* config/tc-mips.c (append_insn): Correctly handle mips16 case
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
0fd88904 4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
7aea86e6 5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
c44ca51c
AC
62#include "reggroups.h"
63
7a78ae4e
ND
64/* If the kernel has to deliver a signal, it pushes a sigcontext
65 structure on the stack and then calls the signal handler, passing
66 the address of the sigcontext in an argument register. Usually
67 the signal handler doesn't save this register, so we have to
68 access the sigcontext structure via an offset from the signal handler
69 frame.
70 The following constants were determined by experimentation on AIX 3.2. */
71#define SIG_FRAME_PC_OFFSET 96
72#define SIG_FRAME_LR_OFFSET 108
73#define SIG_FRAME_FP_OFFSET 284
74
7a78ae4e
ND
75/* To be used by skip_prologue. */
76
77struct rs6000_framedata
78 {
79 int offset; /* total size of frame --- the distance
80 by which we decrement sp to allocate
81 the frame */
82 int saved_gpr; /* smallest # of saved gpr */
83 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 84 int saved_vr; /* smallest # of saved vr */
96ff0de4 85 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
86 int alloca_reg; /* alloca register number (frame ptr) */
87 char frameless; /* true if frameless functions. */
88 char nosavedpc; /* true if pc not saved. */
89 int gpr_offset; /* offset of saved gprs from prev sp */
90 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 91 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 92 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
93 int lr_offset; /* offset of saved lr */
94 int cr_offset; /* offset of saved cr */
6be8bc0c 95 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
96 };
97
98/* Description of a single register. */
99
100struct reg
101 {
102 char *name; /* name of register */
103 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
104 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
105 unsigned char fpr; /* whether register is floating-point */
489461e2 106 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
107 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
108 This is an ISA SPR number, not a GDB
109 register number. */
7a78ae4e
ND
110 };
111
c906108c
SS
112/* Breakpoint shadows for the single step instructions will be kept here. */
113
c5aa993b 114static struct sstep_breaks
50fd1280
AC
115{
116 /* Address, or 0 if this is not in use. */
117 CORE_ADDR address;
118 /* Shadow contents. */
119 gdb_byte data[4];
120}
c5aa993b 121stepBreaks[2];
c906108c
SS
122
123/* Hook for determining the TOC address when calling functions in the
124 inferior under AIX. The initialization code in rs6000-nat.c sets
125 this hook to point to find_toc_address. */
126
7a78ae4e
ND
127CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
128
129/* Hook to set the current architecture when starting a child process.
130 rs6000-nat.c sets this. */
131
132void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
133
134/* Static function prototypes */
135
a14ed312
KB
136static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
137 CORE_ADDR safety);
077276e8
KB
138static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
139 struct rs6000_framedata *);
c906108c 140
64b84175
KB
141/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
142int
143altivec_register_p (int regno)
144{
145 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
146 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
147 return 0;
148 else
149 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
150}
151
383f0f5b 152
867e2dc5
JB
153/* Return true if REGNO is an SPE register, false otherwise. */
154int
155spe_register_p (int regno)
156{
157 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
158
159 /* Is it a reference to EV0 -- EV31, and do we have those? */
160 if (tdep->ppc_ev0_regnum >= 0
161 && tdep->ppc_ev31_regnum >= 0
162 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
163 return 1;
164
6ced10dd
JB
165 /* Is it a reference to one of the raw upper GPR halves? */
166 if (tdep->ppc_ev0_upper_regnum >= 0
167 && tdep->ppc_ev0_upper_regnum <= regno
168 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
169 return 1;
170
867e2dc5
JB
171 /* Is it a reference to the 64-bit accumulator, and do we have that? */
172 if (tdep->ppc_acc_regnum >= 0
173 && tdep->ppc_acc_regnum == regno)
174 return 1;
175
176 /* Is it a reference to the SPE floating-point status and control register,
177 and do we have that? */
178 if (tdep->ppc_spefscr_regnum >= 0
179 && tdep->ppc_spefscr_regnum == regno)
180 return 1;
181
182 return 0;
183}
184
185
383f0f5b
JB
186/* Return non-zero if the architecture described by GDBARCH has
187 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
188int
189ppc_floating_point_unit_p (struct gdbarch *gdbarch)
190{
383f0f5b
JB
191 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
192
193 return (tdep->ppc_fp0_regnum >= 0
194 && tdep->ppc_fpscr_regnum >= 0);
0a613259 195}
9f643768 196
09991fa0
JB
197
198/* Check that TABLE[GDB_REGNO] is not already initialized, and then
199 set it to SIM_REGNO.
200
201 This is a helper function for init_sim_regno_table, constructing
202 the table mapping GDB register numbers to sim register numbers; we
203 initialize every element in that table to -1 before we start
204 filling it in. */
9f643768
JB
205static void
206set_sim_regno (int *table, int gdb_regno, int sim_regno)
207{
208 /* Make sure we don't try to assign any given GDB register a sim
209 register number more than once. */
210 gdb_assert (table[gdb_regno] == -1);
211 table[gdb_regno] = sim_regno;
212}
213
09991fa0
JB
214
215/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
216 numbers to simulator register numbers, based on the values placed
217 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
218static void
219init_sim_regno_table (struct gdbarch *arch)
220{
221 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
222 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
223 const struct reg *regs = tdep->regs;
224 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
225 int i;
226
227 /* Presume that all registers not explicitly mentioned below are
228 unavailable from the sim. */
229 for (i = 0; i < total_regs; i++)
230 sim_regno[i] = -1;
231
232 /* General-purpose registers. */
233 for (i = 0; i < ppc_num_gprs; i++)
234 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
235
236 /* Floating-point registers. */
237 if (tdep->ppc_fp0_regnum >= 0)
238 for (i = 0; i < ppc_num_fprs; i++)
239 set_sim_regno (sim_regno,
240 tdep->ppc_fp0_regnum + i,
241 sim_ppc_f0_regnum + i);
242 if (tdep->ppc_fpscr_regnum >= 0)
243 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
244
245 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
246 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
247 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
248
249 /* Segment registers. */
250 if (tdep->ppc_sr0_regnum >= 0)
251 for (i = 0; i < ppc_num_srs; i++)
252 set_sim_regno (sim_regno,
253 tdep->ppc_sr0_regnum + i,
254 sim_ppc_sr0_regnum + i);
255
256 /* Altivec registers. */
257 if (tdep->ppc_vr0_regnum >= 0)
258 {
259 for (i = 0; i < ppc_num_vrs; i++)
260 set_sim_regno (sim_regno,
261 tdep->ppc_vr0_regnum + i,
262 sim_ppc_vr0_regnum + i);
263
264 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
265 we can treat this more like the other cases. */
266 set_sim_regno (sim_regno,
267 tdep->ppc_vr0_regnum + ppc_num_vrs,
268 sim_ppc_vscr_regnum);
269 }
270 /* vsave is a special-purpose register, so the code below handles it. */
271
272 /* SPE APU (E500) registers. */
273 if (tdep->ppc_ev0_regnum >= 0)
274 for (i = 0; i < ppc_num_gprs; i++)
275 set_sim_regno (sim_regno,
276 tdep->ppc_ev0_regnum + i,
277 sim_ppc_ev0_regnum + i);
6ced10dd
JB
278 if (tdep->ppc_ev0_upper_regnum >= 0)
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno,
281 tdep->ppc_ev0_upper_regnum + i,
282 sim_ppc_rh0_regnum + i);
9f643768
JB
283 if (tdep->ppc_acc_regnum >= 0)
284 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
285 /* spefscr is a special-purpose register, so the code below handles it. */
286
287 /* Now handle all special-purpose registers. Verify that they
288 haven't mistakenly been assigned numbers by any of the above
289 code). */
290 for (i = 0; i < total_regs; i++)
291 if (regs[i].spr_num >= 0)
292 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
293
294 /* Drop the initialized array into place. */
295 tdep->sim_regno = sim_regno;
296}
297
09991fa0
JB
298
299/* Given a GDB register number REG, return the corresponding SIM
300 register number. */
9f643768
JB
301static int
302rs6000_register_sim_regno (int reg)
303{
304 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
305 int sim_regno;
306
307 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
308 sim_regno = tdep->sim_regno[reg];
309
310 if (sim_regno >= 0)
311 return sim_regno;
312 else
313 return LEGACY_SIM_REGNO_IGNORE;
314}
315
d195bc9f
MK
316\f
317
318/* Register set support functions. */
319
320static void
321ppc_supply_reg (struct regcache *regcache, int regnum,
50fd1280 322 const gdb_byte *regs, size_t offset)
d195bc9f
MK
323{
324 if (regnum != -1 && offset != -1)
325 regcache_raw_supply (regcache, regnum, regs + offset);
326}
327
328static void
329ppc_collect_reg (const struct regcache *regcache, int regnum,
50fd1280 330 gdb_byte *regs, size_t offset)
d195bc9f
MK
331{
332 if (regnum != -1 && offset != -1)
333 regcache_raw_collect (regcache, regnum, regs + offset);
334}
335
336/* Supply register REGNUM in the general-purpose register set REGSET
337 from the buffer specified by GREGS and LEN to register cache
338 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
339
340void
341ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
342 int regnum, const void *gregs, size_t len)
343{
344 struct gdbarch *gdbarch = get_regcache_arch (regcache);
345 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
346 const struct ppc_reg_offsets *offsets = regset->descr;
347 size_t offset;
348 int i;
349
cdf2c5f5 350 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 351 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 352 i++, offset += 4)
d195bc9f
MK
353 {
354 if (regnum == -1 || regnum == i)
355 ppc_supply_reg (regcache, i, gregs, offset);
356 }
357
358 if (regnum == -1 || regnum == PC_REGNUM)
359 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
360 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
361 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
362 gregs, offsets->ps_offset);
363 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
364 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
365 gregs, offsets->cr_offset);
366 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
367 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
368 gregs, offsets->lr_offset);
369 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
370 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
371 gregs, offsets->ctr_offset);
372 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
373 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
374 gregs, offsets->cr_offset);
375 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
376 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
377}
378
379/* Supply register REGNUM in the floating-point register set REGSET
380 from the buffer specified by FPREGS and LEN to register cache
381 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
382
383void
384ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
385 int regnum, const void *fpregs, size_t len)
386{
387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
389 const struct ppc_reg_offsets *offsets = regset->descr;
390 size_t offset;
391 int i;
392
383f0f5b
JB
393 gdb_assert (ppc_floating_point_unit_p (gdbarch));
394
d195bc9f 395 offset = offsets->f0_offset;
366f009f
JB
396 for (i = tdep->ppc_fp0_regnum;
397 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 398 i++, offset += 8)
d195bc9f
MK
399 {
400 if (regnum == -1 || regnum == i)
401 ppc_supply_reg (regcache, i, fpregs, offset);
402 }
403
404 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
405 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
406 fpregs, offsets->fpscr_offset);
407}
408
409/* Collect register REGNUM in the general-purpose register set
410 REGSET. from register cache REGCACHE into the buffer specified by
411 GREGS and LEN. If REGNUM is -1, do this for all registers in
412 REGSET. */
413
414void
415ppc_collect_gregset (const struct regset *regset,
416 const struct regcache *regcache,
417 int regnum, void *gregs, size_t len)
418{
419 struct gdbarch *gdbarch = get_regcache_arch (regcache);
420 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
421 const struct ppc_reg_offsets *offsets = regset->descr;
422 size_t offset;
423 int i;
424
425 offset = offsets->r0_offset;
cdf2c5f5 426 for (i = tdep->ppc_gp0_regnum;
063715bf 427 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 428 i++, offset += 4)
d195bc9f
MK
429 {
430 if (regnum == -1 || regnum == i)
2e56e9c1 431 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
432 }
433
434 if (regnum == -1 || regnum == PC_REGNUM)
435 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
436 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
437 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
438 gregs, offsets->ps_offset);
439 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
440 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
441 gregs, offsets->cr_offset);
442 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
443 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
444 gregs, offsets->lr_offset);
445 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
446 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
447 gregs, offsets->ctr_offset);
448 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
449 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
450 gregs, offsets->xer_offset);
451 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
452 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
453 gregs, offsets->mq_offset);
454}
455
456/* Collect register REGNUM in the floating-point register set
457 REGSET. from register cache REGCACHE into the buffer specified by
458 FPREGS and LEN. If REGNUM is -1, do this for all registers in
459 REGSET. */
460
461void
462ppc_collect_fpregset (const struct regset *regset,
463 const struct regcache *regcache,
464 int regnum, void *fpregs, size_t len)
465{
466 struct gdbarch *gdbarch = get_regcache_arch (regcache);
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468 const struct ppc_reg_offsets *offsets = regset->descr;
469 size_t offset;
470 int i;
471
383f0f5b
JB
472 gdb_assert (ppc_floating_point_unit_p (gdbarch));
473
d195bc9f 474 offset = offsets->f0_offset;
366f009f
JB
475 for (i = tdep->ppc_fp0_regnum;
476 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
bdbcb8b4 477 i++, offset += 8)
d195bc9f
MK
478 {
479 if (regnum == -1 || regnum == i)
bdbcb8b4 480 ppc_collect_reg (regcache, i, fpregs, offset);
d195bc9f
MK
481 }
482
483 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
484 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
485 fpregs, offsets->fpscr_offset);
486}
487\f
0a613259 488
7a78ae4e 489/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 490
7a78ae4e
ND
491static CORE_ADDR
492read_memory_addr (CORE_ADDR memaddr, int len)
493{
494 return read_memory_unsigned_integer (memaddr, len);
495}
c906108c 496
7a78ae4e
ND
497static CORE_ADDR
498rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
499{
500 struct rs6000_framedata frame;
077276e8 501 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
502 return pc;
503}
504
505
c906108c
SS
506/* Fill in fi->saved_regs */
507
508struct frame_extra_info
509{
510 /* Functions calling alloca() change the value of the stack
511 pointer. We need to use initial stack pointer (which is saved in
512 r31 by gcc) in such cases. If a compiler emits traceback table,
513 then we should use the alloca register specified in traceback
514 table. FIXME. */
c5aa993b 515 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
516};
517
143985b7 518/* Get the ith function argument for the current function. */
b9362cc7 519static CORE_ADDR
143985b7
AF
520rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
521 struct type *type)
522{
50fd1280 523 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
524}
525
c906108c
SS
526/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528static CORE_ADDR
7a78ae4e 529branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
530{
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
c5aa993b
JM
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
2188cbdd 561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
8b36eed8 573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 574 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
2188cbdd 580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
587 }
588 else
589 return -1;
590 break;
c906108c 591
c5aa993b
JM
592 default:
593 return -1;
594 }
c906108c
SS
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596}
597
598
599/* Sequence of bytes for breakpoint instruction. */
600
f4f9705a 601const static unsigned char *
7a78ae4e 602rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 603{
aaab4dba
AC
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 606 *bp_size = 4;
d7449b42 607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611}
612
613
614/* AIX does not support PT_STEP. Simulate it. */
615
616void
379d08a1
AC
617rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
c906108c 619{
7c40d541
KB
620 CORE_ADDR dummy;
621 int breakp_sz;
50fd1280 622 const gdb_byte *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
c5aa993b
JM
628 if (insert_breakpoints_p)
629 {
c906108c 630
c5aa993b 631 loc = read_pc ();
c906108c 632
c5aa993b 633 insn = read_memory_integer (loc, 4);
c906108c 634
7c40d541 635 breaks[0] = loc + breakp_sz;
c5aa993b
JM
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 638
c5aa993b
JM
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
c906108c 642
c5aa993b 643 stepBreaks[1].address = 0;
c906108c 644
c5aa993b
JM
645 for (ii = 0; ii < 2; ++ii)
646 {
c906108c 647
c5aa993b
JM
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
7c40d541 651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
652 stepBreaks[ii].address = breaks[ii];
653 }
c906108c 654
c5aa993b
JM
655 }
656 else
657 {
c906108c 658
c5aa993b
JM
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
7c40d541
KB
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
c5aa993b 664 }
c906108c 665 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 666 /* What errors? {read,write}_memory call error(). */
c906108c
SS
667}
668
669
670/* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
c5aa993b
JM
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
6be8bc0c 680 - saved_vr is the number of the first saved vr.
96ff0de4 681 - saved_ev is the number of the first saved ev.
c5aa993b
JM
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 686 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 687 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
6be8bc0c 690 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 691 */
c906108c
SS
692
693#define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
55d05f3b
KB
700/* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702static int max_skip_non_prologue_insns = 10;
703
704/* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
634aa483
AC
710
711/* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
55d05f3b
KB
714static CORE_ADDR
715refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716{
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753}
754
773df3e5
JB
755/* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760static int
761store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762{
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824}
55d05f3b 825
7a78ae4e 826static CORE_ADDR
077276e8 827skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
828{
829 CORE_ADDR orig_pc = pc;
55d05f3b 830 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 831 CORE_ADDR li_found_pc = 0;
50fd1280 832 gdb_byte buf[4];
c906108c
SS
833 unsigned long op;
834 long offset = 0;
6be8bc0c 835 long vr_saved_offset = 0;
482ca3f5
KB
836 int lr_reg = -1;
837 int cr_reg = -1;
6be8bc0c 838 int vr_reg = -1;
96ff0de4
EZ
839 int ev_reg = -1;
840 long ev_offset = 0;
6be8bc0c 841 int vrsave_reg = -1;
c906108c
SS
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
ddb20c56 845 int prev_insn_was_prologue_insn = 1;
55d05f3b 846 int num_skip_non_prologue_insns = 0;
773df3e5 847 int r0_contains_arg = 0;
96ff0de4 848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 850
55d05f3b
KB
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 865
ddb20c56 866 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
6be8bc0c 869 fdata->saved_vr = -1;
96ff0de4 870 fdata->saved_ev = -1;
c906108c
SS
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
55d05f3b 875 for (;; pc += 4)
c906108c 876 {
ddb20c56
KB
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
55d05f3b
KB
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
ddb20c56
KB
888 prev_insn_was_prologue_insn = 1;
889
55d05f3b 890 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
c906108c 894
c5aa993b
JM
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
43b1ab88
AC
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
773df3e5
JB
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
c5aa993b 918 continue;
c5aa993b
JM
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
98f08d3d 922 cr_reg = (op & 0x03e00000);
773df3e5
JB
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
c5aa993b 925 continue;
c906108c 926
c906108c 927 }
c5aa993b
JM
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
c906108c 937
c5aa993b
JM
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
7a78ae4e 949 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 950 op &= ~3UL;
c5aa993b
JM
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
c906108c 954
ddb20c56
KB
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
96ff0de4 958 /* nop */
ddb20c56
KB
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
c906108c 965 }
c5aa993b
JM
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
773df3e5 971 r0_contains_arg = 0;
c5aa993b
JM
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
773df3e5 980 r0_contains_arg = 0;
c5aa993b
JM
981 continue;
982
983 }
be723e22 984 else if (lr_reg >= 0 &&
98f08d3d
KB
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
c5aa993b 993 fdata->nosavedpc = 0;
be723e22
MS
994 /* Invalidate lr_reg, but don't set it to -1.
995 That would mean that it had never been set. */
996 lr_reg = -2;
98f08d3d
KB
997 if ((op & 0xfc000003) == 0xf8000000 || /* std */
998 (op & 0xfc000000) == 0x90000000) /* stw */
999 {
1000 /* Does not update r1, so add displacement to lr_offset. */
1001 fdata->lr_offset += SIGNED_SHORT (op);
1002 }
c5aa993b
JM
1003 continue;
1004
1005 }
be723e22 1006 else if (cr_reg >= 0 &&
98f08d3d
KB
1007 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1008 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1009 /* stw Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1011 /* stwu Rx, NUM(r1) */
1012 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1013 { /* where Rx == cr */
1014 fdata->cr_offset = offset;
be723e22
MS
1015 /* Invalidate cr_reg, but don't set it to -1.
1016 That would mean that it had never been set. */
1017 cr_reg = -2;
98f08d3d
KB
1018 if ((op & 0xfc000003) == 0xf8000000 ||
1019 (op & 0xfc000000) == 0x90000000)
1020 {
1021 /* Does not update r1, so add displacement to cr_offset. */
1022 fdata->cr_offset += SIGNED_SHORT (op);
1023 }
c5aa993b
JM
1024 continue;
1025
1026 }
1027 else if (op == 0x48000005)
1028 { /* bl .+4 used in
1029 -mrelocatable */
1030 continue;
1031
1032 }
1033 else if (op == 0x48000004)
1034 { /* b .+4 (xlc) */
1035 break;
1036
c5aa993b 1037 }
6be8bc0c
EZ
1038 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1039 in V.4 -mminimal-toc */
c5aa993b
JM
1040 (op & 0xffff0000) == 0x3bde0000)
1041 { /* addi 30,30,foo@l */
1042 continue;
c906108c 1043
c5aa993b
JM
1044 }
1045 else if ((op & 0xfc000001) == 0x48000001)
1046 { /* bl foo,
1047 to save fprs??? */
c906108c 1048
c5aa993b 1049 fdata->frameless = 0;
6be8bc0c 1050 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1051 the first three instructions of the prologue and either
1052 we have no line table information or the line info tells
1053 us that the subroutine call is not part of the line
1054 associated with the prologue. */
c5aa993b 1055 if ((pc - orig_pc) > 8)
ebd98106
FF
1056 {
1057 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1058 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1059
1060 if ((prologue_sal.line == 0) || (prologue_sal.line != this_sal.line))
1061 break;
1062 }
c5aa993b
JM
1063
1064 op = read_memory_integer (pc + 4, 4);
1065
6be8bc0c
EZ
1066 /* At this point, make sure this is not a trampoline
1067 function (a function that simply calls another functions,
1068 and nothing else). If the next is not a nop, this branch
1069 was part of the function prologue. */
c5aa993b
JM
1070
1071 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1072 break; /* don't skip over
1073 this branch */
1074 continue;
1075
c5aa993b 1076 }
98f08d3d
KB
1077 /* update stack pointer */
1078 else if ((op & 0xfc1f0000) == 0x94010000)
1079 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1080 fdata->frameless = 0;
1081 fdata->offset = SIGNED_SHORT (op);
1082 offset = fdata->offset;
1083 continue;
c5aa993b 1084 }
98f08d3d
KB
1085 else if ((op & 0xfc1f016a) == 0x7c01016e)
1086 { /* stwux rX,r1,rY */
1087 /* no way to figure out what r1 is going to be */
1088 fdata->frameless = 0;
1089 offset = fdata->offset;
1090 continue;
1091 }
1092 else if ((op & 0xfc1f0003) == 0xf8010001)
1093 { /* stdu rX,NUM(r1) */
1094 fdata->frameless = 0;
1095 fdata->offset = SIGNED_SHORT (op & ~3UL);
1096 offset = fdata->offset;
1097 continue;
1098 }
1099 else if ((op & 0xfc1f016a) == 0x7c01016a)
1100 { /* stdux rX,r1,rY */
1101 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1102 fdata->frameless = 0;
1103 offset = fdata->offset;
1104 continue;
c5aa993b 1105 }
98f08d3d
KB
1106 /* Load up minimal toc pointer */
1107 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1108 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1109 && !minimal_toc_loaded)
98f08d3d 1110 {
c5aa993b
JM
1111 minimal_toc_loaded = 1;
1112 continue;
1113
f6077098
KB
1114 /* move parameters from argument registers to local variable
1115 registers */
1116 }
1117 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1118 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1119 (((op >> 21) & 31) <= 10) &&
96ff0de4 1120 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1121 {
1122 continue;
1123
c5aa993b
JM
1124 /* store parameters in stack */
1125 }
e802b915 1126 /* Move parameters from argument registers to temporary register. */
773df3e5 1127 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1128 {
c5aa993b
JM
1129 continue;
1130
1131 /* Set up frame pointer */
1132 }
1133 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1134 || op == 0x7c3f0b78)
1135 { /* mr r31, r1 */
1136 fdata->frameless = 0;
1137 framep = 1;
6f99cb26 1138 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1139 continue;
1140
1141 /* Another way to set up the frame pointer. */
1142 }
1143 else if ((op & 0xfc1fffff) == 0x38010000)
1144 { /* addi rX, r1, 0x0 */
1145 fdata->frameless = 0;
1146 framep = 1;
6f99cb26
AC
1147 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1148 + ((op & ~0x38010000) >> 21));
c5aa993b 1149 continue;
c5aa993b 1150 }
6be8bc0c
EZ
1151 /* AltiVec related instructions. */
1152 /* Store the vrsave register (spr 256) in another register for
1153 later manipulation, or load a register into the vrsave
1154 register. 2 instructions are used: mfvrsave and
1155 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1156 and mtspr SPR256, Rn. */
1157 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1158 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1159 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1160 {
1161 vrsave_reg = GET_SRC_REG (op);
1162 continue;
1163 }
1164 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1165 {
1166 continue;
1167 }
1168 /* Store the register where vrsave was saved to onto the stack:
1169 rS is the register where vrsave was stored in a previous
1170 instruction. */
1171 /* 100100 sssss 00001 dddddddd dddddddd */
1172 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1173 {
1174 if (vrsave_reg == GET_SRC_REG (op))
1175 {
1176 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1177 vrsave_reg = -1;
1178 }
1179 continue;
1180 }
1181 /* Compute the new value of vrsave, by modifying the register
1182 where vrsave was saved to. */
1183 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1184 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1185 {
1186 continue;
1187 }
1188 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1189 in a pair of insns to save the vector registers on the
1190 stack. */
1191 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1192 /* 001110 01110 00000 iiii iiii iiii iiii */
1193 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1194 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1195 {
773df3e5
JB
1196 if ((op & 0xffff0000) == 0x38000000)
1197 r0_contains_arg = 0;
6be8bc0c
EZ
1198 li_found_pc = pc;
1199 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1200
1201 /* This insn by itself is not part of the prologue, unless
1202 if part of the pair of insns mentioned above. So do not
1203 record this insn as part of the prologue yet. */
1204 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1205 }
1206 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1207 /* 011111 sssss 11111 00000 00111001110 */
1208 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1209 {
1210 if (pc == (li_found_pc + 4))
1211 {
1212 vr_reg = GET_SRC_REG (op);
1213 /* If this is the first vector reg to be saved, or if
1214 it has a lower number than others previously seen,
1215 reupdate the frame info. */
1216 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1217 {
1218 fdata->saved_vr = vr_reg;
1219 fdata->vr_offset = vr_saved_offset + offset;
1220 }
1221 vr_saved_offset = -1;
1222 vr_reg = -1;
1223 li_found_pc = 0;
1224 }
1225 }
1226 /* End AltiVec related instructions. */
96ff0de4
EZ
1227
1228 /* Start BookE related instructions. */
1229 /* Store gen register S at (r31+uimm).
1230 Any register less than r13 is volatile, so we don't care. */
1231 /* 000100 sssss 11111 iiiii 01100100001 */
1232 else if (arch_info->mach == bfd_mach_ppc_e500
1233 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1234 {
1235 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1236 {
1237 unsigned int imm;
1238 ev_reg = GET_SRC_REG (op);
1239 imm = (op >> 11) & 0x1f;
1240 ev_offset = imm * 8;
1241 /* If this is the first vector reg to be saved, or if
1242 it has a lower number than others previously seen,
1243 reupdate the frame info. */
1244 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1245 {
1246 fdata->saved_ev = ev_reg;
1247 fdata->ev_offset = ev_offset + offset;
1248 }
1249 }
1250 continue;
1251 }
1252 /* Store gen register rS at (r1+rB). */
1253 /* 000100 sssss 00001 bbbbb 01100100000 */
1254 else if (arch_info->mach == bfd_mach_ppc_e500
1255 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1256 {
1257 if (pc == (li_found_pc + 4))
1258 {
1259 ev_reg = GET_SRC_REG (op);
1260 /* If this is the first vector reg to be saved, or if
1261 it has a lower number than others previously seen,
1262 reupdate the frame info. */
1263 /* We know the contents of rB from the previous instruction. */
1264 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1265 {
1266 fdata->saved_ev = ev_reg;
1267 fdata->ev_offset = vr_saved_offset + offset;
1268 }
1269 vr_saved_offset = -1;
1270 ev_reg = -1;
1271 li_found_pc = 0;
1272 }
1273 continue;
1274 }
1275 /* Store gen register r31 at (rA+uimm). */
1276 /* 000100 11111 aaaaa iiiii 01100100001 */
1277 else if (arch_info->mach == bfd_mach_ppc_e500
1278 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1279 {
1280 /* Wwe know that the source register is 31 already, but
1281 it can't hurt to compute it. */
1282 ev_reg = GET_SRC_REG (op);
1283 ev_offset = ((op >> 11) & 0x1f) * 8;
1284 /* If this is the first vector reg to be saved, or if
1285 it has a lower number than others previously seen,
1286 reupdate the frame info. */
1287 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1288 {
1289 fdata->saved_ev = ev_reg;
1290 fdata->ev_offset = ev_offset + offset;
1291 }
1292
1293 continue;
1294 }
1295 /* Store gen register S at (r31+r0).
1296 Store param on stack when offset from SP bigger than 4 bytes. */
1297 /* 000100 sssss 11111 00000 01100100000 */
1298 else if (arch_info->mach == bfd_mach_ppc_e500
1299 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1300 {
1301 if (pc == (li_found_pc + 4))
1302 {
1303 if ((op & 0x03e00000) >= 0x01a00000)
1304 {
1305 ev_reg = GET_SRC_REG (op);
1306 /* If this is the first vector reg to be saved, or if
1307 it has a lower number than others previously seen,
1308 reupdate the frame info. */
1309 /* We know the contents of r0 from the previous
1310 instruction. */
1311 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1312 {
1313 fdata->saved_ev = ev_reg;
1314 fdata->ev_offset = vr_saved_offset + offset;
1315 }
1316 ev_reg = -1;
1317 }
1318 vr_saved_offset = -1;
1319 li_found_pc = 0;
1320 continue;
1321 }
1322 }
1323 /* End BookE related instructions. */
1324
c5aa993b
JM
1325 else
1326 {
55d05f3b
KB
1327 /* Not a recognized prologue instruction.
1328 Handle optimizer code motions into the prologue by continuing
1329 the search if we have no valid frame yet or if the return
1330 address is not yet saved in the frame. */
1331 if (fdata->frameless == 0
1332 && (lr_reg == -1 || fdata->nosavedpc == 0))
1333 break;
1334
1335 if (op == 0x4e800020 /* blr */
1336 || op == 0x4e800420) /* bctr */
1337 /* Do not scan past epilogue in frameless functions or
1338 trampolines. */
1339 break;
1340 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1341 /* Never skip branches. */
55d05f3b
KB
1342 break;
1343
1344 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1345 /* Do not scan too many insns, scanning insns is expensive with
1346 remote targets. */
1347 break;
1348
1349 /* Continue scanning. */
1350 prev_insn_was_prologue_insn = 0;
1351 continue;
c5aa993b 1352 }
c906108c
SS
1353 }
1354
1355#if 0
1356/* I have problems with skipping over __main() that I need to address
1357 * sometime. Previously, I used to use misc_function_vector which
1358 * didn't work as well as I wanted to be. -MGO */
1359
1360 /* If the first thing after skipping a prolog is a branch to a function,
1361 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1362 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1363 work before calling a function right after a prologue, thus we can
64366f1c 1364 single out such gcc2 behaviour. */
c906108c 1365
c906108c 1366
c5aa993b
JM
1367 if ((op & 0xfc000001) == 0x48000001)
1368 { /* bl foo, an initializer function? */
1369 op = read_memory_integer (pc + 4, 4);
1370
1371 if (op == 0x4def7b82)
1372 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1373
64366f1c
EZ
1374 /* Check and see if we are in main. If so, skip over this
1375 initializer function as well. */
c906108c 1376
c5aa993b 1377 tmp = find_pc_misc_function (pc);
6314a349
AC
1378 if (tmp >= 0
1379 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1380 return pc + 8;
1381 }
c906108c 1382 }
c906108c 1383#endif /* 0 */
c5aa993b
JM
1384
1385 fdata->offset = -fdata->offset;
ddb20c56 1386 return last_prologue_pc;
c906108c
SS
1387}
1388
1389
1390/*************************************************************************
f6077098 1391 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1392 frames, etc.
1393*************************************************************************/
1394
c906108c 1395
11269d7e
AC
1396/* All the ABI's require 16 byte alignment. */
1397static CORE_ADDR
1398rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1399{
1400 return (addr & -16);
1401}
1402
7a78ae4e 1403/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1404 the first eight words of the argument list (that might be less than
1405 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1406 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1407 passed in fpr's, in addition to that. Rest of the parameters if any
1408 are passed in user stack. There might be cases in which half of the
c906108c
SS
1409 parameter is copied into registers, the other half is pushed into
1410 stack.
1411
7a78ae4e
ND
1412 Stack must be aligned on 64-bit boundaries when synthesizing
1413 function calls.
1414
c906108c
SS
1415 If the function is returning a structure, then the return address is passed
1416 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1417 starting from r4. */
c906108c 1418
7a78ae4e 1419static CORE_ADDR
7d9b040b 1420rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1421 struct regcache *regcache, CORE_ADDR bp_addr,
1422 int nargs, struct value **args, CORE_ADDR sp,
1423 int struct_return, CORE_ADDR struct_addr)
c906108c 1424{
7a41266b 1425 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1426 int ii;
1427 int len = 0;
c5aa993b
JM
1428 int argno; /* current argument number */
1429 int argbytes; /* current argument byte */
50fd1280 1430 gdb_byte tmp_buffer[50];
c5aa993b 1431 int f_argno = 0; /* current floating point argno */
21283beb 1432 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1433 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1434
ea7c478f 1435 struct value *arg = 0;
c906108c
SS
1436 struct type *type;
1437
1438 CORE_ADDR saved_sp;
1439
383f0f5b
JB
1440 /* The calling convention this function implements assumes the
1441 processor has floating-point registers. We shouldn't be using it
1442 on PPC variants that lack them. */
1443 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1444
64366f1c 1445 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1446 Copy them appropriately. */
1447 ii = 0;
1448
1449 /* If the function is returning a `struct', then the first word
1450 (which will be passed in r3) is used for struct return address.
1451 In that case we should advance one word and start from r4
1452 register to copy parameters. */
1453 if (struct_return)
1454 {
1455 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1456 struct_addr);
1457 ii++;
1458 }
c906108c
SS
1459
1460/*
c5aa993b
JM
1461 effectively indirect call... gcc does...
1462
1463 return_val example( float, int);
1464
1465 eabi:
1466 float in fp0, int in r3
1467 offset of stack on overflow 8/16
1468 for varargs, must go by type.
1469 power open:
1470 float in r3&r4, int in r5
1471 offset of stack on overflow different
1472 both:
1473 return in r3 or f0. If no float, must study how gcc emulates floats;
1474 pay attention to arg promotion.
1475 User may have to cast\args to handle promotion correctly
1476 since gdb won't know if prototype supplied or not.
1477 */
c906108c 1478
c5aa993b
JM
1479 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1480 {
3acba339 1481 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1482
1483 arg = args[argno];
df407dfe 1484 type = check_typedef (value_type (arg));
c5aa993b
JM
1485 len = TYPE_LENGTH (type);
1486
1487 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1488 {
1489
64366f1c 1490 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1491 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1492 there is no way we would run out of them. */
c5aa993b 1493
9f335945
KB
1494 gdb_assert (len <= 8);
1495
1496 regcache_cooked_write (regcache,
1497 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1498 value_contents (arg));
c5aa993b
JM
1499 ++f_argno;
1500 }
1501
f6077098 1502 if (len > reg_size)
c5aa993b
JM
1503 {
1504
64366f1c 1505 /* Argument takes more than one register. */
c5aa993b
JM
1506 while (argbytes < len)
1507 {
50fd1280 1508 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1509 memset (word, 0, reg_size);
1510 memcpy (word,
0fd88904 1511 ((char *) value_contents (arg)) + argbytes,
f6077098
KB
1512 (len - argbytes) > reg_size
1513 ? reg_size : len - argbytes);
9f335945
KB
1514 regcache_cooked_write (regcache,
1515 tdep->ppc_gp0_regnum + 3 + ii,
1516 word);
f6077098 1517 ++ii, argbytes += reg_size;
c5aa993b
JM
1518
1519 if (ii >= 8)
1520 goto ran_out_of_registers_for_arguments;
1521 }
1522 argbytes = 0;
1523 --ii;
1524 }
1525 else
64366f1c
EZ
1526 {
1527 /* Argument can fit in one register. No problem. */
d7449b42 1528 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
50fd1280 1529 gdb_byte word[MAX_REGISTER_SIZE];
9f335945
KB
1530
1531 memset (word, 0, reg_size);
0fd88904 1532 memcpy (word, value_contents (arg), len);
9f335945 1533 regcache_cooked_write (regcache, tdep->ppc_gp0_regnum + 3 +ii, word);
c5aa993b
JM
1534 }
1535 ++argno;
c906108c 1536 }
c906108c
SS
1537
1538ran_out_of_registers_for_arguments:
1539
7a78ae4e 1540 saved_sp = read_sp ();
cc9836a8 1541
64366f1c 1542 /* Location for 8 parameters are always reserved. */
7a78ae4e 1543 sp -= wordsize * 8;
f6077098 1544
64366f1c 1545 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1546 sp -= wordsize * 6;
f6077098 1547
64366f1c 1548 /* Stack pointer must be quadword aligned. */
7a78ae4e 1549 sp &= -16;
c906108c 1550
64366f1c
EZ
1551 /* If there are more arguments, allocate space for them in
1552 the stack, then push them starting from the ninth one. */
c906108c 1553
c5aa993b
JM
1554 if ((argno < nargs) || argbytes)
1555 {
1556 int space = 0, jj;
c906108c 1557
c5aa993b
JM
1558 if (argbytes)
1559 {
1560 space += ((len - argbytes + 3) & -4);
1561 jj = argno + 1;
1562 }
1563 else
1564 jj = argno;
c906108c 1565
c5aa993b
JM
1566 for (; jj < nargs; ++jj)
1567 {
ea7c478f 1568 struct value *val = args[jj];
df407dfe 1569 space += ((TYPE_LENGTH (value_type (val))) + 3) & -4;
c5aa993b 1570 }
c906108c 1571
64366f1c 1572 /* Add location required for the rest of the parameters. */
f6077098 1573 space = (space + 15) & -16;
c5aa993b 1574 sp -= space;
c906108c 1575
7aea86e6
AC
1576 /* This is another instance we need to be concerned about
1577 securing our stack space. If we write anything underneath %sp
1578 (r1), we might conflict with the kernel who thinks he is free
1579 to use this area. So, update %sp first before doing anything
1580 else. */
1581
1582 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1583
64366f1c
EZ
1584 /* If the last argument copied into the registers didn't fit there
1585 completely, push the rest of it into stack. */
c906108c 1586
c5aa993b
JM
1587 if (argbytes)
1588 {
1589 write_memory (sp + 24 + (ii * 4),
50fd1280 1590 value_contents (arg) + argbytes,
c5aa993b
JM
1591 len - argbytes);
1592 ++argno;
1593 ii += ((len - argbytes + 3) & -4) / 4;
1594 }
c906108c 1595
64366f1c 1596 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1597 for (; argno < nargs; ++argno)
1598 {
c906108c 1599
c5aa993b 1600 arg = args[argno];
df407dfe 1601 type = check_typedef (value_type (arg));
c5aa993b 1602 len = TYPE_LENGTH (type);
c906108c
SS
1603
1604
64366f1c
EZ
1605 /* Float types should be passed in fpr's, as well as in the
1606 stack. */
c5aa993b
JM
1607 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1608 {
c906108c 1609
9f335945 1610 gdb_assert (len <= 8);
c906108c 1611
9f335945
KB
1612 regcache_cooked_write (regcache,
1613 tdep->ppc_fp0_regnum + 1 + f_argno,
0fd88904 1614 value_contents (arg));
c5aa993b
JM
1615 ++f_argno;
1616 }
c906108c 1617
50fd1280 1618 write_memory (sp + 24 + (ii * 4), value_contents (arg), len);
c5aa993b
JM
1619 ii += ((len + 3) & -4) / 4;
1620 }
c906108c 1621 }
c906108c 1622
69517000 1623 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1624 be set _before_ the corresponding stack space is used. On AIX,
1625 this even applies when the target has been completely stopped!
1626 Not doing this can lead to conflicts with the kernel which thinks
1627 that it still has control over this not-yet-allocated stack
1628 region. */
33a7c2fc
AC
1629 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1630
7aea86e6
AC
1631 /* Set back chain properly. */
1632 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1633 write_memory (sp, tmp_buffer, 4);
1634
e56a0ecc
AC
1635 /* Point the inferior function call's return address at the dummy's
1636 breakpoint. */
1637 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1638
794a477a
AC
1639 /* Set the TOC register, get the value from the objfile reader
1640 which, in turn, gets it from the VMAP table. */
1641 if (rs6000_find_toc_address_hook != NULL)
1642 {
1643 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1644 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1645 }
1646
c906108c
SS
1647 target_store_registers (-1);
1648 return sp;
1649}
c906108c 1650
b9ff3018
AC
1651/* PowerOpen always puts structures in memory. Vectors, which were
1652 added later, do get returned in a register though. */
1653
1654static int
1655rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1656{
1657 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1658 && TYPE_VECTOR (value_type))
1659 return 0;
1660 return 1;
1661}
1662
7a78ae4e 1663static void
50fd1280
AC
1664rs6000_extract_return_value (struct type *valtype, gdb_byte *regbuf,
1665 gdb_byte *valbuf)
c906108c
SS
1666{
1667 int offset = 0;
ace1378a 1668 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1669
383f0f5b
JB
1670 /* The calling convention this function implements assumes the
1671 processor has floating-point registers. We shouldn't be using it
1672 on PPC variants that lack them. */
1673 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1674
c5aa993b
JM
1675 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1676 {
c906108c 1677
c5aa993b
JM
1678 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1679 We need to truncate the return value into float size (4 byte) if
64366f1c 1680 necessary. */
c906108c 1681
65951cd9 1682 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1683 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1684 builtin_type_double,
1685 valbuf,
1686 valtype);
c5aa993b 1687 }
ace1378a
EZ
1688 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1689 && TYPE_LENGTH (valtype) == 16
1690 && TYPE_VECTOR (valtype))
1691 {
62700349 1692 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1693 TYPE_LENGTH (valtype));
1694 }
c5aa993b
JM
1695 else
1696 {
1697 /* return value is copied starting from r3. */
d7449b42 1698 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1699 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1700 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1701
1702 memcpy (valbuf,
62700349 1703 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1704 TYPE_LENGTH (valtype));
c906108c 1705 }
c906108c
SS
1706}
1707
977adac5
ND
1708/* Return whether handle_inferior_event() should proceed through code
1709 starting at PC in function NAME when stepping.
1710
1711 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1712 handle memory references that are too distant to fit in instructions
1713 generated by the compiler. For example, if 'foo' in the following
1714 instruction:
1715
1716 lwz r9,foo(r2)
1717
1718 is greater than 32767, the linker might replace the lwz with a branch to
1719 somewhere in @FIX1 that does the load in 2 instructions and then branches
1720 back to where execution should continue.
1721
1722 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
1723 Unfortunately, the linker uses the "b" instruction for the
1724 branches, meaning that the link register doesn't get set.
1725 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 1726
2ec664f5
MS
1727 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and
1728 SKIP_TRAMPOLINE_CODE hooks in handle_inferior_event() to skip past
1729 @FIX code. */
977adac5
ND
1730
1731int
1732rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1733{
1734 return name && !strncmp (name, "@FIX", 4);
1735}
1736
1737/* Skip code that the user doesn't want to see when stepping:
1738
1739 1. Indirect function calls use a piece of trampoline code to do context
1740 switching, i.e. to set the new TOC table. Skip such code if we are on
1741 its first instruction (as when we have single-stepped to here).
1742
1743 2. Skip shared library trampoline code (which is different from
c906108c 1744 indirect function call trampolines).
977adac5
ND
1745
1746 3. Skip bigtoc fixup code.
1747
c906108c 1748 Result is desired PC to step until, or NULL if we are not in
977adac5 1749 code that should be skipped. */
c906108c
SS
1750
1751CORE_ADDR
7a78ae4e 1752rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1753{
52f0bd74 1754 unsigned int ii, op;
977adac5 1755 int rel;
c906108c 1756 CORE_ADDR solib_target_pc;
977adac5 1757 struct minimal_symbol *msymbol;
c906108c 1758
c5aa993b
JM
1759 static unsigned trampoline_code[] =
1760 {
1761 0x800b0000, /* l r0,0x0(r11) */
1762 0x90410014, /* st r2,0x14(r1) */
1763 0x7c0903a6, /* mtctr r0 */
1764 0x804b0004, /* l r2,0x4(r11) */
1765 0x816b0008, /* l r11,0x8(r11) */
1766 0x4e800420, /* bctr */
1767 0x4e800020, /* br */
1768 0
c906108c
SS
1769 };
1770
977adac5
ND
1771 /* Check for bigtoc fixup code. */
1772 msymbol = lookup_minimal_symbol_by_pc (pc);
2ec664f5
MS
1773 if (msymbol
1774 && rs6000_in_solib_return_trampoline (pc,
1775 DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1776 {
1777 /* Double-check that the third instruction from PC is relative "b". */
1778 op = read_memory_integer (pc + 8, 4);
1779 if ((op & 0xfc000003) == 0x48000000)
1780 {
1781 /* Extract bits 6-29 as a signed 24-bit relative word address and
1782 add it to the containing PC. */
1783 rel = ((int)(op << 6) >> 6);
1784 return pc + 8 + rel;
1785 }
1786 }
1787
c906108c
SS
1788 /* If pc is in a shared library trampoline, return its target. */
1789 solib_target_pc = find_solib_trampoline_target (pc);
1790 if (solib_target_pc)
1791 return solib_target_pc;
1792
c5aa993b
JM
1793 for (ii = 0; trampoline_code[ii]; ++ii)
1794 {
1795 op = read_memory_integer (pc + (ii * 4), 4);
1796 if (op != trampoline_code[ii])
1797 return 0;
1798 }
1799 ii = read_register (11); /* r11 holds destination addr */
21283beb 1800 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1801 return pc;
1802}
1803
7a78ae4e 1804/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1805 isn't available with that word size, return 0. */
7a78ae4e
ND
1806
1807static int
1808regsize (const struct reg *reg, int wordsize)
1809{
1810 return wordsize == 8 ? reg->sz64 : reg->sz32;
1811}
1812
1813/* Return the name of register number N, or null if no such register exists
64366f1c 1814 in the current architecture. */
7a78ae4e 1815
fa88f677 1816static const char *
7a78ae4e
ND
1817rs6000_register_name (int n)
1818{
21283beb 1819 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1820 const struct reg *reg = tdep->regs + n;
1821
1822 if (!regsize (reg, tdep->wordsize))
1823 return NULL;
1824 return reg->name;
1825}
1826
7a78ae4e
ND
1827/* Return the GDB type object for the "standard" data type
1828 of data in register N. */
1829
1830static struct type *
691d145a 1831rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1832{
691d145a 1833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1834 const struct reg *reg = tdep->regs + n;
1835
1fcc0bb8
EZ
1836 if (reg->fpr)
1837 return builtin_type_double;
1838 else
1839 {
1840 int size = regsize (reg, tdep->wordsize);
1841 switch (size)
1842 {
449a5da4
AC
1843 case 0:
1844 return builtin_type_int0;
1845 case 4:
ed6edd9b 1846 return builtin_type_uint32;
1fcc0bb8 1847 case 8:
c8001721
EZ
1848 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1849 return builtin_type_vec64;
1850 else
ed6edd9b 1851 return builtin_type_uint64;
1fcc0bb8
EZ
1852 break;
1853 case 16:
08cf96df 1854 return builtin_type_vec128;
1fcc0bb8
EZ
1855 break;
1856 default:
e2e0b3e5 1857 internal_error (__FILE__, __LINE__, _("Register %d size %d unknown"),
449a5da4 1858 n, size);
1fcc0bb8
EZ
1859 }
1860 }
7a78ae4e
ND
1861}
1862
c44ca51c
AC
1863/* Is REGNUM a member of REGGROUP? */
1864static int
1865rs6000_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1866 struct reggroup *group)
1867{
1868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1869 int float_p;
1870 int vector_p;
1871 int general_p;
1872
1873 if (REGISTER_NAME (regnum) == NULL
1874 || *REGISTER_NAME (regnum) == '\0')
1875 return 0;
1876 if (group == all_reggroup)
1877 return 1;
1878
1879 float_p = (regnum == tdep->ppc_fpscr_regnum
1880 || (regnum >= tdep->ppc_fp0_regnum
1881 && regnum < tdep->ppc_fp0_regnum + 32));
1882 if (group == float_reggroup)
1883 return float_p;
1884
1885 vector_p = ((regnum >= tdep->ppc_vr0_regnum
1886 && regnum < tdep->ppc_vr0_regnum + 32)
1887 || (regnum >= tdep->ppc_ev0_regnum
1888 && regnum < tdep->ppc_ev0_regnum + 32)
1889 || regnum == tdep->ppc_vrsave_regnum
1890 || regnum == tdep->ppc_acc_regnum
1891 || regnum == tdep->ppc_spefscr_regnum);
1892 if (group == vector_reggroup)
1893 return vector_p;
1894
1895 /* Note that PS aka MSR isn't included - it's a system register (and
1896 besides, due to GCC's CFI foobar you do not want to restore
1897 it). */
1898 general_p = ((regnum >= tdep->ppc_gp0_regnum
1899 && regnum < tdep->ppc_gp0_regnum + 32)
1900 || regnum == tdep->ppc_toc_regnum
1901 || regnum == tdep->ppc_cr_regnum
1902 || regnum == tdep->ppc_lr_regnum
1903 || regnum == tdep->ppc_ctr_regnum
1904 || regnum == tdep->ppc_xer_regnum
1905 || regnum == PC_REGNUM);
1906 if (group == general_reggroup)
1907 return general_p;
1908
1909 if (group == save_reggroup || group == restore_reggroup)
1910 return general_p || vector_p || float_p;
1911
1912 return 0;
1913}
1914
691d145a 1915/* The register format for RS/6000 floating point registers is always
64366f1c 1916 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1917
1918static int
691d145a 1919rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 1920{
691d145a
JB
1921 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1922
1923 return (reg->fpr
1924 && TYPE_CODE (type) == TYPE_CODE_FLT
1925 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
1926}
1927
7a78ae4e 1928static void
691d145a
JB
1929rs6000_register_to_value (struct frame_info *frame,
1930 int regnum,
1931 struct type *type,
50fd1280 1932 gdb_byte *to)
7a78ae4e 1933{
691d145a 1934 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 1935 gdb_byte from[MAX_REGISTER_SIZE];
691d145a
JB
1936
1937 gdb_assert (reg->fpr);
1938 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 1939
691d145a
JB
1940 get_frame_register (frame, regnum, from);
1941 convert_typed_floating (from, builtin_type_double, to, type);
1942}
7a292a7a 1943
7a78ae4e 1944static void
691d145a
JB
1945rs6000_value_to_register (struct frame_info *frame,
1946 int regnum,
1947 struct type *type,
50fd1280 1948 const gdb_byte *from)
7a78ae4e 1949{
691d145a 1950 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
50fd1280 1951 gdb_byte to[MAX_REGISTER_SIZE];
691d145a
JB
1952
1953 gdb_assert (reg->fpr);
1954 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1955
1956 convert_typed_floating (from, type, to, builtin_type_double);
1957 put_frame_register (frame, regnum, to);
7a78ae4e 1958}
c906108c 1959
6ced10dd
JB
1960/* Move SPE vector register values between a 64-bit buffer and the two
1961 32-bit raw register halves in a regcache. This function handles
1962 both splitting a 64-bit value into two 32-bit halves, and joining
1963 two halves into a whole 64-bit value, depending on the function
1964 passed as the MOVE argument.
1965
1966 EV_REG must be the number of an SPE evN vector register --- a
1967 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1968 64-bit buffer.
1969
1970 Call MOVE once for each 32-bit half of that register, passing
1971 REGCACHE, the number of the raw register corresponding to that
1972 half, and the address of the appropriate half of BUFFER.
1973
1974 For example, passing 'regcache_raw_read' as the MOVE function will
1975 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1976 'regcache_raw_supply' will supply the contents of BUFFER to the
1977 appropriate pair of raw registers in REGCACHE.
1978
1979 You may need to cast away some 'const' qualifiers when passing
1980 MOVE, since this function can't tell at compile-time which of
1981 REGCACHE or BUFFER is acting as the source of the data. If C had
1982 co-variant type qualifiers, ... */
1983static void
1984e500_move_ev_register (void (*move) (struct regcache *regcache,
50fd1280 1985 int regnum, gdb_byte *buf),
6ced10dd 1986 struct regcache *regcache, int ev_reg,
50fd1280 1987 gdb_byte *buffer)
6ced10dd
JB
1988{
1989 struct gdbarch *arch = get_regcache_arch (regcache);
1990 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1991 int reg_index;
50fd1280 1992 gdb_byte *byte_buffer = buffer;
6ced10dd
JB
1993
1994 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1995 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1996
1997 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1998
1999 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2000 {
2001 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
2002 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
2003 }
2004 else
2005 {
2006 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2007 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
2008 }
2009}
2010
c8001721
EZ
2011static void
2012e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2013 int reg_nr, gdb_byte *buffer)
c8001721 2014{
6ced10dd 2015 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2016 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2017
6ced10dd
JB
2018 gdb_assert (regcache_arch == gdbarch);
2019
2020 if (tdep->ppc_ev0_regnum <= reg_nr
2021 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
2022 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
2023 else
a44bddec 2024 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2025 _("e500_pseudo_register_read: "
2026 "called on unexpected register '%s' (%d)"),
a44bddec 2027 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2028}
2029
2030static void
2031e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2032 int reg_nr, const gdb_byte *buffer)
c8001721 2033{
6ced10dd 2034 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2035 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2036
6ced10dd
JB
2037 gdb_assert (regcache_arch == gdbarch);
2038
2039 if (tdep->ppc_ev0_regnum <= reg_nr
2040 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
50fd1280 2041 e500_move_ev_register ((void (*) (struct regcache *, int, gdb_byte *))
6ced10dd 2042 regcache_raw_write,
50fd1280 2043 regcache, reg_nr, (gdb_byte *) buffer);
6ced10dd 2044 else
a44bddec 2045 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2046 _("e500_pseudo_register_read: "
2047 "called on unexpected register '%s' (%d)"),
a44bddec 2048 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2049}
2050
2051/* The E500 needs a custom reggroup function: it has anonymous raw
2052 registers, and default_register_reggroup_p assumes that anonymous
2053 registers are not members of any reggroup. */
2054static int
2055e500_register_reggroup_p (struct gdbarch *gdbarch,
2056 int regnum,
2057 struct reggroup *group)
2058{
2059 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2060
2061 /* The save and restore register groups need to include the
2062 upper-half registers, even though they're anonymous. */
2063 if ((group == save_reggroup
2064 || group == restore_reggroup)
2065 && (tdep->ppc_ev0_upper_regnum <= regnum
2066 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2067 return 1;
2068
2069 /* In all other regards, the default reggroup definition is fine. */
2070 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2071}
2072
18ed0c4e 2073/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2074static int
18ed0c4e 2075rs6000_stab_reg_to_regnum (int num)
c8001721 2076{
9f744501 2077 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2078
9f744501
JB
2079 if (0 <= num && num <= 31)
2080 return tdep->ppc_gp0_regnum + num;
2081 else if (32 <= num && num <= 63)
383f0f5b
JB
2082 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2083 specifies registers the architecture doesn't have? Our
2084 callers don't check the value we return. */
366f009f 2085 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2086 else if (77 <= num && num <= 108)
2087 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2088 else if (1200 <= num && num < 1200 + 32)
2089 return tdep->ppc_ev0_regnum + (num - 1200);
2090 else
2091 switch (num)
2092 {
2093 case 64:
2094 return tdep->ppc_mq_regnum;
2095 case 65:
2096 return tdep->ppc_lr_regnum;
2097 case 66:
2098 return tdep->ppc_ctr_regnum;
2099 case 76:
2100 return tdep->ppc_xer_regnum;
2101 case 109:
2102 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2103 case 110:
2104 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2105 case 111:
18ed0c4e 2106 return tdep->ppc_acc_regnum;
867e2dc5 2107 case 112:
18ed0c4e 2108 return tdep->ppc_spefscr_regnum;
9f744501
JB
2109 default:
2110 return num;
2111 }
18ed0c4e 2112}
9f744501 2113
9f744501 2114
18ed0c4e
JB
2115/* Convert a Dwarf 2 register number to a GDB register number. */
2116static int
2117rs6000_dwarf2_reg_to_regnum (int num)
2118{
2119 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2120
18ed0c4e
JB
2121 if (0 <= num && num <= 31)
2122 return tdep->ppc_gp0_regnum + num;
2123 else if (32 <= num && num <= 63)
2124 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2125 specifies registers the architecture doesn't have? Our
2126 callers don't check the value we return. */
2127 return tdep->ppc_fp0_regnum + (num - 32);
2128 else if (1124 <= num && num < 1124 + 32)
2129 return tdep->ppc_vr0_regnum + (num - 1124);
2130 else if (1200 <= num && num < 1200 + 32)
2131 return tdep->ppc_ev0_regnum + (num - 1200);
2132 else
2133 switch (num)
2134 {
2135 case 67:
2136 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2137 case 99:
2138 return tdep->ppc_acc_regnum;
2139 case 100:
2140 return tdep->ppc_mq_regnum;
2141 case 101:
2142 return tdep->ppc_xer_regnum;
2143 case 108:
2144 return tdep->ppc_lr_regnum;
2145 case 109:
2146 return tdep->ppc_ctr_regnum;
2147 case 356:
2148 return tdep->ppc_vrsave_regnum;
2149 case 612:
2150 return tdep->ppc_spefscr_regnum;
2151 default:
2152 return num;
2153 }
2188cbdd
EZ
2154}
2155
18ed0c4e 2156
7a78ae4e 2157static void
a3c001ce
JB
2158rs6000_store_return_value (struct type *type,
2159 struct regcache *regcache,
50fd1280 2160 const gdb_byte *valbuf)
7a78ae4e 2161{
a3c001ce
JB
2162 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2163 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2164 int regnum = -1;
ace1378a 2165
383f0f5b
JB
2166 /* The calling convention this function implements assumes the
2167 processor has floating-point registers. We shouldn't be using it
2168 on PPC variants that lack them. */
a3c001ce 2169 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2170
7a78ae4e 2171 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2172 /* Floating point values are returned starting from FPR1 and up.
2173 Say a double_double_double type could be returned in
64366f1c 2174 FPR1/FPR2/FPR3 triple. */
a3c001ce 2175 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2176 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2177 {
2178 if (TYPE_LENGTH (type) == 16
2179 && TYPE_VECTOR (type))
a3c001ce
JB
2180 regnum = tdep->ppc_vr0_regnum + 2;
2181 else
a44bddec 2182 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
2183 _("rs6000_store_return_value: "
2184 "unexpected array return type"));
ace1378a 2185 }
7a78ae4e 2186 else
64366f1c 2187 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2188 regnum = tdep->ppc_gp0_regnum + 3;
2189
2190 {
2191 size_t bytes_written = 0;
2192
2193 while (bytes_written < TYPE_LENGTH (type))
2194 {
2195 /* How much of this value can we write to this register? */
2196 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2197 register_size (gdbarch, regnum));
2198 regcache_cooked_write_part (regcache, regnum,
2199 0, bytes_to_write,
50fd1280 2200 valbuf + bytes_written);
a3c001ce
JB
2201 regnum++;
2202 bytes_written += bytes_to_write;
2203 }
2204 }
7a78ae4e
ND
2205}
2206
a3c001ce 2207
7a78ae4e
ND
2208/* Extract from an array REGBUF containing the (raw) register state
2209 the address in which a function should return its structure value,
2210 as a CORE_ADDR (or an expression that can be used as one). */
2211
2212static CORE_ADDR
11269d7e
AC
2213rs6000_extract_struct_value_address (struct regcache *regcache)
2214{
2215 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2216 function call GDB knows the address of the struct return value
2217 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2218 the current call_function_by_hand() code only saves the most
2219 recent struct address leading to occasional calls. The code
2220 should instead maintain a stack of such addresses (in the dummy
2221 frame object). */
11269d7e
AC
2222 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2223 really got no idea where the return value is being stored. While
2224 r3, on function entry, contained the address it will have since
2225 been reused (scratch) and hence wouldn't be valid */
2226 return 0;
7a78ae4e
ND
2227}
2228
64366f1c 2229/* Hook called when a new child process is started. */
7a78ae4e
ND
2230
2231void
2232rs6000_create_inferior (int pid)
2233{
2234 if (rs6000_set_host_arch_hook)
2235 rs6000_set_host_arch_hook (pid);
c906108c
SS
2236}
2237\f
e2d0e7eb 2238/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2239
2240 Usually a function pointer's representation is simply the address
2241 of the function. On the RS/6000 however, a function pointer is
2242 represented by a pointer to a TOC entry. This TOC entry contains
2243 three words, the first word is the address of the function, the
2244 second word is the TOC pointer (r2), and the third word is the
2245 static chain value. Throughout GDB it is currently assumed that a
2246 function pointer contains the address of the function, which is not
2247 easy to fix. In addition, the conversion of a function address to
2248 a function pointer would require allocation of a TOC entry in the
2249 inferior's memory space, with all its drawbacks. To be able to
2250 call C++ virtual methods in the inferior (which are called via
f517ea4e 2251 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2252 function address from a function pointer. */
2253
f517ea4e
PS
2254/* Return real function address if ADDR (a function pointer) is in the data
2255 space and is therefore a special function pointer. */
c906108c 2256
b9362cc7 2257static CORE_ADDR
e2d0e7eb
AC
2258rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2259 CORE_ADDR addr,
2260 struct target_ops *targ)
c906108c
SS
2261{
2262 struct obj_section *s;
2263
2264 s = find_pc_section (addr);
2265 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2266 return addr;
c906108c 2267
7a78ae4e 2268 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2269 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2270}
c906108c 2271\f
c5aa993b 2272
7a78ae4e 2273/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2274
2275
7a78ae4e
ND
2276/* The arrays here called registers_MUMBLE hold information about available
2277 registers.
c906108c
SS
2278
2279 For each family of PPC variants, I've tried to isolate out the
2280 common registers and put them up front, so that as long as you get
2281 the general family right, GDB will correctly identify the registers
2282 common to that family. The common register sets are:
2283
2284 For the 60x family: hid0 hid1 iabr dabr pir
2285
2286 For the 505 and 860 family: eie eid nri
2287
2288 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2289 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2290 pbu1 pbl2 pbu2
c906108c
SS
2291
2292 Most of these register groups aren't anything formal. I arrived at
2293 them by looking at the registers that occurred in more than one
6f5987a6
KB
2294 processor.
2295
2296 Note: kevinb/2002-04-30: Support for the fpscr register was added
2297 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2298 for Power. For PowerPC, slot 70 was unused and was already in the
2299 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2300 slot 70 was being used for "mq", so the next available slot (71)
2301 was chosen. It would have been nice to be able to make the
2302 register numbers the same across processor cores, but this wasn't
2303 possible without either 1) renumbering some registers for some
2304 processors or 2) assigning fpscr to a really high slot that's
2305 larger than any current register number. Doing (1) is bad because
2306 existing stubs would break. Doing (2) is undesirable because it
2307 would introduce a really large gap between fpscr and the rest of
2308 the registers for most processors. */
7a78ae4e 2309
64366f1c 2310/* Convenience macros for populating register arrays. */
7a78ae4e 2311
64366f1c 2312/* Within another macro, convert S to a string. */
7a78ae4e
ND
2313
2314#define STR(s) #s
2315
2316/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2317 and 64 bits on 64-bit systems. */
13ac140c 2318#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2319
2320/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2321 systems. */
13ac140c 2322#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2323
2324/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2325 systems. */
13ac140c 2326#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2327
1fcc0bb8 2328/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2329 systems. */
13ac140c 2330#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2331
64366f1c 2332/* Return a struct reg defining floating-point register NAME. */
13ac140c 2333#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2334
6ced10dd
JB
2335/* Return a struct reg defining a pseudo register NAME that is 64 bits
2336 long on all systems. */
2337#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2338
2339/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2340 systems and that doesn't exist on 64-bit systems. */
13ac140c 2341#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2342
2343/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2344 systems and that doesn't exist on 32-bit systems. */
13ac140c 2345#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2346
64366f1c 2347/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2348#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2349
6ced10dd
JB
2350/* Return a struct reg defining an anonymous raw register that's 32
2351 bits on all systems. */
2352#define A4 { 0, 4, 4, 0, 0, -1 }
2353
13ac140c
JB
2354/* Return a struct reg defining an SPR named NAME that is 32 bits on
2355 32-bit systems and 64 bits on 64-bit systems. */
2356#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2357
2358/* Return a struct reg defining an SPR named NAME that is 32 bits on
2359 all systems. */
2360#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2361
2362/* Return a struct reg defining an SPR named NAME that is 32 bits on
2363 all systems, and whose SPR number is NUMBER. */
2364#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2365
2366/* Return a struct reg defining an SPR named NAME that's 64 bits on
2367 64-bit systems and that doesn't exist on 32-bit systems. */
2368#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2369
7a78ae4e
ND
2370/* UISA registers common across all architectures, including POWER. */
2371
2372#define COMMON_UISA_REGS \
2373 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2374 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2375 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2376 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2377 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2378 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2379 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2380 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2381 /* 64 */ R(pc), R(ps)
2382
2383/* UISA-level SPRs for PowerPC. */
2384#define PPC_UISA_SPRS \
13ac140c 2385 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2386
c8001721
EZ
2387/* UISA-level SPRs for PowerPC without floating point support. */
2388#define PPC_UISA_NOFP_SPRS \
13ac140c 2389 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2390
7a78ae4e
ND
2391/* Segment registers, for PowerPC. */
2392#define PPC_SEGMENT_REGS \
2393 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2394 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2395 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2396 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2397
2398/* OEA SPRs for PowerPC. */
2399#define PPC_OEA_SPRS \
13ac140c
JB
2400 /* 87 */ S4(pvr), \
2401 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2402 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2403 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2404 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2405 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2406 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2407 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2408 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2409
64366f1c 2410/* AltiVec registers. */
1fcc0bb8
EZ
2411#define PPC_ALTIVEC_REGS \
2412 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2413 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2414 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2415 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2416 /*151*/R4(vscr), R4(vrsave)
2417
c8001721 2418
6ced10dd
JB
2419/* On machines supporting the SPE APU, the general-purpose registers
2420 are 64 bits long. There are SIMD vector instructions to treat them
2421 as pairs of floats, but the rest of the instruction set treats them
2422 as 32-bit registers, and only operates on their lower halves.
2423
2424 In the GDB regcache, we treat their high and low halves as separate
2425 registers. The low halves we present as the general-purpose
2426 registers, and then we have pseudo-registers that stitch together
2427 the upper and lower halves and present them as pseudo-registers. */
2428
2429/* SPE GPR lower halves --- raw registers. */
2430#define PPC_SPE_GP_REGS \
2431 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2432 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2433 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2434 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2435
2436/* SPE GPR upper halves --- anonymous raw registers. */
2437#define PPC_SPE_UPPER_GP_REGS \
2438 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2439 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2440 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2441 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2442
2443/* SPE GPR vector registers --- pseudo registers based on underlying
2444 gprs and the anonymous upper half raw registers. */
2445#define PPC_EV_PSEUDO_REGS \
2446/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2447/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2448/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2449/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2450
7a78ae4e 2451/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2452 user-level SPR's. */
7a78ae4e 2453static const struct reg registers_power[] =
c906108c 2454{
7a78ae4e 2455 COMMON_UISA_REGS,
13ac140c 2456 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2457 /* 71 */ R4(fpscr)
c906108c
SS
2458};
2459
7a78ae4e 2460/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2461 view of the PowerPC. */
7a78ae4e 2462static const struct reg registers_powerpc[] =
c906108c 2463{
7a78ae4e 2464 COMMON_UISA_REGS,
1fcc0bb8
EZ
2465 PPC_UISA_SPRS,
2466 PPC_ALTIVEC_REGS
c906108c
SS
2467};
2468
13ac140c
JB
2469/* IBM PowerPC 403.
2470
2471 Some notes about the "tcr" special-purpose register:
2472 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2473 403's programmable interval timer, fixed interval timer, and
2474 watchdog timer.
2475 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2476 watchdog timer, and nothing else.
2477
2478 Some of the fields are similar between the two, but they're not
2479 compatible with each other. Since the two variants have different
2480 registers, with different numbers, but the same name, we can't
2481 splice the register name to get the SPR number. */
7a78ae4e 2482static const struct reg registers_403[] =
c5aa993b 2483{
7a78ae4e
ND
2484 COMMON_UISA_REGS,
2485 PPC_UISA_SPRS,
2486 PPC_SEGMENT_REGS,
2487 PPC_OEA_SPRS,
13ac140c
JB
2488 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2489 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2490 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2491 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2492 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2493 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2494};
2495
13ac140c
JB
2496/* IBM PowerPC 403GC.
2497 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2498static const struct reg registers_403GC[] =
c5aa993b 2499{
7a78ae4e
ND
2500 COMMON_UISA_REGS,
2501 PPC_UISA_SPRS,
2502 PPC_SEGMENT_REGS,
2503 PPC_OEA_SPRS,
13ac140c
JB
2504 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2505 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2506 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2507 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2508 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2509 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2510 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2511 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2512};
2513
64366f1c 2514/* Motorola PowerPC 505. */
7a78ae4e 2515static const struct reg registers_505[] =
c5aa993b 2516{
7a78ae4e
ND
2517 COMMON_UISA_REGS,
2518 PPC_UISA_SPRS,
2519 PPC_SEGMENT_REGS,
2520 PPC_OEA_SPRS,
13ac140c 2521 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2522};
2523
64366f1c 2524/* Motorola PowerPC 860 or 850. */
7a78ae4e 2525static const struct reg registers_860[] =
c5aa993b 2526{
7a78ae4e
ND
2527 COMMON_UISA_REGS,
2528 PPC_UISA_SPRS,
2529 PPC_SEGMENT_REGS,
2530 PPC_OEA_SPRS,
13ac140c
JB
2531 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2532 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2533 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2534 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2535 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2536 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2537 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2538 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2539 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2540 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2541 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2542 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2543};
2544
7a78ae4e
ND
2545/* Motorola PowerPC 601. Note that the 601 has different register numbers
2546 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2547 register is the stub's problem. */
7a78ae4e 2548static const struct reg registers_601[] =
c5aa993b 2549{
7a78ae4e
ND
2550 COMMON_UISA_REGS,
2551 PPC_UISA_SPRS,
2552 PPC_SEGMENT_REGS,
2553 PPC_OEA_SPRS,
13ac140c
JB
2554 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2555 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2556};
2557
13ac140c
JB
2558/* Motorola PowerPC 602.
2559 See the notes under the 403 about 'tcr'. */
7a78ae4e 2560static const struct reg registers_602[] =
c5aa993b 2561{
7a78ae4e
ND
2562 COMMON_UISA_REGS,
2563 PPC_UISA_SPRS,
2564 PPC_SEGMENT_REGS,
2565 PPC_OEA_SPRS,
13ac140c
JB
2566 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2567 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2568 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2569};
2570
64366f1c 2571/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2572static const struct reg registers_603[] =
c5aa993b 2573{
7a78ae4e
ND
2574 COMMON_UISA_REGS,
2575 PPC_UISA_SPRS,
2576 PPC_SEGMENT_REGS,
2577 PPC_OEA_SPRS,
13ac140c
JB
2578 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2579 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2580 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2581};
2582
64366f1c 2583/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2584static const struct reg registers_604[] =
c5aa993b 2585{
7a78ae4e
ND
2586 COMMON_UISA_REGS,
2587 PPC_UISA_SPRS,
2588 PPC_SEGMENT_REGS,
2589 PPC_OEA_SPRS,
13ac140c
JB
2590 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2591 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2592 /* 127 */ S(sia), S(sda)
c906108c
SS
2593};
2594
64366f1c 2595/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2596static const struct reg registers_750[] =
c5aa993b 2597{
7a78ae4e
ND
2598 COMMON_UISA_REGS,
2599 PPC_UISA_SPRS,
2600 PPC_SEGMENT_REGS,
2601 PPC_OEA_SPRS,
13ac140c
JB
2602 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2603 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2604 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2605 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2606 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2607 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2608};
2609
2610
64366f1c 2611/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2612static const struct reg registers_7400[] =
2613{
2614 /* gpr0-gpr31, fpr0-fpr31 */
2615 COMMON_UISA_REGS,
13c7b1ca 2616 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2617 PPC_UISA_SPRS,
2618 /* sr0-sr15 */
2619 PPC_SEGMENT_REGS,
2620 PPC_OEA_SPRS,
2621 /* vr0-vr31, vrsave, vscr */
2622 PPC_ALTIVEC_REGS
2623 /* FIXME? Add more registers? */
2624};
2625
c8001721
EZ
2626/* Motorola e500. */
2627static const struct reg registers_e500[] =
2628{
6ced10dd
JB
2629 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2630 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2631 /* 64 .. 65 */ R(pc), R(ps),
2632 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2633 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2634 /* NOTE: Add new registers here the end of the raw register
2635 list and just before the first pseudo register. */
6ced10dd 2636 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2637};
2638
c906108c 2639/* Information about a particular processor variant. */
7a78ae4e 2640
c906108c 2641struct variant
c5aa993b
JM
2642 {
2643 /* Name of this variant. */
2644 char *name;
c906108c 2645
c5aa993b
JM
2646 /* English description of the variant. */
2647 char *description;
c906108c 2648
64366f1c 2649 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2650 enum bfd_architecture arch;
2651
64366f1c 2652 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2653 unsigned long mach;
2654
489461e2
EZ
2655 /* Number of real registers. */
2656 int nregs;
2657
2658 /* Number of pseudo registers. */
2659 int npregs;
2660
2661 /* Number of total registers (the sum of nregs and npregs). */
2662 int num_tot_regs;
2663
c5aa993b
JM
2664 /* Table of register names; registers[R] is the name of the register
2665 number R. */
7a78ae4e 2666 const struct reg *regs;
c5aa993b 2667 };
c906108c 2668
489461e2
EZ
2669#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2670
2671static int
2672num_registers (const struct reg *reg_list, int num_tot_regs)
2673{
2674 int i;
2675 int nregs = 0;
2676
2677 for (i = 0; i < num_tot_regs; i++)
2678 if (!reg_list[i].pseudo)
2679 nregs++;
2680
2681 return nregs;
2682}
2683
2684static int
2685num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2686{
2687 int i;
2688 int npregs = 0;
2689
2690 for (i = 0; i < num_tot_regs; i++)
2691 if (reg_list[i].pseudo)
2692 npregs ++;
2693
2694 return npregs;
2695}
c906108c 2696
c906108c
SS
2697/* Information in this table comes from the following web sites:
2698 IBM: http://www.chips.ibm.com:80/products/embedded/
2699 Motorola: http://www.mot.com/SPS/PowerPC/
2700
2701 I'm sure I've got some of the variant descriptions not quite right.
2702 Please report any inaccuracies you find to GDB's maintainer.
2703
2704 If you add entries to this table, please be sure to allow the new
2705 value as an argument to the --with-cpu flag, in configure.in. */
2706
489461e2 2707static struct variant variants[] =
c906108c 2708{
489461e2 2709
7a78ae4e 2710 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2711 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2712 registers_powerpc},
7a78ae4e 2713 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2714 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2715 registers_power},
7a78ae4e 2716 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2717 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2718 registers_403},
7a78ae4e 2719 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2720 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2721 registers_601},
7a78ae4e 2722 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2723 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2724 registers_602},
7a78ae4e 2725 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2726 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2727 registers_603},
7a78ae4e 2728 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2729 604, -1, -1, tot_num_registers (registers_604),
2730 registers_604},
7a78ae4e 2731 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2732 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2733 registers_403GC},
7a78ae4e 2734 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2735 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2736 registers_505},
7a78ae4e 2737 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2738 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2739 registers_860},
7a78ae4e 2740 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2741 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2742 registers_750},
1fcc0bb8 2743 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2744 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2745 registers_7400},
c8001721
EZ
2746 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2747 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2748 registers_e500},
7a78ae4e 2749
5d57ee30
KB
2750 /* 64-bit */
2751 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2752 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2753 registers_powerpc},
7a78ae4e 2754 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2755 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2756 registers_powerpc},
5d57ee30 2757 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2758 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2759 registers_powerpc},
7a78ae4e 2760 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2761 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2762 registers_powerpc},
5d57ee30 2763 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2764 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2765 registers_powerpc},
5d57ee30 2766 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2767 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2768 registers_powerpc},
5d57ee30 2769
64366f1c 2770 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2771 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2772 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2773 registers_power},
7a78ae4e 2774 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2775 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2776 registers_power},
7a78ae4e 2777 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2778 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2779 registers_power},
7a78ae4e 2780
489461e2 2781 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2782};
2783
64366f1c 2784/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2785
2786static void
2787init_variants (void)
2788{
2789 struct variant *v;
2790
2791 for (v = variants; v->name; v++)
2792 {
2793 if (v->nregs == -1)
2794 v->nregs = num_registers (v->regs, v->num_tot_regs);
2795 if (v->npregs == -1)
2796 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2797 }
2798}
c906108c 2799
7a78ae4e 2800/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2801 MACH. If no such variant exists, return null. */
c906108c 2802
7a78ae4e
ND
2803static const struct variant *
2804find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2805{
7a78ae4e 2806 const struct variant *v;
c5aa993b 2807
7a78ae4e
ND
2808 for (v = variants; v->name; v++)
2809 if (arch == v->arch && mach == v->mach)
2810 return v;
c906108c 2811
7a78ae4e 2812 return NULL;
c906108c 2813}
9364a0ef
EZ
2814
2815static int
2816gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2817{
2818 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2819 return print_insn_big_powerpc (memaddr, info);
2820 else
2821 return print_insn_little_powerpc (memaddr, info);
2822}
7a78ae4e 2823\f
61a65099
KB
2824static CORE_ADDR
2825rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2826{
2827 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2828}
2829
2830static struct frame_id
2831rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2832{
2833 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2834 SP_REGNUM),
2835 frame_pc_unwind (next_frame));
2836}
2837
2838struct rs6000_frame_cache
2839{
2840 CORE_ADDR base;
2841 CORE_ADDR initial_sp;
2842 struct trad_frame_saved_reg *saved_regs;
2843};
2844
2845static struct rs6000_frame_cache *
2846rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2847{
2848 struct rs6000_frame_cache *cache;
2849 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2850 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2851 struct rs6000_framedata fdata;
2852 int wordsize = tdep->wordsize;
2853
2854 if ((*this_cache) != NULL)
2855 return (*this_cache);
2856 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2857 (*this_cache) = cache;
2858 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2859
2860 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2861 &fdata);
2862
2863 /* If there were any saved registers, figure out parent's stack
2864 pointer. */
2865 /* The following is true only if the frame doesn't have a call to
2866 alloca(), FIXME. */
2867
2868 if (fdata.saved_fpr == 0
2869 && fdata.saved_gpr == 0
2870 && fdata.saved_vr == 0
2871 && fdata.saved_ev == 0
2872 && fdata.lr_offset == 0
2873 && fdata.cr_offset == 0
2874 && fdata.vr_offset == 0
2875 && fdata.ev_offset == 0)
2876 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2877 else
2878 {
2879 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2880 address of the current frame. Things might be easier if the
2881 ->frame pointed to the outer-most address of the frame. In
2882 the mean time, the address of the prev frame is used as the
2883 base address of this frame. */
2884 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2885 if (!fdata.frameless)
2886 /* Frameless really means stackless. */
2887 cache->base = read_memory_addr (cache->base, wordsize);
2888 }
2889 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2890
2891 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2892 All fpr's from saved_fpr to fp31 are saved. */
2893
2894 if (fdata.saved_fpr >= 0)
2895 {
2896 int i;
2897 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2898
2899 /* If skip_prologue says floating-point registers were saved,
2900 but the current architecture has no floating-point registers,
2901 then that's strange. But we have no indices to even record
2902 the addresses under, so we just ignore it. */
2903 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2904 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2905 {
2906 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2907 fpr_addr += 8;
2908 }
61a65099
KB
2909 }
2910
2911 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2912 All gpr's from saved_gpr to gpr31 are saved. */
2913
2914 if (fdata.saved_gpr >= 0)
2915 {
2916 int i;
2917 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2918 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2919 {
2920 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2921 gpr_addr += wordsize;
2922 }
2923 }
2924
2925 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2926 All vr's from saved_vr to vr31 are saved. */
2927 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2928 {
2929 if (fdata.saved_vr >= 0)
2930 {
2931 int i;
2932 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2933 for (i = fdata.saved_vr; i < 32; i++)
2934 {
2935 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2936 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2937 }
2938 }
2939 }
2940
2941 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2942 All vr's from saved_ev to ev31 are saved. ????? */
2943 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2944 {
2945 if (fdata.saved_ev >= 0)
2946 {
2947 int i;
2948 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2949 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2950 {
2951 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2952 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2953 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2954 }
2955 }
2956 }
2957
2958 /* If != 0, fdata.cr_offset is the offset from the frame that
2959 holds the CR. */
2960 if (fdata.cr_offset != 0)
2961 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2962
2963 /* If != 0, fdata.lr_offset is the offset from the frame that
2964 holds the LR. */
2965 if (fdata.lr_offset != 0)
2966 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2967 /* The PC is found in the link register. */
2968 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2969
2970 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2971 holds the VRSAVE. */
2972 if (fdata.vrsave_offset != 0)
2973 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2974
2975 if (fdata.alloca_reg < 0)
2976 /* If no alloca register used, then fi->frame is the value of the
2977 %sp for this frame, and it is good enough. */
2978 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2979 else
2980 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2981 fdata.alloca_reg);
2982
2983 return cache;
2984}
2985
2986static void
2987rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2988 struct frame_id *this_id)
2989{
2990 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2991 this_cache);
2992 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2993}
2994
2995static void
2996rs6000_frame_prev_register (struct frame_info *next_frame,
2997 void **this_cache,
2998 int regnum, int *optimizedp,
2999 enum lval_type *lvalp, CORE_ADDR *addrp,
50fd1280 3000 int *realnump, gdb_byte *valuep)
61a65099
KB
3001{
3002 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3003 this_cache);
1f67027d
AC
3004 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
3005 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
3006}
3007
3008static const struct frame_unwind rs6000_frame_unwind =
3009{
3010 NORMAL_FRAME,
3011 rs6000_frame_this_id,
3012 rs6000_frame_prev_register
3013};
3014
3015static const struct frame_unwind *
3016rs6000_frame_sniffer (struct frame_info *next_frame)
3017{
3018 return &rs6000_frame_unwind;
3019}
3020
3021\f
3022
3023static CORE_ADDR
3024rs6000_frame_base_address (struct frame_info *next_frame,
3025 void **this_cache)
3026{
3027 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
3028 this_cache);
3029 return info->initial_sp;
3030}
3031
3032static const struct frame_base rs6000_frame_base = {
3033 &rs6000_frame_unwind,
3034 rs6000_frame_base_address,
3035 rs6000_frame_base_address,
3036 rs6000_frame_base_address
3037};
3038
3039static const struct frame_base *
3040rs6000_frame_base_sniffer (struct frame_info *next_frame)
3041{
3042 return &rs6000_frame_base;
3043}
3044
7a78ae4e
ND
3045/* Initialize the current architecture based on INFO. If possible, re-use an
3046 architecture from ARCHES, which is a list of architectures already created
3047 during this debugging session.
c906108c 3048
7a78ae4e 3049 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 3050 a binary file. */
c906108c 3051
7a78ae4e
ND
3052static struct gdbarch *
3053rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3054{
3055 struct gdbarch *gdbarch;
3056 struct gdbarch_tdep *tdep;
708ff411 3057 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
3058 struct reg *regs;
3059 const struct variant *v;
3060 enum bfd_architecture arch;
3061 unsigned long mach;
3062 bfd abfd;
7b112f9c 3063 int sysv_abi;
5bf1c677 3064 asection *sect;
7a78ae4e 3065
9aa1e687 3066 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3067 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3068
9aa1e687
KB
3069 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3070 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3071
3072 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3073
e712c1cf 3074 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3075 that, else choose a likely default. */
9aa1e687 3076 if (from_xcoff_exec)
c906108c 3077 {
11ed25ac 3078 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3079 wordsize = 8;
3080 else
3081 wordsize = 4;
c906108c 3082 }
9aa1e687
KB
3083 else if (from_elf_exec)
3084 {
3085 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3086 wordsize = 8;
3087 else
3088 wordsize = 4;
3089 }
c906108c 3090 else
7a78ae4e 3091 {
27b15785
KB
3092 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3093 wordsize = info.bfd_arch_info->bits_per_word /
3094 info.bfd_arch_info->bits_per_byte;
3095 else
3096 wordsize = 4;
7a78ae4e 3097 }
c906108c 3098
64366f1c 3099 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3100 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3101 arches != NULL;
3102 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3103 {
3104 /* Word size in the various PowerPC bfd_arch_info structs isn't
3105 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3106 separate word size check. */
7a78ae4e 3107 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3108 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3109 return arches->gdbarch;
3110 }
c906108c 3111
7a78ae4e
ND
3112 /* None found, create a new architecture from INFO, whose bfd_arch_info
3113 validity depends on the source:
3114 - executable useless
3115 - rs6000_host_arch() good
3116 - core file good
3117 - "set arch" trust blindly
3118 - GDB startup useless but harmless */
c906108c 3119
9aa1e687 3120 if (!from_xcoff_exec)
c906108c 3121 {
b732d07d 3122 arch = info.bfd_arch_info->arch;
7a78ae4e 3123 mach = info.bfd_arch_info->mach;
c906108c 3124 }
7a78ae4e 3125 else
c906108c 3126 {
7a78ae4e 3127 arch = bfd_arch_powerpc;
35cec841 3128 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3129 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3130 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3131 }
3132 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3133 tdep->wordsize = wordsize;
5bf1c677
EZ
3134
3135 /* For e500 executables, the apuinfo section is of help here. Such
3136 section contains the identifier and revision number of each
3137 Application-specific Processing Unit that is present on the
3138 chip. The content of the section is determined by the assembler
3139 which looks at each instruction and determines which unit (and
3140 which version of it) can execute it. In our case we just look for
3141 the existance of the section. */
3142
3143 if (info.abfd)
3144 {
3145 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3146 if (sect)
3147 {
3148 arch = info.bfd_arch_info->arch;
3149 mach = bfd_mach_ppc_e500;
3150 bfd_default_set_arch_mach (&abfd, arch, mach);
3151 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3152 }
3153 }
3154
7a78ae4e 3155 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3156
489461e2
EZ
3157 /* Initialize the number of real and pseudo registers in each variant. */
3158 init_variants ();
3159
64366f1c 3160 /* Choose variant. */
7a78ae4e
ND
3161 v = find_variant_by_arch (arch, mach);
3162 if (!v)
dd47e6fd
EZ
3163 return NULL;
3164
7a78ae4e
ND
3165 tdep->regs = v->regs;
3166
2188cbdd 3167 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3168 tdep->ppc_toc_regnum = 2;
3169 tdep->ppc_ps_regnum = 65;
3170 tdep->ppc_cr_regnum = 66;
3171 tdep->ppc_lr_regnum = 67;
3172 tdep->ppc_ctr_regnum = 68;
3173 tdep->ppc_xer_regnum = 69;
3174 if (v->mach == bfd_mach_ppc_601)
3175 tdep->ppc_mq_regnum = 124;
708ff411 3176 else if (arch == bfd_arch_rs6000)
2188cbdd 3177 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3178 else
3179 tdep->ppc_mq_regnum = -1;
366f009f 3180 tdep->ppc_fp0_regnum = 32;
708ff411 3181 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3182 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3183 tdep->ppc_vr0_regnum = -1;
3184 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3185 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3186 tdep->ppc_ev0_regnum = -1;
3187 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3188 tdep->ppc_acc_regnum = -1;
3189 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3190
c8001721
EZ
3191 set_gdbarch_pc_regnum (gdbarch, 64);
3192 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3193 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3194 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3195 if (sysv_abi && wordsize == 8)
05580c65 3196 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3197 else if (sysv_abi && wordsize == 4)
05580c65 3198 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3199 else
3200 {
3201 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3202 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3203 }
c8001721 3204
baffbae0
JB
3205 /* Set lr_frame_offset. */
3206 if (wordsize == 8)
3207 tdep->lr_frame_offset = 16;
3208 else if (sysv_abi)
3209 tdep->lr_frame_offset = 4;
3210 else
3211 tdep->lr_frame_offset = 8;
3212
f86a7158
JB
3213 if (v->arch == bfd_arch_rs6000)
3214 tdep->ppc_sr0_regnum = -1;
3215 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3216 switch (v->mach)
3217 {
3218 case bfd_mach_ppc:
412b3060 3219 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3220 tdep->ppc_vr0_regnum = 71;
3221 tdep->ppc_vrsave_regnum = 104;
3222 break;
3223 case bfd_mach_ppc_7400:
3224 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3225 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3226 break;
3227 case bfd_mach_ppc_e500:
c8001721 3228 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3229 tdep->ppc_ev0_upper_regnum = 32;
3230 tdep->ppc_ev0_regnum = 73;
3231 tdep->ppc_ev31_regnum = 104;
3232 tdep->ppc_acc_regnum = 71;
3233 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3234 tdep->ppc_fp0_regnum = -1;
3235 tdep->ppc_fpscr_regnum = -1;
f86a7158 3236 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3237 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3238 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3239 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3240 break;
f86a7158
JB
3241
3242 case bfd_mach_ppc64:
3243 case bfd_mach_ppc_620:
3244 case bfd_mach_ppc_630:
3245 case bfd_mach_ppc_a35:
3246 case bfd_mach_ppc_rs64ii:
3247 case bfd_mach_ppc_rs64iii:
3248 /* These processor's register sets don't have segment registers. */
3249 tdep->ppc_sr0_regnum = -1;
3250 break;
1fcc0bb8 3251 }
f86a7158
JB
3252 else
3253 internal_error (__FILE__, __LINE__,
e2e0b3e5
AC
3254 _("rs6000_gdbarch_init: "
3255 "received unexpected BFD 'arch' value"));
1fcc0bb8 3256
338ef23d
AC
3257 /* Sanity check on registers. */
3258 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3259
56a6dfb9 3260 /* Select instruction printer. */
708ff411 3261 if (arch == bfd_arch_rs6000)
9364a0ef 3262 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3263 else
9364a0ef 3264 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3265
7a78ae4e 3266 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3267
3268 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3269 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3270 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3271 set_gdbarch_register_type (gdbarch, rs6000_register_type);
c44ca51c 3272 set_gdbarch_register_reggroup_p (gdbarch, rs6000_register_reggroup_p);
7a78ae4e
ND
3273
3274 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3275 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3276 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3277 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3278 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3279 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3280 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3281 if (sysv_abi)
3282 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3283 else
3284 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3285 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3286
11269d7e 3287 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3288 if (sysv_abi && wordsize == 8)
3289 /* PPC64 SYSV. */
3290 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3291 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3292 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3293 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3294 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3295 224. */
3296 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3297
691d145a
JB
3298 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3299 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3300 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3301
18ed0c4e
JB
3302 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3303 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3304 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3305 is correct for the SysV ABI when the wordsize is 8, but I'm also
3306 fairly certain that ppc_sysv_abi_push_arguments() will give even
3307 worse results since it only works for 32-bit code. So, for the moment,
3308 we're better off calling rs6000_push_arguments() since it works for
3309 64-bit code. At some point in the future, this matter needs to be
3310 revisited. */
3311 if (sysv_abi && wordsize == 4)
77b2b6d4 3312 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3313 else if (sysv_abi && wordsize == 8)
3314 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3315 else
77b2b6d4 3316 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3317
74055713 3318 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3319
3320 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3321 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3322 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3323
6066c3de
AC
3324 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3325 for the descriptor and ".FN" for the entry-point -- a user
3326 specifying "break FN" will unexpectedly end up with a breakpoint
3327 on the descriptor and not the function. This architecture method
3328 transforms any breakpoints on descriptors into breakpoints on the
3329 corresponding entry point. */
3330 if (sysv_abi && wordsize == 8)
3331 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3332
7a78ae4e
ND
3333 /* Not sure on this. FIXMEmgo */
3334 set_gdbarch_frame_args_skip (gdbarch, 8);
3335
05580c65 3336 if (!sysv_abi)
b5622e8d 3337 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3338
15813d3f
AC
3339 if (!sysv_abi)
3340 {
3341 /* Handle RS/6000 function pointers (which are really function
3342 descriptors). */
f517ea4e
PS
3343 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3344 rs6000_convert_from_func_ptr_addr);
9aa1e687 3345 }
7a78ae4e 3346
143985b7
AF
3347 /* Helpers for function argument information. */
3348 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3349
7b112f9c 3350 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3351 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3352
61a65099
KB
3353 switch (info.osabi)
3354 {
3355 case GDB_OSABI_NETBSD_AOUT:
3356 case GDB_OSABI_NETBSD_ELF:
3357 case GDB_OSABI_UNKNOWN:
3358 case GDB_OSABI_LINUX:
3359 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3360 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3361 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3362 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3363 break;
3364 default:
61a65099 3365 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3366
3367 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3368 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3369 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3370 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3371 }
3372
ef5200c1
AC
3373 if (from_xcoff_exec)
3374 {
3375 /* NOTE: jimix/2003-06-09: This test should really check for
3376 GDB_OSABI_AIX when that is defined and becomes
3377 available. (Actually, once things are properly split apart,
3378 the test goes away.) */
3379 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3380 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3381 }
3382
9f643768
JB
3383 init_sim_regno_table (gdbarch);
3384
7a78ae4e 3385 return gdbarch;
c906108c
SS
3386}
3387
7b112f9c
JT
3388static void
3389rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3390{
3391 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3392
3393 if (tdep == NULL)
3394 return;
3395
4be87837 3396 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3397}
3398
1fcc0bb8
EZ
3399static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3400
3401static void
3402rs6000_info_powerpc_command (char *args, int from_tty)
3403{
3404 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3405}
3406
c906108c
SS
3407/* Initialization code. */
3408
a78f21af 3409extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3410
c906108c 3411void
fba45db2 3412_initialize_rs6000_tdep (void)
c906108c 3413{
7b112f9c
JT
3414 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3415 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3416
3417 /* Add root prefix command for "info powerpc" commands */
3418 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
1bedd215 3419 _("Various POWERPC info specific commands."),
1fcc0bb8 3420 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3421}
This page took 0.742163 seconds and 4 git commands to generate.