2004-03-18 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6
AC
2
3 Copyright 1986, 1987, 1989, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "frame.h"
26#include "inferior.h"
27#include "symtab.h"
28#include "target.h"
29#include "gdbcore.h"
30#include "gdbcmd.h"
c906108c 31#include "objfiles.h"
7a78ae4e 32#include "arch-utils.h"
4e052eda 33#include "regcache.h"
d16aafd8 34#include "doublest.h"
fd0407d6 35#include "value.h"
1fcc0bb8 36#include "parser-defs.h"
4be87837 37#include "osabi.h"
7a78ae4e 38
2fccf04a 39#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 40#include "coff/internal.h" /* for libcoff.h */
2fccf04a 41#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
42#include "coff/xcoff.h"
43#include "libxcoff.h"
7a78ae4e 44
9aa1e687 45#include "elf-bfd.h"
7a78ae4e 46
6ded7999 47#include "solib-svr4.h"
9aa1e687 48#include "ppc-tdep.h"
7a78ae4e 49
338ef23d 50#include "gdb_assert.h"
a89aa300 51#include "dis-asm.h"
338ef23d 52
7a78ae4e
ND
53/* If the kernel has to deliver a signal, it pushes a sigcontext
54 structure on the stack and then calls the signal handler, passing
55 the address of the sigcontext in an argument register. Usually
56 the signal handler doesn't save this register, so we have to
57 access the sigcontext structure via an offset from the signal handler
58 frame.
59 The following constants were determined by experimentation on AIX 3.2. */
60#define SIG_FRAME_PC_OFFSET 96
61#define SIG_FRAME_LR_OFFSET 108
62#define SIG_FRAME_FP_OFFSET 284
63
7a78ae4e
ND
64/* To be used by skip_prologue. */
65
66struct rs6000_framedata
67 {
68 int offset; /* total size of frame --- the distance
69 by which we decrement sp to allocate
70 the frame */
71 int saved_gpr; /* smallest # of saved gpr */
72 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 73 int saved_vr; /* smallest # of saved vr */
96ff0de4 74 int saved_ev; /* smallest # of saved ev */
7a78ae4e
ND
75 int alloca_reg; /* alloca register number (frame ptr) */
76 char frameless; /* true if frameless functions. */
77 char nosavedpc; /* true if pc not saved. */
78 int gpr_offset; /* offset of saved gprs from prev sp */
79 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 80 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 81 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e
ND
82 int lr_offset; /* offset of saved lr */
83 int cr_offset; /* offset of saved cr */
6be8bc0c 84 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
85 };
86
87/* Description of a single register. */
88
89struct reg
90 {
91 char *name; /* name of register */
92 unsigned char sz32; /* size on 32-bit arch, 0 if nonextant */
93 unsigned char sz64; /* size on 64-bit arch, 0 if nonextant */
94 unsigned char fpr; /* whether register is floating-point */
489461e2 95 unsigned char pseudo; /* whether register is pseudo */
7a78ae4e
ND
96 };
97
c906108c
SS
98/* Breakpoint shadows for the single step instructions will be kept here. */
99
c5aa993b
JM
100static struct sstep_breaks
101 {
102 /* Address, or 0 if this is not in use. */
103 CORE_ADDR address;
104 /* Shadow contents. */
105 char data[4];
106 }
107stepBreaks[2];
c906108c
SS
108
109/* Hook for determining the TOC address when calling functions in the
110 inferior under AIX. The initialization code in rs6000-nat.c sets
111 this hook to point to find_toc_address. */
112
7a78ae4e
ND
113CORE_ADDR (*rs6000_find_toc_address_hook) (CORE_ADDR) = NULL;
114
115/* Hook to set the current architecture when starting a child process.
116 rs6000-nat.c sets this. */
117
118void (*rs6000_set_host_arch_hook) (int) = NULL;
c906108c
SS
119
120/* Static function prototypes */
121
a14ed312
KB
122static CORE_ADDR branch_dest (int opcode, int instr, CORE_ADDR pc,
123 CORE_ADDR safety);
077276e8
KB
124static CORE_ADDR skip_prologue (CORE_ADDR, CORE_ADDR,
125 struct rs6000_framedata *);
7a78ae4e
ND
126static void frame_get_saved_regs (struct frame_info * fi,
127 struct rs6000_framedata * fdatap);
128static CORE_ADDR frame_initial_stack_address (struct frame_info *);
c906108c 129
64b84175
KB
130/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
131int
132altivec_register_p (int regno)
133{
134 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
135 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
136 return 0;
137 else
138 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
139}
140
0a613259
AC
141/* Use the architectures FP registers? */
142int
143ppc_floating_point_unit_p (struct gdbarch *gdbarch)
144{
145 const struct bfd_arch_info *info = gdbarch_bfd_arch_info (gdbarch);
146 if (info->arch == bfd_arch_powerpc)
147 return (info->mach != bfd_mach_ppc_e500);
148 if (info->arch == bfd_arch_rs6000)
149 return 1;
150 return 0;
151}
152
7a78ae4e 153/* Read a LEN-byte address from debugged memory address MEMADDR. */
c906108c 154
7a78ae4e
ND
155static CORE_ADDR
156read_memory_addr (CORE_ADDR memaddr, int len)
157{
158 return read_memory_unsigned_integer (memaddr, len);
159}
c906108c 160
7a78ae4e
ND
161static CORE_ADDR
162rs6000_skip_prologue (CORE_ADDR pc)
b83266a0
SS
163{
164 struct rs6000_framedata frame;
077276e8 165 pc = skip_prologue (pc, 0, &frame);
b83266a0
SS
166 return pc;
167}
168
169
c906108c
SS
170/* Fill in fi->saved_regs */
171
172struct frame_extra_info
173{
174 /* Functions calling alloca() change the value of the stack
175 pointer. We need to use initial stack pointer (which is saved in
176 r31 by gcc) in such cases. If a compiler emits traceback table,
177 then we should use the alloca register specified in traceback
178 table. FIXME. */
c5aa993b 179 CORE_ADDR initial_sp; /* initial stack pointer. */
c906108c
SS
180};
181
9aa1e687 182void
7a78ae4e 183rs6000_init_extra_frame_info (int fromleaf, struct frame_info *fi)
c906108c 184{
c9012c71
AC
185 struct frame_extra_info *extra_info =
186 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
187 extra_info->initial_sp = 0;
bdd78e62
AC
188 if (get_next_frame (fi) != NULL
189 && get_frame_pc (fi) < TEXT_SEGMENT_BASE)
7a292a7a 190 /* We're in get_prev_frame */
c906108c
SS
191 /* and this is a special signal frame. */
192 /* (fi->pc will be some low address in the kernel, */
193 /* to which the signal handler returns). */
5a203e44 194 deprecated_set_frame_type (fi, SIGTRAMP_FRAME);
c906108c
SS
195}
196
7a78ae4e
ND
197/* Put here the code to store, into a struct frame_saved_regs,
198 the addresses of the saved registers of frame described by FRAME_INFO.
199 This includes special registers such as pc and fp saved in special
200 ways in the stack frame. sp is even more special:
201 the address we return for it IS the sp for the next frame. */
c906108c 202
7a78ae4e
ND
203/* In this implementation for RS/6000, we do *not* save sp. I am
204 not sure if it will be needed. The following function takes care of gpr's
205 and fpr's only. */
206
9aa1e687 207void
7a78ae4e 208rs6000_frame_init_saved_regs (struct frame_info *fi)
c906108c
SS
209{
210 frame_get_saved_regs (fi, NULL);
211}
212
3ce2bf18
AC
213static CORE_ADDR
214rs6000_init_frame_pc_first (int fromleaf, struct frame_info *prev)
215{
d4715e41
AC
216 return (fromleaf
217 ? DEPRECATED_SAVED_PC_AFTER_CALL (get_next_frame (prev))
218 : frame_relative_level (prev) > 0
219 ? DEPRECATED_FRAME_SAVED_PC (get_next_frame (prev))
220 : read_pc ());
3ce2bf18
AC
221}
222
7a78ae4e
ND
223static CORE_ADDR
224rs6000_frame_args_address (struct frame_info *fi)
c906108c 225{
c9012c71
AC
226 struct frame_extra_info *extra_info = get_frame_extra_info (fi);
227 if (extra_info->initial_sp != 0)
228 return extra_info->initial_sp;
c906108c
SS
229 else
230 return frame_initial_stack_address (fi);
231}
232
7a78ae4e
ND
233/* Immediately after a function call, return the saved pc.
234 Can't go through the frames for this because on some machines
235 the new frame is not set up until the new function executes
236 some instructions. */
237
238static CORE_ADDR
239rs6000_saved_pc_after_call (struct frame_info *fi)
240{
2188cbdd 241 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
7a78ae4e 242}
c906108c 243
143985b7 244/* Get the ith function argument for the current function. */
b9362cc7 245static CORE_ADDR
143985b7
AF
246rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
247 struct type *type)
248{
249 CORE_ADDR addr;
7f5f525d 250 get_frame_register (frame, 3 + argi, &addr);
143985b7
AF
251 return addr;
252}
253
c906108c
SS
254/* Calculate the destination of a branch/jump. Return -1 if not a branch. */
255
256static CORE_ADDR
7a78ae4e 257branch_dest (int opcode, int instr, CORE_ADDR pc, CORE_ADDR safety)
c906108c
SS
258{
259 CORE_ADDR dest;
260 int immediate;
261 int absolute;
262 int ext_op;
263
264 absolute = (int) ((instr >> 1) & 1);
265
c5aa993b
JM
266 switch (opcode)
267 {
268 case 18:
269 immediate = ((instr & ~3) << 6) >> 6; /* br unconditional */
270 if (absolute)
271 dest = immediate;
272 else
273 dest = pc + immediate;
274 break;
275
276 case 16:
277 immediate = ((instr & ~3) << 16) >> 16; /* br conditional */
278 if (absolute)
279 dest = immediate;
280 else
281 dest = pc + immediate;
282 break;
283
284 case 19:
285 ext_op = (instr >> 1) & 0x3ff;
286
287 if (ext_op == 16) /* br conditional register */
288 {
2188cbdd 289 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
290
291 /* If we are about to return from a signal handler, dest is
292 something like 0x3c90. The current frame is a signal handler
293 caller frame, upon completion of the sigreturn system call
294 execution will return to the saved PC in the frame. */
295 if (dest < TEXT_SEGMENT_BASE)
296 {
297 struct frame_info *fi;
298
299 fi = get_current_frame ();
300 if (fi != NULL)
8b36eed8 301 dest = read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
21283beb 302 gdbarch_tdep (current_gdbarch)->wordsize);
c5aa993b
JM
303 }
304 }
305
306 else if (ext_op == 528) /* br cond to count reg */
307 {
2188cbdd 308 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum) & ~3;
c5aa993b
JM
309
310 /* If we are about to execute a system call, dest is something
311 like 0x22fc or 0x3b00. Upon completion the system call
312 will return to the address in the link register. */
313 if (dest < TEXT_SEGMENT_BASE)
2188cbdd 314 dest = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum) & ~3;
c5aa993b
JM
315 }
316 else
317 return -1;
318 break;
c906108c 319
c5aa993b
JM
320 default:
321 return -1;
322 }
c906108c
SS
323 return (dest < TEXT_SEGMENT_BASE) ? safety : dest;
324}
325
326
327/* Sequence of bytes for breakpoint instruction. */
328
f4f9705a 329const static unsigned char *
7a78ae4e 330rs6000_breakpoint_from_pc (CORE_ADDR *bp_addr, int *bp_size)
c906108c 331{
aaab4dba
AC
332 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
333 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 334 *bp_size = 4;
d7449b42 335 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
c906108c
SS
336 return big_breakpoint;
337 else
338 return little_breakpoint;
339}
340
341
342/* AIX does not support PT_STEP. Simulate it. */
343
344void
379d08a1
AC
345rs6000_software_single_step (enum target_signal signal,
346 int insert_breakpoints_p)
c906108c 347{
7c40d541
KB
348 CORE_ADDR dummy;
349 int breakp_sz;
f4f9705a 350 const char *breakp = rs6000_breakpoint_from_pc (&dummy, &breakp_sz);
c906108c
SS
351 int ii, insn;
352 CORE_ADDR loc;
353 CORE_ADDR breaks[2];
354 int opcode;
355
c5aa993b
JM
356 if (insert_breakpoints_p)
357 {
c906108c 358
c5aa993b 359 loc = read_pc ();
c906108c 360
c5aa993b 361 insn = read_memory_integer (loc, 4);
c906108c 362
7c40d541 363 breaks[0] = loc + breakp_sz;
c5aa993b
JM
364 opcode = insn >> 26;
365 breaks[1] = branch_dest (opcode, insn, loc, breaks[0]);
c906108c 366
c5aa993b
JM
367 /* Don't put two breakpoints on the same address. */
368 if (breaks[1] == breaks[0])
369 breaks[1] = -1;
c906108c 370
c5aa993b 371 stepBreaks[1].address = 0;
c906108c 372
c5aa993b
JM
373 for (ii = 0; ii < 2; ++ii)
374 {
c906108c 375
c5aa993b
JM
376 /* ignore invalid breakpoint. */
377 if (breaks[ii] == -1)
378 continue;
7c40d541 379 target_insert_breakpoint (breaks[ii], stepBreaks[ii].data);
c5aa993b
JM
380 stepBreaks[ii].address = breaks[ii];
381 }
c906108c 382
c5aa993b
JM
383 }
384 else
385 {
c906108c 386
c5aa993b
JM
387 /* remove step breakpoints. */
388 for (ii = 0; ii < 2; ++ii)
389 if (stepBreaks[ii].address != 0)
7c40d541
KB
390 target_remove_breakpoint (stepBreaks[ii].address,
391 stepBreaks[ii].data);
c5aa993b 392 }
c906108c 393 errno = 0; /* FIXME, don't ignore errors! */
c5aa993b 394 /* What errors? {read,write}_memory call error(). */
c906108c
SS
395}
396
397
398/* return pc value after skipping a function prologue and also return
399 information about a function frame.
400
401 in struct rs6000_framedata fdata:
c5aa993b
JM
402 - frameless is TRUE, if function does not have a frame.
403 - nosavedpc is TRUE, if function does not save %pc value in its frame.
404 - offset is the initial size of this stack frame --- the amount by
405 which we decrement the sp to allocate the frame.
406 - saved_gpr is the number of the first saved gpr.
407 - saved_fpr is the number of the first saved fpr.
6be8bc0c 408 - saved_vr is the number of the first saved vr.
96ff0de4 409 - saved_ev is the number of the first saved ev.
c5aa993b
JM
410 - alloca_reg is the number of the register used for alloca() handling.
411 Otherwise -1.
412 - gpr_offset is the offset of the first saved gpr from the previous frame.
413 - fpr_offset is the offset of the first saved fpr from the previous frame.
6be8bc0c 414 - vr_offset is the offset of the first saved vr from the previous frame.
96ff0de4 415 - ev_offset is the offset of the first saved ev from the previous frame.
c5aa993b
JM
416 - lr_offset is the offset of the saved lr
417 - cr_offset is the offset of the saved cr
6be8bc0c 418 - vrsave_offset is the offset of the saved vrsave register
c5aa993b 419 */
c906108c
SS
420
421#define SIGNED_SHORT(x) \
422 ((sizeof (short) == 2) \
423 ? ((int)(short)(x)) \
424 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
425
426#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
427
55d05f3b
KB
428/* Limit the number of skipped non-prologue instructions, as the examining
429 of the prologue is expensive. */
430static int max_skip_non_prologue_insns = 10;
431
432/* Given PC representing the starting address of a function, and
433 LIM_PC which is the (sloppy) limit to which to scan when looking
434 for a prologue, attempt to further refine this limit by using
435 the line data in the symbol table. If successful, a better guess
436 on where the prologue ends is returned, otherwise the previous
437 value of lim_pc is returned. */
634aa483
AC
438
439/* FIXME: cagney/2004-02-14: This function and logic have largely been
440 superseded by skip_prologue_using_sal. */
441
55d05f3b
KB
442static CORE_ADDR
443refine_prologue_limit (CORE_ADDR pc, CORE_ADDR lim_pc)
444{
445 struct symtab_and_line prologue_sal;
446
447 prologue_sal = find_pc_line (pc, 0);
448 if (prologue_sal.line != 0)
449 {
450 int i;
451 CORE_ADDR addr = prologue_sal.end;
452
453 /* Handle the case in which compiler's optimizer/scheduler
454 has moved instructions into the prologue. We scan ahead
455 in the function looking for address ranges whose corresponding
456 line number is less than or equal to the first one that we
457 found for the function. (It can be less than when the
458 scheduler puts a body instruction before the first prologue
459 instruction.) */
460 for (i = 2 * max_skip_non_prologue_insns;
461 i > 0 && (lim_pc == 0 || addr < lim_pc);
462 i--)
463 {
464 struct symtab_and_line sal;
465
466 sal = find_pc_line (addr, 0);
467 if (sal.line == 0)
468 break;
469 if (sal.line <= prologue_sal.line
470 && sal.symtab == prologue_sal.symtab)
471 {
472 prologue_sal = sal;
473 }
474 addr = sal.end;
475 }
476
477 if (lim_pc == 0 || prologue_sal.end < lim_pc)
478 lim_pc = prologue_sal.end;
479 }
480 return lim_pc;
481}
482
483
7a78ae4e 484static CORE_ADDR
077276e8 485skip_prologue (CORE_ADDR pc, CORE_ADDR lim_pc, struct rs6000_framedata *fdata)
c906108c
SS
486{
487 CORE_ADDR orig_pc = pc;
55d05f3b 488 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 489 CORE_ADDR li_found_pc = 0;
c906108c
SS
490 char buf[4];
491 unsigned long op;
492 long offset = 0;
6be8bc0c 493 long vr_saved_offset = 0;
482ca3f5
KB
494 int lr_reg = -1;
495 int cr_reg = -1;
6be8bc0c 496 int vr_reg = -1;
96ff0de4
EZ
497 int ev_reg = -1;
498 long ev_offset = 0;
6be8bc0c 499 int vrsave_reg = -1;
c906108c
SS
500 int reg;
501 int framep = 0;
502 int minimal_toc_loaded = 0;
ddb20c56 503 int prev_insn_was_prologue_insn = 1;
55d05f3b 504 int num_skip_non_prologue_insns = 0;
96ff0de4 505 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (current_gdbarch);
6f99cb26 506 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
96ff0de4 507
55d05f3b
KB
508 /* Attempt to find the end of the prologue when no limit is specified.
509 Note that refine_prologue_limit() has been written so that it may
510 be used to "refine" the limits of non-zero PC values too, but this
511 is only safe if we 1) trust the line information provided by the
512 compiler and 2) iterate enough to actually find the end of the
513 prologue.
514
515 It may become a good idea at some point (for both performance and
516 accuracy) to unconditionally call refine_prologue_limit(). But,
517 until we can make a clear determination that this is beneficial,
518 we'll play it safe and only use it to obtain a limit when none
519 has been specified. */
520 if (lim_pc == 0)
521 lim_pc = refine_prologue_limit (pc, lim_pc);
c906108c 522
ddb20c56 523 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
524 fdata->saved_gpr = -1;
525 fdata->saved_fpr = -1;
6be8bc0c 526 fdata->saved_vr = -1;
96ff0de4 527 fdata->saved_ev = -1;
c906108c
SS
528 fdata->alloca_reg = -1;
529 fdata->frameless = 1;
530 fdata->nosavedpc = 1;
531
55d05f3b 532 for (;; pc += 4)
c906108c 533 {
ddb20c56
KB
534 /* Sometimes it isn't clear if an instruction is a prologue
535 instruction or not. When we encounter one of these ambiguous
536 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
537 Otherwise, we'll assume that it really is a prologue instruction. */
538 if (prev_insn_was_prologue_insn)
539 last_prologue_pc = pc;
55d05f3b
KB
540
541 /* Stop scanning if we've hit the limit. */
542 if (lim_pc != 0 && pc >= lim_pc)
543 break;
544
ddb20c56
KB
545 prev_insn_was_prologue_insn = 1;
546
55d05f3b 547 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
548 if (target_read_memory (pc, buf, 4))
549 break;
550 op = extract_signed_integer (buf, 4);
c906108c 551
c5aa993b
JM
552 if ((op & 0xfc1fffff) == 0x7c0802a6)
553 { /* mflr Rx */
98f08d3d 554 lr_reg = (op & 0x03e00000);
c5aa993b 555 continue;
c906108c 556
c5aa993b
JM
557 }
558 else if ((op & 0xfc1fffff) == 0x7c000026)
559 { /* mfcr Rx */
98f08d3d 560 cr_reg = (op & 0x03e00000);
c5aa993b 561 continue;
c906108c 562
c906108c 563 }
c5aa993b
JM
564 else if ((op & 0xfc1f0000) == 0xd8010000)
565 { /* stfd Rx,NUM(r1) */
566 reg = GET_SRC_REG (op);
567 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
568 {
569 fdata->saved_fpr = reg;
570 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
571 }
572 continue;
c906108c 573
c5aa993b
JM
574 }
575 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
576 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
577 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
578 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
579 {
580
581 reg = GET_SRC_REG (op);
582 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
583 {
584 fdata->saved_gpr = reg;
7a78ae4e 585 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 586 op &= ~3UL;
c5aa993b
JM
587 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
588 }
589 continue;
c906108c 590
ddb20c56
KB
591 }
592 else if ((op & 0xffff0000) == 0x60000000)
593 {
96ff0de4 594 /* nop */
ddb20c56
KB
595 /* Allow nops in the prologue, but do not consider them to
596 be part of the prologue unless followed by other prologue
597 instructions. */
598 prev_insn_was_prologue_insn = 0;
599 continue;
600
c906108c 601 }
c5aa993b
JM
602 else if ((op & 0xffff0000) == 0x3c000000)
603 { /* addis 0,0,NUM, used
604 for >= 32k frames */
605 fdata->offset = (op & 0x0000ffff) << 16;
606 fdata->frameless = 0;
607 continue;
608
609 }
610 else if ((op & 0xffff0000) == 0x60000000)
611 { /* ori 0,0,NUM, 2nd ha
612 lf of >= 32k frames */
613 fdata->offset |= (op & 0x0000ffff);
614 fdata->frameless = 0;
615 continue;
616
617 }
98f08d3d
KB
618 else if (lr_reg != -1 &&
619 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
620 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
621 /* stw Rx, NUM(r1) */
622 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
623 /* stwu Rx, NUM(r1) */
624 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
625 { /* where Rx == lr */
626 fdata->lr_offset = offset;
c5aa993b
JM
627 fdata->nosavedpc = 0;
628 lr_reg = 0;
98f08d3d
KB
629 if ((op & 0xfc000003) == 0xf8000000 || /* std */
630 (op & 0xfc000000) == 0x90000000) /* stw */
631 {
632 /* Does not update r1, so add displacement to lr_offset. */
633 fdata->lr_offset += SIGNED_SHORT (op);
634 }
c5aa993b
JM
635 continue;
636
637 }
98f08d3d
KB
638 else if (cr_reg != -1 &&
639 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
640 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
641 /* stw Rx, NUM(r1) */
642 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
643 /* stwu Rx, NUM(r1) */
644 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
645 { /* where Rx == cr */
646 fdata->cr_offset = offset;
c5aa993b 647 cr_reg = 0;
98f08d3d
KB
648 if ((op & 0xfc000003) == 0xf8000000 ||
649 (op & 0xfc000000) == 0x90000000)
650 {
651 /* Does not update r1, so add displacement to cr_offset. */
652 fdata->cr_offset += SIGNED_SHORT (op);
653 }
c5aa993b
JM
654 continue;
655
656 }
657 else if (op == 0x48000005)
658 { /* bl .+4 used in
659 -mrelocatable */
660 continue;
661
662 }
663 else if (op == 0x48000004)
664 { /* b .+4 (xlc) */
665 break;
666
c5aa993b 667 }
6be8bc0c
EZ
668 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
669 in V.4 -mminimal-toc */
c5aa993b
JM
670 (op & 0xffff0000) == 0x3bde0000)
671 { /* addi 30,30,foo@l */
672 continue;
c906108c 673
c5aa993b
JM
674 }
675 else if ((op & 0xfc000001) == 0x48000001)
676 { /* bl foo,
677 to save fprs??? */
c906108c 678
c5aa993b 679 fdata->frameless = 0;
6be8bc0c
EZ
680 /* Don't skip over the subroutine call if it is not within
681 the first three instructions of the prologue. */
c5aa993b
JM
682 if ((pc - orig_pc) > 8)
683 break;
684
685 op = read_memory_integer (pc + 4, 4);
686
6be8bc0c
EZ
687 /* At this point, make sure this is not a trampoline
688 function (a function that simply calls another functions,
689 and nothing else). If the next is not a nop, this branch
690 was part of the function prologue. */
c5aa993b
JM
691
692 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
693 break; /* don't skip over
694 this branch */
695 continue;
696
c5aa993b 697 }
98f08d3d
KB
698 /* update stack pointer */
699 else if ((op & 0xfc1f0000) == 0x94010000)
700 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
701 fdata->frameless = 0;
702 fdata->offset = SIGNED_SHORT (op);
703 offset = fdata->offset;
704 continue;
c5aa993b 705 }
98f08d3d
KB
706 else if ((op & 0xfc1f016a) == 0x7c01016e)
707 { /* stwux rX,r1,rY */
708 /* no way to figure out what r1 is going to be */
709 fdata->frameless = 0;
710 offset = fdata->offset;
711 continue;
712 }
713 else if ((op & 0xfc1f0003) == 0xf8010001)
714 { /* stdu rX,NUM(r1) */
715 fdata->frameless = 0;
716 fdata->offset = SIGNED_SHORT (op & ~3UL);
717 offset = fdata->offset;
718 continue;
719 }
720 else if ((op & 0xfc1f016a) == 0x7c01016a)
721 { /* stdux rX,r1,rY */
722 /* no way to figure out what r1 is going to be */
c5aa993b
JM
723 fdata->frameless = 0;
724 offset = fdata->offset;
725 continue;
c5aa993b 726 }
98f08d3d
KB
727 /* Load up minimal toc pointer */
728 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
729 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
c5aa993b 730 && !minimal_toc_loaded)
98f08d3d 731 {
c5aa993b
JM
732 minimal_toc_loaded = 1;
733 continue;
734
f6077098
KB
735 /* move parameters from argument registers to local variable
736 registers */
737 }
738 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
739 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
740 (((op >> 21) & 31) <= 10) &&
96ff0de4 741 ((long) ((op >> 16) & 31) >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
742 {
743 continue;
744
c5aa993b
JM
745 /* store parameters in stack */
746 }
6be8bc0c 747 else if ((op & 0xfc1f0003) == 0xf8010000 || /* std rx,NUM(r1) */
c5aa993b 748 (op & 0xfc1f0000) == 0xd8010000 || /* stfd Rx,NUM(r1) */
7a78ae4e
ND
749 (op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
750 {
c5aa993b 751 continue;
c906108c 752
c5aa993b
JM
753 /* store parameters in stack via frame pointer */
754 }
755 else if (framep &&
756 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r1) */
757 (op & 0xfc1f0000) == 0xd81f0000 || /* stfd Rx,NUM(r1) */
758 (op & 0xfc1f0000) == 0xfc1f0000))
759 { /* frsp, fp?,NUM(r1) */
760 continue;
761
762 /* Set up frame pointer */
763 }
764 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
765 || op == 0x7c3f0b78)
766 { /* mr r31, r1 */
767 fdata->frameless = 0;
768 framep = 1;
6f99cb26 769 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
770 continue;
771
772 /* Another way to set up the frame pointer. */
773 }
774 else if ((op & 0xfc1fffff) == 0x38010000)
775 { /* addi rX, r1, 0x0 */
776 fdata->frameless = 0;
777 framep = 1;
6f99cb26
AC
778 fdata->alloca_reg = (tdep->ppc_gp0_regnum
779 + ((op & ~0x38010000) >> 21));
c5aa993b 780 continue;
c5aa993b 781 }
6be8bc0c
EZ
782 /* AltiVec related instructions. */
783 /* Store the vrsave register (spr 256) in another register for
784 later manipulation, or load a register into the vrsave
785 register. 2 instructions are used: mfvrsave and
786 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
787 and mtspr SPR256, Rn. */
788 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
789 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
790 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
791 {
792 vrsave_reg = GET_SRC_REG (op);
793 continue;
794 }
795 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
796 {
797 continue;
798 }
799 /* Store the register where vrsave was saved to onto the stack:
800 rS is the register where vrsave was stored in a previous
801 instruction. */
802 /* 100100 sssss 00001 dddddddd dddddddd */
803 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
804 {
805 if (vrsave_reg == GET_SRC_REG (op))
806 {
807 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
808 vrsave_reg = -1;
809 }
810 continue;
811 }
812 /* Compute the new value of vrsave, by modifying the register
813 where vrsave was saved to. */
814 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
815 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
816 {
817 continue;
818 }
819 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
820 in a pair of insns to save the vector registers on the
821 stack. */
822 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
823 /* 001110 01110 00000 iiii iiii iiii iiii */
824 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
825 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c
EZ
826 {
827 li_found_pc = pc;
828 vr_saved_offset = SIGNED_SHORT (op);
829 }
830 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
831 /* 011111 sssss 11111 00000 00111001110 */
832 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
833 {
834 if (pc == (li_found_pc + 4))
835 {
836 vr_reg = GET_SRC_REG (op);
837 /* If this is the first vector reg to be saved, or if
838 it has a lower number than others previously seen,
839 reupdate the frame info. */
840 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
841 {
842 fdata->saved_vr = vr_reg;
843 fdata->vr_offset = vr_saved_offset + offset;
844 }
845 vr_saved_offset = -1;
846 vr_reg = -1;
847 li_found_pc = 0;
848 }
849 }
850 /* End AltiVec related instructions. */
96ff0de4
EZ
851
852 /* Start BookE related instructions. */
853 /* Store gen register S at (r31+uimm).
854 Any register less than r13 is volatile, so we don't care. */
855 /* 000100 sssss 11111 iiiii 01100100001 */
856 else if (arch_info->mach == bfd_mach_ppc_e500
857 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
858 {
859 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
860 {
861 unsigned int imm;
862 ev_reg = GET_SRC_REG (op);
863 imm = (op >> 11) & 0x1f;
864 ev_offset = imm * 8;
865 /* If this is the first vector reg to be saved, or if
866 it has a lower number than others previously seen,
867 reupdate the frame info. */
868 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
869 {
870 fdata->saved_ev = ev_reg;
871 fdata->ev_offset = ev_offset + offset;
872 }
873 }
874 continue;
875 }
876 /* Store gen register rS at (r1+rB). */
877 /* 000100 sssss 00001 bbbbb 01100100000 */
878 else if (arch_info->mach == bfd_mach_ppc_e500
879 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
880 {
881 if (pc == (li_found_pc + 4))
882 {
883 ev_reg = GET_SRC_REG (op);
884 /* If this is the first vector reg to be saved, or if
885 it has a lower number than others previously seen,
886 reupdate the frame info. */
887 /* We know the contents of rB from the previous instruction. */
888 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
889 {
890 fdata->saved_ev = ev_reg;
891 fdata->ev_offset = vr_saved_offset + offset;
892 }
893 vr_saved_offset = -1;
894 ev_reg = -1;
895 li_found_pc = 0;
896 }
897 continue;
898 }
899 /* Store gen register r31 at (rA+uimm). */
900 /* 000100 11111 aaaaa iiiii 01100100001 */
901 else if (arch_info->mach == bfd_mach_ppc_e500
902 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
903 {
904 /* Wwe know that the source register is 31 already, but
905 it can't hurt to compute it. */
906 ev_reg = GET_SRC_REG (op);
907 ev_offset = ((op >> 11) & 0x1f) * 8;
908 /* If this is the first vector reg to be saved, or if
909 it has a lower number than others previously seen,
910 reupdate the frame info. */
911 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
912 {
913 fdata->saved_ev = ev_reg;
914 fdata->ev_offset = ev_offset + offset;
915 }
916
917 continue;
918 }
919 /* Store gen register S at (r31+r0).
920 Store param on stack when offset from SP bigger than 4 bytes. */
921 /* 000100 sssss 11111 00000 01100100000 */
922 else if (arch_info->mach == bfd_mach_ppc_e500
923 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
924 {
925 if (pc == (li_found_pc + 4))
926 {
927 if ((op & 0x03e00000) >= 0x01a00000)
928 {
929 ev_reg = GET_SRC_REG (op);
930 /* If this is the first vector reg to be saved, or if
931 it has a lower number than others previously seen,
932 reupdate the frame info. */
933 /* We know the contents of r0 from the previous
934 instruction. */
935 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
936 {
937 fdata->saved_ev = ev_reg;
938 fdata->ev_offset = vr_saved_offset + offset;
939 }
940 ev_reg = -1;
941 }
942 vr_saved_offset = -1;
943 li_found_pc = 0;
944 continue;
945 }
946 }
947 /* End BookE related instructions. */
948
c5aa993b
JM
949 else
950 {
55d05f3b
KB
951 /* Not a recognized prologue instruction.
952 Handle optimizer code motions into the prologue by continuing
953 the search if we have no valid frame yet or if the return
954 address is not yet saved in the frame. */
955 if (fdata->frameless == 0
956 && (lr_reg == -1 || fdata->nosavedpc == 0))
957 break;
958
959 if (op == 0x4e800020 /* blr */
960 || op == 0x4e800420) /* bctr */
961 /* Do not scan past epilogue in frameless functions or
962 trampolines. */
963 break;
964 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 965 /* Never skip branches. */
55d05f3b
KB
966 break;
967
968 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
969 /* Do not scan too many insns, scanning insns is expensive with
970 remote targets. */
971 break;
972
973 /* Continue scanning. */
974 prev_insn_was_prologue_insn = 0;
975 continue;
c5aa993b 976 }
c906108c
SS
977 }
978
979#if 0
980/* I have problems with skipping over __main() that I need to address
981 * sometime. Previously, I used to use misc_function_vector which
982 * didn't work as well as I wanted to be. -MGO */
983
984 /* If the first thing after skipping a prolog is a branch to a function,
985 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 986 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 987 work before calling a function right after a prologue, thus we can
64366f1c 988 single out such gcc2 behaviour. */
c906108c 989
c906108c 990
c5aa993b
JM
991 if ((op & 0xfc000001) == 0x48000001)
992 { /* bl foo, an initializer function? */
993 op = read_memory_integer (pc + 4, 4);
994
995 if (op == 0x4def7b82)
996 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 997
64366f1c
EZ
998 /* Check and see if we are in main. If so, skip over this
999 initializer function as well. */
c906108c 1000
c5aa993b 1001 tmp = find_pc_misc_function (pc);
6314a349
AC
1002 if (tmp >= 0
1003 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
1004 return pc + 8;
1005 }
c906108c 1006 }
c906108c 1007#endif /* 0 */
c5aa993b
JM
1008
1009 fdata->offset = -fdata->offset;
ddb20c56 1010 return last_prologue_pc;
c906108c
SS
1011}
1012
1013
1014/*************************************************************************
f6077098 1015 Support for creating pushing a dummy frame into the stack, and popping
c906108c
SS
1016 frames, etc.
1017*************************************************************************/
1018
c906108c 1019
64366f1c 1020/* Pop the innermost frame, go back to the caller. */
c5aa993b 1021
c906108c 1022static void
7a78ae4e 1023rs6000_pop_frame (void)
c906108c 1024{
470d5666 1025 CORE_ADDR pc, lr, sp, prev_sp, addr; /* %pc, %lr, %sp */
c906108c
SS
1026 struct rs6000_framedata fdata;
1027 struct frame_info *frame = get_current_frame ();
470d5666 1028 int ii, wordsize;
c906108c
SS
1029
1030 pc = read_pc ();
c193f6ac 1031 sp = get_frame_base (frame);
c906108c 1032
bdd78e62 1033 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
8b36eed8
AC
1034 get_frame_base (frame),
1035 get_frame_base (frame)))
c906108c 1036 {
7a78ae4e
ND
1037 generic_pop_dummy_frame ();
1038 flush_cached_frames ();
1039 return;
c906108c
SS
1040 }
1041
1042 /* Make sure that all registers are valid. */
b8b527c5 1043 deprecated_read_register_bytes (0, NULL, DEPRECATED_REGISTER_BYTES);
c906108c 1044
64366f1c 1045 /* Figure out previous %pc value. If the function is frameless, it is
c906108c 1046 still in the link register, otherwise walk the frames and retrieve the
64366f1c 1047 saved %pc value in the previous frame. */
c906108c 1048
be41e9f4 1049 addr = get_frame_func (frame);
bdd78e62 1050 (void) skip_prologue (addr, get_frame_pc (frame), &fdata);
c906108c 1051
21283beb 1052 wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c
SS
1053 if (fdata.frameless)
1054 prev_sp = sp;
1055 else
7a78ae4e 1056 prev_sp = read_memory_addr (sp, wordsize);
c906108c 1057 if (fdata.lr_offset == 0)
2188cbdd 1058 lr = read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1059 else
7a78ae4e 1060 lr = read_memory_addr (prev_sp + fdata.lr_offset, wordsize);
c906108c
SS
1061
1062 /* reset %pc value. */
1063 write_register (PC_REGNUM, lr);
1064
64366f1c 1065 /* reset register values if any was saved earlier. */
c906108c
SS
1066
1067 if (fdata.saved_gpr != -1)
1068 {
1069 addr = prev_sp + fdata.gpr_offset;
c5aa993b
JM
1070 for (ii = fdata.saved_gpr; ii <= 31; ++ii)
1071 {
62700349 1072 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii)],
524d7c18 1073 wordsize);
7a78ae4e 1074 addr += wordsize;
c5aa993b 1075 }
c906108c
SS
1076 }
1077
1078 if (fdata.saved_fpr != -1)
1079 {
1080 addr = prev_sp + fdata.fpr_offset;
c5aa993b
JM
1081 for (ii = fdata.saved_fpr; ii <= 31; ++ii)
1082 {
62700349 1083 read_memory (addr, &deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + FP0_REGNUM)], 8);
c5aa993b
JM
1084 addr += 8;
1085 }
c906108c
SS
1086 }
1087
1088 write_register (SP_REGNUM, prev_sp);
1089 target_store_registers (-1);
1090 flush_cached_frames ();
1091}
1092
11269d7e
AC
1093/* All the ABI's require 16 byte alignment. */
1094static CORE_ADDR
1095rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1096{
1097 return (addr & -16);
1098}
1099
7a78ae4e 1100/* Pass the arguments in either registers, or in the stack. In RS/6000,
c906108c
SS
1101 the first eight words of the argument list (that might be less than
1102 eight parameters if some parameters occupy more than one word) are
7a78ae4e 1103 passed in r3..r10 registers. float and double parameters are
64366f1c
EZ
1104 passed in fpr's, in addition to that. Rest of the parameters if any
1105 are passed in user stack. There might be cases in which half of the
c906108c
SS
1106 parameter is copied into registers, the other half is pushed into
1107 stack.
1108
7a78ae4e
ND
1109 Stack must be aligned on 64-bit boundaries when synthesizing
1110 function calls.
1111
c906108c
SS
1112 If the function is returning a structure, then the return address is passed
1113 in r3, then the first 7 words of the parameters can be passed in registers,
64366f1c 1114 starting from r4. */
c906108c 1115
7a78ae4e 1116static CORE_ADDR
77b2b6d4
AC
1117rs6000_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
1118 struct regcache *regcache, CORE_ADDR bp_addr,
1119 int nargs, struct value **args, CORE_ADDR sp,
1120 int struct_return, CORE_ADDR struct_addr)
c906108c 1121{
7a41266b 1122 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c
SS
1123 int ii;
1124 int len = 0;
c5aa993b
JM
1125 int argno; /* current argument number */
1126 int argbytes; /* current argument byte */
1127 char tmp_buffer[50];
1128 int f_argno = 0; /* current floating point argno */
21283beb 1129 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1130
ea7c478f 1131 struct value *arg = 0;
c906108c
SS
1132 struct type *type;
1133
1134 CORE_ADDR saved_sp;
1135
64366f1c 1136 /* The first eight words of ther arguments are passed in registers.
7a41266b
AC
1137 Copy them appropriately. */
1138 ii = 0;
1139
1140 /* If the function is returning a `struct', then the first word
1141 (which will be passed in r3) is used for struct return address.
1142 In that case we should advance one word and start from r4
1143 register to copy parameters. */
1144 if (struct_return)
1145 {
1146 regcache_raw_write_unsigned (regcache, tdep->ppc_gp0_regnum + 3,
1147 struct_addr);
1148 ii++;
1149 }
c906108c
SS
1150
1151/*
c5aa993b
JM
1152 effectively indirect call... gcc does...
1153
1154 return_val example( float, int);
1155
1156 eabi:
1157 float in fp0, int in r3
1158 offset of stack on overflow 8/16
1159 for varargs, must go by type.
1160 power open:
1161 float in r3&r4, int in r5
1162 offset of stack on overflow different
1163 both:
1164 return in r3 or f0. If no float, must study how gcc emulates floats;
1165 pay attention to arg promotion.
1166 User may have to cast\args to handle promotion correctly
1167 since gdb won't know if prototype supplied or not.
1168 */
c906108c 1169
c5aa993b
JM
1170 for (argno = 0, argbytes = 0; argno < nargs && ii < 8; ++ii)
1171 {
12c266ea 1172 int reg_size = DEPRECATED_REGISTER_RAW_SIZE (ii + 3);
c5aa993b
JM
1173
1174 arg = args[argno];
1175 type = check_typedef (VALUE_TYPE (arg));
1176 len = TYPE_LENGTH (type);
1177
1178 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1179 {
1180
64366f1c 1181 /* Floating point arguments are passed in fpr's, as well as gpr's.
c5aa993b 1182 There are 13 fpr's reserved for passing parameters. At this point
64366f1c 1183 there is no way we would run out of them. */
c5aa993b
JM
1184
1185 if (len > 8)
1186 printf_unfiltered (
1187 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
1188
62700349 1189 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1190 VALUE_CONTENTS (arg),
1191 len);
1192 ++f_argno;
1193 }
1194
f6077098 1195 if (len > reg_size)
c5aa993b
JM
1196 {
1197
64366f1c 1198 /* Argument takes more than one register. */
c5aa993b
JM
1199 while (argbytes < len)
1200 {
62700349 1201 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0,
524d7c18 1202 reg_size);
62700349 1203 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)],
c5aa993b 1204 ((char *) VALUE_CONTENTS (arg)) + argbytes,
f6077098
KB
1205 (len - argbytes) > reg_size
1206 ? reg_size : len - argbytes);
1207 ++ii, argbytes += reg_size;
c5aa993b
JM
1208
1209 if (ii >= 8)
1210 goto ran_out_of_registers_for_arguments;
1211 }
1212 argbytes = 0;
1213 --ii;
1214 }
1215 else
64366f1c
EZ
1216 {
1217 /* Argument can fit in one register. No problem. */
d7449b42 1218 int adj = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? reg_size - len : 0;
62700349
AC
1219 memset (&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)], 0, reg_size);
1220 memcpy ((char *)&deprecated_registers[DEPRECATED_REGISTER_BYTE (ii + 3)] + adj,
f6077098 1221 VALUE_CONTENTS (arg), len);
c5aa993b
JM
1222 }
1223 ++argno;
c906108c 1224 }
c906108c
SS
1225
1226ran_out_of_registers_for_arguments:
1227
7a78ae4e 1228 saved_sp = read_sp ();
cc9836a8 1229
64366f1c 1230 /* Location for 8 parameters are always reserved. */
7a78ae4e 1231 sp -= wordsize * 8;
f6077098 1232
64366f1c 1233 /* Another six words for back chain, TOC register, link register, etc. */
7a78ae4e 1234 sp -= wordsize * 6;
f6077098 1235
64366f1c 1236 /* Stack pointer must be quadword aligned. */
7a78ae4e 1237 sp &= -16;
c906108c 1238
64366f1c
EZ
1239 /* If there are more arguments, allocate space for them in
1240 the stack, then push them starting from the ninth one. */
c906108c 1241
c5aa993b
JM
1242 if ((argno < nargs) || argbytes)
1243 {
1244 int space = 0, jj;
c906108c 1245
c5aa993b
JM
1246 if (argbytes)
1247 {
1248 space += ((len - argbytes + 3) & -4);
1249 jj = argno + 1;
1250 }
1251 else
1252 jj = argno;
c906108c 1253
c5aa993b
JM
1254 for (; jj < nargs; ++jj)
1255 {
ea7c478f 1256 struct value *val = args[jj];
c5aa993b
JM
1257 space += ((TYPE_LENGTH (VALUE_TYPE (val))) + 3) & -4;
1258 }
c906108c 1259
64366f1c 1260 /* Add location required for the rest of the parameters. */
f6077098 1261 space = (space + 15) & -16;
c5aa993b 1262 sp -= space;
c906108c 1263
7aea86e6
AC
1264 /* This is another instance we need to be concerned about
1265 securing our stack space. If we write anything underneath %sp
1266 (r1), we might conflict with the kernel who thinks he is free
1267 to use this area. So, update %sp first before doing anything
1268 else. */
1269
1270 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1271
64366f1c
EZ
1272 /* If the last argument copied into the registers didn't fit there
1273 completely, push the rest of it into stack. */
c906108c 1274
c5aa993b
JM
1275 if (argbytes)
1276 {
1277 write_memory (sp + 24 + (ii * 4),
1278 ((char *) VALUE_CONTENTS (arg)) + argbytes,
1279 len - argbytes);
1280 ++argno;
1281 ii += ((len - argbytes + 3) & -4) / 4;
1282 }
c906108c 1283
64366f1c 1284 /* Push the rest of the arguments into stack. */
c5aa993b
JM
1285 for (; argno < nargs; ++argno)
1286 {
c906108c 1287
c5aa993b
JM
1288 arg = args[argno];
1289 type = check_typedef (VALUE_TYPE (arg));
1290 len = TYPE_LENGTH (type);
c906108c
SS
1291
1292
64366f1c
EZ
1293 /* Float types should be passed in fpr's, as well as in the
1294 stack. */
c5aa993b
JM
1295 if (TYPE_CODE (type) == TYPE_CODE_FLT && f_argno < 13)
1296 {
c906108c 1297
c5aa993b
JM
1298 if (len > 8)
1299 printf_unfiltered (
1300 "Fatal Error: a floating point parameter #%d with a size > 8 is found!\n", argno);
c906108c 1301
62700349 1302 memcpy (&deprecated_registers[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1 + f_argno)],
c5aa993b
JM
1303 VALUE_CONTENTS (arg),
1304 len);
1305 ++f_argno;
1306 }
c906108c 1307
c5aa993b
JM
1308 write_memory (sp + 24 + (ii * 4), (char *) VALUE_CONTENTS (arg), len);
1309 ii += ((len + 3) & -4) / 4;
1310 }
c906108c 1311 }
c906108c 1312
69517000 1313 /* Set the stack pointer. According to the ABI, the SP is meant to
7aea86e6
AC
1314 be set _before_ the corresponding stack space is used. On AIX,
1315 this even applies when the target has been completely stopped!
1316 Not doing this can lead to conflicts with the kernel which thinks
1317 that it still has control over this not-yet-allocated stack
1318 region. */
33a7c2fc
AC
1319 regcache_raw_write_signed (regcache, SP_REGNUM, sp);
1320
7aea86e6
AC
1321 /* Set back chain properly. */
1322 store_unsigned_integer (tmp_buffer, 4, saved_sp);
1323 write_memory (sp, tmp_buffer, 4);
1324
e56a0ecc
AC
1325 /* Point the inferior function call's return address at the dummy's
1326 breakpoint. */
1327 regcache_raw_write_signed (regcache, tdep->ppc_lr_regnum, bp_addr);
1328
794a477a
AC
1329 /* Set the TOC register, get the value from the objfile reader
1330 which, in turn, gets it from the VMAP table. */
1331 if (rs6000_find_toc_address_hook != NULL)
1332 {
1333 CORE_ADDR tocvalue = (*rs6000_find_toc_address_hook) (func_addr);
1334 regcache_raw_write_signed (regcache, tdep->ppc_toc_regnum, tocvalue);
1335 }
1336
c906108c
SS
1337 target_store_registers (-1);
1338 return sp;
1339}
c906108c 1340
b9ff3018
AC
1341/* PowerOpen always puts structures in memory. Vectors, which were
1342 added later, do get returned in a register though. */
1343
1344static int
1345rs6000_use_struct_convention (int gcc_p, struct type *value_type)
1346{
1347 if ((TYPE_LENGTH (value_type) == 16 || TYPE_LENGTH (value_type) == 8)
1348 && TYPE_VECTOR (value_type))
1349 return 0;
1350 return 1;
1351}
1352
7a78ae4e
ND
1353static void
1354rs6000_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
c906108c
SS
1355{
1356 int offset = 0;
ace1378a 1357 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
c906108c 1358
c5aa993b
JM
1359 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1360 {
c906108c 1361
c5aa993b
JM
1362 double dd;
1363 float ff;
1364 /* floats and doubles are returned in fpr1. fpr's have a size of 8 bytes.
1365 We need to truncate the return value into float size (4 byte) if
64366f1c 1366 necessary. */
c906108c 1367
c5aa993b
JM
1368 if (TYPE_LENGTH (valtype) > 4) /* this is a double */
1369 memcpy (valbuf,
62700349 1370 &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)],
c5aa993b
JM
1371 TYPE_LENGTH (valtype));
1372 else
1373 { /* float */
62700349 1374 memcpy (&dd, &regbuf[DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1)], 8);
c5aa993b
JM
1375 ff = (float) dd;
1376 memcpy (valbuf, &ff, sizeof (float));
1377 }
1378 }
ace1378a
EZ
1379 else if (TYPE_CODE (valtype) == TYPE_CODE_ARRAY
1380 && TYPE_LENGTH (valtype) == 16
1381 && TYPE_VECTOR (valtype))
1382 {
62700349 1383 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
ace1378a
EZ
1384 TYPE_LENGTH (valtype));
1385 }
c5aa993b
JM
1386 else
1387 {
1388 /* return value is copied starting from r3. */
d7449b42 1389 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
12c266ea
AC
1390 && TYPE_LENGTH (valtype) < DEPRECATED_REGISTER_RAW_SIZE (3))
1391 offset = DEPRECATED_REGISTER_RAW_SIZE (3) - TYPE_LENGTH (valtype);
c5aa993b
JM
1392
1393 memcpy (valbuf,
62700349 1394 regbuf + DEPRECATED_REGISTER_BYTE (3) + offset,
c906108c 1395 TYPE_LENGTH (valtype));
c906108c 1396 }
c906108c
SS
1397}
1398
977adac5
ND
1399/* Return whether handle_inferior_event() should proceed through code
1400 starting at PC in function NAME when stepping.
1401
1402 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
1403 handle memory references that are too distant to fit in instructions
1404 generated by the compiler. For example, if 'foo' in the following
1405 instruction:
1406
1407 lwz r9,foo(r2)
1408
1409 is greater than 32767, the linker might replace the lwz with a branch to
1410 somewhere in @FIX1 that does the load in 2 instructions and then branches
1411 back to where execution should continue.
1412
1413 GDB should silently step over @FIX code, just like AIX dbx does.
1414 Unfortunately, the linker uses the "b" instruction for the branches,
1415 meaning that the link register doesn't get set. Therefore, GDB's usual
1416 step_over_function() mechanism won't work.
1417
1418 Instead, use the IN_SOLIB_RETURN_TRAMPOLINE and SKIP_TRAMPOLINE_CODE hooks
1419 in handle_inferior_event() to skip past @FIX code. */
1420
1421int
1422rs6000_in_solib_return_trampoline (CORE_ADDR pc, char *name)
1423{
1424 return name && !strncmp (name, "@FIX", 4);
1425}
1426
1427/* Skip code that the user doesn't want to see when stepping:
1428
1429 1. Indirect function calls use a piece of trampoline code to do context
1430 switching, i.e. to set the new TOC table. Skip such code if we are on
1431 its first instruction (as when we have single-stepped to here).
1432
1433 2. Skip shared library trampoline code (which is different from
c906108c 1434 indirect function call trampolines).
977adac5
ND
1435
1436 3. Skip bigtoc fixup code.
1437
c906108c 1438 Result is desired PC to step until, or NULL if we are not in
977adac5 1439 code that should be skipped. */
c906108c
SS
1440
1441CORE_ADDR
7a78ae4e 1442rs6000_skip_trampoline_code (CORE_ADDR pc)
c906108c 1443{
52f0bd74 1444 unsigned int ii, op;
977adac5 1445 int rel;
c906108c 1446 CORE_ADDR solib_target_pc;
977adac5 1447 struct minimal_symbol *msymbol;
c906108c 1448
c5aa993b
JM
1449 static unsigned trampoline_code[] =
1450 {
1451 0x800b0000, /* l r0,0x0(r11) */
1452 0x90410014, /* st r2,0x14(r1) */
1453 0x7c0903a6, /* mtctr r0 */
1454 0x804b0004, /* l r2,0x4(r11) */
1455 0x816b0008, /* l r11,0x8(r11) */
1456 0x4e800420, /* bctr */
1457 0x4e800020, /* br */
1458 0
c906108c
SS
1459 };
1460
977adac5
ND
1461 /* Check for bigtoc fixup code. */
1462 msymbol = lookup_minimal_symbol_by_pc (pc);
22abf04a 1463 if (msymbol && rs6000_in_solib_return_trampoline (pc, DEPRECATED_SYMBOL_NAME (msymbol)))
977adac5
ND
1464 {
1465 /* Double-check that the third instruction from PC is relative "b". */
1466 op = read_memory_integer (pc + 8, 4);
1467 if ((op & 0xfc000003) == 0x48000000)
1468 {
1469 /* Extract bits 6-29 as a signed 24-bit relative word address and
1470 add it to the containing PC. */
1471 rel = ((int)(op << 6) >> 6);
1472 return pc + 8 + rel;
1473 }
1474 }
1475
c906108c
SS
1476 /* If pc is in a shared library trampoline, return its target. */
1477 solib_target_pc = find_solib_trampoline_target (pc);
1478 if (solib_target_pc)
1479 return solib_target_pc;
1480
c5aa993b
JM
1481 for (ii = 0; trampoline_code[ii]; ++ii)
1482 {
1483 op = read_memory_integer (pc + (ii * 4), 4);
1484 if (op != trampoline_code[ii])
1485 return 0;
1486 }
1487 ii = read_register (11); /* r11 holds destination addr */
21283beb 1488 pc = read_memory_addr (ii, gdbarch_tdep (current_gdbarch)->wordsize); /* (r11) value */
c906108c
SS
1489 return pc;
1490}
1491
1492/* Determines whether the function FI has a frame on the stack or not. */
1493
9aa1e687 1494int
c877c8e6 1495rs6000_frameless_function_invocation (struct frame_info *fi)
c906108c
SS
1496{
1497 CORE_ADDR func_start;
1498 struct rs6000_framedata fdata;
1499
1500 /* Don't even think about framelessness except on the innermost frame
1501 or if the function was interrupted by a signal. */
75e3c1f9
AC
1502 if (get_next_frame (fi) != NULL
1503 && !(get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
c906108c 1504 return 0;
c5aa993b 1505
be41e9f4 1506 func_start = get_frame_func (fi);
c906108c
SS
1507
1508 /* If we failed to find the start of the function, it is a mistake
64366f1c 1509 to inspect the instructions. */
c906108c
SS
1510
1511 if (!func_start)
1512 {
1513 /* A frame with a zero PC is usually created by dereferencing a NULL
c5aa993b 1514 function pointer, normally causing an immediate core dump of the
64366f1c 1515 inferior. Mark function as frameless, as the inferior has no chance
c5aa993b 1516 of setting up a stack frame. */
bdd78e62 1517 if (get_frame_pc (fi) == 0)
c906108c
SS
1518 return 1;
1519 else
1520 return 0;
1521 }
1522
bdd78e62 1523 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c
SS
1524 return fdata.frameless;
1525}
1526
64366f1c 1527/* Return the PC saved in a frame. */
c906108c 1528
9aa1e687 1529CORE_ADDR
c877c8e6 1530rs6000_frame_saved_pc (struct frame_info *fi)
c906108c
SS
1531{
1532 CORE_ADDR func_start;
1533 struct rs6000_framedata fdata;
21283beb 1534 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
a88376a3 1535 int wordsize = tdep->wordsize;
c906108c 1536
5a203e44 1537 if ((get_frame_type (fi) == SIGTRAMP_FRAME))
8b36eed8
AC
1538 return read_memory_addr (get_frame_base (fi) + SIG_FRAME_PC_OFFSET,
1539 wordsize);
c906108c 1540
bdd78e62 1541 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (fi),
8b36eed8
AC
1542 get_frame_base (fi),
1543 get_frame_base (fi)))
bdd78e62 1544 return deprecated_read_register_dummy (get_frame_pc (fi),
8b36eed8 1545 get_frame_base (fi), PC_REGNUM);
c906108c 1546
be41e9f4 1547 func_start = get_frame_func (fi);
c906108c
SS
1548
1549 /* If we failed to find the start of the function, it is a mistake
64366f1c 1550 to inspect the instructions. */
c906108c
SS
1551 if (!func_start)
1552 return 0;
1553
bdd78e62 1554 (void) skip_prologue (func_start, get_frame_pc (fi), &fdata);
c906108c 1555
75e3c1f9 1556 if (fdata.lr_offset == 0 && get_next_frame (fi) != NULL)
c906108c 1557 {
75e3c1f9 1558 if ((get_frame_type (get_next_frame (fi)) == SIGTRAMP_FRAME))
8b36eed8
AC
1559 return read_memory_addr ((get_frame_base (get_next_frame (fi))
1560 + SIG_FRAME_LR_OFFSET),
7a78ae4e 1561 wordsize);
bdd78e62 1562 else if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (get_next_frame (fi)), 0, 0))
8b69000d
AC
1563 /* The link register wasn't saved by this frame and the next
1564 (inner, newer) frame is a dummy. Get the link register
1565 value by unwinding it from that [dummy] frame. */
1566 {
1567 ULONGEST lr;
1568 frame_unwind_unsigned_register (get_next_frame (fi),
1569 tdep->ppc_lr_regnum, &lr);
1570 return lr;
1571 }
c906108c 1572 else
618ce49f
AC
1573 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi)
1574 + tdep->lr_frame_offset,
7a78ae4e 1575 wordsize);
c906108c
SS
1576 }
1577
1578 if (fdata.lr_offset == 0)
2188cbdd 1579 return read_register (gdbarch_tdep (current_gdbarch)->ppc_lr_regnum);
c906108c 1580
618ce49f
AC
1581 return read_memory_addr (DEPRECATED_FRAME_CHAIN (fi) + fdata.lr_offset,
1582 wordsize);
c906108c
SS
1583}
1584
1585/* If saved registers of frame FI are not known yet, read and cache them.
1586 &FDATAP contains rs6000_framedata; TDATAP can be NULL,
1587 in which case the framedata are read. */
1588
1589static void
7a78ae4e 1590frame_get_saved_regs (struct frame_info *fi, struct rs6000_framedata *fdatap)
c906108c 1591{
c5aa993b 1592 CORE_ADDR frame_addr;
c906108c 1593 struct rs6000_framedata work_fdata;
6be8bc0c
EZ
1594 struct gdbarch_tdep * tdep = gdbarch_tdep (current_gdbarch);
1595 int wordsize = tdep->wordsize;
c906108c 1596
1b1d3794 1597 if (deprecated_get_frame_saved_regs (fi))
c906108c 1598 return;
c5aa993b 1599
c906108c
SS
1600 if (fdatap == NULL)
1601 {
1602 fdatap = &work_fdata;
be41e9f4 1603 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), fdatap);
c906108c
SS
1604 }
1605
1606 frame_saved_regs_zalloc (fi);
1607
1608 /* If there were any saved registers, figure out parent's stack
64366f1c 1609 pointer. */
c906108c 1610 /* The following is true only if the frame doesn't have a call to
64366f1c 1611 alloca(), FIXME. */
c906108c 1612
6be8bc0c
EZ
1613 if (fdatap->saved_fpr == 0
1614 && fdatap->saved_gpr == 0
1615 && fdatap->saved_vr == 0
96ff0de4 1616 && fdatap->saved_ev == 0
6be8bc0c
EZ
1617 && fdatap->lr_offset == 0
1618 && fdatap->cr_offset == 0
96ff0de4
EZ
1619 && fdatap->vr_offset == 0
1620 && fdatap->ev_offset == 0)
c906108c 1621 frame_addr = 0;
c906108c 1622 else
bf75c8c1
AC
1623 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
1624 address of the current frame. Things might be easier if the
1625 ->frame pointed to the outer-most address of the frame. In the
1626 mean time, the address of the prev frame is used as the base
1627 address of this frame. */
618ce49f 1628 frame_addr = DEPRECATED_FRAME_CHAIN (fi);
c5aa993b 1629
c906108c
SS
1630 /* if != -1, fdatap->saved_fpr is the smallest number of saved_fpr.
1631 All fpr's from saved_fpr to fp31 are saved. */
1632
1633 if (fdatap->saved_fpr >= 0)
1634 {
1635 int i;
7a78ae4e 1636 CORE_ADDR fpr_addr = frame_addr + fdatap->fpr_offset;
c906108c
SS
1637 for (i = fdatap->saved_fpr; i < 32; i++)
1638 {
1b1d3794 1639 deprecated_get_frame_saved_regs (fi)[FP0_REGNUM + i] = fpr_addr;
7a78ae4e 1640 fpr_addr += 8;
c906108c
SS
1641 }
1642 }
1643
1644 /* if != -1, fdatap->saved_gpr is the smallest number of saved_gpr.
1645 All gpr's from saved_gpr to gpr31 are saved. */
1646
1647 if (fdatap->saved_gpr >= 0)
1648 {
1649 int i;
7a78ae4e 1650 CORE_ADDR gpr_addr = frame_addr + fdatap->gpr_offset;
c906108c
SS
1651 for (i = fdatap->saved_gpr; i < 32; i++)
1652 {
1b1d3794 1653 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = gpr_addr;
7a78ae4e 1654 gpr_addr += wordsize;
c906108c
SS
1655 }
1656 }
1657
6be8bc0c
EZ
1658 /* if != -1, fdatap->saved_vr is the smallest number of saved_vr.
1659 All vr's from saved_vr to vr31 are saved. */
1660 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
1661 {
1662 if (fdatap->saved_vr >= 0)
1663 {
1664 int i;
1665 CORE_ADDR vr_addr = frame_addr + fdatap->vr_offset;
1666 for (i = fdatap->saved_vr; i < 32; i++)
1667 {
1b1d3794 1668 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vr0_regnum + i] = vr_addr;
12c266ea 1669 vr_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_vr0_regnum);
6be8bc0c
EZ
1670 }
1671 }
1672 }
1673
96ff0de4
EZ
1674 /* if != -1, fdatap->saved_ev is the smallest number of saved_ev.
1675 All vr's from saved_ev to ev31 are saved. ????? */
1676 if (tdep->ppc_ev0_regnum != -1 && tdep->ppc_ev31_regnum != -1)
1677 {
1678 if (fdatap->saved_ev >= 0)
1679 {
1680 int i;
1681 CORE_ADDR ev_addr = frame_addr + fdatap->ev_offset;
1682 for (i = fdatap->saved_ev; i < 32; i++)
1683 {
1b1d3794
AC
1684 deprecated_get_frame_saved_regs (fi)[tdep->ppc_ev0_regnum + i] = ev_addr;
1685 deprecated_get_frame_saved_regs (fi)[tdep->ppc_gp0_regnum + i] = ev_addr + 4;
12c266ea 1686 ev_addr += DEPRECATED_REGISTER_RAW_SIZE (tdep->ppc_ev0_regnum);
96ff0de4
EZ
1687 }
1688 }
1689 }
1690
c906108c
SS
1691 /* If != 0, fdatap->cr_offset is the offset from the frame that holds
1692 the CR. */
1693 if (fdatap->cr_offset != 0)
1b1d3794 1694 deprecated_get_frame_saved_regs (fi)[tdep->ppc_cr_regnum] = frame_addr + fdatap->cr_offset;
c906108c
SS
1695
1696 /* If != 0, fdatap->lr_offset is the offset from the frame that holds
1697 the LR. */
1698 if (fdatap->lr_offset != 0)
1b1d3794 1699 deprecated_get_frame_saved_regs (fi)[tdep->ppc_lr_regnum] = frame_addr + fdatap->lr_offset;
6be8bc0c
EZ
1700
1701 /* If != 0, fdatap->vrsave_offset is the offset from the frame that holds
1702 the VRSAVE. */
1703 if (fdatap->vrsave_offset != 0)
1b1d3794 1704 deprecated_get_frame_saved_regs (fi)[tdep->ppc_vrsave_regnum] = frame_addr + fdatap->vrsave_offset;
c906108c
SS
1705}
1706
1707/* Return the address of a frame. This is the inital %sp value when the frame
64366f1c
EZ
1708 was first allocated. For functions calling alloca(), it might be saved in
1709 an alloca register. */
c906108c
SS
1710
1711static CORE_ADDR
7a78ae4e 1712frame_initial_stack_address (struct frame_info *fi)
c906108c
SS
1713{
1714 CORE_ADDR tmpaddr;
1715 struct rs6000_framedata fdata;
1716 struct frame_info *callee_fi;
1717
64366f1c
EZ
1718 /* If the initial stack pointer (frame address) of this frame is known,
1719 just return it. */
c906108c 1720
c9012c71
AC
1721 if (get_frame_extra_info (fi)->initial_sp)
1722 return get_frame_extra_info (fi)->initial_sp;
c906108c 1723
64366f1c 1724 /* Find out if this function is using an alloca register. */
c906108c 1725
be41e9f4 1726 (void) skip_prologue (get_frame_func (fi), get_frame_pc (fi), &fdata);
c906108c 1727
64366f1c
EZ
1728 /* If saved registers of this frame are not known yet, read and
1729 cache them. */
c906108c 1730
1b1d3794 1731 if (!deprecated_get_frame_saved_regs (fi))
c906108c
SS
1732 frame_get_saved_regs (fi, &fdata);
1733
1734 /* If no alloca register used, then fi->frame is the value of the %sp for
64366f1c 1735 this frame, and it is good enough. */
c906108c
SS
1736
1737 if (fdata.alloca_reg < 0)
1738 {
c9012c71
AC
1739 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
1740 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1741 }
1742
953836b2
AC
1743 /* There is an alloca register, use its value, in the current frame,
1744 as the initial stack pointer. */
1745 {
d9d9c31f 1746 char tmpbuf[MAX_REGISTER_SIZE];
953836b2
AC
1747 if (frame_register_read (fi, fdata.alloca_reg, tmpbuf))
1748 {
c9012c71 1749 get_frame_extra_info (fi)->initial_sp
953836b2 1750 = extract_unsigned_integer (tmpbuf,
12c266ea 1751 DEPRECATED_REGISTER_RAW_SIZE (fdata.alloca_reg));
953836b2
AC
1752 }
1753 else
1754 /* NOTE: cagney/2002-04-17: At present the only time
1755 frame_register_read will fail is when the register isn't
1756 available. If that does happen, use the frame. */
c9012c71 1757 get_frame_extra_info (fi)->initial_sp = get_frame_base (fi);
953836b2 1758 }
c9012c71 1759 return get_frame_extra_info (fi)->initial_sp;
c906108c
SS
1760}
1761
7a78ae4e
ND
1762/* Describe the pointer in each stack frame to the previous stack frame
1763 (its caller). */
1764
618ce49f
AC
1765/* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and produces
1766 the frame's chain-pointer. */
7a78ae4e
ND
1767
1768/* In the case of the RS/6000, the frame's nominal address
1769 is the address of a 4-byte word containing the calling frame's address. */
1770
9aa1e687 1771CORE_ADDR
7a78ae4e 1772rs6000_frame_chain (struct frame_info *thisframe)
c906108c 1773{
7a78ae4e 1774 CORE_ADDR fp, fpp, lr;
21283beb 1775 int wordsize = gdbarch_tdep (current_gdbarch)->wordsize;
c906108c 1776
bdd78e62 1777 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
8b36eed8
AC
1778 get_frame_base (thisframe),
1779 get_frame_base (thisframe)))
9f3b7f07
AC
1780 /* A dummy frame always correctly chains back to the previous
1781 frame. */
8b36eed8 1782 return read_memory_addr (get_frame_base (thisframe), wordsize);
c906108c 1783
627b3ba2 1784 if (deprecated_inside_entry_file (get_frame_pc (thisframe))
bdd78e62 1785 || get_frame_pc (thisframe) == entry_point_address ())
c906108c
SS
1786 return 0;
1787
5a203e44 1788 if ((get_frame_type (thisframe) == SIGTRAMP_FRAME))
8b36eed8
AC
1789 fp = read_memory_addr (get_frame_base (thisframe) + SIG_FRAME_FP_OFFSET,
1790 wordsize);
75e3c1f9
AC
1791 else if (get_next_frame (thisframe) != NULL
1792 && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME)
19772a2c
AC
1793 && (DEPRECATED_FRAMELESS_FUNCTION_INVOCATION_P ()
1794 && DEPRECATED_FRAMELESS_FUNCTION_INVOCATION (thisframe)))
c906108c
SS
1795 /* A frameless function interrupted by a signal did not change the
1796 frame pointer. */
c193f6ac 1797 fp = get_frame_base (thisframe);
c906108c 1798 else
8b36eed8 1799 fp = read_memory_addr (get_frame_base (thisframe), wordsize);
7a78ae4e
ND
1800 return fp;
1801}
1802
1803/* Return the size of register REG when words are WORDSIZE bytes long. If REG
64366f1c 1804 isn't available with that word size, return 0. */
7a78ae4e
ND
1805
1806static int
1807regsize (const struct reg *reg, int wordsize)
1808{
1809 return wordsize == 8 ? reg->sz64 : reg->sz32;
1810}
1811
1812/* Return the name of register number N, or null if no such register exists
64366f1c 1813 in the current architecture. */
7a78ae4e 1814
fa88f677 1815static const char *
7a78ae4e
ND
1816rs6000_register_name (int n)
1817{
21283beb 1818 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1819 const struct reg *reg = tdep->regs + n;
1820
1821 if (!regsize (reg, tdep->wordsize))
1822 return NULL;
1823 return reg->name;
1824}
1825
1826/* Index within `registers' of the first byte of the space for
1827 register N. */
1828
1829static int
1830rs6000_register_byte (int n)
1831{
21283beb 1832 return gdbarch_tdep (current_gdbarch)->regoff[n];
7a78ae4e
ND
1833}
1834
1835/* Return the number of bytes of storage in the actual machine representation
64366f1c 1836 for register N if that register is available, else return 0. */
7a78ae4e
ND
1837
1838static int
1839rs6000_register_raw_size (int n)
1840{
21283beb 1841 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1842 const struct reg *reg = tdep->regs + n;
1843 return regsize (reg, tdep->wordsize);
1844}
1845
7a78ae4e
ND
1846/* Return the GDB type object for the "standard" data type
1847 of data in register N. */
1848
1849static struct type *
fba45db2 1850rs6000_register_virtual_type (int n)
7a78ae4e 1851{
21283beb 1852 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
7a78ae4e
ND
1853 const struct reg *reg = tdep->regs + n;
1854
1fcc0bb8
EZ
1855 if (reg->fpr)
1856 return builtin_type_double;
1857 else
1858 {
1859 int size = regsize (reg, tdep->wordsize);
1860 switch (size)
1861 {
449a5da4
AC
1862 case 0:
1863 return builtin_type_int0;
1864 case 4:
ed6edd9b 1865 return builtin_type_uint32;
1fcc0bb8 1866 case 8:
c8001721
EZ
1867 if (tdep->ppc_ev0_regnum <= n && n <= tdep->ppc_ev31_regnum)
1868 return builtin_type_vec64;
1869 else
ed6edd9b 1870 return builtin_type_uint64;
1fcc0bb8
EZ
1871 break;
1872 case 16:
08cf96df 1873 return builtin_type_vec128;
1fcc0bb8
EZ
1874 break;
1875 default:
449a5da4
AC
1876 internal_error (__FILE__, __LINE__, "Register %d size %d unknown",
1877 n, size);
1fcc0bb8
EZ
1878 }
1879 }
7a78ae4e
ND
1880}
1881
7a78ae4e
ND
1882/* Return whether register N requires conversion when moving from raw format
1883 to virtual format.
1884
1885 The register format for RS/6000 floating point registers is always
64366f1c 1886 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
1887
1888static int
1889rs6000_register_convertible (int n)
1890{
21283beb 1891 const struct reg *reg = gdbarch_tdep (current_gdbarch)->regs + n;
7a78ae4e
ND
1892 return reg->fpr;
1893}
1894
1895/* Convert data from raw format for register N in buffer FROM
64366f1c 1896 to virtual format with type TYPE in buffer TO. */
7a78ae4e
ND
1897
1898static void
1899rs6000_register_convert_to_virtual (int n, struct type *type,
1900 char *from, char *to)
1901{
12c266ea 1902 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a292a7a 1903 {
12c266ea 1904 double val = deprecated_extract_floating (from, DEPRECATED_REGISTER_RAW_SIZE (n));
f1908289 1905 deprecated_store_floating (to, TYPE_LENGTH (type), val);
7a78ae4e
ND
1906 }
1907 else
12c266ea 1908 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e
ND
1909}
1910
1911/* Convert data from virtual format with type TYPE in buffer FROM
64366f1c 1912 to raw format for register N in buffer TO. */
7a292a7a 1913
7a78ae4e
ND
1914static void
1915rs6000_register_convert_to_raw (struct type *type, int n,
781a750d 1916 const char *from, char *to)
7a78ae4e 1917{
12c266ea 1918 if (TYPE_LENGTH (type) != DEPRECATED_REGISTER_RAW_SIZE (n))
7a78ae4e 1919 {
f1908289 1920 double val = deprecated_extract_floating (from, TYPE_LENGTH (type));
12c266ea 1921 deprecated_store_floating (to, DEPRECATED_REGISTER_RAW_SIZE (n), val);
7a292a7a 1922 }
7a78ae4e 1923 else
12c266ea 1924 memcpy (to, from, DEPRECATED_REGISTER_RAW_SIZE (n));
7a78ae4e 1925}
c906108c 1926
c8001721
EZ
1927static void
1928e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1929 int reg_nr, void *buffer)
1930{
1931 int base_regnum;
1932 int offset = 0;
d9d9c31f 1933 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1934 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1935
1936 if (reg_nr >= tdep->ppc_gp0_regnum
1937 && reg_nr <= tdep->ppc_gplast_regnum)
1938 {
1939 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1940
1941 /* Build the value in the provided buffer. */
1942 /* Read the raw register of which this one is the lower portion. */
1943 regcache_raw_read (regcache, base_regnum, temp_buffer);
1944 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1945 offset = 4;
1946 memcpy ((char *) buffer, temp_buffer + offset, 4);
1947 }
1948}
1949
1950static void
1951e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1952 int reg_nr, const void *buffer)
1953{
1954 int base_regnum;
1955 int offset = 0;
d9d9c31f 1956 char temp_buffer[MAX_REGISTER_SIZE];
c8001721
EZ
1957 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1958
1959 if (reg_nr >= tdep->ppc_gp0_regnum
1960 && reg_nr <= tdep->ppc_gplast_regnum)
1961 {
1962 base_regnum = reg_nr - tdep->ppc_gp0_regnum + tdep->ppc_ev0_regnum;
1963 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
1964 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
1965 offset = 4;
1966
1967 /* Let's read the value of the base register into a temporary
1968 buffer, so that overwriting the last four bytes with the new
1969 value of the pseudo will leave the upper 4 bytes unchanged. */
1970 regcache_raw_read (regcache, base_regnum, temp_buffer);
1971
1972 /* Write as an 8 byte quantity. */
1973 memcpy (temp_buffer + offset, (char *) buffer, 4);
1974 regcache_raw_write (regcache, base_regnum, temp_buffer);
1975 }
1976}
1977
1978/* Convert a dwarf2 register number to a gdb REGNUM. */
1979static int
1980e500_dwarf2_reg_to_regnum (int num)
1981{
1982 int regnum;
1983 if (0 <= num && num <= 31)
1984 return num + gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum;
1985 else
1986 return num;
1987}
1988
2188cbdd 1989/* Convert a dbx stab register number (from `r' declaration) to a gdb
64366f1c 1990 REGNUM. */
2188cbdd
EZ
1991static int
1992rs6000_stab_reg_to_regnum (int num)
1993{
1994 int regnum;
1995 switch (num)
1996 {
1997 case 64:
1998 regnum = gdbarch_tdep (current_gdbarch)->ppc_mq_regnum;
1999 break;
2000 case 65:
2001 regnum = gdbarch_tdep (current_gdbarch)->ppc_lr_regnum;
2002 break;
2003 case 66:
2004 regnum = gdbarch_tdep (current_gdbarch)->ppc_ctr_regnum;
2005 break;
2006 case 76:
2007 regnum = gdbarch_tdep (current_gdbarch)->ppc_xer_regnum;
2008 break;
2009 default:
2010 regnum = num;
2011 break;
2012 }
2013 return regnum;
2014}
2015
7a78ae4e
ND
2016static void
2017rs6000_store_return_value (struct type *type, char *valbuf)
2018{
ace1378a
EZ
2019 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2020
7a78ae4e
ND
2021 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2022
2023 /* Floating point values are returned starting from FPR1 and up.
2024 Say a double_double_double type could be returned in
64366f1c 2025 FPR1/FPR2/FPR3 triple. */
7a78ae4e 2026
62700349 2027 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP0_REGNUM + 1), valbuf,
73937e03 2028 TYPE_LENGTH (type));
ace1378a
EZ
2029 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2030 {
2031 if (TYPE_LENGTH (type) == 16
2032 && TYPE_VECTOR (type))
62700349 2033 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (tdep->ppc_vr0_regnum + 2),
73937e03 2034 valbuf, TYPE_LENGTH (type));
ace1378a 2035 }
7a78ae4e 2036 else
64366f1c 2037 /* Everything else is returned in GPR3 and up. */
62700349 2038 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (gdbarch_tdep (current_gdbarch)->ppc_gp0_regnum + 3),
73937e03 2039 valbuf, TYPE_LENGTH (type));
7a78ae4e
ND
2040}
2041
2042/* Extract from an array REGBUF containing the (raw) register state
2043 the address in which a function should return its structure value,
2044 as a CORE_ADDR (or an expression that can be used as one). */
2045
2046static CORE_ADDR
11269d7e
AC
2047rs6000_extract_struct_value_address (struct regcache *regcache)
2048{
2049 /* FIXME: cagney/2002-09-26: PR gdb/724: When making an inferior
2050 function call GDB knows the address of the struct return value
2051 and hence, should not need to call this function. Unfortunately,
e8a8712a
AC
2052 the current call_function_by_hand() code only saves the most
2053 recent struct address leading to occasional calls. The code
2054 should instead maintain a stack of such addresses (in the dummy
2055 frame object). */
11269d7e
AC
2056 /* NOTE: cagney/2002-09-26: Return 0 which indicates that we've
2057 really got no idea where the return value is being stored. While
2058 r3, on function entry, contained the address it will have since
2059 been reused (scratch) and hence wouldn't be valid */
2060 return 0;
7a78ae4e
ND
2061}
2062
64366f1c 2063/* Hook called when a new child process is started. */
7a78ae4e
ND
2064
2065void
2066rs6000_create_inferior (int pid)
2067{
2068 if (rs6000_set_host_arch_hook)
2069 rs6000_set_host_arch_hook (pid);
c906108c
SS
2070}
2071\f
e2d0e7eb 2072/* Support for CONVERT_FROM_FUNC_PTR_ADDR (ARCH, ADDR, TARG).
7a78ae4e
ND
2073
2074 Usually a function pointer's representation is simply the address
2075 of the function. On the RS/6000 however, a function pointer is
2076 represented by a pointer to a TOC entry. This TOC entry contains
2077 three words, the first word is the address of the function, the
2078 second word is the TOC pointer (r2), and the third word is the
2079 static chain value. Throughout GDB it is currently assumed that a
2080 function pointer contains the address of the function, which is not
2081 easy to fix. In addition, the conversion of a function address to
2082 a function pointer would require allocation of a TOC entry in the
2083 inferior's memory space, with all its drawbacks. To be able to
2084 call C++ virtual methods in the inferior (which are called via
f517ea4e 2085 function pointers), find_function_addr uses this function to get the
7a78ae4e
ND
2086 function address from a function pointer. */
2087
f517ea4e
PS
2088/* Return real function address if ADDR (a function pointer) is in the data
2089 space and is therefore a special function pointer. */
c906108c 2090
b9362cc7 2091static CORE_ADDR
e2d0e7eb
AC
2092rs6000_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
2093 CORE_ADDR addr,
2094 struct target_ops *targ)
c906108c
SS
2095{
2096 struct obj_section *s;
2097
2098 s = find_pc_section (addr);
2099 if (s && s->the_bfd_section->flags & SEC_CODE)
7a78ae4e 2100 return addr;
c906108c 2101
7a78ae4e 2102 /* ADDR is in the data space, so it's a special function pointer. */
21283beb 2103 return read_memory_addr (addr, gdbarch_tdep (current_gdbarch)->wordsize);
c906108c 2104}
c906108c 2105\f
c5aa993b 2106
7a78ae4e 2107/* Handling the various POWER/PowerPC variants. */
c906108c
SS
2108
2109
7a78ae4e
ND
2110/* The arrays here called registers_MUMBLE hold information about available
2111 registers.
c906108c
SS
2112
2113 For each family of PPC variants, I've tried to isolate out the
2114 common registers and put them up front, so that as long as you get
2115 the general family right, GDB will correctly identify the registers
2116 common to that family. The common register sets are:
2117
2118 For the 60x family: hid0 hid1 iabr dabr pir
2119
2120 For the 505 and 860 family: eie eid nri
2121
2122 For the 403 and 403GC: icdbdr esr dear evpr cdbcr tsr tcr pit tbhi
c5aa993b
JM
2123 tblo srr2 srr3 dbsr dbcr iac1 iac2 dac1 dac2 dccr iccr pbl1
2124 pbu1 pbl2 pbu2
c906108c
SS
2125
2126 Most of these register groups aren't anything formal. I arrived at
2127 them by looking at the registers that occurred in more than one
6f5987a6
KB
2128 processor.
2129
2130 Note: kevinb/2002-04-30: Support for the fpscr register was added
2131 during April, 2002. Slot 70 is being used for PowerPC and slot 71
2132 for Power. For PowerPC, slot 70 was unused and was already in the
2133 PPC_UISA_SPRS which is ideally where fpscr should go. For Power,
2134 slot 70 was being used for "mq", so the next available slot (71)
2135 was chosen. It would have been nice to be able to make the
2136 register numbers the same across processor cores, but this wasn't
2137 possible without either 1) renumbering some registers for some
2138 processors or 2) assigning fpscr to a really high slot that's
2139 larger than any current register number. Doing (1) is bad because
2140 existing stubs would break. Doing (2) is undesirable because it
2141 would introduce a really large gap between fpscr and the rest of
2142 the registers for most processors. */
7a78ae4e 2143
64366f1c 2144/* Convenience macros for populating register arrays. */
7a78ae4e 2145
64366f1c 2146/* Within another macro, convert S to a string. */
7a78ae4e
ND
2147
2148#define STR(s) #s
2149
2150/* Return a struct reg defining register NAME that's 32 bits on 32-bit systems
64366f1c 2151 and 64 bits on 64-bit systems. */
489461e2 2152#define R(name) { STR(name), 4, 8, 0, 0 }
7a78ae4e
ND
2153
2154/* Return a struct reg defining register NAME that's 32 bits on all
64366f1c 2155 systems. */
489461e2 2156#define R4(name) { STR(name), 4, 4, 0, 0 }
7a78ae4e
ND
2157
2158/* Return a struct reg defining register NAME that's 64 bits on all
64366f1c 2159 systems. */
489461e2 2160#define R8(name) { STR(name), 8, 8, 0, 0 }
7a78ae4e 2161
1fcc0bb8 2162/* Return a struct reg defining register NAME that's 128 bits on all
64366f1c 2163 systems. */
489461e2 2164#define R16(name) { STR(name), 16, 16, 0, 0 }
1fcc0bb8 2165
64366f1c 2166/* Return a struct reg defining floating-point register NAME. */
489461e2
EZ
2167#define F(name) { STR(name), 8, 8, 1, 0 }
2168
64366f1c 2169/* Return a struct reg defining a pseudo register NAME. */
489461e2 2170#define P(name) { STR(name), 4, 8, 0, 1}
7a78ae4e
ND
2171
2172/* Return a struct reg defining register NAME that's 32 bits on 32-bit
64366f1c 2173 systems and that doesn't exist on 64-bit systems. */
489461e2 2174#define R32(name) { STR(name), 4, 0, 0, 0 }
7a78ae4e
ND
2175
2176/* Return a struct reg defining register NAME that's 64 bits on 64-bit
64366f1c 2177 systems and that doesn't exist on 32-bit systems. */
489461e2 2178#define R64(name) { STR(name), 0, 8, 0, 0 }
7a78ae4e 2179
64366f1c 2180/* Return a struct reg placeholder for a register that doesn't exist. */
489461e2 2181#define R0 { 0, 0, 0, 0, 0 }
7a78ae4e
ND
2182
2183/* UISA registers common across all architectures, including POWER. */
2184
2185#define COMMON_UISA_REGS \
2186 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2187 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2188 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2189 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2190 /* 32 */ F(f0), F(f1), F(f2), F(f3), F(f4), F(f5), F(f6), F(f7), \
2191 /* 40 */ F(f8), F(f9), F(f10),F(f11),F(f12),F(f13),F(f14),F(f15), \
2192 /* 48 */ F(f16),F(f17),F(f18),F(f19),F(f20),F(f21),F(f22),F(f23), \
2193 /* 56 */ F(f24),F(f25),F(f26),F(f27),F(f28),F(f29),F(f30),F(f31), \
2194 /* 64 */ R(pc), R(ps)
2195
ebeac11a
EZ
2196#define COMMON_UISA_NOFP_REGS \
2197 /* 0 */ R(r0), R(r1), R(r2), R(r3), R(r4), R(r5), R(r6), R(r7), \
2198 /* 8 */ R(r8), R(r9), R(r10),R(r11),R(r12),R(r13),R(r14),R(r15), \
2199 /* 16 */ R(r16),R(r17),R(r18),R(r19),R(r20),R(r21),R(r22),R(r23), \
2200 /* 24 */ R(r24),R(r25),R(r26),R(r27),R(r28),R(r29),R(r30),R(r31), \
2201 /* 32 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2202 /* 40 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2203 /* 48 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2204 /* 56 */ R0, R0, R0, R0, R0, R0, R0, R0, \
2205 /* 64 */ R(pc), R(ps)
2206
7a78ae4e
ND
2207/* UISA-level SPRs for PowerPC. */
2208#define PPC_UISA_SPRS \
e3f36dbd 2209 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R4(fpscr)
7a78ae4e 2210
c8001721
EZ
2211/* UISA-level SPRs for PowerPC without floating point support. */
2212#define PPC_UISA_NOFP_SPRS \
2213 /* 66 */ R4(cr), R(lr), R(ctr), R4(xer), R0
2214
7a78ae4e
ND
2215/* Segment registers, for PowerPC. */
2216#define PPC_SEGMENT_REGS \
2217 /* 71 */ R32(sr0), R32(sr1), R32(sr2), R32(sr3), \
2218 /* 75 */ R32(sr4), R32(sr5), R32(sr6), R32(sr7), \
2219 /* 79 */ R32(sr8), R32(sr9), R32(sr10), R32(sr11), \
2220 /* 83 */ R32(sr12), R32(sr13), R32(sr14), R32(sr15)
2221
2222/* OEA SPRs for PowerPC. */
2223#define PPC_OEA_SPRS \
2224 /* 87 */ R4(pvr), \
2225 /* 88 */ R(ibat0u), R(ibat0l), R(ibat1u), R(ibat1l), \
2226 /* 92 */ R(ibat2u), R(ibat2l), R(ibat3u), R(ibat3l), \
2227 /* 96 */ R(dbat0u), R(dbat0l), R(dbat1u), R(dbat1l), \
2228 /* 100 */ R(dbat2u), R(dbat2l), R(dbat3u), R(dbat3l), \
2229 /* 104 */ R(sdr1), R64(asr), R(dar), R4(dsisr), \
2230 /* 108 */ R(sprg0), R(sprg1), R(sprg2), R(sprg3), \
2231 /* 112 */ R(srr0), R(srr1), R(tbl), R(tbu), \
2232 /* 116 */ R4(dec), R(dabr), R4(ear)
2233
64366f1c 2234/* AltiVec registers. */
1fcc0bb8
EZ
2235#define PPC_ALTIVEC_REGS \
2236 /*119*/R16(vr0), R16(vr1), R16(vr2), R16(vr3), R16(vr4), R16(vr5), R16(vr6), R16(vr7), \
2237 /*127*/R16(vr8), R16(vr9), R16(vr10),R16(vr11),R16(vr12),R16(vr13),R16(vr14),R16(vr15), \
2238 /*135*/R16(vr16),R16(vr17),R16(vr18),R16(vr19),R16(vr20),R16(vr21),R16(vr22),R16(vr23), \
2239 /*143*/R16(vr24),R16(vr25),R16(vr26),R16(vr27),R16(vr28),R16(vr29),R16(vr30),R16(vr31), \
2240 /*151*/R4(vscr), R4(vrsave)
2241
c8001721
EZ
2242/* Vectors of hi-lo general purpose registers. */
2243#define PPC_EV_REGS \
2244 /* 0*/R8(ev0), R8(ev1), R8(ev2), R8(ev3), R8(ev4), R8(ev5), R8(ev6), R8(ev7), \
2245 /* 8*/R8(ev8), R8(ev9), R8(ev10),R8(ev11),R8(ev12),R8(ev13),R8(ev14),R8(ev15), \
2246 /*16*/R8(ev16),R8(ev17),R8(ev18),R8(ev19),R8(ev20),R8(ev21),R8(ev22),R8(ev23), \
2247 /*24*/R8(ev24),R8(ev25),R8(ev26),R8(ev27),R8(ev28),R8(ev29),R8(ev30),R8(ev31)
2248
2249/* Lower half of the EV registers. */
2250#define PPC_GPRS_PSEUDO_REGS \
2251 /* 0 */ P(r0), P(r1), P(r2), P(r3), P(r4), P(r5), P(r6), P(r7), \
2252 /* 8 */ P(r8), P(r9), P(r10),P(r11),P(r12),P(r13),P(r14),P(r15), \
2253 /* 16 */ P(r16),P(r17),P(r18),P(r19),P(r20),P(r21),P(r22),P(r23), \
338ef23d 2254 /* 24 */ P(r24),P(r25),P(r26),P(r27),P(r28),P(r29),P(r30),P(r31)
c8001721 2255
7a78ae4e 2256/* IBM POWER (pre-PowerPC) architecture, user-level view. We only cover
64366f1c 2257 user-level SPR's. */
7a78ae4e 2258static const struct reg registers_power[] =
c906108c 2259{
7a78ae4e 2260 COMMON_UISA_REGS,
e3f36dbd
KB
2261 /* 66 */ R4(cnd), R(lr), R(cnt), R4(xer), R4(mq),
2262 /* 71 */ R4(fpscr)
c906108c
SS
2263};
2264
7a78ae4e 2265/* PowerPC UISA - a PPC processor as viewed by user-level code. A UISA-only
64366f1c 2266 view of the PowerPC. */
7a78ae4e 2267static const struct reg registers_powerpc[] =
c906108c 2268{
7a78ae4e 2269 COMMON_UISA_REGS,
1fcc0bb8
EZ
2270 PPC_UISA_SPRS,
2271 PPC_ALTIVEC_REGS
c906108c
SS
2272};
2273
ebeac11a
EZ
2274/* PowerPC UISA - a PPC processor as viewed by user-level
2275 code, but without floating point registers. */
2276static const struct reg registers_powerpc_nofp[] =
2277{
2278 COMMON_UISA_NOFP_REGS,
2279 PPC_UISA_SPRS
2280};
2281
64366f1c 2282/* IBM PowerPC 403. */
7a78ae4e 2283static const struct reg registers_403[] =
c5aa993b 2284{
7a78ae4e
ND
2285 COMMON_UISA_REGS,
2286 PPC_UISA_SPRS,
2287 PPC_SEGMENT_REGS,
2288 PPC_OEA_SPRS,
2289 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2290 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2291 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2292 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2293 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2294 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2)
c906108c
SS
2295};
2296
64366f1c 2297/* IBM PowerPC 403GC. */
7a78ae4e 2298static const struct reg registers_403GC[] =
c5aa993b 2299{
7a78ae4e
ND
2300 COMMON_UISA_REGS,
2301 PPC_UISA_SPRS,
2302 PPC_SEGMENT_REGS,
2303 PPC_OEA_SPRS,
2304 /* 119 */ R(icdbdr), R(esr), R(dear), R(evpr),
2305 /* 123 */ R(cdbcr), R(tsr), R(tcr), R(pit),
2306 /* 127 */ R(tbhi), R(tblo), R(srr2), R(srr3),
2307 /* 131 */ R(dbsr), R(dbcr), R(iac1), R(iac2),
2308 /* 135 */ R(dac1), R(dac2), R(dccr), R(iccr),
2309 /* 139 */ R(pbl1), R(pbu1), R(pbl2), R(pbu2),
2310 /* 143 */ R(zpr), R(pid), R(sgr), R(dcwr),
2311 /* 147 */ R(tbhu), R(tblu)
c906108c
SS
2312};
2313
64366f1c 2314/* Motorola PowerPC 505. */
7a78ae4e 2315static const struct reg registers_505[] =
c5aa993b 2316{
7a78ae4e
ND
2317 COMMON_UISA_REGS,
2318 PPC_UISA_SPRS,
2319 PPC_SEGMENT_REGS,
2320 PPC_OEA_SPRS,
2321 /* 119 */ R(eie), R(eid), R(nri)
c906108c
SS
2322};
2323
64366f1c 2324/* Motorola PowerPC 860 or 850. */
7a78ae4e 2325static const struct reg registers_860[] =
c5aa993b 2326{
7a78ae4e
ND
2327 COMMON_UISA_REGS,
2328 PPC_UISA_SPRS,
2329 PPC_SEGMENT_REGS,
2330 PPC_OEA_SPRS,
2331 /* 119 */ R(eie), R(eid), R(nri), R(cmpa),
2332 /* 123 */ R(cmpb), R(cmpc), R(cmpd), R(icr),
2333 /* 127 */ R(der), R(counta), R(countb), R(cmpe),
2334 /* 131 */ R(cmpf), R(cmpg), R(cmph), R(lctrl1),
2335 /* 135 */ R(lctrl2), R(ictrl), R(bar), R(ic_cst),
2336 /* 139 */ R(ic_adr), R(ic_dat), R(dc_cst), R(dc_adr),
2337 /* 143 */ R(dc_dat), R(dpdr), R(dpir), R(immr),
2338 /* 147 */ R(mi_ctr), R(mi_ap), R(mi_epn), R(mi_twc),
2339 /* 151 */ R(mi_rpn), R(md_ctr), R(m_casid), R(md_ap),
2340 /* 155 */ R(md_epn), R(md_twb), R(md_twc), R(md_rpn),
2341 /* 159 */ R(m_tw), R(mi_dbcam), R(mi_dbram0), R(mi_dbram1),
2342 /* 163 */ R(md_dbcam), R(md_dbram0), R(md_dbram1)
c906108c
SS
2343};
2344
7a78ae4e
ND
2345/* Motorola PowerPC 601. Note that the 601 has different register numbers
2346 for reading and writing RTCU and RTCL. However, how one reads and writes a
c906108c 2347 register is the stub's problem. */
7a78ae4e 2348static const struct reg registers_601[] =
c5aa993b 2349{
7a78ae4e
ND
2350 COMMON_UISA_REGS,
2351 PPC_UISA_SPRS,
2352 PPC_SEGMENT_REGS,
2353 PPC_OEA_SPRS,
2354 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2355 /* 123 */ R(pir), R(mq), R(rtcu), R(rtcl)
c906108c
SS
2356};
2357
64366f1c 2358/* Motorola PowerPC 602. */
7a78ae4e 2359static const struct reg registers_602[] =
c5aa993b 2360{
7a78ae4e
ND
2361 COMMON_UISA_REGS,
2362 PPC_UISA_SPRS,
2363 PPC_SEGMENT_REGS,
2364 PPC_OEA_SPRS,
2365 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2366 /* 123 */ R0, R(tcr), R(ibr), R(esassr),
2367 /* 127 */ R(sebr), R(ser), R(sp), R(lt)
c906108c
SS
2368};
2369
64366f1c 2370/* Motorola/IBM PowerPC 603 or 603e. */
7a78ae4e 2371static const struct reg registers_603[] =
c5aa993b 2372{
7a78ae4e
ND
2373 COMMON_UISA_REGS,
2374 PPC_UISA_SPRS,
2375 PPC_SEGMENT_REGS,
2376 PPC_OEA_SPRS,
2377 /* 119 */ R(hid0), R(hid1), R(iabr), R0,
2378 /* 123 */ R0, R(dmiss), R(dcmp), R(hash1),
2379 /* 127 */ R(hash2), R(imiss), R(icmp), R(rpa)
c906108c
SS
2380};
2381
64366f1c 2382/* Motorola PowerPC 604 or 604e. */
7a78ae4e 2383static const struct reg registers_604[] =
c5aa993b 2384{
7a78ae4e
ND
2385 COMMON_UISA_REGS,
2386 PPC_UISA_SPRS,
2387 PPC_SEGMENT_REGS,
2388 PPC_OEA_SPRS,
2389 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2390 /* 123 */ R(pir), R(mmcr0), R(pmc1), R(pmc2),
2391 /* 127 */ R(sia), R(sda)
c906108c
SS
2392};
2393
64366f1c 2394/* Motorola/IBM PowerPC 750 or 740. */
7a78ae4e 2395static const struct reg registers_750[] =
c5aa993b 2396{
7a78ae4e
ND
2397 COMMON_UISA_REGS,
2398 PPC_UISA_SPRS,
2399 PPC_SEGMENT_REGS,
2400 PPC_OEA_SPRS,
2401 /* 119 */ R(hid0), R(hid1), R(iabr), R(dabr),
2402 /* 123 */ R0, R(ummcr0), R(upmc1), R(upmc2),
2403 /* 127 */ R(usia), R(ummcr1), R(upmc3), R(upmc4),
2404 /* 131 */ R(mmcr0), R(pmc1), R(pmc2), R(sia),
2405 /* 135 */ R(mmcr1), R(pmc3), R(pmc4), R(l2cr),
2406 /* 139 */ R(ictc), R(thrm1), R(thrm2), R(thrm3)
c906108c
SS
2407};
2408
2409
64366f1c 2410/* Motorola PowerPC 7400. */
1fcc0bb8
EZ
2411static const struct reg registers_7400[] =
2412{
2413 /* gpr0-gpr31, fpr0-fpr31 */
2414 COMMON_UISA_REGS,
2415 /* ctr, xre, lr, cr */
2416 PPC_UISA_SPRS,
2417 /* sr0-sr15 */
2418 PPC_SEGMENT_REGS,
2419 PPC_OEA_SPRS,
2420 /* vr0-vr31, vrsave, vscr */
2421 PPC_ALTIVEC_REGS
2422 /* FIXME? Add more registers? */
2423};
2424
c8001721
EZ
2425/* Motorola e500. */
2426static const struct reg registers_e500[] =
2427{
2428 R(pc), R(ps),
2429 /* cr, lr, ctr, xer, "" */
2430 PPC_UISA_NOFP_SPRS,
2431 /* 7...38 */
2432 PPC_EV_REGS,
338ef23d
AC
2433 R8(acc), R(spefscr),
2434 /* NOTE: Add new registers here the end of the raw register
2435 list and just before the first pseudo register. */
c8001721
EZ
2436 /* 39...70 */
2437 PPC_GPRS_PSEUDO_REGS
2438};
2439
c906108c 2440/* Information about a particular processor variant. */
7a78ae4e 2441
c906108c 2442struct variant
c5aa993b
JM
2443 {
2444 /* Name of this variant. */
2445 char *name;
c906108c 2446
c5aa993b
JM
2447 /* English description of the variant. */
2448 char *description;
c906108c 2449
64366f1c 2450 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
2451 enum bfd_architecture arch;
2452
64366f1c 2453 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
2454 unsigned long mach;
2455
489461e2
EZ
2456 /* Number of real registers. */
2457 int nregs;
2458
2459 /* Number of pseudo registers. */
2460 int npregs;
2461
2462 /* Number of total registers (the sum of nregs and npregs). */
2463 int num_tot_regs;
2464
c5aa993b
JM
2465 /* Table of register names; registers[R] is the name of the register
2466 number R. */
7a78ae4e 2467 const struct reg *regs;
c5aa993b 2468 };
c906108c 2469
489461e2
EZ
2470#define tot_num_registers(list) (sizeof (list) / sizeof((list)[0]))
2471
2472static int
2473num_registers (const struct reg *reg_list, int num_tot_regs)
2474{
2475 int i;
2476 int nregs = 0;
2477
2478 for (i = 0; i < num_tot_regs; i++)
2479 if (!reg_list[i].pseudo)
2480 nregs++;
2481
2482 return nregs;
2483}
2484
2485static int
2486num_pseudo_registers (const struct reg *reg_list, int num_tot_regs)
2487{
2488 int i;
2489 int npregs = 0;
2490
2491 for (i = 0; i < num_tot_regs; i++)
2492 if (reg_list[i].pseudo)
2493 npregs ++;
2494
2495 return npregs;
2496}
c906108c 2497
c906108c
SS
2498/* Information in this table comes from the following web sites:
2499 IBM: http://www.chips.ibm.com:80/products/embedded/
2500 Motorola: http://www.mot.com/SPS/PowerPC/
2501
2502 I'm sure I've got some of the variant descriptions not quite right.
2503 Please report any inaccuracies you find to GDB's maintainer.
2504
2505 If you add entries to this table, please be sure to allow the new
2506 value as an argument to the --with-cpu flag, in configure.in. */
2507
489461e2 2508static struct variant variants[] =
c906108c 2509{
489461e2 2510
7a78ae4e 2511 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
489461e2
EZ
2512 bfd_mach_ppc, -1, -1, tot_num_registers (registers_powerpc),
2513 registers_powerpc},
7a78ae4e 2514 {"power", "POWER user-level", bfd_arch_rs6000,
489461e2
EZ
2515 bfd_mach_rs6k, -1, -1, tot_num_registers (registers_power),
2516 registers_power},
7a78ae4e 2517 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
489461e2
EZ
2518 bfd_mach_ppc_403, -1, -1, tot_num_registers (registers_403),
2519 registers_403},
7a78ae4e 2520 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
489461e2
EZ
2521 bfd_mach_ppc_601, -1, -1, tot_num_registers (registers_601),
2522 registers_601},
7a78ae4e 2523 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
489461e2
EZ
2524 bfd_mach_ppc_602, -1, -1, tot_num_registers (registers_602),
2525 registers_602},
7a78ae4e 2526 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
489461e2
EZ
2527 bfd_mach_ppc_603, -1, -1, tot_num_registers (registers_603),
2528 registers_603},
7a78ae4e 2529 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
489461e2
EZ
2530 604, -1, -1, tot_num_registers (registers_604),
2531 registers_604},
7a78ae4e 2532 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
489461e2
EZ
2533 bfd_mach_ppc_403gc, -1, -1, tot_num_registers (registers_403GC),
2534 registers_403GC},
7a78ae4e 2535 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
489461e2
EZ
2536 bfd_mach_ppc_505, -1, -1, tot_num_registers (registers_505),
2537 registers_505},
7a78ae4e 2538 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
489461e2
EZ
2539 bfd_mach_ppc_860, -1, -1, tot_num_registers (registers_860),
2540 registers_860},
7a78ae4e 2541 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
489461e2
EZ
2542 bfd_mach_ppc_750, -1, -1, tot_num_registers (registers_750),
2543 registers_750},
1fcc0bb8 2544 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
489461e2
EZ
2545 bfd_mach_ppc_7400, -1, -1, tot_num_registers (registers_7400),
2546 registers_7400},
c8001721
EZ
2547 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
2548 bfd_mach_ppc_e500, -1, -1, tot_num_registers (registers_e500),
2549 registers_e500},
7a78ae4e 2550
5d57ee30
KB
2551 /* 64-bit */
2552 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
489461e2
EZ
2553 bfd_mach_ppc64, -1, -1, tot_num_registers (registers_powerpc),
2554 registers_powerpc},
7a78ae4e 2555 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
489461e2
EZ
2556 bfd_mach_ppc_620, -1, -1, tot_num_registers (registers_powerpc),
2557 registers_powerpc},
5d57ee30 2558 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
489461e2
EZ
2559 bfd_mach_ppc_630, -1, -1, tot_num_registers (registers_powerpc),
2560 registers_powerpc},
7a78ae4e 2561 {"a35", "PowerPC A35", bfd_arch_powerpc,
489461e2
EZ
2562 bfd_mach_ppc_a35, -1, -1, tot_num_registers (registers_powerpc),
2563 registers_powerpc},
5d57ee30 2564 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
489461e2
EZ
2565 bfd_mach_ppc_rs64ii, -1, -1, tot_num_registers (registers_powerpc),
2566 registers_powerpc},
5d57ee30 2567 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
489461e2
EZ
2568 bfd_mach_ppc_rs64iii, -1, -1, tot_num_registers (registers_powerpc),
2569 registers_powerpc},
5d57ee30 2570
64366f1c 2571 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 2572 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
489461e2
EZ
2573 bfd_mach_rs6k_rs1, -1, -1, tot_num_registers (registers_power),
2574 registers_power},
7a78ae4e 2575 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
489461e2
EZ
2576 bfd_mach_rs6k_rsc, -1, -1, tot_num_registers (registers_power),
2577 registers_power},
7a78ae4e 2578 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
489461e2
EZ
2579 bfd_mach_rs6k_rs2, -1, -1, tot_num_registers (registers_power),
2580 registers_power},
7a78ae4e 2581
489461e2 2582 {0, 0, 0, 0, 0, 0, 0, 0}
c906108c
SS
2583};
2584
64366f1c 2585/* Initialize the number of registers and pseudo registers in each variant. */
489461e2
EZ
2586
2587static void
2588init_variants (void)
2589{
2590 struct variant *v;
2591
2592 for (v = variants; v->name; v++)
2593 {
2594 if (v->nregs == -1)
2595 v->nregs = num_registers (v->regs, v->num_tot_regs);
2596 if (v->npregs == -1)
2597 v->npregs = num_pseudo_registers (v->regs, v->num_tot_regs);
2598 }
2599}
c906108c 2600
7a78ae4e 2601/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 2602 MACH. If no such variant exists, return null. */
c906108c 2603
7a78ae4e
ND
2604static const struct variant *
2605find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 2606{
7a78ae4e 2607 const struct variant *v;
c5aa993b 2608
7a78ae4e
ND
2609 for (v = variants; v->name; v++)
2610 if (arch == v->arch && mach == v->mach)
2611 return v;
c906108c 2612
7a78ae4e 2613 return NULL;
c906108c 2614}
9364a0ef
EZ
2615
2616static int
2617gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
2618{
2619 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2620 return print_insn_big_powerpc (memaddr, info);
2621 else
2622 return print_insn_little_powerpc (memaddr, info);
2623}
7a78ae4e 2624\f
7a78ae4e
ND
2625/* Initialize the current architecture based on INFO. If possible, re-use an
2626 architecture from ARCHES, which is a list of architectures already created
2627 during this debugging session.
c906108c 2628
7a78ae4e 2629 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 2630 a binary file. */
c906108c 2631
7a78ae4e
ND
2632static struct gdbarch *
2633rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2634{
2635 struct gdbarch *gdbarch;
2636 struct gdbarch_tdep *tdep;
9aa1e687 2637 int wordsize, from_xcoff_exec, from_elf_exec, power, i, off;
7a78ae4e
ND
2638 struct reg *regs;
2639 const struct variant *v;
2640 enum bfd_architecture arch;
2641 unsigned long mach;
2642 bfd abfd;
7b112f9c 2643 int sysv_abi;
5bf1c677 2644 asection *sect;
7a78ae4e 2645
9aa1e687 2646 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
2647 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
2648
9aa1e687
KB
2649 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
2650 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2651
2652 sysv_abi = info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
2653
e712c1cf 2654 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 2655 that, else choose a likely default. */
9aa1e687 2656 if (from_xcoff_exec)
c906108c 2657 {
11ed25ac 2658 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
2659 wordsize = 8;
2660 else
2661 wordsize = 4;
c906108c 2662 }
9aa1e687
KB
2663 else if (from_elf_exec)
2664 {
2665 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
2666 wordsize = 8;
2667 else
2668 wordsize = 4;
2669 }
c906108c 2670 else
7a78ae4e 2671 {
27b15785
KB
2672 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
2673 wordsize = info.bfd_arch_info->bits_per_word /
2674 info.bfd_arch_info->bits_per_byte;
2675 else
2676 wordsize = 4;
7a78ae4e 2677 }
c906108c 2678
64366f1c 2679 /* Find a candidate among extant architectures. */
7a78ae4e
ND
2680 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2681 arches != NULL;
2682 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2683 {
2684 /* Word size in the various PowerPC bfd_arch_info structs isn't
2685 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
64366f1c 2686 separate word size check. */
7a78ae4e 2687 tdep = gdbarch_tdep (arches->gdbarch);
4be87837 2688 if (tdep && tdep->wordsize == wordsize)
7a78ae4e
ND
2689 return arches->gdbarch;
2690 }
c906108c 2691
7a78ae4e
ND
2692 /* None found, create a new architecture from INFO, whose bfd_arch_info
2693 validity depends on the source:
2694 - executable useless
2695 - rs6000_host_arch() good
2696 - core file good
2697 - "set arch" trust blindly
2698 - GDB startup useless but harmless */
c906108c 2699
9aa1e687 2700 if (!from_xcoff_exec)
c906108c 2701 {
b732d07d 2702 arch = info.bfd_arch_info->arch;
7a78ae4e 2703 mach = info.bfd_arch_info->mach;
c906108c 2704 }
7a78ae4e 2705 else
c906108c 2706 {
7a78ae4e 2707 arch = bfd_arch_powerpc;
35cec841 2708 bfd_default_set_arch_mach (&abfd, arch, 0);
7a78ae4e 2709 info.bfd_arch_info = bfd_get_arch_info (&abfd);
35cec841 2710 mach = info.bfd_arch_info->mach;
7a78ae4e
ND
2711 }
2712 tdep = xmalloc (sizeof (struct gdbarch_tdep));
2713 tdep->wordsize = wordsize;
5bf1c677
EZ
2714
2715 /* For e500 executables, the apuinfo section is of help here. Such
2716 section contains the identifier and revision number of each
2717 Application-specific Processing Unit that is present on the
2718 chip. The content of the section is determined by the assembler
2719 which looks at each instruction and determines which unit (and
2720 which version of it) can execute it. In our case we just look for
2721 the existance of the section. */
2722
2723 if (info.abfd)
2724 {
2725 sect = bfd_get_section_by_name (info.abfd, ".PPC.EMB.apuinfo");
2726 if (sect)
2727 {
2728 arch = info.bfd_arch_info->arch;
2729 mach = bfd_mach_ppc_e500;
2730 bfd_default_set_arch_mach (&abfd, arch, mach);
2731 info.bfd_arch_info = bfd_get_arch_info (&abfd);
2732 }
2733 }
2734
7a78ae4e
ND
2735 gdbarch = gdbarch_alloc (&info, tdep);
2736 power = arch == bfd_arch_rs6000;
2737
489461e2
EZ
2738 /* Initialize the number of real and pseudo registers in each variant. */
2739 init_variants ();
2740
64366f1c 2741 /* Choose variant. */
7a78ae4e
ND
2742 v = find_variant_by_arch (arch, mach);
2743 if (!v)
dd47e6fd
EZ
2744 return NULL;
2745
7a78ae4e
ND
2746 tdep->regs = v->regs;
2747
2188cbdd
EZ
2748 tdep->ppc_gp0_regnum = 0;
2749 tdep->ppc_gplast_regnum = 31;
2750 tdep->ppc_toc_regnum = 2;
2751 tdep->ppc_ps_regnum = 65;
2752 tdep->ppc_cr_regnum = 66;
2753 tdep->ppc_lr_regnum = 67;
2754 tdep->ppc_ctr_regnum = 68;
2755 tdep->ppc_xer_regnum = 69;
2756 if (v->mach == bfd_mach_ppc_601)
2757 tdep->ppc_mq_regnum = 124;
e3f36dbd 2758 else if (power)
2188cbdd 2759 tdep->ppc_mq_regnum = 70;
e3f36dbd
KB
2760 else
2761 tdep->ppc_mq_regnum = -1;
2762 tdep->ppc_fpscr_regnum = power ? 71 : 70;
2188cbdd 2763
c8001721
EZ
2764 set_gdbarch_pc_regnum (gdbarch, 64);
2765 set_gdbarch_sp_regnum (gdbarch, 1);
0ba6dca9 2766 set_gdbarch_deprecated_fp_regnum (gdbarch, 1);
afd48b75 2767 if (sysv_abi && wordsize == 8)
05580c65 2768 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
e754ae69 2769 else if (sysv_abi && wordsize == 4)
05580c65 2770 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
afd48b75
AC
2771 else
2772 {
2773 set_gdbarch_deprecated_extract_return_value (gdbarch, rs6000_extract_return_value);
2774 set_gdbarch_deprecated_store_return_value (gdbarch, rs6000_store_return_value);
2775 }
c8001721 2776
1fcc0bb8
EZ
2777 if (v->arch == bfd_arch_powerpc)
2778 switch (v->mach)
2779 {
2780 case bfd_mach_ppc:
2781 tdep->ppc_vr0_regnum = 71;
2782 tdep->ppc_vrsave_regnum = 104;
c8001721
EZ
2783 tdep->ppc_ev0_regnum = -1;
2784 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2785 break;
2786 case bfd_mach_ppc_7400:
2787 tdep->ppc_vr0_regnum = 119;
54c2a1e6 2788 tdep->ppc_vrsave_regnum = 152;
c8001721
EZ
2789 tdep->ppc_ev0_regnum = -1;
2790 tdep->ppc_ev31_regnum = -1;
2791 break;
2792 case bfd_mach_ppc_e500:
338ef23d
AC
2793 tdep->ppc_gp0_regnum = 41;
2794 tdep->ppc_gplast_regnum = tdep->ppc_gp0_regnum + 32 - 1;
c8001721
EZ
2795 tdep->ppc_toc_regnum = -1;
2796 tdep->ppc_ps_regnum = 1;
2797 tdep->ppc_cr_regnum = 2;
2798 tdep->ppc_lr_regnum = 3;
2799 tdep->ppc_ctr_regnum = 4;
2800 tdep->ppc_xer_regnum = 5;
2801 tdep->ppc_ev0_regnum = 7;
2802 tdep->ppc_ev31_regnum = 38;
2803 set_gdbarch_pc_regnum (gdbarch, 0);
338ef23d 2804 set_gdbarch_sp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
0ba6dca9 2805 set_gdbarch_deprecated_fp_regnum (gdbarch, tdep->ppc_gp0_regnum + 1);
c8001721
EZ
2806 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, e500_dwarf2_reg_to_regnum);
2807 set_gdbarch_pseudo_register_read (gdbarch, e500_pseudo_register_read);
2808 set_gdbarch_pseudo_register_write (gdbarch, e500_pseudo_register_write);
1fcc0bb8
EZ
2809 break;
2810 default:
2811 tdep->ppc_vr0_regnum = -1;
2812 tdep->ppc_vrsave_regnum = -1;
c8001721
EZ
2813 tdep->ppc_ev0_regnum = -1;
2814 tdep->ppc_ev31_regnum = -1;
1fcc0bb8
EZ
2815 break;
2816 }
2817
338ef23d
AC
2818 /* Sanity check on registers. */
2819 gdb_assert (strcmp (tdep->regs[tdep->ppc_gp0_regnum].name, "r0") == 0);
2820
a88376a3
KB
2821 /* Set lr_frame_offset. */
2822 if (wordsize == 8)
2823 tdep->lr_frame_offset = 16;
2824 else if (sysv_abi)
2825 tdep->lr_frame_offset = 4;
2826 else
2827 tdep->lr_frame_offset = 8;
2828
2829 /* Calculate byte offsets in raw register array. */
489461e2
EZ
2830 tdep->regoff = xmalloc (v->num_tot_regs * sizeof (int));
2831 for (i = off = 0; i < v->num_tot_regs; i++)
7a78ae4e
ND
2832 {
2833 tdep->regoff[i] = off;
2834 off += regsize (v->regs + i, wordsize);
c906108c
SS
2835 }
2836
56a6dfb9
KB
2837 /* Select instruction printer. */
2838 if (arch == power)
9364a0ef 2839 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 2840 else
9364a0ef 2841 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 2842
7a78ae4e 2843 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
7a78ae4e
ND
2844
2845 set_gdbarch_num_regs (gdbarch, v->nregs);
c8001721 2846 set_gdbarch_num_pseudo_regs (gdbarch, v->npregs);
7a78ae4e 2847 set_gdbarch_register_name (gdbarch, rs6000_register_name);
b1e29e33 2848 set_gdbarch_deprecated_register_size (gdbarch, wordsize);
b8b527c5 2849 set_gdbarch_deprecated_register_bytes (gdbarch, off);
9c04cab7
AC
2850 set_gdbarch_deprecated_register_byte (gdbarch, rs6000_register_byte);
2851 set_gdbarch_deprecated_register_raw_size (gdbarch, rs6000_register_raw_size);
9c04cab7 2852 set_gdbarch_deprecated_register_virtual_type (gdbarch, rs6000_register_virtual_type);
7a78ae4e
ND
2853
2854 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2855 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2856 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2857 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
2858 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2859 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2860 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
ab9fe00e
KB
2861 if (sysv_abi)
2862 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
2863 else
2864 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4e409299 2865 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 2866
11269d7e 2867 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
8b148df9
AC
2868 if (sysv_abi && wordsize == 8)
2869 /* PPC64 SYSV. */
2870 set_gdbarch_frame_red_zone_size (gdbarch, 288);
2871 else if (!sysv_abi && wordsize == 4)
5bffac25
AC
2872 /* PowerOpen / AIX 32 bit. The saved area or red zone consists of
2873 19 4 byte GPRS + 18 8 byte FPRs giving a total of 220 bytes.
2874 Problem is, 220 isn't frame (16 byte) aligned. Round it up to
2875 224. */
2876 set_gdbarch_frame_red_zone_size (gdbarch, 224);
a59fe496 2877 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
7a78ae4e 2878 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
7a78ae4e 2879
781a750d
AC
2880 set_gdbarch_deprecated_register_convertible (gdbarch, rs6000_register_convertible);
2881 set_gdbarch_deprecated_register_convert_to_virtual (gdbarch, rs6000_register_convert_to_virtual);
2882 set_gdbarch_deprecated_register_convert_to_raw (gdbarch, rs6000_register_convert_to_raw);
2188cbdd 2883 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
2ea5f656
KB
2884 /* Note: kevinb/2002-04-12: I'm not convinced that rs6000_push_arguments()
2885 is correct for the SysV ABI when the wordsize is 8, but I'm also
2886 fairly certain that ppc_sysv_abi_push_arguments() will give even
2887 worse results since it only works for 32-bit code. So, for the moment,
2888 we're better off calling rs6000_push_arguments() since it works for
2889 64-bit code. At some point in the future, this matter needs to be
2890 revisited. */
2891 if (sysv_abi && wordsize == 4)
77b2b6d4 2892 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
8be9034a
AC
2893 else if (sysv_abi && wordsize == 8)
2894 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
9aa1e687 2895 else
77b2b6d4 2896 set_gdbarch_push_dummy_call (gdbarch, rs6000_push_dummy_call);
7a78ae4e 2897
74055713 2898 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, rs6000_extract_struct_value_address);
749b82f6 2899 set_gdbarch_deprecated_pop_frame (gdbarch, rs6000_pop_frame);
7a78ae4e
ND
2900
2901 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
2902 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
2903 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
2904
6066c3de
AC
2905 /* Handle the 64-bit SVR4 minimal-symbol convention of using "FN"
2906 for the descriptor and ".FN" for the entry-point -- a user
2907 specifying "break FN" will unexpectedly end up with a breakpoint
2908 on the descriptor and not the function. This architecture method
2909 transforms any breakpoints on descriptors into breakpoints on the
2910 corresponding entry point. */
2911 if (sysv_abi && wordsize == 8)
2912 set_gdbarch_adjust_breakpoint_address (gdbarch, ppc64_sysv_abi_adjust_breakpoint_address);
2913
7a78ae4e
ND
2914 /* Not sure on this. FIXMEmgo */
2915 set_gdbarch_frame_args_skip (gdbarch, 8);
2916
05580c65 2917 if (!sysv_abi)
7b112f9c 2918 set_gdbarch_use_struct_convention (gdbarch,
b9ff3018 2919 rs6000_use_struct_convention);
8e0662df 2920
19772a2c 2921 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, rs6000_frameless_function_invocation);
618ce49f 2922 set_gdbarch_deprecated_frame_chain (gdbarch, rs6000_frame_chain);
8bedc050 2923 set_gdbarch_deprecated_frame_saved_pc (gdbarch, rs6000_frame_saved_pc);
7b112f9c 2924
f30ee0bc 2925 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, rs6000_frame_init_saved_regs);
e9582e71 2926 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, rs6000_init_extra_frame_info);
3ce2bf18 2927 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, rs6000_init_frame_pc_first);
7b112f9c 2928
15813d3f
AC
2929 if (!sysv_abi)
2930 {
2931 /* Handle RS/6000 function pointers (which are really function
2932 descriptors). */
f517ea4e
PS
2933 set_gdbarch_convert_from_func_ptr_addr (gdbarch,
2934 rs6000_convert_from_func_ptr_addr);
9aa1e687 2935 }
42efa47a
AC
2936 set_gdbarch_deprecated_frame_args_address (gdbarch, rs6000_frame_args_address);
2937 set_gdbarch_deprecated_frame_locals_address (gdbarch, rs6000_frame_args_address);
6913c89a 2938 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, rs6000_saved_pc_after_call);
7a78ae4e 2939
143985b7
AF
2940 /* Helpers for function argument information. */
2941 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
2942
7b112f9c 2943 /* Hook in ABI-specific overrides, if they have been registered. */
4be87837 2944 gdbarch_init_osabi (info, gdbarch);
7b112f9c 2945
ef5200c1
AC
2946 if (from_xcoff_exec)
2947 {
2948 /* NOTE: jimix/2003-06-09: This test should really check for
2949 GDB_OSABI_AIX when that is defined and becomes
2950 available. (Actually, once things are properly split apart,
2951 the test goes away.) */
2952 /* RS6000/AIX does not support PT_STEP. Has to be simulated. */
2953 set_gdbarch_software_single_step (gdbarch, rs6000_software_single_step);
2954 }
2955
7a78ae4e 2956 return gdbarch;
c906108c
SS
2957}
2958
7b112f9c
JT
2959static void
2960rs6000_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2961{
2962 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2963
2964 if (tdep == NULL)
2965 return;
2966
4be87837 2967 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
2968}
2969
1fcc0bb8
EZ
2970static struct cmd_list_element *info_powerpc_cmdlist = NULL;
2971
2972static void
2973rs6000_info_powerpc_command (char *args, int from_tty)
2974{
2975 help_list (info_powerpc_cmdlist, "info powerpc ", class_info, gdb_stdout);
2976}
2977
c906108c
SS
2978/* Initialization code. */
2979
a78f21af 2980extern initialize_file_ftype _initialize_rs6000_tdep; /* -Wmissing-prototypes */
b9362cc7 2981
c906108c 2982void
fba45db2 2983_initialize_rs6000_tdep (void)
c906108c 2984{
7b112f9c
JT
2985 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
2986 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
1fcc0bb8
EZ
2987
2988 /* Add root prefix command for "info powerpc" commands */
2989 add_prefix_cmd ("powerpc", class_info, rs6000_info_powerpc_command,
2990 "Various POWERPC info specific commands.",
2991 &info_powerpc_cmdlist, "info powerpc ", 0, &infolist);
c906108c 2992}
This page took 0.714527 seconds and 4 git commands to generate.