2007-03-27 Anton Blanchard <anton@samba.org>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
721d14ba 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
197e01b6
EZ
21 Foundation, Inc., 51 Franklin Street, Fifth Floor,
22 Boston, MA 02110-1301, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
4fc771b8 43#include "dwarf2-frame.h"
7a78ae4e 44
2fccf04a 45#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 46#include "coff/internal.h" /* for libcoff.h */
2fccf04a 47#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
48#include "coff/xcoff.h"
49#include "libxcoff.h"
7a78ae4e 50
9aa1e687 51#include "elf-bfd.h"
7a78ae4e 52
6ded7999 53#include "solib-svr4.h"
9aa1e687 54#include "ppc-tdep.h"
7a78ae4e 55
338ef23d 56#include "gdb_assert.h"
a89aa300 57#include "dis-asm.h"
338ef23d 58
61a65099
KB
59#include "trad-frame.h"
60#include "frame-unwind.h"
61#include "frame-base.h"
62
1f82754b 63#include "rs6000-tdep.h"
c44ca51c 64
7a78ae4e
ND
65/* If the kernel has to deliver a signal, it pushes a sigcontext
66 structure on the stack and then calls the signal handler, passing
67 the address of the sigcontext in an argument register. Usually
68 the signal handler doesn't save this register, so we have to
69 access the sigcontext structure via an offset from the signal handler
70 frame.
71 The following constants were determined by experimentation on AIX 3.2. */
72#define SIG_FRAME_PC_OFFSET 96
73#define SIG_FRAME_LR_OFFSET 108
74#define SIG_FRAME_FP_OFFSET 284
75
7a78ae4e
ND
76/* To be used by skip_prologue. */
77
78struct rs6000_framedata
79 {
80 int offset; /* total size of frame --- the distance
81 by which we decrement sp to allocate
82 the frame */
83 int saved_gpr; /* smallest # of saved gpr */
84 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 85 int saved_vr; /* smallest # of saved vr */
96ff0de4 86 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
87 int alloca_reg; /* alloca register number (frame ptr) */
88 char frameless; /* true if frameless functions. */
89 char nosavedpc; /* true if pc not saved. */
90 int gpr_offset; /* offset of saved gprs from prev sp */
91 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 92 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 93 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
94 int lr_offset; /* offset of saved lr */
95 int cr_offset; /* offset of saved cr */
6be8bc0c 96 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
97 };
98
99/* Description of a single register. */
100
101struct reg
102 {
103 char *name; /* name of register */
0bcc32ae
JB
104 unsigned char sz32; /* size on 32-bit arch, 0 if nonexistent */
105 unsigned char sz64; /* size on 64-bit arch, 0 if nonexistent */
7a78ae4e 106 unsigned char fpr; /* whether register is floating-point */
489461e2 107 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
108 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
109 This is an ISA SPR number, not a GDB
110 register number. */
7a78ae4e
ND
111 };
112
c906108c
SS
113/* Hook for determining the TOC address when calling functions in the
114 inferior under AIX. The initialization code in rs6000-nat.c sets
115 this hook to point to find_toc_address. */
116
7a78ae4e
ND
117CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
118
c906108c
SS
119/* Static function prototypes */
120
a14ed312
KB
121static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
c906108c 125
64b84175
KB
126/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
127int
128altivec_register_p (int regno)
129{
130 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
131 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
132 return 0;
133 else
134 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
135}
136
383f0f5b 137
867e2dc5
JB
138/* Return true if REGNO is an SPE register, false otherwise. */
139int
140spe_register_p (int regno)
141{
142 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
143
144 /* Is it a reference to EV0 -- EV31, and do we have those? */
145 if (tdep->ppc_ev0_regnum >= 0
146 && tdep->ppc_ev31_regnum >= 0
147 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
148 return 1;
149
6ced10dd
JB
150 /* Is it a reference to one of the raw upper GPR halves? */
151 if (tdep->ppc_ev0_upper_regnum >= 0
152 && tdep->ppc_ev0_upper_regnum <= regno
153 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
154 return 1;
155
867e2dc5
JB
156 /* Is it a reference to the 64-bit accumulator, and do we have that? */
157 if (tdep->ppc_acc_regnum >= 0
158 && tdep->ppc_acc_regnum == regno)
159 return 1;
160
161 /* Is it a reference to the SPE floating-point status and control register,
162 and do we have that? */
163 if (tdep->ppc_spefscr_regnum >= 0
164 && tdep->ppc_spefscr_regnum == regno)
165 return 1;
166
167 return 0;
168}
169
170
383f0f5b
JB
171/* Return non-zero if the architecture described by GDBARCH has
172 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
173int
174ppc_floating_point_unit_p (struct gdbarch *gdbarch)
175{
383f0f5b
JB
176 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
177
178 return (tdep->ppc_fp0_regnum >= 0
179 && tdep->ppc_fpscr_regnum >= 0);
0a613259 180}
9f643768 181
09991fa0
JB
182
183/* Check that TABLE[GDB_REGNO] is not already initialized, and then
184 set it to SIM_REGNO.
185
186 This is a helper function for init_sim_regno_table, constructing
187 the table mapping GDB register numbers to sim register numbers; we
188 initialize every element in that table to -1 before we start
189 filling it in. */
9f643768
JB
190static void
191set_sim_regno (int *table, int gdb_regno, int sim_regno)
192{
193 /* Make sure we don't try to assign any given GDB register a sim
194 register number more than once. */
195 gdb_assert (table[gdb_regno] == -1);
196 table[gdb_regno] = sim_regno;
197}
198
09991fa0
JB
199
200/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
201 numbers to simulator register numbers, based on the values placed
202 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
203static void
204init_sim_regno_table (struct gdbarch *arch)
205{
206 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
207 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
208 const struct reg *regs = tdep->regs;
209 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
210 int i;
211
212 /* Presume that all registers not explicitly mentioned below are
213 unavailable from the sim. */
214 for (i = 0; i < total_regs; i++)
215 sim_regno[i] = -1;
216
217 /* General-purpose registers. */
218 for (i = 0; i < ppc_num_gprs; i++)
219 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
220
221 /* Floating-point registers. */
222 if (tdep->ppc_fp0_regnum >= 0)
223 for (i = 0; i < ppc_num_fprs; i++)
224 set_sim_regno (sim_regno,
225 tdep->ppc_fp0_regnum + i,
226 sim_ppc_f0_regnum + i);
227 if (tdep->ppc_fpscr_regnum >= 0)
228 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
229
230 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
231 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
232 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
233
234 /* Segment registers. */
235 if (tdep->ppc_sr0_regnum >= 0)
236 for (i = 0; i < ppc_num_srs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_sr0_regnum + i,
239 sim_ppc_sr0_regnum + i);
240
241 /* Altivec registers. */
242 if (tdep->ppc_vr0_regnum >= 0)
243 {
244 for (i = 0; i < ppc_num_vrs; i++)
245 set_sim_regno (sim_regno,
246 tdep->ppc_vr0_regnum + i,
247 sim_ppc_vr0_regnum + i);
248
249 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
250 we can treat this more like the other cases. */
251 set_sim_regno (sim_regno,
252 tdep->ppc_vr0_regnum + ppc_num_vrs,
253 sim_ppc_vscr_regnum);
254 }
255 /* vsave is a special-purpose register, so the code below handles it. */
256
257 /* SPE APU (E500) registers. */
258 if (tdep->ppc_ev0_regnum >= 0)
259 for (i = 0; i < ppc_num_gprs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_ev0_regnum + i,
262 sim_ppc_ev0_regnum + i);
6ced10dd
JB
263 if (tdep->ppc_ev0_upper_regnum >= 0)
264 for (i = 0; i < ppc_num_gprs; i++)
265 set_sim_regno (sim_regno,
266 tdep->ppc_ev0_upper_regnum + i,
267 sim_ppc_rh0_regnum + i);
9f643768
JB
268 if (tdep->ppc_acc_regnum >= 0)
269 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
270 /* spefscr is a special-purpose register, so the code below handles it. */
271
272 /* Now handle all special-purpose registers. Verify that they
273 haven't mistakenly been assigned numbers by any of the above
274 code). */
275 for (i = 0; i < total_regs; i++)
276 if (regs[i].spr_num >= 0)
277 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
278
279 /* Drop the initialized array into place. */
280 tdep->sim_regno = sim_regno;
281}
282
09991fa0
JB
283
284/* Given a GDB register number REG, return the corresponding SIM
285 register number. */
9f643768
JB
286static int
287rs6000_register_sim_regno (int reg)
288{
289 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
290 int sim_regno;
291
292 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
293 sim_regno = tdep->sim_regno[reg];
294
295 if (sim_regno >= 0)
296 return sim_regno;
297 else
298 return LEGACY_SIM_REGNO_IGNORE;
299}
300
d195bc9f
MK
301\f
302
303/* Register set support functions. */
304
305static void
306ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 307 const gdb_byte *regs, size_t offset)
d195bc9f
MK
308{
309 if (regnum != -1 && offset != -1)
310 regcache_raw_supply (regcache, regnum, regs + offset);
311}
312
313static void
314ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 315 gdb_byte *regs, size_t offset)
d195bc9f
MK
316{
317 if (regnum != -1 && offset != -1)
318 regcache_raw_collect (regcache, regnum, regs + offset);
319}
320
321/* Supply register REGNUM in the general-purpose register set REGSET
322 from the buffer specified by GREGS and LEN to register cache
323 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
324
325void
326ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
327 int regnum, const void *gregs, size_t len)
328{
329 struct gdbarch *gdbarch = get_regcache_arch (regcache);
330 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
331 const struct ppc_reg_offsets *offsets = regset->descr;
332 size_t offset;
333 int i;
334
cdf2c5f5 335 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 336 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 337 i++, offset += 4)
d195bc9f
MK
338 {
339 if (regnum == -1 || regnum == i)
340 ppc_supply_reg (regcache, i, gregs, offset);
341 }
342
343 if (regnum == -1 || regnum == PC_REGNUM)
344 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
345 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
346 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
347 gregs, offsets->ps_offset);
348 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
349 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
350 gregs, offsets->cr_offset);
351 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
352 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
353 gregs, offsets->lr_offset);
354 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
355 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
356 gregs, offsets->ctr_offset);
357 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
358 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
359 gregs, offsets->cr_offset);
360 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
362}
363
364/* Supply register REGNUM in the floating-point register set REGSET
365 from the buffer specified by FPREGS and LEN to register cache
366 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
367
368void
369ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
370 int regnum, const void *fpregs, size_t len)
371{
372 struct gdbarch *gdbarch = get_regcache_arch (regcache);
373 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
374 const struct ppc_reg_offsets *offsets = regset->descr;
375 size_t offset;
376 int i;
377
383f0f5b
JB
378 gdb_assert (ppc_floating_point_unit_p (gdbarch));
379
d195bc9f 380 offset = offsets->f0_offset;
366f009f
JB
381 for (i = tdep->ppc_fp0_regnum;
382 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 383 i++, offset += 8)
d195bc9f
MK
384 {
385 if (regnum == -1 || regnum == i)
386 ppc_supply_reg (regcache, i, fpregs, offset);
387 }
388
389 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
390 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
391 fpregs, offsets->fpscr_offset);
392}
393
394/* Collect register REGNUM in the general-purpose register set
395 REGSET. from register cache REGCACHE into the buffer specified by
396 GREGS and LEN. If REGNUM is -1, do this for all registers in
397 REGSET. */
398
399void
400ppc_collect_gregset (const struct regset *regset,
401 const struct regcache *regcache,
402 int regnum, void *gregs, size_t len)
403{
404 struct gdbarch *gdbarch = get_regcache_arch (regcache);
405 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
406 const struct ppc_reg_offsets *offsets = regset->descr;
407 size_t offset;
408 int i;
409
410 offset = offsets->r0_offset;
cdf2c5f5 411 for (i = tdep->ppc_gp0_regnum;
063715bf 412 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 413 i++, offset += 4)
d195bc9f
MK
414 {
415 if (regnum == -1 || regnum == i)
2e56e9c1 416 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
417 }
418
419 if (regnum == -1 || regnum == PC_REGNUM)
420 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
421 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
422 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
423 gregs, offsets->ps_offset);
424 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
425 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
426 gregs, offsets->cr_offset);
427 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
428 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
429 gregs, offsets->lr_offset);
430 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
431 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
432 gregs, offsets->ctr_offset);
433 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
434 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
435 gregs, offsets->xer_offset);
436 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
438 gregs, offsets->mq_offset);
439}
440
441/* Collect register REGNUM in the floating-point register set
442 REGSET. from register cache REGCACHE into the buffer specified by
443 FPREGS and LEN. If REGNUM is -1, do this for all registers in
444 REGSET. */
445
446void
447ppc_collect_fpregset (const struct regset *regset,
448 const struct regcache *regcache,
449 int regnum, void *fpregs, size_t len)
450{
451 struct gdbarch *gdbarch = get_regcache_arch (regcache);
452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
453 const struct ppc_reg_offsets *offsets = regset->descr;
454 size_t offset;
455 int i;
456
383f0f5b
JB
457 gdb_assert (ppc_floating_point_unit_p (gdbarch));
458
d195bc9f 459 offset = offsets->f0_offset;
366f009f
JB
460 for (i = tdep->ppc_fp0_regnum;
461 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 462 i++, offset += 8)
d195bc9f
MK
463 {
464 if (regnum == -1 || regnum == i)
bdbcb8b4 465 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
466 }
467
468 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
469 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
470 fpregs, offsets->fpscr_offset);
471}
472\f
0a613259 473
7a78ae4e 474/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 475
7a78ae4e
ND
476static CORE_ADDR
477read_memory_addr (CORE_ADDR memaddr, int len)
478{
479 return read_memory_unsigned_integer (memaddr, len);
480}
c906108c 481
7a78ae4e
ND
482static CORE_ADDR
483rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
484{
485 struct rs6000_framedata frame;
4e463ff5
DJ
486 CORE_ADDR limit_pc, func_addr;
487
488 /* See if we can determine the end of the prologue via the symbol table.
489 If so, then return either PC, or the PC after the prologue, whichever
490 is greater. */
491 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
492 {
493 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
494 if (post_prologue_pc != 0)
495 return max (pc, post_prologue_pc);
496 }
497
498 /* Can't determine prologue from the symbol table, need to examine
499 instructions. */
500
501 /* Find an upper limit on the function prologue using the debug
502 information. If the debug information could not be used to provide
503 that bound, then use an arbitrary large number as the upper bound. */
504 limit_pc = skip_prologue_using_sal (pc);
505 if (limit_pc == 0)
506 limit_pc = pc + 100; /* Magic. */
507
508 pc = skip_prologue (pc, limit_pc, &frame);
b83266a0
SS
509 return pc;
510}
511
0d1243d9
PG
512static int
513insn_changes_sp_or_jumps (unsigned long insn)
514{
515 int opcode = (insn >> 26) & 0x03f;
516 int sd = (insn >> 21) & 0x01f;
517 int a = (insn >> 16) & 0x01f;
518 int subcode = (insn >> 1) & 0x3ff;
519
520 /* Changes the stack pointer. */
521
522 /* NOTE: There are many ways to change the value of a given register.
523 The ways below are those used when the register is R1, the SP,
524 in a funtion's epilogue. */
525
526 if (opcode == 31 && subcode == 444 && a == 1)
527 return 1; /* mr R1,Rn */
528 if (opcode == 14 && sd == 1)
529 return 1; /* addi R1,Rn,simm */
530 if (opcode == 58 && sd == 1)
531 return 1; /* ld R1,ds(Rn) */
532
533 /* Transfers control. */
534
535 if (opcode == 18)
536 return 1; /* b */
537 if (opcode == 16)
538 return 1; /* bc */
539 if (opcode == 19 && subcode == 16)
540 return 1; /* bclr */
541 if (opcode == 19 && subcode == 528)
542 return 1; /* bcctr */
543
544 return 0;
545}
546
547/* Return true if we are in the function's epilogue, i.e. after the
548 instruction that destroyed the function's stack frame.
549
550 1) scan forward from the point of execution:
551 a) If you find an instruction that modifies the stack pointer
552 or transfers control (except a return), execution is not in
553 an epilogue, return.
554 b) Stop scanning if you find a return instruction or reach the
555 end of the function or reach the hard limit for the size of
556 an epilogue.
557 2) scan backward from the point of execution:
558 a) If you find an instruction that modifies the stack pointer,
559 execution *is* in an epilogue, return.
560 b) Stop scanning if you reach an instruction that transfers
561 control or the beginning of the function or reach the hard
562 limit for the size of an epilogue. */
563
564static int
565rs6000_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
566{
567 bfd_byte insn_buf[PPC_INSN_SIZE];
568 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
569 unsigned long insn;
570 struct frame_info *curfrm;
571
572 /* Find the search limits based on function boundaries and hard limit. */
573
574 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
575 return 0;
576
577 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
578 if (epilogue_start < func_start) epilogue_start = func_start;
579
580 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
581 if (epilogue_end > func_end) epilogue_end = func_end;
582
583 curfrm = get_current_frame ();
584
585 /* Scan forward until next 'blr'. */
586
587 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
588 {
589 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
590 return 0;
4e463ff5 591 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
592 if (insn == 0x4e800020)
593 break;
594 if (insn_changes_sp_or_jumps (insn))
595 return 0;
596 }
597
598 /* Scan backward until adjustment to stack pointer (R1). */
599
600 for (scan_pc = pc - PPC_INSN_SIZE;
601 scan_pc >= epilogue_start;
602 scan_pc -= PPC_INSN_SIZE)
603 {
604 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
605 return 0;
4e463ff5 606 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE);
0d1243d9
PG
607 if (insn_changes_sp_or_jumps (insn))
608 return 1;
609 }
610
611 return 0;
612}
613
b83266a0 614
c906108c
SS
615/* Fill in fi->saved_regs */
616
617struct frame_extra_info
618{
619 /* Functions calling alloca() change the value of the stack
620 pointer. We need to use initial stack pointer (which is saved in
621 r31 by gcc) in such cases. If a compiler emits traceback table,
622 then we should use the alloca register specified in traceback
623 table. FIXME. */
c5aa993b 624 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
625};
626
143985b7 627/* Get the ith function argument for the current function. */
b9362cc7 628static CORE_ADDR
143985b7
AF
629rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
630 struct type *type)
631{
50fd1280 632 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
633}
634
c906108c
SS
635/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
636
637static CORE_ADDR
7a78ae4e 638branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
639{
640 CORE_ADDR dest;
641 int immediate;
642 int absolute;
643 int ext_op;
644
645 absolute = (int) ((instr >> 1) & 1);
646
c5aa993b
JM
647 switch (opcode)
648 {
649 case 18:
650 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
651 if (absolute)
652 dest = immediate;
653 else
654 dest = pc + immediate;
655 break;
656
657 case 16:
658 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
659 if (absolute)
660 dest = immediate;
661 else
662 dest = pc + immediate;
663 break;
664
665 case 19:
666 ext_op = (instr >> 1) & 0x3ff;
667
668 if (ext_op == 16) /* br conditional register */
669 {
2188cbdd 670 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
671
672 /* If we are about to return from a signal handler, dest is
673 something like 0x3c90. The current frame is a signal handler
674 caller frame, upon completion of the sigreturn system call
675 execution will return to the saved PC in the frame. */
6f7f3f0d 676 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
c5aa993b
JM
677 {
678 struct frame_info *fi;
679
680 fi = get_current_frame ();
681 if (fi != NULL)
8b36eed8 682 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 683 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
684 }
685 }
686
687 else if (ext_op == 528) /* br cond to count reg */
688 {
2188cbdd 689 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
690
691 /* If we are about to execute a system call, dest is something
692 like 0x22fc or 0x3b00. Upon completion the system call
693 will return to the address in the link register. */
6f7f3f0d 694 if (dest < gdbarch_tdep (current_gdbarch)->text_segment_base)
2188cbdd 695 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
696 }
697 else
698 return -1;
699 break;
c906108c 700
c5aa993b
JM
701 default:
702 return -1;
703 }
6f7f3f0d 704 return (dest < gdbarch_tdep (current_gdbarch)->text_segment_base) ? safety : dest;
c906108c
SS
705}
706
707
708/* Sequence of bytes for breakpoint instruction. */
709
f4f9705a 710const static unsigned char *
7a78ae4e 711rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 712{
aaab4dba
AC
713 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
714 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 715 *bp_size = 4;
d7449b42 716 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
717 return big_breakpoint;
718 else
719 return little_breakpoint;
720}
721
722
723/* AIX does not support PT_STEP. Simulate it. */
724
725void
379d08a1
AC
726rs6000_software_single_step (enum target_signal signal,
727 int insert_breakpoints_p)
c906108c 728{
7c40d541
KB
729 CORE_ADDR dummy;
730 int breakp_sz;
50fd1280 731 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
732 int ii, insn;
733 CORE_ADDR loc;
734 CORE_ADDR breaks[2];
735 int opcode;
736
c5aa993b
JM
737 if (insert_breakpoints_p)
738 {
c5aa993b 739 loc = read_pc ();
c906108c 740
c5aa993b 741 insn = read_memory_integer (loc, 4);
c906108c 742
7c40d541 743 breaks[0] = loc + breakp_sz;
c5aa993b
JM
744 opcode = insn >> 26;
745 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 746
c5aa993b
JM
747 /* Don't put two breakpoints on the same address. */
748 if (breaks[1] == breaks[0])
749 breaks[1] = -1;
c906108c 750
c5aa993b
JM
751 for (ii = 0; ii < 2; ++ii)
752 {
c5aa993b
JM
753 /* ignore invalid breakpoint. */
754 if (breaks[ii] == -1)
755 continue;
8181d85f 756 insert_single_step_breakpoint (breaks[ii]);
c5aa993b 757 }
c5aa993b
JM
758 }
759 else
8181d85f 760 remove_single_step_breakpoints ();
c906108c 761
c906108c 762 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 763 /* What errors? {read,write}_memory call error(). */
c906108c
SS
764}
765
766
767/* return pc value after skipping a function prologue and also return
768 information about a function frame.
769
770 in struct rs6000_framedata fdata:
c5aa993b
JM
771 - frameless is TRUE, if function does not have a frame.
772 - nosavedpc is TRUE, if function does not save %pc value in its frame.
773 - offset is the initial size of this stack frame --- the amount by
774 which we decrement the sp to allocate the frame.
775 - saved_gpr is the number of the first saved gpr.
776 - saved_fpr is the number of the first saved fpr.
6be8bc0c 777 - saved_vr is the number of the first saved vr.
96ff0de4 778 - saved_ev is the number of the first saved ev.
c5aa993b
JM
779 - alloca_reg is the number of the register used for alloca() handling.
780 Otherwise -1.
781 - gpr_offset is the offset of the first saved gpr from the previous frame.
782 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 783 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 784 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
785 - lr_offset is the offset of the saved lr
786 - cr_offset is the offset of the saved cr
6be8bc0c 787 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 788 */
c906108c
SS
789
790#define SIGNED_SHORT(x) \
791 ((sizeof (short) == 2) \
792 ? ((int)(short)(x)) \
793 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
794
795#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
796
55d05f3b
KB
797/* Limit the number of skipped non-prologue instructions, as the examining
798 of the prologue is expensive. */
799static int max_skip_non_prologue_insns = 10;
800
773df3e5
JB
801/* Return nonzero if the given instruction OP can be part of the prologue
802 of a function and saves a parameter on the stack. FRAMEP should be
803 set if one of the previous instructions in the function has set the
804 Frame Pointer. */
805
806static int
807store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
808{
809 /* Move parameters from argument registers to temporary register. */
810 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
811 {
812 /* Rx must be scratch register r0. */
813 const int rx_regno = (op >> 16) & 31;
814 /* Ry: Only r3 - r10 are used for parameter passing. */
815 const int ry_regno = GET_SRC_REG (op);
816
817 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
818 {
819 *r0_contains_arg = 1;
820 return 1;
821 }
822 else
823 return 0;
824 }
825
826 /* Save a General Purpose Register on stack. */
827
828 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
829 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
830 {
831 /* Rx: Only r3 - r10 are used for parameter passing. */
832 const int rx_regno = GET_SRC_REG (op);
833
834 return (rx_regno >= 3 && rx_regno <= 10);
835 }
836
837 /* Save a General Purpose Register on stack via the Frame Pointer. */
838
839 if (framep &&
840 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
841 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
842 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
843 {
844 /* Rx: Usually, only r3 - r10 are used for parameter passing.
845 However, the compiler sometimes uses r0 to hold an argument. */
846 const int rx_regno = GET_SRC_REG (op);
847
848 return ((rx_regno >= 3 && rx_regno <= 10)
849 || (rx_regno == 0 && *r0_contains_arg));
850 }
851
852 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
853 {
854 /* Only f2 - f8 are used for parameter passing. */
855 const int src_regno = GET_SRC_REG (op);
856
857 return (src_regno >= 2 && src_regno <= 8);
858 }
859
860 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
861 {
862 /* Only f2 - f8 are used for parameter passing. */
863 const int src_regno = GET_SRC_REG (op);
864
865 return (src_regno >= 2 && src_regno <= 8);
866 }
867
868 /* Not an insn that saves a parameter on stack. */
869 return 0;
870}
55d05f3b 871
3c77c82a
DJ
872/* Assuming that INSN is a "bl" instruction located at PC, return
873 nonzero if the destination of the branch is a "blrl" instruction.
874
875 This sequence is sometimes found in certain function prologues.
876 It allows the function to load the LR register with a value that
877 they can use to access PIC data using PC-relative offsets. */
878
879static int
880bl_to_blrl_insn_p (CORE_ADDR pc, int insn)
881{
882 const int opcode = 18;
883 const CORE_ADDR dest = branch_dest (opcode, insn, pc, -1);
884 int dest_insn;
885
886 if (dest == -1)
887 return 0; /* Should never happen, but just return zero to be safe. */
888
889 dest_insn = read_memory_integer (dest, 4);
890 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
891 return 1;
892
893 return 0;
894}
895
7a78ae4e 896static CORE_ADDR
077276e8 897skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
898{
899 CORE_ADDR orig_pc = pc;
55d05f3b 900 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 901 CORE_ADDR li_found_pc = 0;
50fd1280 902 gdb_byte buf[4];
c906108c
SS
903 unsigned long op;
904 long offset = 0;
6be8bc0c 905 long vr_saved_offset = 0;
482ca3f5
KB
906 int lr_reg = -1;
907 int cr_reg = -1;
6be8bc0c 908 int vr_reg = -1;
96ff0de4
EZ
909 int ev_reg = -1;
910 long ev_offset = 0;
6be8bc0c 911 int vrsave_reg = -1;
c906108c
SS
912 int reg;
913 int framep = 0;
914 int minimal_toc_loaded = 0;
ddb20c56 915 int prev_insn_was_prologue_insn = 1;
55d05f3b 916 int num_skip_non_prologue_insns = 0;
773df3e5 917 int r0_contains_arg = 0;
96ff0de4 918 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 919 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 920
ddb20c56 921 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
922 fdata->saved_gpr = -1;
923 fdata->saved_fpr = -1;
6be8bc0c 924 fdata->saved_vr = -1;
96ff0de4 925 fdata->saved_ev = -1;
c906108c
SS
926 fdata->alloca_reg = -1;
927 fdata->frameless = 1;
928 fdata->nosavedpc = 1;
929
55d05f3b 930 for (;; pc += 4)
c906108c 931 {
ddb20c56
KB
932 /* Sometimes it isn't clear if an instruction is a prologue
933 instruction or not. When we encounter one of these ambiguous
934 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
935 Otherwise, we'll assume that it really is a prologue instruction. */
936 if (prev_insn_was_prologue_insn)
937 last_prologue_pc = pc;
55d05f3b
KB
938
939 /* Stop scanning if we've hit the limit. */
4e463ff5 940 if (pc >= lim_pc)
55d05f3b
KB
941 break;
942
ddb20c56
KB
943 prev_insn_was_prologue_insn = 1;
944
55d05f3b 945 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
946 if (target_read_memory (pc, buf, 4))
947 break;
4e463ff5 948 op = extract_unsigned_integer (buf, 4);
c906108c 949
c5aa993b
JM
950 if ((op & 0xfc1fffff) == 0x7c0802a6)
951 { /* mflr Rx */
43b1ab88
AC
952 /* Since shared library / PIC code, which needs to get its
953 address at runtime, can appear to save more than one link
954 register vis:
955
956 *INDENT-OFF*
957 stwu r1,-304(r1)
958 mflr r3
959 bl 0xff570d0 (blrl)
960 stw r30,296(r1)
961 mflr r30
962 stw r31,300(r1)
963 stw r3,308(r1);
964 ...
965 *INDENT-ON*
966
967 remember just the first one, but skip over additional
968 ones. */
721d14ba 969 if (lr_reg == -1)
43b1ab88 970 lr_reg = (op & 0x03e00000);
773df3e5
JB
971 if (lr_reg == 0)
972 r0_contains_arg = 0;
c5aa993b 973 continue;
c5aa993b
JM
974 }
975 else if ((op & 0xfc1fffff) == 0x7c000026)
976 { /* mfcr Rx */
98f08d3d 977 cr_reg = (op & 0x03e00000);
773df3e5
JB
978 if (cr_reg == 0)
979 r0_contains_arg = 0;
c5aa993b 980 continue;
c906108c 981
c906108c 982 }
c5aa993b
JM
983 else if ((op & 0xfc1f0000) == 0xd8010000)
984 { /* stfd Rx,NUM(r1) */
985 reg = GET_SRC_REG (op);
986 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
987 {
988 fdata->saved_fpr = reg;
989 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
990 }
991 continue;
c906108c 992
c5aa993b
JM
993 }
994 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
995 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
996 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
997 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
998 {
999
1000 reg = GET_SRC_REG (op);
1001 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1002 {
1003 fdata->saved_gpr = reg;
7a78ae4e 1004 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1005 op &= ~3UL;
c5aa993b
JM
1006 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1007 }
1008 continue;
c906108c 1009
ddb20c56
KB
1010 }
1011 else if ((op & 0xffff0000) == 0x60000000)
1012 {
96ff0de4 1013 /* nop */
ddb20c56
KB
1014 /* Allow nops in the prologue, but do not consider them to
1015 be part of the prologue unless followed by other prologue
1016 instructions. */
1017 prev_insn_was_prologue_insn = 0;
1018 continue;
1019
c906108c 1020 }
c5aa993b
JM
1021 else if ((op & 0xffff0000) == 0x3c000000)
1022 { /* addis 0,0,NUM, used
1023 for >= 32k frames */
1024 fdata->offset = (op & 0x0000ffff) << 16;
1025 fdata->frameless = 0;
773df3e5 1026 r0_contains_arg = 0;
c5aa993b
JM
1027 continue;
1028
1029 }
1030 else if ((op & 0xffff0000) == 0x60000000)
1031 { /* ori 0,0,NUM, 2nd ha
1032 lf of >= 32k frames */
1033 fdata->offset |= (op & 0x0000ffff);
1034 fdata->frameless = 0;
773df3e5 1035 r0_contains_arg = 0;
c5aa993b
JM
1036 continue;
1037
1038 }
be723e22 1039 else if (lr_reg >= 0 &&
98f08d3d
KB
1040 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1041 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1042 /* stw Rx, NUM(r1) */
1043 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1044 /* stwu Rx, NUM(r1) */
1045 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1046 { /* where Rx == lr */
1047 fdata->lr_offset = offset;
c5aa993b 1048 fdata->nosavedpc = 0;
be723e22
MS
1049 /* Invalidate lr_reg, but don't set it to -1.
1050 That would mean that it had never been set. */
1051 lr_reg = -2;
98f08d3d
KB
1052 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1053 (op & 0xfc000000) == 0x90000000) /* stw */
1054 {
1055 /* Does not update r1, so add displacement to lr_offset. */
1056 fdata->lr_offset += SIGNED_SHORT (op);
1057 }
c5aa993b
JM
1058 continue;
1059
1060 }
be723e22 1061 else if (cr_reg >= 0 &&
98f08d3d
KB
1062 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1063 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1064 /* stw Rx, NUM(r1) */
1065 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1066 /* stwu Rx, NUM(r1) */
1067 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1068 { /* where Rx == cr */
1069 fdata->cr_offset = offset;
be723e22
MS
1070 /* Invalidate cr_reg, but don't set it to -1.
1071 That would mean that it had never been set. */
1072 cr_reg = -2;
98f08d3d
KB
1073 if ((op & 0xfc000003) == 0xf8000000 ||
1074 (op & 0xfc000000) == 0x90000000)
1075 {
1076 /* Does not update r1, so add displacement to cr_offset. */
1077 fdata->cr_offset += SIGNED_SHORT (op);
1078 }
c5aa993b
JM
1079 continue;
1080
1081 }
721d14ba
DJ
1082 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1083 {
1084 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1085 prediction bits. If the LR has already been saved, we can
1086 skip it. */
1087 continue;
1088 }
c5aa993b
JM
1089 else if (op == 0x48000005)
1090 { /* bl .+4 used in
1091 -mrelocatable */
1092 continue;
1093
1094 }
1095 else if (op == 0x48000004)
1096 { /* b .+4 (xlc) */
1097 break;
1098
c5aa993b 1099 }
6be8bc0c
EZ
1100 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1101 in V.4 -mminimal-toc */
c5aa993b
JM
1102 (op & 0xffff0000) == 0x3bde0000)
1103 { /* addi 30,30,foo@l */
1104 continue;
c906108c 1105
c5aa993b
JM
1106 }
1107 else if ((op & 0xfc000001) == 0x48000001)
1108 { /* bl foo,
1109 to save fprs??? */
c906108c 1110
c5aa993b 1111 fdata->frameless = 0;
3c77c82a
DJ
1112
1113 /* If the return address has already been saved, we can skip
1114 calls to blrl (for PIC). */
1115 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op))
1116 continue;
1117
6be8bc0c 1118 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1119 the first three instructions of the prologue and either
1120 we have no line table information or the line info tells
1121 us that the subroutine call is not part of the line
1122 associated with the prologue. */
c5aa993b 1123 if ((pc - orig_pc) > 8)
ebd98106
FF
1124 {
1125 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1126 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1127
1128 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1129 break;
1130 }
c5aa993b
JM
1131
1132 op = read_memory_integer (pc + 4, 4);
1133
6be8bc0c
EZ
1134 /* At this point, make sure this is not a trampoline
1135 function (a function that simply calls another functions,
1136 and nothing else). If the next is not a nop, this branch
1137 was part of the function prologue. */
c5aa993b
JM
1138
1139 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1140 break; /* don't skip over
1141 this branch */
1142 continue;
1143
c5aa993b 1144 }
98f08d3d
KB
1145 /* update stack pointer */
1146 else if ((op & 0xfc1f0000) == 0x94010000)
1147 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1148 fdata->frameless = 0;
1149 fdata->offset = SIGNED_SHORT (op);
1150 offset = fdata->offset;
1151 continue;
c5aa993b 1152 }
98f08d3d
KB
1153 else if ((op & 0xfc1f016a) == 0x7c01016e)
1154 { /* stwux rX,r1,rY */
1155 /* no way to figure out what r1 is going to be */
1156 fdata->frameless = 0;
1157 offset = fdata->offset;
1158 continue;
1159 }
1160 else if ((op & 0xfc1f0003) == 0xf8010001)
1161 { /* stdu rX,NUM(r1) */
1162 fdata->frameless = 0;
1163 fdata->offset = SIGNED_SHORT (op & ~3UL);
1164 offset = fdata->offset;
1165 continue;
1166 }
1167 else if ((op & 0xfc1f016a) == 0x7c01016a)
1168 { /* stdux rX,r1,rY */
1169 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1170 fdata->frameless = 0;
1171 offset = fdata->offset;
1172 continue;
c5aa993b 1173 }
7313566f
FF
1174 else if ((op & 0xffff0000) == 0x38210000)
1175 { /* addi r1,r1,SIMM */
1176 fdata->frameless = 0;
1177 fdata->offset += SIGNED_SHORT (op);
1178 offset = fdata->offset;
1179 continue;
1180 }
4e463ff5
DJ
1181 /* Load up minimal toc pointer. Do not treat an epilogue restore
1182 of r31 as a minimal TOC load. */
98f08d3d
KB
1183 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1184 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1185 && !framep
c5aa993b 1186 && !minimal_toc_loaded)
98f08d3d 1187 {
c5aa993b
JM
1188 minimal_toc_loaded = 1;
1189 continue;
1190
f6077098
KB
1191 /* move parameters from argument registers to local variable
1192 registers */
1193 }
1194 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1195 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1196 (((op >> 21) & 31) <= 10) &&
96ff0de4 1197 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1198 {
1199 continue;
1200
c5aa993b
JM
1201 /* store parameters in stack */
1202 }
e802b915 1203 /* Move parameters from argument registers to temporary register. */
773df3e5 1204 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1205 {
c5aa993b
JM
1206 continue;
1207
1208 /* Set up frame pointer */
1209 }
1210 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1211 || op == 0x7c3f0b78)
1212 { /* mr r31, r1 */
1213 fdata->frameless = 0;
1214 framep = 1;
6f99cb26 1215 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1216 continue;
1217
1218 /* Another way to set up the frame pointer. */
1219 }
1220 else if ((op & 0xfc1fffff) == 0x38010000)
1221 { /* addi rX, r1, 0x0 */
1222 fdata->frameless = 0;
1223 framep = 1;
6f99cb26
AC
1224 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1225 + ((op & ~0x38010000) >> 21));
c5aa993b 1226 continue;
c5aa993b 1227 }
6be8bc0c
EZ
1228 /* AltiVec related instructions. */
1229 /* Store the vrsave register (spr 256) in another register for
1230 later manipulation, or load a register into the vrsave
1231 register. 2 instructions are used: mfvrsave and
1232 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1233 and mtspr SPR256, Rn. */
1234 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1235 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1236 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1237 {
1238 vrsave_reg = GET_SRC_REG (op);
1239 continue;
1240 }
1241 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1242 {
1243 continue;
1244 }
1245 /* Store the register where vrsave was saved to onto the stack:
1246 rS is the register where vrsave was stored in a previous
1247 instruction. */
1248 /* 100100 sssss 00001 dddddddd dddddddd */
1249 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1250 {
1251 if (vrsave_reg == GET_SRC_REG (op))
1252 {
1253 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1254 vrsave_reg = -1;
1255 }
1256 continue;
1257 }
1258 /* Compute the new value of vrsave, by modifying the register
1259 where vrsave was saved to. */
1260 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1261 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1262 {
1263 continue;
1264 }
1265 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1266 in a pair of insns to save the vector registers on the
1267 stack. */
1268 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1269 /* 001110 01110 00000 iiii iiii iiii iiii */
1270 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1271 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1272 {
773df3e5
JB
1273 if ((op & 0xffff0000) == 0x38000000)
1274 r0_contains_arg = 0;
6be8bc0c
EZ
1275 li_found_pc = pc;
1276 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1277
1278 /* This insn by itself is not part of the prologue, unless
1279 if part of the pair of insns mentioned above. So do not
1280 record this insn as part of the prologue yet. */
1281 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1282 }
1283 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1284 /* 011111 sssss 11111 00000 00111001110 */
1285 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1286 {
1287 if (pc == (li_found_pc + 4))
1288 {
1289 vr_reg = GET_SRC_REG (op);
1290 /* If this is the first vector reg to be saved, or if
1291 it has a lower number than others previously seen,
1292 reupdate the frame info. */
1293 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1294 {
1295 fdata->saved_vr = vr_reg;
1296 fdata->vr_offset = vr_saved_offset + offset;
1297 }
1298 vr_saved_offset = -1;
1299 vr_reg = -1;
1300 li_found_pc = 0;
1301 }
1302 }
1303 /* End AltiVec related instructions. */
96ff0de4
EZ
1304
1305 /* Start BookE related instructions. */
1306 /* Store gen register S at (r31+uimm).
1307 Any register less than r13 is volatile, so we don't care. */
1308 /* 000100 sssss 11111 iiiii 01100100001 */
1309 else if (arch_info->mach == bfd_mach_ppc_e500
1310 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1311 {
1312 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1313 {
1314 unsigned int imm;
1315 ev_reg = GET_SRC_REG (op);
1316 imm = (op >> 11) & 0x1f;
1317 ev_offset = imm * 8;
1318 /* If this is the first vector reg to be saved, or if
1319 it has a lower number than others previously seen,
1320 reupdate the frame info. */
1321 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1322 {
1323 fdata->saved_ev = ev_reg;
1324 fdata->ev_offset = ev_offset + offset;
1325 }
1326 }
1327 continue;
1328 }
1329 /* Store gen register rS at (r1+rB). */
1330 /* 000100 sssss 00001 bbbbb 01100100000 */
1331 else if (arch_info->mach == bfd_mach_ppc_e500
1332 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1333 {
1334 if (pc == (li_found_pc + 4))
1335 {
1336 ev_reg = GET_SRC_REG (op);
1337 /* If this is the first vector reg to be saved, or if
1338 it has a lower number than others previously seen,
1339 reupdate the frame info. */
1340 /* We know the contents of rB from the previous instruction. */
1341 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1342 {
1343 fdata->saved_ev = ev_reg;
1344 fdata->ev_offset = vr_saved_offset + offset;
1345 }
1346 vr_saved_offset = -1;
1347 ev_reg = -1;
1348 li_found_pc = 0;
1349 }
1350 continue;
1351 }
1352 /* Store gen register r31 at (rA+uimm). */
1353 /* 000100 11111 aaaaa iiiii 01100100001 */
1354 else if (arch_info->mach == bfd_mach_ppc_e500
1355 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1356 {
1357 /* Wwe know that the source register is 31 already, but
1358 it can't hurt to compute it. */
1359 ev_reg = GET_SRC_REG (op);
1360 ev_offset = ((op >> 11) & 0x1f) * 8;
1361 /* If this is the first vector reg to be saved, or if
1362 it has a lower number than others previously seen,
1363 reupdate the frame info. */
1364 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1365 {
1366 fdata->saved_ev = ev_reg;
1367 fdata->ev_offset = ev_offset + offset;
1368 }
1369
1370 continue;
1371 }
1372 /* Store gen register S at (r31+r0).
1373 Store param on stack when offset from SP bigger than 4 bytes. */
1374 /* 000100 sssss 11111 00000 01100100000 */
1375 else if (arch_info->mach == bfd_mach_ppc_e500
1376 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1377 {
1378 if (pc == (li_found_pc + 4))
1379 {
1380 if ((op & 0x03e00000) >= 0x01a00000)
1381 {
1382 ev_reg = GET_SRC_REG (op);
1383 /* If this is the first vector reg to be saved, or if
1384 it has a lower number than others previously seen,
1385 reupdate the frame info. */
1386 /* We know the contents of r0 from the previous
1387 instruction. */
1388 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1389 {
1390 fdata->saved_ev = ev_reg;
1391 fdata->ev_offset = vr_saved_offset + offset;
1392 }
1393 ev_reg = -1;
1394 }
1395 vr_saved_offset = -1;
1396 li_found_pc = 0;
1397 continue;
1398 }
1399 }
1400 /* End BookE related instructions. */
1401
c5aa993b
JM
1402 else
1403 {
55d05f3b
KB
1404 /* Not a recognized prologue instruction.
1405 Handle optimizer code motions into the prologue by continuing
1406 the search if we have no valid frame yet or if the return
1407 address is not yet saved in the frame. */
4e463ff5 1408 if (fdata->frameless == 0 && fdata->nosavedpc == 0)
55d05f3b
KB
1409 break;
1410
1411 if (op == 0x4e800020 /* blr */
1412 || op == 0x4e800420) /* bctr */
1413 /* Do not scan past epilogue in frameless functions or
1414 trampolines. */
1415 break;
1416 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1417 /* Never skip branches. */
55d05f3b
KB
1418 break;
1419
1420 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1421 /* Do not scan too many insns, scanning insns is expensive with
1422 remote targets. */
1423 break;
1424
1425 /* Continue scanning. */
1426 prev_insn_was_prologue_insn = 0;
1427 continue;
c5aa993b 1428 }
c906108c
SS
1429 }
1430
1431#if 0
1432/* I have problems with skipping over __main() that I need to address
1433 * sometime. Previously, I used to use misc_function_vector which
1434 * didn't work as well as I wanted to be. -MGO */
1435
1436 /* If the first thing after skipping a prolog is a branch to a function,
1437 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1438 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1439 work before calling a function right after a prologue, thus we can
64366f1c 1440 single out such gcc2 behaviour. */
c906108c 1441
c906108c 1442
c5aa993b
JM
1443 if ((op & 0xfc000001) == 0x48000001)
1444 { /* bl foo, an initializer function? */
1445 op = read_memory_integer (pc + 4, 4);
1446
1447 if (op == 0x4def7b82)
1448 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1449
64366f1c
EZ
1450 /* Check and see if we are in main. If so, skip over this
1451 initializer function as well. */
c906108c 1452
c5aa993b 1453 tmp = find_pc_misc_function (pc);
6314a349
AC
1454 if (tmp >= 0
1455 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1456 return pc + 8;
1457 }
c906108c 1458 }
c906108c 1459#endif /* 0 */
c5aa993b
JM
1460
1461 fdata->offset = -fdata->offset;
ddb20c56 1462 return last_prologue_pc;
c906108c
SS
1463}
1464
1465
1466/*************************************************************************
f6077098 1467 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1468 frames, etc.
1469*************************************************************************/
1470
c906108c 1471
11269d7e
AC
1472/* All the ABI's require 16 byte alignment. */
1473static CORE_ADDR
1474rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1475{
1476 return (addr & -16);
1477}
1478
7a78ae4e 1479/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1480 the first eight words of the argument list (that might be less than
1481 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1482 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1483 passed in fpr's, in addition to that. Rest of the parameters if any
1484 are passed in user stack. There might be cases in which half of the
c906108c
SS
1485 parameter is copied into registers, the other half is pushed into
1486 stack.
1487
7a78ae4e
ND
1488 Stack must be aligned on 64-bit boundaries when synthesizing
1489 function calls.
1490
c906108c
SS
1491 If the function is returning a structure, then the return address is passed
1492 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1493 starting from r4. */
c906108c 1494
7a78ae4e 1495static CORE_ADDR
7d9b040b 1496rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1497 struct regcache *regcache, CORE_ADDR bp_addr,
1498 int nargs, struct value **args, CORE_ADDR sp,
1499 int struct_return, CORE_ADDR struct_addr)
c906108c 1500{
7a41266b 1501 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1502 int ii;
1503 int len = 0;
c5aa993b
JM
1504 int argno; /* current argument number */
1505 int argbytes; /* current argument byte */
50fd1280 1506 gdb_byte tmp_buffer[50];
c5aa993b 1507 int f_argno = 0; /* current floating point argno */
21283beb 1508 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1509 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1510
ea7c478f 1511 struct value *arg = 0;
c906108c
SS
1512 struct type *type;
1513
1514 CORE_ADDR saved_sp;
1515
383f0f5b
JB
1516 /* The calling convention this function implements assumes the
1517 processor has floating-point registers. We shouldn't be using it
1518 on PPC variants that lack them. */
1519 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1520
64366f1c 1521 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1522 Copy them appropriately. */
1523 ii = 0;
1524
1525 /* If the function is returning a `struct', then the first word
1526 (which will be passed in r3) is used for struct return address.
1527 In that case we should advance one word and start from r4
1528 register to copy parameters. */
1529 if (struct_return)
1530 {
1531 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1532 struct_addr);
1533 ii++;
1534 }
c906108c
SS
1535
1536/*
c5aa993b
JM
1537 effectively indirect call... gcc does...
1538
1539 return_val example( float, int);
1540
1541 eabi:
1542 float in fp0, int in r3
1543 offset of stack on overflow 8/16
1544 for varargs, must go by type.
1545 power open:
1546 float in r3&r4, int in r5
1547 offset of stack on overflow different
1548 both:
1549 return in r3 or f0. If no float, must study how gcc emulates floats;
1550 pay attention to arg promotion.
1551 User may have to cast\args to handle promotion correctly
1552 since gdb won't know if prototype supplied or not.
1553 */
c906108c 1554
c5aa993b
JM
1555 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1556 {
3acba339 1557 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1558
1559 arg = args[argno];
df407dfe 1560 type = check_typedef (value_type (arg));
c5aa993b
JM
1561 len = TYPE_LENGTH (type);
1562
1563 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1564 {
1565
64366f1c 1566 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1567 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1568 there is no way we would run out of them. */
c5aa993b 1569
9f335945
KB
1570 gdb_assert (len <= 8);
1571
1572 regcache_cooked_write (regcache,
1573 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1574 value_contents (arg));
c5aa993b
JM
1575 ++f_argno;
1576 }
1577
f6077098 1578 if (len > reg_size)
c5aa993b
JM
1579 {
1580
64366f1c 1581 /* Argument takes more than one register. */
c5aa993b
JM
1582 while (argbytes < len)
1583 {
50fd1280 1584 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1585 memset (word, 0, reg_size);
1586 memcpy (word,
0fd88904 1587 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1588 (len - argbytes) > reg_size
1589 ? reg_size : len - argbytes);
9f335945
KB
1590 regcache_cooked_write (regcache,
1591 tdep->ppc_gp0_regnum + 3 + ii,
1592 word);
f6077098 1593 ++ii, argbytes += reg_size;
c5aa993b
JM
1594
1595 if (ii >= 8)
1596 goto ran_out_of_registers_for_arguments;
1597 }
1598 argbytes = 0;
1599 --ii;
1600 }
1601 else
64366f1c
EZ
1602 {
1603 /* Argument can fit in one register. No problem. */
d7449b42 1604 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1605 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1606
1607 memset (word, 0, reg_size);
0fd88904 1608 memcpy (word, value_contents (arg), len);
9f335945 1609 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1610 }
1611 ++argno;
c906108c 1612 }
c906108c
SS
1613
1614ran_out_of_registers_for_arguments:
1615
7a78ae4e 1616 saved_sp = read_sp ();
cc9836a8 1617
64366f1c 1618 /* Location for 8 parameters are always reserved. */
7a78ae4e 1619 sp -= wordsize * 8;
f6077098 1620
64366f1c 1621 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1622 sp -= wordsize * 6;
f6077098 1623
64366f1c 1624 /* Stack pointer must be quadword aligned. */
7a78ae4e 1625 sp &= -16;
c906108c 1626
64366f1c
EZ
1627 /* If there are more arguments, allocate space for them in
1628 the stack, then push them starting from the ninth one. */
c906108c 1629
c5aa993b
JM
1630 if ((argno < nargs) || argbytes)
1631 {
1632 int space = 0, jj;
c906108c 1633
c5aa993b
JM
1634 if (argbytes)
1635 {
1636 space += ((len - argbytes + 3) & -4);
1637 jj = argno + 1;
1638 }
1639 else
1640 jj = argno;
c906108c 1641
c5aa993b
JM
1642 for (; jj < nargs; ++jj)
1643 {
ea7c478f 1644 struct value *val = args[jj];
df407dfe 1645 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1646 }
c906108c 1647
64366f1c 1648 /* Add location required for the rest of the parameters. */
f6077098 1649 space = (space + 15) & -16;
c5aa993b 1650 sp -= space;
c906108c 1651
7aea86e6
AC
1652 /* This is another instance we need to be concerned about
1653 securing our stack space. If we write anything underneath %sp
1654 (r1), we might conflict with the kernel who thinks he is free
1655 to use this area. So, update %sp first before doing anything
1656 else. */
1657
1658 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1659
64366f1c
EZ
1660 /* If the last argument copied into the registers didn't fit there
1661 completely, push the rest of it into stack. */
c906108c 1662
c5aa993b
JM
1663 if (argbytes)
1664 {
1665 write_memory (sp + 24 + (ii * 4),
50fd1280 1666 value_contents (arg) + argbytes,
c5aa993b
JM
1667 len - argbytes);
1668 ++argno;
1669 ii += ((len - argbytes + 3) & -4) / 4;
1670 }
c906108c 1671
64366f1c 1672 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1673 for (; argno < nargs; ++argno)
1674 {
c906108c 1675
c5aa993b 1676 arg = args[argno];
df407dfe 1677 type = check_typedef (value_type (arg));
c5aa993b 1678 len = TYPE_LENGTH (type);
c906108c
SS
1679
1680
64366f1c
EZ
1681 /* Float types should be passed in fpr's, as well as in the
1682 stack. */
c5aa993b
JM
1683 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1684 {
c906108c 1685
9f335945 1686 gdb_assert (len <= 8);
c906108c 1687
9f335945
KB
1688 regcache_cooked_write (regcache,
1689 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1690 value_contents (arg));
c5aa993b
JM
1691 ++f_argno;
1692 }
c906108c 1693
50fd1280 1694 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1695 ii += ((len + 3) & -4) / 4;
1696 }
c906108c 1697 }
c906108c 1698
69517000 1699 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1700 be set _before_ the corresponding stack space is used. On AIX,
1701 this even applies when the target has been completely stopped!
1702 Not doing this can lead to conflicts with the kernel which thinks
1703 that it still has control over this not-yet-allocated stack
1704 region. */
33a7c2fc
AC
1705 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1706
7aea86e6 1707 /* Set back chain properly. */
8ba0209f
AM
1708 store_unsigned_integer (tmp_buffer, wordsize, saved_sp);
1709 write_memory (sp, tmp_buffer, wordsize);
7aea86e6 1710
e56a0ecc
AC
1711 /* Point the inferior function call's return address at the dummy's
1712 breakpoint. */
1713 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1714
794a477a
AC
1715 /* Set the TOC register, get the value from the objfile reader
1716 which, in turn, gets it from the VMAP table. */
1717 if (rs6000_find_toc_address_hook != NULL)
1718 {
1719 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1720 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1721 }
1722
c906108c
SS
1723 target_store_registers (-1);
1724 return sp;
1725}
c906108c 1726
d217aaed
MK
1727static enum return_value_convention
1728rs6000_return_value (struct gdbarch *gdbarch, struct type *valtype,
1729 struct regcache *regcache, gdb_byte *readbuf,
1730 const gdb_byte *writebuf)
c906108c 1731{
ace1378a 1732 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
d217aaed 1733 gdb_byte buf[8];
c906108c 1734
383f0f5b
JB
1735 /* The calling convention this function implements assumes the
1736 processor has floating-point registers. We shouldn't be using it
d217aaed 1737 on PowerPC variants that lack them. */
383f0f5b
JB
1738 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1739
d217aaed
MK
1740 /* AltiVec extension: Functions that declare a vector data type as a
1741 return value place that return value in VR2. */
1742 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY && TYPE_VECTOR (valtype)
1743 && TYPE_LENGTH (valtype) == 16)
c5aa993b 1744 {
d217aaed
MK
1745 if (readbuf)
1746 regcache_cooked_read (regcache, tdep->ppc_vr0_regnum + 2, readbuf);
1747 if (writebuf)
1748 regcache_cooked_write (regcache, tdep->ppc_vr0_regnum + 2, writebuf);
c906108c 1749
d217aaed 1750 return RETURN_VALUE_REGISTER_CONVENTION;
c5aa993b 1751 }
d217aaed
MK
1752
1753 /* If the called subprogram returns an aggregate, there exists an
1754 implicit first argument, whose value is the address of a caller-
1755 allocated buffer into which the callee is assumed to store its
1756 return value. All explicit parameters are appropriately
1757 relabeled. */
1758 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
1759 || TYPE_CODE (valtype) == TYPE_CODE_UNION
1760 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
1761 return RETURN_VALUE_STRUCT_CONVENTION;
1762
1763 /* Scalar floating-point values are returned in FPR1 for float or
1764 double, and in FPR1:FPR2 for quadword precision. Fortran
1765 complex*8 and complex*16 are returned in FPR1:FPR2, and
1766 complex*32 is returned in FPR1:FPR4. */
1767 if (TYPE_CODE (valtype) == TYPE_CODE_FLT
1768 && (TYPE_LENGTH (valtype) == 4 || TYPE_LENGTH (valtype) == 8))
1769 {
1770 struct type *regtype = register_type (gdbarch, tdep->ppc_fp0_regnum);
1771 gdb_byte regval[8];
1772
1773 /* FIXME: kettenis/2007-01-01: Add support for quadword
1774 precision and complex. */
1775
1776 if (readbuf)
1777 {
1778 regcache_cooked_read (regcache, tdep->ppc_fp0_regnum + 1, regval);
1779 convert_typed_floating (regval, regtype, readbuf, valtype);
1780 }
1781 if (writebuf)
1782 {
1783 convert_typed_floating (writebuf, valtype, regval, regtype);
1784 regcache_cooked_write (regcache, tdep->ppc_fp0_regnum + 1, regval);
1785 }
1786
1787 return RETURN_VALUE_REGISTER_CONVENTION;
1788 }
1789
1790 /* Values of the types int, long, short, pointer, and char (length
1791 is less than or equal to four bytes), as well as bit values of
1792 lengths less than or equal to 32 bits, must be returned right
1793 justified in GPR3 with signed values sign extended and unsigned
1794 values zero extended, as necessary. */
1795 if (TYPE_LENGTH (valtype) <= tdep->wordsize)
ace1378a 1796 {
d217aaed
MK
1797 if (readbuf)
1798 {
1799 ULONGEST regval;
1800
1801 /* For reading we don't have to worry about sign extension. */
1802 regcache_cooked_read_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1803 &regval);
1804 store_unsigned_integer (readbuf, TYPE_LENGTH (valtype), regval);
1805 }
1806 if (writebuf)
1807 {
1808 /* For writing, use unpack_long since that should handle any
1809 required sign extension. */
1810 regcache_cooked_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1811 unpack_long (valtype, writebuf));
1812 }
1813
1814 return RETURN_VALUE_REGISTER_CONVENTION;
ace1378a 1815 }
d217aaed
MK
1816
1817 /* Eight-byte non-floating-point scalar values must be returned in
1818 GPR3:GPR4. */
1819
1820 if (TYPE_LENGTH (valtype) == 8)
c5aa993b 1821 {
d217aaed
MK
1822 gdb_assert (TYPE_CODE (valtype) != TYPE_CODE_FLT);
1823 gdb_assert (tdep->wordsize == 4);
1824
1825 if (readbuf)
1826 {
1827 gdb_byte regval[8];
1828
1829 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 3, regval);
1830 regcache_cooked_read (regcache, tdep->ppc_gp0_regnum + 4,
1831 regval + 4);
1832 memcpy (readbuf, regval, 8);
1833 }
1834 if (writebuf)
1835 {
1836 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3, writebuf);
1837 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 4,
1838 writebuf + 4);
1839 }
1840
1841 return RETURN_VALUE_REGISTER_CONVENTION;
c906108c 1842 }
d217aaed
MK
1843
1844 return RETURN_VALUE_STRUCT_CONVENTION;
c906108c
SS
1845}
1846
977adac5
ND
1847/* Return whether handle_inferior_event() should proceed through code
1848 starting at PC in function NAME when stepping.
1849
1850 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1851 handle memory references that are too distant to fit in instructions
1852 generated by the compiler. For example, if 'foo' in the following
1853 instruction:
1854
1855 lwz r9,foo(r2)
1856
1857 is greater than 32767, the linker might replace the lwz with a branch to
1858 somewhere in @FIX1 that does the load in 2 instructions and then branches
1859 back to where execution should continue.
1860
1861 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1862 Unfortunately, the linker uses the "b" instruction for the
1863 branches, meaning that the link register doesn't get set.
1864 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1865
2ec664f5
MS
1866 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1867 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1868 @FIX code. */
977adac5
ND
1869
1870int
1871rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1872{
1873 return name && !strncmp (name, "@FIX", 4);
1874}
1875
1876/* Skip code that the user doesn't want to see when stepping:
1877
1878 1. Indirect function calls use a piece of trampoline code to do context
1879 switching, i.e. to set the new TOC table. Skip such code if we are on
1880 its first instruction (as when we have single-stepped to here).
1881
1882 2. Skip shared library trampoline code (which is different from
c906108c 1883 indirect function call trampolines).
977adac5
ND
1884
1885 3. Skip bigtoc fixup code.
1886
c906108c 1887 Result is desired PC to step until, or NULL if we are not in
977adac5 1888 code that should be skipped. */
c906108c
SS
1889
1890CORE_ADDR
7a78ae4e 1891rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1892{
52f0bd74 1893 unsigned int ii, op;
977adac5 1894 int rel;
c906108c 1895 CORE_ADDR solib_target_pc;
977adac5 1896 struct minimal_symbol *msymbol;
c906108c 1897
c5aa993b
JM
1898 static unsigned trampoline_code[] =
1899 {
1900 0x800b0000, /* l r0,0x0(r11) */
1901 0x90410014, /* st r2,0x14(r1) */
1902 0x7c0903a6, /* mtctr r0 */
1903 0x804b0004, /* l r2,0x4(r11) */
1904 0x816b0008, /* l r11,0x8(r11) */
1905 0x4e800420, /* bctr */
1906 0x4e800020, /* br */
1907 0
c906108c
SS
1908 };
1909
977adac5
ND
1910 /* Check for bigtoc fixup code. */
1911 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1912 if (msymbol
1913 && rs6000_in_solib_return_trampoline (pc,
1914 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1915 {
1916 /* Double-check that the third instruction from PC is relative "b". */
1917 op = read_memory_integer (pc + 8, 4);
1918 if ((op & 0xfc000003) == 0x48000000)
1919 {
1920 /* Extract bits 6-29 as a signed 24-bit relative word address and
1921 add it to the containing PC. */
1922 rel = ((int)(op << 6) >> 6);
1923 return pc + 8 + rel;
1924 }
1925 }
1926
c906108c
SS
1927 /* If pc is in a shared library trampoline, return its target. */
1928 solib_target_pc = find_solib_trampoline_target (pc);
1929 if (solib_target_pc)
1930 return solib_target_pc;
1931
c5aa993b
JM
1932 for (ii = 0; trampoline_code[ii]; ++ii)
1933 {
1934 op = read_memory_integer (pc + (ii * 4), 4);
1935 if (op != trampoline_code[ii])
1936 return 0;
1937 }
1938 ii = read_register (11); /* r11 holds destination addr */
21283beb 1939 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1940 return pc;
1941}
1942
7a78ae4e 1943/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1944 isn't available with that word size, return 0. */
7a78ae4e
ND
1945
1946static int
1947regsize (const struct reg *reg, int wordsize)
1948{
1949 return wordsize == 8 ? reg->sz64 : reg->sz32;
1950}
1951
1952/* Return the name of register number N, or null if no such register exists
64366f1c 1953 in the current architecture. */
7a78ae4e 1954
fa88f677 1955static const char *
7a78ae4e
ND
1956rs6000_register_name (int n)
1957{
21283beb 1958 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1959 const struct reg *reg = tdep->regs + n;
1960
1961 if (!regsize (reg, tdep->wordsize))
1962 return NULL;
1963 return reg->name;
1964}
1965
7a78ae4e
ND
1966/* Return the GDB type object for the "standard" data type
1967 of data in register N. */
1968
1969static struct type *
691d145a 1970rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1971{
691d145a 1972 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1973 const struct reg *reg = tdep->regs + n;
1974
1fcc0bb8
EZ
1975 if (reg->fpr)
1976 return builtin_type_double;
1977 else
1978 {
1979 int size = regsize (reg, tdep->wordsize);
1980 switch (size)
1981 {
449a5da4
AC
1982 case 0:
1983 return builtin_type_int0;
1984 case 4:
ed6edd9b 1985 return builtin_type_uint32;
1fcc0bb8 1986 case 8:
c8001721
EZ
1987 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1988 return builtin_type_vec64;
1989 else
ed6edd9b 1990 return builtin_type_uint64;
1fcc0bb8
EZ
1991 break;
1992 case 16:
08cf96df 1993 return builtin_type_vec128;
1fcc0bb8
EZ
1994 break;
1995 default:
e2e0b3e5 1996 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1997 n, size);
1fcc0bb8
EZ
1998 }
1999 }
7a78ae4e
ND
2000}
2001
c44ca51c
AC
2002/* Is REGNUM a member of REGGROUP? */
2003static int
2004rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2005 struct reggroup *group)
2006{
2007 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2008 int float_p;
2009 int vector_p;
2010 int general_p;
2011
2012 if (REGISTER_NAME (regnum) == NULL
2013 || *REGISTER_NAME (regnum) == '\0')
2014 return 0;
2015 if (group == all_reggroup)
2016 return 1;
2017
2018 float_p = (regnum == tdep->ppc_fpscr_regnum
2019 || (regnum >= tdep->ppc_fp0_regnum
2020 && regnum < tdep->ppc_fp0_regnum + 32));
2021 if (group == float_reggroup)
2022 return float_p;
2023
826d5376
PG
2024 vector_p = ((tdep->ppc_vr0_regnum >= 0
2025 && regnum >= tdep->ppc_vr0_regnum
c44ca51c 2026 && regnum < tdep->ppc_vr0_regnum + 32)
826d5376
PG
2027 || (tdep->ppc_ev0_regnum >= 0
2028 && regnum >= tdep->ppc_ev0_regnum
c44ca51c 2029 && regnum < tdep->ppc_ev0_regnum + 32)
3bf49e1b 2030 || regnum == tdep->ppc_vrsave_regnum - 1 /* vscr */
c44ca51c
AC
2031 || regnum == tdep->ppc_vrsave_regnum
2032 || regnum == tdep->ppc_acc_regnum
2033 || regnum == tdep->ppc_spefscr_regnum);
2034 if (group == vector_reggroup)
2035 return vector_p;
2036
2037 /* Note that PS aka MSR isn't included - it's a system register (and
2038 besides, due to GCC's CFI foobar you do not want to restore
2039 it). */
2040 general_p = ((regnum >= tdep->ppc_gp0_regnum
2041 && regnum < tdep->ppc_gp0_regnum + 32)
2042 || regnum == tdep->ppc_toc_regnum
2043 || regnum == tdep->ppc_cr_regnum
2044 || regnum == tdep->ppc_lr_regnum
2045 || regnum == tdep->ppc_ctr_regnum
2046 || regnum == tdep->ppc_xer_regnum
2047 || regnum == PC_REGNUM);
2048 if (group == general_reggroup)
2049 return general_p;
2050
2051 if (group == save_reggroup || group == restore_reggroup)
2052 return general_p || vector_p || float_p;
2053
2054 return 0;
2055}
2056
691d145a 2057/* The register format for RS/6000 floating point registers is always
64366f1c 2058 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2059
2060static int
691d145a 2061rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 2062{
691d145a
JB
2063 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
2064
2065 return (reg->fpr
2066 && TYPE_CODE (type) == TYPE_CODE_FLT
2067 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
2068}
2069
7a78ae4e 2070static void
691d145a
JB
2071rs6000_register_to_value (struct frame_info *frame,
2072 int regnum,
2073 struct type *type,
50fd1280 2074 gdb_byte *to)
7a78ae4e 2075{
691d145a 2076 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2077 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
2078
2079 gdb_assert (reg->fpr);
2080 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2081
691d145a
JB
2082 get_frame_register (frame, regnum, from);
2083 convert_typed_floating (from, builtin_type_double, to, type);
2084}
7a292a7a 2085
7a78ae4e 2086static void
691d145a
JB
2087rs6000_value_to_register (struct frame_info *frame,
2088 int regnum,
2089 struct type *type,
50fd1280 2090 const gdb_byte *from)
7a78ae4e 2091{
691d145a 2092 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 2093 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
2094
2095 gdb_assert (reg->fpr);
2096 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2097
2098 convert_typed_floating (from, type, to, builtin_type_double);
2099 put_frame_register (frame, regnum, to);
7a78ae4e 2100}
c906108c 2101
6ced10dd
JB
2102/* Move SPE vector register values between a 64-bit buffer and the two
2103 32-bit raw register halves in a regcache. This function handles
2104 both splitting a 64-bit value into two 32-bit halves, and joining
2105 two halves into a whole 64-bit value, depending on the function
2106 passed as the MOVE argument.
2107
2108 EV_REG must be the number of an SPE evN vector register --- a
2109 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2110 64-bit buffer.
2111
2112 Call MOVE once for each 32-bit half of that register, passing
2113 REGCACHE, the number of the raw register corresponding to that
2114 half, and the address of the appropriate half of BUFFER.
2115
2116 For example, passing 'regcache_raw_read' as the MOVE function will
2117 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2118 'regcache_raw_supply' will supply the contents of BUFFER to the
2119 appropriate pair of raw registers in REGCACHE.
2120
2121 You may need to cast away some 'const' qualifiers when passing
2122 MOVE, since this function can't tell at compile-time which of
2123 REGCACHE or BUFFER is acting as the source of the data. If C had
2124 co-variant type qualifiers, ... */
2125static void
2126e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 2127 int regnum, gdb_byte *buf),
6ced10dd 2128 struct regcache *regcache, int ev_reg,
50fd1280 2129 gdb_byte *buffer)
6ced10dd
JB
2130{
2131 struct gdbarch *arch = get_regcache_arch (regcache);
2132 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2133 int reg_index;
50fd1280 2134 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
2135
2136 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
2137 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
2138
2139 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2140
2141 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2142 {
2143 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2144 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2145 }
2146 else
2147 {
2148 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2149 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2150 }
2151}
2152
c8001721
EZ
2153static void
2154e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2155 int reg_nr, gdb_byte *buffer)
c8001721 2156{
6ced10dd 2157 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2159
6ced10dd
JB
2160 gdb_assert (regcache_arch == gdbarch);
2161
2162 if (tdep->ppc_ev0_regnum <= reg_nr
2163 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2164 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2165 else
a44bddec 2166 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2167 _("e500_pseudo_register_read: "
2168 "called on unexpected register '%s' (%d)"),
a44bddec 2169 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2170}
2171
2172static void
2173e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2174 int reg_nr, const gdb_byte *buffer)
c8001721 2175{
6ced10dd 2176 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2177 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2178
6ced10dd
JB
2179 gdb_assert (regcache_arch == gdbarch);
2180
2181 if (tdep->ppc_ev0_regnum <= reg_nr
2182 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2183 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2184 regcache_raw_write,
50fd1280 2185 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2186 else
a44bddec 2187 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2188 _("e500_pseudo_register_read: "
2189 "called on unexpected register '%s' (%d)"),
a44bddec 2190 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2191}
2192
2193/* The E500 needs a custom reggroup function: it has anonymous raw
2194 registers, and default_register_reggroup_p assumes that anonymous
2195 registers are not members of any reggroup. */
2196static int
2197e500_register_reggroup_p (struct gdbarch *gdbarch,
2198 int regnum,
2199 struct reggroup *group)
2200{
2201 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2202
2203 /* The save and restore register groups need to include the
2204 upper-half registers, even though they're anonymous. */
2205 if ((group == save_reggroup
2206 || group == restore_reggroup)
2207 && (tdep->ppc_ev0_upper_regnum <= regnum
2208 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2209 return 1;
2210
2211 /* In all other regards, the default reggroup definition is fine. */
2212 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2213}
2214
18ed0c4e 2215/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2216static int
18ed0c4e 2217rs6000_stab_reg_to_regnum (int num)
c8001721 2218{
9f744501 2219 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2220
9f744501
JB
2221 if (0 <= num && num <= 31)
2222 return tdep->ppc_gp0_regnum + num;
2223 else if (32 <= num && num <= 63)
383f0f5b
JB
2224 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2225 specifies registers the architecture doesn't have? Our
2226 callers don't check the value we return. */
366f009f 2227 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2228 else if (77 <= num && num <= 108)
2229 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2230 else if (1200 <= num && num < 1200 + 32)
2231 return tdep->ppc_ev0_regnum + (num - 1200);
2232 else
2233 switch (num)
2234 {
2235 case 64:
2236 return tdep->ppc_mq_regnum;
2237 case 65:
2238 return tdep->ppc_lr_regnum;
2239 case 66:
2240 return tdep->ppc_ctr_regnum;
2241 case 76:
2242 return tdep->ppc_xer_regnum;
2243 case 109:
2244 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2245 case 110:
2246 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2247 case 111:
18ed0c4e 2248 return tdep->ppc_acc_regnum;
867e2dc5 2249 case 112:
18ed0c4e 2250 return tdep->ppc_spefscr_regnum;
9f744501
JB
2251 default:
2252 return num;
2253 }
18ed0c4e 2254}
9f744501 2255
9f744501 2256
18ed0c4e
JB
2257/* Convert a Dwarf 2 register number to a GDB register number. */
2258static int
2259rs6000_dwarf2_reg_to_regnum (int num)
2260{
2261 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2262
18ed0c4e
JB
2263 if (0 <= num && num <= 31)
2264 return tdep->ppc_gp0_regnum + num;
2265 else if (32 <= num && num <= 63)
2266 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2267 specifies registers the architecture doesn't have? Our
2268 callers don't check the value we return. */
2269 return tdep->ppc_fp0_regnum + (num - 32);
2270 else if (1124 <= num && num < 1124 + 32)
2271 return tdep->ppc_vr0_regnum + (num - 1124);
2272 else if (1200 <= num && num < 1200 + 32)
2273 return tdep->ppc_ev0_regnum + (num - 1200);
2274 else
2275 switch (num)
2276 {
2277 case 67:
2278 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2279 case 99:
2280 return tdep->ppc_acc_regnum;
2281 case 100:
2282 return tdep->ppc_mq_regnum;
2283 case 101:
2284 return tdep->ppc_xer_regnum;
2285 case 108:
2286 return tdep->ppc_lr_regnum;
2287 case 109:
2288 return tdep->ppc_ctr_regnum;
2289 case 356:
2290 return tdep->ppc_vrsave_regnum;
2291 case 612:
2292 return tdep->ppc_spefscr_regnum;
2293 default:
2294 return num;
2295 }
2188cbdd
EZ
2296}
2297
4fc771b8
DJ
2298/* Translate a .eh_frame register to DWARF register, or adjust a
2299 .debug_frame register. */
2300
2301static int
2302rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
2303{
2304 /* GCC releases before 3.4 use GCC internal register numbering in
2305 .debug_frame (and .debug_info, et cetera). The numbering is
2306 different from the standard SysV numbering for everything except
2307 for GPRs and FPRs. We can not detect this problem in most cases
2308 - to get accurate debug info for variables living in lr, ctr, v0,
2309 et cetera, use a newer version of GCC. But we must detect
2310 one important case - lr is in column 65 in .debug_frame output,
2311 instead of 108.
2312
2313 GCC 3.4, and the "hammer" branch, have a related problem. They
2314 record lr register saves in .debug_frame as 108, but still record
2315 the return column as 65. We fix that up too.
2316
2317 We can do this because 65 is assigned to fpsr, and GCC never
2318 generates debug info referring to it. To add support for
2319 handwritten debug info that restores fpsr, we would need to add a
2320 producer version check to this. */
2321 if (!eh_frame_p)
2322 {
2323 if (num == 65)
2324 return 108;
2325 else
2326 return num;
2327 }
2328
2329 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
2330 internal register numbering; translate that to the standard DWARF2
2331 register numbering. */
2332 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
2333 return num;
2334 else if (68 <= num && num <= 75) /* cr0-cr8 */
2335 return num - 68 + 86;
2336 else if (77 <= num && num <= 108) /* vr0-vr31 */
2337 return num - 77 + 1124;
2338 else
2339 switch (num)
2340 {
2341 case 64: /* mq */
2342 return 100;
2343 case 65: /* lr */
2344 return 108;
2345 case 66: /* ctr */
2346 return 109;
2347 case 76: /* xer */
2348 return 101;
2349 case 109: /* vrsave */
2350 return 356;
2351 case 110: /* vscr */
2352 return 67;
2353 case 111: /* spe_acc */
2354 return 99;
2355 case 112: /* spefscr */
2356 return 612;
2357 default:
2358 return num;
2359 }
2360}
c906108c 2361\f
e2d0e7eb 2362/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2363
2364 Usually a function pointer's representation is simply the address
2365 of the function. On the RS/6000 however, a function pointer is
8ba0209f 2366 represented by a pointer to an OPD entry. This OPD entry contains
7a78ae4e
ND
2367 three words, the first word is the address of the function, the
2368 second word is the TOC pointer (r2), and the third word is the
2369 static chain value. Throughout GDB it is currently assumed that a
2370 function pointer contains the address of the function, which is not
2371 easy to fix. In addition, the conversion of a function address to
8ba0209f 2372 a function pointer would require allocation of an OPD entry in the
7a78ae4e
ND
2373 inferior's memory space, with all its drawbacks. To be able to
2374 call C++ virtual methods in the inferior (which are called via
f517ea4e 2375 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2376 function address from a function pointer. */
2377
f517ea4e
PS
2378/* Return real function address if ADDR (a function pointer) is in the data
2379 space and is therefore a special function pointer. */
c906108c 2380
b9362cc7 2381static CORE_ADDR
e2d0e7eb
AC
2382rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2383 CORE_ADDR addr,
2384 struct target_ops *targ)
c906108c
SS
2385{
2386 struct obj_section *s;
2387
2388 s = find_pc_section (addr);
2389 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2390 return addr;
c906108c 2391
7a78ae4e 2392 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2393 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2394}
c906108c 2395\f
c5aa993b 2396
7a78ae4e 2397/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2398
2399
7a78ae4e
ND
2400/* The arrays here called registers_MUMBLE hold information about available
2401 registers.
c906108c
SS
2402
2403 For each family of PPC variants, I've tried to isolate out the
2404 common registers and put them up front, so that as long as you get
2405 the general family right, GDB will correctly identify the registers
2406 common to that family. The common register sets are:
2407
2408 For the 60x family: hid0 hid1 iabr dabr pir
2409
2410 For the 505 and 860 family: eie eid nri
2411
2412 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2413 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2414 pbu1 pbl2 pbu2
c906108c
SS
2415
2416 Most of these register groups aren't anything formal. I arrived at
2417 them by looking at the registers that occurred in more than one
6f5987a6
KB
2418 processor.
2419
2420 Note: kevinb/2002-04-30: Support for the fpscr register was added
2421 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2422 for Power. For PowerPC, slot 70 was unused and was already in the
2423 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2424 slot 70 was being used for "mq", so the next available slot (71)
2425 was chosen. It would have been nice to be able to make the
2426 register numbers the same across processor cores, but this wasn't
2427 possible without either 1) renumbering some registers for some
2428 processors or 2) assigning fpscr to a really high slot that's
2429 larger than any current register number. Doing (1) is bad because
2430 existing stubs would break. Doing (2) is undesirable because it
2431 would introduce a really large gap between fpscr and the rest of
2432 the registers for most processors. */
7a78ae4e 2433
64366f1c 2434/* Convenience macros for populating register arrays. */
7a78ae4e 2435
64366f1c 2436/* Within another macro, convert S to a string. */
7a78ae4e
ND
2437
2438#define STR(s) #s
2439
2440/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2441 and 64 bits on 64-bit systems. */
13ac140c 2442#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2443
2444/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2445 systems. */
13ac140c 2446#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2447
2448/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2449 systems. */
13ac140c 2450#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2451
1fcc0bb8 2452/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2453 systems. */
13ac140c 2454#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2455
64366f1c 2456/* Return a struct reg defining floating-point register NAME. */
13ac140c 2457#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2458
6ced10dd
JB
2459/* Return a struct reg defining a pseudo register NAME that is 64 bits
2460 long on all systems. */
2461#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2462
2463/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2464 systems and that doesn't exist on 64-bit systems. */
13ac140c 2465#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2466
2467/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2468 systems and that doesn't exist on 32-bit systems. */
13ac140c 2469#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2470
64366f1c 2471/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2472#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2473
6ced10dd
JB
2474/* Return a struct reg defining an anonymous raw register that's 32
2475 bits on all systems. */
2476#define A4 { 0, 4, 4, 0, 0, -1 }
2477
13ac140c
JB
2478/* Return a struct reg defining an SPR named NAME that is 32 bits on
2479 32-bit systems and 64 bits on 64-bit systems. */
2480#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2481
2482/* Return a struct reg defining an SPR named NAME that is 32 bits on
2483 all systems. */
2484#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2485
2486/* Return a struct reg defining an SPR named NAME that is 32 bits on
2487 all systems, and whose SPR number is NUMBER. */
2488#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2489
2490/* Return a struct reg defining an SPR named NAME that's 64 bits on
2491 64-bit systems and that doesn't exist on 32-bit systems. */
2492#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2493
7a78ae4e
ND
2494/* UISA registers common across all architectures, including POWER. */
2495
2496#define COMMON_UISA_REGS \
2497 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2498 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2499 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2500 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2501 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2502 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2503 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2504 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2505 /* 64 */ R(pc), R(ps)
2506
2507/* UISA-level SPRs for PowerPC. */
2508#define PPC_UISA_SPRS \
13ac140c 2509 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2510
c8001721
EZ
2511/* UISA-level SPRs for PowerPC without floating point support. */
2512#define PPC_UISA_NOFP_SPRS \
13ac140c 2513 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2514
7a78ae4e
ND
2515/* Segment registers, for PowerPC. */
2516#define PPC_SEGMENT_REGS \
2517 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2518 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2519 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2520 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2521
2522/* OEA SPRs for PowerPC. */
2523#define PPC_OEA_SPRS \
13ac140c
JB
2524 /* 87 */ S4(pvr), \
2525 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2526 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2527 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2528 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2529 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2530 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2531 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2532 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2533
64366f1c 2534/* AltiVec registers. */
1fcc0bb8
EZ
2535#define PPC_ALTIVEC_REGS \
2536 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2537 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2538 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2539 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2540 /*151*/R4(vscr), R4(vrsave)
2541
c8001721 2542
6ced10dd
JB
2543/* On machines supporting the SPE APU, the general-purpose registers
2544 are 64 bits long. There are SIMD vector instructions to treat them
2545 as pairs of floats, but the rest of the instruction set treats them
2546 as 32-bit registers, and only operates on their lower halves.
2547
2548 In the GDB regcache, we treat their high and low halves as separate
2549 registers. The low halves we present as the general-purpose
2550 registers, and then we have pseudo-registers that stitch together
2551 the upper and lower halves and present them as pseudo-registers. */
2552
2553/* SPE GPR lower halves --- raw registers. */
2554#define PPC_SPE_GP_REGS \
2555 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2556 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2557 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2558 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2559
2560/* SPE GPR upper halves --- anonymous raw registers. */
2561#define PPC_SPE_UPPER_GP_REGS \
2562 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2563 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2564 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2565 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2566
2567/* SPE GPR vector registers --- pseudo registers based on underlying
2568 gprs and the anonymous upper half raw registers. */
2569#define PPC_EV_PSEUDO_REGS \
2570/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2571/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2572/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2573/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2574
7a78ae4e 2575/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2576 user-level SPR's. */
7a78ae4e 2577static const struct reg registers_power[] =
c906108c 2578{
7a78ae4e 2579 COMMON_UISA_REGS,
13ac140c 2580 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2581 /* 71 */ R4(fpscr)
c906108c
SS
2582};
2583
7a78ae4e 2584/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2585 view of the PowerPC. */
7a78ae4e 2586static const struct reg registers_powerpc[] =
c906108c 2587{
7a78ae4e 2588 COMMON_UISA_REGS,
1fcc0bb8
EZ
2589 PPC_UISA_SPRS,
2590 PPC_ALTIVEC_REGS
c906108c
SS
2591};
2592
13ac140c
JB
2593/* IBM PowerPC 403.
2594
2595 Some notes about the "tcr" special-purpose register:
2596 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2597 403's programmable interval timer, fixed interval timer, and
2598 watchdog timer.
2599 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2600 watchdog timer, and nothing else.
2601
2602 Some of the fields are similar between the two, but they're not
2603 compatible with each other. Since the two variants have different
2604 registers, with different numbers, but the same name, we can't
2605 splice the register name to get the SPR number. */
7a78ae4e 2606static const struct reg registers_403[] =
c5aa993b 2607{
7a78ae4e
ND
2608 COMMON_UISA_REGS,
2609 PPC_UISA_SPRS,
2610 PPC_SEGMENT_REGS,
2611 PPC_OEA_SPRS,
13ac140c
JB
2612 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2613 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2614 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2615 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2616 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2617 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2618};
2619
13ac140c
JB
2620/* IBM PowerPC 403GC.
2621 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2622static const struct reg registers_403GC[] =
c5aa993b 2623{
7a78ae4e
ND
2624 COMMON_UISA_REGS,
2625 PPC_UISA_SPRS,
2626 PPC_SEGMENT_REGS,
2627 PPC_OEA_SPRS,
13ac140c
JB
2628 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2629 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2630 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2631 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2632 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2633 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2634 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2635 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2636};
2637
64366f1c 2638/* Motorola PowerPC 505. */
7a78ae4e 2639static const struct reg registers_505[] =
c5aa993b 2640{
7a78ae4e
ND
2641 COMMON_UISA_REGS,
2642 PPC_UISA_SPRS,
2643 PPC_SEGMENT_REGS,
2644 PPC_OEA_SPRS,
13ac140c 2645 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2646};
2647
64366f1c 2648/* Motorola PowerPC 860 or 850. */
7a78ae4e 2649static const struct reg registers_860[] =
c5aa993b 2650{
7a78ae4e
ND
2651 COMMON_UISA_REGS,
2652 PPC_UISA_SPRS,
2653 PPC_SEGMENT_REGS,
2654 PPC_OEA_SPRS,
13ac140c
JB
2655 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2656 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2657 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2658 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2659 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2660 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2661 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2662 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2663 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2664 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2665 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2666 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2667};
2668
7a78ae4e
ND
2669/* Motorola PowerPC 601. Note that the 601 has different register numbers
2670 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2671 register is the stub's problem. */
7a78ae4e 2672static const struct reg registers_601[] =
c5aa993b 2673{
7a78ae4e
ND
2674 COMMON_UISA_REGS,
2675 PPC_UISA_SPRS,
2676 PPC_SEGMENT_REGS,
2677 PPC_OEA_SPRS,
13ac140c
JB
2678 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2679 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2680};
2681
13ac140c
JB
2682/* Motorola PowerPC 602.
2683 See the notes under the 403 about 'tcr'. */
7a78ae4e 2684static const struct reg registers_602[] =
c5aa993b 2685{
7a78ae4e
ND
2686 COMMON_UISA_REGS,
2687 PPC_UISA_SPRS,
2688 PPC_SEGMENT_REGS,
2689 PPC_OEA_SPRS,
13ac140c
JB
2690 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2691 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2692 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2693};
2694
64366f1c 2695/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2696static const struct reg registers_603[] =
c5aa993b 2697{
7a78ae4e
ND
2698 COMMON_UISA_REGS,
2699 PPC_UISA_SPRS,
2700 PPC_SEGMENT_REGS,
2701 PPC_OEA_SPRS,
13ac140c
JB
2702 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2703 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2704 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2705};
2706
64366f1c 2707/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2708static const struct reg registers_604[] =
c5aa993b 2709{
7a78ae4e
ND
2710 COMMON_UISA_REGS,
2711 PPC_UISA_SPRS,
2712 PPC_SEGMENT_REGS,
2713 PPC_OEA_SPRS,
13ac140c
JB
2714 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2715 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2716 /* 127 */ S(sia), S(sda)
c906108c
SS
2717};
2718
64366f1c 2719/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2720static const struct reg registers_750[] =
c5aa993b 2721{
7a78ae4e
ND
2722 COMMON_UISA_REGS,
2723 PPC_UISA_SPRS,
2724 PPC_SEGMENT_REGS,
2725 PPC_OEA_SPRS,
13ac140c
JB
2726 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2727 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2728 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2729 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2730 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2731 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2732};
2733
2734
64366f1c 2735/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2736static const struct reg registers_7400[] =
2737{
2738 /* gpr0-gpr31, fpr0-fpr31 */
2739 COMMON_UISA_REGS,
13c7b1ca 2740 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2741 PPC_UISA_SPRS,
2742 /* sr0-sr15 */
2743 PPC_SEGMENT_REGS,
2744 PPC_OEA_SPRS,
2745 /* vr0-vr31, vrsave, vscr */
2746 PPC_ALTIVEC_REGS
2747 /* FIXME? Add more registers? */
2748};
2749
c8001721
EZ
2750/* Motorola e500. */
2751static const struct reg registers_e500[] =
2752{
6ced10dd
JB
2753 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2754 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2755 /* 64 .. 65 */ R(pc), R(ps),
2756 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2757 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2758 /* NOTE: Add new registers here the end of the raw register
2759 list and just before the first pseudo register. */
6ced10dd 2760 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2761};
2762
c906108c 2763/* Information about a particular processor variant. */
7a78ae4e 2764
c906108c 2765struct variant
c5aa993b
JM
2766 {
2767 /* Name of this variant. */
2768 char *name;
c906108c 2769
c5aa993b
JM
2770 /* English description of the variant. */
2771 char *description;
c906108c 2772
64366f1c 2773 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2774 enum bfd_architecture arch;
2775
64366f1c 2776 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2777 unsigned long mach;
2778
489461e2
EZ
2779 /* Number of real registers. */
2780 int nregs;
2781
2782 /* Number of pseudo registers. */
2783 int npregs;
2784
2785 /* Number of total registers (the sum of nregs and npregs). */
2786 int num_tot_regs;
2787
c5aa993b
JM
2788 /* Table of register names; registers[R] is the name of the register
2789 number R. */
7a78ae4e 2790 const struct reg *regs;
c5aa993b 2791 };
c906108c 2792
489461e2
EZ
2793#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2794
2795static int
2796num_registers (const struct reg *reg_list, int num_tot_regs)
2797{
2798 int i;
2799 int nregs = 0;
2800
2801 for (i = 0; i < num_tot_regs; i++)
2802 if (!reg_list[i].pseudo)
2803 nregs++;
2804
2805 return nregs;
2806}
2807
2808static int
2809num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2810{
2811 int i;
2812 int npregs = 0;
2813
2814 for (i = 0; i < num_tot_regs; i++)
2815 if (reg_list[i].pseudo)
2816 npregs ++;
2817
2818 return npregs;
2819}
c906108c 2820
c906108c
SS
2821/* Information in this table comes from the following web sites:
2822 IBM: http://www.chips.ibm.com:80/products/embedded/
2823 Motorola: http://www.mot.com/SPS/PowerPC/
2824
2825 I'm sure I've got some of the variant descriptions not quite right.
2826 Please report any inaccuracies you find to GDB's maintainer.
2827
2828 If you add entries to this table, please be sure to allow the new
2829 value as an argument to the --with-cpu flag, in configure.in. */
2830
489461e2 2831static struct variant variants[] =
c906108c 2832{
489461e2 2833
7a78ae4e 2834 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2835 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2836 registers_powerpc},
7a78ae4e 2837 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2838 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2839 registers_power},
7a78ae4e 2840 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2841 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2842 registers_403},
7a78ae4e 2843 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2844 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2845 registers_601},
7a78ae4e 2846 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2847 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2848 registers_602},
7a78ae4e 2849 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2850 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2851 registers_603},
7a78ae4e 2852 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2853 604, -1, -1, tot_num_registers (registers_604),
2854 registers_604},
7a78ae4e 2855 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2856 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2857 registers_403GC},
7a78ae4e 2858 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2859 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2860 registers_505},
7a78ae4e 2861 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2862 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2863 registers_860},
7a78ae4e 2864 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2865 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2866 registers_750},
1fcc0bb8 2867 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2868 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2869 registers_7400},
c8001721
EZ
2870 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2871 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2872 registers_e500},
7a78ae4e 2873
5d57ee30
KB
2874 /* 64-bit */
2875 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2876 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2877 registers_powerpc},
7a78ae4e 2878 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2879 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2880 registers_powerpc},
5d57ee30 2881 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2882 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2883 registers_powerpc},
7a78ae4e 2884 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2885 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2886 registers_powerpc},
5d57ee30 2887 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2888 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2889 registers_powerpc},
5d57ee30 2890 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2891 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2892 registers_powerpc},
5d57ee30 2893
64366f1c 2894 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2895 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2896 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2897 registers_power},
7a78ae4e 2898 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2899 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2900 registers_power},
7a78ae4e 2901 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2902 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2903 registers_power},
7a78ae4e 2904
489461e2 2905 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2906};
2907
64366f1c 2908/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2909
2910static void
2911init_variants (void)
2912{
2913 struct variant *v;
2914
2915 for (v = variants; v->name; v++)
2916 {
2917 if (v->nregs == -1)
2918 v->nregs = num_registers (v->regs, v->num_tot_regs);
2919 if (v->npregs == -1)
2920 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2921 }
2922}
c906108c 2923
7a78ae4e 2924/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2925 MACH. If no such variant exists, return null. */
c906108c 2926
7a78ae4e
ND
2927static const struct variant *
2928find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2929{
7a78ae4e 2930 const struct variant *v;
c5aa993b 2931
7a78ae4e
ND
2932 for (v = variants; v->name; v++)
2933 if (arch == v->arch && mach == v->mach)
2934 return v;
c906108c 2935
7a78ae4e 2936 return NULL;
c906108c 2937}
9364a0ef
EZ
2938
2939static int
2940gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2941{
ee4f0f76
DJ
2942 if (!info->disassembler_options)
2943 info->disassembler_options = "any";
2944
9364a0ef
EZ
2945 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2946 return print_insn_big_powerpc (memaddr, info);
2947 else
2948 return print_insn_little_powerpc (memaddr, info);
2949}
7a78ae4e 2950\f
61a65099
KB
2951static CORE_ADDR
2952rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2953{
2954 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2955}
2956
2957static struct frame_id
2958rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2959{
2960 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2961 SP_REGNUM),
2962 frame_pc_unwind (next_frame));
2963}
2964
2965struct rs6000_frame_cache
2966{
2967 CORE_ADDR base;
2968 CORE_ADDR initial_sp;
2969 struct trad_frame_saved_reg *saved_regs;
2970};
2971
2972static struct rs6000_frame_cache *
2973rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2974{
2975 struct rs6000_frame_cache *cache;
2976 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2977 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2978 struct rs6000_framedata fdata;
2979 int wordsize = tdep->wordsize;
e10b1c4c 2980 CORE_ADDR func, pc;
61a65099
KB
2981
2982 if ((*this_cache) != NULL)
2983 return (*this_cache);
2984 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2985 (*this_cache) = cache;
2986 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2987
93d42b30 2988 func = frame_func_unwind (next_frame, NORMAL_FRAME);
e10b1c4c
DJ
2989 pc = frame_pc_unwind (next_frame);
2990 skip_prologue (func, pc, &fdata);
2991
2992 /* Figure out the parent's stack pointer. */
2993
2994 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2995 address of the current frame. Things might be easier if the
2996 ->frame pointed to the outer-most address of the frame. In
2997 the mean time, the address of the prev frame is used as the
2998 base address of this frame. */
2999 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3000
3001 /* If the function appears to be frameless, check a couple of likely
3002 indicators that we have simply failed to find the frame setup.
3003 Two common cases of this are missing symbols (i.e.
3004 frame_func_unwind returns the wrong address or 0), and assembly
3005 stubs which have a fast exit path but set up a frame on the slow
3006 path.
3007
3008 If the LR appears to return to this function, then presume that
3009 we have an ABI compliant frame that we failed to find. */
3010 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3011 {
e10b1c4c
DJ
3012 CORE_ADDR saved_lr;
3013 int make_frame = 0;
3014
3015 saved_lr = frame_unwind_register_unsigned (next_frame,
3016 tdep->ppc_lr_regnum);
3017 if (func == 0 && saved_lr == pc)
3018 make_frame = 1;
3019 else if (func != 0)
3020 {
3021 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3022 if (func == saved_func)
3023 make_frame = 1;
3024 }
3025
3026 if (make_frame)
3027 {
3028 fdata.frameless = 0;
de6a76fd 3029 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3030 }
61a65099 3031 }
e10b1c4c
DJ
3032
3033 if (!fdata.frameless)
3034 /* Frameless really means stackless. */
3035 cache->base = read_memory_addr (cache->base, wordsize);
3036
61a65099
KB
3037 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
3038
3039 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3040 All fpr's from saved_fpr to fp31 are saved. */
3041
3042 if (fdata.saved_fpr >= 0)
3043 {
3044 int i;
3045 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3046
3047 /* If skip_prologue says floating-point registers were saved,
3048 but the current architecture has no floating-point registers,
3049 then that's strange. But we have no indices to even record
3050 the addresses under, so we just ignore it. */
3051 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3052 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3053 {
3054 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3055 fpr_addr += 8;
3056 }
61a65099
KB
3057 }
3058
3059 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
3060 All gpr's from saved_gpr to gpr31 are saved. */
3061
3062 if (fdata.saved_gpr >= 0)
3063 {
3064 int i;
3065 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3066 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
3067 {
3068 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
3069 gpr_addr += wordsize;
3070 }
3071 }
3072
3073 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3074 All vr's from saved_vr to vr31 are saved. */
3075 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3076 {
3077 if (fdata.saved_vr >= 0)
3078 {
3079 int i;
3080 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3081 for (i = fdata.saved_vr; i < 32; i++)
3082 {
3083 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3084 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3085 }
3086 }
3087 }
3088
3089 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
3090 All vr's from saved_ev to ev31 are saved. ????? */
3091 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
3092 {
3093 if (fdata.saved_ev >= 0)
3094 {
3095 int i;
3096 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 3097 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3098 {
3099 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
3100 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
3101 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
3102 }
3103 }
3104 }
3105
3106 /* If != 0, fdata.cr_offset is the offset from the frame that
3107 holds the CR. */
3108 if (fdata.cr_offset != 0)
3109 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
3110
3111 /* If != 0, fdata.lr_offset is the offset from the frame that
3112 holds the LR. */
3113 if (fdata.lr_offset != 0)
3114 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
3115 /* The PC is found in the link register. */
3116 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
3117
3118 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3119 holds the VRSAVE. */
3120 if (fdata.vrsave_offset != 0)
3121 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
3122
3123 if (fdata.alloca_reg < 0)
3124 /* If no alloca register used, then fi->frame is the value of the
3125 %sp for this frame, and it is good enough. */
3126 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
3127 else
3128 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
3129 fdata.alloca_reg);
3130
3131 return cache;
3132}
3133
3134static void
3135rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
3136 struct frame_id *this_id)
3137{
3138 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3139 this_cache);
93d42b30
DJ
3140 (*this_id) = frame_id_build (info->base,
3141 frame_func_unwind (next_frame, NORMAL_FRAME));
61a65099
KB
3142}
3143
3144static void
3145rs6000_frame_prev_register (struct frame_info *next_frame,
3146 void **this_cache,
3147 int regnum, int *optimizedp,
3148 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3149 int *realnump, gdb_byte *valuep)
61a65099
KB
3150{
3151 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3152 this_cache);
1f67027d
AC
3153 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3154 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3155}
3156
3157static const struct frame_unwind rs6000_frame_unwind =
3158{
3159 NORMAL_FRAME,
3160 rs6000_frame_this_id,
3161 rs6000_frame_prev_register
3162};
3163
3164static const struct frame_unwind *
3165rs6000_frame_sniffer (struct frame_info *next_frame)
3166{
3167 return &rs6000_frame_unwind;
3168}
3169
3170\f
3171
3172static CORE_ADDR
3173rs6000_frame_base_address (struct frame_info *next_frame,
3174 void **this_cache)
3175{
3176 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3177 this_cache);
3178 return info->initial_sp;
3179}
3180
3181static const struct frame_base rs6000_frame_base = {
3182 &rs6000_frame_unwind,
3183 rs6000_frame_base_address,
3184 rs6000_frame_base_address,
3185 rs6000_frame_base_address
3186};
3187
3188static const struct frame_base *
3189rs6000_frame_base_sniffer (struct frame_info *next_frame)
3190{
3191 return &rs6000_frame_base;
3192}
3193
7a78ae4e
ND
3194/* Initialize the current architecture based on INFO. If possible, re-use an
3195 architecture from ARCHES, which is a list of architectures already created
3196 during this debugging session.
c906108c 3197
7a78ae4e 3198 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3199 a binary file. */
c906108c 3200
7a78ae4e
ND
3201static struct gdbarch *
3202rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3203{
3204 struct gdbarch *gdbarch;
3205 struct gdbarch_tdep *tdep;
708ff411 3206 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3207 struct reg *regs;
3208 const struct variant *v;
3209 enum bfd_architecture arch;
3210 unsigned long mach;
3211 bfd abfd;
7b112f9c 3212 int sysv_abi;
5bf1c677 3213 asection *sect;
7a78ae4e 3214
9aa1e687 3215 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3216 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3217
9aa1e687
KB
3218 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3219 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3220
3221 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3222
e712c1cf 3223 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3224 that, else choose a likely default. */
9aa1e687 3225 if (from_xcoff_exec)
c906108c 3226 {
11ed25ac 3227 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3228 wordsize = 8;
3229 else
3230 wordsize = 4;
c906108c 3231 }
9aa1e687
KB
3232 else if (from_elf_exec)
3233 {
3234 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3235 wordsize = 8;
3236 else
3237 wordsize = 4;
3238 }
c906108c 3239 else
7a78ae4e 3240 {
27b15785
KB
3241 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3242 wordsize = info.bfd_arch_info->bits_per_word /
3243 info.bfd_arch_info->bits_per_byte;
3244 else
3245 wordsize = 4;
7a78ae4e 3246 }
c906108c 3247
13c0b536 3248 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3249 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3250 arches != NULL;
3251 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3252 {
3253 /* Word size in the various PowerPC bfd_arch_info structs isn't
3254 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3255 separate word size check. */
7a78ae4e 3256 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3257 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3258 return arches->gdbarch;
3259 }
c906108c 3260
7a78ae4e
ND
3261 /* None found, create a new architecture from INFO, whose bfd_arch_info
3262 validity depends on the source:
3263 - executable useless
3264 - rs6000_host_arch() good
3265 - core file good
3266 - "set arch" trust blindly
3267 - GDB startup useless but harmless */
c906108c 3268
9aa1e687 3269 if (!from_xcoff_exec)
c906108c 3270 {
b732d07d 3271 arch = info.bfd_arch_info->arch;
7a78ae4e 3272 mach = info.bfd_arch_info->mach;
c906108c 3273 }
7a78ae4e 3274 else
c906108c 3275 {
7a78ae4e 3276 arch = bfd_arch_powerpc;
35cec841 3277 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3278 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3279 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3280 }
3281 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3282 tdep->wordsize = wordsize;
5bf1c677
EZ
3283
3284 /* For e500 executables, the apuinfo section is of help here. Such
3285 section contains the identifier and revision number of each
3286 Application-specific Processing Unit that is present on the
3287 chip. The content of the section is determined by the assembler
3288 which looks at each instruction and determines which unit (and
3289 which version of it) can execute it. In our case we just look for
3290 the existance of the section. */
3291
3292 if (info.abfd)
3293 {
3294 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3295 if (sect)
3296 {
3297 arch = info.bfd_arch_info->arch;
3298 mach = bfd_mach_ppc_e500;
3299 bfd_default_set_arch_mach (&abfd, arch, mach);
3300 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3301 }
3302 }
3303
7a78ae4e 3304 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3305
489461e2
EZ
3306 /* Initialize the number of real and pseudo registers in each variant. */
3307 init_variants ();
3308
64366f1c 3309 /* Choose variant. */
7a78ae4e
ND
3310 v = find_variant_by_arch (arch, mach);
3311 if (!v)
dd47e6fd
EZ
3312 return NULL;
3313
7a78ae4e
ND
3314 tdep->regs = v->regs;
3315
2188cbdd 3316 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3317 tdep->ppc_toc_regnum = 2;
3318 tdep->ppc_ps_regnum = 65;
3319 tdep->ppc_cr_regnum = 66;
3320 tdep->ppc_lr_regnum = 67;
3321 tdep->ppc_ctr_regnum = 68;
3322 tdep->ppc_xer_regnum = 69;
3323 if (v->mach == bfd_mach_ppc_601)
3324 tdep->ppc_mq_regnum = 124;
708ff411 3325 else if (arch == bfd_arch_rs6000)
2188cbdd 3326 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3327 else
3328 tdep->ppc_mq_regnum = -1;
366f009f 3329 tdep->ppc_fp0_regnum = 32;
708ff411 3330 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3331 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3332 tdep->ppc_vr0_regnum = -1;
3333 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3334 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3335 tdep->ppc_ev0_regnum = -1;
3336 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3337 tdep->ppc_acc_regnum = -1;
3338 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3339
c8001721
EZ
3340 set_gdbarch_pc_regnum (gdbarch, 64);
3341 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3342 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
6f7f3f0d 3343 set_gdbarch_fp0_regnum (gdbarch, 32);
9f643768 3344 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3345 if (sysv_abi && wordsize == 8)
05580c65 3346 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3347 else if (sysv_abi && wordsize == 4)
05580c65 3348 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75 3349 else
d217aaed 3350 set_gdbarch_return_value (gdbarch, rs6000_return_value);
c8001721 3351
baffbae0
JB
3352 /* Set lr_frame_offset. */
3353 if (wordsize == 8)
3354 tdep->lr_frame_offset = 16;
3355 else if (sysv_abi)
3356 tdep->lr_frame_offset = 4;
3357 else
3358 tdep->lr_frame_offset = 8;
3359
f86a7158
JB
3360 if (v->arch == bfd_arch_rs6000)
3361 tdep->ppc_sr0_regnum = -1;
3362 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3363 switch (v->mach)
3364 {
3365 case bfd_mach_ppc:
412b3060 3366 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3367 tdep->ppc_vr0_regnum = 71;
3368 tdep->ppc_vrsave_regnum = 104;
3369 break;
3370 case bfd_mach_ppc_7400:
3371 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3372 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3373 break;
3374 case bfd_mach_ppc_e500:
c8001721 3375 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3376 tdep->ppc_ev0_upper_regnum = 32;
3377 tdep->ppc_ev0_regnum = 73;
3378 tdep->ppc_ev31_regnum = 104;
3379 tdep->ppc_acc_regnum = 71;
3380 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3381 tdep->ppc_fp0_regnum = -1;
3382 tdep->ppc_fpscr_regnum = -1;
f86a7158 3383 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3384 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3385 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3386 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3387 break;
f86a7158
JB
3388
3389 case bfd_mach_ppc64:
3390 case bfd_mach_ppc_620:
3391 case bfd_mach_ppc_630:
3392 case bfd_mach_ppc_a35:
3393 case bfd_mach_ppc_rs64ii:
3394 case bfd_mach_ppc_rs64iii:
3395 /* These processor's register sets don't have segment registers. */
3396 tdep->ppc_sr0_regnum = -1;
3397 break;
1fcc0bb8 3398 }
f86a7158
JB
3399 else
3400 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3401 _("rs6000_gdbarch_init: "
3402 "received unexpected BFD 'arch' value"));
1fcc0bb8 3403
e0d24f8d
WZ
3404 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3405
338ef23d
AC
3406 /* Sanity check on registers. */
3407 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3408
56a6dfb9 3409 /* Select instruction printer. */
708ff411 3410 if (arch == bfd_arch_rs6000)
9364a0ef 3411 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3412 else
9364a0ef 3413 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3414
7a78ae4e 3415 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3416
3417 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3418 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3419 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3420 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3421 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3422
3423 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3424 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3425 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3426 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3427 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3428 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3429 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3430 if (sysv_abi)
3431 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3432 else
3433 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3434 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3435
11269d7e 3436 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3437 if (sysv_abi && wordsize == 8)
3438 /* PPC64 SYSV. */
3439 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3440 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3441 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3442 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3443 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3444 224. */
3445 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3446
691d145a
JB
3447 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3448 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3449 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3450
18ed0c4e
JB
3451 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3452 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 3453
2ea5f656 3454 if (sysv_abi && wordsize == 4)
77b2b6d4 3455 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3456 else if (sysv_abi && wordsize == 8)
3457 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3458 else
77b2b6d4 3459 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3460
7a78ae4e 3461 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
0d1243d9
PG
3462 set_gdbarch_in_function_epilogue_p (gdbarch, rs6000_in_function_epilogue_p);
3463
7a78ae4e 3464 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3465 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3466
6066c3de
AC
3467 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3468 for the descriptor and ".FN" for the entry-point -- a user
3469 specifying "break FN" will unexpectedly end up with a breakpoint
3470 on the descriptor and not the function. This architecture method
3471 transforms any breakpoints on descriptors into breakpoints on the
3472 corresponding entry point. */
3473 if (sysv_abi && wordsize == 8)
3474 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3475
7a78ae4e
ND
3476 /* Not sure on this. FIXMEmgo */
3477 set_gdbarch_frame_args_skip (gdbarch, 8);
3478
15813d3f
AC
3479 if (!sysv_abi)
3480 {
3481 /* Handle RS/6000 function pointers (which are really function
3482 descriptors). */
f517ea4e
PS
3483 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3484 rs6000_convert_from_func_ptr_addr);
9aa1e687 3485 }
7a78ae4e 3486
143985b7
AF
3487 /* Helpers for function argument information. */
3488 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3489
6f7f3f0d
UW
3490 /* Trampoline. */
3491 set_gdbarch_in_solib_return_trampoline
3492 (gdbarch, rs6000_in_solib_return_trampoline);
3493 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
3494
4fc771b8
DJ
3495 /* Hook in the DWARF CFI frame unwinder. */
3496 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
3497 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
3498
7b112f9c 3499 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3500 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3501
61a65099
KB
3502 switch (info.osabi)
3503 {
f5aecab8
PG
3504 case GDB_OSABI_LINUX:
3505 /* FIXME: pgilliam/2005-10-21: Assume all PowerPC 64-bit linux systems
3506 have altivec registers. If not, ptrace will fail the first time it's
3507 called to access one and will not be called again. This wart will
3508 be removed when Daniel Jacobowitz's proposal for autodetecting target
3509 registers is implemented. */
3510 if ((v->arch == bfd_arch_powerpc) && ((v->mach)== bfd_mach_ppc64))
3511 {
3512 tdep->ppc_vr0_regnum = 71;
3513 tdep->ppc_vrsave_regnum = 104;
3514 }
3515 /* Fall Thru */
61a65099
KB
3516 case GDB_OSABI_NETBSD_AOUT:
3517 case GDB_OSABI_NETBSD_ELF:
3518 case GDB_OSABI_UNKNOWN:
61a65099
KB
3519 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3520 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3521 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3522 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3523 break;
3524 default:
61a65099 3525 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3526
3527 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3528 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3529 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3530 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3531 }
3532
9f643768
JB
3533 init_sim_regno_table (gdbarch);
3534
7a78ae4e 3535 return gdbarch;
c906108c
SS
3536}
3537
7b112f9c
JT
3538static void
3539rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3540{
3541 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3542
3543 if (tdep == NULL)
3544 return;
3545
4be87837 3546 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3547}
3548
c906108c
SS
3549/* Initialization code. */
3550
a78f21af 3551extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3552
c906108c 3553void
fba45db2 3554_initialize_rs6000_tdep (void)
c906108c 3555{
7b112f9c
JT
3556 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3557 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
c906108c 3558}
This page took 1.024941 seconds and 4 git commands to generate.