merge from gcc
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
b6ba6518 2 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997,
1e698235 3 1998, 1999, 2000, 2001, 2002, 2003
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
25#include "inferior.h"
26#include "symtab.h"
27#include "target.h"
28#include "gdbcore.h"
29#include "gdbcmd.h"
30#include "symfile.h"
31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d
AC
50#include "gdb_assert.h"
51
7a78ae4e
ND
52/* If the kernel has to deliver a signal, it pushes a sigcontext
53 structure on the stack and then calls the signal handler, passing
54 the address of the sigcontext in an argument register. Usually
55 the signal handler doesn't save this register, so we have to
56 access the sigcontext structure via an offset from the signal handler
57 frame.
58 The following constants were determined by experimentation on AIX 3.2. */
59#define SIG_FRAME_PC_OFFSET 96
60#define SIG_FRAME_LR_OFFSET 108
61#define SIG_FRAME_FP_OFFSET 284
62
7a78ae4e
ND
63/* To be used by skip_prologue. */
64
65struct rs6000_framedata
66 {
67 int offset; /* total size of frame --- the distance
68 by which we decrement sp to allocate
69 the frame */
70 int saved_gpr; /* smallest # of saved gpr */
71 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 72 int saved_vr; /* smallest # of saved vr */
96ff0de4 73 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
74 int alloca_reg; /* alloca register number (frame ptr) */
75 char frameless; /* true if frameless functions. */
76 char nosavedpc; /* true if pc not saved. */
77 int gpr_offset; /* offset of saved gprs from prev sp */
78 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 79 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 80 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
81 int lr_offset; /* offset of saved lr */
82 int cr_offset; /* offset of saved cr */
6be8bc0c 83 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
84 };
85
86/* Description of a single register. */
87
88struct reg
89 {
90 char *name; /* name of register */
91 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
92 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
93 unsigned char fpr; /* whether register is floating-point */
489461e2 94 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
95 };
96
c906108c
SS
97/* Breakpoint shadows for the single step instructions will be kept here. */
98
c5aa993b
JM
99static struct sstep_breaks
100 {
101 /* Address, or 0 if this is not in use. */
102 CORE_ADDR address;
103 /* Shadow contents. */
104 char data[4];
105 }
106stepBreaks[2];
c906108c
SS
107
108/* Hook for determining the TOC address when calling functions in the
109 inferior under AIX. The initialization code in rs6000-nat.c sets
110 this hook to point to find_toc_address. */
111
7a78ae4e
ND
112CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
113
114/* Hook to set the current architecture when starting a child process.
115 rs6000-nat.c sets this. */
116
117void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
118
119/* Static function prototypes */
120
a14ed312
KB
121static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
122 CORE_ADDR safety);
077276e8
KB
123static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
124 struct rs6000_framedata *);
7a78ae4e
ND
125static void frame_get_saved_regs (struct frame_info * fi,
126 struct rs6000_framedata * fdatap);
127static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 128
64b84175
KB
129/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
130int
131altivec_register_p (int regno)
132{
133 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
134 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
135 return 0;
136 else
137 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
138}
139
7a78ae4e 140/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 141
7a78ae4e
ND
142static CORE_ADDR
143read_memory_addr (CORE_ADDR memaddr, int len)
144{
145 return read_memory_unsigned_integer (memaddr, len);
146}
c906108c 147
7a78ae4e
ND
148static CORE_ADDR
149rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
150{
151 struct rs6000_framedata frame;
077276e8 152 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
153 return pc;
154}
155
156
c906108c
SS
157/* Fill in fi->saved_regs */
158
159struct frame_extra_info
160{
161 /* Functions calling alloca() change the value of the stack
162 pointer. We need to use initial stack pointer (which is saved in
163 r31 by gcc) in such cases. If a compiler emits traceback table,
164 then we should use the alloca register specified in traceback
165 table. FIXME. */
c5aa993b 166 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
167};
168
9aa1e687 169void
7a78ae4e 170rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 171{
c9012c71
AC
172 struct frame_extra_info *extra_info =
173 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
174 extra_info->initial_sp = 0;
bdd78e62
AC
175 if (get_next_frame (fi) != NULL
176 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 177 /* We're in get_prev_frame */
c906108c
SS
178 /* and this is a special signal frame. */
179 /* (fi->pc will be some low address in the kernel, */
180 /* to which the signal handler returns). */
5a203e44 181 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
182}
183
7a78ae4e
ND
184/* Put here the code to store, into a struct frame_saved_regs,
185 the addresses of the saved registers of frame described by FRAME_INFO.
186 This includes special registers such as pc and fp saved in special
187 ways in the stack frame. sp is even more special:
188 the address we return for it IS the sp for the next frame. */
c906108c 189
7a78ae4e
ND
190/* In this implementation for RS/6000, we do *not* save sp. I am
191 not sure if it will be needed. The following function takes care of gpr's
192 and fpr's only. */
193
9aa1e687 194void
7a78ae4e 195rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
196{
197 frame_get_saved_regs (fi, NULL);
198}
199
7a78ae4e
ND
200static CORE_ADDR
201rs6000_frame_args_address (struct frame_info *fi)
c906108c 202{
c9012c71
AC
203 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
204 if (extra_info->initial_sp != 0)
205 return extra_info->initial_sp;
c906108c
SS
206 else
207 return frame_initial_stack_address (fi);
208}
209
7a78ae4e
ND
210/* Immediately after a function call, return the saved pc.
211 Can't go through the frames for this because on some machines
212 the new frame is not set up until the new function executes
213 some instructions. */
214
215static CORE_ADDR
216rs6000_saved_pc_after_call (struct frame_info *fi)
217{
2188cbdd 218 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 219}
c906108c
SS
220
221/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
222
223static CORE_ADDR
7a78ae4e 224branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
225{
226 CORE_ADDR dest;
227 int immediate;
228 int absolute;
229 int ext_op;
230
231 absolute = (int) ((instr >> 1) & 1);
232
c5aa993b
JM
233 switch (opcode)
234 {
235 case 18:
236 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
237 if (absolute)
238 dest = immediate;
239 else
240 dest = pc + immediate;
241 break;
242
243 case 16:
244 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
245 if (absolute)
246 dest = immediate;
247 else
248 dest = pc + immediate;
249 break;
250
251 case 19:
252 ext_op = (instr >> 1) & 0x3ff;
253
254 if (ext_op == 16) /* br conditional register */
255 {
2188cbdd 256 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
257
258 /* If we are about to return from a signal handler, dest is
259 something like 0x3c90. The current frame is a signal handler
260 caller frame, upon completion of the sigreturn system call
261 execution will return to the saved PC in the frame. */
262 if (dest < TEXT_SEGMENT_BASE)
263 {
264 struct frame_info *fi;
265
266 fi = get_current_frame ();
267 if (fi != NULL)
8b36eed8 268 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 269 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
270 }
271 }
272
273 else if (ext_op == 528) /* br cond to count reg */
274 {
2188cbdd 275 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
276
277 /* If we are about to execute a system call, dest is something
278 like 0x22fc or 0x3b00. Upon completion the system call
279 will return to the address in the link register. */
280 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 281 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
282 }
283 else
284 return -1;
285 break;
c906108c 286
c5aa993b
JM
287 default:
288 return -1;
289 }
c906108c
SS
290 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
291}
292
293
294/* Sequence of bytes for breakpoint instruction. */
295
296#define BIG_BREAKPOINT { 0x7d, 0x82, 0x10, 0x08 }
297#define LITTLE_BREAKPOINT { 0x08, 0x10, 0x82, 0x7d }
298
f4f9705a 299const static unsigned char *
7a78ae4e 300rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c
SS
301{
302 static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
303 static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;
304 *bp_size = 4;
d7449b42 305 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
306 return big_breakpoint;
307 else
308 return little_breakpoint;
309}
310
311
312/* AIX does not support PT_STEP. Simulate it. */
313
314void
379d08a1
AC
315rs6000_software_single_step (enum target_signal signal,
316 int insert_breakpoints_p)
c906108c 317{
7c40d541
KB
318 CORE_ADDR dummy;
319 int breakp_sz;
f4f9705a 320 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
321 int ii, insn;
322 CORE_ADDR loc;
323 CORE_ADDR breaks[2];
324 int opcode;
325
c5aa993b
JM
326 if (insert_breakpoints_p)
327 {
c906108c 328
c5aa993b 329 loc = read_pc ();
c906108c 330
c5aa993b 331 insn = read_memory_integer (loc, 4);
c906108c 332
7c40d541 333 breaks[0] = loc + breakp_sz;
c5aa993b
JM
334 opcode = insn >> 26;
335 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 336
c5aa993b
JM
337 /* Don't put two breakpoints on the same address. */
338 if (breaks[1] == breaks[0])
339 breaks[1] = -1;
c906108c 340
c5aa993b 341 stepBreaks[1].address = 0;
c906108c 342
c5aa993b
JM
343 for (ii = 0; ii < 2; ++ii)
344 {
c906108c 345
c5aa993b
JM
346 /* ignore invalid breakpoint. */
347 if (breaks[ii] == -1)
348 continue;
7c40d541 349 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
350 stepBreaks[ii].address = breaks[ii];
351 }
c906108c 352
c5aa993b
JM
353 }
354 else
355 {
c906108c 356
c5aa993b
JM
357 /* remove step breakpoints. */
358 for (ii = 0; ii < 2; ++ii)
359 if (stepBreaks[ii].address != 0)
7c40d541
KB
360 target_remove_breakpoint (stepBreaks[ii].address,
361 stepBreaks[ii].data);
c5aa993b 362 }
c906108c 363 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 364 /* What errors? {read,write}_memory call error(). */
c906108c
SS
365}
366
367
368/* return pc value after skipping a function prologue and also return
369 information about a function frame.
370
371 in struct rs6000_framedata fdata:
c5aa993b
JM
372 - frameless is TRUE, if function does not have a frame.
373 - nosavedpc is TRUE, if function does not save %pc value in its frame.
374 - offset is the initial size of this stack frame --- the amount by
375 which we decrement the sp to allocate the frame.
376 - saved_gpr is the number of the first saved gpr.
377 - saved_fpr is the number of the first saved fpr.
6be8bc0c 378 - saved_vr is the number of the first saved vr.
96ff0de4 379 - saved_ev is the number of the first saved ev.
c5aa993b
JM
380 - alloca_reg is the number of the register used for alloca() handling.
381 Otherwise -1.
382 - gpr_offset is the offset of the first saved gpr from the previous frame.
383 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 384 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 385 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
386 - lr_offset is the offset of the saved lr
387 - cr_offset is the offset of the saved cr
6be8bc0c 388 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 389 */
c906108c
SS
390
391#define SIGNED_SHORT(x) \
392 ((sizeof (short) == 2) \
393 ? ((int)(short)(x)) \
394 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
395
396#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
397
55d05f3b
KB
398/* Limit the number of skipped non-prologue instructions, as the examining
399 of the prologue is expensive. */
400static int max_skip_non_prologue_insns = 10;
401
402/* Given PC representing the starting address of a function, and
403 LIM_PC which is the (sloppy) limit to which to scan when looking
404 for a prologue, attempt to further refine this limit by using
405 the line data in the symbol table. If successful, a better guess
406 on where the prologue ends is returned, otherwise the previous
407 value of lim_pc is returned. */
408static CORE_ADDR
409refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
410{
411 struct symtab_and_line prologue_sal;
412
413 prologue_sal = find_pc_line (pc, 0);
414 if (prologue_sal.line != 0)
415 {
416 int i;
417 CORE_ADDR addr = prologue_sal.end;
418
419 /* Handle the case in which compiler's optimizer/scheduler
420 has moved instructions into the prologue. We scan ahead
421 in the function looking for address ranges whose corresponding
422 line number is less than or equal to the first one that we
423 found for the function. (It can be less than when the
424 scheduler puts a body instruction before the first prologue
425 instruction.) */
426 for (i = 2 * max_skip_non_prologue_insns;
427 i > 0 && (lim_pc == 0 || addr < lim_pc);
428 i--)
429 {
430 struct symtab_and_line sal;
431
432 sal = find_pc_line (addr, 0);
433 if (sal.line == 0)
434 break;
435 if (sal.line <= prologue_sal.line
436 && sal.symtab == prologue_sal.symtab)
437 {
438 prologue_sal = sal;
439 }
440 addr = sal.end;
441 }
442
443 if (lim_pc == 0 || prologue_sal.end < lim_pc)
444 lim_pc = prologue_sal.end;
445 }
446 return lim_pc;
447}
448
449
7a78ae4e 450static CORE_ADDR
077276e8 451skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
452{
453 CORE_ADDR orig_pc = pc;
55d05f3b 454 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 455 CORE_ADDR li_found_pc = 0;
c906108c
SS
456 char buf[4];
457 unsigned long op;
458 long offset = 0;
6be8bc0c 459 long vr_saved_offset = 0;
482ca3f5
KB
460 int lr_reg = -1;
461 int cr_reg = -1;
6be8bc0c 462 int vr_reg = -1;
96ff0de4
EZ
463 int ev_reg = -1;
464 long ev_offset = 0;
6be8bc0c 465 int vrsave_reg = -1;
c906108c
SS
466 int reg;
467 int framep = 0;
468 int minimal_toc_loaded = 0;
ddb20c56 469 int prev_insn_was_prologue_insn = 1;
55d05f3b 470 int num_skip_non_prologue_insns = 0;
96ff0de4 471 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 472 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 473
55d05f3b
KB
474 /* Attempt to find the end of the prologue when no limit is specified.
475 Note that refine_prologue_limit() has been written so that it may
476 be used to "refine" the limits of non-zero PC values too, but this
477 is only safe if we 1) trust the line information provided by the
478 compiler and 2) iterate enough to actually find the end of the
479 prologue.
480
481 It may become a good idea at some point (for both performance and
482 accuracy) to unconditionally call refine_prologue_limit(). But,
483 until we can make a clear determination that this is beneficial,
484 we'll play it safe and only use it to obtain a limit when none
485 has been specified. */
486 if (lim_pc == 0)
487 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 488
ddb20c56 489 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
490 fdata->saved_gpr = -1;
491 fdata->saved_fpr = -1;
6be8bc0c 492 fdata->saved_vr = -1;
96ff0de4 493 fdata->saved_ev = -1;
c906108c
SS
494 fdata->alloca_reg = -1;
495 fdata->frameless = 1;
496 fdata->nosavedpc = 1;
497
55d05f3b 498 for (;; pc += 4)
c906108c 499 {
ddb20c56
KB
500 /* Sometimes it isn't clear if an instruction is a prologue
501 instruction or not. When we encounter one of these ambiguous
502 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
503 Otherwise, we'll assume that it really is a prologue instruction. */
504 if (prev_insn_was_prologue_insn)
505 last_prologue_pc = pc;
55d05f3b
KB
506
507 /* Stop scanning if we've hit the limit. */
508 if (lim_pc != 0 && pc >= lim_pc)
509 break;
510
ddb20c56
KB
511 prev_insn_was_prologue_insn = 1;
512
55d05f3b 513 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
514 if (target_read_memory (pc, buf, 4))
515 break;
516 op = extract_signed_integer (buf, 4);
c906108c 517
c5aa993b
JM
518 if ((op & 0xfc1fffff) == 0x7c0802a6)
519 { /* mflr Rx */
520 lr_reg = (op & 0x03e00000) | 0x90010000;
521 continue;
c906108c 522
c5aa993b
JM
523 }
524 else if ((op & 0xfc1fffff) == 0x7c000026)
525 { /* mfcr Rx */
526 cr_reg = (op & 0x03e00000) | 0x90010000;
527 continue;
c906108c 528
c906108c 529 }
c5aa993b
JM
530 else if ((op & 0xfc1f0000) == 0xd8010000)
531 { /* stfd Rx,NUM(r1) */
532 reg = GET_SRC_REG (op);
533 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
534 {
535 fdata->saved_fpr = reg;
536 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
537 }
538 continue;
c906108c 539
c5aa993b
JM
540 }
541 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
542 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
543 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
544 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
545 {
546
547 reg = GET_SRC_REG (op);
548 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
549 {
550 fdata->saved_gpr = reg;
7a78ae4e
ND
551 if ((op & 0xfc1f0003) == 0xf8010000)
552 op = (op >> 1) << 1;
c5aa993b
JM
553 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
554 }
555 continue;
c906108c 556
ddb20c56
KB
557 }
558 else if ((op & 0xffff0000) == 0x60000000)
559 {
96ff0de4 560 /* nop */
ddb20c56
KB
561 /* Allow nops in the prologue, but do not consider them to
562 be part of the prologue unless followed by other prologue
563 instructions. */
564 prev_insn_was_prologue_insn = 0;
565 continue;
566
c906108c 567 }
c5aa993b
JM
568 else if ((op & 0xffff0000) == 0x3c000000)
569 { /* addis 0,0,NUM, used
570 for >= 32k frames */
571 fdata->offset = (op & 0x0000ffff) << 16;
572 fdata->frameless = 0;
573 continue;
574
575 }
576 else if ((op & 0xffff0000) == 0x60000000)
577 { /* ori 0,0,NUM, 2nd ha
578 lf of >= 32k frames */
579 fdata->offset |= (op & 0x0000ffff);
580 fdata->frameless = 0;
581 continue;
582
583 }
482ca3f5 584 else if (lr_reg != -1 && (op & 0xffff0000) == lr_reg)
c5aa993b
JM
585 { /* st Rx,NUM(r1)
586 where Rx == lr */
587 fdata->lr_offset = SIGNED_SHORT (op) + offset;
588 fdata->nosavedpc = 0;
589 lr_reg = 0;
590 continue;
591
592 }
482ca3f5 593 else if (cr_reg != -1 && (op & 0xffff0000) == cr_reg)
c5aa993b
JM
594 { /* st Rx,NUM(r1)
595 where Rx == cr */
596 fdata->cr_offset = SIGNED_SHORT (op) + offset;
597 cr_reg = 0;
598 continue;
599
600 }
601 else if (op == 0x48000005)
602 { /* bl .+4 used in
603 -mrelocatable */
604 continue;
605
606 }
607 else if (op == 0x48000004)
608 { /* b .+4 (xlc) */
609 break;
610
c5aa993b 611 }
6be8bc0c
EZ
612 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
613 in V.4 -mminimal-toc */
c5aa993b
JM
614 (op & 0xffff0000) == 0x3bde0000)
615 { /* addi 30,30,foo@l */
616 continue;
c906108c 617
c5aa993b
JM
618 }
619 else if ((op & 0xfc000001) == 0x48000001)
620 { /* bl foo,
621 to save fprs??? */
c906108c 622
c5aa993b 623 fdata->frameless = 0;
6be8bc0c
EZ
624 /* Don't skip over the subroutine call if it is not within
625 the first three instructions of the prologue. */
c5aa993b
JM
626 if ((pc - orig_pc) > 8)
627 break;
628
629 op = read_memory_integer (pc + 4, 4);
630
6be8bc0c
EZ
631 /* At this point, make sure this is not a trampoline
632 function (a function that simply calls another functions,
633 and nothing else). If the next is not a nop, this branch
634 was part of the function prologue. */
c5aa993b
JM
635
636 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
637 break; /* don't skip over
638 this branch */
639 continue;
640
641 /* update stack pointer */
642 }
7a78ae4e
ND
643 else if ((op & 0xffff0000) == 0x94210000 || /* stu r1,NUM(r1) */
644 (op & 0xffff0003) == 0xf8210001) /* stdu r1,NUM(r1) */
645 {
c5aa993b 646 fdata->frameless = 0;
7a78ae4e
ND
647 if ((op & 0xffff0003) == 0xf8210001)
648 op = (op >> 1) << 1;
c5aa993b
JM
649 fdata->offset = SIGNED_SHORT (op);
650 offset = fdata->offset;
651 continue;
652
653 }
654 else if (op == 0x7c21016e)
655 { /* stwux 1,1,0 */
656 fdata->frameless = 0;
657 offset = fdata->offset;
658 continue;
659
660 /* Load up minimal toc pointer */
661 }
662 else if ((op >> 22) == 0x20f
663 && !minimal_toc_loaded)
664 { /* l r31,... or l r30,... */
665 minimal_toc_loaded = 1;
666 continue;
667
f6077098
KB
668 /* move parameters from argument registers to local variable
669 registers */
670 }
671 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
672 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
673 (((op >> 21) & 31) <= 10) &&
96ff0de4 674 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
675 {
676 continue;
677
c5aa993b
JM
678 /* store parameters in stack */
679 }
6be8bc0c 680 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 681 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
682 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
683 {
c5aa993b 684 continue;
c906108c 685
c5aa993b
JM
686 /* store parameters in stack via frame pointer */
687 }
688 else if (framep &&
689 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
690 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
691 (op & 0xfc1f0000) == 0xfc1f0000))
692 { /* frsp, fp?,NUM(r1) */
693 continue;
694
695 /* Set up frame pointer */
696 }
697 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
698 || op == 0x7c3f0b78)
699 { /* mr r31, r1 */
700 fdata->frameless = 0;
701 framep = 1;
6f99cb26 702 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
703 continue;
704
705 /* Another way to set up the frame pointer. */
706 }
707 else if ((op & 0xfc1fffff) == 0x38010000)
708 { /* addi rX, r1, 0x0 */
709 fdata->frameless = 0;
710 framep = 1;
6f99cb26
AC
711 fdata->alloca_reg = (tdep->ppc_gp0_regnum
712 + ((op & ~0x38010000) >> 21));
c5aa993b 713 continue;
c5aa993b 714 }
6be8bc0c
EZ
715 /* AltiVec related instructions. */
716 /* Store the vrsave register (spr 256) in another register for
717 later manipulation, or load a register into the vrsave
718 register. 2 instructions are used: mfvrsave and
719 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
720 and mtspr SPR256, Rn. */
721 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
722 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
723 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
724 {
725 vrsave_reg = GET_SRC_REG (op);
726 continue;
727 }
728 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
729 {
730 continue;
731 }
732 /* Store the register where vrsave was saved to onto the stack:
733 rS is the register where vrsave was stored in a previous
734 instruction. */
735 /* 100100 sssss 00001 dddddddd dddddddd */
736 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
737 {
738 if (vrsave_reg == GET_SRC_REG (op))
739 {
740 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
741 vrsave_reg = -1;
742 }
743 continue;
744 }
745 /* Compute the new value of vrsave, by modifying the register
746 where vrsave was saved to. */
747 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
748 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
749 {
750 continue;
751 }
752 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
753 in a pair of insns to save the vector registers on the
754 stack. */
755 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
756 /* 001110 01110 00000 iiii iiii iiii iiii */
757 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
758 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
759 {
760 li_found_pc = pc;
761 vr_saved_offset = SIGNED_SHORT (op);
762 }
763 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
764 /* 011111 sssss 11111 00000 00111001110 */
765 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
766 {
767 if (pc == (li_found_pc + 4))
768 {
769 vr_reg = GET_SRC_REG (op);
770 /* If this is the first vector reg to be saved, or if
771 it has a lower number than others previously seen,
772 reupdate the frame info. */
773 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
774 {
775 fdata->saved_vr = vr_reg;
776 fdata->vr_offset = vr_saved_offset + offset;
777 }
778 vr_saved_offset = -1;
779 vr_reg = -1;
780 li_found_pc = 0;
781 }
782 }
783 /* End AltiVec related instructions. */
96ff0de4
EZ
784
785 /* Start BookE related instructions. */
786 /* Store gen register S at (r31+uimm).
787 Any register less than r13 is volatile, so we don't care. */
788 /* 000100 sssss 11111 iiiii 01100100001 */
789 else if (arch_info->mach == bfd_mach_ppc_e500
790 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
791 {
792 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
793 {
794 unsigned int imm;
795 ev_reg = GET_SRC_REG (op);
796 imm = (op >> 11) & 0x1f;
797 ev_offset = imm * 8;
798 /* If this is the first vector reg to be saved, or if
799 it has a lower number than others previously seen,
800 reupdate the frame info. */
801 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
802 {
803 fdata->saved_ev = ev_reg;
804 fdata->ev_offset = ev_offset + offset;
805 }
806 }
807 continue;
808 }
809 /* Store gen register rS at (r1+rB). */
810 /* 000100 sssss 00001 bbbbb 01100100000 */
811 else if (arch_info->mach == bfd_mach_ppc_e500
812 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
813 {
814 if (pc == (li_found_pc + 4))
815 {
816 ev_reg = GET_SRC_REG (op);
817 /* If this is the first vector reg to be saved, or if
818 it has a lower number than others previously seen,
819 reupdate the frame info. */
820 /* We know the contents of rB from the previous instruction. */
821 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
822 {
823 fdata->saved_ev = ev_reg;
824 fdata->ev_offset = vr_saved_offset + offset;
825 }
826 vr_saved_offset = -1;
827 ev_reg = -1;
828 li_found_pc = 0;
829 }
830 continue;
831 }
832 /* Store gen register r31 at (rA+uimm). */
833 /* 000100 11111 aaaaa iiiii 01100100001 */
834 else if (arch_info->mach == bfd_mach_ppc_e500
835 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
836 {
837 /* Wwe know that the source register is 31 already, but
838 it can't hurt to compute it. */
839 ev_reg = GET_SRC_REG (op);
840 ev_offset = ((op >> 11) & 0x1f) * 8;
841 /* If this is the first vector reg to be saved, or if
842 it has a lower number than others previously seen,
843 reupdate the frame info. */
844 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
845 {
846 fdata->saved_ev = ev_reg;
847 fdata->ev_offset = ev_offset + offset;
848 }
849
850 continue;
851 }
852 /* Store gen register S at (r31+r0).
853 Store param on stack when offset from SP bigger than 4 bytes. */
854 /* 000100 sssss 11111 00000 01100100000 */
855 else if (arch_info->mach == bfd_mach_ppc_e500
856 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
857 {
858 if (pc == (li_found_pc + 4))
859 {
860 if ((op & 0x03e00000) >= 0x01a00000)
861 {
862 ev_reg = GET_SRC_REG (op);
863 /* If this is the first vector reg to be saved, or if
864 it has a lower number than others previously seen,
865 reupdate the frame info. */
866 /* We know the contents of r0 from the previous
867 instruction. */
868 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
869 {
870 fdata->saved_ev = ev_reg;
871 fdata->ev_offset = vr_saved_offset + offset;
872 }
873 ev_reg = -1;
874 }
875 vr_saved_offset = -1;
876 li_found_pc = 0;
877 continue;
878 }
879 }
880 /* End BookE related instructions. */
881
c5aa993b
JM
882 else
883 {
55d05f3b
KB
884 /* Not a recognized prologue instruction.
885 Handle optimizer code motions into the prologue by continuing
886 the search if we have no valid frame yet or if the return
887 address is not yet saved in the frame. */
888 if (fdata->frameless == 0
889 && (lr_reg == -1 || fdata->nosavedpc == 0))
890 break;
891
892 if (op == 0x4e800020 /* blr */
893 || op == 0x4e800420) /* bctr */
894 /* Do not scan past epilogue in frameless functions or
895 trampolines. */
896 break;
897 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 898 /* Never skip branches. */
55d05f3b
KB
899 break;
900
901 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
902 /* Do not scan too many insns, scanning insns is expensive with
903 remote targets. */
904 break;
905
906 /* Continue scanning. */
907 prev_insn_was_prologue_insn = 0;
908 continue;
c5aa993b 909 }
c906108c
SS
910 }
911
912#if 0
913/* I have problems with skipping over __main() that I need to address
914 * sometime. Previously, I used to use misc_function_vector which
915 * didn't work as well as I wanted to be. -MGO */
916
917 /* If the first thing after skipping a prolog is a branch to a function,
918 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 919 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 920 work before calling a function right after a prologue, thus we can
64366f1c 921 single out such gcc2 behaviour. */
c906108c 922
c906108c 923
c5aa993b
JM
924 if ((op & 0xfc000001) == 0x48000001)
925 { /* bl foo, an initializer function? */
926 op = read_memory_integer (pc + 4, 4);
927
928 if (op == 0x4def7b82)
929 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 930
64366f1c
EZ
931 /* Check and see if we are in main. If so, skip over this
932 initializer function as well. */
c906108c 933
c5aa993b 934 tmp = find_pc_misc_function (pc);
51cc5b07 935 if (tmp >= 0 && STREQ (misc_function_vector[tmp].name, main_name ()))
c5aa993b
JM
936 return pc + 8;
937 }
c906108c 938 }
c906108c 939#endif /* 0 */
c5aa993b
JM
940
941 fdata->offset = -fdata->offset;
ddb20c56 942 return last_prologue_pc;
c906108c
SS
943}
944
945
946/*************************************************************************
f6077098 947 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
948 frames, etc.
949*************************************************************************/
950
c906108c 951
64366f1c 952/* Pop the innermost frame, go back to the caller. */
c5aa993b 953
c906108c 954static void
7a78ae4e 955rs6000_pop_frame (void)
c906108c 956{
470d5666 957 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
958 struct rs6000_framedata fdata;
959 struct frame_info *frame = get_current_frame ();
470d5666 960 int ii, wordsize;
c906108c
SS
961
962 pc = read_pc ();
c193f6ac 963 sp = get_frame_base (frame);
c906108c 964
bdd78e62 965 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
966 get_frame_base (frame),
967 get_frame_base (frame)))
c906108c 968 {
7a78ae4e
ND
969 generic_pop_dummy_frame ();
970 flush_cached_frames ();
971 return;
c906108c
SS
972 }
973
974 /* Make sure that all registers are valid. */
73937e03 975 deprecated_read_register_bytes (0, NULL, REGISTER_BYTES);
c906108c 976
64366f1c 977 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 978 still in the link register, otherwise walk the frames and retrieve the
64366f1c 979 saved %pc value in the previous frame. */
c906108c 980
bdd78e62
AC
981 addr = get_pc_function_start (get_frame_pc (frame));
982 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 983
21283beb 984 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
985 if (fdata.frameless)
986 prev_sp = sp;
987 else
7a78ae4e 988 prev_sp = read_memory_addr (sp, wordsize);
c906108c 989 if (fdata.lr_offset == 0)
2188cbdd 990 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 991 else
7a78ae4e 992 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
993
994 /* reset %pc value. */
995 write_register (PC_REGNUM, lr);
996
64366f1c 997 /* reset register values if any was saved earlier. */
c906108c
SS
998
999 if (fdata.saved_gpr != -1)
1000 {
1001 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1002 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1003 {
524d7c18
AC
1004 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii)],
1005 wordsize);
7a78ae4e 1006 addr += wordsize;
c5aa993b 1007 }
c906108c
SS
1008 }
1009
1010 if (fdata.saved_fpr != -1)
1011 {
1012 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1013 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1014 {
524d7c18 1015 read_memory (addr, &deprecated_registers[REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1016 addr += 8;
1017 }
c906108c
SS
1018 }
1019
1020 write_register (SP_REGNUM, prev_sp);
1021 target_store_registers (-1);
1022 flush_cached_frames ();
1023}
1024
7a78ae4e 1025/* Fixup the call sequence of a dummy function, with the real function
64366f1c 1026 address. Its arguments will be passed by gdb. */
c906108c 1027
7a78ae4e
ND
1028static void
1029rs6000_fix_call_dummy (char *dummyname, CORE_ADDR pc, CORE_ADDR fun,
ea7c478f 1030 int nargs, struct value **args, struct type *type,
7a78ae4e 1031 int gcc_p)
c906108c 1032{
c906108c
SS
1033 int ii;
1034 CORE_ADDR target_addr;
1035
7a78ae4e 1036 if (rs6000_find_toc_address_hook != NULL)
f6077098 1037 {
7a78ae4e 1038 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (fun);
2188cbdd
EZ
1039 write_register (gdbarch_tdep (current_gdbarch)->ppc_toc_regnum,
1040 tocvalue);
f6077098 1041 }
c906108c
SS
1042}
1043
11269d7e
AC
1044/* All the ABI's require 16 byte alignment. */
1045static CORE_ADDR
1046rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1047{
1048 return (addr & -16);
1049}
1050
7a78ae4e 1051/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1052 the first eight words of the argument list (that might be less than
1053 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1054 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1055 passed in fpr's, in addition to that. Rest of the parameters if any
1056 are passed in user stack. There might be cases in which half of the
c906108c
SS
1057 parameter is copied into registers, the other half is pushed into
1058 stack.
1059
7a78ae4e
ND
1060 Stack must be aligned on 64-bit boundaries when synthesizing
1061 function calls.
1062
c906108c
SS
1063 If the function is returning a structure, then the return address is passed
1064 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1065 starting from r4. */
c906108c 1066
7a78ae4e 1067static CORE_ADDR
ea7c478f 1068rs6000_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
7a78ae4e 1069 int struct_return, CORE_ADDR struct_addr)
c906108c
SS
1070{
1071 int ii;
1072 int len = 0;
c5aa993b
JM
1073 int argno; /* current argument number */
1074 int argbytes; /* current argument byte */
1075 char tmp_buffer[50];
1076 int f_argno = 0; /* current floating point argno */
21283beb 1077 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1078
ea7c478f 1079 struct value *arg = 0;
c906108c
SS
1080 struct type *type;
1081
1082 CORE_ADDR saved_sp;
1083
64366f1c
EZ
1084 /* The first eight words of ther arguments are passed in registers.
1085 Copy them appropriately.
c906108c
SS
1086
1087 If the function is returning a `struct', then the first word (which
64366f1c 1088 will be passed in r3) is used for struct return address. In that
c906108c 1089 case we should advance one word and start from r4 register to copy
64366f1c 1090 parameters. */
c906108c 1091
c5aa993b 1092 ii = struct_return ? 1 : 0;
c906108c
SS
1093
1094/*
c5aa993b
JM
1095 effectively indirect call... gcc does...
1096
1097 return_val example( float, int);
1098
1099 eabi:
1100 float in fp0, int in r3
1101 offset of stack on overflow 8/16
1102 for varargs, must go by type.
1103 power open:
1104 float in r3&r4, int in r5
1105 offset of stack on overflow different
1106 both:
1107 return in r3 or f0. If no float, must study how gcc emulates floats;
1108 pay attention to arg promotion.
1109 User may have to cast\args to handle promotion correctly
1110 since gdb won't know if prototype supplied or not.
1111 */
c906108c 1112
c5aa993b
JM
1113 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1114 {
f6077098 1115 int reg_size = REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1116
1117 arg = args[argno];
1118 type = check_typedef (VALUE_TYPE (arg));
1119 len = TYPE_LENGTH (type);
1120
1121 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1122 {
1123
64366f1c 1124 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1125 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1126 there is no way we would run out of them. */
c5aa993b
JM
1127
1128 if (len > 8)
1129 printf_unfiltered (
1130 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1131
524d7c18 1132 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1133 VALUE_CONTENTS (arg),
1134 len);
1135 ++f_argno;
1136 }
1137
f6077098 1138 if (len > reg_size)
c5aa993b
JM
1139 {
1140
64366f1c 1141 /* Argument takes more than one register. */
c5aa993b
JM
1142 while (argbytes < len)
1143 {
524d7c18
AC
1144 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0,
1145 reg_size);
1146 memcpy (&deprecated_registers[REGISTER_BYTE (ii + 3)],
c5aa993b 1147 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1148 (len - argbytes) > reg_size
1149 ? reg_size : len - argbytes);
1150 ++ii, argbytes += reg_size;
c5aa993b
JM
1151
1152 if (ii >= 8)
1153 goto ran_out_of_registers_for_arguments;
1154 }
1155 argbytes = 0;
1156 --ii;
1157 }
1158 else
64366f1c
EZ
1159 {
1160 /* Argument can fit in one register. No problem. */
d7449b42 1161 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
524d7c18
AC
1162 memset (&deprecated_registers[REGISTER_BYTE (ii + 3)], 0, reg_size);
1163 memcpy ((char *)&deprecated_registers[REGISTER_BYTE (ii + 3)] + adj,
f6077098 1164 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1165 }
1166 ++argno;
c906108c 1167 }
c906108c
SS
1168
1169ran_out_of_registers_for_arguments:
1170
7a78ae4e 1171 saved_sp = read_sp ();
cc9836a8 1172
64366f1c 1173 /* Location for 8 parameters are always reserved. */
7a78ae4e 1174 sp -= wordsize * 8;
f6077098 1175
64366f1c 1176 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1177 sp -= wordsize * 6;
f6077098 1178
64366f1c 1179 /* Stack pointer must be quadword aligned. */
7a78ae4e 1180 sp &= -16;
c906108c 1181
64366f1c
EZ
1182 /* If there are more arguments, allocate space for them in
1183 the stack, then push them starting from the ninth one. */
c906108c 1184
c5aa993b
JM
1185 if ((argno < nargs) || argbytes)
1186 {
1187 int space = 0, jj;
c906108c 1188
c5aa993b
JM
1189 if (argbytes)
1190 {
1191 space += ((len - argbytes + 3) & -4);
1192 jj = argno + 1;
1193 }
1194 else
1195 jj = argno;
c906108c 1196
c5aa993b
JM
1197 for (; jj < nargs; ++jj)
1198 {
ea7c478f 1199 struct value *val = args[jj];
c5aa993b
JM
1200 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1201 }
c906108c 1202
64366f1c 1203 /* Add location required for the rest of the parameters. */
f6077098 1204 space = (space + 15) & -16;
c5aa993b 1205 sp -= space;
c906108c 1206
64366f1c
EZ
1207 /* This is another instance we need to be concerned about
1208 securing our stack space. If we write anything underneath %sp
1209 (r1), we might conflict with the kernel who thinks he is free
1210 to use this area. So, update %sp first before doing anything
1211 else. */
c906108c 1212
c5aa993b 1213 write_register (SP_REGNUM, sp);
c906108c 1214
64366f1c
EZ
1215 /* If the last argument copied into the registers didn't fit there
1216 completely, push the rest of it into stack. */
c906108c 1217
c5aa993b
JM
1218 if (argbytes)
1219 {
1220 write_memory (sp + 24 + (ii * 4),
1221 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1222 len - argbytes);
1223 ++argno;
1224 ii += ((len - argbytes + 3) & -4) / 4;
1225 }
c906108c 1226
64366f1c 1227 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1228 for (; argno < nargs; ++argno)
1229 {
c906108c 1230
c5aa993b
JM
1231 arg = args[argno];
1232 type = check_typedef (VALUE_TYPE (arg));
1233 len = TYPE_LENGTH (type);
c906108c
SS
1234
1235
64366f1c
EZ
1236 /* Float types should be passed in fpr's, as well as in the
1237 stack. */
c5aa993b
JM
1238 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1239 {
c906108c 1240
c5aa993b
JM
1241 if (len > 8)
1242 printf_unfiltered (
1243 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1244
524d7c18 1245 memcpy (&deprecated_registers[REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1246 VALUE_CONTENTS (arg),
1247 len);
1248 ++f_argno;
1249 }
c906108c 1250
c5aa993b
JM
1251 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1252 ii += ((len + 3) & -4) / 4;
1253 }
c906108c 1254 }
c906108c 1255 else
64366f1c 1256 /* Secure stack areas first, before doing anything else. */
c906108c
SS
1257 write_register (SP_REGNUM, sp);
1258
c906108c
SS
1259 /* set back chain properly */
1260 store_address (tmp_buffer, 4, saved_sp);
1261 write_memory (sp, tmp_buffer, 4);
1262
1263 target_store_registers (-1);
1264 return sp;
1265}
c906108c
SS
1266
1267/* Function: ppc_push_return_address (pc, sp)
64366f1c 1268 Set up the return address for the inferior function call. */
c906108c 1269
7a78ae4e
ND
1270static CORE_ADDR
1271ppc_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
c906108c 1272{
2188cbdd
EZ
1273 write_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum,
1274 CALL_DUMMY_ADDRESS ());
c906108c
SS
1275 return sp;
1276}
1277
7a78ae4e 1278/* Extract a function return value of type TYPE from raw register array
64366f1c 1279 REGBUF, and copy that return value into VALBUF in virtual format. */
96ff0de4 1280static void
46d79c04 1281e500_extract_return_value (struct type *valtype, struct regcache *regbuf, void *valbuf)
96ff0de4
EZ
1282{
1283 int offset = 0;
1284 int vallen = TYPE_LENGTH (valtype);
1285 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
1286
1287 if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1288 && vallen == 8
1289 && TYPE_VECTOR (valtype))
1290 {
1291 regcache_raw_read (regbuf, tdep->ppc_ev0_regnum + 3, valbuf);
1292 }
1293 else
1294 {
1295 /* Return value is copied starting from r3. Note that r3 for us
1296 is a pseudo register. */
1297 int offset = 0;
1298 int return_regnum = tdep->ppc_gp0_regnum + 3;
1299 int reg_size = REGISTER_RAW_SIZE (return_regnum);
1300 int reg_part_size;
1301 char *val_buffer;
1302 int copied = 0;
1303 int i = 0;
1304
1305 /* Compute where we will start storing the value from. */
1306 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1307 {
1308 if (vallen <= reg_size)
1309 offset = reg_size - vallen;
1310 else
1311 offset = reg_size + (reg_size - vallen);
1312 }
1313
1314 /* How big does the local buffer need to be? */
1315 if (vallen <= reg_size)
1316 val_buffer = alloca (reg_size);
1317 else
1318 val_buffer = alloca (vallen);
1319
1320 /* Read all we need into our private buffer. We copy it in
1321 chunks that are as long as one register, never shorter, even
1322 if the value is smaller than the register. */
1323 while (copied < vallen)
1324 {
1325 reg_part_size = REGISTER_RAW_SIZE (return_regnum + i);
1326 /* It is a pseudo/cooked register. */
1327 regcache_cooked_read (regbuf, return_regnum + i,
1328 val_buffer + copied);
1329 copied += reg_part_size;
1330 i++;
1331 }
1332 /* Put the stuff in the return buffer. */
1333 memcpy (valbuf, val_buffer + offset, vallen);
1334 }
1335}
c906108c 1336
7a78ae4e
ND
1337static void
1338rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1339{
1340 int offset = 0;
ace1378a 1341 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1342
c5aa993b
JM
1343 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1344 {
c906108c 1345
c5aa993b
JM
1346 double dd;
1347 float ff;
1348 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1349 We need to truncate the return value into float size (4 byte) if
64366f1c 1350 necessary. */
c906108c 1351
c5aa993b
JM
1352 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1353 memcpy (valbuf,
1354 &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)],
1355 TYPE_LENGTH (valtype));
1356 else
1357 { /* float */
1358 memcpy (&dd, &regbuf[REGISTER_BYTE (FP0_REGNUM + 1)], 8);
1359 ff = (float) dd;
1360 memcpy (valbuf, &ff, sizeof (float));
1361 }
1362 }
ace1378a
EZ
1363 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1364 && TYPE_LENGTH (valtype) == 16
1365 && TYPE_VECTOR (valtype))
1366 {
1367 memcpy (valbuf, regbuf + REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
1368 TYPE_LENGTH (valtype));
1369 }
c5aa993b
JM
1370 else
1371 {
1372 /* return value is copied starting from r3. */
d7449b42 1373 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
c5aa993b
JM
1374 && TYPE_LENGTH (valtype) < REGISTER_RAW_SIZE (3))
1375 offset = REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
1376
1377 memcpy (valbuf,
1378 regbuf + REGISTER_BYTE (3) + offset,
c906108c 1379 TYPE_LENGTH (valtype));
c906108c 1380 }
c906108c
SS
1381}
1382
977adac5
ND
1383/* Return whether handle_inferior_event() should proceed through code
1384 starting at PC in function NAME when stepping.
1385
1386 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1387 handle memory references that are too distant to fit in instructions
1388 generated by the compiler. For example, if 'foo' in the following
1389 instruction:
1390
1391 lwz r9,foo(r2)
1392
1393 is greater than 32767, the linker might replace the lwz with a branch to
1394 somewhere in @FIX1 that does the load in 2 instructions and then branches
1395 back to where execution should continue.
1396
1397 GDB should silently step over @FIX code, just like AIX dbx does.
1398 Unfortunately, the linker uses the "b" instruction for the branches,
1399 meaning that the link register doesn't get set. Therefore, GDB's usual
1400 step_over_function() mechanism won't work.
1401
1402 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1403 in handle_inferior_event() to skip past @FIX code. */
1404
1405int
1406rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1407{
1408 return name && !strncmp (name, "@FIX", 4);
1409}
1410
1411/* Skip code that the user doesn't want to see when stepping:
1412
1413 1. Indirect function calls use a piece of trampoline code to do context
1414 switching, i.e. to set the new TOC table. Skip such code if we are on
1415 its first instruction (as when we have single-stepped to here).
1416
1417 2. Skip shared library trampoline code (which is different from
c906108c 1418 indirect function call trampolines).
977adac5
ND
1419
1420 3. Skip bigtoc fixup code.
1421
c906108c 1422 Result is desired PC to step until, or NULL if we are not in
977adac5 1423 code that should be skipped. */
c906108c
SS
1424
1425CORE_ADDR
7a78ae4e 1426rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c
SS
1427{
1428 register unsigned int ii, op;
977adac5 1429 int rel;
c906108c 1430 CORE_ADDR solib_target_pc;
977adac5 1431 struct minimal_symbol *msymbol;
c906108c 1432
c5aa993b
JM
1433 static unsigned trampoline_code[] =
1434 {
1435 0x800b0000, /* l r0,0x0(r11) */
1436 0x90410014, /* st r2,0x14(r1) */
1437 0x7c0903a6, /* mtctr r0 */
1438 0x804b0004, /* l r2,0x4(r11) */
1439 0x816b0008, /* l r11,0x8(r11) */
1440 0x4e800420, /* bctr */
1441 0x4e800020, /* br */
1442 0
c906108c
SS
1443 };
1444
977adac5
ND
1445 /* Check for bigtoc fixup code. */
1446 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1447 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1448 {
1449 /* Double-check that the third instruction from PC is relative "b". */
1450 op = read_memory_integer (pc + 8, 4);
1451 if ((op & 0xfc000003) == 0x48000000)
1452 {
1453 /* Extract bits 6-29 as a signed 24-bit relative word address and
1454 add it to the containing PC. */
1455 rel = ((int)(op << 6) >> 6);
1456 return pc + 8 + rel;
1457 }
1458 }
1459
c906108c
SS
1460 /* If pc is in a shared library trampoline, return its target. */
1461 solib_target_pc = find_solib_trampoline_target (pc);
1462 if (solib_target_pc)
1463 return solib_target_pc;
1464
c5aa993b
JM
1465 for (ii = 0; trampoline_code[ii]; ++ii)
1466 {
1467 op = read_memory_integer (pc + (ii * 4), 4);
1468 if (op != trampoline_code[ii])
1469 return 0;
1470 }
1471 ii = read_register (11); /* r11 holds destination addr */
21283beb 1472 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1473 return pc;
1474}
1475
1476/* Determines whether the function FI has a frame on the stack or not. */
1477
9aa1e687 1478int
c877c8e6 1479rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1480{
1481 CORE_ADDR func_start;
1482 struct rs6000_framedata fdata;
1483
1484 /* Don't even think about framelessness except on the innermost frame
1485 or if the function was interrupted by a signal. */
75e3c1f9
AC
1486 if (get_next_frame (fi) != NULL
1487 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1488 return 0;
c5aa993b 1489
bdd78e62 1490 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1491
1492 /* If we failed to find the start of the function, it is a mistake
64366f1c 1493 to inspect the instructions. */
c906108c
SS
1494
1495 if (!func_start)
1496 {
1497 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1498 function pointer, normally causing an immediate core dump of the
64366f1c 1499 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1500 of setting up a stack frame. */
bdd78e62 1501 if (get_frame_pc (fi) == 0)
c906108c
SS
1502 return 1;
1503 else
1504 return 0;
1505 }
1506
bdd78e62 1507 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1508 return fdata.frameless;
1509}
1510
64366f1c 1511/* Return the PC saved in a frame. */
c906108c 1512
9aa1e687 1513CORE_ADDR
c877c8e6 1514rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1515{
1516 CORE_ADDR func_start;
1517 struct rs6000_framedata fdata;
21283beb 1518 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1519 int wordsize = tdep->wordsize;
c906108c 1520
5a203e44 1521 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1522 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1523 wordsize);
c906108c 1524
bdd78e62 1525 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1526 get_frame_base (fi),
1527 get_frame_base (fi)))
bdd78e62 1528 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1529 get_frame_base (fi), PC_REGNUM);
c906108c 1530
bdd78e62 1531 func_start = get_pc_function_start (get_frame_pc (fi));
c906108c
SS
1532
1533 /* If we failed to find the start of the function, it is a mistake
64366f1c 1534 to inspect the instructions. */
c906108c
SS
1535 if (!func_start)
1536 return 0;
1537
bdd78e62 1538 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1539
75e3c1f9 1540 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1541 {
75e3c1f9 1542 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1543 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1544 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1545 wordsize);
bdd78e62 1546 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1547 /* The link register wasn't saved by this frame and the next
1548 (inner, newer) frame is a dummy. Get the link register
1549 value by unwinding it from that [dummy] frame. */
1550 {
1551 ULONGEST lr;
1552 frame_unwind_unsigned_register (get_next_frame (fi),
1553 tdep->ppc_lr_regnum, &lr);
1554 return lr;
1555 }
c906108c 1556 else
a88376a3 1557 return read_memory_addr (FRAME_CHAIN (fi) + tdep->lr_frame_offset,
7a78ae4e 1558 wordsize);
c906108c
SS
1559 }
1560
1561 if (fdata.lr_offset == 0)
2188cbdd 1562 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1563
7a78ae4e 1564 return read_memory_addr (FRAME_CHAIN (fi) + fdata.lr_offset, wordsize);
c906108c
SS
1565}
1566
1567/* If saved registers of frame FI are not known yet, read and cache them.
1568 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1569 in which case the framedata are read. */
1570
1571static void
7a78ae4e 1572frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1573{
c5aa993b 1574 CORE_ADDR frame_addr;
c906108c 1575 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1576 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1577 int wordsize = tdep->wordsize;
c906108c 1578
c9012c71 1579 if (get_frame_saved_regs (fi))
c906108c 1580 return;
c5aa993b 1581
c906108c
SS
1582 if (fdatap == NULL)
1583 {
1584 fdatap = &work_fdata;
bdd78e62
AC
1585 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1586 get_frame_pc (fi), fdatap);
c906108c
SS
1587 }
1588
1589 frame_saved_regs_zalloc (fi);
1590
1591 /* If there were any saved registers, figure out parent's stack
64366f1c 1592 pointer. */
c906108c 1593 /* The following is true only if the frame doesn't have a call to
64366f1c 1594 alloca(), FIXME. */
c906108c 1595
6be8bc0c
EZ
1596 if (fdatap->saved_fpr == 0
1597 && fdatap->saved_gpr == 0
1598 && fdatap->saved_vr == 0
96ff0de4 1599 && fdatap->saved_ev == 0
6be8bc0c
EZ
1600 && fdatap->lr_offset == 0
1601 && fdatap->cr_offset == 0
96ff0de4
EZ
1602 && fdatap->vr_offset == 0
1603 && fdatap->ev_offset == 0)
c906108c 1604 frame_addr = 0;
c906108c 1605 else
bf75c8c1
AC
1606 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1607 address of the current frame. Things might be easier if the
1608 ->frame pointed to the outer-most address of the frame. In the
1609 mean time, the address of the prev frame is used as the base
1610 address of this frame. */
1611 frame_addr = FRAME_CHAIN (fi);
c5aa993b 1612
c906108c
SS
1613 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1614 All fpr's from saved_fpr to fp31 are saved. */
1615
1616 if (fdatap->saved_fpr >= 0)
1617 {
1618 int i;
7a78ae4e 1619 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1620 for (i = fdatap->saved_fpr; i < 32; i++)
1621 {
c9012c71 1622 get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1623 fpr_addr += 8;
c906108c
SS
1624 }
1625 }
1626
1627 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1628 All gpr's from saved_gpr to gpr31 are saved. */
1629
1630 if (fdatap->saved_gpr >= 0)
1631 {
1632 int i;
7a78ae4e 1633 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1634 for (i = fdatap->saved_gpr; i < 32; i++)
1635 {
c9012c71 1636 get_frame_saved_regs (fi)[i] = gpr_addr;
7a78ae4e 1637 gpr_addr += wordsize;
c906108c
SS
1638 }
1639 }
1640
6be8bc0c
EZ
1641 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1642 All vr's from saved_vr to vr31 are saved. */
1643 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1644 {
1645 if (fdatap->saved_vr >= 0)
1646 {
1647 int i;
1648 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1649 for (i = fdatap->saved_vr; i < 32; i++)
1650 {
c9012c71 1651 get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
6be8bc0c
EZ
1652 vr_addr += REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
1653 }
1654 }
1655 }
1656
96ff0de4
EZ
1657 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1658 All vr's from saved_ev to ev31 are saved. ????? */
1659 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1660 {
1661 if (fdatap->saved_ev >= 0)
1662 {
1663 int i;
1664 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1665 for (i = fdatap->saved_ev; i < 32; i++)
1666 {
c9012c71
AC
1667 get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1668 get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
96ff0de4
EZ
1669 ev_addr += REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
1670 }
1671 }
1672 }
1673
c906108c
SS
1674 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1675 the CR. */
1676 if (fdatap->cr_offset != 0)
c9012c71 1677 get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1678
1679 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1680 the LR. */
1681 if (fdatap->lr_offset != 0)
c9012c71 1682 get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1683
1684 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1685 the VRSAVE. */
1686 if (fdatap->vrsave_offset != 0)
c9012c71 1687 get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1688}
1689
1690/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1691 was first allocated. For functions calling alloca(), it might be saved in
1692 an alloca register. */
c906108c
SS
1693
1694static CORE_ADDR
7a78ae4e 1695frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1696{
1697 CORE_ADDR tmpaddr;
1698 struct rs6000_framedata fdata;
1699 struct frame_info *callee_fi;
1700
64366f1c
EZ
1701 /* If the initial stack pointer (frame address) of this frame is known,
1702 just return it. */
c906108c 1703
c9012c71
AC
1704 if (get_frame_extra_info (fi)->initial_sp)
1705 return get_frame_extra_info (fi)->initial_sp;
c906108c 1706
64366f1c 1707 /* Find out if this function is using an alloca register. */
c906108c 1708
bdd78e62
AC
1709 (void) skip_prologue (get_pc_function_start (get_frame_pc (fi)),
1710 get_frame_pc (fi), &fdata);
c906108c 1711
64366f1c
EZ
1712 /* If saved registers of this frame are not known yet, read and
1713 cache them. */
c906108c 1714
c9012c71 1715 if (!get_frame_saved_regs (fi))
c906108c
SS
1716 frame_get_saved_regs (fi, &fdata);
1717
1718 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1719 this frame, and it is good enough. */
c906108c
SS
1720
1721 if (fdata.alloca_reg < 0)
1722 {
c9012c71
AC
1723 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1724 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1725 }
1726
953836b2
AC
1727 /* There is an alloca register, use its value, in the current frame,
1728 as the initial stack pointer. */
1729 {
1730 char *tmpbuf = alloca (MAX_REGISTER_RAW_SIZE);
1731 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1732 {
c9012c71 1733 get_frame_extra_info (fi)->initial_sp
953836b2
AC
1734 = extract_unsigned_integer (tmpbuf,
1735 REGISTER_RAW_SIZE (fdata.alloca_reg));
1736 }
1737 else
1738 /* NOTE: cagney/2002-04-17: At present the only time
1739 frame_register_read will fail is when the register isn't
1740 available. If that does happen, use the frame. */
c9012c71 1741 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1742 }
c9012c71 1743 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1744}
1745
7a78ae4e
ND
1746/* Describe the pointer in each stack frame to the previous stack frame
1747 (its caller). */
1748
1749/* FRAME_CHAIN takes a frame's nominal address
64366f1c 1750 and produces the frame's chain-pointer. */
7a78ae4e
ND
1751
1752/* In the case of the RS/6000, the frame's nominal address
1753 is the address of a 4-byte word containing the calling frame's address. */
1754
9aa1e687 1755CORE_ADDR
7a78ae4e 1756rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1757{
7a78ae4e 1758 CORE_ADDR fp, fpp, lr;
21283beb 1759 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1760
bdd78e62 1761 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1762 get_frame_base (thisframe),
1763 get_frame_base (thisframe)))
9f3b7f07
AC
1764 /* A dummy frame always correctly chains back to the previous
1765 frame. */
8b36eed8 1766 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1767
bdd78e62
AC
1768 if (inside_entry_file (get_frame_pc (thisframe))
1769 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1770 return 0;
1771
5a203e44 1772 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1773 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1774 wordsize);
75e3c1f9
AC
1775 else if (get_next_frame (thisframe) != NULL
1776 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
c877c8e6 1777 && FRAMELESS_FUNCTION_INVOCATION (thisframe))
c906108c
SS
1778 /* A frameless function interrupted by a signal did not change the
1779 frame pointer. */
c193f6ac 1780 fp = get_frame_base (thisframe);
c906108c 1781 else
8b36eed8 1782 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1783 return fp;
1784}
1785
1786/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1787 isn't available with that word size, return 0. */
7a78ae4e
ND
1788
1789static int
1790regsize (const struct reg *reg, int wordsize)
1791{
1792 return wordsize == 8 ? reg->sz64 : reg->sz32;
1793}
1794
1795/* Return the name of register number N, or null if no such register exists
64366f1c 1796 in the current architecture. */
7a78ae4e 1797
fa88f677 1798static const char *
7a78ae4e
ND
1799rs6000_register_name (int n)
1800{
21283beb 1801 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1802 const struct reg *reg = tdep->regs + n;
1803
1804 if (!regsize (reg, tdep->wordsize))
1805 return NULL;
1806 return reg->name;
1807}
1808
1809/* Index within `registers' of the first byte of the space for
1810 register N. */
1811
1812static int
1813rs6000_register_byte (int n)
1814{
21283beb 1815 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1816}
1817
1818/* Return the number of bytes of storage in the actual machine representation
64366f1c 1819 for register N if that register is available, else return 0. */
7a78ae4e
ND
1820
1821static int
1822rs6000_register_raw_size (int n)
1823{
21283beb 1824 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1825 const struct reg *reg = tdep->regs + n;
1826 return regsize (reg, tdep->wordsize);
1827}
1828
7a78ae4e
ND
1829/* Return the GDB type object for the "standard" data type
1830 of data in register N. */
1831
1832static struct type *
fba45db2 1833rs6000_register_virtual_type (int n)
7a78ae4e 1834{
21283beb 1835 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1836 const struct reg *reg = tdep->regs + n;
1837
1fcc0bb8
EZ
1838 if (reg->fpr)
1839 return builtin_type_double;
1840 else
1841 {
1842 int size = regsize (reg, tdep->wordsize);
1843 switch (size)
1844 {
1845 case 8:
c8001721
EZ
1846 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1847 return builtin_type_vec64;
1848 else
1849 return builtin_type_int64;
1fcc0bb8
EZ
1850 break;
1851 case 16:
08cf96df 1852 return builtin_type_vec128;
1fcc0bb8
EZ
1853 break;
1854 default:
1855 return builtin_type_int32;
1856 break;
1857 }
1858 }
7a78ae4e
ND
1859}
1860
7a78ae4e
ND
1861/* Return whether register N requires conversion when moving from raw format
1862 to virtual format.
1863
1864 The register format for RS/6000 floating point registers is always
64366f1c 1865 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1866
1867static int
1868rs6000_register_convertible (int n)
1869{
21283beb 1870 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1871 return reg->fpr;
1872}
1873
1874/* Convert data from raw format for register N in buffer FROM
64366f1c 1875 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1876
1877static void
1878rs6000_register_convert_to_virtual (int n, struct type *type,
1879 char *from, char *to)
1880{
1881 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
7a292a7a 1882 {
7a78ae4e
ND
1883 double val = extract_floating (from, REGISTER_RAW_SIZE (n));
1884 store_floating (to, TYPE_LENGTH (type), val);
1885 }
1886 else
1887 memcpy (to, from, REGISTER_RAW_SIZE (n));
1888}
1889
1890/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1891 to raw format for register N in buffer TO. */
7a292a7a 1892
7a78ae4e
ND
1893static void
1894rs6000_register_convert_to_raw (struct type *type, int n,
1895 char *from, char *to)
1896{
1897 if (TYPE_LENGTH (type) != REGISTER_RAW_SIZE (n))
1898 {
1899 double val = extract_floating (from, TYPE_LENGTH (type));
1900 store_floating (to, REGISTER_RAW_SIZE (n), val);
7a292a7a 1901 }
7a78ae4e
ND
1902 else
1903 memcpy (to, from, REGISTER_RAW_SIZE (n));
1904}
c906108c 1905
c8001721
EZ
1906static void
1907e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1908 int reg_nr, void *buffer)
1909{
1910 int base_regnum;
1911 int offset = 0;
1912 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1913 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1914
1915 if (reg_nr >= tdep->ppc_gp0_regnum
1916 && reg_nr <= tdep->ppc_gplast_regnum)
1917 {
1918 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1919
1920 /* Build the value in the provided buffer. */
1921 /* Read the raw register of which this one is the lower portion. */
1922 regcache_raw_read (regcache, base_regnum, temp_buffer);
1923 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1924 offset = 4;
1925 memcpy ((char *) buffer, temp_buffer + offset, 4);
1926 }
1927}
1928
1929static void
1930e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1931 int reg_nr, const void *buffer)
1932{
1933 int base_regnum;
1934 int offset = 0;
1935 char *temp_buffer = (char*) alloca (MAX_REGISTER_RAW_SIZE);
1936 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1937
1938 if (reg_nr >= tdep->ppc_gp0_regnum
1939 && reg_nr <= tdep->ppc_gplast_regnum)
1940 {
1941 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1942 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1943 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1944 offset = 4;
1945
1946 /* Let's read the value of the base register into a temporary
1947 buffer, so that overwriting the last four bytes with the new
1948 value of the pseudo will leave the upper 4 bytes unchanged. */
1949 regcache_raw_read (regcache, base_regnum, temp_buffer);
1950
1951 /* Write as an 8 byte quantity. */
1952 memcpy (temp_buffer + offset, (char *) buffer, 4);
1953 regcache_raw_write (regcache, base_regnum, temp_buffer);
1954 }
1955}
1956
1957/* Convert a dwarf2 register number to a gdb REGNUM. */
1958static int
1959e500_dwarf2_reg_to_regnum (int num)
1960{
1961 int regnum;
1962 if (0 <= num && num <= 31)
1963 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1964 else
1965 return num;
1966}
1967
2188cbdd 1968/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1969 REGNUM. */
2188cbdd
EZ
1970static int
1971rs6000_stab_reg_to_regnum (int num)
1972{
1973 int regnum;
1974 switch (num)
1975 {
1976 case 64:
1977 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1978 break;
1979 case 65:
1980 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
1981 break;
1982 case 66:
1983 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
1984 break;
1985 case 76:
1986 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
1987 break;
1988 default:
1989 regnum = num;
1990 break;
1991 }
1992 return regnum;
1993}
1994
7a78ae4e 1995/* Store the address of the place in which to copy the structure the
11269d7e 1996 subroutine will return. */
7a78ae4e
ND
1997
1998static void
1999rs6000_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2000{
da3eff49
AC
2001 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2002 write_register (tdep->ppc_gp0_regnum + 3, addr);
7a78ae4e
ND
2003}
2004
2005/* Write into appropriate registers a function return value
2006 of type TYPE, given in virtual format. */
96ff0de4
EZ
2007static void
2008e500_store_return_value (struct type *type, char *valbuf)
2009{
2010 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2011
2012 /* Everything is returned in GPR3 and up. */
2013 int copied = 0;
2014 int i = 0;
2015 int len = TYPE_LENGTH (type);
2016 while (copied < len)
2017 {
2018 int regnum = gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3 + i;
2019 int reg_size = REGISTER_RAW_SIZE (regnum);
2020 char *reg_val_buf = alloca (reg_size);
2021
2022 memcpy (reg_val_buf, valbuf + copied, reg_size);
2023 copied += reg_size;
4caf0990 2024 deprecated_write_register_gen (regnum, reg_val_buf);
96ff0de4
EZ
2025 i++;
2026 }
2027}
7a78ae4e
ND
2028
2029static void
2030rs6000_store_return_value (struct type *type, char *valbuf)
2031{
ace1378a
EZ
2032 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2033
7a78ae4e
ND
2034 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2035
2036 /* Floating point values are returned starting from FPR1 and up.
2037 Say a double_double_double type could be returned in
64366f1c 2038 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2039
73937e03
AC
2040 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
2041 TYPE_LENGTH (type));
ace1378a
EZ
2042 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2043 {
2044 if (TYPE_LENGTH (type) == 16
2045 && TYPE_VECTOR (type))
73937e03
AC
2046 deprecated_write_register_bytes (REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
2047 valbuf, TYPE_LENGTH (type));
ace1378a 2048 }
7a78ae4e 2049 else
64366f1c 2050 /* Everything else is returned in GPR3 and up. */
73937e03
AC
2051 deprecated_write_register_bytes (REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
2052 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2053}
2054
2055/* Extract from an array REGBUF containing the (raw) register state
2056 the address in which a function should return its structure value,
2057 as a CORE_ADDR (or an expression that can be used as one). */
2058
2059static CORE_ADDR
11269d7e
AC
2060rs6000_extract_struct_value_address (struct regcache *regcache)
2061{
2062 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2063 function call GDB knows the address of the struct return value
2064 and hence, should not need to call this function. Unfortunately,
2065 the current hand_function_call() code only saves the most recent
2066 struct address leading to occasional calls. The code should
2067 instead maintain a stack of such addresses (in the dummy frame
2068 object). */
2069 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2070 really got no idea where the return value is being stored. While
2071 r3, on function entry, contained the address it will have since
2072 been reused (scratch) and hence wouldn't be valid */
2073 return 0;
7a78ae4e
ND
2074}
2075
2076/* Return whether PC is in a dummy function call.
2077
2078 FIXME: This just checks for the end of the stack, which is broken
64366f1c 2079 for things like stepping through gcc nested function stubs. */
7a78ae4e
ND
2080
2081static int
2082rs6000_pc_in_call_dummy (CORE_ADDR pc, CORE_ADDR sp, CORE_ADDR fp)
2083{
2084 return sp < pc && pc < fp;
2085}
2086
64366f1c 2087/* Hook called when a new child process is started. */
7a78ae4e
ND
2088
2089void
2090rs6000_create_inferior (int pid)
2091{
2092 if (rs6000_set_host_arch_hook)
2093 rs6000_set_host_arch_hook (pid);
c906108c
SS
2094}
2095\f
7a78ae4e
ND
2096/* Support for CONVERT_FROM_FUNC_PTR_ADDR(ADDR).
2097
2098 Usually a function pointer's representation is simply the address
2099 of the function. On the RS/6000 however, a function pointer is
2100 represented by a pointer to a TOC entry. This TOC entry contains
2101 three words, the first word is the address of the function, the
2102 second word is the TOC pointer (r2), and the third word is the
2103 static chain value. Throughout GDB it is currently assumed that a
2104 function pointer contains the address of the function, which is not
2105 easy to fix. In addition, the conversion of a function address to
2106 a function pointer would require allocation of a TOC entry in the
2107 inferior's memory space, with all its drawbacks. To be able to
2108 call C++ virtual methods in the inferior (which are called via
f517ea4e 2109 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2110 function address from a function pointer. */
2111
f517ea4e
PS
2112/* Return real function address if ADDR (a function pointer) is in the data
2113 space and is therefore a special function pointer. */
c906108c 2114
7a78ae4e
ND
2115CORE_ADDR
2116rs6000_convert_from_func_ptr_addr (CORE_ADDR addr)
c906108c
SS
2117{
2118 struct obj_section *s;
2119
2120 s = find_pc_section (addr);
2121 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2122 return addr;
c906108c 2123
7a78ae4e 2124 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2125 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2126}
c906108c 2127\f
c5aa993b 2128
7a78ae4e 2129/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2130
2131
7a78ae4e
ND
2132/* The arrays here called registers_MUMBLE hold information about available
2133 registers.
c906108c
SS
2134
2135 For each family of PPC variants, I've tried to isolate out the
2136 common registers and put them up front, so that as long as you get
2137 the general family right, GDB will correctly identify the registers
2138 common to that family. The common register sets are:
2139
2140 For the 60x family: hid0 hid1 iabr dabr pir
2141
2142 For the 505 and 860 family: eie eid nri
2143
2144 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2145 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2146 pbu1 pbl2 pbu2
c906108c
SS
2147
2148 Most of these register groups aren't anything formal. I arrived at
2149 them by looking at the registers that occurred in more than one
6f5987a6
KB
2150 processor.
2151
2152 Note: kevinb/2002-04-30: Support for the fpscr register was added
2153 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2154 for Power. For PowerPC, slot 70 was unused and was already in the
2155 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2156 slot 70 was being used for "mq", so the next available slot (71)
2157 was chosen. It would have been nice to be able to make the
2158 register numbers the same across processor cores, but this wasn't
2159 possible without either 1) renumbering some registers for some
2160 processors or 2) assigning fpscr to a really high slot that's
2161 larger than any current register number. Doing (1) is bad because
2162 existing stubs would break. Doing (2) is undesirable because it
2163 would introduce a really large gap between fpscr and the rest of
2164 the registers for most processors. */
7a78ae4e 2165
64366f1c 2166/* Convenience macros for populating register arrays. */
7a78ae4e 2167
64366f1c 2168/* Within another macro, convert S to a string. */
7a78ae4e
ND
2169
2170#define STR(s) #s
2171
2172/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2173 and 64 bits on 64-bit systems. */
489461e2 2174#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2175
2176/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2177 systems. */
489461e2 2178#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2179
2180/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2181 systems. */
489461e2 2182#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2183
1fcc0bb8 2184/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2185 systems. */
489461e2 2186#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2187
64366f1c 2188/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2189#define F(name) { STR(name), 8, 8, 1, 0 }
2190
64366f1c 2191/* Return a struct reg defining a pseudo register NAME. */
489461e2 2192#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2193
2194/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2195 systems and that doesn't exist on 64-bit systems. */
489461e2 2196#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2197
2198/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2199 systems and that doesn't exist on 32-bit systems. */
489461e2 2200#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2201
64366f1c 2202/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2203#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2204
2205/* UISA registers common across all architectures, including POWER. */
2206
2207#define COMMON_UISA_REGS \
2208 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2209 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2210 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2211 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2212 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2213 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2214 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2215 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2216 /* 64 */ R(pc), R(ps)
2217
ebeac11a
EZ
2218#define COMMON_UISA_NOFP_REGS \
2219 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2220 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2221 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2222 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2223 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2224 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2225 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2226 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2227 /* 64 */ R(pc), R(ps)
2228
7a78ae4e
ND
2229/* UISA-level SPRs for PowerPC. */
2230#define PPC_UISA_SPRS \
e3f36dbd 2231 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2232
c8001721
EZ
2233/* UISA-level SPRs for PowerPC without floating point support. */
2234#define PPC_UISA_NOFP_SPRS \
2235 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2236
7a78ae4e
ND
2237/* Segment registers, for PowerPC. */
2238#define PPC_SEGMENT_REGS \
2239 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2240 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2241 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2242 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2243
2244/* OEA SPRs for PowerPC. */
2245#define PPC_OEA_SPRS \
2246 /* 87 */ R4(pvr), \
2247 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2248 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2249 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2250 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2251 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2252 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2253 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2254 /* 116 */ R4(dec), R(dabr), R4(ear)
2255
64366f1c 2256/* AltiVec registers. */
1fcc0bb8
EZ
2257#define PPC_ALTIVEC_REGS \
2258 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2259 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2260 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2261 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2262 /*151*/R4(vscr), R4(vrsave)
2263
c8001721
EZ
2264/* Vectors of hi-lo general purpose registers. */
2265#define PPC_EV_REGS \
2266 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2267 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2268 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2269 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2270
2271/* Lower half of the EV registers. */
2272#define PPC_GPRS_PSEUDO_REGS \
2273 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2274 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2275 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2276 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2277
7a78ae4e 2278/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2279 user-level SPR's. */
7a78ae4e 2280static const struct reg registers_power[] =
c906108c 2281{
7a78ae4e 2282 COMMON_UISA_REGS,
e3f36dbd
KB
2283 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2284 /* 71 */ R4(fpscr)
c906108c
SS
2285};
2286
7a78ae4e 2287/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2288 view of the PowerPC. */
7a78ae4e 2289static const struct reg registers_powerpc[] =
c906108c 2290{
7a78ae4e 2291 COMMON_UISA_REGS,
1fcc0bb8
EZ
2292 PPC_UISA_SPRS,
2293 PPC_ALTIVEC_REGS
c906108c
SS
2294};
2295
ebeac11a
EZ
2296/* PowerPC UISA - a PPC processor as viewed by user-level
2297 code, but without floating point registers. */
2298static const struct reg registers_powerpc_nofp[] =
2299{
2300 COMMON_UISA_NOFP_REGS,
2301 PPC_UISA_SPRS
2302};
2303
64366f1c 2304/* IBM PowerPC 403. */
7a78ae4e 2305static const struct reg registers_403[] =
c5aa993b 2306{
7a78ae4e
ND
2307 COMMON_UISA_REGS,
2308 PPC_UISA_SPRS,
2309 PPC_SEGMENT_REGS,
2310 PPC_OEA_SPRS,
2311 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2312 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2313 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2314 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2315 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2316 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2317};
2318
64366f1c 2319/* IBM PowerPC 403GC. */
7a78ae4e 2320static const struct reg registers_403GC[] =
c5aa993b 2321{
7a78ae4e
ND
2322 COMMON_UISA_REGS,
2323 PPC_UISA_SPRS,
2324 PPC_SEGMENT_REGS,
2325 PPC_OEA_SPRS,
2326 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2327 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2328 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2329 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2330 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2331 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2332 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2333 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2334};
2335
64366f1c 2336/* Motorola PowerPC 505. */
7a78ae4e 2337static const struct reg registers_505[] =
c5aa993b 2338{
7a78ae4e
ND
2339 COMMON_UISA_REGS,
2340 PPC_UISA_SPRS,
2341 PPC_SEGMENT_REGS,
2342 PPC_OEA_SPRS,
2343 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2344};
2345
64366f1c 2346/* Motorola PowerPC 860 or 850. */
7a78ae4e 2347static const struct reg registers_860[] =
c5aa993b 2348{
7a78ae4e
ND
2349 COMMON_UISA_REGS,
2350 PPC_UISA_SPRS,
2351 PPC_SEGMENT_REGS,
2352 PPC_OEA_SPRS,
2353 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2354 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2355 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2356 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2357 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2358 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2359 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2360 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2361 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2362 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2363 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2364 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2365};
2366
7a78ae4e
ND
2367/* Motorola PowerPC 601. Note that the 601 has different register numbers
2368 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2369 register is the stub's problem. */
7a78ae4e 2370static const struct reg registers_601[] =
c5aa993b 2371{
7a78ae4e
ND
2372 COMMON_UISA_REGS,
2373 PPC_UISA_SPRS,
2374 PPC_SEGMENT_REGS,
2375 PPC_OEA_SPRS,
2376 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2377 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2378};
2379
64366f1c 2380/* Motorola PowerPC 602. */
7a78ae4e 2381static const struct reg registers_602[] =
c5aa993b 2382{
7a78ae4e
ND
2383 COMMON_UISA_REGS,
2384 PPC_UISA_SPRS,
2385 PPC_SEGMENT_REGS,
2386 PPC_OEA_SPRS,
2387 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2388 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2389 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2390};
2391
64366f1c 2392/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2393static const struct reg registers_603[] =
c5aa993b 2394{
7a78ae4e
ND
2395 COMMON_UISA_REGS,
2396 PPC_UISA_SPRS,
2397 PPC_SEGMENT_REGS,
2398 PPC_OEA_SPRS,
2399 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2400 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2401 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2402};
2403
64366f1c 2404/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2405static const struct reg registers_604[] =
c5aa993b 2406{
7a78ae4e
ND
2407 COMMON_UISA_REGS,
2408 PPC_UISA_SPRS,
2409 PPC_SEGMENT_REGS,
2410 PPC_OEA_SPRS,
2411 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2412 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2413 /* 127 */ R(sia), R(sda)
c906108c
SS
2414};
2415
64366f1c 2416/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2417static const struct reg registers_750[] =
c5aa993b 2418{
7a78ae4e
ND
2419 COMMON_UISA_REGS,
2420 PPC_UISA_SPRS,
2421 PPC_SEGMENT_REGS,
2422 PPC_OEA_SPRS,
2423 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2424 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2425 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2426 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2427 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2428 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2429};
2430
2431
64366f1c 2432/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2433static const struct reg registers_7400[] =
2434{
2435 /* gpr0-gpr31, fpr0-fpr31 */
2436 COMMON_UISA_REGS,
2437 /* ctr, xre, lr, cr */
2438 PPC_UISA_SPRS,
2439 /* sr0-sr15 */
2440 PPC_SEGMENT_REGS,
2441 PPC_OEA_SPRS,
2442 /* vr0-vr31, vrsave, vscr */
2443 PPC_ALTIVEC_REGS
2444 /* FIXME? Add more registers? */
2445};
2446
c8001721
EZ
2447/* Motorola e500. */
2448static const struct reg registers_e500[] =
2449{
2450 R(pc), R(ps),
2451 /* cr, lr, ctr, xer, "" */
2452 PPC_UISA_NOFP_SPRS,
2453 /* 7...38 */
2454 PPC_EV_REGS,
338ef23d
AC
2455 R8(acc), R(spefscr),
2456 /* NOTE: Add new registers here the end of the raw register
2457 list and just before the first pseudo register. */
c8001721
EZ
2458 /* 39...70 */
2459 PPC_GPRS_PSEUDO_REGS
2460};
2461
c906108c 2462/* Information about a particular processor variant. */
7a78ae4e 2463
c906108c 2464struct variant
c5aa993b
JM
2465 {
2466 /* Name of this variant. */
2467 char *name;
c906108c 2468
c5aa993b
JM
2469 /* English description of the variant. */
2470 char *description;
c906108c 2471
64366f1c 2472 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2473 enum bfd_architecture arch;
2474
64366f1c 2475 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2476 unsigned long mach;
2477
489461e2
EZ
2478 /* Number of real registers. */
2479 int nregs;
2480
2481 /* Number of pseudo registers. */
2482 int npregs;
2483
2484 /* Number of total registers (the sum of nregs and npregs). */
2485 int num_tot_regs;
2486
c5aa993b
JM
2487 /* Table of register names; registers[R] is the name of the register
2488 number R. */
7a78ae4e 2489 const struct reg *regs;
c5aa993b 2490 };
c906108c 2491
489461e2
EZ
2492#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2493
2494static int
2495num_registers (const struct reg *reg_list, int num_tot_regs)
2496{
2497 int i;
2498 int nregs = 0;
2499
2500 for (i = 0; i < num_tot_regs; i++)
2501 if (!reg_list[i].pseudo)
2502 nregs++;
2503
2504 return nregs;
2505}
2506
2507static int
2508num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2509{
2510 int i;
2511 int npregs = 0;
2512
2513 for (i = 0; i < num_tot_regs; i++)
2514 if (reg_list[i].pseudo)
2515 npregs ++;
2516
2517 return npregs;
2518}
c906108c 2519
c906108c
SS
2520/* Information in this table comes from the following web sites:
2521 IBM: http://www.chips.ibm.com:80/products/embedded/
2522 Motorola: http://www.mot.com/SPS/PowerPC/
2523
2524 I'm sure I've got some of the variant descriptions not quite right.
2525 Please report any inaccuracies you find to GDB's maintainer.
2526
2527 If you add entries to this table, please be sure to allow the new
2528 value as an argument to the --with-cpu flag, in configure.in. */
2529
489461e2 2530static struct variant variants[] =
c906108c 2531{
489461e2 2532
7a78ae4e 2533 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2534 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2535 registers_powerpc},
7a78ae4e 2536 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2537 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2538 registers_power},
7a78ae4e 2539 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2540 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2541 registers_403},
7a78ae4e 2542 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2543 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2544 registers_601},
7a78ae4e 2545 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2546 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2547 registers_602},
7a78ae4e 2548 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2549 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2550 registers_603},
7a78ae4e 2551 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2552 604, -1, -1, tot_num_registers (registers_604),
2553 registers_604},
7a78ae4e 2554 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2555 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2556 registers_403GC},
7a78ae4e 2557 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2558 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2559 registers_505},
7a78ae4e 2560 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2561 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2562 registers_860},
7a78ae4e 2563 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2564 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2565 registers_750},
1fcc0bb8 2566 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2567 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2568 registers_7400},
c8001721
EZ
2569 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2570 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2571 registers_e500},
7a78ae4e 2572
5d57ee30
KB
2573 /* 64-bit */
2574 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2575 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2576 registers_powerpc},
7a78ae4e 2577 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2578 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2579 registers_powerpc},
5d57ee30 2580 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2581 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2582 registers_powerpc},
7a78ae4e 2583 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2584 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2585 registers_powerpc},
5d57ee30 2586 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2587 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2588 registers_powerpc},
5d57ee30 2589 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2590 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2591 registers_powerpc},
5d57ee30 2592
64366f1c 2593 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2594 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2595 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2596 registers_power},
7a78ae4e 2597 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2598 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2599 registers_power},
7a78ae4e 2600 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2601 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2602 registers_power},
7a78ae4e 2603
489461e2 2604 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2605};
2606
64366f1c 2607/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2608
2609static void
2610init_variants (void)
2611{
2612 struct variant *v;
2613
2614 for (v = variants; v->name; v++)
2615 {
2616 if (v->nregs == -1)
2617 v->nregs = num_registers (v->regs, v->num_tot_regs);
2618 if (v->npregs == -1)
2619 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2620 }
2621}
c906108c 2622
7a78ae4e 2623/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2624 MACH. If no such variant exists, return null. */
c906108c 2625
7a78ae4e
ND
2626static const struct variant *
2627find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2628{
7a78ae4e 2629 const struct variant *v;
c5aa993b 2630
7a78ae4e
ND
2631 for (v = variants; v->name; v++)
2632 if (arch == v->arch && mach == v->mach)
2633 return v;
c906108c 2634
7a78ae4e 2635 return NULL;
c906108c 2636}
9364a0ef
EZ
2637
2638static int
2639gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2640{
2641 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2642 return print_insn_big_powerpc (memaddr, info);
2643 else
2644 return print_insn_little_powerpc (memaddr, info);
2645}
7a78ae4e 2646\f
7a78ae4e
ND
2647/* Initialize the current architecture based on INFO. If possible, re-use an
2648 architecture from ARCHES, which is a list of architectures already created
2649 during this debugging session.
c906108c 2650
7a78ae4e 2651 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2652 a binary file. */
c906108c 2653
7a78ae4e
ND
2654static struct gdbarch *
2655rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2656{
2657 struct gdbarch *gdbarch;
2658 struct gdbarch_tdep *tdep;
9aa1e687 2659 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2660 struct reg *regs;
2661 const struct variant *v;
2662 enum bfd_architecture arch;
2663 unsigned long mach;
2664 bfd abfd;
7b112f9c 2665 int sysv_abi;
5bf1c677 2666 asection *sect;
7a78ae4e 2667
9aa1e687 2668 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2669 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2670
9aa1e687
KB
2671 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2672 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2673
2674 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2675
e712c1cf 2676 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2677 that, else choose a likely default. */
9aa1e687 2678 if (from_xcoff_exec)
c906108c 2679 {
11ed25ac 2680 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2681 wordsize = 8;
2682 else
2683 wordsize = 4;
c906108c 2684 }
9aa1e687
KB
2685 else if (from_elf_exec)
2686 {
2687 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2688 wordsize = 8;
2689 else
2690 wordsize = 4;
2691 }
c906108c 2692 else
7a78ae4e 2693 {
27b15785
KB
2694 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2695 wordsize = info.bfd_arch_info->bits_per_word /
2696 info.bfd_arch_info->bits_per_byte;
2697 else
2698 wordsize = 4;
7a78ae4e 2699 }
c906108c 2700
64366f1c 2701 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2702 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2703 arches != NULL;
2704 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2705 {
2706 /* Word size in the various PowerPC bfd_arch_info structs isn't
2707 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2708 separate word size check. */
7a78ae4e 2709 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2710 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2711 return arches->gdbarch;
2712 }
c906108c 2713
7a78ae4e
ND
2714 /* None found, create a new architecture from INFO, whose bfd_arch_info
2715 validity depends on the source:
2716 - executable useless
2717 - rs6000_host_arch() good
2718 - core file good
2719 - "set arch" trust blindly
2720 - GDB startup useless but harmless */
c906108c 2721
9aa1e687 2722 if (!from_xcoff_exec)
c906108c 2723 {
b732d07d 2724 arch = info.bfd_arch_info->arch;
7a78ae4e 2725 mach = info.bfd_arch_info->mach;
c906108c 2726 }
7a78ae4e 2727 else
c906108c 2728 {
7a78ae4e
ND
2729 arch = bfd_arch_powerpc;
2730 mach = 0;
2731 bfd_default_set_arch_mach (&abfd, arch, mach);
2732 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2733 }
2734 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2735 tdep->wordsize = wordsize;
5bf1c677
EZ
2736
2737 /* For e500 executables, the apuinfo section is of help here. Such
2738 section contains the identifier and revision number of each
2739 Application-specific Processing Unit that is present on the
2740 chip. The content of the section is determined by the assembler
2741 which looks at each instruction and determines which unit (and
2742 which version of it) can execute it. In our case we just look for
2743 the existance of the section. */
2744
2745 if (info.abfd)
2746 {
2747 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2748 if (sect)
2749 {
2750 arch = info.bfd_arch_info->arch;
2751 mach = bfd_mach_ppc_e500;
2752 bfd_default_set_arch_mach (&abfd, arch, mach);
2753 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2754 }
2755 }
2756
7a78ae4e
ND
2757 gdbarch = gdbarch_alloc (&info, tdep);
2758 power = arch == bfd_arch_rs6000;
2759
489461e2
EZ
2760 /* Initialize the number of real and pseudo registers in each variant. */
2761 init_variants ();
2762
64366f1c 2763 /* Choose variant. */
7a78ae4e
ND
2764 v = find_variant_by_arch (arch, mach);
2765 if (!v)
dd47e6fd
EZ
2766 return NULL;
2767
7a78ae4e
ND
2768 tdep->regs = v->regs;
2769
2188cbdd
EZ
2770 tdep->ppc_gp0_regnum = 0;
2771 tdep->ppc_gplast_regnum = 31;
2772 tdep->ppc_toc_regnum = 2;
2773 tdep->ppc_ps_regnum = 65;
2774 tdep->ppc_cr_regnum = 66;
2775 tdep->ppc_lr_regnum = 67;
2776 tdep->ppc_ctr_regnum = 68;
2777 tdep->ppc_xer_regnum = 69;
2778 if (v->mach == bfd_mach_ppc_601)
2779 tdep->ppc_mq_regnum = 124;
e3f36dbd 2780 else if (power)
2188cbdd 2781 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2782 else
2783 tdep->ppc_mq_regnum = -1;
2784 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2785
c8001721
EZ
2786 set_gdbarch_pc_regnum (gdbarch, 64);
2787 set_gdbarch_sp_regnum (gdbarch, 1);
2788 set_gdbarch_fp_regnum (gdbarch, 1);
96ff0de4
EZ
2789 set_gdbarch_deprecated_extract_return_value (gdbarch,
2790 rs6000_extract_return_value);
46d79c04 2791 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
c8001721 2792
1fcc0bb8
EZ
2793 if (v->arch == bfd_arch_powerpc)
2794 switch (v->mach)
2795 {
2796 case bfd_mach_ppc:
2797 tdep->ppc_vr0_regnum = 71;
2798 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2799 tdep->ppc_ev0_regnum = -1;
2800 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2801 break;
2802 case bfd_mach_ppc_7400:
2803 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2804 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2805 tdep->ppc_ev0_regnum = -1;
2806 tdep->ppc_ev31_regnum = -1;
2807 break;
2808 case bfd_mach_ppc_e500:
338ef23d
AC
2809 tdep->ppc_gp0_regnum = 41;
2810 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2811 tdep->ppc_toc_regnum = -1;
2812 tdep->ppc_ps_regnum = 1;
2813 tdep->ppc_cr_regnum = 2;
2814 tdep->ppc_lr_regnum = 3;
2815 tdep->ppc_ctr_regnum = 4;
2816 tdep->ppc_xer_regnum = 5;
2817 tdep->ppc_ev0_regnum = 7;
2818 tdep->ppc_ev31_regnum = 38;
2819 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d
AC
2820 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
2821 set_gdbarch_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2822 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2823 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2824 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
96ff0de4 2825 set_gdbarch_extract_return_value (gdbarch, e500_extract_return_value);
46d79c04 2826 set_gdbarch_deprecated_store_return_value (gdbarch, e500_store_return_value);
1fcc0bb8
EZ
2827 break;
2828 default:
2829 tdep->ppc_vr0_regnum = -1;
2830 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2831 tdep->ppc_ev0_regnum = -1;
2832 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2833 break;
2834 }
2835
338ef23d
AC
2836 /* Sanity check on registers. */
2837 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2838
a88376a3
KB
2839 /* Set lr_frame_offset. */
2840 if (wordsize == 8)
2841 tdep->lr_frame_offset = 16;
2842 else if (sysv_abi)
2843 tdep->lr_frame_offset = 4;
2844 else
2845 tdep->lr_frame_offset = 8;
2846
2847 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2848 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2849 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2850 {
2851 tdep->regoff[i] = off;
2852 off += regsize (v->regs + i, wordsize);
c906108c
SS
2853 }
2854
56a6dfb9
KB
2855 /* Select instruction printer. */
2856 if (arch == power)
9364a0ef 2857 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2858 else
9364a0ef 2859 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2860
7a78ae4e
ND
2861 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
2862 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2863 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
7a78ae4e
ND
2864 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
2865 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
2866
2867 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2868 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e
ND
2869 set_gdbarch_register_name (gdbarch, rs6000_register_name);
2870 set_gdbarch_register_size (gdbarch, wordsize);
2871 set_gdbarch_register_bytes (gdbarch, off);
2872 set_gdbarch_register_byte (gdbarch, rs6000_register_byte);
2873 set_gdbarch_register_raw_size (gdbarch, rs6000_register_raw_size);
a0ed5532 2874 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 16);
b2e75d78 2875 set_gdbarch_register_virtual_size (gdbarch, generic_register_size);
a0ed5532 2876 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 16);
7a78ae4e
ND
2877 set_gdbarch_register_virtual_type (gdbarch, rs6000_register_virtual_type);
2878
2879 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2880 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2881 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2882 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2883 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2884 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2885 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2886 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2887 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2888
7a78ae4e 2889 set_gdbarch_call_dummy_length (gdbarch, 0);
7a78ae4e
ND
2890 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
2891 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
2892 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
2893 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
7a78ae4e
ND
2894 set_gdbarch_call_dummy_p (gdbarch, 1);
2895 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
7a78ae4e 2896 set_gdbarch_fix_call_dummy (gdbarch, rs6000_fix_call_dummy);
11269d7e 2897 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
58223630 2898 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e
ND
2899 set_gdbarch_push_return_address (gdbarch, ppc_push_return_address);
2900 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e
ND
2901
2902 set_gdbarch_register_convertible (gdbarch, rs6000_register_convertible);
2903 set_gdbarch_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2904 set_gdbarch_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2905 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2906 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2907 is correct for the SysV ABI when the wordsize is 8, but I'm also
2908 fairly certain that ppc_sysv_abi_push_arguments() will give even
2909 worse results since it only works for 32-bit code. So, for the moment,
2910 we're better off calling rs6000_push_arguments() since it works for
2911 64-bit code. At some point in the future, this matter needs to be
2912 revisited. */
2913 if (sysv_abi && wordsize == 4)
9aa1e687
KB
2914 set_gdbarch_push_arguments (gdbarch, ppc_sysv_abi_push_arguments);
2915 else
2916 set_gdbarch_push_arguments (gdbarch, rs6000_push_arguments);
7a78ae4e 2917
d0403e00 2918 set_gdbarch_store_struct_return (gdbarch, rs6000_store_struct_return);
11269d7e 2919 set_gdbarch_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2920 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2921
2922 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2923 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
2924 set_gdbarch_decr_pc_after_break (gdbarch, 0);
2925 set_gdbarch_function_start_offset (gdbarch, 0);
2926 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2927
2928 /* Not sure on this. FIXMEmgo */
2929 set_gdbarch_frame_args_skip (gdbarch, 8);
2930
8e0662df 2931 if (sysv_abi)
7b112f9c
JT
2932 set_gdbarch_use_struct_convention (gdbarch,
2933 ppc_sysv_abi_use_struct_convention);
8e0662df 2934 else
7b112f9c
JT
2935 set_gdbarch_use_struct_convention (gdbarch,
2936 generic_use_struct_convention);
8e0662df 2937
7b112f9c
JT
2938 set_gdbarch_frameless_function_invocation (gdbarch,
2939 rs6000_frameless_function_invocation);
2940 set_gdbarch_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2941 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2942
f30ee0bc 2943 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2944 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
7b112f9c 2945
15813d3f
AC
2946 if (!sysv_abi)
2947 {
2948 /* Handle RS/6000 function pointers (which are really function
2949 descriptors). */
f517ea4e
PS
2950 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2951 rs6000_convert_from_func_ptr_addr);
9aa1e687 2952 }
7a78ae4e
ND
2953 set_gdbarch_frame_args_address (gdbarch, rs6000_frame_args_address);
2954 set_gdbarch_frame_locals_address (gdbarch, rs6000_frame_args_address);
2955 set_gdbarch_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
2956
2957 /* We can't tell how many args there are
2958 now that the C compiler delays popping them. */
2959 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
2960
7b112f9c 2961 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2962 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2963
7a78ae4e 2964 return gdbarch;
c906108c
SS
2965}
2966
7b112f9c
JT
2967static void
2968rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2969{
2970 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2971
2972 if (tdep == NULL)
2973 return;
2974
4be87837 2975 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2976}
2977
1fcc0bb8
EZ
2978static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2979
2980static void
2981rs6000_info_powerpc_command (char *args, int from_tty)
2982{
2983 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2984}
2985
c906108c
SS
2986/* Initialization code. */
2987
2988void
fba45db2 2989_initialize_rs6000_tdep (void)
c906108c 2990{
7b112f9c
JT
2991 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2992 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2993
2994 /* Add root prefix command for "info powerpc" commands */
2995 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2996 "Various POWERPC info specific commands.",
2997 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2998}
This page took 0.622224 seconds and 4 git commands to generate.