2003-09-09 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
7a78ae4e
ND
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
c906108c 215{
c9012c71
AC
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
c906108c
SS
219 else
220 return frame_initial_stack_address (fi);
221}
222
7a78ae4e
ND
223/* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
2188cbdd 231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 232}
c906108c 233
143985b7 234/* Get the ith function argument for the current function. */
b9362cc7 235static CORE_ADDR
143985b7
AF
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238{
239 CORE_ADDR addr;
240 frame_read_register (frame, 3 + argi, &addr);
241 return addr;
242}
243
c906108c
SS
244/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246static CORE_ADDR
7a78ae4e 247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
248{
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
c5aa993b
JM
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
8b36eed8 291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 292 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
2188cbdd 298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
305 }
306 else
307 return -1;
308 break;
c906108c 309
c5aa993b
JM
310 default:
311 return -1;
312 }
c906108c
SS
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction. */
318
f4f9705a 319const static unsigned char *
7a78ae4e 320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 321{
aaab4dba
AC
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 324 *bp_size = 4;
d7449b42 325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
379d08a1
AC
335rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
c906108c 337{
7c40d541
KB
338 CORE_ADDR dummy;
339 int breakp_sz;
f4f9705a 340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
c5aa993b
JM
346 if (insert_breakpoints_p)
347 {
c906108c 348
c5aa993b 349 loc = read_pc ();
c906108c 350
c5aa993b 351 insn = read_memory_integer (loc, 4);
c906108c 352
7c40d541 353 breaks[0] = loc + breakp_sz;
c5aa993b
JM
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 356
c5aa993b
JM
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
c906108c 360
c5aa993b 361 stepBreaks[1].address = 0;
c906108c 362
c5aa993b
JM
363 for (ii = 0; ii < 2; ++ii)
364 {
c906108c 365
c5aa993b
JM
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
7c40d541 369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
370 stepBreaks[ii].address = breaks[ii];
371 }
c906108c 372
c5aa993b
JM
373 }
374 else
375 {
c906108c 376
c5aa993b
JM
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
7c40d541
KB
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
c5aa993b 382 }
c906108c 383 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 384 /* What errors? {read,write}_memory call error(). */
c906108c
SS
385}
386
387
388/* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
c5aa993b
JM
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
6be8bc0c 398 - saved_vr is the number of the first saved vr.
96ff0de4 399 - saved_ev is the number of the first saved ev.
c5aa993b
JM
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 404 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 405 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
6be8bc0c 408 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 409 */
c906108c
SS
410
411#define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
55d05f3b
KB
418/* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428static CORE_ADDR
429refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430{
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467}
468
469
7a78ae4e 470static CORE_ADDR
077276e8 471skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
472{
473 CORE_ADDR orig_pc = pc;
55d05f3b 474 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 475 CORE_ADDR li_found_pc = 0;
c906108c
SS
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
6be8bc0c 479 long vr_saved_offset = 0;
482ca3f5
KB
480 int lr_reg = -1;
481 int cr_reg = -1;
6be8bc0c 482 int vr_reg = -1;
96ff0de4
EZ
483 int ev_reg = -1;
484 long ev_offset = 0;
6be8bc0c 485 int vrsave_reg = -1;
c906108c
SS
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
ddb20c56 489 int prev_insn_was_prologue_insn = 1;
55d05f3b 490 int num_skip_non_prologue_insns = 0;
96ff0de4 491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 493
55d05f3b
KB
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 508
ddb20c56 509 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
6be8bc0c 512 fdata->saved_vr = -1;
96ff0de4 513 fdata->saved_ev = -1;
c906108c
SS
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
55d05f3b 518 for (;; pc += 4)
c906108c 519 {
ddb20c56
KB
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
55d05f3b
KB
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
ddb20c56
KB
531 prev_insn_was_prologue_insn = 1;
532
55d05f3b 533 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
c906108c 537
c5aa993b
JM
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
98f08d3d 540 lr_reg = (op & 0x03e00000);
c5aa993b 541 continue;
c906108c 542
c5aa993b
JM
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
98f08d3d 546 cr_reg = (op & 0x03e00000);
c5aa993b 547 continue;
c906108c 548
c906108c 549 }
c5aa993b
JM
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
c906108c 559
c5aa993b
JM
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
7a78ae4e 571 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 572 op &= ~3UL;
c5aa993b
JM
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
c906108c 576
ddb20c56
KB
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
96ff0de4 580 /* nop */
ddb20c56
KB
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
c906108c 587 }
c5aa993b
JM
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
98f08d3d
KB
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
c5aa993b
JM
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
98f08d3d
KB
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
c5aa993b
JM
621 continue;
622
623 }
98f08d3d
KB
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
c5aa993b 633 cr_reg = 0;
98f08d3d
KB
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
c5aa993b
JM
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
c5aa993b 653 }
6be8bc0c
EZ
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
c5aa993b
JM
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
c906108c 659
c5aa993b
JM
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
c906108c 664
c5aa993b 665 fdata->frameless = 0;
6be8bc0c
EZ
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
c5aa993b
JM
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
6be8bc0c
EZ
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
c5aa993b
JM
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
c5aa993b 683 }
98f08d3d
KB
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
c5aa993b 691 }
98f08d3d
KB
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
c5aa993b
JM
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
c5aa993b 712 }
98f08d3d
KB
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 716 && !minimal_toc_loaded)
98f08d3d 717 {
c5aa993b
JM
718 minimal_toc_loaded = 1;
719 continue;
720
f6077098
KB
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
96ff0de4 727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
728 {
729 continue;
730
c5aa993b
JM
731 /* store parameters in stack */
732 }
6be8bc0c 733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
c5aa993b 737 continue;
c906108c 738
c5aa993b
JM
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
6f99cb26 755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
6f99cb26
AC
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
c5aa993b 766 continue;
c5aa993b 767 }
6be8bc0c
EZ
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
96ff0de4
EZ
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
c5aa993b
JM
935 else
936 {
55d05f3b
KB
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 951 /* Never skip branches. */
55d05f3b
KB
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
c5aa993b 962 }
c906108c
SS
963 }
964
965#if 0
966/* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 972 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 973 work before calling a function right after a prologue, thus we can
64366f1c 974 single out such gcc2 behaviour. */
c906108c 975
c906108c 976
c5aa993b
JM
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 983
64366f1c
EZ
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
c906108c 986
c5aa993b 987 tmp = find_pc_misc_function (pc);
51cc5b07 988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
989 return pc + 8;
990 }
c906108c 991 }
c906108c 992#endif /* 0 */
c5aa993b
JM
993
994 fdata->offset = -fdata->offset;
ddb20c56 995 return last_prologue_pc;
c906108c
SS
996}
997
998
999/*************************************************************************
f6077098 1000 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1001 frames, etc.
1002*************************************************************************/
1003
c906108c 1004
64366f1c 1005/* Pop the innermost frame, go back to the caller. */
c5aa993b 1006
c906108c 1007static void
7a78ae4e 1008rs6000_pop_frame (void)
c906108c 1009{
470d5666 1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
470d5666 1013 int ii, wordsize;
c906108c
SS
1014
1015 pc = read_pc ();
c193f6ac 1016 sp = get_frame_base (frame);
c906108c 1017
bdd78e62 1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
c906108c 1021 {
7a78ae4e
ND
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
c906108c
SS
1025 }
1026
1027 /* Make sure that all registers are valid. */
b8b527c5 1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1029
64366f1c 1030 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1031 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1032 saved %pc value in the previous frame. */
c906108c 1033
be41e9f4 1034 addr = get_frame_func (frame);
bdd78e62 1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1036
21283beb 1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
7a78ae4e 1041 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1042 if (fdata.lr_offset == 0)
2188cbdd 1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1044 else
7a78ae4e 1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
64366f1c 1050 /* reset register values if any was saved earlier. */
c906108c
SS
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
524d7c18
AC
1057 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1058 wordsize);
7a78ae4e 1059 addr += wordsize;
c5aa993b 1060 }
c906108c
SS
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
524d7c18 1068 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1069 addr += 8;
1070 }
c906108c
SS
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076}
1077
7a78ae4e 1078/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1079 address. Its arguments will be passed by gdb. */
c906108c 1080
7a78ae4e
ND
1081static void
1082rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1083 int nargs, struct value **args, struct type *type,
7a78ae4e 1084 int gcc_p)
c906108c 1085{
c906108c
SS
1086 int ii;
1087 CORE_ADDR target_addr;
1088
7a78ae4e 1089 if (rs6000_find_toc_address_hook != NULL)
f6077098 1090 {
7a78ae4e 1091 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1092 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1093 tocvalue);
f6077098 1094 }
c906108c
SS
1095}
1096
11269d7e
AC
1097/* All the ABI's require 16 byte alignment. */
1098static CORE_ADDR
1099rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1100{
1101 return (addr & -16);
1102}
1103
7a78ae4e 1104/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1105 the first eight words of the argument list (that might be less than
1106 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1107 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1108 passed in fpr's, in addition to that. Rest of the parameters if any
1109 are passed in user stack. There might be cases in which half of the
c906108c
SS
1110 parameter is copied into registers, the other half is pushed into
1111 stack.
1112
7a78ae4e
ND
1113 Stack must be aligned on 64-bit boundaries when synthesizing
1114 function calls.
1115
c906108c
SS
1116 If the function is returning a structure, then the return address is passed
1117 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1118 starting from r4. */
c906108c 1119
7a78ae4e 1120static CORE_ADDR
77b2b6d4
AC
1121rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1122 struct regcache *regcache, CORE_ADDR bp_addr,
1123 int nargs, struct value **args, CORE_ADDR sp,
1124 int struct_return, CORE_ADDR struct_addr)
c906108c 1125{
7a41266b 1126 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1127 int ii;
1128 int len = 0;
c5aa993b
JM
1129 int argno; /* current argument number */
1130 int argbytes; /* current argument byte */
1131 char tmp_buffer[50];
1132 int f_argno = 0; /* current floating point argno */
21283beb 1133 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1134
ea7c478f 1135 struct value *arg = 0;
c906108c
SS
1136 struct type *type;
1137
1138 CORE_ADDR saved_sp;
1139
64366f1c 1140 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1141 Copy them appropriately. */
1142 ii = 0;
1143
1144 /* If the function is returning a `struct', then the first word
1145 (which will be passed in r3) is used for struct return address.
1146 In that case we should advance one word and start from r4
1147 register to copy parameters. */
1148 if (struct_return)
1149 {
1150 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1151 struct_addr);
1152 ii++;
1153 }
c906108c
SS
1154
1155/*
c5aa993b
JM
1156 effectively indirect call... gcc does...
1157
1158 return_val example( float, int);
1159
1160 eabi:
1161 float in fp0, int in r3
1162 offset of stack on overflow 8/16
1163 for varargs, must go by type.
1164 power open:
1165 float in r3&r4, int in r5
1166 offset of stack on overflow different
1167 both:
1168 return in r3 or f0. If no float, must study how gcc emulates floats;
1169 pay attention to arg promotion.
1170 User may have to cast\args to handle promotion correctly
1171 since gdb won't know if prototype supplied or not.
1172 */
c906108c 1173
c5aa993b
JM
1174 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1175 {
f6077098 1176 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1177
1178 arg = args[argno];
1179 type = check_typedef (VALUE_TYPE (arg));
1180 len = TYPE_LENGTH (type);
1181
1182 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1183 {
1184
64366f1c 1185 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1186 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1187 there is no way we would run out of them. */
c5aa993b
JM
1188
1189 if (len > 8)
1190 printf_unfiltered (
1191 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1192
524d7c18 1193 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1194 VALUE_CONTENTS (arg),
1195 len);
1196 ++f_argno;
1197 }
1198
f6077098 1199 if (len > reg_size)
c5aa993b
JM
1200 {
1201
64366f1c 1202 /* Argument takes more than one register. */
c5aa993b
JM
1203 while (argbytes < len)
1204 {
524d7c18
AC
1205 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1206 reg_size);
1207 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1208 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1209 (len - argbytes) > reg_size
1210 ? reg_size : len - argbytes);
1211 ++ii, argbytes += reg_size;
c5aa993b
JM
1212
1213 if (ii >= 8)
1214 goto ran_out_of_registers_for_arguments;
1215 }
1216 argbytes = 0;
1217 --ii;
1218 }
1219 else
64366f1c
EZ
1220 {
1221 /* Argument can fit in one register. No problem. */
d7449b42 1222 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1223 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1224 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1225 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1226 }
1227 ++argno;
c906108c 1228 }
c906108c
SS
1229
1230ran_out_of_registers_for_arguments:
1231
7a78ae4e 1232 saved_sp = read_sp ();
cc9836a8 1233
64366f1c 1234 /* Location for 8 parameters are always reserved. */
7a78ae4e 1235 sp -= wordsize * 8;
f6077098 1236
64366f1c 1237 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1238 sp -= wordsize * 6;
f6077098 1239
64366f1c 1240 /* Stack pointer must be quadword aligned. */
7a78ae4e 1241 sp &= -16;
c906108c 1242
64366f1c
EZ
1243 /* If there are more arguments, allocate space for them in
1244 the stack, then push them starting from the ninth one. */
c906108c 1245
c5aa993b
JM
1246 if ((argno < nargs) || argbytes)
1247 {
1248 int space = 0, jj;
c906108c 1249
c5aa993b
JM
1250 if (argbytes)
1251 {
1252 space += ((len - argbytes + 3) & -4);
1253 jj = argno + 1;
1254 }
1255 else
1256 jj = argno;
c906108c 1257
c5aa993b
JM
1258 for (; jj < nargs; ++jj)
1259 {
ea7c478f 1260 struct value *val = args[jj];
c5aa993b
JM
1261 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1262 }
c906108c 1263
64366f1c 1264 /* Add location required for the rest of the parameters. */
f6077098 1265 space = (space + 15) & -16;
c5aa993b 1266 sp -= space;
c906108c 1267
64366f1c
EZ
1268 /* This is another instance we need to be concerned about
1269 securing our stack space. If we write anything underneath %sp
1270 (r1), we might conflict with the kernel who thinks he is free
1271 to use this area. So, update %sp first before doing anything
1272 else. */
c906108c 1273
c5aa993b 1274 write_register (SP_REGNUM, sp);
c906108c 1275
64366f1c
EZ
1276 /* If the last argument copied into the registers didn't fit there
1277 completely, push the rest of it into stack. */
c906108c 1278
c5aa993b
JM
1279 if (argbytes)
1280 {
1281 write_memory (sp + 24 + (ii * 4),
1282 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1283 len - argbytes);
1284 ++argno;
1285 ii += ((len - argbytes + 3) & -4) / 4;
1286 }
c906108c 1287
64366f1c 1288 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1289 for (; argno < nargs; ++argno)
1290 {
c906108c 1291
c5aa993b
JM
1292 arg = args[argno];
1293 type = check_typedef (VALUE_TYPE (arg));
1294 len = TYPE_LENGTH (type);
c906108c
SS
1295
1296
64366f1c
EZ
1297 /* Float types should be passed in fpr's, as well as in the
1298 stack. */
c5aa993b
JM
1299 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1300 {
c906108c 1301
c5aa993b
JM
1302 if (len > 8)
1303 printf_unfiltered (
1304 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1305
524d7c18 1306 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1307 VALUE_CONTENTS (arg),
1308 len);
1309 ++f_argno;
1310 }
c906108c 1311
c5aa993b
JM
1312 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1313 ii += ((len + 3) & -4) / 4;
1314 }
c906108c 1315 }
c906108c 1316 else
64366f1c 1317 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1318 write_register (SP_REGNUM, sp);
1319
c906108c 1320 /* set back chain properly */
fbd9dcd3 1321 store_unsigned_integer (tmp_buffer, 4, saved_sp);
c906108c
SS
1322 write_memory (sp, tmp_buffer, 4);
1323
1324 target_store_registers (-1);
1325 return sp;
1326}
c906108c
SS
1327
1328/* Function: ppc_push_return_address (pc, sp)
64366f1c 1329 Set up the return address for the inferior function call. */
c906108c 1330
7a78ae4e
ND
1331static CORE_ADDR
1332ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1333{
2188cbdd 1334 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
88a82a65 1335 entry_point_address ());
c906108c
SS
1336 return sp;
1337}
1338
7a78ae4e 1339/* Extract a function return value of type TYPE from raw register array
64366f1c 1340 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1341static void
46d79c04 1342e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1343{
1344 int offset = 0;
1345 int vallen = TYPE_LENGTH (valtype);
1346 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1347
1348 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1349 && vallen == 8
1350 && TYPE_VECTOR (valtype))
1351 {
1352 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1353 }
1354 else
1355 {
1356 /* Return value is copied starting from r3. Note that r3 for us
1357 is a pseudo register. */
1358 int offset = 0;
1359 int return_regnum = tdep->ppc_gp0_regnum + 3;
1360 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1361 int reg_part_size;
1362 char *val_buffer;
1363 int copied = 0;
1364 int i = 0;
1365
1366 /* Compute where we will start storing the value from. */
1367 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1368 {
1369 if (vallen <= reg_size)
1370 offset = reg_size - vallen;
1371 else
1372 offset = reg_size + (reg_size - vallen);
1373 }
1374
1375 /* How big does the local buffer need to be? */
1376 if (vallen <= reg_size)
1377 val_buffer = alloca (reg_size);
1378 else
1379 val_buffer = alloca (vallen);
1380
1381 /* Read all we need into our private buffer. We copy it in
1382 chunks that are as long as one register, never shorter, even
1383 if the value is smaller than the register. */
1384 while (copied < vallen)
1385 {
1386 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1387 /* It is a pseudo/cooked register. */
1388 regcache_cooked_read (regbuf, return_regnum + i,
1389 val_buffer + copied);
1390 copied += reg_part_size;
1391 i++;
1392 }
1393 /* Put the stuff in the return buffer. */
1394 memcpy (valbuf, val_buffer + offset, vallen);
1395 }
1396}
c906108c 1397
7a78ae4e
ND
1398static void
1399rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1400{
1401 int offset = 0;
ace1378a 1402 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1403
c5aa993b
JM
1404 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1405 {
c906108c 1406
c5aa993b
JM
1407 double dd;
1408 float ff;
1409 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1410 We need to truncate the return value into float size (4 byte) if
64366f1c 1411 necessary. */
c906108c 1412
c5aa993b
JM
1413 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1414 memcpy (valbuf,
1415 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1416 TYPE_LENGTH (valtype));
1417 else
1418 { /* float */
1419 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1420 ff = (float) dd;
1421 memcpy (valbuf, &ff, sizeof (float));
1422 }
1423 }
ace1378a
EZ
1424 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1425 && TYPE_LENGTH (valtype) == 16
1426 && TYPE_VECTOR (valtype))
1427 {
1428 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1429 TYPE_LENGTH (valtype));
1430 }
c5aa993b
JM
1431 else
1432 {
1433 /* return value is copied starting from r3. */
d7449b42 1434 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1435 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1436 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1437
1438 memcpy (valbuf,
1439 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1440 TYPE_LENGTH (valtype));
c906108c 1441 }
c906108c
SS
1442}
1443
977adac5
ND
1444/* Return whether handle_inferior_event() should proceed through code
1445 starting at PC in function NAME when stepping.
1446
1447 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1448 handle memory references that are too distant to fit in instructions
1449 generated by the compiler. For example, if 'foo' in the following
1450 instruction:
1451
1452 lwz r9,foo(r2)
1453
1454 is greater than 32767, the linker might replace the lwz with a branch to
1455 somewhere in @FIX1 that does the load in 2 instructions and then branches
1456 back to where execution should continue.
1457
1458 GDB should silently step over @FIX code, just like AIX dbx does.
1459 Unfortunately, the linker uses the "b" instruction for the branches,
1460 meaning that the link register doesn't get set. Therefore, GDB's usual
1461 step_over_function() mechanism won't work.
1462
1463 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1464 in handle_inferior_event() to skip past @FIX code. */
1465
1466int
1467rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1468{
1469 return name && !strncmp (name, "@FIX", 4);
1470}
1471
1472/* Skip code that the user doesn't want to see when stepping:
1473
1474 1. Indirect function calls use a piece of trampoline code to do context
1475 switching, i.e. to set the new TOC table. Skip such code if we are on
1476 its first instruction (as when we have single-stepped to here).
1477
1478 2. Skip shared library trampoline code (which is different from
c906108c 1479 indirect function call trampolines).
977adac5
ND
1480
1481 3. Skip bigtoc fixup code.
1482
c906108c 1483 Result is desired PC to step until, or NULL if we are not in
977adac5 1484 code that should be skipped. */
c906108c
SS
1485
1486CORE_ADDR
7a78ae4e 1487rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1488{
1489 register unsigned int ii, op;
977adac5 1490 int rel;
c906108c 1491 CORE_ADDR solib_target_pc;
977adac5 1492 struct minimal_symbol *msymbol;
c906108c 1493
c5aa993b
JM
1494 static unsigned trampoline_code[] =
1495 {
1496 0x800b0000, /* l r0,0x0(r11) */
1497 0x90410014, /* st r2,0x14(r1) */
1498 0x7c0903a6, /* mtctr r0 */
1499 0x804b0004, /* l r2,0x4(r11) */
1500 0x816b0008, /* l r11,0x8(r11) */
1501 0x4e800420, /* bctr */
1502 0x4e800020, /* br */
1503 0
c906108c
SS
1504 };
1505
977adac5
ND
1506 /* Check for bigtoc fixup code. */
1507 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1508 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1509 {
1510 /* Double-check that the third instruction from PC is relative "b". */
1511 op = read_memory_integer (pc + 8, 4);
1512 if ((op & 0xfc000003) == 0x48000000)
1513 {
1514 /* Extract bits 6-29 as a signed 24-bit relative word address and
1515 add it to the containing PC. */
1516 rel = ((int)(op << 6) >> 6);
1517 return pc + 8 + rel;
1518 }
1519 }
1520
c906108c
SS
1521 /* If pc is in a shared library trampoline, return its target. */
1522 solib_target_pc = find_solib_trampoline_target (pc);
1523 if (solib_target_pc)
1524 return solib_target_pc;
1525
c5aa993b
JM
1526 for (ii = 0; trampoline_code[ii]; ++ii)
1527 {
1528 op = read_memory_integer (pc + (ii * 4), 4);
1529 if (op != trampoline_code[ii])
1530 return 0;
1531 }
1532 ii = read_register (11); /* r11 holds destination addr */
21283beb 1533 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1534 return pc;
1535}
1536
1537/* Determines whether the function FI has a frame on the stack or not. */
1538
9aa1e687 1539int
c877c8e6 1540rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1541{
1542 CORE_ADDR func_start;
1543 struct rs6000_framedata fdata;
1544
1545 /* Don't even think about framelessness except on the innermost frame
1546 or if the function was interrupted by a signal. */
75e3c1f9
AC
1547 if (get_next_frame (fi) != NULL
1548 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1549 return 0;
c5aa993b 1550
be41e9f4 1551 func_start = get_frame_func (fi);
c906108c
SS
1552
1553 /* If we failed to find the start of the function, it is a mistake
64366f1c 1554 to inspect the instructions. */
c906108c
SS
1555
1556 if (!func_start)
1557 {
1558 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1559 function pointer, normally causing an immediate core dump of the
64366f1c 1560 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1561 of setting up a stack frame. */
bdd78e62 1562 if (get_frame_pc (fi) == 0)
c906108c
SS
1563 return 1;
1564 else
1565 return 0;
1566 }
1567
bdd78e62 1568 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1569 return fdata.frameless;
1570}
1571
64366f1c 1572/* Return the PC saved in a frame. */
c906108c 1573
9aa1e687 1574CORE_ADDR
c877c8e6 1575rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1576{
1577 CORE_ADDR func_start;
1578 struct rs6000_framedata fdata;
21283beb 1579 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1580 int wordsize = tdep->wordsize;
c906108c 1581
5a203e44 1582 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1583 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1584 wordsize);
c906108c 1585
bdd78e62 1586 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1587 get_frame_base (fi),
1588 get_frame_base (fi)))
bdd78e62 1589 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1590 get_frame_base (fi), PC_REGNUM);
c906108c 1591
be41e9f4 1592 func_start = get_frame_func (fi);
c906108c
SS
1593
1594 /* If we failed to find the start of the function, it is a mistake
64366f1c 1595 to inspect the instructions. */
c906108c
SS
1596 if (!func_start)
1597 return 0;
1598
bdd78e62 1599 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1600
75e3c1f9 1601 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1602 {
75e3c1f9 1603 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1604 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1605 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1606 wordsize);
bdd78e62 1607 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1608 /* The link register wasn't saved by this frame and the next
1609 (inner, newer) frame is a dummy. Get the link register
1610 value by unwinding it from that [dummy] frame. */
1611 {
1612 ULONGEST lr;
1613 frame_unwind_unsigned_register (get_next_frame (fi),
1614 tdep->ppc_lr_regnum, &lr);
1615 return lr;
1616 }
c906108c 1617 else
618ce49f
AC
1618 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1619 + tdep->lr_frame_offset,
7a78ae4e 1620 wordsize);
c906108c
SS
1621 }
1622
1623 if (fdata.lr_offset == 0)
2188cbdd 1624 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1625
618ce49f
AC
1626 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1627 wordsize);
c906108c
SS
1628}
1629
1630/* If saved registers of frame FI are not known yet, read and cache them.
1631 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1632 in which case the framedata are read. */
1633
1634static void
7a78ae4e 1635frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1636{
c5aa993b 1637 CORE_ADDR frame_addr;
c906108c 1638 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1639 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1640 int wordsize = tdep->wordsize;
c906108c 1641
c9012c71 1642 if (get_frame_saved_regs (fi))
c906108c 1643 return;
c5aa993b 1644
c906108c
SS
1645 if (fdatap == NULL)
1646 {
1647 fdatap = &work_fdata;
be41e9f4 1648 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1649 }
1650
1651 frame_saved_regs_zalloc (fi);
1652
1653 /* If there were any saved registers, figure out parent's stack
64366f1c 1654 pointer. */
c906108c 1655 /* The following is true only if the frame doesn't have a call to
64366f1c 1656 alloca(), FIXME. */
c906108c 1657
6be8bc0c
EZ
1658 if (fdatap->saved_fpr == 0
1659 && fdatap->saved_gpr == 0
1660 && fdatap->saved_vr == 0
96ff0de4 1661 && fdatap->saved_ev == 0
6be8bc0c
EZ
1662 && fdatap->lr_offset == 0
1663 && fdatap->cr_offset == 0
96ff0de4
EZ
1664 && fdatap->vr_offset == 0
1665 && fdatap->ev_offset == 0)
c906108c 1666 frame_addr = 0;
c906108c 1667 else
bf75c8c1
AC
1668 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1669 address of the current frame. Things might be easier if the
1670 ->frame pointed to the outer-most address of the frame. In the
1671 mean time, the address of the prev frame is used as the base
1672 address of this frame. */
618ce49f 1673 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1674
c906108c
SS
1675 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1676 All fpr's from saved_fpr to fp31 are saved. */
1677
1678 if (fdatap->saved_fpr >= 0)
1679 {
1680 int i;
7a78ae4e 1681 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1682 for (i = fdatap->saved_fpr; i < 32; i++)
1683 {
c9012c71 1684 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1685 fpr_addr += 8;
c906108c
SS
1686 }
1687 }
1688
1689 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1690 All gpr's from saved_gpr to gpr31 are saved. */
1691
1692 if (fdatap->saved_gpr >= 0)
1693 {
1694 int i;
7a78ae4e 1695 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1696 for (i = fdatap->saved_gpr; i < 32; i++)
1697 {
366cfc9e 1698 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1699 gpr_addr += wordsize;
c906108c
SS
1700 }
1701 }
1702
6be8bc0c
EZ
1703 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1704 All vr's from saved_vr to vr31 are saved. */
1705 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1706 {
1707 if (fdatap->saved_vr >= 0)
1708 {
1709 int i;
1710 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1711 for (i = fdatap->saved_vr; i < 32; i++)
1712 {
c9012c71 1713 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1714 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1715 }
1716 }
1717 }
1718
96ff0de4
EZ
1719 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1720 All vr's from saved_ev to ev31 are saved. ????? */
1721 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1722 {
1723 if (fdatap->saved_ev >= 0)
1724 {
1725 int i;
1726 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1727 for (i = fdatap->saved_ev; i < 32; i++)
1728 {
c9012c71
AC
1729 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1730 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1731 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1732 }
1733 }
1734 }
1735
c906108c
SS
1736 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1737 the CR. */
1738 if (fdatap->cr_offset != 0)
c9012c71 1739 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1740
1741 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1742 the LR. */
1743 if (fdatap->lr_offset != 0)
c9012c71 1744 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1745
1746 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1747 the VRSAVE. */
1748 if (fdatap->vrsave_offset != 0)
c9012c71 1749 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1750}
1751
1752/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1753 was first allocated. For functions calling alloca(), it might be saved in
1754 an alloca register. */
c906108c
SS
1755
1756static CORE_ADDR
7a78ae4e 1757frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1758{
1759 CORE_ADDR tmpaddr;
1760 struct rs6000_framedata fdata;
1761 struct frame_info *callee_fi;
1762
64366f1c
EZ
1763 /* If the initial stack pointer (frame address) of this frame is known,
1764 just return it. */
c906108c 1765
c9012c71
AC
1766 if (get_frame_extra_info (fi)->initial_sp)
1767 return get_frame_extra_info (fi)->initial_sp;
c906108c 1768
64366f1c 1769 /* Find out if this function is using an alloca register. */
c906108c 1770
be41e9f4 1771 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1772
64366f1c
EZ
1773 /* If saved registers of this frame are not known yet, read and
1774 cache them. */
c906108c 1775
c9012c71 1776 if (!get_frame_saved_regs (fi))
c906108c
SS
1777 frame_get_saved_regs (fi, &fdata);
1778
1779 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1780 this frame, and it is good enough. */
c906108c
SS
1781
1782 if (fdata.alloca_reg < 0)
1783 {
c9012c71
AC
1784 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1785 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1786 }
1787
953836b2
AC
1788 /* There is an alloca register, use its value, in the current frame,
1789 as the initial stack pointer. */
1790 {
d9d9c31f 1791 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1792 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1793 {
c9012c71 1794 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1795 = extract_unsigned_integer (tmpbuf,
1796 REGISTER_RAW_SIZE (fdata.alloca_reg));
1797 }
1798 else
1799 /* NOTE: cagney/2002-04-17: At present the only time
1800 frame_register_read will fail is when the register isn't
1801 available. If that does happen, use the frame. */
c9012c71 1802 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1803 }
c9012c71 1804 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1805}
1806
7a78ae4e
ND
1807/* Describe the pointer in each stack frame to the previous stack frame
1808 (its caller). */
1809
618ce49f
AC
1810/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1811 the frame's chain-pointer. */
7a78ae4e
ND
1812
1813/* In the case of the RS/6000, the frame's nominal address
1814 is the address of a 4-byte word containing the calling frame's address. */
1815
9aa1e687 1816CORE_ADDR
7a78ae4e 1817rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1818{
7a78ae4e 1819 CORE_ADDR fp, fpp, lr;
21283beb 1820 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1821
bdd78e62 1822 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1823 get_frame_base (thisframe),
1824 get_frame_base (thisframe)))
9f3b7f07
AC
1825 /* A dummy frame always correctly chains back to the previous
1826 frame. */
8b36eed8 1827 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1828
bdd78e62
AC
1829 if (inside_entry_file (get_frame_pc (thisframe))
1830 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1831 return 0;
1832
5a203e44 1833 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1834 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1835 wordsize);
75e3c1f9
AC
1836 else if (get_next_frame (thisframe) != NULL
1837 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1838 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1839 /* A frameless function interrupted by a signal did not change the
1840 frame pointer. */
c193f6ac 1841 fp = get_frame_base (thisframe);
c906108c 1842 else
8b36eed8 1843 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1844 return fp;
1845}
1846
1847/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1848 isn't available with that word size, return 0. */
7a78ae4e
ND
1849
1850static int
1851regsize (const struct reg *reg, int wordsize)
1852{
1853 return wordsize == 8 ? reg->sz64 : reg->sz32;
1854}
1855
1856/* Return the name of register number N, or null if no such register exists
64366f1c 1857 in the current architecture. */
7a78ae4e 1858
fa88f677 1859static const char *
7a78ae4e
ND
1860rs6000_register_name (int n)
1861{
21283beb 1862 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1863 const struct reg *reg = tdep->regs + n;
1864
1865 if (!regsize (reg, tdep->wordsize))
1866 return NULL;
1867 return reg->name;
1868}
1869
1870/* Index within `registers' of the first byte of the space for
1871 register N. */
1872
1873static int
1874rs6000_register_byte (int n)
1875{
21283beb 1876 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1877}
1878
1879/* Return the number of bytes of storage in the actual machine representation
64366f1c 1880 for register N if that register is available, else return 0. */
7a78ae4e
ND
1881
1882static int
1883rs6000_register_raw_size (int n)
1884{
21283beb 1885 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1886 const struct reg *reg = tdep->regs + n;
1887 return regsize (reg, tdep->wordsize);
1888}
1889
7a78ae4e
ND
1890/* Return the GDB type object for the "standard" data type
1891 of data in register N. */
1892
1893static struct type *
fba45db2 1894rs6000_register_virtual_type (int n)
7a78ae4e 1895{
21283beb 1896 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1897 const struct reg *reg = tdep->regs + n;
1898
1fcc0bb8
EZ
1899 if (reg->fpr)
1900 return builtin_type_double;
1901 else
1902 {
1903 int size = regsize (reg, tdep->wordsize);
1904 switch (size)
1905 {
449a5da4
AC
1906 case 0:
1907 return builtin_type_int0;
1908 case 4:
1909 return builtin_type_int32;
1fcc0bb8 1910 case 8:
c8001721
EZ
1911 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1912 return builtin_type_vec64;
1913 else
1914 return builtin_type_int64;
1fcc0bb8
EZ
1915 break;
1916 case 16:
08cf96df 1917 return builtin_type_vec128;
1fcc0bb8
EZ
1918 break;
1919 default:
449a5da4
AC
1920 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1921 n, size);
1fcc0bb8
EZ
1922 }
1923 }
7a78ae4e
ND
1924}
1925
7a78ae4e
ND
1926/* Return whether register N requires conversion when moving from raw format
1927 to virtual format.
1928
1929 The register format for RS/6000 floating point registers is always
64366f1c 1930 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1931
1932static int
1933rs6000_register_convertible (int n)
1934{
21283beb 1935 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1936 return reg->fpr;
1937}
1938
1939/* Convert data from raw format for register N in buffer FROM
64366f1c 1940 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1941
1942static void
1943rs6000_register_convert_to_virtual (int n, struct type *type,
1944 char *from, char *to)
1945{
1946 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1947 {
f1908289
AC
1948 double val = deprecated_extract_floating (from, REGISTER_RAW_SIZE (n));
1949 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1950 }
1951 else
1952 memcpy (to, from, REGISTER_RAW_SIZE (n));
1953}
1954
1955/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1956 to raw format for register N in buffer TO. */
7a292a7a 1957
7a78ae4e
ND
1958static void
1959rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1960 const char *from, char *to)
7a78ae4e
ND
1961{
1962 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1963 {
f1908289
AC
1964 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
1965 deprecated_store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1966 }
7a78ae4e
ND
1967 else
1968 memcpy (to, from, REGISTER_RAW_SIZE (n));
1969}
c906108c 1970
c8001721
EZ
1971static void
1972e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1973 int reg_nr, void *buffer)
1974{
1975 int base_regnum;
1976 int offset = 0;
d9d9c31f 1977 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1978 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1979
1980 if (reg_nr >= tdep->ppc_gp0_regnum
1981 && reg_nr <= tdep->ppc_gplast_regnum)
1982 {
1983 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1984
1985 /* Build the value in the provided buffer. */
1986 /* Read the raw register of which this one is the lower portion. */
1987 regcache_raw_read (regcache, base_regnum, temp_buffer);
1988 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1989 offset = 4;
1990 memcpy ((char *) buffer, temp_buffer + offset, 4);
1991 }
1992}
1993
1994static void
1995e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1996 int reg_nr, const void *buffer)
1997{
1998 int base_regnum;
1999 int offset = 0;
d9d9c31f 2000 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
2001 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2002
2003 if (reg_nr >= tdep->ppc_gp0_regnum
2004 && reg_nr <= tdep->ppc_gplast_regnum)
2005 {
2006 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
2007 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
2008 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2009 offset = 4;
2010
2011 /* Let's read the value of the base register into a temporary
2012 buffer, so that overwriting the last four bytes with the new
2013 value of the pseudo will leave the upper 4 bytes unchanged. */
2014 regcache_raw_read (regcache, base_regnum, temp_buffer);
2015
2016 /* Write as an 8 byte quantity. */
2017 memcpy (temp_buffer + offset, (char *) buffer, 4);
2018 regcache_raw_write (regcache, base_regnum, temp_buffer);
2019 }
2020}
2021
2022/* Convert a dwarf2 register number to a gdb REGNUM. */
2023static int
2024e500_dwarf2_reg_to_regnum (int num)
2025{
2026 int regnum;
2027 if (0 <= num && num <= 31)
2028 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
2029 else
2030 return num;
2031}
2032
2188cbdd 2033/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 2034 REGNUM. */
2188cbdd
EZ
2035static int
2036rs6000_stab_reg_to_regnum (int num)
2037{
2038 int regnum;
2039 switch (num)
2040 {
2041 case 64:
2042 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
2043 break;
2044 case 65:
2045 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2046 break;
2047 case 66:
2048 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2049 break;
2050 case 76:
2051 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2052 break;
2053 default:
2054 regnum = num;
2055 break;
2056 }
2057 return regnum;
2058}
2059
7a78ae4e
ND
2060/* Write into appropriate registers a function return value
2061 of type TYPE, given in virtual format. */
96ff0de4
EZ
2062static void
2063e500_store_return_value (struct type *type, char *valbuf)
2064{
2065 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2066
2067 /* Everything is returned in GPR3 and up. */
2068 int copied = 0;
2069 int i = 0;
2070 int len = TYPE_LENGTH (type);
2071 while (copied < len)
2072 {
2073 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2074 int reg_size = REGISTER_RAW_SIZE (regnum);
2075 char *reg_val_buf = alloca (reg_size);
2076
2077 memcpy (reg_val_buf, valbuf + copied, reg_size);
2078 copied += reg_size;
4caf0990 2079 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2080 i++;
2081 }
2082}
7a78ae4e
ND
2083
2084static void
2085rs6000_store_return_value (struct type *type, char *valbuf)
2086{
ace1378a
EZ
2087 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2088
7a78ae4e
ND
2089 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2090
2091 /* Floating point values are returned starting from FPR1 and up.
2092 Say a double_double_double type could be returned in
64366f1c 2093 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2094
73937e03
AC
2095 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2096 TYPE_LENGTH (type));
ace1378a
EZ
2097 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2098 {
2099 if (TYPE_LENGTH (type) == 16
2100 && TYPE_VECTOR (type))
73937e03
AC
2101 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2102 valbuf, TYPE_LENGTH (type));
ace1378a 2103 }
7a78ae4e 2104 else
64366f1c 2105 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2106 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2107 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2108}
2109
2110/* Extract from an array REGBUF containing the (raw) register state
2111 the address in which a function should return its structure value,
2112 as a CORE_ADDR (or an expression that can be used as one). */
2113
2114static CORE_ADDR
11269d7e
AC
2115rs6000_extract_struct_value_address (struct regcache *regcache)
2116{
2117 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2118 function call GDB knows the address of the struct return value
2119 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2120 the current call_function_by_hand() code only saves the most
2121 recent struct address leading to occasional calls. The code
2122 should instead maintain a stack of such addresses (in the dummy
2123 frame object). */
11269d7e
AC
2124 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2125 really got no idea where the return value is being stored. While
2126 r3, on function entry, contained the address it will have since
2127 been reused (scratch) and hence wouldn't be valid */
2128 return 0;
7a78ae4e
ND
2129}
2130
2131/* Return whether PC is in a dummy function call.
2132
2133 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2134 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2135
2136static int
2137rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2138{
2139 return sp < pc && pc < fp;
2140}
2141
64366f1c 2142/* Hook called when a new child process is started. */
7a78ae4e
ND
2143
2144void
2145rs6000_create_inferior (int pid)
2146{
2147 if (rs6000_set_host_arch_hook)
2148 rs6000_set_host_arch_hook (pid);
c906108c
SS
2149}
2150\f
7a78ae4e
ND
2151/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2152
2153 Usually a function pointer's representation is simply the address
2154 of the function. On the RS/6000 however, a function pointer is
2155 represented by a pointer to a TOC entry. This TOC entry contains
2156 three words, the first word is the address of the function, the
2157 second word is the TOC pointer (r2), and the third word is the
2158 static chain value. Throughout GDB it is currently assumed that a
2159 function pointer contains the address of the function, which is not
2160 easy to fix. In addition, the conversion of a function address to
2161 a function pointer would require allocation of a TOC entry in the
2162 inferior's memory space, with all its drawbacks. To be able to
2163 call C++ virtual methods in the inferior (which are called via
f517ea4e 2164 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2165 function address from a function pointer. */
2166
f517ea4e
PS
2167/* Return real function address if ADDR (a function pointer) is in the data
2168 space and is therefore a special function pointer. */
c906108c 2169
b9362cc7 2170static CORE_ADDR
7a78ae4e 2171rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2172{
2173 struct obj_section *s;
2174
2175 s = find_pc_section (addr);
2176 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2177 return addr;
c906108c 2178
7a78ae4e 2179 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2180 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2181}
c906108c 2182\f
c5aa993b 2183
7a78ae4e 2184/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2185
2186
7a78ae4e
ND
2187/* The arrays here called registers_MUMBLE hold information about available
2188 registers.
c906108c
SS
2189
2190 For each family of PPC variants, I've tried to isolate out the
2191 common registers and put them up front, so that as long as you get
2192 the general family right, GDB will correctly identify the registers
2193 common to that family. The common register sets are:
2194
2195 For the 60x family: hid0 hid1 iabr dabr pir
2196
2197 For the 505 and 860 family: eie eid nri
2198
2199 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2200 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2201 pbu1 pbl2 pbu2
c906108c
SS
2202
2203 Most of these register groups aren't anything formal. I arrived at
2204 them by looking at the registers that occurred in more than one
6f5987a6
KB
2205 processor.
2206
2207 Note: kevinb/2002-04-30: Support for the fpscr register was added
2208 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2209 for Power. For PowerPC, slot 70 was unused and was already in the
2210 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2211 slot 70 was being used for "mq", so the next available slot (71)
2212 was chosen. It would have been nice to be able to make the
2213 register numbers the same across processor cores, but this wasn't
2214 possible without either 1) renumbering some registers for some
2215 processors or 2) assigning fpscr to a really high slot that's
2216 larger than any current register number. Doing (1) is bad because
2217 existing stubs would break. Doing (2) is undesirable because it
2218 would introduce a really large gap between fpscr and the rest of
2219 the registers for most processors. */
7a78ae4e 2220
64366f1c 2221/* Convenience macros for populating register arrays. */
7a78ae4e 2222
64366f1c 2223/* Within another macro, convert S to a string. */
7a78ae4e
ND
2224
2225#define STR(s) #s
2226
2227/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2228 and 64 bits on 64-bit systems. */
489461e2 2229#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2230
2231/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2232 systems. */
489461e2 2233#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2234
2235/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2236 systems. */
489461e2 2237#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2238
1fcc0bb8 2239/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2240 systems. */
489461e2 2241#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2242
64366f1c 2243/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2244#define F(name) { STR(name), 8, 8, 1, 0 }
2245
64366f1c 2246/* Return a struct reg defining a pseudo register NAME. */
489461e2 2247#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2248
2249/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2250 systems and that doesn't exist on 64-bit systems. */
489461e2 2251#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2252
2253/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2254 systems and that doesn't exist on 32-bit systems. */
489461e2 2255#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2256
64366f1c 2257/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2258#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2259
2260/* UISA registers common across all architectures, including POWER. */
2261
2262#define COMMON_UISA_REGS \
2263 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2264 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2265 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2266 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2267 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2268 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2269 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2270 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2271 /* 64 */ R(pc), R(ps)
2272
ebeac11a
EZ
2273#define COMMON_UISA_NOFP_REGS \
2274 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2275 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2276 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2277 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2278 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2279 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2280 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2281 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2282 /* 64 */ R(pc), R(ps)
2283
7a78ae4e
ND
2284/* UISA-level SPRs for PowerPC. */
2285#define PPC_UISA_SPRS \
e3f36dbd 2286 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2287
c8001721
EZ
2288/* UISA-level SPRs for PowerPC without floating point support. */
2289#define PPC_UISA_NOFP_SPRS \
2290 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2291
7a78ae4e
ND
2292/* Segment registers, for PowerPC. */
2293#define PPC_SEGMENT_REGS \
2294 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2295 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2296 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2297 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2298
2299/* OEA SPRs for PowerPC. */
2300#define PPC_OEA_SPRS \
2301 /* 87 */ R4(pvr), \
2302 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2303 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2304 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2305 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2306 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2307 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2308 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2309 /* 116 */ R4(dec), R(dabr), R4(ear)
2310
64366f1c 2311/* AltiVec registers. */
1fcc0bb8
EZ
2312#define PPC_ALTIVEC_REGS \
2313 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2314 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2315 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2316 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2317 /*151*/R4(vscr), R4(vrsave)
2318
c8001721
EZ
2319/* Vectors of hi-lo general purpose registers. */
2320#define PPC_EV_REGS \
2321 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2322 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2323 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2324 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2325
2326/* Lower half of the EV registers. */
2327#define PPC_GPRS_PSEUDO_REGS \
2328 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2329 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2330 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2331 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2332
7a78ae4e 2333/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2334 user-level SPR's. */
7a78ae4e 2335static const struct reg registers_power[] =
c906108c 2336{
7a78ae4e 2337 COMMON_UISA_REGS,
e3f36dbd
KB
2338 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2339 /* 71 */ R4(fpscr)
c906108c
SS
2340};
2341
7a78ae4e 2342/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2343 view of the PowerPC. */
7a78ae4e 2344static const struct reg registers_powerpc[] =
c906108c 2345{
7a78ae4e 2346 COMMON_UISA_REGS,
1fcc0bb8
EZ
2347 PPC_UISA_SPRS,
2348 PPC_ALTIVEC_REGS
c906108c
SS
2349};
2350
ebeac11a
EZ
2351/* PowerPC UISA - a PPC processor as viewed by user-level
2352 code, but without floating point registers. */
2353static const struct reg registers_powerpc_nofp[] =
2354{
2355 COMMON_UISA_NOFP_REGS,
2356 PPC_UISA_SPRS
2357};
2358
64366f1c 2359/* IBM PowerPC 403. */
7a78ae4e 2360static const struct reg registers_403[] =
c5aa993b 2361{
7a78ae4e
ND
2362 COMMON_UISA_REGS,
2363 PPC_UISA_SPRS,
2364 PPC_SEGMENT_REGS,
2365 PPC_OEA_SPRS,
2366 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2367 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2368 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2369 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2370 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2371 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2372};
2373
64366f1c 2374/* IBM PowerPC 403GC. */
7a78ae4e 2375static const struct reg registers_403GC[] =
c5aa993b 2376{
7a78ae4e
ND
2377 COMMON_UISA_REGS,
2378 PPC_UISA_SPRS,
2379 PPC_SEGMENT_REGS,
2380 PPC_OEA_SPRS,
2381 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2382 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2383 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2384 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2385 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2386 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2387 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2388 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2389};
2390
64366f1c 2391/* Motorola PowerPC 505. */
7a78ae4e 2392static const struct reg registers_505[] =
c5aa993b 2393{
7a78ae4e
ND
2394 COMMON_UISA_REGS,
2395 PPC_UISA_SPRS,
2396 PPC_SEGMENT_REGS,
2397 PPC_OEA_SPRS,
2398 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2399};
2400
64366f1c 2401/* Motorola PowerPC 860 or 850. */
7a78ae4e 2402static const struct reg registers_860[] =
c5aa993b 2403{
7a78ae4e
ND
2404 COMMON_UISA_REGS,
2405 PPC_UISA_SPRS,
2406 PPC_SEGMENT_REGS,
2407 PPC_OEA_SPRS,
2408 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2409 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2410 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2411 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2412 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2413 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2414 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2415 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2416 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2417 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2418 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2419 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2420};
2421
7a78ae4e
ND
2422/* Motorola PowerPC 601. Note that the 601 has different register numbers
2423 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2424 register is the stub's problem. */
7a78ae4e 2425static const struct reg registers_601[] =
c5aa993b 2426{
7a78ae4e
ND
2427 COMMON_UISA_REGS,
2428 PPC_UISA_SPRS,
2429 PPC_SEGMENT_REGS,
2430 PPC_OEA_SPRS,
2431 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2432 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2433};
2434
64366f1c 2435/* Motorola PowerPC 602. */
7a78ae4e 2436static const struct reg registers_602[] =
c5aa993b 2437{
7a78ae4e
ND
2438 COMMON_UISA_REGS,
2439 PPC_UISA_SPRS,
2440 PPC_SEGMENT_REGS,
2441 PPC_OEA_SPRS,
2442 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2443 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2444 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2445};
2446
64366f1c 2447/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2448static const struct reg registers_603[] =
c5aa993b 2449{
7a78ae4e
ND
2450 COMMON_UISA_REGS,
2451 PPC_UISA_SPRS,
2452 PPC_SEGMENT_REGS,
2453 PPC_OEA_SPRS,
2454 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2455 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2456 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2457};
2458
64366f1c 2459/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2460static const struct reg registers_604[] =
c5aa993b 2461{
7a78ae4e
ND
2462 COMMON_UISA_REGS,
2463 PPC_UISA_SPRS,
2464 PPC_SEGMENT_REGS,
2465 PPC_OEA_SPRS,
2466 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2467 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2468 /* 127 */ R(sia), R(sda)
c906108c
SS
2469};
2470
64366f1c 2471/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2472static const struct reg registers_750[] =
c5aa993b 2473{
7a78ae4e
ND
2474 COMMON_UISA_REGS,
2475 PPC_UISA_SPRS,
2476 PPC_SEGMENT_REGS,
2477 PPC_OEA_SPRS,
2478 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2479 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2480 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2481 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2482 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2483 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2484};
2485
2486
64366f1c 2487/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2488static const struct reg registers_7400[] =
2489{
2490 /* gpr0-gpr31, fpr0-fpr31 */
2491 COMMON_UISA_REGS,
2492 /* ctr, xre, lr, cr */
2493 PPC_UISA_SPRS,
2494 /* sr0-sr15 */
2495 PPC_SEGMENT_REGS,
2496 PPC_OEA_SPRS,
2497 /* vr0-vr31, vrsave, vscr */
2498 PPC_ALTIVEC_REGS
2499 /* FIXME? Add more registers? */
2500};
2501
c8001721
EZ
2502/* Motorola e500. */
2503static const struct reg registers_e500[] =
2504{
2505 R(pc), R(ps),
2506 /* cr, lr, ctr, xer, "" */
2507 PPC_UISA_NOFP_SPRS,
2508 /* 7...38 */
2509 PPC_EV_REGS,
338ef23d
AC
2510 R8(acc), R(spefscr),
2511 /* NOTE: Add new registers here the end of the raw register
2512 list and just before the first pseudo register. */
c8001721
EZ
2513 /* 39...70 */
2514 PPC_GPRS_PSEUDO_REGS
2515};
2516
c906108c 2517/* Information about a particular processor variant. */
7a78ae4e 2518
c906108c 2519struct variant
c5aa993b
JM
2520 {
2521 /* Name of this variant. */
2522 char *name;
c906108c 2523
c5aa993b
JM
2524 /* English description of the variant. */
2525 char *description;
c906108c 2526
64366f1c 2527 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2528 enum bfd_architecture arch;
2529
64366f1c 2530 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2531 unsigned long mach;
2532
489461e2
EZ
2533 /* Number of real registers. */
2534 int nregs;
2535
2536 /* Number of pseudo registers. */
2537 int npregs;
2538
2539 /* Number of total registers (the sum of nregs and npregs). */
2540 int num_tot_regs;
2541
c5aa993b
JM
2542 /* Table of register names; registers[R] is the name of the register
2543 number R. */
7a78ae4e 2544 const struct reg *regs;
c5aa993b 2545 };
c906108c 2546
489461e2
EZ
2547#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2548
2549static int
2550num_registers (const struct reg *reg_list, int num_tot_regs)
2551{
2552 int i;
2553 int nregs = 0;
2554
2555 for (i = 0; i < num_tot_regs; i++)
2556 if (!reg_list[i].pseudo)
2557 nregs++;
2558
2559 return nregs;
2560}
2561
2562static int
2563num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2564{
2565 int i;
2566 int npregs = 0;
2567
2568 for (i = 0; i < num_tot_regs; i++)
2569 if (reg_list[i].pseudo)
2570 npregs ++;
2571
2572 return npregs;
2573}
c906108c 2574
c906108c
SS
2575/* Information in this table comes from the following web sites:
2576 IBM: http://www.chips.ibm.com:80/products/embedded/
2577 Motorola: http://www.mot.com/SPS/PowerPC/
2578
2579 I'm sure I've got some of the variant descriptions not quite right.
2580 Please report any inaccuracies you find to GDB's maintainer.
2581
2582 If you add entries to this table, please be sure to allow the new
2583 value as an argument to the --with-cpu flag, in configure.in. */
2584
489461e2 2585static struct variant variants[] =
c906108c 2586{
489461e2 2587
7a78ae4e 2588 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2589 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2590 registers_powerpc},
7a78ae4e 2591 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2592 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2593 registers_power},
7a78ae4e 2594 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2595 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2596 registers_403},
7a78ae4e 2597 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2598 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2599 registers_601},
7a78ae4e 2600 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2601 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2602 registers_602},
7a78ae4e 2603 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2604 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2605 registers_603},
7a78ae4e 2606 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2607 604, -1, -1, tot_num_registers (registers_604),
2608 registers_604},
7a78ae4e 2609 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2610 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2611 registers_403GC},
7a78ae4e 2612 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2613 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2614 registers_505},
7a78ae4e 2615 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2616 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2617 registers_860},
7a78ae4e 2618 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2619 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2620 registers_750},
1fcc0bb8 2621 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2622 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2623 registers_7400},
c8001721
EZ
2624 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2625 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2626 registers_e500},
7a78ae4e 2627
5d57ee30
KB
2628 /* 64-bit */
2629 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2630 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2631 registers_powerpc},
7a78ae4e 2632 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2633 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2634 registers_powerpc},
5d57ee30 2635 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2636 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2637 registers_powerpc},
7a78ae4e 2638 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2639 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2640 registers_powerpc},
5d57ee30 2641 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2642 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2643 registers_powerpc},
5d57ee30 2644 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2645 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2646 registers_powerpc},
5d57ee30 2647
64366f1c 2648 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2649 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2650 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2651 registers_power},
7a78ae4e 2652 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2653 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2654 registers_power},
7a78ae4e 2655 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2656 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2657 registers_power},
7a78ae4e 2658
489461e2 2659 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2660};
2661
64366f1c 2662/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2663
2664static void
2665init_variants (void)
2666{
2667 struct variant *v;
2668
2669 for (v = variants; v->name; v++)
2670 {
2671 if (v->nregs == -1)
2672 v->nregs = num_registers (v->regs, v->num_tot_regs);
2673 if (v->npregs == -1)
2674 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2675 }
2676}
c906108c 2677
7a78ae4e 2678/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2679 MACH. If no such variant exists, return null. */
c906108c 2680
7a78ae4e
ND
2681static const struct variant *
2682find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2683{
7a78ae4e 2684 const struct variant *v;
c5aa993b 2685
7a78ae4e
ND
2686 for (v = variants; v->name; v++)
2687 if (arch == v->arch && mach == v->mach)
2688 return v;
c906108c 2689
7a78ae4e 2690 return NULL;
c906108c 2691}
9364a0ef
EZ
2692
2693static int
2694gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2695{
2696 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2697 return print_insn_big_powerpc (memaddr, info);
2698 else
2699 return print_insn_little_powerpc (memaddr, info);
2700}
7a78ae4e 2701\f
7a78ae4e
ND
2702/* Initialize the current architecture based on INFO. If possible, re-use an
2703 architecture from ARCHES, which is a list of architectures already created
2704 during this debugging session.
c906108c 2705
7a78ae4e 2706 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2707 a binary file. */
c906108c 2708
7a78ae4e
ND
2709static struct gdbarch *
2710rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2711{
2712 struct gdbarch *gdbarch;
2713 struct gdbarch_tdep *tdep;
9aa1e687 2714 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2715 struct reg *regs;
2716 const struct variant *v;
2717 enum bfd_architecture arch;
2718 unsigned long mach;
2719 bfd abfd;
7b112f9c 2720 int sysv_abi;
5bf1c677 2721 asection *sect;
7a78ae4e 2722
9aa1e687 2723 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2724 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2725
9aa1e687
KB
2726 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2727 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2728
2729 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2730
e712c1cf 2731 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2732 that, else choose a likely default. */
9aa1e687 2733 if (from_xcoff_exec)
c906108c 2734 {
11ed25ac 2735 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2736 wordsize = 8;
2737 else
2738 wordsize = 4;
c906108c 2739 }
9aa1e687
KB
2740 else if (from_elf_exec)
2741 {
2742 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2743 wordsize = 8;
2744 else
2745 wordsize = 4;
2746 }
c906108c 2747 else
7a78ae4e 2748 {
27b15785
KB
2749 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2750 wordsize = info.bfd_arch_info->bits_per_word /
2751 info.bfd_arch_info->bits_per_byte;
2752 else
2753 wordsize = 4;
7a78ae4e 2754 }
c906108c 2755
64366f1c 2756 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2757 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2758 arches != NULL;
2759 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2760 {
2761 /* Word size in the various PowerPC bfd_arch_info structs isn't
2762 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2763 separate word size check. */
7a78ae4e 2764 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2765 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2766 return arches->gdbarch;
2767 }
c906108c 2768
7a78ae4e
ND
2769 /* None found, create a new architecture from INFO, whose bfd_arch_info
2770 validity depends on the source:
2771 - executable useless
2772 - rs6000_host_arch() good
2773 - core file good
2774 - "set arch" trust blindly
2775 - GDB startup useless but harmless */
c906108c 2776
9aa1e687 2777 if (!from_xcoff_exec)
c906108c 2778 {
b732d07d 2779 arch = info.bfd_arch_info->arch;
7a78ae4e 2780 mach = info.bfd_arch_info->mach;
c906108c 2781 }
7a78ae4e 2782 else
c906108c 2783 {
7a78ae4e 2784 arch = bfd_arch_powerpc;
35cec841 2785 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2786 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2787 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2788 }
2789 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2790 tdep->wordsize = wordsize;
5bf1c677
EZ
2791
2792 /* For e500 executables, the apuinfo section is of help here. Such
2793 section contains the identifier and revision number of each
2794 Application-specific Processing Unit that is present on the
2795 chip. The content of the section is determined by the assembler
2796 which looks at each instruction and determines which unit (and
2797 which version of it) can execute it. In our case we just look for
2798 the existance of the section. */
2799
2800 if (info.abfd)
2801 {
2802 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2803 if (sect)
2804 {
2805 arch = info.bfd_arch_info->arch;
2806 mach = bfd_mach_ppc_e500;
2807 bfd_default_set_arch_mach (&abfd, arch, mach);
2808 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2809 }
2810 }
2811
7a78ae4e
ND
2812 gdbarch = gdbarch_alloc (&info, tdep);
2813 power = arch == bfd_arch_rs6000;
2814
489461e2
EZ
2815 /* Initialize the number of real and pseudo registers in each variant. */
2816 init_variants ();
2817
64366f1c 2818 /* Choose variant. */
7a78ae4e
ND
2819 v = find_variant_by_arch (arch, mach);
2820 if (!v)
dd47e6fd
EZ
2821 return NULL;
2822
7a78ae4e
ND
2823 tdep->regs = v->regs;
2824
2188cbdd
EZ
2825 tdep->ppc_gp0_regnum = 0;
2826 tdep->ppc_gplast_regnum = 31;
2827 tdep->ppc_toc_regnum = 2;
2828 tdep->ppc_ps_regnum = 65;
2829 tdep->ppc_cr_regnum = 66;
2830 tdep->ppc_lr_regnum = 67;
2831 tdep->ppc_ctr_regnum = 68;
2832 tdep->ppc_xer_regnum = 69;
2833 if (v->mach == bfd_mach_ppc_601)
2834 tdep->ppc_mq_regnum = 124;
e3f36dbd 2835 else if (power)
2188cbdd 2836 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2837 else
2838 tdep->ppc_mq_regnum = -1;
2839 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2840
c8001721
EZ
2841 set_gdbarch_pc_regnum (gdbarch, 64);
2842 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2843 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2844 set_gdbarch_deprecated_extract_return_value (gdbarch,
2845 rs6000_extract_return_value);
46d79c04 2846 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2847
1fcc0bb8
EZ
2848 if (v->arch == bfd_arch_powerpc)
2849 switch (v->mach)
2850 {
2851 case bfd_mach_ppc:
2852 tdep->ppc_vr0_regnum = 71;
2853 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2854 tdep->ppc_ev0_regnum = -1;
2855 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2856 break;
2857 case bfd_mach_ppc_7400:
2858 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2859 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2860 tdep->ppc_ev0_regnum = -1;
2861 tdep->ppc_ev31_regnum = -1;
2862 break;
2863 case bfd_mach_ppc_e500:
338ef23d
AC
2864 tdep->ppc_gp0_regnum = 41;
2865 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2866 tdep->ppc_toc_regnum = -1;
2867 tdep->ppc_ps_regnum = 1;
2868 tdep->ppc_cr_regnum = 2;
2869 tdep->ppc_lr_regnum = 3;
2870 tdep->ppc_ctr_regnum = 4;
2871 tdep->ppc_xer_regnum = 5;
2872 tdep->ppc_ev0_regnum = 7;
2873 tdep->ppc_ev31_regnum = 38;
2874 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2875 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2876 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2877 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2878 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2879 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2880 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2881 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2882 break;
2883 default:
2884 tdep->ppc_vr0_regnum = -1;
2885 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2886 tdep->ppc_ev0_regnum = -1;
2887 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2888 break;
2889 }
2890
338ef23d
AC
2891 /* Sanity check on registers. */
2892 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2893
a88376a3
KB
2894 /* Set lr_frame_offset. */
2895 if (wordsize == 8)
2896 tdep->lr_frame_offset = 16;
2897 else if (sysv_abi)
2898 tdep->lr_frame_offset = 4;
2899 else
2900 tdep->lr_frame_offset = 8;
2901
2902 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2903 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2904 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2905 {
2906 tdep->regoff[i] = off;
2907 off += regsize (v->regs + i, wordsize);
c906108c
SS
2908 }
2909
56a6dfb9
KB
2910 /* Select instruction printer. */
2911 if (arch == power)
9364a0ef 2912 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2913 else
9364a0ef 2914 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2915
7a78ae4e 2916 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
b46e02f6 2917 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
7a78ae4e
ND
2918
2919 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2920 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2921 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2922 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2923 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2924 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2925 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2926 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2927
2928 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2929 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2930 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2931 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2932 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2933 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2934 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2935 if (sysv_abi)
2936 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2937 else
2938 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2939 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2940
b1e29e33 2941 set_gdbarch_deprecated_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2942 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2943 if (sysv_abi && wordsize == 8)
2944 /* PPC64 SYSV. */
2945 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2946 else if (!sysv_abi && wordsize == 4)
2947 /* PowerOpen / AIX 32 bit. */
2948 set_gdbarch_frame_red_zone_size (gdbarch, 220);
a59fe496 2949 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
28f617b3 2950 set_gdbarch_deprecated_push_return_address (gdbarch, ppc_push_return_address);
7a78ae4e 2951 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2952
781a750d
AC
2953 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2954 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2955 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2956 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2957 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2958 is correct for the SysV ABI when the wordsize is 8, but I'm also
2959 fairly certain that ppc_sysv_abi_push_arguments() will give even
2960 worse results since it only works for 32-bit code. So, for the moment,
2961 we're better off calling rs6000_push_arguments() since it works for
2962 64-bit code. At some point in the future, this matter needs to be
2963 revisited. */
2964 if (sysv_abi && wordsize == 4)
77b2b6d4 2965 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
9aa1e687 2966 else
77b2b6d4 2967 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2968
11269d7e 2969 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2970 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2971
2972 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2973 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2974 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2975 set_gdbarch_function_start_offset (gdbarch, 0);
2976 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2977
2978 /* Not sure on this. FIXMEmgo */
2979 set_gdbarch_frame_args_skip (gdbarch, 8);
2980
8e0662df 2981 if (sysv_abi)
7b112f9c
JT
2982 set_gdbarch_use_struct_convention (gdbarch,
2983 ppc_sysv_abi_use_struct_convention);
8e0662df 2984 else
7b112f9c
JT
2985 set_gdbarch_use_struct_convention (gdbarch,
2986 generic_use_struct_convention);
8e0662df 2987
7b112f9c
JT
2988 set_gdbarch_frameless_function_invocation (gdbarch,
2989 rs6000_frameless_function_invocation);
618ce49f 2990 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2991 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2992
f30ee0bc 2993 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2994 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2995
15813d3f
AC
2996 if (!sysv_abi)
2997 {
2998 /* Handle RS/6000 function pointers (which are really function
2999 descriptors). */
f517ea4e
PS
3000 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3001 rs6000_convert_from_func_ptr_addr);
9aa1e687 3002 }
42efa47a
AC
3003 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
3004 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 3005 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 3006
143985b7
AF
3007 /* Helpers for function argument information. */
3008 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3009
7b112f9c 3010 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3011 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3012
7a78ae4e 3013 return gdbarch;
c906108c
SS
3014}
3015
7b112f9c
JT
3016static void
3017rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3018{
3019 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3020
3021 if (tdep == NULL)
3022 return;
3023
4be87837 3024 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3025}
3026
1fcc0bb8
EZ
3027static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3028
3029static void
3030rs6000_info_powerpc_command (char *args, int from_tty)
3031{
3032 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3033}
3034
c906108c
SS
3035/* Initialization code. */
3036
a78f21af 3037extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3038
c906108c 3039void
fba45db2 3040_initialize_rs6000_tdep (void)
c906108c 3041{
7b112f9c
JT
3042 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3043 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3044
3045 /* Add root prefix command for "info powerpc" commands */
3046 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3047 "Various POWERPC info specific commands.",
3048 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3049}
This page took 0.640495 seconds and 4 git commands to generate.