* strings.c (statbuf): New typedef.
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d195bc9f 34#include "regset.h"
d16aafd8 35#include "doublest.h"
fd0407d6 36#include "value.h"
1fcc0bb8 37#include "parser-defs.h"
4be87837 38#include "osabi.h"
7d9b040b 39#include "infcall.h"
9f643768
JB
40#include "sim-regno.h"
41#include "gdb/sim-ppc.h"
6ced10dd 42#include "reggroups.h"
7a78ae4e 43
2fccf04a 44#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 45#include "coff/internal.h" /* for libcoff.h */
2fccf04a 46#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
47#include "coff/xcoff.h"
48#include "libxcoff.h"
7a78ae4e 49
9aa1e687 50#include "elf-bfd.h"
7a78ae4e 51
6ded7999 52#include "solib-svr4.h"
9aa1e687 53#include "ppc-tdep.h"
7a78ae4e 54
338ef23d 55#include "gdb_assert.h"
a89aa300 56#include "dis-asm.h"
338ef23d 57
61a65099
KB
58#include "trad-frame.h"
59#include "frame-unwind.h"
60#include "frame-base.h"
61
7a78ae4e
ND
62/* If the kernel has to deliver a signal, it pushes a sigcontext
63 structure on the stack and then calls the signal handler, passing
64 the address of the sigcontext in an argument register. Usually
65 the signal handler doesn't save this register, so we have to
66 access the sigcontext structure via an offset from the signal handler
67 frame.
68 The following constants were determined by experimentation on AIX 3.2. */
69#define SIG_FRAME_PC_OFFSET 96
70#define SIG_FRAME_LR_OFFSET 108
71#define SIG_FRAME_FP_OFFSET 284
72
7a78ae4e
ND
73/* To be used by skip_prologue. */
74
75struct rs6000_framedata
76 {
77 int offset; /* total size of frame --- the distance
78 by which we decrement sp to allocate
79 the frame */
80 int saved_gpr; /* smallest # of saved gpr */
81 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 82 int saved_vr; /* smallest # of saved vr */
96ff0de4 83 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
84 int alloca_reg; /* alloca register number (frame ptr) */
85 char frameless; /* true if frameless functions. */
86 char nosavedpc; /* true if pc not saved. */
87 int gpr_offset; /* offset of saved gprs from prev sp */
88 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 89 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 90 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
91 int lr_offset; /* offset of saved lr */
92 int cr_offset; /* offset of saved cr */
6be8bc0c 93 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
94 };
95
96/* Description of a single register. */
97
98struct reg
99 {
100 char *name; /* name of register */
101 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
102 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
103 unsigned char fpr; /* whether register is floating-point */
489461e2 104 unsigned char pseudo; /* whether register is pseudo */
13ac140c
JB
105 int spr_num; /* PowerPC SPR number, or -1 if not an SPR.
106 This is an ISA SPR number, not a GDB
107 register number. */
7a78ae4e
ND
108 };
109
c906108c
SS
110/* Breakpoint shadows for the single step instructions will be kept here. */
111
c5aa993b
JM
112static struct sstep_breaks
113 {
114 /* Address, or 0 if this is not in use. */
115 CORE_ADDR address;
116 /* Shadow contents. */
117 char data[4];
118 }
119stepBreaks[2];
c906108c
SS
120
121/* Hook for determining the TOC address when calling functions in the
122 inferior under AIX. The initialization code in rs6000-nat.c sets
123 this hook to point to find_toc_address. */
124
7a78ae4e
ND
125CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
126
127/* Hook to set the current architecture when starting a child process.
128 rs6000-nat.c sets this. */
129
130void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
131
132/* Static function prototypes */
133
a14ed312
KB
134static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
135 CORE_ADDR safety);
077276e8
KB
136static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
137 struct rs6000_framedata *);
c906108c 138
64b84175
KB
139/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
140int
141altivec_register_p (int regno)
142{
143 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
144 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
145 return 0;
146 else
147 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
148}
149
383f0f5b 150
867e2dc5
JB
151/* Return true if REGNO is an SPE register, false otherwise. */
152int
153spe_register_p (int regno)
154{
155 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
156
157 /* Is it a reference to EV0 -- EV31, and do we have those? */
158 if (tdep->ppc_ev0_regnum >= 0
159 && tdep->ppc_ev31_regnum >= 0
160 && tdep->ppc_ev0_regnum <= regno && regno <= tdep->ppc_ev31_regnum)
161 return 1;
162
6ced10dd
JB
163 /* Is it a reference to one of the raw upper GPR halves? */
164 if (tdep->ppc_ev0_upper_regnum >= 0
165 && tdep->ppc_ev0_upper_regnum <= regno
166 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
167 return 1;
168
867e2dc5
JB
169 /* Is it a reference to the 64-bit accumulator, and do we have that? */
170 if (tdep->ppc_acc_regnum >= 0
171 && tdep->ppc_acc_regnum == regno)
172 return 1;
173
174 /* Is it a reference to the SPE floating-point status and control register,
175 and do we have that? */
176 if (tdep->ppc_spefscr_regnum >= 0
177 && tdep->ppc_spefscr_regnum == regno)
178 return 1;
179
180 return 0;
181}
182
183
383f0f5b
JB
184/* Return non-zero if the architecture described by GDBARCH has
185 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
186int
187ppc_floating_point_unit_p (struct gdbarch *gdbarch)
188{
383f0f5b
JB
189 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
190
191 return (tdep->ppc_fp0_regnum >= 0
192 && tdep->ppc_fpscr_regnum >= 0);
0a613259 193}
9f643768 194
09991fa0
JB
195
196/* Check that TABLE[GDB_REGNO] is not already initialized, and then
197 set it to SIM_REGNO.
198
199 This is a helper function for init_sim_regno_table, constructing
200 the table mapping GDB register numbers to sim register numbers; we
201 initialize every element in that table to -1 before we start
202 filling it in. */
9f643768
JB
203static void
204set_sim_regno (int *table, int gdb_regno, int sim_regno)
205{
206 /* Make sure we don't try to assign any given GDB register a sim
207 register number more than once. */
208 gdb_assert (table[gdb_regno] == -1);
209 table[gdb_regno] = sim_regno;
210}
211
09991fa0
JB
212
213/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
214 numbers to simulator register numbers, based on the values placed
215 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
216static void
217init_sim_regno_table (struct gdbarch *arch)
218{
219 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
220 int total_regs = gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
221 const struct reg *regs = tdep->regs;
222 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
223 int i;
224
225 /* Presume that all registers not explicitly mentioned below are
226 unavailable from the sim. */
227 for (i = 0; i < total_regs; i++)
228 sim_regno[i] = -1;
229
230 /* General-purpose registers. */
231 for (i = 0; i < ppc_num_gprs; i++)
232 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
233
234 /* Floating-point registers. */
235 if (tdep->ppc_fp0_regnum >= 0)
236 for (i = 0; i < ppc_num_fprs; i++)
237 set_sim_regno (sim_regno,
238 tdep->ppc_fp0_regnum + i,
239 sim_ppc_f0_regnum + i);
240 if (tdep->ppc_fpscr_regnum >= 0)
241 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
242
243 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
244 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
245 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
246
247 /* Segment registers. */
248 if (tdep->ppc_sr0_regnum >= 0)
249 for (i = 0; i < ppc_num_srs; i++)
250 set_sim_regno (sim_regno,
251 tdep->ppc_sr0_regnum + i,
252 sim_ppc_sr0_regnum + i);
253
254 /* Altivec registers. */
255 if (tdep->ppc_vr0_regnum >= 0)
256 {
257 for (i = 0; i < ppc_num_vrs; i++)
258 set_sim_regno (sim_regno,
259 tdep->ppc_vr0_regnum + i,
260 sim_ppc_vr0_regnum + i);
261
262 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
263 we can treat this more like the other cases. */
264 set_sim_regno (sim_regno,
265 tdep->ppc_vr0_regnum + ppc_num_vrs,
266 sim_ppc_vscr_regnum);
267 }
268 /* vsave is a special-purpose register, so the code below handles it. */
269
270 /* SPE APU (E500) registers. */
271 if (tdep->ppc_ev0_regnum >= 0)
272 for (i = 0; i < ppc_num_gprs; i++)
273 set_sim_regno (sim_regno,
274 tdep->ppc_ev0_regnum + i,
275 sim_ppc_ev0_regnum + i);
6ced10dd
JB
276 if (tdep->ppc_ev0_upper_regnum >= 0)
277 for (i = 0; i < ppc_num_gprs; i++)
278 set_sim_regno (sim_regno,
279 tdep->ppc_ev0_upper_regnum + i,
280 sim_ppc_rh0_regnum + i);
9f643768
JB
281 if (tdep->ppc_acc_regnum >= 0)
282 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
283 /* spefscr is a special-purpose register, so the code below handles it. */
284
285 /* Now handle all special-purpose registers. Verify that they
286 haven't mistakenly been assigned numbers by any of the above
287 code). */
288 for (i = 0; i < total_regs; i++)
289 if (regs[i].spr_num >= 0)
290 set_sim_regno (sim_regno, i, regs[i].spr_num + sim_ppc_spr0_regnum);
291
292 /* Drop the initialized array into place. */
293 tdep->sim_regno = sim_regno;
294}
295
09991fa0
JB
296
297/* Given a GDB register number REG, return the corresponding SIM
298 register number. */
9f643768
JB
299static int
300rs6000_register_sim_regno (int reg)
301{
302 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
303 int sim_regno;
304
305 gdb_assert (0 <= reg && reg <= NUM_REGS + NUM_PSEUDO_REGS);
306 sim_regno = tdep->sim_regno[reg];
307
308 if (sim_regno >= 0)
309 return sim_regno;
310 else
311 return LEGACY_SIM_REGNO_IGNORE;
312}
313
d195bc9f
MK
314\f
315
316/* Register set support functions. */
317
318static void
319ppc_supply_reg (struct regcache *regcache, int regnum,
320 const char *regs, size_t offset)
321{
322 if (regnum != -1 && offset != -1)
323 regcache_raw_supply (regcache, regnum, regs + offset);
324}
325
326static void
327ppc_collect_reg (const struct regcache *regcache, int regnum,
328 char *regs, size_t offset)
329{
330 if (regnum != -1 && offset != -1)
331 regcache_raw_collect (regcache, regnum, regs + offset);
332}
333
334/* Supply register REGNUM in the general-purpose register set REGSET
335 from the buffer specified by GREGS and LEN to register cache
336 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
337
338void
339ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
340 int regnum, const void *gregs, size_t len)
341{
342 struct gdbarch *gdbarch = get_regcache_arch (regcache);
343 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
344 const struct ppc_reg_offsets *offsets = regset->descr;
345 size_t offset;
346 int i;
347
cdf2c5f5 348 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
063715bf 349 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 350 i++, offset += 4)
d195bc9f
MK
351 {
352 if (regnum == -1 || regnum == i)
353 ppc_supply_reg (regcache, i, gregs, offset);
354 }
355
356 if (regnum == -1 || regnum == PC_REGNUM)
357 ppc_supply_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
358 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
359 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
360 gregs, offsets->ps_offset);
361 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
362 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
363 gregs, offsets->cr_offset);
364 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
365 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
366 gregs, offsets->lr_offset);
367 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
368 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
369 gregs, offsets->ctr_offset);
370 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
371 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
372 gregs, offsets->cr_offset);
373 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
374 ppc_supply_reg (regcache, tdep->ppc_mq_regnum, gregs, offsets->mq_offset);
375}
376
377/* Supply register REGNUM in the floating-point register set REGSET
378 from the buffer specified by FPREGS and LEN to register cache
379 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
380
381void
382ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
383 int regnum, const void *fpregs, size_t len)
384{
385 struct gdbarch *gdbarch = get_regcache_arch (regcache);
386 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
387 const struct ppc_reg_offsets *offsets = regset->descr;
388 size_t offset;
389 int i;
390
383f0f5b
JB
391 gdb_assert (ppc_floating_point_unit_p (gdbarch));
392
d195bc9f 393 offset = offsets->f0_offset;
366f009f
JB
394 for (i = tdep->ppc_fp0_regnum;
395 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
396 i++, offset += 4)
d195bc9f
MK
397 {
398 if (regnum == -1 || regnum == i)
399 ppc_supply_reg (regcache, i, fpregs, offset);
400 }
401
402 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
403 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
404 fpregs, offsets->fpscr_offset);
405}
406
407/* Collect register REGNUM in the general-purpose register set
408 REGSET. from register cache REGCACHE into the buffer specified by
409 GREGS and LEN. If REGNUM is -1, do this for all registers in
410 REGSET. */
411
412void
413ppc_collect_gregset (const struct regset *regset,
414 const struct regcache *regcache,
415 int regnum, void *gregs, size_t len)
416{
417 struct gdbarch *gdbarch = get_regcache_arch (regcache);
418 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
419 const struct ppc_reg_offsets *offsets = regset->descr;
420 size_t offset;
421 int i;
422
423 offset = offsets->r0_offset;
cdf2c5f5 424 for (i = tdep->ppc_gp0_regnum;
063715bf 425 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
cdf2c5f5 426 i++, offset += 4)
d195bc9f
MK
427 {
428 if (regnum == -1 || regnum == i)
2e56e9c1 429 ppc_collect_reg (regcache, i, gregs, offset);
d195bc9f
MK
430 }
431
432 if (regnum == -1 || regnum == PC_REGNUM)
433 ppc_collect_reg (regcache, PC_REGNUM, gregs, offsets->pc_offset);
434 if (regnum == -1 || regnum == tdep->ppc_ps_regnum)
435 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
436 gregs, offsets->ps_offset);
437 if (regnum == -1 || regnum == tdep->ppc_cr_regnum)
438 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
439 gregs, offsets->cr_offset);
440 if (regnum == -1 || regnum == tdep->ppc_lr_regnum)
441 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
442 gregs, offsets->lr_offset);
443 if (regnum == -1 || regnum == tdep->ppc_ctr_regnum)
444 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
445 gregs, offsets->ctr_offset);
446 if (regnum == -1 || regnum == tdep->ppc_xer_regnum)
447 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
448 gregs, offsets->xer_offset);
449 if (regnum == -1 || regnum == tdep->ppc_mq_regnum)
450 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
451 gregs, offsets->mq_offset);
452}
453
454/* Collect register REGNUM in the floating-point register set
455 REGSET. from register cache REGCACHE into the buffer specified by
456 FPREGS and LEN. If REGNUM is -1, do this for all registers in
457 REGSET. */
458
459void
460ppc_collect_fpregset (const struct regset *regset,
461 const struct regcache *regcache,
462 int regnum, void *fpregs, size_t len)
463{
464 struct gdbarch *gdbarch = get_regcache_arch (regcache);
465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
466 const struct ppc_reg_offsets *offsets = regset->descr;
467 size_t offset;
468 int i;
469
383f0f5b
JB
470 gdb_assert (ppc_floating_point_unit_p (gdbarch));
471
d195bc9f 472 offset = offsets->f0_offset;
366f009f
JB
473 for (i = tdep->ppc_fp0_regnum;
474 i <= tdep->ppc_fp0_regnum + ppc_num_fprs;
475 i++, offset += 4)
d195bc9f
MK
476 {
477 if (regnum == -1 || regnum == i)
478 ppc_collect_reg (regcache, regnum, fpregs, offset);
479 }
480
481 if (regnum == -1 || regnum == tdep->ppc_fpscr_regnum)
482 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
483 fpregs, offsets->fpscr_offset);
484}
485\f
0a613259 486
7a78ae4e 487/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 488
7a78ae4e
ND
489static CORE_ADDR
490read_memory_addr (CORE_ADDR memaddr, int len)
491{
492 return read_memory_unsigned_integer (memaddr, len);
493}
c906108c 494
7a78ae4e
ND
495static CORE_ADDR
496rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
497{
498 struct rs6000_framedata frame;
077276e8 499 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
500 return pc;
501}
502
503
c906108c
SS
504/* Fill in fi->saved_regs */
505
506struct frame_extra_info
507{
508 /* Functions calling alloca() change the value of the stack
509 pointer. We need to use initial stack pointer (which is saved in
510 r31 by gcc) in such cases. If a compiler emits traceback table,
511 then we should use the alloca register specified in traceback
512 table. FIXME. */
c5aa993b 513 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
514};
515
143985b7 516/* Get the ith function argument for the current function. */
b9362cc7 517static CORE_ADDR
143985b7
AF
518rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
519 struct type *type)
520{
521 CORE_ADDR addr;
7f5f525d 522 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
523 return addr;
524}
525
c906108c
SS
526/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
527
528static CORE_ADDR
7a78ae4e 529branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
530{
531 CORE_ADDR dest;
532 int immediate;
533 int absolute;
534 int ext_op;
535
536 absolute = (int) ((instr >> 1) & 1);
537
c5aa993b
JM
538 switch (opcode)
539 {
540 case 18:
541 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
542 if (absolute)
543 dest = immediate;
544 else
545 dest = pc + immediate;
546 break;
547
548 case 16:
549 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
550 if (absolute)
551 dest = immediate;
552 else
553 dest = pc + immediate;
554 break;
555
556 case 19:
557 ext_op = (instr >> 1) & 0x3ff;
558
559 if (ext_op == 16) /* br conditional register */
560 {
2188cbdd 561 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
562
563 /* If we are about to return from a signal handler, dest is
564 something like 0x3c90. The current frame is a signal handler
565 caller frame, upon completion of the sigreturn system call
566 execution will return to the saved PC in the frame. */
567 if (dest < TEXT_SEGMENT_BASE)
568 {
569 struct frame_info *fi;
570
571 fi = get_current_frame ();
572 if (fi != NULL)
8b36eed8 573 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 574 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
575 }
576 }
577
578 else if (ext_op == 528) /* br cond to count reg */
579 {
2188cbdd 580 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
581
582 /* If we are about to execute a system call, dest is something
583 like 0x22fc or 0x3b00. Upon completion the system call
584 will return to the address in the link register. */
585 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 586 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
587 }
588 else
589 return -1;
590 break;
c906108c 591
c5aa993b
JM
592 default:
593 return -1;
594 }
c906108c
SS
595 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
596}
597
598
599/* Sequence of bytes for breakpoint instruction. */
600
f4f9705a 601const static unsigned char *
7a78ae4e 602rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 603{
aaab4dba
AC
604 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
605 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 606 *bp_size = 4;
d7449b42 607 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
608 return big_breakpoint;
609 else
610 return little_breakpoint;
611}
612
613
614/* AIX does not support PT_STEP. Simulate it. */
615
616void
379d08a1
AC
617rs6000_software_single_step (enum target_signal signal,
618 int insert_breakpoints_p)
c906108c 619{
7c40d541
KB
620 CORE_ADDR dummy;
621 int breakp_sz;
f4f9705a 622 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
623 int ii, insn;
624 CORE_ADDR loc;
625 CORE_ADDR breaks[2];
626 int opcode;
627
c5aa993b
JM
628 if (insert_breakpoints_p)
629 {
c906108c 630
c5aa993b 631 loc = read_pc ();
c906108c 632
c5aa993b 633 insn = read_memory_integer (loc, 4);
c906108c 634
7c40d541 635 breaks[0] = loc + breakp_sz;
c5aa993b
JM
636 opcode = insn >> 26;
637 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 638
c5aa993b
JM
639 /* Don't put two breakpoints on the same address. */
640 if (breaks[1] == breaks[0])
641 breaks[1] = -1;
c906108c 642
c5aa993b 643 stepBreaks[1].address = 0;
c906108c 644
c5aa993b
JM
645 for (ii = 0; ii < 2; ++ii)
646 {
c906108c 647
c5aa993b
JM
648 /* ignore invalid breakpoint. */
649 if (breaks[ii] == -1)
650 continue;
7c40d541 651 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
652 stepBreaks[ii].address = breaks[ii];
653 }
c906108c 654
c5aa993b
JM
655 }
656 else
657 {
c906108c 658
c5aa993b
JM
659 /* remove step breakpoints. */
660 for (ii = 0; ii < 2; ++ii)
661 if (stepBreaks[ii].address != 0)
7c40d541
KB
662 target_remove_breakpoint (stepBreaks[ii].address,
663 stepBreaks[ii].data);
c5aa993b 664 }
c906108c 665 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 666 /* What errors? {read,write}_memory call error(). */
c906108c
SS
667}
668
669
670/* return pc value after skipping a function prologue and also return
671 information about a function frame.
672
673 in struct rs6000_framedata fdata:
c5aa993b
JM
674 - frameless is TRUE, if function does not have a frame.
675 - nosavedpc is TRUE, if function does not save %pc value in its frame.
676 - offset is the initial size of this stack frame --- the amount by
677 which we decrement the sp to allocate the frame.
678 - saved_gpr is the number of the first saved gpr.
679 - saved_fpr is the number of the first saved fpr.
6be8bc0c 680 - saved_vr is the number of the first saved vr.
96ff0de4 681 - saved_ev is the number of the first saved ev.
c5aa993b
JM
682 - alloca_reg is the number of the register used for alloca() handling.
683 Otherwise -1.
684 - gpr_offset is the offset of the first saved gpr from the previous frame.
685 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 686 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 687 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
688 - lr_offset is the offset of the saved lr
689 - cr_offset is the offset of the saved cr
6be8bc0c 690 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 691 */
c906108c
SS
692
693#define SIGNED_SHORT(x) \
694 ((sizeof (short) == 2) \
695 ? ((int)(short)(x)) \
696 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
697
698#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
699
55d05f3b
KB
700/* Limit the number of skipped non-prologue instructions, as the examining
701 of the prologue is expensive. */
702static int max_skip_non_prologue_insns = 10;
703
704/* Given PC representing the starting address of a function, and
705 LIM_PC which is the (sloppy) limit to which to scan when looking
706 for a prologue, attempt to further refine this limit by using
707 the line data in the symbol table. If successful, a better guess
708 on where the prologue ends is returned, otherwise the previous
709 value of lim_pc is returned. */
634aa483
AC
710
711/* FIXME: cagney/2004-02-14: This function and logic have largely been
712 superseded by skip_prologue_using_sal. */
713
55d05f3b
KB
714static CORE_ADDR
715refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
716{
717 struct symtab_and_line prologue_sal;
718
719 prologue_sal = find_pc_line (pc, 0);
720 if (prologue_sal.line != 0)
721 {
722 int i;
723 CORE_ADDR addr = prologue_sal.end;
724
725 /* Handle the case in which compiler's optimizer/scheduler
726 has moved instructions into the prologue. We scan ahead
727 in the function looking for address ranges whose corresponding
728 line number is less than or equal to the first one that we
729 found for the function. (It can be less than when the
730 scheduler puts a body instruction before the first prologue
731 instruction.) */
732 for (i = 2 * max_skip_non_prologue_insns;
733 i > 0 && (lim_pc == 0 || addr < lim_pc);
734 i--)
735 {
736 struct symtab_and_line sal;
737
738 sal = find_pc_line (addr, 0);
739 if (sal.line == 0)
740 break;
741 if (sal.line <= prologue_sal.line
742 && sal.symtab == prologue_sal.symtab)
743 {
744 prologue_sal = sal;
745 }
746 addr = sal.end;
747 }
748
749 if (lim_pc == 0 || prologue_sal.end < lim_pc)
750 lim_pc = prologue_sal.end;
751 }
752 return lim_pc;
753}
754
773df3e5
JB
755/* Return nonzero if the given instruction OP can be part of the prologue
756 of a function and saves a parameter on the stack. FRAMEP should be
757 set if one of the previous instructions in the function has set the
758 Frame Pointer. */
759
760static int
761store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
762{
763 /* Move parameters from argument registers to temporary register. */
764 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
765 {
766 /* Rx must be scratch register r0. */
767 const int rx_regno = (op >> 16) & 31;
768 /* Ry: Only r3 - r10 are used for parameter passing. */
769 const int ry_regno = GET_SRC_REG (op);
770
771 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
772 {
773 *r0_contains_arg = 1;
774 return 1;
775 }
776 else
777 return 0;
778 }
779
780 /* Save a General Purpose Register on stack. */
781
782 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
783 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
784 {
785 /* Rx: Only r3 - r10 are used for parameter passing. */
786 const int rx_regno = GET_SRC_REG (op);
787
788 return (rx_regno >= 3 && rx_regno <= 10);
789 }
790
791 /* Save a General Purpose Register on stack via the Frame Pointer. */
792
793 if (framep &&
794 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
795 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
796 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
797 {
798 /* Rx: Usually, only r3 - r10 are used for parameter passing.
799 However, the compiler sometimes uses r0 to hold an argument. */
800 const int rx_regno = GET_SRC_REG (op);
801
802 return ((rx_regno >= 3 && rx_regno <= 10)
803 || (rx_regno == 0 && *r0_contains_arg));
804 }
805
806 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
807 {
808 /* Only f2 - f8 are used for parameter passing. */
809 const int src_regno = GET_SRC_REG (op);
810
811 return (src_regno >= 2 && src_regno <= 8);
812 }
813
814 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
815 {
816 /* Only f2 - f8 are used for parameter passing. */
817 const int src_regno = GET_SRC_REG (op);
818
819 return (src_regno >= 2 && src_regno <= 8);
820 }
821
822 /* Not an insn that saves a parameter on stack. */
823 return 0;
824}
55d05f3b 825
7a78ae4e 826static CORE_ADDR
077276e8 827skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
828{
829 CORE_ADDR orig_pc = pc;
55d05f3b 830 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 831 CORE_ADDR li_found_pc = 0;
c906108c
SS
832 char buf[4];
833 unsigned long op;
834 long offset = 0;
6be8bc0c 835 long vr_saved_offset = 0;
482ca3f5
KB
836 int lr_reg = -1;
837 int cr_reg = -1;
6be8bc0c 838 int vr_reg = -1;
96ff0de4
EZ
839 int ev_reg = -1;
840 long ev_offset = 0;
6be8bc0c 841 int vrsave_reg = -1;
c906108c
SS
842 int reg;
843 int framep = 0;
844 int minimal_toc_loaded = 0;
ddb20c56 845 int prev_insn_was_prologue_insn = 1;
55d05f3b 846 int num_skip_non_prologue_insns = 0;
773df3e5 847 int r0_contains_arg = 0;
96ff0de4 848 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 849 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 850
55d05f3b
KB
851 /* Attempt to find the end of the prologue when no limit is specified.
852 Note that refine_prologue_limit() has been written so that it may
853 be used to "refine" the limits of non-zero PC values too, but this
854 is only safe if we 1) trust the line information provided by the
855 compiler and 2) iterate enough to actually find the end of the
856 prologue.
857
858 It may become a good idea at some point (for both performance and
859 accuracy) to unconditionally call refine_prologue_limit(). But,
860 until we can make a clear determination that this is beneficial,
861 we'll play it safe and only use it to obtain a limit when none
862 has been specified. */
863 if (lim_pc == 0)
864 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 865
ddb20c56 866 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
867 fdata->saved_gpr = -1;
868 fdata->saved_fpr = -1;
6be8bc0c 869 fdata->saved_vr = -1;
96ff0de4 870 fdata->saved_ev = -1;
c906108c
SS
871 fdata->alloca_reg = -1;
872 fdata->frameless = 1;
873 fdata->nosavedpc = 1;
874
55d05f3b 875 for (;; pc += 4)
c906108c 876 {
ddb20c56
KB
877 /* Sometimes it isn't clear if an instruction is a prologue
878 instruction or not. When we encounter one of these ambiguous
879 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
880 Otherwise, we'll assume that it really is a prologue instruction. */
881 if (prev_insn_was_prologue_insn)
882 last_prologue_pc = pc;
55d05f3b
KB
883
884 /* Stop scanning if we've hit the limit. */
885 if (lim_pc != 0 && pc >= lim_pc)
886 break;
887
ddb20c56
KB
888 prev_insn_was_prologue_insn = 1;
889
55d05f3b 890 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
891 if (target_read_memory (pc, buf, 4))
892 break;
893 op = extract_signed_integer (buf, 4);
c906108c 894
c5aa993b
JM
895 if ((op & 0xfc1fffff) == 0x7c0802a6)
896 { /* mflr Rx */
43b1ab88
AC
897 /* Since shared library / PIC code, which needs to get its
898 address at runtime, can appear to save more than one link
899 register vis:
900
901 *INDENT-OFF*
902 stwu r1,-304(r1)
903 mflr r3
904 bl 0xff570d0 (blrl)
905 stw r30,296(r1)
906 mflr r30
907 stw r31,300(r1)
908 stw r3,308(r1);
909 ...
910 *INDENT-ON*
911
912 remember just the first one, but skip over additional
913 ones. */
914 if (lr_reg < 0)
915 lr_reg = (op & 0x03e00000);
773df3e5
JB
916 if (lr_reg == 0)
917 r0_contains_arg = 0;
c5aa993b 918 continue;
c5aa993b
JM
919 }
920 else if ((op & 0xfc1fffff) == 0x7c000026)
921 { /* mfcr Rx */
98f08d3d 922 cr_reg = (op & 0x03e00000);
773df3e5
JB
923 if (cr_reg == 0)
924 r0_contains_arg = 0;
c5aa993b 925 continue;
c906108c 926
c906108c 927 }
c5aa993b
JM
928 else if ((op & 0xfc1f0000) == 0xd8010000)
929 { /* stfd Rx,NUM(r1) */
930 reg = GET_SRC_REG (op);
931 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
932 {
933 fdata->saved_fpr = reg;
934 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
935 }
936 continue;
c906108c 937
c5aa993b
JM
938 }
939 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
940 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
941 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
942 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
943 {
944
945 reg = GET_SRC_REG (op);
946 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
947 {
948 fdata->saved_gpr = reg;
7a78ae4e 949 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 950 op &= ~3UL;
c5aa993b
JM
951 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
952 }
953 continue;
c906108c 954
ddb20c56
KB
955 }
956 else if ((op & 0xffff0000) == 0x60000000)
957 {
96ff0de4 958 /* nop */
ddb20c56
KB
959 /* Allow nops in the prologue, but do not consider them to
960 be part of the prologue unless followed by other prologue
961 instructions. */
962 prev_insn_was_prologue_insn = 0;
963 continue;
964
c906108c 965 }
c5aa993b
JM
966 else if ((op & 0xffff0000) == 0x3c000000)
967 { /* addis 0,0,NUM, used
968 for >= 32k frames */
969 fdata->offset = (op & 0x0000ffff) << 16;
970 fdata->frameless = 0;
773df3e5 971 r0_contains_arg = 0;
c5aa993b
JM
972 continue;
973
974 }
975 else if ((op & 0xffff0000) == 0x60000000)
976 { /* ori 0,0,NUM, 2nd ha
977 lf of >= 32k frames */
978 fdata->offset |= (op & 0x0000ffff);
979 fdata->frameless = 0;
773df3e5 980 r0_contains_arg = 0;
c5aa993b
JM
981 continue;
982
983 }
98f08d3d
KB
984 else if (lr_reg != -1 &&
985 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
986 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
987 /* stw Rx, NUM(r1) */
988 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
989 /* stwu Rx, NUM(r1) */
990 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
991 { /* where Rx == lr */
992 fdata->lr_offset = offset;
c5aa993b
JM
993 fdata->nosavedpc = 0;
994 lr_reg = 0;
98f08d3d
KB
995 if ((op & 0xfc000003) == 0xf8000000 || /* std */
996 (op & 0xfc000000) == 0x90000000) /* stw */
997 {
998 /* Does not update r1, so add displacement to lr_offset. */
999 fdata->lr_offset += SIGNED_SHORT (op);
1000 }
c5aa993b
JM
1001 continue;
1002
1003 }
98f08d3d
KB
1004 else if (cr_reg != -1 &&
1005 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1006 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1007 /* stw Rx, NUM(r1) */
1008 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1009 /* stwu Rx, NUM(r1) */
1010 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1011 { /* where Rx == cr */
1012 fdata->cr_offset = offset;
c5aa993b 1013 cr_reg = 0;
98f08d3d
KB
1014 if ((op & 0xfc000003) == 0xf8000000 ||
1015 (op & 0xfc000000) == 0x90000000)
1016 {
1017 /* Does not update r1, so add displacement to cr_offset. */
1018 fdata->cr_offset += SIGNED_SHORT (op);
1019 }
c5aa993b
JM
1020 continue;
1021
1022 }
1023 else if (op == 0x48000005)
1024 { /* bl .+4 used in
1025 -mrelocatable */
1026 continue;
1027
1028 }
1029 else if (op == 0x48000004)
1030 { /* b .+4 (xlc) */
1031 break;
1032
c5aa993b 1033 }
6be8bc0c
EZ
1034 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1035 in V.4 -mminimal-toc */
c5aa993b
JM
1036 (op & 0xffff0000) == 0x3bde0000)
1037 { /* addi 30,30,foo@l */
1038 continue;
c906108c 1039
c5aa993b
JM
1040 }
1041 else if ((op & 0xfc000001) == 0x48000001)
1042 { /* bl foo,
1043 to save fprs??? */
c906108c 1044
c5aa993b 1045 fdata->frameless = 0;
6be8bc0c
EZ
1046 /* Don't skip over the subroutine call if it is not within
1047 the first three instructions of the prologue. */
c5aa993b
JM
1048 if ((pc - orig_pc) > 8)
1049 break;
1050
1051 op = read_memory_integer (pc + 4, 4);
1052
6be8bc0c
EZ
1053 /* At this point, make sure this is not a trampoline
1054 function (a function that simply calls another functions,
1055 and nothing else). If the next is not a nop, this branch
1056 was part of the function prologue. */
c5aa993b
JM
1057
1058 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
1059 break; /* don't skip over
1060 this branch */
1061 continue;
1062
c5aa993b 1063 }
98f08d3d
KB
1064 /* update stack pointer */
1065 else if ((op & 0xfc1f0000) == 0x94010000)
1066 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1067 fdata->frameless = 0;
1068 fdata->offset = SIGNED_SHORT (op);
1069 offset = fdata->offset;
1070 continue;
c5aa993b 1071 }
98f08d3d
KB
1072 else if ((op & 0xfc1f016a) == 0x7c01016e)
1073 { /* stwux rX,r1,rY */
1074 /* no way to figure out what r1 is going to be */
1075 fdata->frameless = 0;
1076 offset = fdata->offset;
1077 continue;
1078 }
1079 else if ((op & 0xfc1f0003) == 0xf8010001)
1080 { /* stdu rX,NUM(r1) */
1081 fdata->frameless = 0;
1082 fdata->offset = SIGNED_SHORT (op & ~3UL);
1083 offset = fdata->offset;
1084 continue;
1085 }
1086 else if ((op & 0xfc1f016a) == 0x7c01016a)
1087 { /* stdux rX,r1,rY */
1088 /* no way to figure out what r1 is going to be */
c5aa993b
JM
1089 fdata->frameless = 0;
1090 offset = fdata->offset;
1091 continue;
c5aa993b 1092 }
98f08d3d
KB
1093 /* Load up minimal toc pointer */
1094 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1095 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 1096 && !minimal_toc_loaded)
98f08d3d 1097 {
c5aa993b
JM
1098 minimal_toc_loaded = 1;
1099 continue;
1100
f6077098
KB
1101 /* move parameters from argument registers to local variable
1102 registers */
1103 }
1104 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1105 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1106 (((op >> 21) & 31) <= 10) &&
96ff0de4 1107 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1108 {
1109 continue;
1110
c5aa993b
JM
1111 /* store parameters in stack */
1112 }
e802b915 1113 /* Move parameters from argument registers to temporary register. */
773df3e5 1114 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1115 {
c5aa993b
JM
1116 continue;
1117
1118 /* Set up frame pointer */
1119 }
1120 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1121 || op == 0x7c3f0b78)
1122 { /* mr r31, r1 */
1123 fdata->frameless = 0;
1124 framep = 1;
6f99cb26 1125 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1126 continue;
1127
1128 /* Another way to set up the frame pointer. */
1129 }
1130 else if ((op & 0xfc1fffff) == 0x38010000)
1131 { /* addi rX, r1, 0x0 */
1132 fdata->frameless = 0;
1133 framep = 1;
6f99cb26
AC
1134 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1135 + ((op & ~0x38010000) >> 21));
c5aa993b 1136 continue;
c5aa993b 1137 }
6be8bc0c
EZ
1138 /* AltiVec related instructions. */
1139 /* Store the vrsave register (spr 256) in another register for
1140 later manipulation, or load a register into the vrsave
1141 register. 2 instructions are used: mfvrsave and
1142 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1143 and mtspr SPR256, Rn. */
1144 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1145 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1146 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1147 {
1148 vrsave_reg = GET_SRC_REG (op);
1149 continue;
1150 }
1151 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1152 {
1153 continue;
1154 }
1155 /* Store the register where vrsave was saved to onto the stack:
1156 rS is the register where vrsave was stored in a previous
1157 instruction. */
1158 /* 100100 sssss 00001 dddddddd dddddddd */
1159 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1160 {
1161 if (vrsave_reg == GET_SRC_REG (op))
1162 {
1163 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1164 vrsave_reg = -1;
1165 }
1166 continue;
1167 }
1168 /* Compute the new value of vrsave, by modifying the register
1169 where vrsave was saved to. */
1170 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1171 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1172 {
1173 continue;
1174 }
1175 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1176 in a pair of insns to save the vector registers on the
1177 stack. */
1178 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1179 /* 001110 01110 00000 iiii iiii iiii iiii */
1180 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1181 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1182 {
773df3e5
JB
1183 if ((op & 0xffff0000) == 0x38000000)
1184 r0_contains_arg = 0;
6be8bc0c
EZ
1185 li_found_pc = pc;
1186 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1187
1188 /* This insn by itself is not part of the prologue, unless
1189 if part of the pair of insns mentioned above. So do not
1190 record this insn as part of the prologue yet. */
1191 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1192 }
1193 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1194 /* 011111 sssss 11111 00000 00111001110 */
1195 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1196 {
1197 if (pc == (li_found_pc + 4))
1198 {
1199 vr_reg = GET_SRC_REG (op);
1200 /* If this is the first vector reg to be saved, or if
1201 it has a lower number than others previously seen,
1202 reupdate the frame info. */
1203 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1204 {
1205 fdata->saved_vr = vr_reg;
1206 fdata->vr_offset = vr_saved_offset + offset;
1207 }
1208 vr_saved_offset = -1;
1209 vr_reg = -1;
1210 li_found_pc = 0;
1211 }
1212 }
1213 /* End AltiVec related instructions. */
96ff0de4
EZ
1214
1215 /* Start BookE related instructions. */
1216 /* Store gen register S at (r31+uimm).
1217 Any register less than r13 is volatile, so we don't care. */
1218 /* 000100 sssss 11111 iiiii 01100100001 */
1219 else if (arch_info->mach == bfd_mach_ppc_e500
1220 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
1221 {
1222 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
1223 {
1224 unsigned int imm;
1225 ev_reg = GET_SRC_REG (op);
1226 imm = (op >> 11) & 0x1f;
1227 ev_offset = imm * 8;
1228 /* If this is the first vector reg to be saved, or if
1229 it has a lower number than others previously seen,
1230 reupdate the frame info. */
1231 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1232 {
1233 fdata->saved_ev = ev_reg;
1234 fdata->ev_offset = ev_offset + offset;
1235 }
1236 }
1237 continue;
1238 }
1239 /* Store gen register rS at (r1+rB). */
1240 /* 000100 sssss 00001 bbbbb 01100100000 */
1241 else if (arch_info->mach == bfd_mach_ppc_e500
1242 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
1243 {
1244 if (pc == (li_found_pc + 4))
1245 {
1246 ev_reg = GET_SRC_REG (op);
1247 /* If this is the first vector reg to be saved, or if
1248 it has a lower number than others previously seen,
1249 reupdate the frame info. */
1250 /* We know the contents of rB from the previous instruction. */
1251 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1252 {
1253 fdata->saved_ev = ev_reg;
1254 fdata->ev_offset = vr_saved_offset + offset;
1255 }
1256 vr_saved_offset = -1;
1257 ev_reg = -1;
1258 li_found_pc = 0;
1259 }
1260 continue;
1261 }
1262 /* Store gen register r31 at (rA+uimm). */
1263 /* 000100 11111 aaaaa iiiii 01100100001 */
1264 else if (arch_info->mach == bfd_mach_ppc_e500
1265 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
1266 {
1267 /* Wwe know that the source register is 31 already, but
1268 it can't hurt to compute it. */
1269 ev_reg = GET_SRC_REG (op);
1270 ev_offset = ((op >> 11) & 0x1f) * 8;
1271 /* If this is the first vector reg to be saved, or if
1272 it has a lower number than others previously seen,
1273 reupdate the frame info. */
1274 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1275 {
1276 fdata->saved_ev = ev_reg;
1277 fdata->ev_offset = ev_offset + offset;
1278 }
1279
1280 continue;
1281 }
1282 /* Store gen register S at (r31+r0).
1283 Store param on stack when offset from SP bigger than 4 bytes. */
1284 /* 000100 sssss 11111 00000 01100100000 */
1285 else if (arch_info->mach == bfd_mach_ppc_e500
1286 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
1287 {
1288 if (pc == (li_found_pc + 4))
1289 {
1290 if ((op & 0x03e00000) >= 0x01a00000)
1291 {
1292 ev_reg = GET_SRC_REG (op);
1293 /* If this is the first vector reg to be saved, or if
1294 it has a lower number than others previously seen,
1295 reupdate the frame info. */
1296 /* We know the contents of r0 from the previous
1297 instruction. */
1298 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
1299 {
1300 fdata->saved_ev = ev_reg;
1301 fdata->ev_offset = vr_saved_offset + offset;
1302 }
1303 ev_reg = -1;
1304 }
1305 vr_saved_offset = -1;
1306 li_found_pc = 0;
1307 continue;
1308 }
1309 }
1310 /* End BookE related instructions. */
1311
c5aa993b
JM
1312 else
1313 {
55d05f3b
KB
1314 /* Not a recognized prologue instruction.
1315 Handle optimizer code motions into the prologue by continuing
1316 the search if we have no valid frame yet or if the return
1317 address is not yet saved in the frame. */
1318 if (fdata->frameless == 0
1319 && (lr_reg == -1 || fdata->nosavedpc == 0))
1320 break;
1321
1322 if (op == 0x4e800020 /* blr */
1323 || op == 0x4e800420) /* bctr */
1324 /* Do not scan past epilogue in frameless functions or
1325 trampolines. */
1326 break;
1327 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 1328 /* Never skip branches. */
55d05f3b
KB
1329 break;
1330
1331 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
1332 /* Do not scan too many insns, scanning insns is expensive with
1333 remote targets. */
1334 break;
1335
1336 /* Continue scanning. */
1337 prev_insn_was_prologue_insn = 0;
1338 continue;
c5aa993b 1339 }
c906108c
SS
1340 }
1341
1342#if 0
1343/* I have problems with skipping over __main() that I need to address
1344 * sometime. Previously, I used to use misc_function_vector which
1345 * didn't work as well as I wanted to be. -MGO */
1346
1347 /* If the first thing after skipping a prolog is a branch to a function,
1348 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 1349 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 1350 work before calling a function right after a prologue, thus we can
64366f1c 1351 single out such gcc2 behaviour. */
c906108c 1352
c906108c 1353
c5aa993b
JM
1354 if ((op & 0xfc000001) == 0x48000001)
1355 { /* bl foo, an initializer function? */
1356 op = read_memory_integer (pc + 4, 4);
1357
1358 if (op == 0x4def7b82)
1359 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 1360
64366f1c
EZ
1361 /* Check and see if we are in main. If so, skip over this
1362 initializer function as well. */
c906108c 1363
c5aa993b 1364 tmp = find_pc_misc_function (pc);
6314a349
AC
1365 if (tmp >= 0
1366 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1367 return pc + 8;
1368 }
c906108c 1369 }
c906108c 1370#endif /* 0 */
c5aa993b
JM
1371
1372 fdata->offset = -fdata->offset;
ddb20c56 1373 return last_prologue_pc;
c906108c
SS
1374}
1375
1376
1377/*************************************************************************
f6077098 1378 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1379 frames, etc.
1380*************************************************************************/
1381
c906108c 1382
11269d7e
AC
1383/* All the ABI's require 16 byte alignment. */
1384static CORE_ADDR
1385rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1386{
1387 return (addr & -16);
1388}
1389
7a78ae4e 1390/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1391 the first eight words of the argument list (that might be less than
1392 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1393 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1394 passed in fpr's, in addition to that. Rest of the parameters if any
1395 are passed in user stack. There might be cases in which half of the
c906108c
SS
1396 parameter is copied into registers, the other half is pushed into
1397 stack.
1398
7a78ae4e
ND
1399 Stack must be aligned on 64-bit boundaries when synthesizing
1400 function calls.
1401
c906108c
SS
1402 If the function is returning a structure, then the return address is passed
1403 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1404 starting from r4. */
c906108c 1405
7a78ae4e 1406static CORE_ADDR
7d9b040b 1407rs6000_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
77b2b6d4
AC
1408 struct regcache *regcache, CORE_ADDR bp_addr,
1409 int nargs, struct value **args, CORE_ADDR sp,
1410 int struct_return, CORE_ADDR struct_addr)
c906108c 1411{
7a41266b 1412 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1413 int ii;
1414 int len = 0;
c5aa993b
JM
1415 int argno; /* current argument number */
1416 int argbytes; /* current argument byte */
1417 char tmp_buffer[50];
1418 int f_argno = 0; /* current floating point argno */
21283beb 1419 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
7d9b040b 1420 CORE_ADDR func_addr = find_function_addr (function, NULL);
c906108c 1421
ea7c478f 1422 struct value *arg = 0;
c906108c
SS
1423 struct type *type;
1424
1425 CORE_ADDR saved_sp;
1426
383f0f5b
JB
1427 /* The calling convention this function implements assumes the
1428 processor has floating-point registers. We shouldn't be using it
1429 on PPC variants that lack them. */
1430 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1431
64366f1c 1432 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1433 Copy them appropriately. */
1434 ii = 0;
1435
1436 /* If the function is returning a `struct', then the first word
1437 (which will be passed in r3) is used for struct return address.
1438 In that case we should advance one word and start from r4
1439 register to copy parameters. */
1440 if (struct_return)
1441 {
1442 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1443 struct_addr);
1444 ii++;
1445 }
c906108c
SS
1446
1447/*
c5aa993b
JM
1448 effectively indirect call... gcc does...
1449
1450 return_val example( float, int);
1451
1452 eabi:
1453 float in fp0, int in r3
1454 offset of stack on overflow 8/16
1455 for varargs, must go by type.
1456 power open:
1457 float in r3&r4, int in r5
1458 offset of stack on overflow different
1459 both:
1460 return in r3 or f0. If no float, must study how gcc emulates floats;
1461 pay attention to arg promotion.
1462 User may have to cast\args to handle promotion correctly
1463 since gdb won't know if prototype supplied or not.
1464 */
c906108c 1465
c5aa993b
JM
1466 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1467 {
3acba339 1468 int reg_size = register_size (current_gdbarch, ii + 3);
c5aa993b
JM
1469
1470 arg = args[argno];
1471 type = check_typedef (VALUE_TYPE (arg));
1472 len = TYPE_LENGTH (type);
1473
1474 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1475 {
1476
64366f1c 1477 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1478 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1479 there is no way we would run out of them. */
c5aa993b
JM
1480
1481 if (len > 8)
c2b6b4aa
JB
1482 printf_unfiltered ("Fatal Error: a floating point parameter "
1483 "#%d with a size > 8 is found!\n", argno);
c5aa993b 1484
366f009f
JB
1485 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE
1486 (tdep->ppc_fp0_regnum + 1 + f_argno)],
c5aa993b
JM
1487 VALUE_CONTENTS (arg),
1488 len);
1489 ++f_argno;
1490 }
1491
f6077098 1492 if (len > reg_size)
c5aa993b
JM
1493 {
1494
64366f1c 1495 /* Argument takes more than one register. */
c5aa993b
JM
1496 while (argbytes < len)
1497 {
62700349 1498 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1499 reg_size);
62700349 1500 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1501 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1502 (len - argbytes) > reg_size
1503 ? reg_size : len - argbytes);
1504 ++ii, argbytes += reg_size;
c5aa993b
JM
1505
1506 if (ii >= 8)
1507 goto ran_out_of_registers_for_arguments;
1508 }
1509 argbytes = 0;
1510 --ii;
1511 }
1512 else
64366f1c
EZ
1513 {
1514 /* Argument can fit in one register. No problem. */
d7449b42 1515 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1516 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1517 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1518 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1519 }
1520 ++argno;
c906108c 1521 }
c906108c
SS
1522
1523ran_out_of_registers_for_arguments:
1524
7a78ae4e 1525 saved_sp = read_sp ();
cc9836a8 1526
64366f1c 1527 /* Location for 8 parameters are always reserved. */
7a78ae4e 1528 sp -= wordsize * 8;
f6077098 1529
64366f1c 1530 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1531 sp -= wordsize * 6;
f6077098 1532
64366f1c 1533 /* Stack pointer must be quadword aligned. */
7a78ae4e 1534 sp &= -16;
c906108c 1535
64366f1c
EZ
1536 /* If there are more arguments, allocate space for them in
1537 the stack, then push them starting from the ninth one. */
c906108c 1538
c5aa993b
JM
1539 if ((argno < nargs) || argbytes)
1540 {
1541 int space = 0, jj;
c906108c 1542
c5aa993b
JM
1543 if (argbytes)
1544 {
1545 space += ((len - argbytes + 3) & -4);
1546 jj = argno + 1;
1547 }
1548 else
1549 jj = argno;
c906108c 1550
c5aa993b
JM
1551 for (; jj < nargs; ++jj)
1552 {
ea7c478f 1553 struct value *val = args[jj];
c5aa993b
JM
1554 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1555 }
c906108c 1556
64366f1c 1557 /* Add location required for the rest of the parameters. */
f6077098 1558 space = (space + 15) & -16;
c5aa993b 1559 sp -= space;
c906108c 1560
7aea86e6
AC
1561 /* This is another instance we need to be concerned about
1562 securing our stack space. If we write anything underneath %sp
1563 (r1), we might conflict with the kernel who thinks he is free
1564 to use this area. So, update %sp first before doing anything
1565 else. */
1566
1567 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1568
64366f1c
EZ
1569 /* If the last argument copied into the registers didn't fit there
1570 completely, push the rest of it into stack. */
c906108c 1571
c5aa993b
JM
1572 if (argbytes)
1573 {
1574 write_memory (sp + 24 + (ii * 4),
1575 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1576 len - argbytes);
1577 ++argno;
1578 ii += ((len - argbytes + 3) & -4) / 4;
1579 }
c906108c 1580
64366f1c 1581 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1582 for (; argno < nargs; ++argno)
1583 {
c906108c 1584
c5aa993b
JM
1585 arg = args[argno];
1586 type = check_typedef (VALUE_TYPE (arg));
1587 len = TYPE_LENGTH (type);
c906108c
SS
1588
1589
64366f1c
EZ
1590 /* Float types should be passed in fpr's, as well as in the
1591 stack. */
c5aa993b
JM
1592 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1593 {
c906108c 1594
c5aa993b 1595 if (len > 8)
c2b6b4aa
JB
1596 printf_unfiltered ("Fatal Error: a floating point parameter"
1597 " #%d with a size > 8 is found!\n", argno);
c906108c 1598
366f009f
JB
1599 memcpy (&(deprecated_registers
1600 [DEPRECATED_REGISTER_BYTE
1601 (tdep->ppc_fp0_regnum + 1 + f_argno)]),
c5aa993b
JM
1602 VALUE_CONTENTS (arg),
1603 len);
1604 ++f_argno;
1605 }
c906108c 1606
c2b6b4aa
JB
1607 write_memory (sp + 24 + (ii * 4),
1608 (char *) VALUE_CONTENTS (arg),
1609 len);
c5aa993b
JM
1610 ii += ((len + 3) & -4) / 4;
1611 }
c906108c 1612 }
c906108c 1613
69517000 1614 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1615 be set _before_ the corresponding stack space is used. On AIX,
1616 this even applies when the target has been completely stopped!
1617 Not doing this can lead to conflicts with the kernel which thinks
1618 that it still has control over this not-yet-allocated stack
1619 region. */
33a7c2fc
AC
1620 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1621
7aea86e6
AC
1622 /* Set back chain properly. */
1623 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1624 write_memory (sp, tmp_buffer, 4);
1625
e56a0ecc
AC
1626 /* Point the inferior function call's return address at the dummy's
1627 breakpoint. */
1628 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1629
794a477a
AC
1630 /* Set the TOC register, get the value from the objfile reader
1631 which, in turn, gets it from the VMAP table. */
1632 if (rs6000_find_toc_address_hook != NULL)
1633 {
1634 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1635 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1636 }
1637
c906108c
SS
1638 target_store_registers (-1);
1639 return sp;
1640}
c906108c 1641
b9ff3018
AC
1642/* PowerOpen always puts structures in memory. Vectors, which were
1643 added later, do get returned in a register though. */
1644
1645static int
1646rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1647{
1648 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1649 && TYPE_VECTOR (value_type))
1650 return 0;
1651 return 1;
1652}
1653
7a78ae4e
ND
1654static void
1655rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1656{
1657 int offset = 0;
ace1378a 1658 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1659
383f0f5b
JB
1660 /* The calling convention this function implements assumes the
1661 processor has floating-point registers. We shouldn't be using it
1662 on PPC variants that lack them. */
1663 gdb_assert (ppc_floating_point_unit_p (current_gdbarch));
1664
c5aa993b
JM
1665 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1666 {
c906108c 1667
c5aa993b
JM
1668 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1669 We need to truncate the return value into float size (4 byte) if
64366f1c 1670 necessary. */
c906108c 1671
65951cd9 1672 convert_typed_floating (&regbuf[DEPRECATED_REGISTER_BYTE
366f009f 1673 (tdep->ppc_fp0_regnum + 1)],
65951cd9
JG
1674 builtin_type_double,
1675 valbuf,
1676 valtype);
c5aa993b 1677 }
ace1378a
EZ
1678 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1679 && TYPE_LENGTH (valtype) == 16
1680 && TYPE_VECTOR (valtype))
1681 {
62700349 1682 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1683 TYPE_LENGTH (valtype));
1684 }
c5aa993b
JM
1685 else
1686 {
1687 /* return value is copied starting from r3. */
d7449b42 1688 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3acba339
AC
1689 && TYPE_LENGTH (valtype) < register_size (current_gdbarch, 3))
1690 offset = register_size (current_gdbarch, 3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1691
1692 memcpy (valbuf,
62700349 1693 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1694 TYPE_LENGTH (valtype));
c906108c 1695 }
c906108c
SS
1696}
1697
977adac5
ND
1698/* Return whether handle_inferior_event() should proceed through code
1699 starting at PC in function NAME when stepping.
1700
1701 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1702 handle memory references that are too distant to fit in instructions
1703 generated by the compiler. For example, if 'foo' in the following
1704 instruction:
1705
1706 lwz r9,foo(r2)
1707
1708 is greater than 32767, the linker might replace the lwz with a branch to
1709 somewhere in @FIX1 that does the load in 2 instructions and then branches
1710 back to where execution should continue.
1711
1712 GDB should silently step over @FIX code, just like AIX dbx does.
1713 Unfortunately, the linker uses the "b" instruction for the branches,
1714 meaning that the link register doesn't get set. Therefore, GDB's usual
1715 step_over_function() mechanism won't work.
1716
1717 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1718 in handle_inferior_event() to skip past @FIX code. */
1719
1720int
1721rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1722{
1723 return name && !strncmp (name, "@FIX", 4);
1724}
1725
1726/* Skip code that the user doesn't want to see when stepping:
1727
1728 1. Indirect function calls use a piece of trampoline code to do context
1729 switching, i.e. to set the new TOC table. Skip such code if we are on
1730 its first instruction (as when we have single-stepped to here).
1731
1732 2. Skip shared library trampoline code (which is different from
c906108c 1733 indirect function call trampolines).
977adac5
ND
1734
1735 3. Skip bigtoc fixup code.
1736
c906108c 1737 Result is desired PC to step until, or NULL if we are not in
977adac5 1738 code that should be skipped. */
c906108c
SS
1739
1740CORE_ADDR
7a78ae4e 1741rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1742{
52f0bd74 1743 unsigned int ii, op;
977adac5 1744 int rel;
c906108c 1745 CORE_ADDR solib_target_pc;
977adac5 1746 struct minimal_symbol *msymbol;
c906108c 1747
c5aa993b
JM
1748 static unsigned trampoline_code[] =
1749 {
1750 0x800b0000, /* l r0,0x0(r11) */
1751 0x90410014, /* st r2,0x14(r1) */
1752 0x7c0903a6, /* mtctr r0 */
1753 0x804b0004, /* l r2,0x4(r11) */
1754 0x816b0008, /* l r11,0x8(r11) */
1755 0x4e800420, /* bctr */
1756 0x4e800020, /* br */
1757 0
c906108c
SS
1758 };
1759
977adac5
ND
1760 /* Check for bigtoc fixup code. */
1761 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1762 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1763 {
1764 /* Double-check that the third instruction from PC is relative "b". */
1765 op = read_memory_integer (pc + 8, 4);
1766 if ((op & 0xfc000003) == 0x48000000)
1767 {
1768 /* Extract bits 6-29 as a signed 24-bit relative word address and
1769 add it to the containing PC. */
1770 rel = ((int)(op << 6) >> 6);
1771 return pc + 8 + rel;
1772 }
1773 }
1774
c906108c
SS
1775 /* If pc is in a shared library trampoline, return its target. */
1776 solib_target_pc = find_solib_trampoline_target (pc);
1777 if (solib_target_pc)
1778 return solib_target_pc;
1779
c5aa993b
JM
1780 for (ii = 0; trampoline_code[ii]; ++ii)
1781 {
1782 op = read_memory_integer (pc + (ii * 4), 4);
1783 if (op != trampoline_code[ii])
1784 return 0;
1785 }
1786 ii = read_register (11); /* r11 holds destination addr */
21283beb 1787 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1788 return pc;
1789}
1790
7a78ae4e 1791/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1792 isn't available with that word size, return 0. */
7a78ae4e
ND
1793
1794static int
1795regsize (const struct reg *reg, int wordsize)
1796{
1797 return wordsize == 8 ? reg->sz64 : reg->sz32;
1798}
1799
1800/* Return the name of register number N, or null if no such register exists
64366f1c 1801 in the current architecture. */
7a78ae4e 1802
fa88f677 1803static const char *
7a78ae4e
ND
1804rs6000_register_name (int n)
1805{
21283beb 1806 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1807 const struct reg *reg = tdep->regs + n;
1808
1809 if (!regsize (reg, tdep->wordsize))
1810 return NULL;
1811 return reg->name;
1812}
1813
7a78ae4e
ND
1814/* Return the GDB type object for the "standard" data type
1815 of data in register N. */
1816
1817static struct type *
691d145a 1818rs6000_register_type (struct gdbarch *gdbarch, int n)
7a78ae4e 1819{
691d145a 1820 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e
ND
1821 const struct reg *reg = tdep->regs + n;
1822
1fcc0bb8
EZ
1823 if (reg->fpr)
1824 return builtin_type_double;
1825 else
1826 {
1827 int size = regsize (reg, tdep->wordsize);
1828 switch (size)
1829 {
449a5da4
AC
1830 case 0:
1831 return builtin_type_int0;
1832 case 4:
ed6edd9b 1833 return builtin_type_uint32;
1fcc0bb8 1834 case 8:
c8001721
EZ
1835 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1836 return builtin_type_vec64;
1837 else
ed6edd9b 1838 return builtin_type_uint64;
1fcc0bb8
EZ
1839 break;
1840 case 16:
08cf96df 1841 return builtin_type_vec128;
1fcc0bb8
EZ
1842 break;
1843 default:
449a5da4
AC
1844 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1845 n, size);
1fcc0bb8
EZ
1846 }
1847 }
7a78ae4e
ND
1848}
1849
691d145a 1850/* The register format for RS/6000 floating point registers is always
64366f1c 1851 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1852
1853static int
691d145a 1854rs6000_convert_register_p (int regnum, struct type *type)
7a78ae4e 1855{
691d145a
JB
1856 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1857
1858 return (reg->fpr
1859 && TYPE_CODE (type) == TYPE_CODE_FLT
1860 && TYPE_LENGTH (type) != TYPE_LENGTH (builtin_type_double));
7a78ae4e
ND
1861}
1862
7a78ae4e 1863static void
691d145a
JB
1864rs6000_register_to_value (struct frame_info *frame,
1865 int regnum,
1866 struct type *type,
1867 void *to)
7a78ae4e 1868{
691d145a
JB
1869 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1870 char from[MAX_REGISTER_SIZE];
1871
1872 gdb_assert (reg->fpr);
1873 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 1874
691d145a
JB
1875 get_frame_register (frame, regnum, from);
1876 convert_typed_floating (from, builtin_type_double, to, type);
1877}
7a292a7a 1878
7a78ae4e 1879static void
691d145a
JB
1880rs6000_value_to_register (struct frame_info *frame,
1881 int regnum,
1882 struct type *type,
1883 const void *from)
7a78ae4e 1884{
691d145a
JB
1885 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + regnum;
1886 char to[MAX_REGISTER_SIZE];
1887
1888 gdb_assert (reg->fpr);
1889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
1890
1891 convert_typed_floating (from, type, to, builtin_type_double);
1892 put_frame_register (frame, regnum, to);
7a78ae4e 1893}
c906108c 1894
6ced10dd
JB
1895/* Move SPE vector register values between a 64-bit buffer and the two
1896 32-bit raw register halves in a regcache. This function handles
1897 both splitting a 64-bit value into two 32-bit halves, and joining
1898 two halves into a whole 64-bit value, depending on the function
1899 passed as the MOVE argument.
1900
1901 EV_REG must be the number of an SPE evN vector register --- a
1902 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
1903 64-bit buffer.
1904
1905 Call MOVE once for each 32-bit half of that register, passing
1906 REGCACHE, the number of the raw register corresponding to that
1907 half, and the address of the appropriate half of BUFFER.
1908
1909 For example, passing 'regcache_raw_read' as the MOVE function will
1910 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
1911 'regcache_raw_supply' will supply the contents of BUFFER to the
1912 appropriate pair of raw registers in REGCACHE.
1913
1914 You may need to cast away some 'const' qualifiers when passing
1915 MOVE, since this function can't tell at compile-time which of
1916 REGCACHE or BUFFER is acting as the source of the data. If C had
1917 co-variant type qualifiers, ... */
1918static void
1919e500_move_ev_register (void (*move) (struct regcache *regcache,
1920 int regnum, void *buf),
1921 struct regcache *regcache, int ev_reg,
1922 void *buffer)
1923{
1924 struct gdbarch *arch = get_regcache_arch (regcache);
1925 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
1926 int reg_index;
1927 char *byte_buffer = buffer;
1928
1929 gdb_assert (tdep->ppc_ev0_regnum <= ev_reg
1930 && ev_reg < tdep->ppc_ev0_regnum + ppc_num_gprs);
1931
1932 reg_index = ev_reg - tdep->ppc_ev0_regnum;
1933
1934 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1935 {
1936 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer);
1937 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer + 4);
1938 }
1939 else
1940 {
1941 move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
1942 move (regcache, tdep->ppc_ev0_upper_regnum + reg_index, byte_buffer + 4);
1943 }
1944}
1945
c8001721
EZ
1946static void
1947e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1948 int reg_nr, void *buffer)
1949{
6ced10dd 1950 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
1951 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1952
6ced10dd
JB
1953 gdb_assert (regcache_arch == gdbarch);
1954
1955 if (tdep->ppc_ev0_regnum <= reg_nr
1956 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1957 e500_move_ev_register (regcache_raw_read, regcache, reg_nr, buffer);
1958 else
a44bddec
JB
1959 internal_error (__FILE__, __LINE__,
1960 "e500_pseudo_register_read: "
1961 "called on unexpected register '%s' (%d)",
1962 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
1963}
1964
1965static void
1966e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1967 int reg_nr, const void *buffer)
1968{
6ced10dd 1969 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
1970 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1971
6ced10dd
JB
1972 gdb_assert (regcache_arch == gdbarch);
1973
1974 if (tdep->ppc_ev0_regnum <= reg_nr
1975 && reg_nr < tdep->ppc_ev0_regnum + ppc_num_gprs)
1976 e500_move_ev_register ((void (*) (struct regcache *, int, void *))
1977 regcache_raw_write,
1978 regcache, reg_nr, (void *) buffer);
1979 else
a44bddec
JB
1980 internal_error (__FILE__, __LINE__,
1981 "e500_pseudo_register_read: "
1982 "called on unexpected register '%s' (%d)",
1983 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
1984}
1985
1986/* The E500 needs a custom reggroup function: it has anonymous raw
1987 registers, and default_register_reggroup_p assumes that anonymous
1988 registers are not members of any reggroup. */
1989static int
1990e500_register_reggroup_p (struct gdbarch *gdbarch,
1991 int regnum,
1992 struct reggroup *group)
1993{
1994 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1995
1996 /* The save and restore register groups need to include the
1997 upper-half registers, even though they're anonymous. */
1998 if ((group == save_reggroup
1999 || group == restore_reggroup)
2000 && (tdep->ppc_ev0_upper_regnum <= regnum
2001 && regnum < tdep->ppc_ev0_upper_regnum + ppc_num_gprs))
2002 return 1;
2003
2004 /* In all other regards, the default reggroup definition is fine. */
2005 return default_register_reggroup_p (gdbarch, regnum, group);
c8001721
EZ
2006}
2007
18ed0c4e 2008/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2009static int
18ed0c4e 2010rs6000_stab_reg_to_regnum (int num)
c8001721 2011{
9f744501 2012 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c8001721 2013
9f744501
JB
2014 if (0 <= num && num <= 31)
2015 return tdep->ppc_gp0_regnum + num;
2016 else if (32 <= num && num <= 63)
383f0f5b
JB
2017 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2018 specifies registers the architecture doesn't have? Our
2019 callers don't check the value we return. */
366f009f 2020 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2021 else if (77 <= num && num <= 108)
2022 return tdep->ppc_vr0_regnum + (num - 77);
9f744501
JB
2023 else if (1200 <= num && num < 1200 + 32)
2024 return tdep->ppc_ev0_regnum + (num - 1200);
2025 else
2026 switch (num)
2027 {
2028 case 64:
2029 return tdep->ppc_mq_regnum;
2030 case 65:
2031 return tdep->ppc_lr_regnum;
2032 case 66:
2033 return tdep->ppc_ctr_regnum;
2034 case 76:
2035 return tdep->ppc_xer_regnum;
2036 case 109:
2037 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2038 case 110:
2039 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2040 case 111:
18ed0c4e 2041 return tdep->ppc_acc_regnum;
867e2dc5 2042 case 112:
18ed0c4e 2043 return tdep->ppc_spefscr_regnum;
9f744501
JB
2044 default:
2045 return num;
2046 }
18ed0c4e 2047}
9f744501 2048
9f744501 2049
18ed0c4e
JB
2050/* Convert a Dwarf 2 register number to a GDB register number. */
2051static int
2052rs6000_dwarf2_reg_to_regnum (int num)
2053{
2054 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
9f744501 2055
18ed0c4e
JB
2056 if (0 <= num && num <= 31)
2057 return tdep->ppc_gp0_regnum + num;
2058 else if (32 <= num && num <= 63)
2059 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2060 specifies registers the architecture doesn't have? Our
2061 callers don't check the value we return. */
2062 return tdep->ppc_fp0_regnum + (num - 32);
2063 else if (1124 <= num && num < 1124 + 32)
2064 return tdep->ppc_vr0_regnum + (num - 1124);
2065 else if (1200 <= num && num < 1200 + 32)
2066 return tdep->ppc_ev0_regnum + (num - 1200);
2067 else
2068 switch (num)
2069 {
2070 case 67:
2071 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2072 case 99:
2073 return tdep->ppc_acc_regnum;
2074 case 100:
2075 return tdep->ppc_mq_regnum;
2076 case 101:
2077 return tdep->ppc_xer_regnum;
2078 case 108:
2079 return tdep->ppc_lr_regnum;
2080 case 109:
2081 return tdep->ppc_ctr_regnum;
2082 case 356:
2083 return tdep->ppc_vrsave_regnum;
2084 case 612:
2085 return tdep->ppc_spefscr_regnum;
2086 default:
2087 return num;
2088 }
2188cbdd
EZ
2089}
2090
18ed0c4e 2091
7a78ae4e 2092static void
a3c001ce
JB
2093rs6000_store_return_value (struct type *type,
2094 struct regcache *regcache,
2095 const void *valbuf)
7a78ae4e 2096{
a3c001ce
JB
2097 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2099 int regnum = -1;
ace1378a 2100
383f0f5b
JB
2101 /* The calling convention this function implements assumes the
2102 processor has floating-point registers. We shouldn't be using it
2103 on PPC variants that lack them. */
a3c001ce 2104 gdb_assert (ppc_floating_point_unit_p (gdbarch));
383f0f5b 2105
7a78ae4e 2106 if (TYPE_CODE (type) == TYPE_CODE_FLT)
7a78ae4e
ND
2107 /* Floating point values are returned starting from FPR1 and up.
2108 Say a double_double_double type could be returned in
64366f1c 2109 FPR1/FPR2/FPR3 triple. */
a3c001ce 2110 regnum = tdep->ppc_fp0_regnum + 1;
ace1378a
EZ
2111 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2112 {
2113 if (TYPE_LENGTH (type) == 16
2114 && TYPE_VECTOR (type))
a3c001ce
JB
2115 regnum = tdep->ppc_vr0_regnum + 2;
2116 else
a44bddec
JB
2117 internal_error (__FILE__, __LINE__,
2118 "rs6000_store_return_value: "
2119 "unexpected array return type");
ace1378a 2120 }
7a78ae4e 2121 else
64366f1c 2122 /* Everything else is returned in GPR3 and up. */
a3c001ce
JB
2123 regnum = tdep->ppc_gp0_regnum + 3;
2124
2125 {
2126 size_t bytes_written = 0;
2127
2128 while (bytes_written < TYPE_LENGTH (type))
2129 {
2130 /* How much of this value can we write to this register? */
2131 size_t bytes_to_write = min (TYPE_LENGTH (type) - bytes_written,
2132 register_size (gdbarch, regnum));
2133 regcache_cooked_write_part (regcache, regnum,
2134 0, bytes_to_write,
2135 (char *) valbuf + bytes_written);
2136 regnum++;
2137 bytes_written += bytes_to_write;
2138 }
2139 }
7a78ae4e
ND
2140}
2141
a3c001ce 2142
7a78ae4e
ND
2143/* Extract from an array REGBUF containing the (raw) register state
2144 the address in which a function should return its structure value,
2145 as a CORE_ADDR (or an expression that can be used as one). */
2146
2147static CORE_ADDR
11269d7e
AC
2148rs6000_extract_struct_value_address (struct regcache *regcache)
2149{
2150 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2151 function call GDB knows the address of the struct return value
2152 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2153 the current call_function_by_hand() code only saves the most
2154 recent struct address leading to occasional calls. The code
2155 should instead maintain a stack of such addresses (in the dummy
2156 frame object). */
11269d7e
AC
2157 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2158 really got no idea where the return value is being stored. While
2159 r3, on function entry, contained the address it will have since
2160 been reused (scratch) and hence wouldn't be valid */
2161 return 0;
7a78ae4e
ND
2162}
2163
64366f1c 2164/* Hook called when a new child process is started. */
7a78ae4e
ND
2165
2166void
2167rs6000_create_inferior (int pid)
2168{
2169 if (rs6000_set_host_arch_hook)
2170 rs6000_set_host_arch_hook (pid);
c906108c
SS
2171}
2172\f
e2d0e7eb 2173/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2174
2175 Usually a function pointer's representation is simply the address
2176 of the function. On the RS/6000 however, a function pointer is
2177 represented by a pointer to a TOC entry. This TOC entry contains
2178 three words, the first word is the address of the function, the
2179 second word is the TOC pointer (r2), and the third word is the
2180 static chain value. Throughout GDB it is currently assumed that a
2181 function pointer contains the address of the function, which is not
2182 easy to fix. In addition, the conversion of a function address to
2183 a function pointer would require allocation of a TOC entry in the
2184 inferior's memory space, with all its drawbacks. To be able to
2185 call C++ virtual methods in the inferior (which are called via
f517ea4e 2186 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2187 function address from a function pointer. */
2188
f517ea4e
PS
2189/* Return real function address if ADDR (a function pointer) is in the data
2190 space and is therefore a special function pointer. */
c906108c 2191
b9362cc7 2192static CORE_ADDR
e2d0e7eb
AC
2193rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2194 CORE_ADDR addr,
2195 struct target_ops *targ)
c906108c
SS
2196{
2197 struct obj_section *s;
2198
2199 s = find_pc_section (addr);
2200 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2201 return addr;
c906108c 2202
7a78ae4e 2203 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2204 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2205}
c906108c 2206\f
c5aa993b 2207
7a78ae4e 2208/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2209
2210
7a78ae4e
ND
2211/* The arrays here called registers_MUMBLE hold information about available
2212 registers.
c906108c
SS
2213
2214 For each family of PPC variants, I've tried to isolate out the
2215 common registers and put them up front, so that as long as you get
2216 the general family right, GDB will correctly identify the registers
2217 common to that family. The common register sets are:
2218
2219 For the 60x family: hid0 hid1 iabr dabr pir
2220
2221 For the 505 and 860 family: eie eid nri
2222
2223 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2224 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2225 pbu1 pbl2 pbu2
c906108c
SS
2226
2227 Most of these register groups aren't anything formal. I arrived at
2228 them by looking at the registers that occurred in more than one
6f5987a6
KB
2229 processor.
2230
2231 Note: kevinb/2002-04-30: Support for the fpscr register was added
2232 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2233 for Power. For PowerPC, slot 70 was unused and was already in the
2234 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2235 slot 70 was being used for "mq", so the next available slot (71)
2236 was chosen. It would have been nice to be able to make the
2237 register numbers the same across processor cores, but this wasn't
2238 possible without either 1) renumbering some registers for some
2239 processors or 2) assigning fpscr to a really high slot that's
2240 larger than any current register number. Doing (1) is bad because
2241 existing stubs would break. Doing (2) is undesirable because it
2242 would introduce a really large gap between fpscr and the rest of
2243 the registers for most processors. */
7a78ae4e 2244
64366f1c 2245/* Convenience macros for populating register arrays. */
7a78ae4e 2246
64366f1c 2247/* Within another macro, convert S to a string. */
7a78ae4e
ND
2248
2249#define STR(s) #s
2250
2251/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2252 and 64 bits on 64-bit systems. */
13ac140c 2253#define R(name) { STR(name), 4, 8, 0, 0, -1 }
7a78ae4e
ND
2254
2255/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2256 systems. */
13ac140c 2257#define R4(name) { STR(name), 4, 4, 0, 0, -1 }
7a78ae4e
ND
2258
2259/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2260 systems. */
13ac140c 2261#define R8(name) { STR(name), 8, 8, 0, 0, -1 }
7a78ae4e 2262
1fcc0bb8 2263/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2264 systems. */
13ac140c 2265#define R16(name) { STR(name), 16, 16, 0, 0, -1 }
1fcc0bb8 2266
64366f1c 2267/* Return a struct reg defining floating-point register NAME. */
13ac140c 2268#define F(name) { STR(name), 8, 8, 1, 0, -1 }
489461e2 2269
6ced10dd
JB
2270/* Return a struct reg defining a pseudo register NAME that is 64 bits
2271 long on all systems. */
2272#define P8(name) { STR(name), 8, 8, 0, 1, -1 }
7a78ae4e
ND
2273
2274/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2275 systems and that doesn't exist on 64-bit systems. */
13ac140c 2276#define R32(name) { STR(name), 4, 0, 0, 0, -1 }
7a78ae4e
ND
2277
2278/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2279 systems and that doesn't exist on 32-bit systems. */
13ac140c 2280#define R64(name) { STR(name), 0, 8, 0, 0, -1 }
7a78ae4e 2281
64366f1c 2282/* Return a struct reg placeholder for a register that doesn't exist. */
13ac140c 2283#define R0 { 0, 0, 0, 0, 0, -1 }
7a78ae4e 2284
6ced10dd
JB
2285/* Return a struct reg defining an anonymous raw register that's 32
2286 bits on all systems. */
2287#define A4 { 0, 4, 4, 0, 0, -1 }
2288
13ac140c
JB
2289/* Return a struct reg defining an SPR named NAME that is 32 bits on
2290 32-bit systems and 64 bits on 64-bit systems. */
2291#define S(name) { STR(name), 4, 8, 0, 0, ppc_spr_ ## name }
2292
2293/* Return a struct reg defining an SPR named NAME that is 32 bits on
2294 all systems. */
2295#define S4(name) { STR(name), 4, 4, 0, 0, ppc_spr_ ## name }
2296
2297/* Return a struct reg defining an SPR named NAME that is 32 bits on
2298 all systems, and whose SPR number is NUMBER. */
2299#define SN4(name, number) { STR(name), 4, 4, 0, 0, (number) }
2300
2301/* Return a struct reg defining an SPR named NAME that's 64 bits on
2302 64-bit systems and that doesn't exist on 32-bit systems. */
2303#define S64(name) { STR(name), 0, 8, 0, 0, ppc_spr_ ## name }
2304
7a78ae4e
ND
2305/* UISA registers common across all architectures, including POWER. */
2306
2307#define COMMON_UISA_REGS \
2308 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2309 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2310 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2311 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2312 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2313 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2314 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2315 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2316 /* 64 */ R(pc), R(ps)
2317
2318/* UISA-level SPRs for PowerPC. */
2319#define PPC_UISA_SPRS \
13ac140c 2320 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R4(fpscr)
7a78ae4e 2321
c8001721
EZ
2322/* UISA-level SPRs for PowerPC without floating point support. */
2323#define PPC_UISA_NOFP_SPRS \
13ac140c 2324 /* 66 */ R4(cr), S(lr), S(ctr), S4(xer), R0
c8001721 2325
7a78ae4e
ND
2326/* Segment registers, for PowerPC. */
2327#define PPC_SEGMENT_REGS \
2328 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2329 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2330 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2331 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2332
2333/* OEA SPRs for PowerPC. */
2334#define PPC_OEA_SPRS \
13ac140c
JB
2335 /* 87 */ S4(pvr), \
2336 /* 88 */ S(ibat0u), S(ibat0l), S(ibat1u), S(ibat1l), \
2337 /* 92 */ S(ibat2u), S(ibat2l), S(ibat3u), S(ibat3l), \
2338 /* 96 */ S(dbat0u), S(dbat0l), S(dbat1u), S(dbat1l), \
2339 /* 100 */ S(dbat2u), S(dbat2l), S(dbat3u), S(dbat3l), \
2340 /* 104 */ S(sdr1), S64(asr), S(dar), S4(dsisr), \
2341 /* 108 */ S(sprg0), S(sprg1), S(sprg2), S(sprg3), \
2342 /* 112 */ S(srr0), S(srr1), S(tbl), S(tbu), \
2343 /* 116 */ S4(dec), S(dabr), S4(ear)
7a78ae4e 2344
64366f1c 2345/* AltiVec registers. */
1fcc0bb8
EZ
2346#define PPC_ALTIVEC_REGS \
2347 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2348 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2349 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2350 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2351 /*151*/R4(vscr), R4(vrsave)
2352
c8001721 2353
6ced10dd
JB
2354/* On machines supporting the SPE APU, the general-purpose registers
2355 are 64 bits long. There are SIMD vector instructions to treat them
2356 as pairs of floats, but the rest of the instruction set treats them
2357 as 32-bit registers, and only operates on their lower halves.
2358
2359 In the GDB regcache, we treat their high and low halves as separate
2360 registers. The low halves we present as the general-purpose
2361 registers, and then we have pseudo-registers that stitch together
2362 the upper and lower halves and present them as pseudo-registers. */
2363
2364/* SPE GPR lower halves --- raw registers. */
2365#define PPC_SPE_GP_REGS \
2366 /* 0 */ R4(r0), R4(r1), R4(r2), R4(r3), R4(r4), R4(r5), R4(r6), R4(r7), \
2367 /* 8 */ R4(r8), R4(r9), R4(r10),R4(r11),R4(r12),R4(r13),R4(r14),R4(r15), \
2368 /* 16 */ R4(r16),R4(r17),R4(r18),R4(r19),R4(r20),R4(r21),R4(r22),R4(r23), \
2369 /* 24 */ R4(r24),R4(r25),R4(r26),R4(r27),R4(r28),R4(r29),R4(r30),R4(r31)
2370
2371/* SPE GPR upper halves --- anonymous raw registers. */
2372#define PPC_SPE_UPPER_GP_REGS \
2373 /* 0 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2374 /* 8 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2375 /* 16 */ A4, A4, A4, A4, A4, A4, A4, A4, \
2376 /* 24 */ A4, A4, A4, A4, A4, A4, A4, A4
2377
2378/* SPE GPR vector registers --- pseudo registers based on underlying
2379 gprs and the anonymous upper half raw registers. */
2380#define PPC_EV_PSEUDO_REGS \
2381/* 0*/P8(ev0), P8(ev1), P8(ev2), P8(ev3), P8(ev4), P8(ev5), P8(ev6), P8(ev7), \
2382/* 8*/P8(ev8), P8(ev9), P8(ev10),P8(ev11),P8(ev12),P8(ev13),P8(ev14),P8(ev15),\
2383/*16*/P8(ev16),P8(ev17),P8(ev18),P8(ev19),P8(ev20),P8(ev21),P8(ev22),P8(ev23),\
2384/*24*/P8(ev24),P8(ev25),P8(ev26),P8(ev27),P8(ev28),P8(ev29),P8(ev30),P8(ev31)
c8001721 2385
7a78ae4e 2386/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2387 user-level SPR's. */
7a78ae4e 2388static const struct reg registers_power[] =
c906108c 2389{
7a78ae4e 2390 COMMON_UISA_REGS,
13ac140c 2391 /* 66 */ R4(cnd), S(lr), S(cnt), S4(xer), S4(mq),
e3f36dbd 2392 /* 71 */ R4(fpscr)
c906108c
SS
2393};
2394
7a78ae4e 2395/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2396 view of the PowerPC. */
7a78ae4e 2397static const struct reg registers_powerpc[] =
c906108c 2398{
7a78ae4e 2399 COMMON_UISA_REGS,
1fcc0bb8
EZ
2400 PPC_UISA_SPRS,
2401 PPC_ALTIVEC_REGS
c906108c
SS
2402};
2403
13ac140c
JB
2404/* IBM PowerPC 403.
2405
2406 Some notes about the "tcr" special-purpose register:
2407 - On the 403 and 403GC, SPR 986 is named "tcr", and it controls the
2408 403's programmable interval timer, fixed interval timer, and
2409 watchdog timer.
2410 - On the 602, SPR 984 is named "tcr", and it controls the 602's
2411 watchdog timer, and nothing else.
2412
2413 Some of the fields are similar between the two, but they're not
2414 compatible with each other. Since the two variants have different
2415 registers, with different numbers, but the same name, we can't
2416 splice the register name to get the SPR number. */
7a78ae4e 2417static const struct reg registers_403[] =
c5aa993b 2418{
7a78ae4e
ND
2419 COMMON_UISA_REGS,
2420 PPC_UISA_SPRS,
2421 PPC_SEGMENT_REGS,
2422 PPC_OEA_SPRS,
13ac140c
JB
2423 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2424 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2425 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2426 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2427 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2428 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2)
c906108c
SS
2429};
2430
13ac140c
JB
2431/* IBM PowerPC 403GC.
2432 See the comments about 'tcr' for the 403, above. */
7a78ae4e 2433static const struct reg registers_403GC[] =
c5aa993b 2434{
7a78ae4e
ND
2435 COMMON_UISA_REGS,
2436 PPC_UISA_SPRS,
2437 PPC_SEGMENT_REGS,
2438 PPC_OEA_SPRS,
13ac140c
JB
2439 /* 119 */ S(icdbdr), S(esr), S(dear), S(evpr),
2440 /* 123 */ S(cdbcr), S(tsr), SN4(tcr, ppc_spr_403_tcr), S(pit),
2441 /* 127 */ S(tbhi), S(tblo), S(srr2), S(srr3),
2442 /* 131 */ S(dbsr), S(dbcr), S(iac1), S(iac2),
2443 /* 135 */ S(dac1), S(dac2), S(dccr), S(iccr),
2444 /* 139 */ S(pbl1), S(pbu1), S(pbl2), S(pbu2),
2445 /* 143 */ S(zpr), S(pid), S(sgr), S(dcwr),
2446 /* 147 */ S(tbhu), S(tblu)
c906108c
SS
2447};
2448
64366f1c 2449/* Motorola PowerPC 505. */
7a78ae4e 2450static const struct reg registers_505[] =
c5aa993b 2451{
7a78ae4e
ND
2452 COMMON_UISA_REGS,
2453 PPC_UISA_SPRS,
2454 PPC_SEGMENT_REGS,
2455 PPC_OEA_SPRS,
13ac140c 2456 /* 119 */ S(eie), S(eid), S(nri)
c906108c
SS
2457};
2458
64366f1c 2459/* Motorola PowerPC 860 or 850. */
7a78ae4e 2460static const struct reg registers_860[] =
c5aa993b 2461{
7a78ae4e
ND
2462 COMMON_UISA_REGS,
2463 PPC_UISA_SPRS,
2464 PPC_SEGMENT_REGS,
2465 PPC_OEA_SPRS,
13ac140c
JB
2466 /* 119 */ S(eie), S(eid), S(nri), S(cmpa),
2467 /* 123 */ S(cmpb), S(cmpc), S(cmpd), S(icr),
2468 /* 127 */ S(der), S(counta), S(countb), S(cmpe),
2469 /* 131 */ S(cmpf), S(cmpg), S(cmph), S(lctrl1),
2470 /* 135 */ S(lctrl2), S(ictrl), S(bar), S(ic_cst),
2471 /* 139 */ S(ic_adr), S(ic_dat), S(dc_cst), S(dc_adr),
2472 /* 143 */ S(dc_dat), S(dpdr), S(dpir), S(immr),
2473 /* 147 */ S(mi_ctr), S(mi_ap), S(mi_epn), S(mi_twc),
2474 /* 151 */ S(mi_rpn), S(md_ctr), S(m_casid), S(md_ap),
2475 /* 155 */ S(md_epn), S(m_twb), S(md_twc), S(md_rpn),
2476 /* 159 */ S(m_tw), S(mi_dbcam), S(mi_dbram0), S(mi_dbram1),
2477 /* 163 */ S(md_dbcam), S(md_dbram0), S(md_dbram1)
c906108c
SS
2478};
2479
7a78ae4e
ND
2480/* Motorola PowerPC 601. Note that the 601 has different register numbers
2481 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2482 register is the stub's problem. */
7a78ae4e 2483static const struct reg registers_601[] =
c5aa993b 2484{
7a78ae4e
ND
2485 COMMON_UISA_REGS,
2486 PPC_UISA_SPRS,
2487 PPC_SEGMENT_REGS,
2488 PPC_OEA_SPRS,
13ac140c
JB
2489 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2490 /* 123 */ S(pir), S(mq), S(rtcu), S(rtcl)
c906108c
SS
2491};
2492
13ac140c
JB
2493/* Motorola PowerPC 602.
2494 See the notes under the 403 about 'tcr'. */
7a78ae4e 2495static const struct reg registers_602[] =
c5aa993b 2496{
7a78ae4e
ND
2497 COMMON_UISA_REGS,
2498 PPC_UISA_SPRS,
2499 PPC_SEGMENT_REGS,
2500 PPC_OEA_SPRS,
13ac140c
JB
2501 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2502 /* 123 */ R0, SN4(tcr, ppc_spr_602_tcr), S(ibr), S(esasrr),
2503 /* 127 */ S(sebr), S(ser), S(sp), S(lt)
c906108c
SS
2504};
2505
64366f1c 2506/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2507static const struct reg registers_603[] =
c5aa993b 2508{
7a78ae4e
ND
2509 COMMON_UISA_REGS,
2510 PPC_UISA_SPRS,
2511 PPC_SEGMENT_REGS,
2512 PPC_OEA_SPRS,
13ac140c
JB
2513 /* 119 */ S(hid0), S(hid1), S(iabr), R0,
2514 /* 123 */ R0, S(dmiss), S(dcmp), S(hash1),
2515 /* 127 */ S(hash2), S(imiss), S(icmp), S(rpa)
c906108c
SS
2516};
2517
64366f1c 2518/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2519static const struct reg registers_604[] =
c5aa993b 2520{
7a78ae4e
ND
2521 COMMON_UISA_REGS,
2522 PPC_UISA_SPRS,
2523 PPC_SEGMENT_REGS,
2524 PPC_OEA_SPRS,
13ac140c
JB
2525 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2526 /* 123 */ S(pir), S(mmcr0), S(pmc1), S(pmc2),
2527 /* 127 */ S(sia), S(sda)
c906108c
SS
2528};
2529
64366f1c 2530/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2531static const struct reg registers_750[] =
c5aa993b 2532{
7a78ae4e
ND
2533 COMMON_UISA_REGS,
2534 PPC_UISA_SPRS,
2535 PPC_SEGMENT_REGS,
2536 PPC_OEA_SPRS,
13ac140c
JB
2537 /* 119 */ S(hid0), S(hid1), S(iabr), S(dabr),
2538 /* 123 */ R0, S(ummcr0), S(upmc1), S(upmc2),
2539 /* 127 */ S(usia), S(ummcr1), S(upmc3), S(upmc4),
2540 /* 131 */ S(mmcr0), S(pmc1), S(pmc2), S(sia),
2541 /* 135 */ S(mmcr1), S(pmc3), S(pmc4), S(l2cr),
2542 /* 139 */ S(ictc), S(thrm1), S(thrm2), S(thrm3)
c906108c
SS
2543};
2544
2545
64366f1c 2546/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2547static const struct reg registers_7400[] =
2548{
2549 /* gpr0-gpr31, fpr0-fpr31 */
2550 COMMON_UISA_REGS,
13c7b1ca 2551 /* cr, lr, ctr, xer, fpscr */
1fcc0bb8
EZ
2552 PPC_UISA_SPRS,
2553 /* sr0-sr15 */
2554 PPC_SEGMENT_REGS,
2555 PPC_OEA_SPRS,
2556 /* vr0-vr31, vrsave, vscr */
2557 PPC_ALTIVEC_REGS
2558 /* FIXME? Add more registers? */
2559};
2560
c8001721
EZ
2561/* Motorola e500. */
2562static const struct reg registers_e500[] =
2563{
6ced10dd
JB
2564 /* 0 .. 31 */ PPC_SPE_GP_REGS,
2565 /* 32 .. 63 */ PPC_SPE_UPPER_GP_REGS,
2566 /* 64 .. 65 */ R(pc), R(ps),
2567 /* 66 .. 70 */ PPC_UISA_NOFP_SPRS,
2568 /* 71 .. 72 */ R8(acc), S4(spefscr),
338ef23d
AC
2569 /* NOTE: Add new registers here the end of the raw register
2570 list and just before the first pseudo register. */
6ced10dd 2571 /* 73 .. 104 */ PPC_EV_PSEUDO_REGS
c8001721
EZ
2572};
2573
c906108c 2574/* Information about a particular processor variant. */
7a78ae4e 2575
c906108c 2576struct variant
c5aa993b
JM
2577 {
2578 /* Name of this variant. */
2579 char *name;
c906108c 2580
c5aa993b
JM
2581 /* English description of the variant. */
2582 char *description;
c906108c 2583
64366f1c 2584 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2585 enum bfd_architecture arch;
2586
64366f1c 2587 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2588 unsigned long mach;
2589
489461e2
EZ
2590 /* Number of real registers. */
2591 int nregs;
2592
2593 /* Number of pseudo registers. */
2594 int npregs;
2595
2596 /* Number of total registers (the sum of nregs and npregs). */
2597 int num_tot_regs;
2598
c5aa993b
JM
2599 /* Table of register names; registers[R] is the name of the register
2600 number R. */
7a78ae4e 2601 const struct reg *regs;
c5aa993b 2602 };
c906108c 2603
489461e2
EZ
2604#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2605
2606static int
2607num_registers (const struct reg *reg_list, int num_tot_regs)
2608{
2609 int i;
2610 int nregs = 0;
2611
2612 for (i = 0; i < num_tot_regs; i++)
2613 if (!reg_list[i].pseudo)
2614 nregs++;
2615
2616 return nregs;
2617}
2618
2619static int
2620num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2621{
2622 int i;
2623 int npregs = 0;
2624
2625 for (i = 0; i < num_tot_regs; i++)
2626 if (reg_list[i].pseudo)
2627 npregs ++;
2628
2629 return npregs;
2630}
c906108c 2631
c906108c
SS
2632/* Information in this table comes from the following web sites:
2633 IBM: http://www.chips.ibm.com:80/products/embedded/
2634 Motorola: http://www.mot.com/SPS/PowerPC/
2635
2636 I'm sure I've got some of the variant descriptions not quite right.
2637 Please report any inaccuracies you find to GDB's maintainer.
2638
2639 If you add entries to this table, please be sure to allow the new
2640 value as an argument to the --with-cpu flag, in configure.in. */
2641
489461e2 2642static struct variant variants[] =
c906108c 2643{
489461e2 2644
7a78ae4e 2645 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2646 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2647 registers_powerpc},
7a78ae4e 2648 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2649 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2650 registers_power},
7a78ae4e 2651 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2652 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2653 registers_403},
7a78ae4e 2654 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2655 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2656 registers_601},
7a78ae4e 2657 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2658 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2659 registers_602},
7a78ae4e 2660 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2661 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2662 registers_603},
7a78ae4e 2663 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2664 604, -1, -1, tot_num_registers (registers_604),
2665 registers_604},
7a78ae4e 2666 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2667 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2668 registers_403GC},
7a78ae4e 2669 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2670 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2671 registers_505},
7a78ae4e 2672 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2673 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2674 registers_860},
7a78ae4e 2675 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2676 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2677 registers_750},
1fcc0bb8 2678 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2679 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2680 registers_7400},
c8001721
EZ
2681 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2682 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2683 registers_e500},
7a78ae4e 2684
5d57ee30
KB
2685 /* 64-bit */
2686 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2687 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2688 registers_powerpc},
7a78ae4e 2689 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2690 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2691 registers_powerpc},
5d57ee30 2692 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2693 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2694 registers_powerpc},
7a78ae4e 2695 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2696 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2697 registers_powerpc},
5d57ee30 2698 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2699 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2700 registers_powerpc},
5d57ee30 2701 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2702 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2703 registers_powerpc},
5d57ee30 2704
64366f1c 2705 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2706 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2707 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2708 registers_power},
7a78ae4e 2709 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2710 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2711 registers_power},
7a78ae4e 2712 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2713 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2714 registers_power},
7a78ae4e 2715
489461e2 2716 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2717};
2718
64366f1c 2719/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2720
2721static void
2722init_variants (void)
2723{
2724 struct variant *v;
2725
2726 for (v = variants; v->name; v++)
2727 {
2728 if (v->nregs == -1)
2729 v->nregs = num_registers (v->regs, v->num_tot_regs);
2730 if (v->npregs == -1)
2731 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2732 }
2733}
c906108c 2734
7a78ae4e 2735/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2736 MACH. If no such variant exists, return null. */
c906108c 2737
7a78ae4e
ND
2738static const struct variant *
2739find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2740{
7a78ae4e 2741 const struct variant *v;
c5aa993b 2742
7a78ae4e
ND
2743 for (v = variants; v->name; v++)
2744 if (arch == v->arch && mach == v->mach)
2745 return v;
c906108c 2746
7a78ae4e 2747 return NULL;
c906108c 2748}
9364a0ef
EZ
2749
2750static int
2751gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2752{
2753 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2754 return print_insn_big_powerpc (memaddr, info);
2755 else
2756 return print_insn_little_powerpc (memaddr, info);
2757}
7a78ae4e 2758\f
61a65099
KB
2759static CORE_ADDR
2760rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2761{
2762 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2763}
2764
2765static struct frame_id
2766rs6000_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2767{
2768 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2769 SP_REGNUM),
2770 frame_pc_unwind (next_frame));
2771}
2772
2773struct rs6000_frame_cache
2774{
2775 CORE_ADDR base;
2776 CORE_ADDR initial_sp;
2777 struct trad_frame_saved_reg *saved_regs;
2778};
2779
2780static struct rs6000_frame_cache *
2781rs6000_frame_cache (struct frame_info *next_frame, void **this_cache)
2782{
2783 struct rs6000_frame_cache *cache;
2784 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786 struct rs6000_framedata fdata;
2787 int wordsize = tdep->wordsize;
2788
2789 if ((*this_cache) != NULL)
2790 return (*this_cache);
2791 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
2792 (*this_cache) = cache;
2793 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2794
2795 skip_prologue (frame_func_unwind (next_frame), frame_pc_unwind (next_frame),
2796 &fdata);
2797
2798 /* If there were any saved registers, figure out parent's stack
2799 pointer. */
2800 /* The following is true only if the frame doesn't have a call to
2801 alloca(), FIXME. */
2802
2803 if (fdata.saved_fpr == 0
2804 && fdata.saved_gpr == 0
2805 && fdata.saved_vr == 0
2806 && fdata.saved_ev == 0
2807 && fdata.lr_offset == 0
2808 && fdata.cr_offset == 0
2809 && fdata.vr_offset == 0
2810 && fdata.ev_offset == 0)
2811 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2812 else
2813 {
2814 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
2815 address of the current frame. Things might be easier if the
2816 ->frame pointed to the outer-most address of the frame. In
2817 the mean time, the address of the prev frame is used as the
2818 base address of this frame. */
2819 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2820 if (!fdata.frameless)
2821 /* Frameless really means stackless. */
2822 cache->base = read_memory_addr (cache->base, wordsize);
2823 }
2824 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
2825
2826 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
2827 All fpr's from saved_fpr to fp31 are saved. */
2828
2829 if (fdata.saved_fpr >= 0)
2830 {
2831 int i;
2832 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
2833
2834 /* If skip_prologue says floating-point registers were saved,
2835 but the current architecture has no floating-point registers,
2836 then that's strange. But we have no indices to even record
2837 the addresses under, so we just ignore it. */
2838 if (ppc_floating_point_unit_p (gdbarch))
063715bf 2839 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
2840 {
2841 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
2842 fpr_addr += 8;
2843 }
61a65099
KB
2844 }
2845
2846 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
2847 All gpr's from saved_gpr to gpr31 are saved. */
2848
2849 if (fdata.saved_gpr >= 0)
2850 {
2851 int i;
2852 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 2853 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099
KB
2854 {
2855 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
2856 gpr_addr += wordsize;
2857 }
2858 }
2859
2860 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
2861 All vr's from saved_vr to vr31 are saved. */
2862 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
2863 {
2864 if (fdata.saved_vr >= 0)
2865 {
2866 int i;
2867 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
2868 for (i = fdata.saved_vr; i < 32; i++)
2869 {
2870 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
2871 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
2872 }
2873 }
2874 }
2875
2876 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
2877 All vr's from saved_ev to ev31 are saved. ????? */
2878 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
2879 {
2880 if (fdata.saved_ev >= 0)
2881 {
2882 int i;
2883 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
063715bf 2884 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
2885 {
2886 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
2887 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + 4;
2888 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
2889 }
2890 }
2891 }
2892
2893 /* If != 0, fdata.cr_offset is the offset from the frame that
2894 holds the CR. */
2895 if (fdata.cr_offset != 0)
2896 cache->saved_regs[tdep->ppc_cr_regnum].addr = cache->base + fdata.cr_offset;
2897
2898 /* If != 0, fdata.lr_offset is the offset from the frame that
2899 holds the LR. */
2900 if (fdata.lr_offset != 0)
2901 cache->saved_regs[tdep->ppc_lr_regnum].addr = cache->base + fdata.lr_offset;
2902 /* The PC is found in the link register. */
2903 cache->saved_regs[PC_REGNUM] = cache->saved_regs[tdep->ppc_lr_regnum];
2904
2905 /* If != 0, fdata.vrsave_offset is the offset from the frame that
2906 holds the VRSAVE. */
2907 if (fdata.vrsave_offset != 0)
2908 cache->saved_regs[tdep->ppc_vrsave_regnum].addr = cache->base + fdata.vrsave_offset;
2909
2910 if (fdata.alloca_reg < 0)
2911 /* If no alloca register used, then fi->frame is the value of the
2912 %sp for this frame, and it is good enough. */
2913 cache->initial_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2914 else
2915 cache->initial_sp = frame_unwind_register_unsigned (next_frame,
2916 fdata.alloca_reg);
2917
2918 return cache;
2919}
2920
2921static void
2922rs6000_frame_this_id (struct frame_info *next_frame, void **this_cache,
2923 struct frame_id *this_id)
2924{
2925 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2926 this_cache);
2927 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2928}
2929
2930static void
2931rs6000_frame_prev_register (struct frame_info *next_frame,
2932 void **this_cache,
2933 int regnum, int *optimizedp,
2934 enum lval_type *lvalp, CORE_ADDR *addrp,
2935 int *realnump, void *valuep)
2936{
2937 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2938 this_cache);
1f67027d
AC
2939 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
2940 optimizedp, lvalp, addrp, realnump, valuep);
61a65099
KB
2941}
2942
2943static const struct frame_unwind rs6000_frame_unwind =
2944{
2945 NORMAL_FRAME,
2946 rs6000_frame_this_id,
2947 rs6000_frame_prev_register
2948};
2949
2950static const struct frame_unwind *
2951rs6000_frame_sniffer (struct frame_info *next_frame)
2952{
2953 return &rs6000_frame_unwind;
2954}
2955
2956\f
2957
2958static CORE_ADDR
2959rs6000_frame_base_address (struct frame_info *next_frame,
2960 void **this_cache)
2961{
2962 struct rs6000_frame_cache *info = rs6000_frame_cache (next_frame,
2963 this_cache);
2964 return info->initial_sp;
2965}
2966
2967static const struct frame_base rs6000_frame_base = {
2968 &rs6000_frame_unwind,
2969 rs6000_frame_base_address,
2970 rs6000_frame_base_address,
2971 rs6000_frame_base_address
2972};
2973
2974static const struct frame_base *
2975rs6000_frame_base_sniffer (struct frame_info *next_frame)
2976{
2977 return &rs6000_frame_base;
2978}
2979
7a78ae4e
ND
2980/* Initialize the current architecture based on INFO. If possible, re-use an
2981 architecture from ARCHES, which is a list of architectures already created
2982 during this debugging session.
c906108c 2983
7a78ae4e 2984 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2985 a binary file. */
c906108c 2986
7a78ae4e
ND
2987static struct gdbarch *
2988rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2989{
2990 struct gdbarch *gdbarch;
2991 struct gdbarch_tdep *tdep;
708ff411 2992 int wordsize, from_xcoff_exec, from_elf_exec, i, off;
7a78ae4e
ND
2993 struct reg *regs;
2994 const struct variant *v;
2995 enum bfd_architecture arch;
2996 unsigned long mach;
2997 bfd abfd;
7b112f9c 2998 int sysv_abi;
5bf1c677 2999 asection *sect;
7a78ae4e 3000
9aa1e687 3001 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
3002 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
3003
9aa1e687
KB
3004 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
3005 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3006
3007 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
3008
e712c1cf 3009 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 3010 that, else choose a likely default. */
9aa1e687 3011 if (from_xcoff_exec)
c906108c 3012 {
11ed25ac 3013 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
3014 wordsize = 8;
3015 else
3016 wordsize = 4;
c906108c 3017 }
9aa1e687
KB
3018 else if (from_elf_exec)
3019 {
3020 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
3021 wordsize = 8;
3022 else
3023 wordsize = 4;
3024 }
c906108c 3025 else
7a78ae4e 3026 {
27b15785
KB
3027 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
3028 wordsize = info.bfd_arch_info->bits_per_word /
3029 info.bfd_arch_info->bits_per_byte;
3030 else
3031 wordsize = 4;
7a78ae4e 3032 }
c906108c 3033
64366f1c 3034 /* Find a candidate among extant architectures. */
7a78ae4e
ND
3035 for (arches = gdbarch_list_lookup_by_info (arches, &info);
3036 arches != NULL;
3037 arches = gdbarch_list_lookup_by_info (arches->next, &info))
3038 {
3039 /* Word size in the various PowerPC bfd_arch_info structs isn't
3040 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 3041 separate word size check. */
7a78ae4e 3042 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 3043 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
3044 return arches->gdbarch;
3045 }
c906108c 3046
7a78ae4e
ND
3047 /* None found, create a new architecture from INFO, whose bfd_arch_info
3048 validity depends on the source:
3049 - executable useless
3050 - rs6000_host_arch() good
3051 - core file good
3052 - "set arch" trust blindly
3053 - GDB startup useless but harmless */
c906108c 3054
9aa1e687 3055 if (!from_xcoff_exec)
c906108c 3056 {
b732d07d 3057 arch = info.bfd_arch_info->arch;
7a78ae4e 3058 mach = info.bfd_arch_info->mach;
c906108c 3059 }
7a78ae4e 3060 else
c906108c 3061 {
7a78ae4e 3062 arch = bfd_arch_powerpc;
35cec841 3063 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 3064 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 3065 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
3066 }
3067 tdep = xmalloc (sizeof (struct gdbarch_tdep));
3068 tdep->wordsize = wordsize;
5bf1c677
EZ
3069
3070 /* For e500 executables, the apuinfo section is of help here. Such
3071 section contains the identifier and revision number of each
3072 Application-specific Processing Unit that is present on the
3073 chip. The content of the section is determined by the assembler
3074 which looks at each instruction and determines which unit (and
3075 which version of it) can execute it. In our case we just look for
3076 the existance of the section. */
3077
3078 if (info.abfd)
3079 {
3080 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
3081 if (sect)
3082 {
3083 arch = info.bfd_arch_info->arch;
3084 mach = bfd_mach_ppc_e500;
3085 bfd_default_set_arch_mach (&abfd, arch, mach);
3086 info.bfd_arch_info = bfd_get_arch_info (&abfd);
3087 }
3088 }
3089
7a78ae4e 3090 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 3091
489461e2
EZ
3092 /* Initialize the number of real and pseudo registers in each variant. */
3093 init_variants ();
3094
64366f1c 3095 /* Choose variant. */
7a78ae4e
ND
3096 v = find_variant_by_arch (arch, mach);
3097 if (!v)
dd47e6fd
EZ
3098 return NULL;
3099
7a78ae4e
ND
3100 tdep->regs = v->regs;
3101
2188cbdd 3102 tdep->ppc_gp0_regnum = 0;
2188cbdd
EZ
3103 tdep->ppc_toc_regnum = 2;
3104 tdep->ppc_ps_regnum = 65;
3105 tdep->ppc_cr_regnum = 66;
3106 tdep->ppc_lr_regnum = 67;
3107 tdep->ppc_ctr_regnum = 68;
3108 tdep->ppc_xer_regnum = 69;
3109 if (v->mach == bfd_mach_ppc_601)
3110 tdep->ppc_mq_regnum = 124;
708ff411 3111 else if (arch == bfd_arch_rs6000)
2188cbdd 3112 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
3113 else
3114 tdep->ppc_mq_regnum = -1;
366f009f 3115 tdep->ppc_fp0_regnum = 32;
708ff411 3116 tdep->ppc_fpscr_regnum = (arch == bfd_arch_rs6000) ? 71 : 70;
f86a7158 3117 tdep->ppc_sr0_regnum = 71;
baffbae0
JB
3118 tdep->ppc_vr0_regnum = -1;
3119 tdep->ppc_vrsave_regnum = -1;
6ced10dd 3120 tdep->ppc_ev0_upper_regnum = -1;
baffbae0
JB
3121 tdep->ppc_ev0_regnum = -1;
3122 tdep->ppc_ev31_regnum = -1;
867e2dc5
JB
3123 tdep->ppc_acc_regnum = -1;
3124 tdep->ppc_spefscr_regnum = -1;
2188cbdd 3125
c8001721
EZ
3126 set_gdbarch_pc_regnum (gdbarch, 64);
3127 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 3128 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
9f643768 3129 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
afd48b75 3130 if (sysv_abi && wordsize == 8)
05580c65 3131 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 3132 else if (sysv_abi && wordsize == 4)
05580c65 3133 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
3134 else
3135 {
3136 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
a3c001ce 3137 set_gdbarch_store_return_value (gdbarch, rs6000_store_return_value);
afd48b75 3138 }
c8001721 3139
baffbae0
JB
3140 /* Set lr_frame_offset. */
3141 if (wordsize == 8)
3142 tdep->lr_frame_offset = 16;
3143 else if (sysv_abi)
3144 tdep->lr_frame_offset = 4;
3145 else
3146 tdep->lr_frame_offset = 8;
3147
f86a7158
JB
3148 if (v->arch == bfd_arch_rs6000)
3149 tdep->ppc_sr0_regnum = -1;
3150 else if (v->arch == bfd_arch_powerpc)
1fcc0bb8
EZ
3151 switch (v->mach)
3152 {
3153 case bfd_mach_ppc:
412b3060 3154 tdep->ppc_sr0_regnum = -1;
1fcc0bb8
EZ
3155 tdep->ppc_vr0_regnum = 71;
3156 tdep->ppc_vrsave_regnum = 104;
3157 break;
3158 case bfd_mach_ppc_7400:
3159 tdep->ppc_vr0_regnum = 119;
54c2a1e6 3160 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
3161 break;
3162 case bfd_mach_ppc_e500:
c8001721 3163 tdep->ppc_toc_regnum = -1;
6ced10dd
JB
3164 tdep->ppc_ev0_upper_regnum = 32;
3165 tdep->ppc_ev0_regnum = 73;
3166 tdep->ppc_ev31_regnum = 104;
3167 tdep->ppc_acc_regnum = 71;
3168 tdep->ppc_spefscr_regnum = 72;
383f0f5b
JB
3169 tdep->ppc_fp0_regnum = -1;
3170 tdep->ppc_fpscr_regnum = -1;
f86a7158 3171 tdep->ppc_sr0_regnum = -1;
c8001721
EZ
3172 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
3173 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
6ced10dd 3174 set_gdbarch_register_reggroup_p (gdbarch, e500_register_reggroup_p);
1fcc0bb8 3175 break;
f86a7158
JB
3176
3177 case bfd_mach_ppc64:
3178 case bfd_mach_ppc_620:
3179 case bfd_mach_ppc_630:
3180 case bfd_mach_ppc_a35:
3181 case bfd_mach_ppc_rs64ii:
3182 case bfd_mach_ppc_rs64iii:
3183 /* These processor's register sets don't have segment registers. */
3184 tdep->ppc_sr0_regnum = -1;
3185 break;
1fcc0bb8 3186 }
f86a7158
JB
3187 else
3188 internal_error (__FILE__, __LINE__,
3189 "rs6000_gdbarch_init: "
3190 "received unexpected BFD 'arch' value");
1fcc0bb8 3191
338ef23d
AC
3192 /* Sanity check on registers. */
3193 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
3194
56a6dfb9 3195 /* Select instruction printer. */
708ff411 3196 if (arch == bfd_arch_rs6000)
9364a0ef 3197 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 3198 else
9364a0ef 3199 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 3200
7a78ae4e 3201 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
3202
3203 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 3204 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 3205 set_gdbarch_register_name (gdbarch, rs6000_register_name);
691d145a 3206 set_gdbarch_register_type (gdbarch, rs6000_register_type);
7a78ae4e
ND
3207
3208 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3209 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3210 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3211 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
3212 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3213 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3214 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
3215 if (sysv_abi)
3216 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3217 else
3218 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 3219 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 3220
11269d7e 3221 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
3222 if (sysv_abi && wordsize == 8)
3223 /* PPC64 SYSV. */
3224 set_gdbarch_frame_red_zone_size (gdbarch, 288);
3225 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
3226 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
3227 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
3228 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
3229 224. */
3230 set_gdbarch_frame_red_zone_size (gdbarch, 224);
7a78ae4e 3231
691d145a
JB
3232 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
3233 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
3234 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
3235
18ed0c4e
JB
3236 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
3237 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
2ea5f656
KB
3238 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
3239 is correct for the SysV ABI when the wordsize is 8, but I'm also
3240 fairly certain that ppc_sysv_abi_push_arguments() will give even
3241 worse results since it only works for 32-bit code. So, for the moment,
3242 we're better off calling rs6000_push_arguments() since it works for
3243 64-bit code. At some point in the future, this matter needs to be
3244 revisited. */
3245 if (sysv_abi && wordsize == 4)
77b2b6d4 3246 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
3247 else if (sysv_abi && wordsize == 8)
3248 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 3249 else
77b2b6d4 3250 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 3251
74055713 3252 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
7a78ae4e
ND
3253
3254 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
3255 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
3256 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
3257
6066c3de
AC
3258 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
3259 for the descriptor and ".FN" for the entry-point -- a user
3260 specifying "break FN" will unexpectedly end up with a breakpoint
3261 on the descriptor and not the function. This architecture method
3262 transforms any breakpoints on descriptors into breakpoints on the
3263 corresponding entry point. */
3264 if (sysv_abi && wordsize == 8)
3265 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
3266
7a78ae4e
ND
3267 /* Not sure on this. FIXMEmgo */
3268 set_gdbarch_frame_args_skip (gdbarch, 8);
3269
05580c65 3270 if (!sysv_abi)
b5622e8d 3271 set_gdbarch_deprecated_use_struct_convention (gdbarch, rs6000_use_struct_convention);
8e0662df 3272
15813d3f
AC
3273 if (!sysv_abi)
3274 {
3275 /* Handle RS/6000 function pointers (which are really function
3276 descriptors). */
f517ea4e
PS
3277 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
3278 rs6000_convert_from_func_ptr_addr);
9aa1e687 3279 }
7a78ae4e 3280
143985b7
AF
3281 /* Helpers for function argument information. */
3282 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
3283
7b112f9c 3284 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 3285 gdbarch_init_osabi (info, gdbarch);
7b112f9c 3286
61a65099
KB
3287 switch (info.osabi)
3288 {
3289 case GDB_OSABI_NETBSD_AOUT:
3290 case GDB_OSABI_NETBSD_ELF:
3291 case GDB_OSABI_UNKNOWN:
3292 case GDB_OSABI_LINUX:
3293 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3294 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3295 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3296 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
3297 break;
3298 default:
61a65099 3299 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
3300
3301 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
3302 frame_unwind_append_sniffer (gdbarch, rs6000_frame_sniffer);
3303 set_gdbarch_unwind_dummy_id (gdbarch, rs6000_unwind_dummy_id);
3304 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
3305 }
3306
ef5200c1
AC
3307 if (from_xcoff_exec)
3308 {
3309 /* NOTE: jimix/2003-06-09: This test should really check for
3310 GDB_OSABI_AIX when that is defined and becomes
3311 available. (Actually, once things are properly split apart,
3312 the test goes away.) */
3313 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
3314 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
3315 }
3316
9f643768
JB
3317 init_sim_regno_table (gdbarch);
3318
7a78ae4e 3319 return gdbarch;
c906108c
SS
3320}
3321
7b112f9c
JT
3322static void
3323rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3324{
3325 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3326
3327 if (tdep == NULL)
3328 return;
3329
4be87837 3330 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
3331}
3332
1fcc0bb8
EZ
3333static struct cmd_list_element *info_powerpc_cmdlist = NULL;
3334
3335static void
3336rs6000_info_powerpc_command (char *args, int from_tty)
3337{
3338 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
3339}
3340
c906108c
SS
3341/* Initialization code. */
3342
a78f21af 3343extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 3344
c906108c 3345void
fba45db2 3346_initialize_rs6000_tdep (void)
c906108c 3347{
7b112f9c
JT
3348 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
3349 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
3350
3351 /* Add root prefix command for "info powerpc" commands */
3352 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
3353 "Various POWERPC info specific commands.",
3354 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 3355}
This page took 1.085372 seconds and 4 git commands to generate.