2003-11-07 Christian Groessler <chris@groessler.org>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
7a78ae4e
ND
213static CORE_ADDR
214rs6000_frame_args_address (struct frame_info *fi)
c906108c 215{
c9012c71
AC
216 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
217 if (extra_info->initial_sp != 0)
218 return extra_info->initial_sp;
c906108c
SS
219 else
220 return frame_initial_stack_address (fi);
221}
222
7a78ae4e
ND
223/* Immediately after a function call, return the saved pc.
224 Can't go through the frames for this because on some machines
225 the new frame is not set up until the new function executes
226 some instructions. */
227
228static CORE_ADDR
229rs6000_saved_pc_after_call (struct frame_info *fi)
230{
2188cbdd 231 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 232}
c906108c 233
143985b7 234/* Get the ith function argument for the current function. */
b9362cc7 235static CORE_ADDR
143985b7
AF
236rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
237 struct type *type)
238{
239 CORE_ADDR addr;
7f5f525d 240 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
241 return addr;
242}
243
c906108c
SS
244/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
245
246static CORE_ADDR
7a78ae4e 247branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
248{
249 CORE_ADDR dest;
250 int immediate;
251 int absolute;
252 int ext_op;
253
254 absolute = (int) ((instr >> 1) & 1);
255
c5aa993b
JM
256 switch (opcode)
257 {
258 case 18:
259 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
260 if (absolute)
261 dest = immediate;
262 else
263 dest = pc + immediate;
264 break;
265
266 case 16:
267 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
268 if (absolute)
269 dest = immediate;
270 else
271 dest = pc + immediate;
272 break;
273
274 case 19:
275 ext_op = (instr >> 1) & 0x3ff;
276
277 if (ext_op == 16) /* br conditional register */
278 {
2188cbdd 279 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
280
281 /* If we are about to return from a signal handler, dest is
282 something like 0x3c90. The current frame is a signal handler
283 caller frame, upon completion of the sigreturn system call
284 execution will return to the saved PC in the frame. */
285 if (dest < TEXT_SEGMENT_BASE)
286 {
287 struct frame_info *fi;
288
289 fi = get_current_frame ();
290 if (fi != NULL)
8b36eed8 291 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 292 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
293 }
294 }
295
296 else if (ext_op == 528) /* br cond to count reg */
297 {
2188cbdd 298 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
299
300 /* If we are about to execute a system call, dest is something
301 like 0x22fc or 0x3b00. Upon completion the system call
302 will return to the address in the link register. */
303 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 304 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
305 }
306 else
307 return -1;
308 break;
c906108c 309
c5aa993b
JM
310 default:
311 return -1;
312 }
c906108c
SS
313 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
314}
315
316
317/* Sequence of bytes for breakpoint instruction. */
318
f4f9705a 319const static unsigned char *
7a78ae4e 320rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 321{
aaab4dba
AC
322 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
323 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 324 *bp_size = 4;
d7449b42 325 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
326 return big_breakpoint;
327 else
328 return little_breakpoint;
329}
330
331
332/* AIX does not support PT_STEP. Simulate it. */
333
334void
379d08a1
AC
335rs6000_software_single_step (enum target_signal signal,
336 int insert_breakpoints_p)
c906108c 337{
7c40d541
KB
338 CORE_ADDR dummy;
339 int breakp_sz;
f4f9705a 340 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
341 int ii, insn;
342 CORE_ADDR loc;
343 CORE_ADDR breaks[2];
344 int opcode;
345
c5aa993b
JM
346 if (insert_breakpoints_p)
347 {
c906108c 348
c5aa993b 349 loc = read_pc ();
c906108c 350
c5aa993b 351 insn = read_memory_integer (loc, 4);
c906108c 352
7c40d541 353 breaks[0] = loc + breakp_sz;
c5aa993b
JM
354 opcode = insn >> 26;
355 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 356
c5aa993b
JM
357 /* Don't put two breakpoints on the same address. */
358 if (breaks[1] == breaks[0])
359 breaks[1] = -1;
c906108c 360
c5aa993b 361 stepBreaks[1].address = 0;
c906108c 362
c5aa993b
JM
363 for (ii = 0; ii < 2; ++ii)
364 {
c906108c 365
c5aa993b
JM
366 /* ignore invalid breakpoint. */
367 if (breaks[ii] == -1)
368 continue;
7c40d541 369 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
370 stepBreaks[ii].address = breaks[ii];
371 }
c906108c 372
c5aa993b
JM
373 }
374 else
375 {
c906108c 376
c5aa993b
JM
377 /* remove step breakpoints. */
378 for (ii = 0; ii < 2; ++ii)
379 if (stepBreaks[ii].address != 0)
7c40d541
KB
380 target_remove_breakpoint (stepBreaks[ii].address,
381 stepBreaks[ii].data);
c5aa993b 382 }
c906108c 383 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 384 /* What errors? {read,write}_memory call error(). */
c906108c
SS
385}
386
387
388/* return pc value after skipping a function prologue and also return
389 information about a function frame.
390
391 in struct rs6000_framedata fdata:
c5aa993b
JM
392 - frameless is TRUE, if function does not have a frame.
393 - nosavedpc is TRUE, if function does not save %pc value in its frame.
394 - offset is the initial size of this stack frame --- the amount by
395 which we decrement the sp to allocate the frame.
396 - saved_gpr is the number of the first saved gpr.
397 - saved_fpr is the number of the first saved fpr.
6be8bc0c 398 - saved_vr is the number of the first saved vr.
96ff0de4 399 - saved_ev is the number of the first saved ev.
c5aa993b
JM
400 - alloca_reg is the number of the register used for alloca() handling.
401 Otherwise -1.
402 - gpr_offset is the offset of the first saved gpr from the previous frame.
403 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 404 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 405 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
406 - lr_offset is the offset of the saved lr
407 - cr_offset is the offset of the saved cr
6be8bc0c 408 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 409 */
c906108c
SS
410
411#define SIGNED_SHORT(x) \
412 ((sizeof (short) == 2) \
413 ? ((int)(short)(x)) \
414 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
415
416#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
417
55d05f3b
KB
418/* Limit the number of skipped non-prologue instructions, as the examining
419 of the prologue is expensive. */
420static int max_skip_non_prologue_insns = 10;
421
422/* Given PC representing the starting address of a function, and
423 LIM_PC which is the (sloppy) limit to which to scan when looking
424 for a prologue, attempt to further refine this limit by using
425 the line data in the symbol table. If successful, a better guess
426 on where the prologue ends is returned, otherwise the previous
427 value of lim_pc is returned. */
428static CORE_ADDR
429refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
430{
431 struct symtab_and_line prologue_sal;
432
433 prologue_sal = find_pc_line (pc, 0);
434 if (prologue_sal.line != 0)
435 {
436 int i;
437 CORE_ADDR addr = prologue_sal.end;
438
439 /* Handle the case in which compiler's optimizer/scheduler
440 has moved instructions into the prologue. We scan ahead
441 in the function looking for address ranges whose corresponding
442 line number is less than or equal to the first one that we
443 found for the function. (It can be less than when the
444 scheduler puts a body instruction before the first prologue
445 instruction.) */
446 for (i = 2 * max_skip_non_prologue_insns;
447 i > 0 && (lim_pc == 0 || addr < lim_pc);
448 i--)
449 {
450 struct symtab_and_line sal;
451
452 sal = find_pc_line (addr, 0);
453 if (sal.line == 0)
454 break;
455 if (sal.line <= prologue_sal.line
456 && sal.symtab == prologue_sal.symtab)
457 {
458 prologue_sal = sal;
459 }
460 addr = sal.end;
461 }
462
463 if (lim_pc == 0 || prologue_sal.end < lim_pc)
464 lim_pc = prologue_sal.end;
465 }
466 return lim_pc;
467}
468
469
7a78ae4e 470static CORE_ADDR
077276e8 471skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
472{
473 CORE_ADDR orig_pc = pc;
55d05f3b 474 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 475 CORE_ADDR li_found_pc = 0;
c906108c
SS
476 char buf[4];
477 unsigned long op;
478 long offset = 0;
6be8bc0c 479 long vr_saved_offset = 0;
482ca3f5
KB
480 int lr_reg = -1;
481 int cr_reg = -1;
6be8bc0c 482 int vr_reg = -1;
96ff0de4
EZ
483 int ev_reg = -1;
484 long ev_offset = 0;
6be8bc0c 485 int vrsave_reg = -1;
c906108c
SS
486 int reg;
487 int framep = 0;
488 int minimal_toc_loaded = 0;
ddb20c56 489 int prev_insn_was_prologue_insn = 1;
55d05f3b 490 int num_skip_non_prologue_insns = 0;
96ff0de4 491 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 492 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 493
55d05f3b
KB
494 /* Attempt to find the end of the prologue when no limit is specified.
495 Note that refine_prologue_limit() has been written so that it may
496 be used to "refine" the limits of non-zero PC values too, but this
497 is only safe if we 1) trust the line information provided by the
498 compiler and 2) iterate enough to actually find the end of the
499 prologue.
500
501 It may become a good idea at some point (for both performance and
502 accuracy) to unconditionally call refine_prologue_limit(). But,
503 until we can make a clear determination that this is beneficial,
504 we'll play it safe and only use it to obtain a limit when none
505 has been specified. */
506 if (lim_pc == 0)
507 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 508
ddb20c56 509 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
510 fdata->saved_gpr = -1;
511 fdata->saved_fpr = -1;
6be8bc0c 512 fdata->saved_vr = -1;
96ff0de4 513 fdata->saved_ev = -1;
c906108c
SS
514 fdata->alloca_reg = -1;
515 fdata->frameless = 1;
516 fdata->nosavedpc = 1;
517
55d05f3b 518 for (;; pc += 4)
c906108c 519 {
ddb20c56
KB
520 /* Sometimes it isn't clear if an instruction is a prologue
521 instruction or not. When we encounter one of these ambiguous
522 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
523 Otherwise, we'll assume that it really is a prologue instruction. */
524 if (prev_insn_was_prologue_insn)
525 last_prologue_pc = pc;
55d05f3b
KB
526
527 /* Stop scanning if we've hit the limit. */
528 if (lim_pc != 0 && pc >= lim_pc)
529 break;
530
ddb20c56
KB
531 prev_insn_was_prologue_insn = 1;
532
55d05f3b 533 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
534 if (target_read_memory (pc, buf, 4))
535 break;
536 op = extract_signed_integer (buf, 4);
c906108c 537
c5aa993b
JM
538 if ((op & 0xfc1fffff) == 0x7c0802a6)
539 { /* mflr Rx */
98f08d3d 540 lr_reg = (op & 0x03e00000);
c5aa993b 541 continue;
c906108c 542
c5aa993b
JM
543 }
544 else if ((op & 0xfc1fffff) == 0x7c000026)
545 { /* mfcr Rx */
98f08d3d 546 cr_reg = (op & 0x03e00000);
c5aa993b 547 continue;
c906108c 548
c906108c 549 }
c5aa993b
JM
550 else if ((op & 0xfc1f0000) == 0xd8010000)
551 { /* stfd Rx,NUM(r1) */
552 reg = GET_SRC_REG (op);
553 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
554 {
555 fdata->saved_fpr = reg;
556 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
557 }
558 continue;
c906108c 559
c5aa993b
JM
560 }
561 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
562 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
563 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
564 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
565 {
566
567 reg = GET_SRC_REG (op);
568 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
569 {
570 fdata->saved_gpr = reg;
7a78ae4e 571 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 572 op &= ~3UL;
c5aa993b
JM
573 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
574 }
575 continue;
c906108c 576
ddb20c56
KB
577 }
578 else if ((op & 0xffff0000) == 0x60000000)
579 {
96ff0de4 580 /* nop */
ddb20c56
KB
581 /* Allow nops in the prologue, but do not consider them to
582 be part of the prologue unless followed by other prologue
583 instructions. */
584 prev_insn_was_prologue_insn = 0;
585 continue;
586
c906108c 587 }
c5aa993b
JM
588 else if ((op & 0xffff0000) == 0x3c000000)
589 { /* addis 0,0,NUM, used
590 for >= 32k frames */
591 fdata->offset = (op & 0x0000ffff) << 16;
592 fdata->frameless = 0;
593 continue;
594
595 }
596 else if ((op & 0xffff0000) == 0x60000000)
597 { /* ori 0,0,NUM, 2nd ha
598 lf of >= 32k frames */
599 fdata->offset |= (op & 0x0000ffff);
600 fdata->frameless = 0;
601 continue;
602
603 }
98f08d3d
KB
604 else if (lr_reg != -1 &&
605 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
606 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
607 /* stw Rx, NUM(r1) */
608 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
609 /* stwu Rx, NUM(r1) */
610 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
611 { /* where Rx == lr */
612 fdata->lr_offset = offset;
c5aa993b
JM
613 fdata->nosavedpc = 0;
614 lr_reg = 0;
98f08d3d
KB
615 if ((op & 0xfc000003) == 0xf8000000 || /* std */
616 (op & 0xfc000000) == 0x90000000) /* stw */
617 {
618 /* Does not update r1, so add displacement to lr_offset. */
619 fdata->lr_offset += SIGNED_SHORT (op);
620 }
c5aa993b
JM
621 continue;
622
623 }
98f08d3d
KB
624 else if (cr_reg != -1 &&
625 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
626 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
627 /* stw Rx, NUM(r1) */
628 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
629 /* stwu Rx, NUM(r1) */
630 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
631 { /* where Rx == cr */
632 fdata->cr_offset = offset;
c5aa993b 633 cr_reg = 0;
98f08d3d
KB
634 if ((op & 0xfc000003) == 0xf8000000 ||
635 (op & 0xfc000000) == 0x90000000)
636 {
637 /* Does not update r1, so add displacement to cr_offset. */
638 fdata->cr_offset += SIGNED_SHORT (op);
639 }
c5aa993b
JM
640 continue;
641
642 }
643 else if (op == 0x48000005)
644 { /* bl .+4 used in
645 -mrelocatable */
646 continue;
647
648 }
649 else if (op == 0x48000004)
650 { /* b .+4 (xlc) */
651 break;
652
c5aa993b 653 }
6be8bc0c
EZ
654 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
655 in V.4 -mminimal-toc */
c5aa993b
JM
656 (op & 0xffff0000) == 0x3bde0000)
657 { /* addi 30,30,foo@l */
658 continue;
c906108c 659
c5aa993b
JM
660 }
661 else if ((op & 0xfc000001) == 0x48000001)
662 { /* bl foo,
663 to save fprs??? */
c906108c 664
c5aa993b 665 fdata->frameless = 0;
6be8bc0c
EZ
666 /* Don't skip over the subroutine call if it is not within
667 the first three instructions of the prologue. */
c5aa993b
JM
668 if ((pc - orig_pc) > 8)
669 break;
670
671 op = read_memory_integer (pc + 4, 4);
672
6be8bc0c
EZ
673 /* At this point, make sure this is not a trampoline
674 function (a function that simply calls another functions,
675 and nothing else). If the next is not a nop, this branch
676 was part of the function prologue. */
c5aa993b
JM
677
678 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
679 break; /* don't skip over
680 this branch */
681 continue;
682
c5aa993b 683 }
98f08d3d
KB
684 /* update stack pointer */
685 else if ((op & 0xfc1f0000) == 0x94010000)
686 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
687 fdata->frameless = 0;
688 fdata->offset = SIGNED_SHORT (op);
689 offset = fdata->offset;
690 continue;
c5aa993b 691 }
98f08d3d
KB
692 else if ((op & 0xfc1f016a) == 0x7c01016e)
693 { /* stwux rX,r1,rY */
694 /* no way to figure out what r1 is going to be */
695 fdata->frameless = 0;
696 offset = fdata->offset;
697 continue;
698 }
699 else if ((op & 0xfc1f0003) == 0xf8010001)
700 { /* stdu rX,NUM(r1) */
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op & ~3UL);
703 offset = fdata->offset;
704 continue;
705 }
706 else if ((op & 0xfc1f016a) == 0x7c01016a)
707 { /* stdux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
c5aa993b
JM
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
c5aa993b 712 }
98f08d3d
KB
713 /* Load up minimal toc pointer */
714 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
715 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 716 && !minimal_toc_loaded)
98f08d3d 717 {
c5aa993b
JM
718 minimal_toc_loaded = 1;
719 continue;
720
f6077098
KB
721 /* move parameters from argument registers to local variable
722 registers */
723 }
724 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
725 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
726 (((op >> 21) & 31) <= 10) &&
96ff0de4 727 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
728 {
729 continue;
730
c5aa993b
JM
731 /* store parameters in stack */
732 }
6be8bc0c 733 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 734 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
735 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
736 {
c5aa993b 737 continue;
c906108c 738
c5aa993b
JM
739 /* store parameters in stack via frame pointer */
740 }
741 else if (framep &&
742 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
743 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
744 (op & 0xfc1f0000) == 0xfc1f0000))
745 { /* frsp, fp?,NUM(r1) */
746 continue;
747
748 /* Set up frame pointer */
749 }
750 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
751 || op == 0x7c3f0b78)
752 { /* mr r31, r1 */
753 fdata->frameless = 0;
754 framep = 1;
6f99cb26 755 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
756 continue;
757
758 /* Another way to set up the frame pointer. */
759 }
760 else if ((op & 0xfc1fffff) == 0x38010000)
761 { /* addi rX, r1, 0x0 */
762 fdata->frameless = 0;
763 framep = 1;
6f99cb26
AC
764 fdata->alloca_reg = (tdep->ppc_gp0_regnum
765 + ((op & ~0x38010000) >> 21));
c5aa993b 766 continue;
c5aa993b 767 }
6be8bc0c
EZ
768 /* AltiVec related instructions. */
769 /* Store the vrsave register (spr 256) in another register for
770 later manipulation, or load a register into the vrsave
771 register. 2 instructions are used: mfvrsave and
772 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
773 and mtspr SPR256, Rn. */
774 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
775 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
776 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
777 {
778 vrsave_reg = GET_SRC_REG (op);
779 continue;
780 }
781 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
782 {
783 continue;
784 }
785 /* Store the register where vrsave was saved to onto the stack:
786 rS is the register where vrsave was stored in a previous
787 instruction. */
788 /* 100100 sssss 00001 dddddddd dddddddd */
789 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
790 {
791 if (vrsave_reg == GET_SRC_REG (op))
792 {
793 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
794 vrsave_reg = -1;
795 }
796 continue;
797 }
798 /* Compute the new value of vrsave, by modifying the register
799 where vrsave was saved to. */
800 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
801 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
802 {
803 continue;
804 }
805 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
806 in a pair of insns to save the vector registers on the
807 stack. */
808 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
809 /* 001110 01110 00000 iiii iiii iiii iiii */
810 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
811 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
812 {
813 li_found_pc = pc;
814 vr_saved_offset = SIGNED_SHORT (op);
815 }
816 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
817 /* 011111 sssss 11111 00000 00111001110 */
818 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
819 {
820 if (pc == (li_found_pc + 4))
821 {
822 vr_reg = GET_SRC_REG (op);
823 /* If this is the first vector reg to be saved, or if
824 it has a lower number than others previously seen,
825 reupdate the frame info. */
826 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
827 {
828 fdata->saved_vr = vr_reg;
829 fdata->vr_offset = vr_saved_offset + offset;
830 }
831 vr_saved_offset = -1;
832 vr_reg = -1;
833 li_found_pc = 0;
834 }
835 }
836 /* End AltiVec related instructions. */
96ff0de4
EZ
837
838 /* Start BookE related instructions. */
839 /* Store gen register S at (r31+uimm).
840 Any register less than r13 is volatile, so we don't care. */
841 /* 000100 sssss 11111 iiiii 01100100001 */
842 else if (arch_info->mach == bfd_mach_ppc_e500
843 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
844 {
845 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
846 {
847 unsigned int imm;
848 ev_reg = GET_SRC_REG (op);
849 imm = (op >> 11) & 0x1f;
850 ev_offset = imm * 8;
851 /* If this is the first vector reg to be saved, or if
852 it has a lower number than others previously seen,
853 reupdate the frame info. */
854 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
855 {
856 fdata->saved_ev = ev_reg;
857 fdata->ev_offset = ev_offset + offset;
858 }
859 }
860 continue;
861 }
862 /* Store gen register rS at (r1+rB). */
863 /* 000100 sssss 00001 bbbbb 01100100000 */
864 else if (arch_info->mach == bfd_mach_ppc_e500
865 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
866 {
867 if (pc == (li_found_pc + 4))
868 {
869 ev_reg = GET_SRC_REG (op);
870 /* If this is the first vector reg to be saved, or if
871 it has a lower number than others previously seen,
872 reupdate the frame info. */
873 /* We know the contents of rB from the previous instruction. */
874 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
875 {
876 fdata->saved_ev = ev_reg;
877 fdata->ev_offset = vr_saved_offset + offset;
878 }
879 vr_saved_offset = -1;
880 ev_reg = -1;
881 li_found_pc = 0;
882 }
883 continue;
884 }
885 /* Store gen register r31 at (rA+uimm). */
886 /* 000100 11111 aaaaa iiiii 01100100001 */
887 else if (arch_info->mach == bfd_mach_ppc_e500
888 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
889 {
890 /* Wwe know that the source register is 31 already, but
891 it can't hurt to compute it. */
892 ev_reg = GET_SRC_REG (op);
893 ev_offset = ((op >> 11) & 0x1f) * 8;
894 /* If this is the first vector reg to be saved, or if
895 it has a lower number than others previously seen,
896 reupdate the frame info. */
897 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
898 {
899 fdata->saved_ev = ev_reg;
900 fdata->ev_offset = ev_offset + offset;
901 }
902
903 continue;
904 }
905 /* Store gen register S at (r31+r0).
906 Store param on stack when offset from SP bigger than 4 bytes. */
907 /* 000100 sssss 11111 00000 01100100000 */
908 else if (arch_info->mach == bfd_mach_ppc_e500
909 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
910 {
911 if (pc == (li_found_pc + 4))
912 {
913 if ((op & 0x03e00000) >= 0x01a00000)
914 {
915 ev_reg = GET_SRC_REG (op);
916 /* If this is the first vector reg to be saved, or if
917 it has a lower number than others previously seen,
918 reupdate the frame info. */
919 /* We know the contents of r0 from the previous
920 instruction. */
921 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
922 {
923 fdata->saved_ev = ev_reg;
924 fdata->ev_offset = vr_saved_offset + offset;
925 }
926 ev_reg = -1;
927 }
928 vr_saved_offset = -1;
929 li_found_pc = 0;
930 continue;
931 }
932 }
933 /* End BookE related instructions. */
934
c5aa993b
JM
935 else
936 {
55d05f3b
KB
937 /* Not a recognized prologue instruction.
938 Handle optimizer code motions into the prologue by continuing
939 the search if we have no valid frame yet or if the return
940 address is not yet saved in the frame. */
941 if (fdata->frameless == 0
942 && (lr_reg == -1 || fdata->nosavedpc == 0))
943 break;
944
945 if (op == 0x4e800020 /* blr */
946 || op == 0x4e800420) /* bctr */
947 /* Do not scan past epilogue in frameless functions or
948 trampolines. */
949 break;
950 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 951 /* Never skip branches. */
55d05f3b
KB
952 break;
953
954 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
955 /* Do not scan too many insns, scanning insns is expensive with
956 remote targets. */
957 break;
958
959 /* Continue scanning. */
960 prev_insn_was_prologue_insn = 0;
961 continue;
c5aa993b 962 }
c906108c
SS
963 }
964
965#if 0
966/* I have problems with skipping over __main() that I need to address
967 * sometime. Previously, I used to use misc_function_vector which
968 * didn't work as well as I wanted to be. -MGO */
969
970 /* If the first thing after skipping a prolog is a branch to a function,
971 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 972 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 973 work before calling a function right after a prologue, thus we can
64366f1c 974 single out such gcc2 behaviour. */
c906108c 975
c906108c 976
c5aa993b
JM
977 if ((op & 0xfc000001) == 0x48000001)
978 { /* bl foo, an initializer function? */
979 op = read_memory_integer (pc + 4, 4);
980
981 if (op == 0x4def7b82)
982 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 983
64366f1c
EZ
984 /* Check and see if we are in main. If so, skip over this
985 initializer function as well. */
c906108c 986
c5aa993b 987 tmp = find_pc_misc_function (pc);
51cc5b07 988 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
989 return pc + 8;
990 }
c906108c 991 }
c906108c 992#endif /* 0 */
c5aa993b
JM
993
994 fdata->offset = -fdata->offset;
ddb20c56 995 return last_prologue_pc;
c906108c
SS
996}
997
998
999/*************************************************************************
f6077098 1000 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1001 frames, etc.
1002*************************************************************************/
1003
c906108c 1004
64366f1c 1005/* Pop the innermost frame, go back to the caller. */
c5aa993b 1006
c906108c 1007static void
7a78ae4e 1008rs6000_pop_frame (void)
c906108c 1009{
470d5666 1010 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1011 struct rs6000_framedata fdata;
1012 struct frame_info *frame = get_current_frame ();
470d5666 1013 int ii, wordsize;
c906108c
SS
1014
1015 pc = read_pc ();
c193f6ac 1016 sp = get_frame_base (frame);
c906108c 1017
bdd78e62 1018 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1019 get_frame_base (frame),
1020 get_frame_base (frame)))
c906108c 1021 {
7a78ae4e
ND
1022 generic_pop_dummy_frame ();
1023 flush_cached_frames ();
1024 return;
c906108c
SS
1025 }
1026
1027 /* Make sure that all registers are valid. */
b8b527c5 1028 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1029
64366f1c 1030 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1031 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1032 saved %pc value in the previous frame. */
c906108c 1033
be41e9f4 1034 addr = get_frame_func (frame);
bdd78e62 1035 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1036
21283beb 1037 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1038 if (fdata.frameless)
1039 prev_sp = sp;
1040 else
7a78ae4e 1041 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1042 if (fdata.lr_offset == 0)
2188cbdd 1043 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1044 else
7a78ae4e 1045 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1046
1047 /* reset %pc value. */
1048 write_register (PC_REGNUM, lr);
1049
64366f1c 1050 /* reset register values if any was saved earlier. */
c906108c
SS
1051
1052 if (fdata.saved_gpr != -1)
1053 {
1054 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1055 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1056 {
62700349 1057 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
524d7c18 1058 wordsize);
7a78ae4e 1059 addr += wordsize;
c5aa993b 1060 }
c906108c
SS
1061 }
1062
1063 if (fdata.saved_fpr != -1)
1064 {
1065 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1066 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1067 {
62700349 1068 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1069 addr += 8;
1070 }
c906108c
SS
1071 }
1072
1073 write_register (SP_REGNUM, prev_sp);
1074 target_store_registers (-1);
1075 flush_cached_frames ();
1076}
1077
11269d7e
AC
1078/* All the ABI's require 16 byte alignment. */
1079static CORE_ADDR
1080rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1081{
1082 return (addr & -16);
1083}
1084
7a78ae4e 1085/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1086 the first eight words of the argument list (that might be less than
1087 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1088 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1089 passed in fpr's, in addition to that. Rest of the parameters if any
1090 are passed in user stack. There might be cases in which half of the
c906108c
SS
1091 parameter is copied into registers, the other half is pushed into
1092 stack.
1093
7a78ae4e
ND
1094 Stack must be aligned on 64-bit boundaries when synthesizing
1095 function calls.
1096
c906108c
SS
1097 If the function is returning a structure, then the return address is passed
1098 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1099 starting from r4. */
c906108c 1100
7a78ae4e 1101static CORE_ADDR
77b2b6d4
AC
1102rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1103 struct regcache *regcache, CORE_ADDR bp_addr,
1104 int nargs, struct value **args, CORE_ADDR sp,
1105 int struct_return, CORE_ADDR struct_addr)
c906108c 1106{
7a41266b 1107 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1108 int ii;
1109 int len = 0;
c5aa993b
JM
1110 int argno; /* current argument number */
1111 int argbytes; /* current argument byte */
1112 char tmp_buffer[50];
1113 int f_argno = 0; /* current floating point argno */
21283beb 1114 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1115
ea7c478f 1116 struct value *arg = 0;
c906108c
SS
1117 struct type *type;
1118
1119 CORE_ADDR saved_sp;
1120
64366f1c 1121 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1122 Copy them appropriately. */
1123 ii = 0;
1124
1125 /* If the function is returning a `struct', then the first word
1126 (which will be passed in r3) is used for struct return address.
1127 In that case we should advance one word and start from r4
1128 register to copy parameters. */
1129 if (struct_return)
1130 {
1131 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1132 struct_addr);
1133 ii++;
1134 }
c906108c
SS
1135
1136/*
c5aa993b
JM
1137 effectively indirect call... gcc does...
1138
1139 return_val example( float, int);
1140
1141 eabi:
1142 float in fp0, int in r3
1143 offset of stack on overflow 8/16
1144 for varargs, must go by type.
1145 power open:
1146 float in r3&r4, int in r5
1147 offset of stack on overflow different
1148 both:
1149 return in r3 or f0. If no float, must study how gcc emulates floats;
1150 pay attention to arg promotion.
1151 User may have to cast\args to handle promotion correctly
1152 since gdb won't know if prototype supplied or not.
1153 */
c906108c 1154
c5aa993b
JM
1155 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1156 {
12c266ea 1157 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1158
1159 arg = args[argno];
1160 type = check_typedef (VALUE_TYPE (arg));
1161 len = TYPE_LENGTH (type);
1162
1163 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1164 {
1165
64366f1c 1166 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1167 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1168 there is no way we would run out of them. */
c5aa993b
JM
1169
1170 if (len > 8)
1171 printf_unfiltered (
1172 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1173
62700349 1174 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1175 VALUE_CONTENTS (arg),
1176 len);
1177 ++f_argno;
1178 }
1179
f6077098 1180 if (len > reg_size)
c5aa993b
JM
1181 {
1182
64366f1c 1183 /* Argument takes more than one register. */
c5aa993b
JM
1184 while (argbytes < len)
1185 {
62700349 1186 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1187 reg_size);
62700349 1188 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1189 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1190 (len - argbytes) > reg_size
1191 ? reg_size : len - argbytes);
1192 ++ii, argbytes += reg_size;
c5aa993b
JM
1193
1194 if (ii >= 8)
1195 goto ran_out_of_registers_for_arguments;
1196 }
1197 argbytes = 0;
1198 --ii;
1199 }
1200 else
64366f1c
EZ
1201 {
1202 /* Argument can fit in one register. No problem. */
d7449b42 1203 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1204 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1205 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1206 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1207 }
1208 ++argno;
c906108c 1209 }
c906108c
SS
1210
1211ran_out_of_registers_for_arguments:
1212
7a78ae4e 1213 saved_sp = read_sp ();
cc9836a8 1214
64366f1c 1215 /* Location for 8 parameters are always reserved. */
7a78ae4e 1216 sp -= wordsize * 8;
f6077098 1217
64366f1c 1218 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1219 sp -= wordsize * 6;
f6077098 1220
64366f1c 1221 /* Stack pointer must be quadword aligned. */
7a78ae4e 1222 sp &= -16;
c906108c 1223
64366f1c
EZ
1224 /* If there are more arguments, allocate space for them in
1225 the stack, then push them starting from the ninth one. */
c906108c 1226
c5aa993b
JM
1227 if ((argno < nargs) || argbytes)
1228 {
1229 int space = 0, jj;
c906108c 1230
c5aa993b
JM
1231 if (argbytes)
1232 {
1233 space += ((len - argbytes + 3) & -4);
1234 jj = argno + 1;
1235 }
1236 else
1237 jj = argno;
c906108c 1238
c5aa993b
JM
1239 for (; jj < nargs; ++jj)
1240 {
ea7c478f 1241 struct value *val = args[jj];
c5aa993b
JM
1242 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1243 }
c906108c 1244
64366f1c 1245 /* Add location required for the rest of the parameters. */
f6077098 1246 space = (space + 15) & -16;
c5aa993b 1247 sp -= space;
c906108c 1248
64366f1c
EZ
1249 /* If the last argument copied into the registers didn't fit there
1250 completely, push the rest of it into stack. */
c906108c 1251
c5aa993b
JM
1252 if (argbytes)
1253 {
1254 write_memory (sp + 24 + (ii * 4),
1255 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1256 len - argbytes);
1257 ++argno;
1258 ii += ((len - argbytes + 3) & -4) / 4;
1259 }
c906108c 1260
64366f1c 1261 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1262 for (; argno < nargs; ++argno)
1263 {
c906108c 1264
c5aa993b
JM
1265 arg = args[argno];
1266 type = check_typedef (VALUE_TYPE (arg));
1267 len = TYPE_LENGTH (type);
c906108c
SS
1268
1269
64366f1c
EZ
1270 /* Float types should be passed in fpr's, as well as in the
1271 stack. */
c5aa993b
JM
1272 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1273 {
c906108c 1274
c5aa993b
JM
1275 if (len > 8)
1276 printf_unfiltered (
1277 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1278
62700349 1279 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1280 VALUE_CONTENTS (arg),
1281 len);
1282 ++f_argno;
1283 }
c906108c 1284
c5aa993b
JM
1285 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1286 ii += ((len + 3) & -4) / 4;
1287 }
c906108c 1288 }
c906108c 1289
c906108c 1290 /* set back chain properly */
fbd9dcd3 1291 store_unsigned_integer (tmp_buffer, 4, saved_sp);
c906108c
SS
1292 write_memory (sp, tmp_buffer, 4);
1293
69517000 1294 /* Set the stack pointer. According to the ABI, the SP is meant to
33a7c2fc 1295 be set _before_ the corresponding stack space is used. No need
69517000
AC
1296 for that here though - the target has been completely stopped -
1297 it isn't possible for an exception handler to stomp on the stack. */
33a7c2fc
AC
1298 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1299
e56a0ecc
AC
1300 /* Point the inferior function call's return address at the dummy's
1301 breakpoint. */
1302 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1303
794a477a
AC
1304 /* Set the TOC register, get the value from the objfile reader
1305 which, in turn, gets it from the VMAP table. */
1306 if (rs6000_find_toc_address_hook != NULL)
1307 {
1308 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1309 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1310 }
1311
c906108c
SS
1312 target_store_registers (-1);
1313 return sp;
1314}
c906108c 1315
b9ff3018
AC
1316/* PowerOpen always puts structures in memory. Vectors, which were
1317 added later, do get returned in a register though. */
1318
1319static int
1320rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1321{
1322 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1323 && TYPE_VECTOR (value_type))
1324 return 0;
1325 return 1;
1326}
1327
7a78ae4e
ND
1328static void
1329rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1330{
1331 int offset = 0;
ace1378a 1332 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1333
c5aa993b
JM
1334 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1335 {
c906108c 1336
c5aa993b
JM
1337 double dd;
1338 float ff;
1339 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1340 We need to truncate the return value into float size (4 byte) if
64366f1c 1341 necessary. */
c906108c 1342
c5aa993b
JM
1343 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1344 memcpy (valbuf,
62700349 1345 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
c5aa993b
JM
1346 TYPE_LENGTH (valtype));
1347 else
1348 { /* float */
62700349 1349 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
c5aa993b
JM
1350 ff = (float) dd;
1351 memcpy (valbuf, &ff, sizeof (float));
1352 }
1353 }
ace1378a
EZ
1354 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1355 && TYPE_LENGTH (valtype) == 16
1356 && TYPE_VECTOR (valtype))
1357 {
62700349 1358 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1359 TYPE_LENGTH (valtype));
1360 }
c5aa993b
JM
1361 else
1362 {
1363 /* return value is copied starting from r3. */
d7449b42 1364 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1365 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1366 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1367
1368 memcpy (valbuf,
62700349 1369 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1370 TYPE_LENGTH (valtype));
c906108c 1371 }
c906108c
SS
1372}
1373
977adac5
ND
1374/* Return whether handle_inferior_event() should proceed through code
1375 starting at PC in function NAME when stepping.
1376
1377 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1378 handle memory references that are too distant to fit in instructions
1379 generated by the compiler. For example, if 'foo' in the following
1380 instruction:
1381
1382 lwz r9,foo(r2)
1383
1384 is greater than 32767, the linker might replace the lwz with a branch to
1385 somewhere in @FIX1 that does the load in 2 instructions and then branches
1386 back to where execution should continue.
1387
1388 GDB should silently step over @FIX code, just like AIX dbx does.
1389 Unfortunately, the linker uses the "b" instruction for the branches,
1390 meaning that the link register doesn't get set. Therefore, GDB's usual
1391 step_over_function() mechanism won't work.
1392
1393 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1394 in handle_inferior_event() to skip past @FIX code. */
1395
1396int
1397rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1398{
1399 return name && !strncmp (name, "@FIX", 4);
1400}
1401
1402/* Skip code that the user doesn't want to see when stepping:
1403
1404 1. Indirect function calls use a piece of trampoline code to do context
1405 switching, i.e. to set the new TOC table. Skip such code if we are on
1406 its first instruction (as when we have single-stepped to here).
1407
1408 2. Skip shared library trampoline code (which is different from
c906108c 1409 indirect function call trampolines).
977adac5
ND
1410
1411 3. Skip bigtoc fixup code.
1412
c906108c 1413 Result is desired PC to step until, or NULL if we are not in
977adac5 1414 code that should be skipped. */
c906108c
SS
1415
1416CORE_ADDR
7a78ae4e 1417rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1418{
52f0bd74 1419 unsigned int ii, op;
977adac5 1420 int rel;
c906108c 1421 CORE_ADDR solib_target_pc;
977adac5 1422 struct minimal_symbol *msymbol;
c906108c 1423
c5aa993b
JM
1424 static unsigned trampoline_code[] =
1425 {
1426 0x800b0000, /* l r0,0x0(r11) */
1427 0x90410014, /* st r2,0x14(r1) */
1428 0x7c0903a6, /* mtctr r0 */
1429 0x804b0004, /* l r2,0x4(r11) */
1430 0x816b0008, /* l r11,0x8(r11) */
1431 0x4e800420, /* bctr */
1432 0x4e800020, /* br */
1433 0
c906108c
SS
1434 };
1435
977adac5
ND
1436 /* Check for bigtoc fixup code. */
1437 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1438 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1439 {
1440 /* Double-check that the third instruction from PC is relative "b". */
1441 op = read_memory_integer (pc + 8, 4);
1442 if ((op & 0xfc000003) == 0x48000000)
1443 {
1444 /* Extract bits 6-29 as a signed 24-bit relative word address and
1445 add it to the containing PC. */
1446 rel = ((int)(op << 6) >> 6);
1447 return pc + 8 + rel;
1448 }
1449 }
1450
c906108c
SS
1451 /* If pc is in a shared library trampoline, return its target. */
1452 solib_target_pc = find_solib_trampoline_target (pc);
1453 if (solib_target_pc)
1454 return solib_target_pc;
1455
c5aa993b
JM
1456 for (ii = 0; trampoline_code[ii]; ++ii)
1457 {
1458 op = read_memory_integer (pc + (ii * 4), 4);
1459 if (op != trampoline_code[ii])
1460 return 0;
1461 }
1462 ii = read_register (11); /* r11 holds destination addr */
21283beb 1463 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1464 return pc;
1465}
1466
1467/* Determines whether the function FI has a frame on the stack or not. */
1468
9aa1e687 1469int
c877c8e6 1470rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1471{
1472 CORE_ADDR func_start;
1473 struct rs6000_framedata fdata;
1474
1475 /* Don't even think about framelessness except on the innermost frame
1476 or if the function was interrupted by a signal. */
75e3c1f9
AC
1477 if (get_next_frame (fi) != NULL
1478 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1479 return 0;
c5aa993b 1480
be41e9f4 1481 func_start = get_frame_func (fi);
c906108c
SS
1482
1483 /* If we failed to find the start of the function, it is a mistake
64366f1c 1484 to inspect the instructions. */
c906108c
SS
1485
1486 if (!func_start)
1487 {
1488 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1489 function pointer, normally causing an immediate core dump of the
64366f1c 1490 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1491 of setting up a stack frame. */
bdd78e62 1492 if (get_frame_pc (fi) == 0)
c906108c
SS
1493 return 1;
1494 else
1495 return 0;
1496 }
1497
bdd78e62 1498 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1499 return fdata.frameless;
1500}
1501
64366f1c 1502/* Return the PC saved in a frame. */
c906108c 1503
9aa1e687 1504CORE_ADDR
c877c8e6 1505rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1506{
1507 CORE_ADDR func_start;
1508 struct rs6000_framedata fdata;
21283beb 1509 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1510 int wordsize = tdep->wordsize;
c906108c 1511
5a203e44 1512 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1513 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1514 wordsize);
c906108c 1515
bdd78e62 1516 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1517 get_frame_base (fi),
1518 get_frame_base (fi)))
bdd78e62 1519 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1520 get_frame_base (fi), PC_REGNUM);
c906108c 1521
be41e9f4 1522 func_start = get_frame_func (fi);
c906108c
SS
1523
1524 /* If we failed to find the start of the function, it is a mistake
64366f1c 1525 to inspect the instructions. */
c906108c
SS
1526 if (!func_start)
1527 return 0;
1528
bdd78e62 1529 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1530
75e3c1f9 1531 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1532 {
75e3c1f9 1533 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1534 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1535 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1536 wordsize);
bdd78e62 1537 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1538 /* The link register wasn't saved by this frame and the next
1539 (inner, newer) frame is a dummy. Get the link register
1540 value by unwinding it from that [dummy] frame. */
1541 {
1542 ULONGEST lr;
1543 frame_unwind_unsigned_register (get_next_frame (fi),
1544 tdep->ppc_lr_regnum, &lr);
1545 return lr;
1546 }
c906108c 1547 else
618ce49f
AC
1548 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1549 + tdep->lr_frame_offset,
7a78ae4e 1550 wordsize);
c906108c
SS
1551 }
1552
1553 if (fdata.lr_offset == 0)
2188cbdd 1554 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1555
618ce49f
AC
1556 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1557 wordsize);
c906108c
SS
1558}
1559
1560/* If saved registers of frame FI are not known yet, read and cache them.
1561 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1562 in which case the framedata are read. */
1563
1564static void
7a78ae4e 1565frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1566{
c5aa993b 1567 CORE_ADDR frame_addr;
c906108c 1568 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1569 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1570 int wordsize = tdep->wordsize;
c906108c 1571
1b1d3794 1572 if (deprecated_get_frame_saved_regs (fi))
c906108c 1573 return;
c5aa993b 1574
c906108c
SS
1575 if (fdatap == NULL)
1576 {
1577 fdatap = &work_fdata;
be41e9f4 1578 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1579 }
1580
1581 frame_saved_regs_zalloc (fi);
1582
1583 /* If there were any saved registers, figure out parent's stack
64366f1c 1584 pointer. */
c906108c 1585 /* The following is true only if the frame doesn't have a call to
64366f1c 1586 alloca(), FIXME. */
c906108c 1587
6be8bc0c
EZ
1588 if (fdatap->saved_fpr == 0
1589 && fdatap->saved_gpr == 0
1590 && fdatap->saved_vr == 0
96ff0de4 1591 && fdatap->saved_ev == 0
6be8bc0c
EZ
1592 && fdatap->lr_offset == 0
1593 && fdatap->cr_offset == 0
96ff0de4
EZ
1594 && fdatap->vr_offset == 0
1595 && fdatap->ev_offset == 0)
c906108c 1596 frame_addr = 0;
c906108c 1597 else
bf75c8c1
AC
1598 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1599 address of the current frame. Things might be easier if the
1600 ->frame pointed to the outer-most address of the frame. In the
1601 mean time, the address of the prev frame is used as the base
1602 address of this frame. */
618ce49f 1603 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1604
c906108c
SS
1605 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1606 All fpr's from saved_fpr to fp31 are saved. */
1607
1608 if (fdatap->saved_fpr >= 0)
1609 {
1610 int i;
7a78ae4e 1611 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1612 for (i = fdatap->saved_fpr; i < 32; i++)
1613 {
1b1d3794 1614 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1615 fpr_addr += 8;
c906108c
SS
1616 }
1617 }
1618
1619 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1620 All gpr's from saved_gpr to gpr31 are saved. */
1621
1622 if (fdatap->saved_gpr >= 0)
1623 {
1624 int i;
7a78ae4e 1625 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1626 for (i = fdatap->saved_gpr; i < 32; i++)
1627 {
1b1d3794 1628 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1629 gpr_addr += wordsize;
c906108c
SS
1630 }
1631 }
1632
6be8bc0c
EZ
1633 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1634 All vr's from saved_vr to vr31 are saved. */
1635 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1636 {
1637 if (fdatap->saved_vr >= 0)
1638 {
1639 int i;
1640 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1641 for (i = fdatap->saved_vr; i < 32; i++)
1642 {
1b1d3794 1643 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
12c266ea 1644 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
6be8bc0c
EZ
1645 }
1646 }
1647 }
1648
96ff0de4
EZ
1649 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1650 All vr's from saved_ev to ev31 are saved. ????? */
1651 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1652 {
1653 if (fdatap->saved_ev >= 0)
1654 {
1655 int i;
1656 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1657 for (i = fdatap->saved_ev; i < 32; i++)
1658 {
1b1d3794
AC
1659 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1660 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
12c266ea 1661 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
96ff0de4
EZ
1662 }
1663 }
1664 }
1665
c906108c
SS
1666 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1667 the CR. */
1668 if (fdatap->cr_offset != 0)
1b1d3794 1669 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1670
1671 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1672 the LR. */
1673 if (fdatap->lr_offset != 0)
1b1d3794 1674 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1675
1676 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1677 the VRSAVE. */
1678 if (fdatap->vrsave_offset != 0)
1b1d3794 1679 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1680}
1681
1682/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1683 was first allocated. For functions calling alloca(), it might be saved in
1684 an alloca register. */
c906108c
SS
1685
1686static CORE_ADDR
7a78ae4e 1687frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1688{
1689 CORE_ADDR tmpaddr;
1690 struct rs6000_framedata fdata;
1691 struct frame_info *callee_fi;
1692
64366f1c
EZ
1693 /* If the initial stack pointer (frame address) of this frame is known,
1694 just return it. */
c906108c 1695
c9012c71
AC
1696 if (get_frame_extra_info (fi)->initial_sp)
1697 return get_frame_extra_info (fi)->initial_sp;
c906108c 1698
64366f1c 1699 /* Find out if this function is using an alloca register. */
c906108c 1700
be41e9f4 1701 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1702
64366f1c
EZ
1703 /* If saved registers of this frame are not known yet, read and
1704 cache them. */
c906108c 1705
1b1d3794 1706 if (!deprecated_get_frame_saved_regs (fi))
c906108c
SS
1707 frame_get_saved_regs (fi, &fdata);
1708
1709 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1710 this frame, and it is good enough. */
c906108c
SS
1711
1712 if (fdata.alloca_reg < 0)
1713 {
c9012c71
AC
1714 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1715 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1716 }
1717
953836b2
AC
1718 /* There is an alloca register, use its value, in the current frame,
1719 as the initial stack pointer. */
1720 {
d9d9c31f 1721 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1722 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1723 {
c9012c71 1724 get_frame_extra_info (fi)->initial_sp
953836b2 1725 = extract_unsigned_integer (tmpbuf,
12c266ea 1726 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
953836b2
AC
1727 }
1728 else
1729 /* NOTE: cagney/2002-04-17: At present the only time
1730 frame_register_read will fail is when the register isn't
1731 available. If that does happen, use the frame. */
c9012c71 1732 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1733 }
c9012c71 1734 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1735}
1736
7a78ae4e
ND
1737/* Describe the pointer in each stack frame to the previous stack frame
1738 (its caller). */
1739
618ce49f
AC
1740/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1741 the frame's chain-pointer. */
7a78ae4e
ND
1742
1743/* In the case of the RS/6000, the frame's nominal address
1744 is the address of a 4-byte word containing the calling frame's address. */
1745
9aa1e687 1746CORE_ADDR
7a78ae4e 1747rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1748{
7a78ae4e 1749 CORE_ADDR fp, fpp, lr;
21283beb 1750 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1751
bdd78e62 1752 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1753 get_frame_base (thisframe),
1754 get_frame_base (thisframe)))
9f3b7f07
AC
1755 /* A dummy frame always correctly chains back to the previous
1756 frame. */
8b36eed8 1757 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1758
627b3ba2 1759 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
bdd78e62 1760 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1761 return 0;
1762
5a203e44 1763 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1764 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1765 wordsize);
75e3c1f9
AC
1766 else if (get_next_frame (thisframe) != NULL
1767 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1768 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1769 /* A frameless function interrupted by a signal did not change the
1770 frame pointer. */
c193f6ac 1771 fp = get_frame_base (thisframe);
c906108c 1772 else
8b36eed8 1773 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1774 return fp;
1775}
1776
1777/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1778 isn't available with that word size, return 0. */
7a78ae4e
ND
1779
1780static int
1781regsize (const struct reg *reg, int wordsize)
1782{
1783 return wordsize == 8 ? reg->sz64 : reg->sz32;
1784}
1785
1786/* Return the name of register number N, or null if no such register exists
64366f1c 1787 in the current architecture. */
7a78ae4e 1788
fa88f677 1789static const char *
7a78ae4e
ND
1790rs6000_register_name (int n)
1791{
21283beb 1792 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1793 const struct reg *reg = tdep->regs + n;
1794
1795 if (!regsize (reg, tdep->wordsize))
1796 return NULL;
1797 return reg->name;
1798}
1799
1800/* Index within `registers' of the first byte of the space for
1801 register N. */
1802
1803static int
1804rs6000_register_byte (int n)
1805{
21283beb 1806 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1807}
1808
1809/* Return the number of bytes of storage in the actual machine representation
64366f1c 1810 for register N if that register is available, else return 0. */
7a78ae4e
ND
1811
1812static int
1813rs6000_register_raw_size (int n)
1814{
21283beb 1815 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1816 const struct reg *reg = tdep->regs + n;
1817 return regsize (reg, tdep->wordsize);
1818}
1819
7a78ae4e
ND
1820/* Return the GDB type object for the "standard" data type
1821 of data in register N. */
1822
1823static struct type *
fba45db2 1824rs6000_register_virtual_type (int n)
7a78ae4e 1825{
21283beb 1826 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1827 const struct reg *reg = tdep->regs + n;
1828
1fcc0bb8
EZ
1829 if (reg->fpr)
1830 return builtin_type_double;
1831 else
1832 {
1833 int size = regsize (reg, tdep->wordsize);
1834 switch (size)
1835 {
449a5da4
AC
1836 case 0:
1837 return builtin_type_int0;
1838 case 4:
1839 return builtin_type_int32;
1fcc0bb8 1840 case 8:
c8001721
EZ
1841 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1842 return builtin_type_vec64;
1843 else
1844 return builtin_type_int64;
1fcc0bb8
EZ
1845 break;
1846 case 16:
08cf96df 1847 return builtin_type_vec128;
1fcc0bb8
EZ
1848 break;
1849 default:
449a5da4
AC
1850 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1851 n, size);
1fcc0bb8
EZ
1852 }
1853 }
7a78ae4e
ND
1854}
1855
7a78ae4e
ND
1856/* Return whether register N requires conversion when moving from raw format
1857 to virtual format.
1858
1859 The register format for RS/6000 floating point registers is always
64366f1c 1860 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1861
1862static int
1863rs6000_register_convertible (int n)
1864{
21283beb 1865 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1866 return reg->fpr;
1867}
1868
1869/* Convert data from raw format for register N in buffer FROM
64366f1c 1870 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1871
1872static void
1873rs6000_register_convert_to_virtual (int n, struct type *type,
1874 char *from, char *to)
1875{
12c266ea 1876 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1877 {
12c266ea 1878 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1879 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1880 }
1881 else
12c266ea 1882 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1883}
1884
1885/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1886 to raw format for register N in buffer TO. */
7a292a7a 1887
7a78ae4e
ND
1888static void
1889rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1890 const char *from, char *to)
7a78ae4e 1891{
12c266ea 1892 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1893 {
f1908289 1894 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1895 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1896 }
7a78ae4e 1897 else
12c266ea 1898 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1899}
c906108c 1900
c8001721
EZ
1901static void
1902e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1903 int reg_nr, void *buffer)
1904{
1905 int base_regnum;
1906 int offset = 0;
d9d9c31f 1907 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1908 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1909
1910 if (reg_nr >= tdep->ppc_gp0_regnum
1911 && reg_nr <= tdep->ppc_gplast_regnum)
1912 {
1913 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1914
1915 /* Build the value in the provided buffer. */
1916 /* Read the raw register of which this one is the lower portion. */
1917 regcache_raw_read (regcache, base_regnum, temp_buffer);
1918 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1919 offset = 4;
1920 memcpy ((char *) buffer, temp_buffer + offset, 4);
1921 }
1922}
1923
1924static void
1925e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1926 int reg_nr, const void *buffer)
1927{
1928 int base_regnum;
1929 int offset = 0;
d9d9c31f 1930 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1931 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1932
1933 if (reg_nr >= tdep->ppc_gp0_regnum
1934 && reg_nr <= tdep->ppc_gplast_regnum)
1935 {
1936 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1937 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1938 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1939 offset = 4;
1940
1941 /* Let's read the value of the base register into a temporary
1942 buffer, so that overwriting the last four bytes with the new
1943 value of the pseudo will leave the upper 4 bytes unchanged. */
1944 regcache_raw_read (regcache, base_regnum, temp_buffer);
1945
1946 /* Write as an 8 byte quantity. */
1947 memcpy (temp_buffer + offset, (char *) buffer, 4);
1948 regcache_raw_write (regcache, base_regnum, temp_buffer);
1949 }
1950}
1951
1952/* Convert a dwarf2 register number to a gdb REGNUM. */
1953static int
1954e500_dwarf2_reg_to_regnum (int num)
1955{
1956 int regnum;
1957 if (0 <= num && num <= 31)
1958 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1959 else
1960 return num;
1961}
1962
2188cbdd 1963/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1964 REGNUM. */
2188cbdd
EZ
1965static int
1966rs6000_stab_reg_to_regnum (int num)
1967{
1968 int regnum;
1969 switch (num)
1970 {
1971 case 64:
1972 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1973 break;
1974 case 65:
1975 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1976 break;
1977 case 66:
1978 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1979 break;
1980 case 76:
1981 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1982 break;
1983 default:
1984 regnum = num;
1985 break;
1986 }
1987 return regnum;
1988}
1989
7a78ae4e
ND
1990static void
1991rs6000_store_return_value (struct type *type, char *valbuf)
1992{
ace1378a
EZ
1993 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1994
7a78ae4e
ND
1995 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1996
1997 /* Floating point values are returned starting from FPR1 and up.
1998 Say a double_double_double type could be returned in
64366f1c 1999 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2000
62700349 2001 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
73937e03 2002 TYPE_LENGTH (type));
ace1378a
EZ
2003 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2004 {
2005 if (TYPE_LENGTH (type) == 16
2006 && TYPE_VECTOR (type))
62700349 2007 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 2008 valbuf, TYPE_LENGTH (type));
ace1378a 2009 }
7a78ae4e 2010 else
64366f1c 2011 /* Everything else is returned in GPR3 and up. */
62700349 2012 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 2013 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2014}
2015
2016/* Extract from an array REGBUF containing the (raw) register state
2017 the address in which a function should return its structure value,
2018 as a CORE_ADDR (or an expression that can be used as one). */
2019
2020static CORE_ADDR
11269d7e
AC
2021rs6000_extract_struct_value_address (struct regcache *regcache)
2022{
2023 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2024 function call GDB knows the address of the struct return value
2025 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2026 the current call_function_by_hand() code only saves the most
2027 recent struct address leading to occasional calls. The code
2028 should instead maintain a stack of such addresses (in the dummy
2029 frame object). */
11269d7e
AC
2030 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2031 really got no idea where the return value is being stored. While
2032 r3, on function entry, contained the address it will have since
2033 been reused (scratch) and hence wouldn't be valid */
2034 return 0;
7a78ae4e
ND
2035}
2036
2037/* Return whether PC is in a dummy function call.
2038
2039 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2040 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2041
2042static int
2043rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2044{
2045 return sp < pc && pc < fp;
2046}
2047
64366f1c 2048/* Hook called when a new child process is started. */
7a78ae4e
ND
2049
2050void
2051rs6000_create_inferior (int pid)
2052{
2053 if (rs6000_set_host_arch_hook)
2054 rs6000_set_host_arch_hook (pid);
c906108c
SS
2055}
2056\f
e2d0e7eb 2057/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2058
2059 Usually a function pointer's representation is simply the address
2060 of the function. On the RS/6000 however, a function pointer is
2061 represented by a pointer to a TOC entry. This TOC entry contains
2062 three words, the first word is the address of the function, the
2063 second word is the TOC pointer (r2), and the third word is the
2064 static chain value. Throughout GDB it is currently assumed that a
2065 function pointer contains the address of the function, which is not
2066 easy to fix. In addition, the conversion of a function address to
2067 a function pointer would require allocation of a TOC entry in the
2068 inferior's memory space, with all its drawbacks. To be able to
2069 call C++ virtual methods in the inferior (which are called via
f517ea4e 2070 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2071 function address from a function pointer. */
2072
f517ea4e
PS
2073/* Return real function address if ADDR (a function pointer) is in the data
2074 space and is therefore a special function pointer. */
c906108c 2075
b9362cc7 2076static CORE_ADDR
e2d0e7eb
AC
2077rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2078 CORE_ADDR addr,
2079 struct target_ops *targ)
c906108c
SS
2080{
2081 struct obj_section *s;
2082
2083 s = find_pc_section (addr);
2084 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2085 return addr;
c906108c 2086
7a78ae4e 2087 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2088 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2089}
c906108c 2090\f
c5aa993b 2091
7a78ae4e 2092/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2093
2094
7a78ae4e
ND
2095/* The arrays here called registers_MUMBLE hold information about available
2096 registers.
c906108c
SS
2097
2098 For each family of PPC variants, I've tried to isolate out the
2099 common registers and put them up front, so that as long as you get
2100 the general family right, GDB will correctly identify the registers
2101 common to that family. The common register sets are:
2102
2103 For the 60x family: hid0 hid1 iabr dabr pir
2104
2105 For the 505 and 860 family: eie eid nri
2106
2107 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2108 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2109 pbu1 pbl2 pbu2
c906108c
SS
2110
2111 Most of these register groups aren't anything formal. I arrived at
2112 them by looking at the registers that occurred in more than one
6f5987a6
KB
2113 processor.
2114
2115 Note: kevinb/2002-04-30: Support for the fpscr register was added
2116 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2117 for Power. For PowerPC, slot 70 was unused and was already in the
2118 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2119 slot 70 was being used for "mq", so the next available slot (71)
2120 was chosen. It would have been nice to be able to make the
2121 register numbers the same across processor cores, but this wasn't
2122 possible without either 1) renumbering some registers for some
2123 processors or 2) assigning fpscr to a really high slot that's
2124 larger than any current register number. Doing (1) is bad because
2125 existing stubs would break. Doing (2) is undesirable because it
2126 would introduce a really large gap between fpscr and the rest of
2127 the registers for most processors. */
7a78ae4e 2128
64366f1c 2129/* Convenience macros for populating register arrays. */
7a78ae4e 2130
64366f1c 2131/* Within another macro, convert S to a string. */
7a78ae4e
ND
2132
2133#define STR(s) #s
2134
2135/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2136 and 64 bits on 64-bit systems. */
489461e2 2137#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2138
2139/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2140 systems. */
489461e2 2141#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2142
2143/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2144 systems. */
489461e2 2145#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2146
1fcc0bb8 2147/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2148 systems. */
489461e2 2149#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2150
64366f1c 2151/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2152#define F(name) { STR(name), 8, 8, 1, 0 }
2153
64366f1c 2154/* Return a struct reg defining a pseudo register NAME. */
489461e2 2155#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2156
2157/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2158 systems and that doesn't exist on 64-bit systems. */
489461e2 2159#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2160
2161/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2162 systems and that doesn't exist on 32-bit systems. */
489461e2 2163#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2164
64366f1c 2165/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2166#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2167
2168/* UISA registers common across all architectures, including POWER. */
2169
2170#define COMMON_UISA_REGS \
2171 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2172 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2173 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2174 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2175 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2176 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2177 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2178 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2179 /* 64 */ R(pc), R(ps)
2180
ebeac11a
EZ
2181#define COMMON_UISA_NOFP_REGS \
2182 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2183 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2184 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2185 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2186 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2187 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2188 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2189 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2190 /* 64 */ R(pc), R(ps)
2191
7a78ae4e
ND
2192/* UISA-level SPRs for PowerPC. */
2193#define PPC_UISA_SPRS \
e3f36dbd 2194 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2195
c8001721
EZ
2196/* UISA-level SPRs for PowerPC without floating point support. */
2197#define PPC_UISA_NOFP_SPRS \
2198 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2199
7a78ae4e
ND
2200/* Segment registers, for PowerPC. */
2201#define PPC_SEGMENT_REGS \
2202 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2203 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2204 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2205 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2206
2207/* OEA SPRs for PowerPC. */
2208#define PPC_OEA_SPRS \
2209 /* 87 */ R4(pvr), \
2210 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2211 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2212 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2213 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2214 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2215 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2216 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2217 /* 116 */ R4(dec), R(dabr), R4(ear)
2218
64366f1c 2219/* AltiVec registers. */
1fcc0bb8
EZ
2220#define PPC_ALTIVEC_REGS \
2221 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2222 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2223 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2224 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2225 /*151*/R4(vscr), R4(vrsave)
2226
c8001721
EZ
2227/* Vectors of hi-lo general purpose registers. */
2228#define PPC_EV_REGS \
2229 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2230 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2231 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2232 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2233
2234/* Lower half of the EV registers. */
2235#define PPC_GPRS_PSEUDO_REGS \
2236 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2237 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2238 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2239 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2240
7a78ae4e 2241/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2242 user-level SPR's. */
7a78ae4e 2243static const struct reg registers_power[] =
c906108c 2244{
7a78ae4e 2245 COMMON_UISA_REGS,
e3f36dbd
KB
2246 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2247 /* 71 */ R4(fpscr)
c906108c
SS
2248};
2249
7a78ae4e 2250/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2251 view of the PowerPC. */
7a78ae4e 2252static const struct reg registers_powerpc[] =
c906108c 2253{
7a78ae4e 2254 COMMON_UISA_REGS,
1fcc0bb8
EZ
2255 PPC_UISA_SPRS,
2256 PPC_ALTIVEC_REGS
c906108c
SS
2257};
2258
ebeac11a
EZ
2259/* PowerPC UISA - a PPC processor as viewed by user-level
2260 code, but without floating point registers. */
2261static const struct reg registers_powerpc_nofp[] =
2262{
2263 COMMON_UISA_NOFP_REGS,
2264 PPC_UISA_SPRS
2265};
2266
64366f1c 2267/* IBM PowerPC 403. */
7a78ae4e 2268static const struct reg registers_403[] =
c5aa993b 2269{
7a78ae4e
ND
2270 COMMON_UISA_REGS,
2271 PPC_UISA_SPRS,
2272 PPC_SEGMENT_REGS,
2273 PPC_OEA_SPRS,
2274 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2275 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2276 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2277 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2278 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2279 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2280};
2281
64366f1c 2282/* IBM PowerPC 403GC. */
7a78ae4e 2283static const struct reg registers_403GC[] =
c5aa993b 2284{
7a78ae4e
ND
2285 COMMON_UISA_REGS,
2286 PPC_UISA_SPRS,
2287 PPC_SEGMENT_REGS,
2288 PPC_OEA_SPRS,
2289 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2290 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2291 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2292 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2293 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2294 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2295 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2296 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2297};
2298
64366f1c 2299/* Motorola PowerPC 505. */
7a78ae4e 2300static const struct reg registers_505[] =
c5aa993b 2301{
7a78ae4e
ND
2302 COMMON_UISA_REGS,
2303 PPC_UISA_SPRS,
2304 PPC_SEGMENT_REGS,
2305 PPC_OEA_SPRS,
2306 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2307};
2308
64366f1c 2309/* Motorola PowerPC 860 or 850. */
7a78ae4e 2310static const struct reg registers_860[] =
c5aa993b 2311{
7a78ae4e
ND
2312 COMMON_UISA_REGS,
2313 PPC_UISA_SPRS,
2314 PPC_SEGMENT_REGS,
2315 PPC_OEA_SPRS,
2316 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2317 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2318 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2319 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2320 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2321 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2322 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2323 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2324 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2325 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2326 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2327 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2328};
2329
7a78ae4e
ND
2330/* Motorola PowerPC 601. Note that the 601 has different register numbers
2331 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2332 register is the stub's problem. */
7a78ae4e 2333static const struct reg registers_601[] =
c5aa993b 2334{
7a78ae4e
ND
2335 COMMON_UISA_REGS,
2336 PPC_UISA_SPRS,
2337 PPC_SEGMENT_REGS,
2338 PPC_OEA_SPRS,
2339 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2340 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2341};
2342
64366f1c 2343/* Motorola PowerPC 602. */
7a78ae4e 2344static const struct reg registers_602[] =
c5aa993b 2345{
7a78ae4e
ND
2346 COMMON_UISA_REGS,
2347 PPC_UISA_SPRS,
2348 PPC_SEGMENT_REGS,
2349 PPC_OEA_SPRS,
2350 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2351 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2352 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2353};
2354
64366f1c 2355/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2356static const struct reg registers_603[] =
c5aa993b 2357{
7a78ae4e
ND
2358 COMMON_UISA_REGS,
2359 PPC_UISA_SPRS,
2360 PPC_SEGMENT_REGS,
2361 PPC_OEA_SPRS,
2362 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2363 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2364 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2365};
2366
64366f1c 2367/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2368static const struct reg registers_604[] =
c5aa993b 2369{
7a78ae4e
ND
2370 COMMON_UISA_REGS,
2371 PPC_UISA_SPRS,
2372 PPC_SEGMENT_REGS,
2373 PPC_OEA_SPRS,
2374 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2375 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2376 /* 127 */ R(sia), R(sda)
c906108c
SS
2377};
2378
64366f1c 2379/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2380static const struct reg registers_750[] =
c5aa993b 2381{
7a78ae4e
ND
2382 COMMON_UISA_REGS,
2383 PPC_UISA_SPRS,
2384 PPC_SEGMENT_REGS,
2385 PPC_OEA_SPRS,
2386 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2387 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2388 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2389 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2390 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2391 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2392};
2393
2394
64366f1c 2395/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2396static const struct reg registers_7400[] =
2397{
2398 /* gpr0-gpr31, fpr0-fpr31 */
2399 COMMON_UISA_REGS,
2400 /* ctr, xre, lr, cr */
2401 PPC_UISA_SPRS,
2402 /* sr0-sr15 */
2403 PPC_SEGMENT_REGS,
2404 PPC_OEA_SPRS,
2405 /* vr0-vr31, vrsave, vscr */
2406 PPC_ALTIVEC_REGS
2407 /* FIXME? Add more registers? */
2408};
2409
c8001721
EZ
2410/* Motorola e500. */
2411static const struct reg registers_e500[] =
2412{
2413 R(pc), R(ps),
2414 /* cr, lr, ctr, xer, "" */
2415 PPC_UISA_NOFP_SPRS,
2416 /* 7...38 */
2417 PPC_EV_REGS,
338ef23d
AC
2418 R8(acc), R(spefscr),
2419 /* NOTE: Add new registers here the end of the raw register
2420 list and just before the first pseudo register. */
c8001721
EZ
2421 /* 39...70 */
2422 PPC_GPRS_PSEUDO_REGS
2423};
2424
c906108c 2425/* Information about a particular processor variant. */
7a78ae4e 2426
c906108c 2427struct variant
c5aa993b
JM
2428 {
2429 /* Name of this variant. */
2430 char *name;
c906108c 2431
c5aa993b
JM
2432 /* English description of the variant. */
2433 char *description;
c906108c 2434
64366f1c 2435 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2436 enum bfd_architecture arch;
2437
64366f1c 2438 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2439 unsigned long mach;
2440
489461e2
EZ
2441 /* Number of real registers. */
2442 int nregs;
2443
2444 /* Number of pseudo registers. */
2445 int npregs;
2446
2447 /* Number of total registers (the sum of nregs and npregs). */
2448 int num_tot_regs;
2449
c5aa993b
JM
2450 /* Table of register names; registers[R] is the name of the register
2451 number R. */
7a78ae4e 2452 const struct reg *regs;
c5aa993b 2453 };
c906108c 2454
489461e2
EZ
2455#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2456
2457static int
2458num_registers (const struct reg *reg_list, int num_tot_regs)
2459{
2460 int i;
2461 int nregs = 0;
2462
2463 for (i = 0; i < num_tot_regs; i++)
2464 if (!reg_list[i].pseudo)
2465 nregs++;
2466
2467 return nregs;
2468}
2469
2470static int
2471num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2472{
2473 int i;
2474 int npregs = 0;
2475
2476 for (i = 0; i < num_tot_regs; i++)
2477 if (reg_list[i].pseudo)
2478 npregs ++;
2479
2480 return npregs;
2481}
c906108c 2482
c906108c
SS
2483/* Information in this table comes from the following web sites:
2484 IBM: http://www.chips.ibm.com:80/products/embedded/
2485 Motorola: http://www.mot.com/SPS/PowerPC/
2486
2487 I'm sure I've got some of the variant descriptions not quite right.
2488 Please report any inaccuracies you find to GDB's maintainer.
2489
2490 If you add entries to this table, please be sure to allow the new
2491 value as an argument to the --with-cpu flag, in configure.in. */
2492
489461e2 2493static struct variant variants[] =
c906108c 2494{
489461e2 2495
7a78ae4e 2496 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2497 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2498 registers_powerpc},
7a78ae4e 2499 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2500 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2501 registers_power},
7a78ae4e 2502 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2503 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2504 registers_403},
7a78ae4e 2505 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2506 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2507 registers_601},
7a78ae4e 2508 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2509 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2510 registers_602},
7a78ae4e 2511 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2512 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2513 registers_603},
7a78ae4e 2514 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2515 604, -1, -1, tot_num_registers (registers_604),
2516 registers_604},
7a78ae4e 2517 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2518 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2519 registers_403GC},
7a78ae4e 2520 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2521 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2522 registers_505},
7a78ae4e 2523 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2524 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2525 registers_860},
7a78ae4e 2526 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2527 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2528 registers_750},
1fcc0bb8 2529 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2530 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2531 registers_7400},
c8001721
EZ
2532 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2533 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2534 registers_e500},
7a78ae4e 2535
5d57ee30
KB
2536 /* 64-bit */
2537 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2538 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2539 registers_powerpc},
7a78ae4e 2540 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2541 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2542 registers_powerpc},
5d57ee30 2543 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2544 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2545 registers_powerpc},
7a78ae4e 2546 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2547 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2548 registers_powerpc},
5d57ee30 2549 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2550 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2551 registers_powerpc},
5d57ee30 2552 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2553 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
5d57ee30 2555
64366f1c 2556 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2557 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2558 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2559 registers_power},
7a78ae4e 2560 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2561 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2562 registers_power},
7a78ae4e 2563 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2564 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2565 registers_power},
7a78ae4e 2566
489461e2 2567 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2568};
2569
64366f1c 2570/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2571
2572static void
2573init_variants (void)
2574{
2575 struct variant *v;
2576
2577 for (v = variants; v->name; v++)
2578 {
2579 if (v->nregs == -1)
2580 v->nregs = num_registers (v->regs, v->num_tot_regs);
2581 if (v->npregs == -1)
2582 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2583 }
2584}
c906108c 2585
7a78ae4e 2586/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2587 MACH. If no such variant exists, return null. */
c906108c 2588
7a78ae4e
ND
2589static const struct variant *
2590find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2591{
7a78ae4e 2592 const struct variant *v;
c5aa993b 2593
7a78ae4e
ND
2594 for (v = variants; v->name; v++)
2595 if (arch == v->arch && mach == v->mach)
2596 return v;
c906108c 2597
7a78ae4e 2598 return NULL;
c906108c 2599}
9364a0ef
EZ
2600
2601static int
2602gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2603{
2604 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2605 return print_insn_big_powerpc (memaddr, info);
2606 else
2607 return print_insn_little_powerpc (memaddr, info);
2608}
7a78ae4e 2609\f
7a78ae4e
ND
2610/* Initialize the current architecture based on INFO. If possible, re-use an
2611 architecture from ARCHES, which is a list of architectures already created
2612 during this debugging session.
c906108c 2613
7a78ae4e 2614 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2615 a binary file. */
c906108c 2616
7a78ae4e
ND
2617static struct gdbarch *
2618rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2619{
2620 struct gdbarch *gdbarch;
2621 struct gdbarch_tdep *tdep;
9aa1e687 2622 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2623 struct reg *regs;
2624 const struct variant *v;
2625 enum bfd_architecture arch;
2626 unsigned long mach;
2627 bfd abfd;
7b112f9c 2628 int sysv_abi;
5bf1c677 2629 asection *sect;
7a78ae4e 2630
9aa1e687 2631 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2632 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2633
9aa1e687
KB
2634 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2635 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2636
2637 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2638
e712c1cf 2639 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2640 that, else choose a likely default. */
9aa1e687 2641 if (from_xcoff_exec)
c906108c 2642 {
11ed25ac 2643 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2644 wordsize = 8;
2645 else
2646 wordsize = 4;
c906108c 2647 }
9aa1e687
KB
2648 else if (from_elf_exec)
2649 {
2650 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2651 wordsize = 8;
2652 else
2653 wordsize = 4;
2654 }
c906108c 2655 else
7a78ae4e 2656 {
27b15785
KB
2657 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2658 wordsize = info.bfd_arch_info->bits_per_word /
2659 info.bfd_arch_info->bits_per_byte;
2660 else
2661 wordsize = 4;
7a78ae4e 2662 }
c906108c 2663
64366f1c 2664 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2665 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2666 arches != NULL;
2667 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2668 {
2669 /* Word size in the various PowerPC bfd_arch_info structs isn't
2670 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2671 separate word size check. */
7a78ae4e 2672 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2673 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2674 return arches->gdbarch;
2675 }
c906108c 2676
7a78ae4e
ND
2677 /* None found, create a new architecture from INFO, whose bfd_arch_info
2678 validity depends on the source:
2679 - executable useless
2680 - rs6000_host_arch() good
2681 - core file good
2682 - "set arch" trust blindly
2683 - GDB startup useless but harmless */
c906108c 2684
9aa1e687 2685 if (!from_xcoff_exec)
c906108c 2686 {
b732d07d 2687 arch = info.bfd_arch_info->arch;
7a78ae4e 2688 mach = info.bfd_arch_info->mach;
c906108c 2689 }
7a78ae4e 2690 else
c906108c 2691 {
7a78ae4e 2692 arch = bfd_arch_powerpc;
35cec841 2693 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2694 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2695 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2696 }
2697 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2698 tdep->wordsize = wordsize;
5bf1c677
EZ
2699
2700 /* For e500 executables, the apuinfo section is of help here. Such
2701 section contains the identifier and revision number of each
2702 Application-specific Processing Unit that is present on the
2703 chip. The content of the section is determined by the assembler
2704 which looks at each instruction and determines which unit (and
2705 which version of it) can execute it. In our case we just look for
2706 the existance of the section. */
2707
2708 if (info.abfd)
2709 {
2710 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2711 if (sect)
2712 {
2713 arch = info.bfd_arch_info->arch;
2714 mach = bfd_mach_ppc_e500;
2715 bfd_default_set_arch_mach (&abfd, arch, mach);
2716 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2717 }
2718 }
2719
7a78ae4e
ND
2720 gdbarch = gdbarch_alloc (&info, tdep);
2721 power = arch == bfd_arch_rs6000;
2722
489461e2
EZ
2723 /* Initialize the number of real and pseudo registers in each variant. */
2724 init_variants ();
2725
64366f1c 2726 /* Choose variant. */
7a78ae4e
ND
2727 v = find_variant_by_arch (arch, mach);
2728 if (!v)
dd47e6fd
EZ
2729 return NULL;
2730
7a78ae4e
ND
2731 tdep->regs = v->regs;
2732
2188cbdd
EZ
2733 tdep->ppc_gp0_regnum = 0;
2734 tdep->ppc_gplast_regnum = 31;
2735 tdep->ppc_toc_regnum = 2;
2736 tdep->ppc_ps_regnum = 65;
2737 tdep->ppc_cr_regnum = 66;
2738 tdep->ppc_lr_regnum = 67;
2739 tdep->ppc_ctr_regnum = 68;
2740 tdep->ppc_xer_regnum = 69;
2741 if (v->mach == bfd_mach_ppc_601)
2742 tdep->ppc_mq_regnum = 124;
e3f36dbd 2743 else if (power)
2188cbdd 2744 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2745 else
2746 tdep->ppc_mq_regnum = -1;
2747 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2748
c8001721
EZ
2749 set_gdbarch_pc_regnum (gdbarch, 64);
2750 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2751 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75
AC
2752 if (sysv_abi && wordsize == 8)
2753 {
2754 set_gdbarch_extract_return_value (gdbarch, ppc64_sysv_abi_extract_return_value);
2755 set_gdbarch_store_return_value (gdbarch, ppc64_sysv_abi_store_return_value);
2756 }
e754ae69
AC
2757 else if (sysv_abi && wordsize == 4)
2758 {
2759 set_gdbarch_extract_return_value (gdbarch, ppc_sysv_abi_extract_return_value);
2760 set_gdbarch_store_return_value (gdbarch, ppc_sysv_abi_store_return_value);
2761 }
afd48b75
AC
2762 else
2763 {
2764 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2765 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2766 }
c8001721 2767
1fcc0bb8
EZ
2768 if (v->arch == bfd_arch_powerpc)
2769 switch (v->mach)
2770 {
2771 case bfd_mach_ppc:
2772 tdep->ppc_vr0_regnum = 71;
2773 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2774 tdep->ppc_ev0_regnum = -1;
2775 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2776 break;
2777 case bfd_mach_ppc_7400:
2778 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2779 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2780 tdep->ppc_ev0_regnum = -1;
2781 tdep->ppc_ev31_regnum = -1;
2782 break;
2783 case bfd_mach_ppc_e500:
338ef23d
AC
2784 tdep->ppc_gp0_regnum = 41;
2785 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2786 tdep->ppc_toc_regnum = -1;
2787 tdep->ppc_ps_regnum = 1;
2788 tdep->ppc_cr_regnum = 2;
2789 tdep->ppc_lr_regnum = 3;
2790 tdep->ppc_ctr_regnum = 4;
2791 tdep->ppc_xer_regnum = 5;
2792 tdep->ppc_ev0_regnum = 7;
2793 tdep->ppc_ev31_regnum = 38;
2794 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2795 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2796 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2797 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2798 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2799 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2800 break;
2801 default:
2802 tdep->ppc_vr0_regnum = -1;
2803 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2804 tdep->ppc_ev0_regnum = -1;
2805 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2806 break;
2807 }
2808
338ef23d
AC
2809 /* Sanity check on registers. */
2810 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2811
a88376a3
KB
2812 /* Set lr_frame_offset. */
2813 if (wordsize == 8)
2814 tdep->lr_frame_offset = 16;
2815 else if (sysv_abi)
2816 tdep->lr_frame_offset = 4;
2817 else
2818 tdep->lr_frame_offset = 8;
2819
2820 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2821 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2822 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2823 {
2824 tdep->regoff[i] = off;
2825 off += regsize (v->regs + i, wordsize);
c906108c
SS
2826 }
2827
56a6dfb9
KB
2828 /* Select instruction printer. */
2829 if (arch == power)
9364a0ef 2830 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2831 else
9364a0ef 2832 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2833
7a78ae4e 2834 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2835
2836 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2837 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2838 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2839 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2840 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2841 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2842 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2843 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2844
2845 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2846 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2847 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2848 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2849 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2850 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2851 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2852 if (sysv_abi)
2853 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2854 else
2855 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2856 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2857
11269d7e 2858 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2859 if (sysv_abi && wordsize == 8)
2860 /* PPC64 SYSV. */
2861 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2862 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2863 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2864 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2865 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2866 224. */
2867 set_gdbarch_frame_red_zone_size (gdbarch, 224);
a59fe496 2868 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e 2869 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2870
781a750d
AC
2871 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2872 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2873 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2874 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2875 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2876 is correct for the SysV ABI when the wordsize is 8, but I'm also
2877 fairly certain that ppc_sysv_abi_push_arguments() will give even
2878 worse results since it only works for 32-bit code. So, for the moment,
2879 we're better off calling rs6000_push_arguments() since it works for
2880 64-bit code. At some point in the future, this matter needs to be
2881 revisited. */
2882 if (sysv_abi && wordsize == 4)
77b2b6d4 2883 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2884 else if (sysv_abi && wordsize == 8)
2885 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2886 else
77b2b6d4 2887 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2888
11269d7e 2889 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2890 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2891
2892 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2893 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2894 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2895 set_gdbarch_function_start_offset (gdbarch, 0);
2896 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2897
6066c3de
AC
2898 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2899 for the descriptor and ".FN" for the entry-point -- a user
2900 specifying "break FN" will unexpectedly end up with a breakpoint
2901 on the descriptor and not the function. This architecture method
2902 transforms any breakpoints on descriptors into breakpoints on the
2903 corresponding entry point. */
2904 if (sysv_abi && wordsize == 8)
2905 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2906
7a78ae4e
ND
2907 /* Not sure on this. FIXMEmgo */
2908 set_gdbarch_frame_args_skip (gdbarch, 8);
2909
afd48b75 2910 if (sysv_abi && wordsize == 4)
7b112f9c
JT
2911 set_gdbarch_use_struct_convention (gdbarch,
2912 ppc_sysv_abi_use_struct_convention);
afd48b75
AC
2913 else if (sysv_abi && wordsize == 8)
2914 set_gdbarch_use_struct_convention (gdbarch, ppc64_sysv_abi_use_struct_convention);
8e0662df 2915 else
7b112f9c 2916 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2917 rs6000_use_struct_convention);
8e0662df 2918
7b112f9c
JT
2919 set_gdbarch_frameless_function_invocation (gdbarch,
2920 rs6000_frameless_function_invocation);
618ce49f 2921 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2922 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2923
f30ee0bc 2924 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2925 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2926
15813d3f
AC
2927 if (!sysv_abi)
2928 {
2929 /* Handle RS/6000 function pointers (which are really function
2930 descriptors). */
f517ea4e
PS
2931 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2932 rs6000_convert_from_func_ptr_addr);
9aa1e687 2933 }
42efa47a
AC
2934 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2935 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2936 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 2937
143985b7
AF
2938 /* Helpers for function argument information. */
2939 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2940
7b112f9c 2941 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2942 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2943
ef5200c1
AC
2944 if (from_xcoff_exec)
2945 {
2946 /* NOTE: jimix/2003-06-09: This test should really check for
2947 GDB_OSABI_AIX when that is defined and becomes
2948 available. (Actually, once things are properly split apart,
2949 the test goes away.) */
2950 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2951 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2952 }
2953
7a78ae4e 2954 return gdbarch;
c906108c
SS
2955}
2956
7b112f9c
JT
2957static void
2958rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2959{
2960 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2961
2962 if (tdep == NULL)
2963 return;
2964
4be87837 2965 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2966}
2967
1fcc0bb8
EZ
2968static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2969
2970static void
2971rs6000_info_powerpc_command (char *args, int from_tty)
2972{
2973 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2974}
2975
c906108c
SS
2976/* Initialization code. */
2977
a78f21af 2978extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2979
c906108c 2980void
fba45db2 2981_initialize_rs6000_tdep (void)
c906108c 2982{
7b112f9c
JT
2983 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2984 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2985
2986 /* Add root prefix command for "info powerpc" commands */
2987 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2988 "Various POWERPC info specific commands.",
2989 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2990}
This page took 0.946146 seconds and 4 git commands to generate.