg;
1757 fdata->ev_offset = ev_offset + offset;
1758 }
1759
1760 continue;
1761 }
1762 /* Store gen register S at (r31+r0).
1763 Store param on stack when offset from SP bigger than 4 bytes. */
1764 /* 000100 sssss 11111 00000 01100100000 */
1765 else if (arch_info->mach == bfd_mach_ppc_e500
1766 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1767 {
1768 if (pc == (li_found_pc + 4))
1769 {
1770 if ((op & 0x03e00000) >= 0x01a00000)
1771 {
1772 ev_reg = GET_SRC_REG (op);
1773 /* If this is the first vector reg to be saved, or if
1774 it has a lower number than others previously seen,
1775 reupdate the frame info. */
1776 /* We know the contents of r0 from the previous
1777 instruction. */
1778 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1779 {
1780 fdata->saved_ev = ev_reg;
1781 fdata->ev_offset = vr_saved_offset + offset;
1782 }
1783 ev_reg = -1;
1784 }
1785 vr_saved_offset = -1;
1786 li_found_pc = 0;
1787 continue;
1788 }
1789 }
1790 /* End BookE related instructions. */
1791
c5aa993b
JM
1792 else
1793 {
55d05f3b
KB
1794 /* Not a recognized prologue instruction.
1795 Handle optimizer code motions into the prologue by continuing
1796 the search if we have no valid frame yet or if the return
1797 address is not yet saved in the frame. */
4e463ff5 1798 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
55d05f3b
KB
1799 break;
1800
1801 if (op == 0x4e800020 /* blr */
1802 || op == 0x4e800420) /* bctr */
1803 /* Do not scan past epilogue in frameless functions or
1804 trampolines. */
1805 break;
1806 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1807 /* Never skip branches. */
55d05f3b
KB
1808 break;
1809
1810 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1811 /* Do not scan too many insns, scanning insns is expensive with
1812 remote targets. */
1813 break;
1814
1815 /* Continue scanning. */
1816 prev_insn_was_prologue_insn = 0;
1817 continue;
c5aa993b 1818 }
c906108c
SS
1819 }
1820
1821#if 0
1822/* I have problems with skipping over __main() that I need to address
1823 * sometime. Previously, I used to use misc_function_vector which
1824 * didn't work as well as I wanted to be. -MGO */
1825
1826 /* If the first thing after skipping a prolog is a branch to a function,
1827 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1828 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1829 work before calling a function right after a prologue, thus we can
64366f1c 1830 single out such gcc2 behaviour. */
c906108c 1831
c906108c 1832
c5aa993b
JM
1833 if ((op & 0xfc000001) == 0x48000001)
1834 { /* bl foo, an initializer function? */
1835 op = read_memory_integer (pc + 4, 4);
1836
1837 if (op == 0x4def7b82)
1838 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1839
64366f1c
EZ
1840 /* Check and see if we are in main. If so, skip over this
1841 initializer function as well. */
c906108c 1842
c5aa993b 1843 tmp = find_pc_misc_function (pc);
6314a349
AC
1844 if (tmp >= 0
1845 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1846 return pc + 8;
1847 }
c906108c 1848 }
c906108c 1849#endif /* 0 */
c5aa993b
JM
1850
1851 fdata->offset = -fdata->offset;
ddb20c56 1852 return last_prologue_pc;
c906108c
SS
1853}
1854
7a78ae4e 1855static CORE_ADDR
4a7622d1 1856rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 1857{
4a7622d1
UW
1858 struct rs6000_framedata frame;
1859 CORE_ADDR limit_pc, func_addr;
c906108c 1860
4a7622d1
UW
1861 /* See if we can determine the end of the prologue via the symbol table.
1862 If so, then return either PC, or the PC after the prologue, whichever
1863 is greater. */
1864 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
c5aa993b 1865 {
4a7622d1
UW
1866 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
1867 if (post_prologue_pc != 0)
1868 return max (pc, post_prologue_pc);
c906108c 1869 }
c906108c 1870
4a7622d1
UW
1871 /* Can't determine prologue from the symbol table, need to examine
1872 instructions. */
c906108c 1873
4a7622d1
UW
1874 /* Find an upper limit on the function prologue using the debug
1875 information. If the debug information could not be used to provide
1876 that bound, then use an arbitrary large number as the upper bound. */
1877 limit_pc = skip_prologue_using_sal (pc);
1878 if (limit_pc == 0)
1879 limit_pc = pc + 100; /* Magic. */
794a477a 1880
4a7622d1
UW
1881 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
1882 return pc;
c906108c 1883}
c906108c 1884
8ab3d180
KB
1885/* When compiling for EABI, some versions of GCC emit a call to __eabi
1886 in the prologue of main().
1887
1888 The function below examines the code pointed at by PC and checks to
1889 see if it corresponds to a call to __eabi. If so, it returns the
1890 address of the instruction following that call. Otherwise, it simply
1891 returns PC. */
1892
1893CORE_ADDR
1894rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1895{
1896 gdb_byte buf[4];
1897 unsigned long op;
1898
1899 if (target_read_memory (pc, buf, 4))
1900 return pc;
1901 op = extract_unsigned_integer (buf, 4);
1902
1903 if ((op & BL_MASK) == BL_INSTRUCTION)
1904 {
1905 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
1906 CORE_ADDR call_dest = pc + 4 + displ;
1907 struct minimal_symbol *s = lookup_minimal_symbol_by_pc (call_dest);
1908
1909 /* We check for ___eabi (three leading underscores) in addition
1910 to __eabi in case the GCC option "-fleading-underscore" was
1911 used to compile the program. */
1912 if (s != NULL
1913 && SYMBOL_LINKAGE_NAME (s) != NULL
1914 && (strcmp (SYMBOL_LINKAGE_NAME (s), "__eabi") == 0
1915 || strcmp (SYMBOL_LINKAGE_NAME (s), "___eabi") == 0))
1916 pc += 4;
1917 }
1918 return pc;
1919}
383f0f5b 1920
4a7622d1
UW
1921/* All the ABI's require 16 byte alignment. */
1922static CORE_ADDR
1923rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1924{
1925 return (addr & -16);
c906108c
SS
1926}
1927
977adac5
ND
1928/* Return whether handle_inferior_event() should proceed through code
1929 starting at PC in function NAME when stepping.
1930
1931 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1932 handle memory references that are too distant to fit in instructions
1933 generated by the compiler. For example, if 'foo' in the following
1934 instruction:
1935
1936 lwz r9,foo(r2)
1937
1938 is greater than 32767, the linker might replace the lwz with a branch to
1939 somewhere in @FIX1 that does the load in 2 instructions and then branches
1940 back to where execution should continue.
1941
1942 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1943 Unfortunately, the linker uses the "b" instruction for the
1944 branches, meaning that the link register doesn't get set.
1945 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1946
e76f05fa
UW
1947 Instead, use the gdbarch_skip_trampoline_code and
1948 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 1949 @FIX code. */
977adac5
ND
1950
1951int
1952rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1953{
1954 return name && !strncmp (name, "@FIX", 4);
1955}
1956
1957/* Skip code that the user doesn't want to see when stepping:
1958
1959 1. Indirect function calls use a piece of trampoline code to do context
1960 switching, i.e. to set the new TOC table. Skip such code if we are on
1961 its first instruction (as when we have single-stepped to here).
1962
1963 2. Skip shared library trampoline code (which is different from
c906108c 1964 indirect function call trampolines).
977adac5
ND
1965
1966 3. Skip bigtoc fixup code.
1967
c906108c 1968 Result is desired PC to step until, or NULL if we are not in
977adac5 1969 code that should be skipped. */
c906108c
SS
1970
1971CORE_ADDR
52f729a7 1972rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 1973{
4a7622d1 1974 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
52f0bd74 1975 unsigned int ii, op;
977adac5 1976 int rel;
c906108c 1977 CORE_ADDR solib_target_pc;
977adac5 1978 struct minimal_symbol *msymbol;
c906108c 1979
c5aa993b
JM
1980 static unsigned trampoline_code[] =
1981 {
1982 0x800b0000, /* l r0,0x0(r11) */
1983 0x90410014, /* st r2,0x14(r1) */
1984 0x7c0903a6, /* mtctr r0 */
1985 0x804b0004, /* l r2,0x4(r11) */
1986 0x816b0008, /* l r11,0x8(r11) */
1987 0x4e800420, /* bctr */
1988 0x4e800020, /* br */
1989 0
c906108c
SS
1990 };
1991
977adac5
ND
1992 /* Check for bigtoc fixup code. */
1993 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5 1994 if (msymbol
4a7622d1 1995 && rs6000_in_solib_return_trampoline (pc, SYMBOL_LINKAGE_NAME (msymbol)))
977adac5
ND
1996 {
1997 /* Double-check that the third instruction from PC is relative "b". */
1998 op = read_memory_integer (pc + 8, 4);
1999 if ((op & 0xfc000003) == 0x48000000)
2000 {
2001 /* Extract bits 6-29 as a signed 24-bit relative word address and
2002 add it to the containing PC. */
2003 rel = ((int)(op << 6) >> 6);
2004 return pc + 8 + rel;
2005 }
2006 }
2007
c906108c 2008 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2009 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2010 if (solib_target_pc)
2011 return solib_target_pc;
2012
c5aa993b
JM
2013 for (ii = 0; trampoline_code[ii]; ++ii)
2014 {
2015 op = read_memory_integer (pc + (ii * 4), 4);
2016 if (op != trampoline_code[ii])
2017 return 0;
2018 }
52f729a7 2019 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination addr */
4a7622d1 2020 pc = read_memory_unsigned_integer (ii, tdep->wordsize); /* (r11) value */
c906108c
SS
2021 return pc;
2022}
2023
794ac428
UW
2024/* ISA-specific vector types. */
2025
2026static struct type *
2027rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2028{
2029 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2030
2031 if (!tdep->ppc_builtin_type_vec64)
2032 {
2033 /* The type we're building is this: */
2034#if 0
2035 union __gdb_builtin_type_vec64
2036 {
2037 int64_t uint64;
2038 float v2_float[2];
2039 int32_t v2_int32[2];
2040 int16_t v4_int16[4];
2041 int8_t v8_int8[8];
2042 };
2043#endif
2044
2045 struct type *t;
2046
2047 t = init_composite_type ("__ppc_builtin_type_vec64", TYPE_CODE_UNION);
2048 append_composite_type_field (t, "uint64", builtin_type_int64);
2049 append_composite_type_field (t, "v2_float",
2050 init_vector_type (builtin_type_float, 2));
2051 append_composite_type_field (t, "v2_int32",
2052 init_vector_type (builtin_type_int32, 2));
2053 append_composite_type_field (t, "v4_int16",
2054 init_vector_type (builtin_type_int16, 4));
2055 append_composite_type_field (t, "v8_int8",
2056 init_vector_type (builtin_type_int8, 8));
2057
2058 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2059 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2060 tdep->ppc_builtin_type_vec64 = t;
2061 }
2062
2063 return tdep->ppc_builtin_type_vec64;
2064}
2065
604c2f83
LM
2066/* Vector 128 type. */
2067
2068static struct type *
2069rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2070{
2071 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2072
2073 if (!tdep->ppc_builtin_type_vec128)
2074 {
2075 /* The type we're building is this
2076
2077 type = union __ppc_builtin_type_vec128 {
2078 uint128_t uint128;
2079 float v4_float[4];
2080 int32_t v4_int32[4];
2081 int16_t v8_int16[8];
2082 int8_t v16_int8[16];
2083 }
2084 */
2085
2086 struct type *t;
2087
2088 t = init_composite_type ("__ppc_builtin_type_vec128", TYPE_CODE_UNION);
2089 append_composite_type_field (t, "uint128", builtin_type_uint128);
2090 append_composite_type_field (t, "v4_float",
2091 init_vector_type (builtin_type (gdbarch)->builtin_float, 4));
2092 append_composite_type_field (t, "v4_int32",
2093 init_vector_type (builtin_type_int32, 4));
2094 append_composite_type_field (t, "v8_int16",
2095 init_vector_type (builtin_type_int16, 8));
2096 append_composite_type_field (t, "v16_int8",
2097 init_vector_type (builtin_type_int8, 16));
2098
2099 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
2100 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2101 tdep->ppc_builtin_type_vec128 = t;
2102 }
2103
2104 return tdep->ppc_builtin_type_vec128;
2105}
2106
7cc46491
DJ
2107/* Return the name of register number REGNO, or the empty string if it
2108 is an anonymous register. */
7a78ae4e 2109
fa88f677 2110static const char *
d93859e2 2111rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2112{
d93859e2 2113 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2114
7cc46491
DJ
2115 /* The upper half "registers" have names in the XML description,
2116 but we present only the low GPRs and the full 64-bit registers
2117 to the user. */
2118 if (tdep->ppc_ev0_upper_regnum >= 0
2119 && tdep->ppc_ev0_upper_regnum <= regno
2120 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2121 return "";
2122
604c2f83
LM
2123 /* Hide the upper halves of the vs0~vs31 registers. */
2124 if (tdep->ppc_vsr0_regnum >= 0
2125 && tdep->ppc_vsr0_upper_regnum <= regno
2126 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2127 return "";
2128
7cc46491 2129 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2130 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2131 {
2132 static const char *const spe_regnames[] = {
2133 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2134 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2135 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2136 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2137 };
2138 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2139 }
2140
f949c649
TJB
2141 /* Check if the decimal128 pseudo-registers are available. */
2142 if (IS_DFP_PSEUDOREG (tdep, regno))
2143 {
2144 static const char *const dfp128_regnames[] = {
2145 "dl0", "dl1", "dl2", "dl3",
2146 "dl4", "dl5", "dl6", "dl7",
2147 "dl8", "dl9", "dl10", "dl11",
2148 "dl12", "dl13", "dl14", "dl15"
2149 };
2150 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2151 }
2152
604c2f83
LM
2153 /* Check if this is a VSX pseudo-register. */
2154 if (IS_VSX_PSEUDOREG (tdep, regno))
2155 {
2156 static const char *const vsx_regnames[] = {
2157 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2158 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2159 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2160 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2161 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2162 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2163 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2164 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2165 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2166 };
2167 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2168 }
2169
2170 /* Check if the this is a Extended FP pseudo-register. */
2171 if (IS_EFP_PSEUDOREG (tdep, regno))
2172 {
2173 static const char *const efpr_regnames[] = {
2174 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2175 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2176 "f46", "f47", "f48", "f49", "f50", "f51",
2177 "f52", "f53", "f54", "f55", "f56", "f57",
2178 "f58", "f59", "f60", "f61", "f62", "f63"
2179 };
2180 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2181 }
2182
d93859e2 2183 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2184}
2185
7cc46491
DJ
2186/* Return the GDB type object for the "standard" data type of data in
2187 register N. */
7a78ae4e
ND
2188
2189static struct type *
7cc46491 2190rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2191{
691d145a 2192 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2193
7cc46491 2194 /* These are the only pseudo-registers we support. */
f949c649 2195 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2196 || IS_DFP_PSEUDOREG (tdep, regnum)
2197 || IS_VSX_PSEUDOREG (tdep, regnum)
2198 || IS_EFP_PSEUDOREG (tdep, regnum));
7cc46491 2199
f949c649
TJB
2200 /* These are the e500 pseudo-registers. */
2201 if (IS_SPE_PSEUDOREG (tdep, regnum))
2202 return rs6000_builtin_type_vec64 (gdbarch);
604c2f83
LM
2203 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2204 /* PPC decimal128 pseudo-registers. */
f949c649 2205 return builtin_type (gdbarch)->builtin_declong;
604c2f83
LM
2206 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2207 /* POWER7 VSX pseudo-registers. */
2208 return rs6000_builtin_type_vec128 (gdbarch);
2209 else
2210 /* POWER7 Extended FP pseudo-registers. */
2211 return builtin_type (gdbarch)->builtin_double;
7a78ae4e
ND
2212}
2213
c44ca51c
AC
2214/* Is REGNUM a member of REGGROUP? */
2215static int
7cc46491
DJ
2216rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2217 struct reggroup *group)
c44ca51c
AC
2218{
2219 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c44ca51c 2220
7cc46491 2221 /* These are the only pseudo-registers we support. */
f949c649 2222 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2223 || IS_DFP_PSEUDOREG (tdep, regnum)
2224 || IS_VSX_PSEUDOREG (tdep, regnum)
2225 || IS_EFP_PSEUDOREG (tdep, regnum));
c44ca51c 2226
604c2f83
LM
2227 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2228 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
f949c649 2229 return group == all_reggroup || group == vector_reggroup;
7cc46491 2230 else
604c2f83 2231 /* PPC decimal128 or Extended FP pseudo-registers. */
f949c649 2232 return group == all_reggroup || group == float_reggroup;
c44ca51c
AC
2233}
2234
691d145a 2235/* The register format for RS/6000 floating point registers is always
64366f1c 2236 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2237
2238static int
0abe36f5
MD
2239rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2240 struct type *type)
7a78ae4e 2241{
0abe36f5 2242 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2243
2244 return (tdep->ppc_fp0_regnum >= 0
2245 && regnum >= tdep->ppc_fp0_regnum
2246 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2247 && TYPE_CODE (type) == TYPE_CODE_FLT
2248 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2249}
2250
7a78ae4e 2251static void
691d145a
JB
2252rs6000_register_to_value (struct frame_info *frame,
2253 int regnum,
2254 struct type *type,
50fd1280 2255 gdb_byte *to)
7a78ae4e 2256{
50fd1280 2257 gdb_byte from[MAX_REGISTER_SIZE];
691d145a 2258
691d145a 2259 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2260
691d145a
JB
2261 get_frame_register (frame, regnum, from);
2262 convert_typed_floating (from, builtin_type_double, to, type);
2263}
7a292a7a 2264
7a78ae4e 2265static void
691d145a
JB
2266rs6000_value_to_register (struct frame_info *frame,
2267 int regnum,
2268 struct type *type,
50fd1280 2269 const gdb_byte *from)
7a78ae4e 2270{
50fd1280 2271 gdb_byte to[MAX_REGISTER_SIZE];
691d145a 2272
691d145a
JB
2273 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2274
2275 convert_typed_floating (from, type, to, builtin_type_double);
2276 put_frame_register (frame, regnum, to);
7a78ae4e 2277}
c906108c 2278
6ced10dd
JB
2279/* Move SPE vector register values between a 64-bit buffer and the two
2280 32-bit raw register halves in a regcache. This function handles
2281 both splitting a 64-bit value into two 32-bit halves, and joining
2282 two halves into a whole 64-bit value, depending on the function
2283 passed as the MOVE argument.
2284
2285 EV_REG must be the number of an SPE evN vector register --- a
2286 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2287 64-bit buffer.
2288
2289 Call MOVE once for each 32-bit half of that register, passing
2290 REGCACHE, the number of the raw register corresponding to that
2291 half, and the address of the appropriate half of BUFFER.
2292
2293 For example, passing 'regcache_raw_read' as the MOVE function will
2294 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2295 'regcache_raw_supply' will supply the contents of BUFFER to the
2296 appropriate pair of raw registers in REGCACHE.
2297
2298 You may need to cast away some 'const' qualifiers when passing
2299 MOVE, since this function can't tell at compile-time which of
2300 REGCACHE or BUFFER is acting as the source of the data. If C had
2301 co-variant type qualifiers, ... */
2302static void
2303e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2304 int regnum, gdb_byte *buf),
6ced10dd 2305 struct regcache *regcache, int ev_reg,
50fd1280 2306 gdb_byte *buffer)
6ced10dd
JB
2307{
2308 struct gdbarch *arch = get_regcache_arch (regcache);
2309 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2310 int reg_index;
50fd1280 2311 gdb_byte *byte_buffer = buffer;
6ced10dd 2312
5a9e69ba 2313 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2314
2315 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2316
8b164abb 2317 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd
JB
2318 {
2319 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2320 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2321 }
2322 else
2323 {
2324 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2325 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2326 }
2327}
2328
c8001721
EZ
2329static void
2330e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2331 int reg_nr, gdb_byte *buffer)
f949c649
TJB
2332{
2333 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2334}
2335
2336static void
2337e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2338 int reg_nr, const gdb_byte *buffer)
2339{
2340 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
2341 regcache_raw_write,
2342 regcache, reg_nr, (gdb_byte *) buffer);
2343}
2344
604c2f83 2345/* Read method for DFP pseudo-registers. */
f949c649 2346static void
604c2f83 2347dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2348 int reg_nr, gdb_byte *buffer)
2349{
2350 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2351 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2352
2353 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2354 {
2355 /* Read two FP registers to form a whole dl register. */
2356 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2357 2 * reg_index, buffer);
2358 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2359 2 * reg_index + 1, buffer + 8);
2360 }
2361 else
2362 {
2363 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2364 2 * reg_index + 1, buffer + 8);
2365 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2366 2 * reg_index, buffer);
2367 }
2368}
2369
604c2f83 2370/* Write method for DFP pseudo-registers. */
f949c649 2371static void
604c2f83 2372dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2373 int reg_nr, const gdb_byte *buffer)
2374{
2375 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2376 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2377
2378 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2379 {
2380 /* Write each half of the dl register into a separate
2381 FP register. */
2382 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2383 2 * reg_index, buffer);
2384 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2385 2 * reg_index + 1, buffer + 8);
2386 }
2387 else
2388 {
2389 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2390 2 * reg_index + 1, buffer + 8);
2391 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2392 2 * reg_index, buffer);
2393 }
2394}
2395
604c2f83
LM
2396/* Read method for POWER7 VSX pseudo-registers. */
2397static void
2398vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2399 int reg_nr, gdb_byte *buffer)
2400{
2401 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2402 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2403
2404 /* Read the portion that overlaps the VMX registers. */
2405 if (reg_index > 31)
2406 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2407 reg_index - 32, buffer);
2408 else
2409 /* Read the portion that overlaps the FPR registers. */
2410 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2411 {
2412 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2413 reg_index, buffer);
2414 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2415 reg_index, buffer + 8);
2416 }
2417 else
2418 {
2419 regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2420 reg_index, buffer + 8);
2421 regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2422 reg_index, buffer);
2423 }
2424}
2425
2426/* Write method for POWER7 VSX pseudo-registers. */
2427static void
2428vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2429 int reg_nr, const gdb_byte *buffer)
2430{
2431 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2432 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2433
2434 /* Write the portion that overlaps the VMX registers. */
2435 if (reg_index > 31)
2436 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2437 reg_index - 32, buffer);
2438 else
2439 /* Write the portion that overlaps the FPR registers. */
2440 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2441 {
2442 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2443 reg_index, buffer);
2444 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2445 reg_index, buffer + 8);
2446 }
2447 else
2448 {
2449 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2450 reg_index, buffer + 8);
2451 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2452 reg_index, buffer);
2453 }
2454}
2455
2456/* Read method for POWER7 Extended FP pseudo-registers. */
2457static void
2458efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2459 int reg_nr, gdb_byte *buffer)
2460{
2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2462 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2463
2464 /* Read the portion that overlaps the VMX registers. */
2465 regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2466 reg_index, buffer);
2467}
2468
2469/* Write method for POWER7 Extended FP pseudo-registers. */
2470static void
2471efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2472 int reg_nr, const gdb_byte *buffer)
2473{
2474 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2475 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
2476
2477 /* Write the portion that overlaps the VMX registers. */
2478 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2479 reg_index, buffer);
2480}
2481
f949c649
TJB
2482static void
2483rs6000_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2484 int reg_nr, gdb_byte *buffer)
c8001721 2485{
6ced10dd 2486 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2487 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2488
6ced10dd 2489 gdb_assert (regcache_arch == gdbarch);
f949c649 2490
5a9e69ba 2491 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649
TJB
2492 e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2493 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
604c2f83
LM
2494 dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2495 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2496 vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
2497 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2498 efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2499 else
a44bddec 2500 internal_error (__FILE__, __LINE__,
f949c649
TJB
2501 _("rs6000_pseudo_register_read: "
2502 "called on unexpected register '%s' (%d)"),
2503 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2504}
2505
2506static void
f949c649
TJB
2507rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2508 struct regcache *regcache,
2509 int reg_nr, const gdb_byte *buffer)
c8001721 2510{
6ced10dd 2511 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2512 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2513
6ced10dd 2514 gdb_assert (regcache_arch == gdbarch);
f949c649 2515
5a9e69ba 2516 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649
TJB
2517 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2518 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
604c2f83
LM
2519 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2520 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2521 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2522 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2523 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2524 else
a44bddec 2525 internal_error (__FILE__, __LINE__,
f949c649
TJB
2526 _("rs6000_pseudo_register_write: "
2527 "called on unexpected register '%s' (%d)"),
2528 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2529}
2530
18ed0c4e 2531/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2532static int
d3f73121 2533rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 2534{
d3f73121 2535 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 2536
9f744501
JB
2537 if (0 <= num && num <= 31)
2538 return tdep->ppc_gp0_regnum + num;
2539 else if (32 <= num && num <= 63)
383f0f5b
JB
2540 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2541 specifies registers the architecture doesn't have? Our
2542 callers don't check the value we return. */
366f009f 2543 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2544 else if (77 <= num && num <= 108)
2545 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2546 else if (1200 <= num && num < 1200 + 32)
2547 return tdep->ppc_ev0_regnum + (num - 1200);
2548 else
2549 switch (num)
2550 {
2551 case 64:
2552 return tdep->ppc_mq_regnum;
2553 case 65:
2554 return tdep->ppc_lr_regnum;
2555 case 66:
2556 return tdep->ppc_ctr_regnum;
2557 case 76:
2558 return tdep->ppc_xer_regnum;
2559 case 109:
2560 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2561 case 110:
2562 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2563 case 111:
18ed0c4e 2564 return tdep->ppc_acc_regnum;
867e2dc5 2565 case 112:
18ed0c4e 2566 return tdep->ppc_spefscr_regnum;
9f744501
JB
2567 default:
2568 return num;
2569 }
18ed0c4e 2570}
9f744501 2571
9f744501 2572
18ed0c4e
JB
2573/* Convert a Dwarf 2 register number to a GDB register number. */
2574static int
d3f73121 2575rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 2576{
d3f73121 2577 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 2578
18ed0c4e
JB
2579 if (0 <= num && num <= 31)
2580 return tdep->ppc_gp0_regnum + num;
2581 else if (32 <= num && num <= 63)
2582 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2583 specifies registers the architecture doesn't have? Our
2584 callers don't check the value we return. */
2585 return tdep->ppc_fp0_regnum + (num - 32);
2586 else if (1124 <= num && num < 1124 + 32)
2587 return tdep->ppc_vr0_regnum + (num - 1124);
2588 else if (1200 <= num && num < 1200 + 32)
2589 return tdep->ppc_ev0_regnum + (num - 1200);
2590 else
2591 switch (num)
2592 {
a489f789
AS
2593 case 64:
2594 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2595 case 67:
2596 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2597 case 99:
2598 return tdep->ppc_acc_regnum;
2599 case 100:
2600 return tdep->ppc_mq_regnum;
2601 case 101:
2602 return tdep->ppc_xer_regnum;
2603 case 108:
2604 return tdep->ppc_lr_regnum;
2605 case 109:
2606 return tdep->ppc_ctr_regnum;
2607 case 356:
2608 return tdep->ppc_vrsave_regnum;
2609 case 612:
2610 return tdep->ppc_spefscr_regnum;
2611 default:
2612 return num;
2613 }
2188cbdd
EZ
2614}
2615
4fc771b8
DJ
2616/* Translate a .eh_frame register to DWARF register, or adjust a
2617 .debug_frame register. */
2618
2619static int
2620rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2621{
2622 /* GCC releases before 3.4 use GCC internal register numbering in
2623 .debug_frame (and .debug_info, et cetera). The numbering is
2624 different from the standard SysV numbering for everything except
2625 for GPRs and FPRs. We can not detect this problem in most cases
2626 - to get accurate debug info for variables living in lr, ctr, v0,
2627 et cetera, use a newer version of GCC. But we must detect
2628 one important case - lr is in column 65 in .debug_frame output,
2629 instead of 108.
2630
2631 GCC 3.4, and the "hammer" branch, have a related problem. They
2632 record lr register saves in .debug_frame as 108, but still record
2633 the return column as 65. We fix that up too.
2634
2635 We can do this because 65 is assigned to fpsr, and GCC never
2636 generates debug info referring to it. To add support for
2637 handwritten debug info that restores fpsr, we would need to add a
2638 producer version check to this. */
2639 if (!eh_frame_p)
2640 {
2641 if (num == 65)
2642 return 108;
2643 else
2644 return num;
2645 }
2646
2647 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2648 internal register numbering; translate that to the standard DWARF2
2649 register numbering. */
2650 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2651 return num;
2652 else if (68 <= num && num <= 75) /* cr0-cr8 */
2653 return num - 68 + 86;
2654 else if (77 <= num && num <= 108) /* vr0-vr31 */
2655 return num - 77 + 1124;
2656 else
2657 switch (num)
2658 {
2659 case 64: /* mq */
2660 return 100;
2661 case 65: /* lr */
2662 return 108;
2663 case 66: /* ctr */
2664 return 109;
2665 case 76: /* xer */
2666 return 101;
2667 case 109: /* vrsave */
2668 return 356;
2669 case 110: /* vscr */
2670 return 67;
2671 case 111: /* spe_acc */
2672 return 99;
2673 case 112: /* spefscr */
2674 return 612;
2675 default:
2676 return num;
2677 }
2678}
c906108c 2679\f
c5aa993b 2680
7a78ae4e 2681/* Handling the various POWER/PowerPC variants. */
c906108c 2682
c906108c 2683/* Information about a particular processor variant. */
7a78ae4e 2684
c906108c 2685struct variant
c5aa993b
JM
2686 {
2687 /* Name of this variant. */
2688 char *name;
c906108c 2689
c5aa993b
JM
2690 /* English description of the variant. */
2691 char *description;
c906108c 2692
64366f1c 2693 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2694 enum bfd_architecture arch;
2695
64366f1c 2696 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2697 unsigned long mach;
2698
7cc46491
DJ
2699 /* Target description for this variant. */
2700 struct target_desc **tdesc;
c5aa993b 2701 };
c906108c 2702
489461e2 2703static struct variant variants[] =
c906108c 2704{
7a78ae4e 2705 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 2706 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 2707 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 2708 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 2709 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 2710 bfd_mach_ppc_403, &tdesc_powerpc_403},
7a78ae4e 2711 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 2712 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 2713 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 2714 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 2715 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 2716 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 2717 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 2718 604, &tdesc_powerpc_604},
7a78ae4e 2719 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 2720 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 2721 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 2722 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 2723 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 2724 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 2725 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 2726 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 2727 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 2728 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 2729 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 2730 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 2731
5d57ee30
KB
2732 /* 64-bit */
2733 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 2734 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 2735 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 2736 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 2737 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 2738 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 2739 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 2740 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 2741 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 2742 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 2743 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 2744 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 2745
64366f1c 2746 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2747 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 2748 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 2749 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 2750 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 2751 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 2752 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 2753
7cc46491 2754 {0, 0, 0, 0, 0}
c906108c
SS
2755};
2756
7a78ae4e 2757/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2758 MACH. If no such variant exists, return null. */
c906108c 2759
7a78ae4e
ND
2760static const struct variant *
2761find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2762{
7a78ae4e 2763 const struct variant *v;
c5aa993b 2764
7a78ae4e
ND
2765 for (v = variants; v->name; v++)
2766 if (arch == v->arch && mach == v->mach)
2767 return v;
c906108c 2768
7a78ae4e 2769 return NULL;
c906108c 2770}
9364a0ef
EZ
2771
2772static int
2773gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2774{
ee4f0f76
DJ
2775 if (!info->disassembler_options)
2776 info->disassembler_options = "any";
2777
40887e1a 2778 if (info->endian == BFD_ENDIAN_BIG)
9364a0ef
EZ
2779 return print_insn_big_powerpc (memaddr, info);
2780 else
2781 return print_insn_little_powerpc (memaddr, info);
2782}
7a78ae4e 2783\f
61a65099
KB
2784static CORE_ADDR
2785rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2786{
3e8c568d 2787 return frame_unwind_register_unsigned (next_frame,
8b164abb 2788 gdbarch_pc_regnum (gdbarch));
61a65099
KB
2789}
2790
2791static struct frame_id
1af5d7ce 2792rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61a65099 2793{
1af5d7ce
UW
2794 return frame_id_build (get_frame_register_unsigned
2795 (this_frame, gdbarch_sp_regnum (gdbarch)),
2796 get_frame_pc (this_frame));
61a65099
KB
2797}
2798
2799struct rs6000_frame_cache
2800{
2801 CORE_ADDR base;
2802 CORE_ADDR initial_sp;
2803 struct trad_frame_saved_reg *saved_regs;
2804};
2805
2806static struct rs6000_frame_cache *
1af5d7ce 2807rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
2808{
2809 struct rs6000_frame_cache *cache;
1af5d7ce 2810 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099
KB
2811 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2812 struct rs6000_framedata fdata;
2813 int wordsize = tdep->wordsize;
e10b1c4c 2814 CORE_ADDR func, pc;
61a65099
KB
2815
2816 if ((*this_cache) != NULL)
2817 return (*this_cache);
2818 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2819 (*this_cache) = cache;
1af5d7ce 2820 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 2821
1af5d7ce
UW
2822 func = get_frame_func (this_frame);
2823 pc = get_frame_pc (this_frame);
be8626e0 2824 skip_prologue (gdbarch, func, pc, &fdata);
e10b1c4c
DJ
2825
2826 /* Figure out the parent's stack pointer. */
2827
2828 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2829 address of the current frame. Things might be easier if the
2830 ->frame pointed to the outer-most address of the frame. In
2831 the mean time, the address of the prev frame is used as the
2832 base address of this frame. */
1af5d7ce
UW
2833 cache->base = get_frame_register_unsigned
2834 (this_frame, gdbarch_sp_regnum (gdbarch));
e10b1c4c
DJ
2835
2836 /* If the function appears to be frameless, check a couple of likely
2837 indicators that we have simply failed to find the frame setup.
2838 Two common cases of this are missing symbols (i.e.
ef02daa9 2839 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
2840 stubs which have a fast exit path but set up a frame on the slow
2841 path.
2842
2843 If the LR appears to return to this function, then presume that
2844 we have an ABI compliant frame that we failed to find. */
2845 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 2846 {
e10b1c4c
DJ
2847 CORE_ADDR saved_lr;
2848 int make_frame = 0;
2849
1af5d7ce 2850 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
2851 if (func == 0 && saved_lr == pc)
2852 make_frame = 1;
2853 else if (func != 0)
2854 {
2855 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
2856 if (func == saved_func)
2857 make_frame = 1;
2858 }
2859
2860 if (make_frame)
2861 {
2862 fdata.frameless = 0;
de6a76fd 2863 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 2864 }
61a65099 2865 }
e10b1c4c
DJ
2866
2867 if (!fdata.frameless)
2868 /* Frameless really means stackless. */
4a7622d1 2869 cache->base = read_memory_unsigned_integer (cache->base, wordsize);
e10b1c4c 2870
3e8c568d 2871 trad_frame_set_value (cache->saved_regs,
8b164abb 2872 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
2873
2874 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2875 All fpr's from saved_fpr to fp31 are saved. */
2876
2877 if (fdata.saved_fpr >= 0)
2878 {
2879 int i;
2880 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2881
2882 /* If skip_prologue says floating-point registers were saved,
2883 but the current architecture has no floating-point registers,
2884 then that's strange. But we have no indices to even record
2885 the addresses under, so we just ignore it. */
2886 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2887 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2888 {
2889 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2890 fpr_addr += 8;
2891 }
61a65099
KB
2892 }
2893
2894 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2895 All gpr's from saved_gpr to gpr31 are saved. */
2896
2897 if (fdata.saved_gpr >= 0)
2898 {
2899 int i;
2900 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2901 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2902 {
2903 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2904 gpr_addr += wordsize;
2905 }
2906 }
2907
2908 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2909 All vr's from saved_vr to vr31 are saved. */
2910 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2911 {
2912 if (fdata.saved_vr >= 0)
2913 {
2914 int i;
2915 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2916 for (i = fdata.saved_vr; i < 32; i++)
2917 {
2918 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2919 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2920 }
2921 }
2922 }
2923
2924 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2925 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 2926 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
2927 {
2928 if (fdata.saved_ev >= 0)
2929 {
2930 int i;
2931 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2932 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2933 {
2934 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2935 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2936 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2937 }
2938 }
2939 }
2940
2941 /* If != 0, fdata.cr_offset is the offset from the frame that
2942 holds the CR. */
2943 if (fdata.cr_offset != 0)
2944 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2945
2946 /* If != 0, fdata.lr_offset is the offset from the frame that
2947 holds the LR. */
2948 if (fdata.lr_offset != 0)
2949 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2950 /* The PC is found in the link register. */
8b164abb 2951 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 2952 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
2953
2954 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2955 holds the VRSAVE. */
2956 if (fdata.vrsave_offset != 0)
2957 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2958
2959 if (fdata.alloca_reg < 0)
2960 /* If no alloca register used, then fi->frame is the value of the
2961 %sp for this frame, and it is good enough. */
1af5d7ce
UW
2962 cache->initial_sp
2963 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 2964 else
1af5d7ce
UW
2965 cache->initial_sp
2966 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099
KB
2967
2968 return cache;
2969}
2970
2971static void
1af5d7ce 2972rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
2973 struct frame_id *this_id)
2974{
1af5d7ce 2975 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 2976 this_cache);
5b197912
UW
2977 /* This marks the outermost frame. */
2978 if (info->base == 0)
2979 return;
2980
1af5d7ce 2981 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
2982}
2983
1af5d7ce
UW
2984static struct value *
2985rs6000_frame_prev_register (struct frame_info *this_frame,
2986 void **this_cache, int regnum)
61a65099 2987{
1af5d7ce 2988 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 2989 this_cache);
1af5d7ce 2990 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
2991}
2992
2993static const struct frame_unwind rs6000_frame_unwind =
2994{
2995 NORMAL_FRAME,
2996 rs6000_frame_this_id,
1af5d7ce
UW
2997 rs6000_frame_prev_register,
2998 NULL,
2999 default_frame_sniffer
61a65099 3000};
61a65099
KB
3001\f
3002
3003static CORE_ADDR
1af5d7ce 3004rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3005{
1af5d7ce 3006 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3007 this_cache);
3008 return info->initial_sp;
3009}
3010
3011static const struct frame_base rs6000_frame_base = {
3012 &rs6000_frame_unwind,
3013 rs6000_frame_base_address,
3014 rs6000_frame_base_address,
3015 rs6000_frame_base_address
3016};
3017
3018static const struct frame_base *
1af5d7ce 3019rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3020{
3021 return &rs6000_frame_base;
3022}
3023
9274a07c
LM
3024/* DWARF-2 frame support. Used to handle the detection of
3025 clobbered registers during function calls. */
3026
3027static void
3028ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3029 struct dwarf2_frame_state_reg *reg,
4a4e5149 3030 struct frame_info *this_frame)
9274a07c
LM
3031{
3032 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3033
3034 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3035 non-volatile registers. We will use the same code for both. */
3036
3037 /* Call-saved GP registers. */
3038 if ((regnum >= tdep->ppc_gp0_regnum + 14
3039 && regnum <= tdep->ppc_gp0_regnum + 31)
3040 || (regnum == tdep->ppc_gp0_regnum + 1))
3041 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3042
3043 /* Call-clobbered GP registers. */
3044 if ((regnum >= tdep->ppc_gp0_regnum + 3
3045 && regnum <= tdep->ppc_gp0_regnum + 12)
3046 || (regnum == tdep->ppc_gp0_regnum))
3047 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3048
3049 /* Deal with FP registers, if supported. */
3050 if (tdep->ppc_fp0_regnum >= 0)
3051 {
3052 /* Call-saved FP registers. */
3053 if ((regnum >= tdep->ppc_fp0_regnum + 14
3054 && regnum <= tdep->ppc_fp0_regnum + 31))
3055 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3056
3057 /* Call-clobbered FP registers. */
3058 if ((regnum >= tdep->ppc_fp0_regnum
3059 && regnum <= tdep->ppc_fp0_regnum + 13))
3060 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3061 }
3062
3063 /* Deal with ALTIVEC registers, if supported. */
3064 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3065 {
3066 /* Call-saved Altivec registers. */
3067 if ((regnum >= tdep->ppc_vr0_regnum + 20
3068 && regnum <= tdep->ppc_vr0_regnum + 31)
3069 || regnum == tdep->ppc_vrsave_regnum)
3070 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3071
3072 /* Call-clobbered Altivec registers. */
3073 if ((regnum >= tdep->ppc_vr0_regnum
3074 && regnum <= tdep->ppc_vr0_regnum + 19))
3075 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3076 }
3077
3078 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3079 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3080 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3081 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3082 reg->how = DWARF2_FRAME_REG_CFA;
3083}
3084
3085
7a78ae4e
ND
3086/* Initialize the current architecture based on INFO. If possible, re-use an
3087 architecture from ARCHES, which is a list of architectures already created
3088 during this debugging session.
c906108c 3089
7a78ae4e 3090 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3091 a binary file. */
c906108c 3092
7a78ae4e
ND
3093static struct gdbarch *
3094rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3095{
3096 struct gdbarch *gdbarch;
3097 struct gdbarch_tdep *tdep;
7cc46491 3098 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
3099 enum bfd_architecture arch;
3100 unsigned long mach;
3101 bfd abfd;
5bf1c677 3102 asection *sect;
55eddb0f
DJ
3103 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
3104 int soft_float;
3105 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
604c2f83
LM
3106 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
3107 have_vsx = 0;
7cc46491
DJ
3108 int tdesc_wordsize = -1;
3109 const struct target_desc *tdesc = info.target_desc;
3110 struct tdesc_arch_data *tdesc_data = NULL;
f949c649 3111 int num_pseudoregs = 0;
604c2f83 3112 int cur_reg;
7a78ae4e 3113
9aa1e687 3114 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3115 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3116
9aa1e687
KB
3117 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3118 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3119
e712c1cf 3120 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3121 that, else choose a likely default. */
9aa1e687 3122 if (from_xcoff_exec)
c906108c 3123 {
11ed25ac 3124 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3125 wordsize = 8;
3126 else
3127 wordsize = 4;
c906108c 3128 }
9aa1e687
KB
3129 else if (from_elf_exec)
3130 {
3131 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3132 wordsize = 8;
3133 else
3134 wordsize = 4;
3135 }
7cc46491
DJ
3136 else if (tdesc_has_registers (tdesc))
3137 wordsize = -1;
c906108c 3138 else
7a78ae4e 3139 {
27b15785
KB
3140 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3141 wordsize = info.bfd_arch_info->bits_per_word /
3142 info.bfd_arch_info->bits_per_byte;
3143 else
3144 wordsize = 4;
7a78ae4e 3145 }
c906108c 3146
475bbd17
JB
3147 /* Get the architecture and machine from the BFD. */
3148 arch = info.bfd_arch_info->arch;
3149 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
3150
3151 /* For e500 executables, the apuinfo section is of help here. Such
3152 section contains the identifier and revision number of each
3153 Application-specific Processing Unit that is present on the
3154 chip. The content of the section is determined by the assembler
3155 which looks at each instruction and determines which unit (and
3156 which version of it) can execute it. In our case we just look for
3157 the existance of the section. */
3158
3159 if (info.abfd)
3160 {
3161 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3162 if (sect)
3163 {
3164 arch = info.bfd_arch_info->arch;
3165 mach = bfd_mach_ppc_e500;
3166 bfd_default_set_arch_mach (&abfd, arch, mach);
3167 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3168 }
3169 }
3170
7cc46491
DJ
3171 /* Find a default target description which describes our register
3172 layout, if we do not already have one. */
3173 if (! tdesc_has_registers (tdesc))
3174 {
3175 const struct variant *v;
3176
3177 /* Choose variant. */
3178 v = find_variant_by_arch (arch, mach);
3179 if (!v)
3180 return NULL;
3181
3182 tdesc = *v->tdesc;
3183 }
3184
3185 gdb_assert (tdesc_has_registers (tdesc));
3186
3187 /* Check any target description for validity. */
3188 if (tdesc_has_registers (tdesc))
3189 {
3190 static const char *const gprs[] = {
3191 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
3192 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
3193 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
3194 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
3195 };
3196 static const char *const segment_regs[] = {
3197 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
3198 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
3199 };
3200 const struct tdesc_feature *feature;
3201 int i, valid_p;
3202 static const char *const msr_names[] = { "msr", "ps" };
3203 static const char *const cr_names[] = { "cr", "cnd" };
3204 static const char *const ctr_names[] = { "ctr", "cnt" };
3205
3206 feature = tdesc_find_feature (tdesc,
3207 "org.gnu.gdb.power.core");
3208 if (feature == NULL)
3209 return NULL;
3210
3211 tdesc_data = tdesc_data_alloc ();
3212
3213 valid_p = 1;
3214 for (i = 0; i < ppc_num_gprs; i++)
3215 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
3216 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
3217 "pc");
3218 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
3219 "lr");
3220 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
3221 "xer");
3222
3223 /* Allow alternate names for these registers, to accomodate GDB's
3224 historic naming. */
3225 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3226 PPC_MSR_REGNUM, msr_names);
3227 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3228 PPC_CR_REGNUM, cr_names);
3229 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3230 PPC_CTR_REGNUM, ctr_names);
3231
3232 if (!valid_p)
3233 {
3234 tdesc_data_cleanup (tdesc_data);
3235 return NULL;
3236 }
3237
3238 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
3239 "mq");
3240
3241 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
3242 if (wordsize == -1)
3243 wordsize = tdesc_wordsize;
3244
3245 feature = tdesc_find_feature (tdesc,
3246 "org.gnu.gdb.power.fpu");
3247 if (feature != NULL)
3248 {
3249 static const char *const fprs[] = {
3250 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
3251 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
3252 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
3253 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
3254 };
3255 valid_p = 1;
3256 for (i = 0; i < ppc_num_fprs; i++)
3257 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3258 PPC_F0_REGNUM + i, fprs[i]);
3259 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3260 PPC_FPSCR_REGNUM, "fpscr");
3261
3262 if (!valid_p)
3263 {
3264 tdesc_data_cleanup (tdesc_data);
3265 return NULL;
3266 }
3267 have_fpu = 1;
3268 }
3269 else
3270 have_fpu = 0;
3271
f949c649
TJB
3272 /* The DFP pseudo-registers will be available when there are floating
3273 point registers. */
3274 have_dfp = have_fpu;
3275
7cc46491
DJ
3276 feature = tdesc_find_feature (tdesc,
3277 "org.gnu.gdb.power.altivec");
3278 if (feature != NULL)
3279 {
3280 static const char *const vector_regs[] = {
3281 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
3282 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
3283 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
3284 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
3285 };
3286
3287 valid_p = 1;
3288 for (i = 0; i < ppc_num_gprs; i++)
3289 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3290 PPC_VR0_REGNUM + i,
3291 vector_regs[i]);
3292 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3293 PPC_VSCR_REGNUM, "vscr");
3294 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3295 PPC_VRSAVE_REGNUM, "vrsave");
3296
3297 if (have_spe || !valid_p)
3298 {
3299 tdesc_data_cleanup (tdesc_data);
3300 return NULL;
3301 }
3302 have_altivec = 1;
3303 }
3304 else
3305 have_altivec = 0;
3306
604c2f83
LM
3307 /* Check for POWER7 VSX registers support. */
3308 feature = tdesc_find_feature (tdesc,
3309 "org.gnu.gdb.power.vsx");
3310
3311 if (feature != NULL)
3312 {
3313 static const char *const vsx_regs[] = {
3314 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
3315 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
3316 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
3317 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
3318 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
3319 "vs30h", "vs31h"
3320 };
3321
3322 valid_p = 1;
3323
3324 for (i = 0; i < ppc_num_vshrs; i++)
3325 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3326 PPC_VSR0_UPPER_REGNUM + i,
3327 vsx_regs[i]);
3328 if (!valid_p)
3329 {
3330 tdesc_data_cleanup (tdesc_data);
3331 return NULL;
3332 }
3333
3334 have_vsx = 1;
3335 }
3336 else
3337 have_vsx = 0;
3338
7cc46491
DJ
3339 /* On machines supporting the SPE APU, the general-purpose registers
3340 are 64 bits long. There are SIMD vector instructions to treat them
3341 as pairs of floats, but the rest of the instruction set treats them
3342 as 32-bit registers, and only operates on their lower halves.
3343
3344 In the GDB regcache, we treat their high and low halves as separate
3345 registers. The low halves we present as the general-purpose
3346 registers, and then we have pseudo-registers that stitch together
3347 the upper and lower halves and present them as pseudo-registers.
3348
3349 Thus, the target description is expected to supply the upper
3350 halves separately. */
3351
3352 feature = tdesc_find_feature (tdesc,
3353 "org.gnu.gdb.power.spe");
3354 if (feature != NULL)
3355 {
3356 static const char *const upper_spe[] = {
3357 "ev0h", "ev1h", "ev2h", "ev3h",
3358 "ev4h", "ev5h", "ev6h", "ev7h",
3359 "ev8h", "ev9h", "ev10h", "ev11h",
3360 "ev12h", "ev13h", "ev14h", "ev15h",
3361 "ev16h", "ev17h", "ev18h", "ev19h",
3362 "ev20h", "ev21h", "ev22h", "ev23h",
3363 "ev24h", "ev25h", "ev26h", "ev27h",
3364 "ev28h", "ev29h", "ev30h", "ev31h"
3365 };
3366
3367 valid_p = 1;
3368 for (i = 0; i < ppc_num_gprs; i++)
3369 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3370 PPC_SPE_UPPER_GP0_REGNUM + i,
3371 upper_spe[i]);
3372 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3373 PPC_SPE_ACC_REGNUM, "acc");
3374 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3375 PPC_SPE_FSCR_REGNUM, "spefscr");
3376
3377 if (have_mq || have_fpu || !valid_p)
3378 {
3379 tdesc_data_cleanup (tdesc_data);
3380 return NULL;
3381 }
3382 have_spe = 1;
3383 }
3384 else
3385 have_spe = 0;
3386 }
3387
3388 /* If we have a 64-bit binary on a 32-bit target, complain. Also
3389 complain for a 32-bit binary on a 64-bit target; we do not yet
3390 support that. For instance, the 32-bit ABI routines expect
3391 32-bit GPRs.
3392
3393 As long as there isn't an explicit target description, we'll
3394 choose one based on the BFD architecture and get a word size
3395 matching the binary (probably powerpc:common or
3396 powerpc:common64). So there is only trouble if a 64-bit target
3397 supplies a 64-bit description while debugging a 32-bit
3398 binary. */
3399 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
3400 {
3401 tdesc_data_cleanup (tdesc_data);
3402 return NULL;
3403 }
3404
55eddb0f
DJ
3405#ifdef HAVE_ELF
3406 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
3407 {
3408 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3409 Tag_GNU_Power_ABI_FP))
3410 {
3411 case 1:
3412 soft_float_flag = AUTO_BOOLEAN_FALSE;
3413 break;
3414 case 2:
3415 soft_float_flag = AUTO_BOOLEAN_TRUE;
3416 break;
3417 default:
3418 break;
3419 }
3420 }
3421
3422 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
3423 {
3424 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
3425 Tag_GNU_Power_ABI_Vector))
3426 {
3427 case 1:
3428 vector_abi = POWERPC_VEC_GENERIC;
3429 break;
3430 case 2:
3431 vector_abi = POWERPC_VEC_ALTIVEC;
3432 break;
3433 case 3:
3434 vector_abi = POWERPC_VEC_SPE;
3435 break;
3436 default:
3437 break;
3438 }
3439 }
3440#endif
3441
3442 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
3443 soft_float = 1;
3444 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
3445 soft_float = 0;
3446 else
3447 soft_float = !have_fpu;
3448
3449 /* If we have a hard float binary or setting but no floating point
3450 registers, downgrade to soft float anyway. We're still somewhat
3451 useful in this scenario. */
3452 if (!soft_float && !have_fpu)
3453 soft_float = 1;
3454
3455 /* Similarly for vector registers. */
3456 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
3457 vector_abi = POWERPC_VEC_GENERIC;
3458
3459 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
3460 vector_abi = POWERPC_VEC_GENERIC;
3461
3462 if (vector_abi == POWERPC_VEC_AUTO)
3463 {
3464 if (have_altivec)
3465 vector_abi = POWERPC_VEC_ALTIVEC;
3466 else if (have_spe)
3467 vector_abi = POWERPC_VEC_SPE;
3468 else
3469 vector_abi = POWERPC_VEC_GENERIC;
3470 }
3471
3472 /* Do not limit the vector ABI based on available hardware, since we
3473 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
3474
7cc46491
DJ
3475 /* Find a candidate among extant architectures. */
3476 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3477 arches != NULL;
3478 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3479 {
3480 /* Word size in the various PowerPC bfd_arch_info structs isn't
3481 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
3482 separate word size check. */
3483 tdep = gdbarch_tdep (arches->gdbarch);
55eddb0f
DJ
3484 if (tdep && tdep->soft_float != soft_float)
3485 continue;
3486 if (tdep && tdep->vector_abi != vector_abi)
3487 continue;
7cc46491
DJ
3488 if (tdep && tdep->wordsize == wordsize)
3489 {
3490 if (tdesc_data != NULL)
3491 tdesc_data_cleanup (tdesc_data);
3492 return arches->gdbarch;
3493 }
3494 }
3495
3496 /* None found, create a new architecture from INFO, whose bfd_arch_info
3497 validity depends on the source:
3498 - executable useless
3499 - rs6000_host_arch() good
3500 - core file good
3501 - "set arch" trust blindly
3502 - GDB startup useless but harmless */
3503
3504 tdep = XCALLOC (1, struct gdbarch_tdep);
3505 tdep->wordsize = wordsize;
55eddb0f
DJ
3506 tdep->soft_float = soft_float;
3507 tdep->vector_abi = vector_abi;
7cc46491 3508
7a78ae4e 3509 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3510
7cc46491
DJ
3511 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
3512 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
3513 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
3514 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
3515 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
3516 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
3517 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
3518 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
3519
3520 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
3521 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 3522 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
3523 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
3524 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
3525 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
3526 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
3527 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
3528
3529 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
3530 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3531 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
3532 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 3533 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
3534
3535 /* The XML specification for PowerPC sensibly calls the MSR "msr".
3536 GDB traditionally called it "ps", though, so let GDB add an
3537 alias. */
3538 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
3539
4a7622d1 3540 if (wordsize == 8)
05580c65 3541 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 3542 else
4a7622d1 3543 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 3544
baffbae0
JB
3545 /* Set lr_frame_offset. */
3546 if (wordsize == 8)
3547 tdep->lr_frame_offset = 16;
baffbae0 3548 else
4a7622d1 3549 tdep->lr_frame_offset = 4;
baffbae0 3550
604c2f83 3551 if (have_spe || have_dfp || have_vsx)
7cc46491 3552 {
f949c649
TJB
3553 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
3554 set_gdbarch_pseudo_register_write (gdbarch, rs6000_pseudo_register_write);
7cc46491 3555 }
1fcc0bb8 3556
e0d24f8d
WZ
3557 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3558
56a6dfb9 3559 /* Select instruction printer. */
708ff411 3560 if (arch == bfd_arch_rs6000)
9364a0ef 3561 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3562 else
9364a0ef 3563 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3564
5a9e69ba 3565 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
3566
3567 if (have_spe)
3568 num_pseudoregs += 32;
3569 if (have_dfp)
3570 num_pseudoregs += 16;
604c2f83
LM
3571 if (have_vsx)
3572 /* Include both VSX and Extended FP registers. */
3573 num_pseudoregs += 96;
f949c649
TJB
3574
3575 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
3576
3577 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3578 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3579 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3580 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3581 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3582 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3583 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 3584 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 3585 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3586
11269d7e 3587 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 3588 if (wordsize == 8)
8b148df9
AC
3589 /* PPC64 SYSV. */
3590 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 3591
691d145a
JB
3592 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3593 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3594 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3595
18ed0c4e
JB
3596 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3597 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3598
4a7622d1 3599 if (wordsize == 4)
77b2b6d4 3600 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 3601 else if (wordsize == 8)
8be9034a 3602 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 3603
7a78ae4e 3604 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9 3605 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
8ab3d180 3606 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 3607
7a78ae4e 3608 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3609 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3610
203c3895
UW
3611 /* The value of symbols of type N_SO and N_FUN maybe null when
3612 it shouldn't be. */
3613 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
3614
ce5eab59 3615 /* Handles single stepping of atomic sequences. */
4a7622d1 3616 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 3617
7a78ae4e
ND
3618 /* Not sure on this. FIXMEmgo */
3619 set_gdbarch_frame_args_skip (gdbarch, 8);
3620
143985b7
AF
3621 /* Helpers for function argument information. */
3622 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3623
6f7f3f0d
UW
3624 /* Trampoline. */
3625 set_gdbarch_in_solib_return_trampoline
3626 (gdbarch, rs6000_in_solib_return_trampoline);
3627 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3628
4fc771b8 3629 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 3630 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
3631 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3632
9274a07c
LM
3633 /* Frame handling. */
3634 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
3635
7b112f9c 3636 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24
UW
3637 info.target_desc = tdesc;
3638 info.tdep_info = (void *) tdesc_data;
4be87837 3639 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3640
61a65099
KB
3641 switch (info.osabi)
3642 {
f5aecab8 3643 case GDB_OSABI_LINUX:
61a65099
KB
3644 case GDB_OSABI_NETBSD_AOUT:
3645 case GDB_OSABI_NETBSD_ELF:
3646 case GDB_OSABI_UNKNOWN:
61a65099 3647 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
1af5d7ce
UW
3648 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3649 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
61a65099
KB
3650 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3651 break;
3652 default:
61a65099 3653 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3654
3655 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
1af5d7ce
UW
3656 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
3657 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
81332287 3658 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3659 }
3660
7cc46491
DJ
3661 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
3662 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3663 rs6000_pseudo_register_reggroup_p);
3664 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
3665
3666 /* Override the normal target description method to make the SPE upper
3667 halves anonymous. */
3668 set_gdbarch_register_name (gdbarch, rs6000_register_name);
3669
604c2f83
LM
3670 /* Choose register numbers for all supported pseudo-registers. */
3671 tdep->ppc_ev0_regnum = -1;
3672 tdep->ppc_dl0_regnum = -1;
3673 tdep->ppc_vsr0_regnum = -1;
3674 tdep->ppc_efpr0_regnum = -1;
9f643768 3675
604c2f83
LM
3676 cur_reg = gdbarch_num_regs (gdbarch);
3677
3678 if (have_spe)
3679 {
3680 tdep->ppc_ev0_regnum = cur_reg;
3681 cur_reg += 32;
3682 }
3683 if (have_dfp)
3684 {
3685 tdep->ppc_dl0_regnum = cur_reg;
3686 cur_reg += 16;
3687 }
3688 if (have_vsx)
3689 {
3690 tdep->ppc_vsr0_regnum = cur_reg;
3691 cur_reg += 64;
3692 tdep->ppc_efpr0_regnum = cur_reg;
3693 cur_reg += 32;
3694 }
f949c649 3695
604c2f83
LM
3696 gdb_assert (gdbarch_num_regs (gdbarch)
3697 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
f949c649 3698
f74c6cad
LM
3699 /* Setup displaced stepping. */
3700 set_gdbarch_displaced_step_copy_insn (gdbarch,
3701 simple_displaced_step_copy_insn);
3702 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
3703 set_gdbarch_displaced_step_free_closure (gdbarch,
3704 simple_displaced_step_free_closure);
3705 set_gdbarch_displaced_step_location (gdbarch,
3706 displaced_step_at_entry_point);
3707
3708 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
3709
7a78ae4e 3710 return gdbarch;
c906108c
SS
3711}
3712
7b112f9c 3713static void
8b164abb 3714rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 3715{
8b164abb 3716 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
3717
3718 if (tdep == NULL)
3719 return;
3720
4be87837 3721 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3722}
3723
55eddb0f
DJ
3724/* PowerPC-specific commands. */
3725
3726static void
3727set_powerpc_command (char *args, int from_tty)
3728{
3729 printf_unfiltered (_("\
3730\"set powerpc\" must be followed by an appropriate subcommand.\n"));
3731 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
3732}
3733
3734static void
3735show_powerpc_command (char *args, int from_tty)
3736{
3737 cmd_show_list (showpowerpccmdlist, from_tty, "");
3738}
3739
3740static void
3741powerpc_set_soft_float (char *args, int from_tty,
3742 struct cmd_list_element *c)
3743{
3744 struct gdbarch_info info;
3745
3746 /* Update the architecture. */
3747 gdbarch_info_init (&info);
3748 if (!gdbarch_update_p (info))
3749 internal_error (__FILE__, __LINE__, "could not update architecture");
3750}
3751
3752static void
3753powerpc_set_vector_abi (char *args, int from_tty,
3754 struct cmd_list_element *c)
3755{
3756 struct gdbarch_info info;
3757 enum powerpc_vector_abi vector_abi;
3758
3759 for (vector_abi = POWERPC_VEC_AUTO;
3760 vector_abi != POWERPC_VEC_LAST;
3761 vector_abi++)
3762 if (strcmp (powerpc_vector_abi_string,
3763 powerpc_vector_strings[vector_abi]) == 0)
3764 {
3765 powerpc_vector_abi_global = vector_abi;
3766 break;
3767 }
3768
3769 if (vector_abi == POWERPC_VEC_LAST)
3770 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
3771 powerpc_vector_abi_string);
3772
3773 /* Update the architecture. */
3774 gdbarch_info_init (&info);
3775 if (!gdbarch_update_p (info))
3776 internal_error (__FILE__, __LINE__, "could not update architecture");
3777}
3778
c906108c
SS
3779/* Initialization code. */
3780
a78f21af 3781extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3782
c906108c 3783void
fba45db2 3784_initialize_rs6000_tdep (void)
c906108c 3785{
7b112f9c
JT
3786 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3787 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
3788
3789 /* Initialize the standard target descriptions. */
3790 initialize_tdesc_powerpc_32 ();
7284e1be 3791 initialize_tdesc_powerpc_altivec32 ();
604c2f83 3792 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
3793 initialize_tdesc_powerpc_403 ();
3794 initialize_tdesc_powerpc_403gc ();
3795 initialize_tdesc_powerpc_505 ();
3796 initialize_tdesc_powerpc_601 ();
3797 initialize_tdesc_powerpc_602 ();
3798 initialize_tdesc_powerpc_603 ();
3799 initialize_tdesc_powerpc_604 ();
3800 initialize_tdesc_powerpc_64 ();
7284e1be 3801 initialize_tdesc_powerpc_altivec64 ();
604c2f83 3802 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
3803 initialize_tdesc_powerpc_7400 ();
3804 initialize_tdesc_powerpc_750 ();
3805 initialize_tdesc_powerpc_860 ();
3806 initialize_tdesc_powerpc_e500 ();
3807 initialize_tdesc_rs6000 ();
55eddb0f
DJ
3808
3809 /* Add root prefix command for all "set powerpc"/"show powerpc"
3810 commands. */
3811 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
3812 _("Various PowerPC-specific commands."),
3813 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
3814
3815 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
3816 _("Various PowerPC-specific commands."),
3817 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
3818
3819 /* Add a command to allow the user to force the ABI. */
3820 add_setshow_auto_boolean_cmd ("soft-float", class_support,
3821 &powerpc_soft_float_global,
3822 _("Set whether to use a soft-float ABI."),
3823 _("Show whether to use a soft-float ABI."),
3824 NULL,
3825 powerpc_set_soft_float, NULL,
3826 &setpowerpccmdlist, &showpowerpccmdlist);
3827
3828 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
3829 &powerpc_vector_abi_string,
3830 _("Set the vector ABI."),
3831 _("Show the vector ABI."),
3832 NULL, powerpc_set_vector_abi, NULL,
3833 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 3834}
This page took 1.326383 seconds and 4 git commands to generate.