Workaround a C++ bug in GCC 4.2 in gold test
[deliverable/binutils-gdb.git] / gdb / rs6000-tdep.c
CommitLineData
c906108c 1/* Target-dependent code for GDB, the GNU debugger.
7aea86e6 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
21#include "frame.h"
22#include "inferior.h"
45741a9c 23#include "infrun.h"
c906108c
SS
24#include "symtab.h"
25#include "target.h"
26#include "gdbcore.h"
27#include "gdbcmd.h"
c906108c 28#include "objfiles.h"
7a78ae4e 29#include "arch-utils.h"
4e052eda 30#include "regcache.h"
d195bc9f 31#include "regset.h"
d16aafd8 32#include "doublest.h"
fd0407d6 33#include "value.h"
1fcc0bb8 34#include "parser-defs.h"
4be87837 35#include "osabi.h"
7d9b040b 36#include "infcall.h"
9f643768
JB
37#include "sim-regno.h"
38#include "gdb/sim-ppc.h"
6ced10dd 39#include "reggroups.h"
4fc771b8 40#include "dwarf2-frame.h"
7cc46491
DJ
41#include "target-descriptions.h"
42#include "user-regs.h"
b4cdae6f
WW
43#include "record-full.h"
44#include "auxv.h"
7a78ae4e 45
2fccf04a 46#include "libbfd.h" /* for bfd_default_set_arch_mach */
7a78ae4e 47#include "coff/internal.h" /* for libcoff.h */
2fccf04a 48#include "libcoff.h" /* for xcoff_data */
11ed25ac
KB
49#include "coff/xcoff.h"
50#include "libxcoff.h"
7a78ae4e 51
9aa1e687 52#include "elf-bfd.h"
55eddb0f 53#include "elf/ppc.h"
cd453cd0 54#include "elf/ppc64.h"
7a78ae4e 55
6ded7999 56#include "solib-svr4.h"
9aa1e687 57#include "ppc-tdep.h"
debb1f09 58#include "ppc-ravenscar-thread.h"
7a78ae4e 59
a89aa300 60#include "dis-asm.h"
338ef23d 61
61a65099
KB
62#include "trad-frame.h"
63#include "frame-unwind.h"
64#include "frame-base.h"
65
7cc46491 66#include "features/rs6000/powerpc-32.c"
7284e1be 67#include "features/rs6000/powerpc-altivec32.c"
604c2f83 68#include "features/rs6000/powerpc-vsx32.c"
7cc46491
DJ
69#include "features/rs6000/powerpc-403.c"
70#include "features/rs6000/powerpc-403gc.c"
4d09ffea 71#include "features/rs6000/powerpc-405.c"
7cc46491
DJ
72#include "features/rs6000/powerpc-505.c"
73#include "features/rs6000/powerpc-601.c"
74#include "features/rs6000/powerpc-602.c"
75#include "features/rs6000/powerpc-603.c"
76#include "features/rs6000/powerpc-604.c"
77#include "features/rs6000/powerpc-64.c"
7284e1be 78#include "features/rs6000/powerpc-altivec64.c"
604c2f83 79#include "features/rs6000/powerpc-vsx64.c"
7cc46491
DJ
80#include "features/rs6000/powerpc-7400.c"
81#include "features/rs6000/powerpc-750.c"
82#include "features/rs6000/powerpc-860.c"
83#include "features/rs6000/powerpc-e500.c"
84#include "features/rs6000/rs6000.c"
85
5a9e69ba
TJB
86/* Determine if regnum is an SPE pseudo-register. */
87#define IS_SPE_PSEUDOREG(tdep, regnum) ((tdep)->ppc_ev0_regnum >= 0 \
88 && (regnum) >= (tdep)->ppc_ev0_regnum \
89 && (regnum) < (tdep)->ppc_ev0_regnum + 32)
90
f949c649
TJB
91/* Determine if regnum is a decimal float pseudo-register. */
92#define IS_DFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_dl0_regnum >= 0 \
93 && (regnum) >= (tdep)->ppc_dl0_regnum \
94 && (regnum) < (tdep)->ppc_dl0_regnum + 16)
95
604c2f83
LM
96/* Determine if regnum is a POWER7 VSX register. */
97#define IS_VSX_PSEUDOREG(tdep, regnum) ((tdep)->ppc_vsr0_regnum >= 0 \
98 && (regnum) >= (tdep)->ppc_vsr0_regnum \
99 && (regnum) < (tdep)->ppc_vsr0_regnum + ppc_num_vsrs)
100
101/* Determine if regnum is a POWER7 Extended FP register. */
102#define IS_EFP_PSEUDOREG(tdep, regnum) ((tdep)->ppc_efpr0_regnum >= 0 \
103 && (regnum) >= (tdep)->ppc_efpr0_regnum \
d9492458 104 && (regnum) < (tdep)->ppc_efpr0_regnum + ppc_num_efprs)
604c2f83 105
55eddb0f
DJ
106/* The list of available "set powerpc ..." and "show powerpc ..."
107 commands. */
108static struct cmd_list_element *setpowerpccmdlist = NULL;
109static struct cmd_list_element *showpowerpccmdlist = NULL;
110
111static enum auto_boolean powerpc_soft_float_global = AUTO_BOOLEAN_AUTO;
112
113/* The vector ABI to use. Keep this in sync with powerpc_vector_abi. */
40478521 114static const char *const powerpc_vector_strings[] =
55eddb0f
DJ
115{
116 "auto",
117 "generic",
118 "altivec",
119 "spe",
120 NULL
121};
122
123/* A variable that can be configured by the user. */
124static enum powerpc_vector_abi powerpc_vector_abi_global = POWERPC_VEC_AUTO;
125static const char *powerpc_vector_abi_string = "auto";
126
0df8b418 127/* To be used by skip_prologue. */
7a78ae4e
ND
128
129struct rs6000_framedata
130 {
131 int offset; /* total size of frame --- the distance
132 by which we decrement sp to allocate
133 the frame */
134 int saved_gpr; /* smallest # of saved gpr */
46a9b8ed 135 unsigned int gpr_mask; /* Each bit is an individual saved GPR. */
7a78ae4e 136 int saved_fpr; /* smallest # of saved fpr */
6be8bc0c 137 int saved_vr; /* smallest # of saved vr */
96ff0de4 138 int saved_ev; /* smallest # of saved ev */
7a78ae4e 139 int alloca_reg; /* alloca register number (frame ptr) */
0df8b418
MS
140 char frameless; /* true if frameless functions. */
141 char nosavedpc; /* true if pc not saved. */
46a9b8ed 142 char used_bl; /* true if link register clobbered */
7a78ae4e
ND
143 int gpr_offset; /* offset of saved gprs from prev sp */
144 int fpr_offset; /* offset of saved fprs from prev sp */
6be8bc0c 145 int vr_offset; /* offset of saved vrs from prev sp */
96ff0de4 146 int ev_offset; /* offset of saved evs from prev sp */
7a78ae4e 147 int lr_offset; /* offset of saved lr */
46a9b8ed 148 int lr_register; /* register of saved lr, if trustworthy */
7a78ae4e 149 int cr_offset; /* offset of saved cr */
6be8bc0c 150 int vrsave_offset; /* offset of saved vrsave register */
7a78ae4e
ND
151 };
152
c906108c 153
604c2f83
LM
154/* Is REGNO a VSX register? Return 1 if so, 0 otherwise. */
155int
156vsx_register_p (struct gdbarch *gdbarch, int regno)
157{
158 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
159 if (tdep->ppc_vsr0_regnum < 0)
160 return 0;
161 else
162 return (regno >= tdep->ppc_vsr0_upper_regnum && regno
163 <= tdep->ppc_vsr0_upper_regnum + 31);
164}
165
64b84175
KB
166/* Is REGNO an AltiVec register? Return 1 if so, 0 otherwise. */
167int
be8626e0 168altivec_register_p (struct gdbarch *gdbarch, int regno)
64b84175 169{
be8626e0 170 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
64b84175
KB
171 if (tdep->ppc_vr0_regnum < 0 || tdep->ppc_vrsave_regnum < 0)
172 return 0;
173 else
174 return (regno >= tdep->ppc_vr0_regnum && regno <= tdep->ppc_vrsave_regnum);
175}
176
383f0f5b 177
867e2dc5
JB
178/* Return true if REGNO is an SPE register, false otherwise. */
179int
be8626e0 180spe_register_p (struct gdbarch *gdbarch, int regno)
867e2dc5 181{
be8626e0 182 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
867e2dc5
JB
183
184 /* Is it a reference to EV0 -- EV31, and do we have those? */
5a9e69ba 185 if (IS_SPE_PSEUDOREG (tdep, regno))
867e2dc5
JB
186 return 1;
187
6ced10dd
JB
188 /* Is it a reference to one of the raw upper GPR halves? */
189 if (tdep->ppc_ev0_upper_regnum >= 0
190 && tdep->ppc_ev0_upper_regnum <= regno
191 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
192 return 1;
193
867e2dc5
JB
194 /* Is it a reference to the 64-bit accumulator, and do we have that? */
195 if (tdep->ppc_acc_regnum >= 0
196 && tdep->ppc_acc_regnum == regno)
197 return 1;
198
199 /* Is it a reference to the SPE floating-point status and control register,
200 and do we have that? */
201 if (tdep->ppc_spefscr_regnum >= 0
202 && tdep->ppc_spefscr_regnum == regno)
203 return 1;
204
205 return 0;
206}
207
208
383f0f5b
JB
209/* Return non-zero if the architecture described by GDBARCH has
210 floating-point registers (f0 --- f31 and fpscr). */
0a613259
AC
211int
212ppc_floating_point_unit_p (struct gdbarch *gdbarch)
213{
383f0f5b
JB
214 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
215
216 return (tdep->ppc_fp0_regnum >= 0
217 && tdep->ppc_fpscr_regnum >= 0);
0a613259 218}
9f643768 219
604c2f83
LM
220/* Return non-zero if the architecture described by GDBARCH has
221 VSX registers (vsr0 --- vsr63). */
63807e1d 222static int
604c2f83
LM
223ppc_vsx_support_p (struct gdbarch *gdbarch)
224{
225 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
226
227 return tdep->ppc_vsr0_regnum >= 0;
228}
229
06caf7d2
CES
230/* Return non-zero if the architecture described by GDBARCH has
231 Altivec registers (vr0 --- vr31, vrsave and vscr). */
232int
233ppc_altivec_support_p (struct gdbarch *gdbarch)
234{
235 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
236
237 return (tdep->ppc_vr0_regnum >= 0
238 && tdep->ppc_vrsave_regnum >= 0);
239}
09991fa0
JB
240
241/* Check that TABLE[GDB_REGNO] is not already initialized, and then
242 set it to SIM_REGNO.
243
244 This is a helper function for init_sim_regno_table, constructing
245 the table mapping GDB register numbers to sim register numbers; we
246 initialize every element in that table to -1 before we start
247 filling it in. */
9f643768
JB
248static void
249set_sim_regno (int *table, int gdb_regno, int sim_regno)
250{
251 /* Make sure we don't try to assign any given GDB register a sim
252 register number more than once. */
253 gdb_assert (table[gdb_regno] == -1);
254 table[gdb_regno] = sim_regno;
255}
256
09991fa0
JB
257
258/* Initialize ARCH->tdep->sim_regno, the table mapping GDB register
259 numbers to simulator register numbers, based on the values placed
260 in the ARCH->tdep->ppc_foo_regnum members. */
9f643768
JB
261static void
262init_sim_regno_table (struct gdbarch *arch)
263{
264 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
7cc46491 265 int total_regs = gdbarch_num_regs (arch);
9f643768
JB
266 int *sim_regno = GDBARCH_OBSTACK_CALLOC (arch, total_regs, int);
267 int i;
7cc46491
DJ
268 static const char *const segment_regs[] = {
269 "sr0", "sr1", "sr2", "sr3", "sr4", "sr5", "sr6", "sr7",
270 "sr8", "sr9", "sr10", "sr11", "sr12", "sr13", "sr14", "sr15"
271 };
9f643768
JB
272
273 /* Presume that all registers not explicitly mentioned below are
274 unavailable from the sim. */
275 for (i = 0; i < total_regs; i++)
276 sim_regno[i] = -1;
277
278 /* General-purpose registers. */
279 for (i = 0; i < ppc_num_gprs; i++)
280 set_sim_regno (sim_regno, tdep->ppc_gp0_regnum + i, sim_ppc_r0_regnum + i);
281
282 /* Floating-point registers. */
283 if (tdep->ppc_fp0_regnum >= 0)
284 for (i = 0; i < ppc_num_fprs; i++)
285 set_sim_regno (sim_regno,
286 tdep->ppc_fp0_regnum + i,
287 sim_ppc_f0_regnum + i);
288 if (tdep->ppc_fpscr_regnum >= 0)
289 set_sim_regno (sim_regno, tdep->ppc_fpscr_regnum, sim_ppc_fpscr_regnum);
290
291 set_sim_regno (sim_regno, gdbarch_pc_regnum (arch), sim_ppc_pc_regnum);
292 set_sim_regno (sim_regno, tdep->ppc_ps_regnum, sim_ppc_ps_regnum);
293 set_sim_regno (sim_regno, tdep->ppc_cr_regnum, sim_ppc_cr_regnum);
294
295 /* Segment registers. */
7cc46491
DJ
296 for (i = 0; i < ppc_num_srs; i++)
297 {
298 int gdb_regno;
299
300 gdb_regno = user_reg_map_name_to_regnum (arch, segment_regs[i], -1);
301 if (gdb_regno >= 0)
302 set_sim_regno (sim_regno, gdb_regno, sim_ppc_sr0_regnum + i);
303 }
9f643768
JB
304
305 /* Altivec registers. */
306 if (tdep->ppc_vr0_regnum >= 0)
307 {
308 for (i = 0; i < ppc_num_vrs; i++)
309 set_sim_regno (sim_regno,
310 tdep->ppc_vr0_regnum + i,
311 sim_ppc_vr0_regnum + i);
312
313 /* FIXME: jimb/2004-07-15: when we have tdep->ppc_vscr_regnum,
314 we can treat this more like the other cases. */
315 set_sim_regno (sim_regno,
316 tdep->ppc_vr0_regnum + ppc_num_vrs,
317 sim_ppc_vscr_regnum);
318 }
319 /* vsave is a special-purpose register, so the code below handles it. */
320
321 /* SPE APU (E500) registers. */
6ced10dd
JB
322 if (tdep->ppc_ev0_upper_regnum >= 0)
323 for (i = 0; i < ppc_num_gprs; i++)
324 set_sim_regno (sim_regno,
325 tdep->ppc_ev0_upper_regnum + i,
326 sim_ppc_rh0_regnum + i);
9f643768
JB
327 if (tdep->ppc_acc_regnum >= 0)
328 set_sim_regno (sim_regno, tdep->ppc_acc_regnum, sim_ppc_acc_regnum);
329 /* spefscr is a special-purpose register, so the code below handles it. */
330
976102cd 331#ifdef WITH_PPC_SIM
9f643768
JB
332 /* Now handle all special-purpose registers. Verify that they
333 haven't mistakenly been assigned numbers by any of the above
7cc46491
DJ
334 code. */
335 for (i = 0; i < sim_ppc_num_sprs; i++)
336 {
337 const char *spr_name = sim_spr_register_name (i);
338 int gdb_regno = -1;
339
340 if (spr_name != NULL)
341 gdb_regno = user_reg_map_name_to_regnum (arch, spr_name, -1);
342
343 if (gdb_regno != -1)
344 set_sim_regno (sim_regno, gdb_regno, sim_ppc_spr0_regnum + i);
345 }
346#endif
9f643768
JB
347
348 /* Drop the initialized array into place. */
349 tdep->sim_regno = sim_regno;
350}
351
09991fa0
JB
352
353/* Given a GDB register number REG, return the corresponding SIM
354 register number. */
9f643768 355static int
e7faf938 356rs6000_register_sim_regno (struct gdbarch *gdbarch, int reg)
9f643768 357{
e7faf938 358 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f643768
JB
359 int sim_regno;
360
7cc46491 361 if (tdep->sim_regno == NULL)
e7faf938 362 init_sim_regno_table (gdbarch);
7cc46491 363
f57d151a 364 gdb_assert (0 <= reg
e7faf938
MD
365 && reg <= gdbarch_num_regs (gdbarch)
366 + gdbarch_num_pseudo_regs (gdbarch));
9f643768
JB
367 sim_regno = tdep->sim_regno[reg];
368
369 if (sim_regno >= 0)
370 return sim_regno;
371 else
372 return LEGACY_SIM_REGNO_IGNORE;
373}
374
d195bc9f
MK
375\f
376
377/* Register set support functions. */
378
f2db237a
AM
379/* REGS + OFFSET contains register REGNUM in a field REGSIZE wide.
380 Write the register to REGCACHE. */
381
7284e1be 382void
d195bc9f 383ppc_supply_reg (struct regcache *regcache, int regnum,
f2db237a 384 const gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
385{
386 if (regnum != -1 && offset != -1)
f2db237a
AM
387 {
388 if (regsize > 4)
389 {
390 struct gdbarch *gdbarch = get_regcache_arch (regcache);
391 int gdb_regsize = register_size (gdbarch, regnum);
392 if (gdb_regsize < regsize
393 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
394 offset += regsize - gdb_regsize;
395 }
396 regcache_raw_supply (regcache, regnum, regs + offset);
397 }
d195bc9f
MK
398}
399
f2db237a
AM
400/* Read register REGNUM from REGCACHE and store to REGS + OFFSET
401 in a field REGSIZE wide. Zero pad as necessary. */
402
7284e1be 403void
d195bc9f 404ppc_collect_reg (const struct regcache *regcache, int regnum,
f2db237a 405 gdb_byte *regs, size_t offset, int regsize)
d195bc9f
MK
406{
407 if (regnum != -1 && offset != -1)
f2db237a
AM
408 {
409 if (regsize > 4)
410 {
411 struct gdbarch *gdbarch = get_regcache_arch (regcache);
412 int gdb_regsize = register_size (gdbarch, regnum);
413 if (gdb_regsize < regsize)
414 {
415 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
416 {
417 memset (regs + offset, 0, regsize - gdb_regsize);
418 offset += regsize - gdb_regsize;
419 }
420 else
421 memset (regs + offset + regsize - gdb_regsize, 0,
422 regsize - gdb_regsize);
423 }
424 }
425 regcache_raw_collect (regcache, regnum, regs + offset);
426 }
d195bc9f
MK
427}
428
f2db237a
AM
429static int
430ppc_greg_offset (struct gdbarch *gdbarch,
431 struct gdbarch_tdep *tdep,
432 const struct ppc_reg_offsets *offsets,
433 int regnum,
434 int *regsize)
435{
436 *regsize = offsets->gpr_size;
437 if (regnum >= tdep->ppc_gp0_regnum
438 && regnum < tdep->ppc_gp0_regnum + ppc_num_gprs)
439 return (offsets->r0_offset
440 + (regnum - tdep->ppc_gp0_regnum) * offsets->gpr_size);
441
442 if (regnum == gdbarch_pc_regnum (gdbarch))
443 return offsets->pc_offset;
444
445 if (regnum == tdep->ppc_ps_regnum)
446 return offsets->ps_offset;
447
448 if (regnum == tdep->ppc_lr_regnum)
449 return offsets->lr_offset;
450
451 if (regnum == tdep->ppc_ctr_regnum)
452 return offsets->ctr_offset;
453
454 *regsize = offsets->xr_size;
455 if (regnum == tdep->ppc_cr_regnum)
456 return offsets->cr_offset;
457
458 if (regnum == tdep->ppc_xer_regnum)
459 return offsets->xer_offset;
460
461 if (regnum == tdep->ppc_mq_regnum)
462 return offsets->mq_offset;
463
464 return -1;
465}
466
467static int
468ppc_fpreg_offset (struct gdbarch_tdep *tdep,
469 const struct ppc_reg_offsets *offsets,
470 int regnum)
471{
472 if (regnum >= tdep->ppc_fp0_regnum
473 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs)
474 return offsets->f0_offset + (regnum - tdep->ppc_fp0_regnum) * 8;
475
476 if (regnum == tdep->ppc_fpscr_regnum)
477 return offsets->fpscr_offset;
478
479 return -1;
480}
481
06caf7d2
CES
482static int
483ppc_vrreg_offset (struct gdbarch_tdep *tdep,
484 const struct ppc_reg_offsets *offsets,
485 int regnum)
486{
487 if (regnum >= tdep->ppc_vr0_regnum
488 && regnum < tdep->ppc_vr0_regnum + ppc_num_vrs)
489 return offsets->vr0_offset + (regnum - tdep->ppc_vr0_regnum) * 16;
490
491 if (regnum == tdep->ppc_vrsave_regnum - 1)
492 return offsets->vscr_offset;
493
494 if (regnum == tdep->ppc_vrsave_regnum)
495 return offsets->vrsave_offset;
496
497 return -1;
498}
499
d195bc9f
MK
500/* Supply register REGNUM in the general-purpose register set REGSET
501 from the buffer specified by GREGS and LEN to register cache
502 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
503
504void
505ppc_supply_gregset (const struct regset *regset, struct regcache *regcache,
506 int regnum, const void *gregs, size_t len)
507{
508 struct gdbarch *gdbarch = get_regcache_arch (regcache);
509 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
510 const struct ppc_reg_offsets *offsets
511 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 512 size_t offset;
f2db237a 513 int regsize;
d195bc9f 514
f2db237a 515 if (regnum == -1)
d195bc9f 516 {
f2db237a
AM
517 int i;
518 int gpr_size = offsets->gpr_size;
519
520 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
521 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
522 i++, offset += gpr_size)
19ba03f4
SM
523 ppc_supply_reg (regcache, i, (const gdb_byte *) gregs, offset,
524 gpr_size);
f2db237a
AM
525
526 ppc_supply_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 527 (const gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 528 ppc_supply_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 529 (const gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 530 ppc_supply_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 531 (const gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 532 ppc_supply_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 533 (const gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 534 ppc_supply_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
535 (const gdb_byte *) gregs, offsets->cr_offset,
536 offsets->xr_size);
f2db237a 537 ppc_supply_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
538 (const gdb_byte *) gregs, offsets->xer_offset,
539 offsets->xr_size);
f2db237a 540 ppc_supply_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
541 (const gdb_byte *) gregs, offsets->mq_offset,
542 offsets->xr_size);
f2db237a 543 return;
d195bc9f
MK
544 }
545
f2db237a 546 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 547 ppc_supply_reg (regcache, regnum, (const gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
548}
549
550/* Supply register REGNUM in the floating-point register set REGSET
551 from the buffer specified by FPREGS and LEN to register cache
552 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
553
554void
555ppc_supply_fpregset (const struct regset *regset, struct regcache *regcache,
556 int regnum, const void *fpregs, size_t len)
557{
558 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
559 struct gdbarch_tdep *tdep;
560 const struct ppc_reg_offsets *offsets;
d195bc9f 561 size_t offset;
d195bc9f 562
f2db237a
AM
563 if (!ppc_floating_point_unit_p (gdbarch))
564 return;
383f0f5b 565
f2db237a 566 tdep = gdbarch_tdep (gdbarch);
19ba03f4 567 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 568 if (regnum == -1)
d195bc9f 569 {
f2db237a
AM
570 int i;
571
572 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
573 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
574 i++, offset += 8)
19ba03f4 575 ppc_supply_reg (regcache, i, (const gdb_byte *) fpregs, offset, 8);
f2db237a
AM
576
577 ppc_supply_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
578 (const gdb_byte *) fpregs, offsets->fpscr_offset,
579 offsets->fpscr_size);
f2db237a 580 return;
d195bc9f
MK
581 }
582
f2db237a 583 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 584 ppc_supply_reg (regcache, regnum, (const gdb_byte *) fpregs, offset,
f2db237a 585 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f
MK
586}
587
604c2f83
LM
588/* Supply register REGNUM in the VSX register set REGSET
589 from the buffer specified by VSXREGS and LEN to register cache
590 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
591
592void
593ppc_supply_vsxregset (const struct regset *regset, struct regcache *regcache,
594 int regnum, const void *vsxregs, size_t len)
595{
596 struct gdbarch *gdbarch = get_regcache_arch (regcache);
597 struct gdbarch_tdep *tdep;
598
599 if (!ppc_vsx_support_p (gdbarch))
600 return;
601
602 tdep = gdbarch_tdep (gdbarch);
603
604 if (regnum == -1)
605 {
606 int i;
607
608 for (i = tdep->ppc_vsr0_upper_regnum;
609 i < tdep->ppc_vsr0_upper_regnum + 32;
610 i++)
19ba03f4 611 ppc_supply_reg (regcache, i, (const gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
612
613 return;
614 }
615 else
19ba03f4 616 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
617}
618
06caf7d2
CES
619/* Supply register REGNUM in the Altivec register set REGSET
620 from the buffer specified by VRREGS and LEN to register cache
621 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
622
623void
624ppc_supply_vrregset (const struct regset *regset, struct regcache *regcache,
625 int regnum, const void *vrregs, size_t len)
626{
627 struct gdbarch *gdbarch = get_regcache_arch (regcache);
628 struct gdbarch_tdep *tdep;
629 const struct ppc_reg_offsets *offsets;
630 size_t offset;
631
632 if (!ppc_altivec_support_p (gdbarch))
633 return;
634
635 tdep = gdbarch_tdep (gdbarch);
19ba03f4 636 offsets = (const struct ppc_reg_offsets *) regset->regmap;
06caf7d2
CES
637 if (regnum == -1)
638 {
639 int i;
640
641 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
642 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
643 i++, offset += 16)
19ba03f4 644 ppc_supply_reg (regcache, i, (const gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
645
646 ppc_supply_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
19ba03f4 647 (const gdb_byte *) vrregs, offsets->vscr_offset, 4);
06caf7d2
CES
648
649 ppc_supply_reg (regcache, tdep->ppc_vrsave_regnum,
19ba03f4 650 (const gdb_byte *) vrregs, offsets->vrsave_offset, 4);
06caf7d2
CES
651 return;
652 }
653
654 offset = ppc_vrreg_offset (tdep, offsets, regnum);
655 if (regnum != tdep->ppc_vrsave_regnum
656 && regnum != tdep->ppc_vrsave_regnum - 1)
19ba03f4 657 ppc_supply_reg (regcache, regnum, (const gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
658 else
659 ppc_supply_reg (regcache, regnum,
19ba03f4 660 (const gdb_byte *) vrregs, offset, 4);
06caf7d2
CES
661}
662
d195bc9f 663/* Collect register REGNUM in the general-purpose register set
f2db237a 664 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
665 GREGS and LEN. If REGNUM is -1, do this for all registers in
666 REGSET. */
667
668void
669ppc_collect_gregset (const struct regset *regset,
670 const struct regcache *regcache,
671 int regnum, void *gregs, size_t len)
672{
673 struct gdbarch *gdbarch = get_regcache_arch (regcache);
674 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
19ba03f4
SM
675 const struct ppc_reg_offsets *offsets
676 = (const struct ppc_reg_offsets *) regset->regmap;
d195bc9f 677 size_t offset;
f2db237a 678 int regsize;
d195bc9f 679
f2db237a 680 if (regnum == -1)
d195bc9f 681 {
f2db237a
AM
682 int i;
683 int gpr_size = offsets->gpr_size;
684
685 for (i = tdep->ppc_gp0_regnum, offset = offsets->r0_offset;
686 i < tdep->ppc_gp0_regnum + ppc_num_gprs;
687 i++, offset += gpr_size)
19ba03f4 688 ppc_collect_reg (regcache, i, (gdb_byte *) gregs, offset, gpr_size);
f2db237a
AM
689
690 ppc_collect_reg (regcache, gdbarch_pc_regnum (gdbarch),
19ba03f4 691 (gdb_byte *) gregs, offsets->pc_offset, gpr_size);
f2db237a 692 ppc_collect_reg (regcache, tdep->ppc_ps_regnum,
19ba03f4 693 (gdb_byte *) gregs, offsets->ps_offset, gpr_size);
f2db237a 694 ppc_collect_reg (regcache, tdep->ppc_lr_regnum,
19ba03f4 695 (gdb_byte *) gregs, offsets->lr_offset, gpr_size);
f2db237a 696 ppc_collect_reg (regcache, tdep->ppc_ctr_regnum,
19ba03f4 697 (gdb_byte *) gregs, offsets->ctr_offset, gpr_size);
f2db237a 698 ppc_collect_reg (regcache, tdep->ppc_cr_regnum,
19ba03f4
SM
699 (gdb_byte *) gregs, offsets->cr_offset,
700 offsets->xr_size);
f2db237a 701 ppc_collect_reg (regcache, tdep->ppc_xer_regnum,
19ba03f4
SM
702 (gdb_byte *) gregs, offsets->xer_offset,
703 offsets->xr_size);
f2db237a 704 ppc_collect_reg (regcache, tdep->ppc_mq_regnum,
19ba03f4
SM
705 (gdb_byte *) gregs, offsets->mq_offset,
706 offsets->xr_size);
f2db237a 707 return;
d195bc9f
MK
708 }
709
f2db237a 710 offset = ppc_greg_offset (gdbarch, tdep, offsets, regnum, &regsize);
19ba03f4 711 ppc_collect_reg (regcache, regnum, (gdb_byte *) gregs, offset, regsize);
d195bc9f
MK
712}
713
714/* Collect register REGNUM in the floating-point register set
f2db237a 715 REGSET from register cache REGCACHE into the buffer specified by
d195bc9f
MK
716 FPREGS and LEN. If REGNUM is -1, do this for all registers in
717 REGSET. */
718
719void
720ppc_collect_fpregset (const struct regset *regset,
721 const struct regcache *regcache,
722 int regnum, void *fpregs, size_t len)
723{
724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
f2db237a
AM
725 struct gdbarch_tdep *tdep;
726 const struct ppc_reg_offsets *offsets;
d195bc9f 727 size_t offset;
d195bc9f 728
f2db237a
AM
729 if (!ppc_floating_point_unit_p (gdbarch))
730 return;
383f0f5b 731
f2db237a 732 tdep = gdbarch_tdep (gdbarch);
19ba03f4 733 offsets = (const struct ppc_reg_offsets *) regset->regmap;
f2db237a 734 if (regnum == -1)
d195bc9f 735 {
f2db237a
AM
736 int i;
737
738 for (i = tdep->ppc_fp0_regnum, offset = offsets->f0_offset;
739 i < tdep->ppc_fp0_regnum + ppc_num_fprs;
740 i++, offset += 8)
19ba03f4 741 ppc_collect_reg (regcache, i, (gdb_byte *) fpregs, offset, 8);
f2db237a
AM
742
743 ppc_collect_reg (regcache, tdep->ppc_fpscr_regnum,
19ba03f4
SM
744 (gdb_byte *) fpregs, offsets->fpscr_offset,
745 offsets->fpscr_size);
f2db237a 746 return;
d195bc9f
MK
747 }
748
f2db237a 749 offset = ppc_fpreg_offset (tdep, offsets, regnum);
19ba03f4 750 ppc_collect_reg (regcache, regnum, (gdb_byte *) fpregs, offset,
f2db237a 751 regnum == tdep->ppc_fpscr_regnum ? offsets->fpscr_size : 8);
d195bc9f 752}
06caf7d2 753
604c2f83
LM
754/* Collect register REGNUM in the VSX register set
755 REGSET from register cache REGCACHE into the buffer specified by
756 VSXREGS and LEN. If REGNUM is -1, do this for all registers in
757 REGSET. */
758
759void
760ppc_collect_vsxregset (const struct regset *regset,
761 const struct regcache *regcache,
762 int regnum, void *vsxregs, size_t len)
763{
764 struct gdbarch *gdbarch = get_regcache_arch (regcache);
765 struct gdbarch_tdep *tdep;
766
767 if (!ppc_vsx_support_p (gdbarch))
768 return;
769
770 tdep = gdbarch_tdep (gdbarch);
771
772 if (regnum == -1)
773 {
774 int i;
775
776 for (i = tdep->ppc_vsr0_upper_regnum;
777 i < tdep->ppc_vsr0_upper_regnum + 32;
778 i++)
19ba03f4 779 ppc_collect_reg (regcache, i, (gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
780
781 return;
782 }
783 else
19ba03f4 784 ppc_collect_reg (regcache, regnum, (gdb_byte *) vsxregs, 0, 8);
604c2f83
LM
785}
786
787
06caf7d2
CES
788/* Collect register REGNUM in the Altivec register set
789 REGSET from register cache REGCACHE into the buffer specified by
790 VRREGS and LEN. If REGNUM is -1, do this for all registers in
791 REGSET. */
792
793void
794ppc_collect_vrregset (const struct regset *regset,
795 const struct regcache *regcache,
796 int regnum, void *vrregs, size_t len)
797{
798 struct gdbarch *gdbarch = get_regcache_arch (regcache);
799 struct gdbarch_tdep *tdep;
800 const struct ppc_reg_offsets *offsets;
801 size_t offset;
802
803 if (!ppc_altivec_support_p (gdbarch))
804 return;
805
806 tdep = gdbarch_tdep (gdbarch);
19ba03f4 807 offsets = (const struct ppc_reg_offsets *) regset->regmap;
06caf7d2
CES
808 if (regnum == -1)
809 {
810 int i;
811
812 for (i = tdep->ppc_vr0_regnum, offset = offsets->vr0_offset;
813 i < tdep->ppc_vr0_regnum + ppc_num_vrs;
814 i++, offset += 16)
19ba03f4 815 ppc_collect_reg (regcache, i, (gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
816
817 ppc_collect_reg (regcache, (tdep->ppc_vrsave_regnum - 1),
19ba03f4 818 (gdb_byte *) vrregs, offsets->vscr_offset, 4);
06caf7d2
CES
819
820 ppc_collect_reg (regcache, tdep->ppc_vrsave_regnum,
19ba03f4 821 (gdb_byte *) vrregs, offsets->vrsave_offset, 4);
06caf7d2
CES
822 return;
823 }
824
825 offset = ppc_vrreg_offset (tdep, offsets, regnum);
826 if (regnum != tdep->ppc_vrsave_regnum
827 && regnum != tdep->ppc_vrsave_regnum - 1)
19ba03f4 828 ppc_collect_reg (regcache, regnum, (gdb_byte *) vrregs, offset, 16);
06caf7d2
CES
829 else
830 ppc_collect_reg (regcache, regnum,
19ba03f4 831 (gdb_byte *) vrregs, offset, 4);
06caf7d2 832}
d195bc9f 833\f
0a613259 834
0d1243d9
PG
835static int
836insn_changes_sp_or_jumps (unsigned long insn)
837{
838 int opcode = (insn >> 26) & 0x03f;
839 int sd = (insn >> 21) & 0x01f;
840 int a = (insn >> 16) & 0x01f;
841 int subcode = (insn >> 1) & 0x3ff;
842
843 /* Changes the stack pointer. */
844
845 /* NOTE: There are many ways to change the value of a given register.
846 The ways below are those used when the register is R1, the SP,
847 in a funtion's epilogue. */
848
849 if (opcode == 31 && subcode == 444 && a == 1)
850 return 1; /* mr R1,Rn */
851 if (opcode == 14 && sd == 1)
852 return 1; /* addi R1,Rn,simm */
853 if (opcode == 58 && sd == 1)
854 return 1; /* ld R1,ds(Rn) */
855
856 /* Transfers control. */
857
858 if (opcode == 18)
859 return 1; /* b */
860 if (opcode == 16)
861 return 1; /* bc */
862 if (opcode == 19 && subcode == 16)
863 return 1; /* bclr */
864 if (opcode == 19 && subcode == 528)
865 return 1; /* bcctr */
866
867 return 0;
868}
869
870/* Return true if we are in the function's epilogue, i.e. after the
871 instruction that destroyed the function's stack frame.
872
873 1) scan forward from the point of execution:
874 a) If you find an instruction that modifies the stack pointer
875 or transfers control (except a return), execution is not in
876 an epilogue, return.
877 b) Stop scanning if you find a return instruction or reach the
878 end of the function or reach the hard limit for the size of
879 an epilogue.
880 2) scan backward from the point of execution:
881 a) If you find an instruction that modifies the stack pointer,
882 execution *is* in an epilogue, return.
883 b) Stop scanning if you reach an instruction that transfers
884 control or the beginning of the function or reach the hard
885 limit for the size of an epilogue. */
886
887static int
2608dbf8
WW
888rs6000_in_function_epilogue_frame_p (struct frame_info *curfrm,
889 struct gdbarch *gdbarch, CORE_ADDR pc)
0d1243d9 890{
46a9b8ed 891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 892 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0d1243d9
PG
893 bfd_byte insn_buf[PPC_INSN_SIZE];
894 CORE_ADDR scan_pc, func_start, func_end, epilogue_start, epilogue_end;
895 unsigned long insn;
0d1243d9
PG
896
897 /* Find the search limits based on function boundaries and hard limit. */
898
899 if (!find_pc_partial_function (pc, NULL, &func_start, &func_end))
900 return 0;
901
902 epilogue_start = pc - PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
903 if (epilogue_start < func_start) epilogue_start = func_start;
904
905 epilogue_end = pc + PPC_MAX_EPILOGUE_INSTRUCTIONS * PPC_INSN_SIZE;
906 if (epilogue_end > func_end) epilogue_end = func_end;
907
0d1243d9
PG
908 /* Scan forward until next 'blr'. */
909
910 for (scan_pc = pc; scan_pc < epilogue_end; scan_pc += PPC_INSN_SIZE)
911 {
912 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
913 return 0;
e17a4113 914 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
915 if (insn == 0x4e800020)
916 break;
46a9b8ed
DJ
917 /* Assume a bctr is a tail call unless it points strictly within
918 this function. */
919 if (insn == 0x4e800420)
920 {
921 CORE_ADDR ctr = get_frame_register_unsigned (curfrm,
922 tdep->ppc_ctr_regnum);
923 if (ctr > func_start && ctr < func_end)
924 return 0;
925 else
926 break;
927 }
0d1243d9
PG
928 if (insn_changes_sp_or_jumps (insn))
929 return 0;
930 }
931
932 /* Scan backward until adjustment to stack pointer (R1). */
933
934 for (scan_pc = pc - PPC_INSN_SIZE;
935 scan_pc >= epilogue_start;
936 scan_pc -= PPC_INSN_SIZE)
937 {
938 if (!safe_frame_unwind_memory (curfrm, scan_pc, insn_buf, PPC_INSN_SIZE))
939 return 0;
e17a4113 940 insn = extract_unsigned_integer (insn_buf, PPC_INSN_SIZE, byte_order);
0d1243d9
PG
941 if (insn_changes_sp_or_jumps (insn))
942 return 1;
943 }
944
945 return 0;
946}
947
c9cf6e20 948/* Implement the stack_frame_destroyed_p gdbarch method. */
2608dbf8
WW
949
950static int
c9cf6e20 951rs6000_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2608dbf8
WW
952{
953 return rs6000_in_function_epilogue_frame_p (get_current_frame (),
954 gdbarch, pc);
955}
956
143985b7 957/* Get the ith function argument for the current function. */
b9362cc7 958static CORE_ADDR
143985b7
AF
959rs6000_fetch_pointer_argument (struct frame_info *frame, int argi,
960 struct type *type)
961{
50fd1280 962 return get_frame_register_unsigned (frame, 3 + argi);
143985b7
AF
963}
964
c906108c
SS
965/* Sequence of bytes for breakpoint instruction. */
966
44d100c3 967static const unsigned char *
67d57894
MD
968rs6000_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *bp_addr,
969 int *bp_size)
c906108c 970{
aaab4dba
AC
971 static unsigned char big_breakpoint[] = { 0x7d, 0x82, 0x10, 0x08 };
972 static unsigned char little_breakpoint[] = { 0x08, 0x10, 0x82, 0x7d };
c906108c 973 *bp_size = 4;
67d57894 974 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
c906108c
SS
975 return big_breakpoint;
976 else
977 return little_breakpoint;
978}
979
f74c6cad
LM
980/* Instruction masks for displaced stepping. */
981#define BRANCH_MASK 0xfc000000
982#define BP_MASK 0xFC0007FE
983#define B_INSN 0x48000000
984#define BC_INSN 0x40000000
985#define BXL_INSN 0x4c000000
986#define BP_INSN 0x7C000008
987
7f03bd92
PA
988/* Instruction masks used during single-stepping of atomic
989 sequences. */
990#define LWARX_MASK 0xfc0007fe
991#define LWARX_INSTRUCTION 0x7c000028
992#define LDARX_INSTRUCTION 0x7c0000A8
993#define STWCX_MASK 0xfc0007ff
994#define STWCX_INSTRUCTION 0x7c00012d
995#define STDCX_INSTRUCTION 0x7c0001ad
996
997/* We can't displaced step atomic sequences. Otherwise this is just
998 like simple_displaced_step_copy_insn. */
999
1000static struct displaced_step_closure *
1001ppc_displaced_step_copy_insn (struct gdbarch *gdbarch,
1002 CORE_ADDR from, CORE_ADDR to,
1003 struct regcache *regs)
1004{
1005 size_t len = gdbarch_max_insn_length (gdbarch);
224c3ddb 1006 gdb_byte *buf = (gdb_byte *) xmalloc (len);
7f03bd92
PA
1007 struct cleanup *old_chain = make_cleanup (xfree, buf);
1008 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1009 int insn;
1010
1011 read_memory (from, buf, len);
1012
1013 insn = extract_signed_integer (buf, PPC_INSN_SIZE, byte_order);
1014
1015 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1016 if ((insn & LWARX_MASK) == LWARX_INSTRUCTION
1017 || (insn & LWARX_MASK) == LDARX_INSTRUCTION)
1018 {
1019 if (debug_displaced)
1020 {
1021 fprintf_unfiltered (gdb_stdlog,
1022 "displaced: can't displaced step "
1023 "atomic sequence at %s\n",
1024 paddress (gdbarch, from));
1025 }
1026 do_cleanups (old_chain);
1027 return NULL;
1028 }
1029
1030 write_memory (to, buf, len);
1031
1032 if (debug_displaced)
1033 {
1034 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1035 paddress (gdbarch, from), paddress (gdbarch, to));
1036 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1037 }
1038
1039 discard_cleanups (old_chain);
1040 return (struct displaced_step_closure *) buf;
1041}
1042
f74c6cad
LM
1043/* Fix up the state of registers and memory after having single-stepped
1044 a displaced instruction. */
63807e1d 1045static void
f74c6cad 1046ppc_displaced_step_fixup (struct gdbarch *gdbarch,
63807e1d
PA
1047 struct displaced_step_closure *closure,
1048 CORE_ADDR from, CORE_ADDR to,
1049 struct regcache *regs)
f74c6cad 1050{
e17a4113 1051 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7f03bd92 1052 /* Our closure is a copy of the instruction. */
f74c6cad 1053 ULONGEST insn = extract_unsigned_integer ((gdb_byte *) closure,
e17a4113 1054 PPC_INSN_SIZE, byte_order);
f74c6cad
LM
1055 ULONGEST opcode = 0;
1056 /* Offset for non PC-relative instructions. */
1057 LONGEST offset = PPC_INSN_SIZE;
1058
1059 opcode = insn & BRANCH_MASK;
1060
1061 if (debug_displaced)
1062 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1063 "displaced: (ppc) fixup (%s, %s)\n",
1064 paddress (gdbarch, from), paddress (gdbarch, to));
f74c6cad
LM
1065
1066
1067 /* Handle PC-relative branch instructions. */
1068 if (opcode == B_INSN || opcode == BC_INSN || opcode == BXL_INSN)
1069 {
a4fafde3 1070 ULONGEST current_pc;
f74c6cad
LM
1071
1072 /* Read the current PC value after the instruction has been executed
1073 in a displaced location. Calculate the offset to be applied to the
1074 original PC value before the displaced stepping. */
1075 regcache_cooked_read_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1076 &current_pc);
1077 offset = current_pc - to;
1078
1079 if (opcode != BXL_INSN)
1080 {
1081 /* Check for AA bit indicating whether this is an absolute
1082 addressing or PC-relative (1: absolute, 0: relative). */
1083 if (!(insn & 0x2))
1084 {
1085 /* PC-relative addressing is being used in the branch. */
1086 if (debug_displaced)
1087 fprintf_unfiltered
1088 (gdb_stdlog,
5af949e3
UW
1089 "displaced: (ppc) branch instruction: %s\n"
1090 "displaced: (ppc) adjusted PC from %s to %s\n",
1091 paddress (gdbarch, insn), paddress (gdbarch, current_pc),
1092 paddress (gdbarch, from + offset));
f74c6cad 1093
0df8b418
MS
1094 regcache_cooked_write_unsigned (regs,
1095 gdbarch_pc_regnum (gdbarch),
f74c6cad
LM
1096 from + offset);
1097 }
1098 }
1099 else
1100 {
1101 /* If we're here, it means we have a branch to LR or CTR. If the
1102 branch was taken, the offset is probably greater than 4 (the next
1103 instruction), so it's safe to assume that an offset of 4 means we
1104 did not take the branch. */
1105 if (offset == PPC_INSN_SIZE)
1106 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1107 from + PPC_INSN_SIZE);
1108 }
1109
1110 /* Check for LK bit indicating whether we should set the link
1111 register to point to the next instruction
1112 (1: Set, 0: Don't set). */
1113 if (insn & 0x1)
1114 {
1115 /* Link register needs to be set to the next instruction's PC. */
1116 regcache_cooked_write_unsigned (regs,
1117 gdbarch_tdep (gdbarch)->ppc_lr_regnum,
1118 from + PPC_INSN_SIZE);
1119 if (debug_displaced)
1120 fprintf_unfiltered (gdb_stdlog,
5af949e3
UW
1121 "displaced: (ppc) adjusted LR to %s\n",
1122 paddress (gdbarch, from + PPC_INSN_SIZE));
f74c6cad
LM
1123
1124 }
1125 }
1126 /* Check for breakpoints in the inferior. If we've found one, place the PC
1127 right at the breakpoint instruction. */
1128 else if ((insn & BP_MASK) == BP_INSN)
1129 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch), from);
1130 else
1131 /* Handle any other instructions that do not fit in the categories above. */
1132 regcache_cooked_write_unsigned (regs, gdbarch_pc_regnum (gdbarch),
1133 from + offset);
1134}
c906108c 1135
99e40580
UW
1136/* Always use hardware single-stepping to execute the
1137 displaced instruction. */
1138static int
1139ppc_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
1140 struct displaced_step_closure *closure)
1141{
1142 return 1;
1143}
1144
ce5eab59
UW
1145/* Checks for an atomic sequence of instructions beginning with a LWARX/LDARX
1146 instruction and ending with a STWCX/STDCX instruction. If such a sequence
1147 is found, attempt to step through it. A breakpoint is placed at the end of
1148 the sequence. */
1149
4a7622d1
UW
1150int
1151ppc_deal_with_atomic_sequence (struct frame_info *frame)
ce5eab59 1152{
a6d9a66e 1153 struct gdbarch *gdbarch = get_frame_arch (frame);
6c95b8df 1154 struct address_space *aspace = get_frame_address_space (frame);
e17a4113 1155 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
0b1b3e42 1156 CORE_ADDR pc = get_frame_pc (frame);
ce5eab59
UW
1157 CORE_ADDR breaks[2] = {-1, -1};
1158 CORE_ADDR loc = pc;
24d45690 1159 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
e17a4113 1160 int insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1161 int insn_count;
1162 int index;
1163 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
1164 const int atomic_sequence_length = 16; /* Instruction sequence length. */
24d45690 1165 int opcode; /* Branch instruction's OPcode. */
ce5eab59
UW
1166 int bc_insn_count = 0; /* Conditional branch instruction count. */
1167
1168 /* Assume all atomic sequences start with a lwarx/ldarx instruction. */
1169 if ((insn & LWARX_MASK) != LWARX_INSTRUCTION
1170 && (insn & LWARX_MASK) != LDARX_INSTRUCTION)
1171 return 0;
1172
1173 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
1174 instructions. */
1175 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
1176 {
1177 loc += PPC_INSN_SIZE;
e17a4113 1178 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1179
1180 /* Assume that there is at most one conditional branch in the atomic
1181 sequence. If a conditional branch is found, put a breakpoint in
1182 its destination address. */
f74c6cad 1183 if ((insn & BRANCH_MASK) == BC_INSN)
ce5eab59 1184 {
a3769e0c
AM
1185 int immediate = ((insn & 0xfffc) ^ 0x8000) - 0x8000;
1186 int absolute = insn & 2;
4a7622d1 1187
ce5eab59
UW
1188 if (bc_insn_count >= 1)
1189 return 0; /* More than one conditional branch found, fallback
1190 to the standard single-step code. */
4a7622d1
UW
1191
1192 if (absolute)
1193 breaks[1] = immediate;
1194 else
a3769e0c 1195 breaks[1] = loc + immediate;
4a7622d1
UW
1196
1197 bc_insn_count++;
1198 last_breakpoint++;
ce5eab59
UW
1199 }
1200
1201 if ((insn & STWCX_MASK) == STWCX_INSTRUCTION
1202 || (insn & STWCX_MASK) == STDCX_INSTRUCTION)
1203 break;
1204 }
1205
1206 /* Assume that the atomic sequence ends with a stwcx/stdcx instruction. */
1207 if ((insn & STWCX_MASK) != STWCX_INSTRUCTION
1208 && (insn & STWCX_MASK) != STDCX_INSTRUCTION)
1209 return 0;
1210
24d45690 1211 closing_insn = loc;
ce5eab59 1212 loc += PPC_INSN_SIZE;
e17a4113 1213 insn = read_memory_integer (loc, PPC_INSN_SIZE, byte_order);
ce5eab59
UW
1214
1215 /* Insert a breakpoint right after the end of the atomic sequence. */
1216 breaks[0] = loc;
1217
24d45690 1218 /* Check for duplicated breakpoints. Check also for a breakpoint
a3769e0c
AM
1219 placed (branch instruction's destination) anywhere in sequence. */
1220 if (last_breakpoint
1221 && (breaks[1] == breaks[0]
1222 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
ce5eab59
UW
1223 last_breakpoint = 0;
1224
1225 /* Effectively inserts the breakpoints. */
1226 for (index = 0; index <= last_breakpoint; index++)
6c95b8df 1227 insert_single_step_breakpoint (gdbarch, aspace, breaks[index]);
ce5eab59
UW
1228
1229 return 1;
1230}
1231
c906108c 1232
c906108c
SS
1233#define SIGNED_SHORT(x) \
1234 ((sizeof (short) == 2) \
1235 ? ((int)(short)(x)) \
1236 : ((int)((((x) & 0xffff) ^ 0x8000) - 0x8000)))
1237
1238#define GET_SRC_REG(x) (((x) >> 21) & 0x1f)
1239
55d05f3b
KB
1240/* Limit the number of skipped non-prologue instructions, as the examining
1241 of the prologue is expensive. */
1242static int max_skip_non_prologue_insns = 10;
1243
773df3e5
JB
1244/* Return nonzero if the given instruction OP can be part of the prologue
1245 of a function and saves a parameter on the stack. FRAMEP should be
1246 set if one of the previous instructions in the function has set the
1247 Frame Pointer. */
1248
1249static int
1250store_param_on_stack_p (unsigned long op, int framep, int *r0_contains_arg)
1251{
1252 /* Move parameters from argument registers to temporary register. */
1253 if ((op & 0xfc0007fe) == 0x7c000378) /* mr(.) Rx,Ry */
1254 {
1255 /* Rx must be scratch register r0. */
1256 const int rx_regno = (op >> 16) & 31;
1257 /* Ry: Only r3 - r10 are used for parameter passing. */
1258 const int ry_regno = GET_SRC_REG (op);
1259
1260 if (rx_regno == 0 && ry_regno >= 3 && ry_regno <= 10)
1261 {
1262 *r0_contains_arg = 1;
1263 return 1;
1264 }
1265 else
1266 return 0;
1267 }
1268
1269 /* Save a General Purpose Register on stack. */
1270
1271 if ((op & 0xfc1f0003) == 0xf8010000 || /* std Rx,NUM(r1) */
1272 (op & 0xfc1f0000) == 0xd8010000) /* stfd Rx,NUM(r1) */
1273 {
1274 /* Rx: Only r3 - r10 are used for parameter passing. */
1275 const int rx_regno = GET_SRC_REG (op);
1276
1277 return (rx_regno >= 3 && rx_regno <= 10);
1278 }
1279
1280 /* Save a General Purpose Register on stack via the Frame Pointer. */
1281
1282 if (framep &&
1283 ((op & 0xfc1f0000) == 0x901f0000 || /* st rx,NUM(r31) */
1284 (op & 0xfc1f0000) == 0x981f0000 || /* stb Rx,NUM(r31) */
1285 (op & 0xfc1f0000) == 0xd81f0000)) /* stfd Rx,NUM(r31) */
1286 {
1287 /* Rx: Usually, only r3 - r10 are used for parameter passing.
1288 However, the compiler sometimes uses r0 to hold an argument. */
1289 const int rx_regno = GET_SRC_REG (op);
1290
1291 return ((rx_regno >= 3 && rx_regno <= 10)
1292 || (rx_regno == 0 && *r0_contains_arg));
1293 }
1294
1295 if ((op & 0xfc1f0000) == 0xfc010000) /* frsp, fp?,NUM(r1) */
1296 {
1297 /* Only f2 - f8 are used for parameter passing. */
1298 const int src_regno = GET_SRC_REG (op);
1299
1300 return (src_regno >= 2 && src_regno <= 8);
1301 }
1302
1303 if (framep && ((op & 0xfc1f0000) == 0xfc1f0000)) /* frsp, fp?,NUM(r31) */
1304 {
1305 /* Only f2 - f8 are used for parameter passing. */
1306 const int src_regno = GET_SRC_REG (op);
1307
1308 return (src_regno >= 2 && src_regno <= 8);
1309 }
1310
1311 /* Not an insn that saves a parameter on stack. */
1312 return 0;
1313}
55d05f3b 1314
3c77c82a
DJ
1315/* Assuming that INSN is a "bl" instruction located at PC, return
1316 nonzero if the destination of the branch is a "blrl" instruction.
1317
1318 This sequence is sometimes found in certain function prologues.
1319 It allows the function to load the LR register with a value that
1320 they can use to access PIC data using PC-relative offsets. */
1321
1322static int
e17a4113 1323bl_to_blrl_insn_p (CORE_ADDR pc, int insn, enum bfd_endian byte_order)
3c77c82a 1324{
0b1b3e42
UW
1325 CORE_ADDR dest;
1326 int immediate;
1327 int absolute;
3c77c82a
DJ
1328 int dest_insn;
1329
0b1b3e42
UW
1330 absolute = (int) ((insn >> 1) & 1);
1331 immediate = ((insn & ~3) << 6) >> 6;
1332 if (absolute)
1333 dest = immediate;
1334 else
1335 dest = pc + immediate;
1336
e17a4113 1337 dest_insn = read_memory_integer (dest, 4, byte_order);
3c77c82a
DJ
1338 if ((dest_insn & 0xfc00ffff) == 0x4c000021) /* blrl */
1339 return 1;
1340
1341 return 0;
1342}
1343
0df8b418 1344/* Masks for decoding a branch-and-link (bl) instruction.
8ab3d180
KB
1345
1346 BL_MASK and BL_INSTRUCTION are used in combination with each other.
1347 The former is anded with the opcode in question; if the result of
1348 this masking operation is equal to BL_INSTRUCTION, then the opcode in
1349 question is a ``bl'' instruction.
1350
1351 BL_DISPLACMENT_MASK is anded with the opcode in order to extract
1352 the branch displacement. */
1353
1354#define BL_MASK 0xfc000001
1355#define BL_INSTRUCTION 0x48000001
1356#define BL_DISPLACEMENT_MASK 0x03fffffc
1357
de9f48f0 1358static unsigned long
e17a4113 1359rs6000_fetch_instruction (struct gdbarch *gdbarch, const CORE_ADDR pc)
de9f48f0 1360{
e17a4113 1361 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
de9f48f0
JG
1362 gdb_byte buf[4];
1363 unsigned long op;
1364
1365 /* Fetch the instruction and convert it to an integer. */
1366 if (target_read_memory (pc, buf, 4))
1367 return 0;
e17a4113 1368 op = extract_unsigned_integer (buf, 4, byte_order);
de9f48f0
JG
1369
1370 return op;
1371}
1372
1373/* GCC generates several well-known sequences of instructions at the begining
1374 of each function prologue when compiling with -fstack-check. If one of
1375 such sequences starts at START_PC, then return the address of the
1376 instruction immediately past this sequence. Otherwise, return START_PC. */
1377
1378static CORE_ADDR
e17a4113 1379rs6000_skip_stack_check (struct gdbarch *gdbarch, const CORE_ADDR start_pc)
de9f48f0
JG
1380{
1381 CORE_ADDR pc = start_pc;
e17a4113 1382 unsigned long op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1383
1384 /* First possible sequence: A small number of probes.
1385 stw 0, -<some immediate>(1)
0df8b418 1386 [repeat this instruction any (small) number of times]. */
de9f48f0
JG
1387
1388 if ((op & 0xffff0000) == 0x90010000)
1389 {
1390 while ((op & 0xffff0000) == 0x90010000)
1391 {
1392 pc = pc + 4;
e17a4113 1393 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1394 }
1395 return pc;
1396 }
1397
1398 /* Second sequence: A probing loop.
1399 addi 12,1,-<some immediate>
1400 lis 0,-<some immediate>
1401 [possibly ori 0,0,<some immediate>]
1402 add 0,12,0
1403 cmpw 0,12,0
1404 beq 0,<disp>
1405 addi 12,12,-<some immediate>
1406 stw 0,0(12)
1407 b <disp>
0df8b418 1408 [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0
JG
1409
1410 while (1)
1411 {
1412 /* addi 12,1,-<some immediate> */
1413 if ((op & 0xffff0000) != 0x39810000)
1414 break;
1415
1416 /* lis 0,-<some immediate> */
1417 pc = pc + 4;
e17a4113 1418 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1419 if ((op & 0xffff0000) != 0x3c000000)
1420 break;
1421
1422 pc = pc + 4;
e17a4113 1423 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1424 /* [possibly ori 0,0,<some immediate>] */
1425 if ((op & 0xffff0000) == 0x60000000)
1426 {
1427 pc = pc + 4;
e17a4113 1428 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1429 }
1430 /* add 0,12,0 */
1431 if (op != 0x7c0c0214)
1432 break;
1433
1434 /* cmpw 0,12,0 */
1435 pc = pc + 4;
e17a4113 1436 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1437 if (op != 0x7c0c0000)
1438 break;
1439
1440 /* beq 0,<disp> */
1441 pc = pc + 4;
e17a4113 1442 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1443 if ((op & 0xff9f0001) != 0x41820000)
1444 break;
1445
1446 /* addi 12,12,-<some immediate> */
1447 pc = pc + 4;
e17a4113 1448 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1449 if ((op & 0xffff0000) != 0x398c0000)
1450 break;
1451
1452 /* stw 0,0(12) */
1453 pc = pc + 4;
e17a4113 1454 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1455 if (op != 0x900c0000)
1456 break;
1457
1458 /* b <disp> */
1459 pc = pc + 4;
e17a4113 1460 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1461 if ((op & 0xfc000001) != 0x48000000)
1462 break;
1463
0df8b418 1464 /* [possibly one last probe: stw 0,<some immediate>(12)]. */
de9f48f0 1465 pc = pc + 4;
e17a4113 1466 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1467 if ((op & 0xffff0000) == 0x900c0000)
1468 {
1469 pc = pc + 4;
e17a4113 1470 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1471 }
1472
1473 /* We found a valid stack-check sequence, return the new PC. */
1474 return pc;
1475 }
1476
1477 /* Third sequence: No probe; instead, a comparizon between the stack size
1478 limit (saved in a run-time global variable) and the current stack
1479 pointer:
1480
1481 addi 0,1,-<some immediate>
1482 lis 12,__gnat_stack_limit@ha
1483 lwz 12,__gnat_stack_limit@l(12)
1484 twllt 0,12
1485
1486 or, with a small variant in the case of a bigger stack frame:
1487 addis 0,1,<some immediate>
1488 addic 0,0,-<some immediate>
1489 lis 12,__gnat_stack_limit@ha
1490 lwz 12,__gnat_stack_limit@l(12)
1491 twllt 0,12
1492 */
1493 while (1)
1494 {
1495 /* addi 0,1,-<some immediate> */
1496 if ((op & 0xffff0000) != 0x38010000)
1497 {
1498 /* small stack frame variant not recognized; try the
1499 big stack frame variant: */
1500
1501 /* addis 0,1,<some immediate> */
1502 if ((op & 0xffff0000) != 0x3c010000)
1503 break;
1504
1505 /* addic 0,0,-<some immediate> */
1506 pc = pc + 4;
e17a4113 1507 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1508 if ((op & 0xffff0000) != 0x30000000)
1509 break;
1510 }
1511
1512 /* lis 12,<some immediate> */
1513 pc = pc + 4;
e17a4113 1514 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1515 if ((op & 0xffff0000) != 0x3d800000)
1516 break;
1517
1518 /* lwz 12,<some immediate>(12) */
1519 pc = pc + 4;
e17a4113 1520 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1521 if ((op & 0xffff0000) != 0x818c0000)
1522 break;
1523
1524 /* twllt 0,12 */
1525 pc = pc + 4;
e17a4113 1526 op = rs6000_fetch_instruction (gdbarch, pc);
de9f48f0
JG
1527 if ((op & 0xfffffffe) != 0x7c406008)
1528 break;
1529
1530 /* We found a valid stack-check sequence, return the new PC. */
1531 return pc;
1532 }
1533
1534 /* No stack check code in our prologue, return the start_pc. */
1535 return start_pc;
1536}
1537
6a16c029
TJB
1538/* return pc value after skipping a function prologue and also return
1539 information about a function frame.
1540
1541 in struct rs6000_framedata fdata:
1542 - frameless is TRUE, if function does not have a frame.
1543 - nosavedpc is TRUE, if function does not save %pc value in its frame.
1544 - offset is the initial size of this stack frame --- the amount by
1545 which we decrement the sp to allocate the frame.
1546 - saved_gpr is the number of the first saved gpr.
1547 - saved_fpr is the number of the first saved fpr.
1548 - saved_vr is the number of the first saved vr.
1549 - saved_ev is the number of the first saved ev.
1550 - alloca_reg is the number of the register used for alloca() handling.
1551 Otherwise -1.
1552 - gpr_offset is the offset of the first saved gpr from the previous frame.
1553 - fpr_offset is the offset of the first saved fpr from the previous frame.
1554 - vr_offset is the offset of the first saved vr from the previous frame.
1555 - ev_offset is the offset of the first saved ev from the previous frame.
1556 - lr_offset is the offset of the saved lr
1557 - cr_offset is the offset of the saved cr
0df8b418 1558 - vrsave_offset is the offset of the saved vrsave register. */
6a16c029 1559
7a78ae4e 1560static CORE_ADDR
be8626e0
MD
1561skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc, CORE_ADDR lim_pc,
1562 struct rs6000_framedata *fdata)
c906108c
SS
1563{
1564 CORE_ADDR orig_pc = pc;
55d05f3b 1565 CORE_ADDR last_prologue_pc = pc;
6be8bc0c 1566 CORE_ADDR li_found_pc = 0;
50fd1280 1567 gdb_byte buf[4];
c906108c
SS
1568 unsigned long op;
1569 long offset = 0;
6be8bc0c 1570 long vr_saved_offset = 0;
482ca3f5
KB
1571 int lr_reg = -1;
1572 int cr_reg = -1;
6be8bc0c 1573 int vr_reg = -1;
96ff0de4
EZ
1574 int ev_reg = -1;
1575 long ev_offset = 0;
6be8bc0c 1576 int vrsave_reg = -1;
c906108c
SS
1577 int reg;
1578 int framep = 0;
1579 int minimal_toc_loaded = 0;
ddb20c56 1580 int prev_insn_was_prologue_insn = 1;
55d05f3b 1581 int num_skip_non_prologue_insns = 0;
773df3e5 1582 int r0_contains_arg = 0;
be8626e0
MD
1583 const struct bfd_arch_info *arch_info = gdbarch_bfd_arch_info (gdbarch);
1584 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 1585 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
c906108c 1586
ddb20c56 1587 memset (fdata, 0, sizeof (struct rs6000_framedata));
c906108c
SS
1588 fdata->saved_gpr = -1;
1589 fdata->saved_fpr = -1;
6be8bc0c 1590 fdata->saved_vr = -1;
96ff0de4 1591 fdata->saved_ev = -1;
c906108c
SS
1592 fdata->alloca_reg = -1;
1593 fdata->frameless = 1;
1594 fdata->nosavedpc = 1;
46a9b8ed 1595 fdata->lr_register = -1;
c906108c 1596
e17a4113 1597 pc = rs6000_skip_stack_check (gdbarch, pc);
de9f48f0
JG
1598 if (pc >= lim_pc)
1599 pc = lim_pc;
1600
55d05f3b 1601 for (;; pc += 4)
c906108c 1602 {
ddb20c56
KB
1603 /* Sometimes it isn't clear if an instruction is a prologue
1604 instruction or not. When we encounter one of these ambiguous
1605 cases, we'll set prev_insn_was_prologue_insn to 0 (false).
0df8b418 1606 Otherwise, we'll assume that it really is a prologue instruction. */
ddb20c56
KB
1607 if (prev_insn_was_prologue_insn)
1608 last_prologue_pc = pc;
55d05f3b
KB
1609
1610 /* Stop scanning if we've hit the limit. */
4e463ff5 1611 if (pc >= lim_pc)
55d05f3b
KB
1612 break;
1613
ddb20c56
KB
1614 prev_insn_was_prologue_insn = 1;
1615
55d05f3b 1616 /* Fetch the instruction and convert it to an integer. */
ddb20c56
KB
1617 if (target_read_memory (pc, buf, 4))
1618 break;
e17a4113 1619 op = extract_unsigned_integer (buf, 4, byte_order);
c906108c 1620
c5aa993b
JM
1621 if ((op & 0xfc1fffff) == 0x7c0802a6)
1622 { /* mflr Rx */
43b1ab88
AC
1623 /* Since shared library / PIC code, which needs to get its
1624 address at runtime, can appear to save more than one link
1625 register vis:
1626
1627 *INDENT-OFF*
1628 stwu r1,-304(r1)
1629 mflr r3
1630 bl 0xff570d0 (blrl)
1631 stw r30,296(r1)
1632 mflr r30
1633 stw r31,300(r1)
1634 stw r3,308(r1);
1635 ...
1636 *INDENT-ON*
1637
1638 remember just the first one, but skip over additional
1639 ones. */
721d14ba 1640 if (lr_reg == -1)
46a9b8ed 1641 lr_reg = (op & 0x03e00000) >> 21;
773df3e5
JB
1642 if (lr_reg == 0)
1643 r0_contains_arg = 0;
c5aa993b 1644 continue;
c5aa993b
JM
1645 }
1646 else if ((op & 0xfc1fffff) == 0x7c000026)
1647 { /* mfcr Rx */
98f08d3d 1648 cr_reg = (op & 0x03e00000);
773df3e5
JB
1649 if (cr_reg == 0)
1650 r0_contains_arg = 0;
c5aa993b 1651 continue;
c906108c 1652
c906108c 1653 }
c5aa993b
JM
1654 else if ((op & 0xfc1f0000) == 0xd8010000)
1655 { /* stfd Rx,NUM(r1) */
1656 reg = GET_SRC_REG (op);
1657 if (fdata->saved_fpr == -1 || fdata->saved_fpr > reg)
1658 {
1659 fdata->saved_fpr = reg;
1660 fdata->fpr_offset = SIGNED_SHORT (op) + offset;
1661 }
1662 continue;
c906108c 1663
c5aa993b
JM
1664 }
1665 else if (((op & 0xfc1f0000) == 0xbc010000) || /* stm Rx, NUM(r1) */
7a78ae4e
ND
1666 (((op & 0xfc1f0000) == 0x90010000 || /* st rx,NUM(r1) */
1667 (op & 0xfc1f0003) == 0xf8010000) && /* std rx,NUM(r1) */
1668 (op & 0x03e00000) >= 0x01a00000)) /* rx >= r13 */
c5aa993b
JM
1669 {
1670
1671 reg = GET_SRC_REG (op);
46a9b8ed
DJ
1672 if ((op & 0xfc1f0000) == 0xbc010000)
1673 fdata->gpr_mask |= ~((1U << reg) - 1);
1674 else
1675 fdata->gpr_mask |= 1U << reg;
c5aa993b
JM
1676 if (fdata->saved_gpr == -1 || fdata->saved_gpr > reg)
1677 {
1678 fdata->saved_gpr = reg;
7a78ae4e 1679 if ((op & 0xfc1f0003) == 0xf8010000)
98f08d3d 1680 op &= ~3UL;
c5aa993b
JM
1681 fdata->gpr_offset = SIGNED_SHORT (op) + offset;
1682 }
1683 continue;
c906108c 1684
ddb20c56 1685 }
ef1bc9e7
AM
1686 else if ((op & 0xffff0000) == 0x3c4c0000
1687 || (op & 0xffff0000) == 0x3c400000
1688 || (op & 0xffff0000) == 0x38420000)
1689 {
1690 /* . 0: addis 2,12,.TOC.-0b@ha
1691 . addi 2,2,.TOC.-0b@l
1692 or
1693 . lis 2,.TOC.@ha
1694 . addi 2,2,.TOC.@l
1695 used by ELFv2 global entry points to set up r2. */
1696 continue;
1697 }
1698 else if (op == 0x60000000)
ddb20c56 1699 {
96ff0de4 1700 /* nop */
ddb20c56
KB
1701 /* Allow nops in the prologue, but do not consider them to
1702 be part of the prologue unless followed by other prologue
0df8b418 1703 instructions. */
ddb20c56
KB
1704 prev_insn_was_prologue_insn = 0;
1705 continue;
1706
c906108c 1707 }
c5aa993b 1708 else if ((op & 0xffff0000) == 0x3c000000)
ef1bc9e7 1709 { /* addis 0,0,NUM, used for >= 32k frames */
c5aa993b
JM
1710 fdata->offset = (op & 0x0000ffff) << 16;
1711 fdata->frameless = 0;
773df3e5 1712 r0_contains_arg = 0;
c5aa993b
JM
1713 continue;
1714
1715 }
1716 else if ((op & 0xffff0000) == 0x60000000)
ef1bc9e7 1717 { /* ori 0,0,NUM, 2nd half of >= 32k frames */
c5aa993b
JM
1718 fdata->offset |= (op & 0x0000ffff);
1719 fdata->frameless = 0;
773df3e5 1720 r0_contains_arg = 0;
c5aa993b
JM
1721 continue;
1722
1723 }
be723e22 1724 else if (lr_reg >= 0 &&
98f08d3d
KB
1725 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1726 (((op & 0xffff0000) == (lr_reg | 0xf8010000)) ||
1727 /* stw Rx, NUM(r1) */
1728 ((op & 0xffff0000) == (lr_reg | 0x90010000)) ||
1729 /* stwu Rx, NUM(r1) */
1730 ((op & 0xffff0000) == (lr_reg | 0x94010000))))
1731 { /* where Rx == lr */
1732 fdata->lr_offset = offset;
c5aa993b 1733 fdata->nosavedpc = 0;
be723e22
MS
1734 /* Invalidate lr_reg, but don't set it to -1.
1735 That would mean that it had never been set. */
1736 lr_reg = -2;
98f08d3d
KB
1737 if ((op & 0xfc000003) == 0xf8000000 || /* std */
1738 (op & 0xfc000000) == 0x90000000) /* stw */
1739 {
1740 /* Does not update r1, so add displacement to lr_offset. */
1741 fdata->lr_offset += SIGNED_SHORT (op);
1742 }
c5aa993b
JM
1743 continue;
1744
1745 }
be723e22 1746 else if (cr_reg >= 0 &&
98f08d3d
KB
1747 /* std Rx, NUM(r1) || stdu Rx, NUM(r1) */
1748 (((op & 0xffff0000) == (cr_reg | 0xf8010000)) ||
1749 /* stw Rx, NUM(r1) */
1750 ((op & 0xffff0000) == (cr_reg | 0x90010000)) ||
1751 /* stwu Rx, NUM(r1) */
1752 ((op & 0xffff0000) == (cr_reg | 0x94010000))))
1753 { /* where Rx == cr */
1754 fdata->cr_offset = offset;
be723e22
MS
1755 /* Invalidate cr_reg, but don't set it to -1.
1756 That would mean that it had never been set. */
1757 cr_reg = -2;
98f08d3d
KB
1758 if ((op & 0xfc000003) == 0xf8000000 ||
1759 (op & 0xfc000000) == 0x90000000)
1760 {
1761 /* Does not update r1, so add displacement to cr_offset. */
1762 fdata->cr_offset += SIGNED_SHORT (op);
1763 }
c5aa993b
JM
1764 continue;
1765
1766 }
721d14ba
DJ
1767 else if ((op & 0xfe80ffff) == 0x42800005 && lr_reg != -1)
1768 {
1769 /* bcl 20,xx,.+4 is used to get the current PC, with or without
1770 prediction bits. If the LR has already been saved, we can
1771 skip it. */
1772 continue;
1773 }
c5aa993b
JM
1774 else if (op == 0x48000005)
1775 { /* bl .+4 used in
1776 -mrelocatable */
46a9b8ed 1777 fdata->used_bl = 1;
c5aa993b
JM
1778 continue;
1779
1780 }
1781 else if (op == 0x48000004)
1782 { /* b .+4 (xlc) */
1783 break;
1784
c5aa993b 1785 }
6be8bc0c
EZ
1786 else if ((op & 0xffff0000) == 0x3fc00000 || /* addis 30,0,foo@ha, used
1787 in V.4 -mminimal-toc */
c5aa993b
JM
1788 (op & 0xffff0000) == 0x3bde0000)
1789 { /* addi 30,30,foo@l */
1790 continue;
c906108c 1791
c5aa993b
JM
1792 }
1793 else if ((op & 0xfc000001) == 0x48000001)
1794 { /* bl foo,
0df8b418 1795 to save fprs??? */
c906108c 1796
c5aa993b 1797 fdata->frameless = 0;
3c77c82a
DJ
1798
1799 /* If the return address has already been saved, we can skip
1800 calls to blrl (for PIC). */
e17a4113 1801 if (lr_reg != -1 && bl_to_blrl_insn_p (pc, op, byte_order))
46a9b8ed
DJ
1802 {
1803 fdata->used_bl = 1;
1804 continue;
1805 }
3c77c82a 1806
6be8bc0c 1807 /* Don't skip over the subroutine call if it is not within
ebd98106
FF
1808 the first three instructions of the prologue and either
1809 we have no line table information or the line info tells
1810 us that the subroutine call is not part of the line
1811 associated with the prologue. */
c5aa993b 1812 if ((pc - orig_pc) > 8)
ebd98106
FF
1813 {
1814 struct symtab_and_line prologue_sal = find_pc_line (orig_pc, 0);
1815 struct symtab_and_line this_sal = find_pc_line (pc, 0);
1816
0df8b418
MS
1817 if ((prologue_sal.line == 0)
1818 || (prologue_sal.line != this_sal.line))
ebd98106
FF
1819 break;
1820 }
c5aa993b 1821
e17a4113 1822 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b 1823
6be8bc0c
EZ
1824 /* At this point, make sure this is not a trampoline
1825 function (a function that simply calls another functions,
1826 and nothing else). If the next is not a nop, this branch
0df8b418 1827 was part of the function prologue. */
c5aa993b
JM
1828
1829 if (op == 0x4def7b82 || op == 0) /* crorc 15, 15, 15 */
0df8b418
MS
1830 break; /* Don't skip over
1831 this branch. */
c5aa993b 1832
46a9b8ed
DJ
1833 fdata->used_bl = 1;
1834 continue;
c5aa993b 1835 }
98f08d3d
KB
1836 /* update stack pointer */
1837 else if ((op & 0xfc1f0000) == 0x94010000)
1838 { /* stu rX,NUM(r1) || stwu rX,NUM(r1) */
c5aa993b
JM
1839 fdata->frameless = 0;
1840 fdata->offset = SIGNED_SHORT (op);
1841 offset = fdata->offset;
1842 continue;
c5aa993b 1843 }
98f08d3d
KB
1844 else if ((op & 0xfc1f016a) == 0x7c01016e)
1845 { /* stwux rX,r1,rY */
0df8b418 1846 /* No way to figure out what r1 is going to be. */
98f08d3d
KB
1847 fdata->frameless = 0;
1848 offset = fdata->offset;
1849 continue;
1850 }
1851 else if ((op & 0xfc1f0003) == 0xf8010001)
1852 { /* stdu rX,NUM(r1) */
1853 fdata->frameless = 0;
1854 fdata->offset = SIGNED_SHORT (op & ~3UL);
1855 offset = fdata->offset;
1856 continue;
1857 }
1858 else if ((op & 0xfc1f016a) == 0x7c01016a)
1859 { /* stdux rX,r1,rY */
0df8b418 1860 /* No way to figure out what r1 is going to be. */
c5aa993b
JM
1861 fdata->frameless = 0;
1862 offset = fdata->offset;
1863 continue;
c5aa993b 1864 }
7313566f
FF
1865 else if ((op & 0xffff0000) == 0x38210000)
1866 { /* addi r1,r1,SIMM */
1867 fdata->frameless = 0;
1868 fdata->offset += SIGNED_SHORT (op);
1869 offset = fdata->offset;
1870 continue;
1871 }
4e463ff5
DJ
1872 /* Load up minimal toc pointer. Do not treat an epilogue restore
1873 of r31 as a minimal TOC load. */
0df8b418
MS
1874 else if (((op >> 22) == 0x20f || /* l r31,... or l r30,... */
1875 (op >> 22) == 0x3af) /* ld r31,... or ld r30,... */
4e463ff5 1876 && !framep
c5aa993b 1877 && !minimal_toc_loaded)
98f08d3d 1878 {
c5aa993b
JM
1879 minimal_toc_loaded = 1;
1880 continue;
1881
f6077098
KB
1882 /* move parameters from argument registers to local variable
1883 registers */
1884 }
1885 else if ((op & 0xfc0007fe) == 0x7c000378 && /* mr(.) Rx,Ry */
1886 (((op >> 21) & 31) >= 3) && /* R3 >= Ry >= R10 */
1887 (((op >> 21) & 31) <= 10) &&
0df8b418
MS
1888 ((long) ((op >> 16) & 31)
1889 >= fdata->saved_gpr)) /* Rx: local var reg */
f6077098
KB
1890 {
1891 continue;
1892
c5aa993b
JM
1893 /* store parameters in stack */
1894 }
e802b915 1895 /* Move parameters from argument registers to temporary register. */
773df3e5 1896 else if (store_param_on_stack_p (op, framep, &r0_contains_arg))
e802b915 1897 {
c5aa993b
JM
1898 continue;
1899
1900 /* Set up frame pointer */
1901 }
76219d77
JB
1902 else if (op == 0x603d0000) /* oril r29, r1, 0x0 */
1903 {
1904 fdata->frameless = 0;
1905 framep = 1;
1906 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 29);
1907 continue;
1908
1909 /* Another way to set up the frame pointer. */
1910 }
c5aa993b
JM
1911 else if (op == 0x603f0000 /* oril r31, r1, 0x0 */
1912 || op == 0x7c3f0b78)
1913 { /* mr r31, r1 */
1914 fdata->frameless = 0;
1915 framep = 1;
6f99cb26 1916 fdata->alloca_reg = (tdep->ppc_gp0_regnum + 31);
c5aa993b
JM
1917 continue;
1918
1919 /* Another way to set up the frame pointer. */
1920 }
1921 else if ((op & 0xfc1fffff) == 0x38010000)
1922 { /* addi rX, r1, 0x0 */
1923 fdata->frameless = 0;
1924 framep = 1;
6f99cb26
AC
1925 fdata->alloca_reg = (tdep->ppc_gp0_regnum
1926 + ((op & ~0x38010000) >> 21));
c5aa993b 1927 continue;
c5aa993b 1928 }
6be8bc0c
EZ
1929 /* AltiVec related instructions. */
1930 /* Store the vrsave register (spr 256) in another register for
1931 later manipulation, or load a register into the vrsave
1932 register. 2 instructions are used: mfvrsave and
1933 mtvrsave. They are shorthand notation for mfspr Rn, SPR256
1934 and mtspr SPR256, Rn. */
1935 /* mfspr Rn SPR256 == 011111 nnnnn 0000001000 01010100110
1936 mtspr SPR256 Rn == 011111 nnnnn 0000001000 01110100110 */
1937 else if ((op & 0xfc1fffff) == 0x7c0042a6) /* mfvrsave Rn */
1938 {
1939 vrsave_reg = GET_SRC_REG (op);
1940 continue;
1941 }
1942 else if ((op & 0xfc1fffff) == 0x7c0043a6) /* mtvrsave Rn */
1943 {
1944 continue;
1945 }
1946 /* Store the register where vrsave was saved to onto the stack:
1947 rS is the register where vrsave was stored in a previous
1948 instruction. */
1949 /* 100100 sssss 00001 dddddddd dddddddd */
1950 else if ((op & 0xfc1f0000) == 0x90010000) /* stw rS, d(r1) */
1951 {
1952 if (vrsave_reg == GET_SRC_REG (op))
1953 {
1954 fdata->vrsave_offset = SIGNED_SHORT (op) + offset;
1955 vrsave_reg = -1;
1956 }
1957 continue;
1958 }
1959 /* Compute the new value of vrsave, by modifying the register
1960 where vrsave was saved to. */
1961 else if (((op & 0xfc000000) == 0x64000000) /* oris Ra, Rs, UIMM */
1962 || ((op & 0xfc000000) == 0x60000000))/* ori Ra, Rs, UIMM */
1963 {
1964 continue;
1965 }
1966 /* li r0, SIMM (short for addi r0, 0, SIMM). This is the first
1967 in a pair of insns to save the vector registers on the
1968 stack. */
1969 /* 001110 00000 00000 iiii iiii iiii iiii */
96ff0de4
EZ
1970 /* 001110 01110 00000 iiii iiii iiii iiii */
1971 else if ((op & 0xffff0000) == 0x38000000 /* li r0, SIMM */
1972 || (op & 0xffff0000) == 0x39c00000) /* li r14, SIMM */
6be8bc0c 1973 {
773df3e5
JB
1974 if ((op & 0xffff0000) == 0x38000000)
1975 r0_contains_arg = 0;
6be8bc0c
EZ
1976 li_found_pc = pc;
1977 vr_saved_offset = SIGNED_SHORT (op);
773df3e5
JB
1978
1979 /* This insn by itself is not part of the prologue, unless
0df8b418 1980 if part of the pair of insns mentioned above. So do not
773df3e5
JB
1981 record this insn as part of the prologue yet. */
1982 prev_insn_was_prologue_insn = 0;
6be8bc0c
EZ
1983 }
1984 /* Store vector register S at (r31+r0) aligned to 16 bytes. */
1985 /* 011111 sssss 11111 00000 00111001110 */
1986 else if ((op & 0xfc1fffff) == 0x7c1f01ce) /* stvx Vs, R31, R0 */
1987 {
1988 if (pc == (li_found_pc + 4))
1989 {
1990 vr_reg = GET_SRC_REG (op);
1991 /* If this is the first vector reg to be saved, or if
1992 it has a lower number than others previously seen,
1993 reupdate the frame info. */
1994 if (fdata->saved_vr == -1 || fdata->saved_vr > vr_reg)
1995 {
1996 fdata->saved_vr = vr_reg;
1997 fdata->vr_offset = vr_saved_offset + offset;
1998 }
1999 vr_saved_offset = -1;
2000 vr_reg = -1;
2001 li_found_pc = 0;
2002 }
2003 }
2004 /* End AltiVec related instructions. */
96ff0de4
EZ
2005
2006 /* Start BookE related instructions. */
2007 /* Store gen register S at (r31+uimm).
2008 Any register less than r13 is volatile, so we don't care. */
2009 /* 000100 sssss 11111 iiiii 01100100001 */
2010 else if (arch_info->mach == bfd_mach_ppc_e500
2011 && (op & 0xfc1f07ff) == 0x101f0321) /* evstdd Rs,uimm(R31) */
2012 {
2013 if ((op & 0x03e00000) >= 0x01a00000) /* Rs >= r13 */
2014 {
2015 unsigned int imm;
2016 ev_reg = GET_SRC_REG (op);
2017 imm = (op >> 11) & 0x1f;
2018 ev_offset = imm * 8;
2019 /* If this is the first vector reg to be saved, or if
2020 it has a lower number than others previously seen,
2021 reupdate the frame info. */
2022 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2023 {
2024 fdata->saved_ev = ev_reg;
2025 fdata->ev_offset = ev_offset + offset;
2026 }
2027 }
2028 continue;
2029 }
2030 /* Store gen register rS at (r1+rB). */
2031 /* 000100 sssss 00001 bbbbb 01100100000 */
2032 else if (arch_info->mach == bfd_mach_ppc_e500
2033 && (op & 0xffe007ff) == 0x13e00320) /* evstddx RS,R1,Rb */
2034 {
2035 if (pc == (li_found_pc + 4))
2036 {
2037 ev_reg = GET_SRC_REG (op);
2038 /* If this is the first vector reg to be saved, or if
2039 it has a lower number than others previously seen,
2040 reupdate the frame info. */
2041 /* We know the contents of rB from the previous instruction. */
2042 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2043 {
2044 fdata->saved_ev = ev_reg;
2045 fdata->ev_offset = vr_saved_offset + offset;
2046 }
2047 vr_saved_offset = -1;
2048 ev_reg = -1;
2049 li_found_pc = 0;
2050 }
2051 continue;
2052 }
2053 /* Store gen register r31 at (rA+uimm). */
2054 /* 000100 11111 aaaaa iiiii 01100100001 */
2055 else if (arch_info->mach == bfd_mach_ppc_e500
2056 && (op & 0xffe007ff) == 0x13e00321) /* evstdd R31,Ra,UIMM */
2057 {
2058 /* Wwe know that the source register is 31 already, but
2059 it can't hurt to compute it. */
2060 ev_reg = GET_SRC_REG (op);
2061 ev_offset = ((op >> 11) & 0x1f) * 8;
2062 /* If this is the first vector reg to be saved, or if
2063 it has a lower number than others previously seen,
2064 reupdate the frame info. */
2065 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2066 {
2067 fdata->saved_ev = ev_reg;
2068 fdata->ev_offset = ev_offset + offset;
2069 }
2070
2071 continue;
2072 }
2073 /* Store gen register S at (r31+r0).
2074 Store param on stack when offset from SP bigger than 4 bytes. */
2075 /* 000100 sssss 11111 00000 01100100000 */
2076 else if (arch_info->mach == bfd_mach_ppc_e500
2077 && (op & 0xfc1fffff) == 0x101f0320) /* evstddx Rs,R31,R0 */
2078 {
2079 if (pc == (li_found_pc + 4))
2080 {
2081 if ((op & 0x03e00000) >= 0x01a00000)
2082 {
2083 ev_reg = GET_SRC_REG (op);
2084 /* If this is the first vector reg to be saved, or if
2085 it has a lower number than others previously seen,
2086 reupdate the frame info. */
2087 /* We know the contents of r0 from the previous
2088 instruction. */
2089 if (fdata->saved_ev == -1 || fdata->saved_ev > ev_reg)
2090 {
2091 fdata->saved_ev = ev_reg;
2092 fdata->ev_offset = vr_saved_offset + offset;
2093 }
2094 ev_reg = -1;
2095 }
2096 vr_saved_offset = -1;
2097 li_found_pc = 0;
2098 continue;
2099 }
2100 }
2101 /* End BookE related instructions. */
2102
c5aa993b
JM
2103 else
2104 {
46a9b8ed
DJ
2105 unsigned int all_mask = ~((1U << fdata->saved_gpr) - 1);
2106
55d05f3b
KB
2107 /* Not a recognized prologue instruction.
2108 Handle optimizer code motions into the prologue by continuing
2109 the search if we have no valid frame yet or if the return
46a9b8ed
DJ
2110 address is not yet saved in the frame. Also skip instructions
2111 if some of the GPRs expected to be saved are not yet saved. */
2112 if (fdata->frameless == 0 && fdata->nosavedpc == 0
2113 && (fdata->gpr_mask & all_mask) == all_mask)
55d05f3b
KB
2114 break;
2115
2116 if (op == 0x4e800020 /* blr */
2117 || op == 0x4e800420) /* bctr */
2118 /* Do not scan past epilogue in frameless functions or
2119 trampolines. */
2120 break;
2121 if ((op & 0xf4000000) == 0x40000000) /* bxx */
64366f1c 2122 /* Never skip branches. */
55d05f3b
KB
2123 break;
2124
2125 if (num_skip_non_prologue_insns++ > max_skip_non_prologue_insns)
2126 /* Do not scan too many insns, scanning insns is expensive with
2127 remote targets. */
2128 break;
2129
2130 /* Continue scanning. */
2131 prev_insn_was_prologue_insn = 0;
2132 continue;
c5aa993b 2133 }
c906108c
SS
2134 }
2135
2136#if 0
2137/* I have problems with skipping over __main() that I need to address
0df8b418 2138 * sometime. Previously, I used to use misc_function_vector which
c906108c
SS
2139 * didn't work as well as I wanted to be. -MGO */
2140
2141 /* If the first thing after skipping a prolog is a branch to a function,
2142 this might be a call to an initializer in main(), introduced by gcc2.
64366f1c 2143 We'd like to skip over it as well. Fortunately, xlc does some extra
c906108c 2144 work before calling a function right after a prologue, thus we can
64366f1c 2145 single out such gcc2 behaviour. */
c906108c 2146
c906108c 2147
c5aa993b 2148 if ((op & 0xfc000001) == 0x48000001)
0df8b418 2149 { /* bl foo, an initializer function? */
e17a4113 2150 op = read_memory_integer (pc + 4, 4, byte_order);
c5aa993b
JM
2151
2152 if (op == 0x4def7b82)
2153 { /* cror 0xf, 0xf, 0xf (nop) */
c906108c 2154
64366f1c
EZ
2155 /* Check and see if we are in main. If so, skip over this
2156 initializer function as well. */
c906108c 2157
c5aa993b 2158 tmp = find_pc_misc_function (pc);
6314a349
AC
2159 if (tmp >= 0
2160 && strcmp (misc_function_vector[tmp].name, main_name ()) == 0)
c5aa993b
JM
2161 return pc + 8;
2162 }
c906108c 2163 }
c906108c 2164#endif /* 0 */
c5aa993b 2165
46a9b8ed
DJ
2166 if (pc == lim_pc && lr_reg >= 0)
2167 fdata->lr_register = lr_reg;
2168
c5aa993b 2169 fdata->offset = -fdata->offset;
ddb20c56 2170 return last_prologue_pc;
c906108c
SS
2171}
2172
7a78ae4e 2173static CORE_ADDR
4a7622d1 2174rs6000_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 2175{
4a7622d1 2176 struct rs6000_framedata frame;
e3acb115 2177 CORE_ADDR limit_pc, func_addr, func_end_addr = 0;
c906108c 2178
4a7622d1
UW
2179 /* See if we can determine the end of the prologue via the symbol table.
2180 If so, then return either PC, or the PC after the prologue, whichever
2181 is greater. */
e3acb115 2182 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
c5aa993b 2183 {
d80b854b
UW
2184 CORE_ADDR post_prologue_pc
2185 = skip_prologue_using_sal (gdbarch, func_addr);
4a7622d1
UW
2186 if (post_prologue_pc != 0)
2187 return max (pc, post_prologue_pc);
c906108c 2188 }
c906108c 2189
4a7622d1
UW
2190 /* Can't determine prologue from the symbol table, need to examine
2191 instructions. */
c906108c 2192
4a7622d1
UW
2193 /* Find an upper limit on the function prologue using the debug
2194 information. If the debug information could not be used to provide
2195 that bound, then use an arbitrary large number as the upper bound. */
d80b854b 2196 limit_pc = skip_prologue_using_sal (gdbarch, pc);
4a7622d1
UW
2197 if (limit_pc == 0)
2198 limit_pc = pc + 100; /* Magic. */
794a477a 2199
e3acb115
JB
2200 /* Do not allow limit_pc to be past the function end, if we know
2201 where that end is... */
2202 if (func_end_addr && limit_pc > func_end_addr)
2203 limit_pc = func_end_addr;
2204
4a7622d1
UW
2205 pc = skip_prologue (gdbarch, pc, limit_pc, &frame);
2206 return pc;
c906108c 2207}
c906108c 2208
8ab3d180
KB
2209/* When compiling for EABI, some versions of GCC emit a call to __eabi
2210 in the prologue of main().
2211
2212 The function below examines the code pointed at by PC and checks to
2213 see if it corresponds to a call to __eabi. If so, it returns the
2214 address of the instruction following that call. Otherwise, it simply
2215 returns PC. */
2216
63807e1d 2217static CORE_ADDR
8ab3d180
KB
2218rs6000_skip_main_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
2219{
e17a4113 2220 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
8ab3d180
KB
2221 gdb_byte buf[4];
2222 unsigned long op;
2223
2224 if (target_read_memory (pc, buf, 4))
2225 return pc;
e17a4113 2226 op = extract_unsigned_integer (buf, 4, byte_order);
8ab3d180
KB
2227
2228 if ((op & BL_MASK) == BL_INSTRUCTION)
2229 {
2230 CORE_ADDR displ = op & BL_DISPLACEMENT_MASK;
2231 CORE_ADDR call_dest = pc + 4 + displ;
7cbd4a93 2232 struct bound_minimal_symbol s = lookup_minimal_symbol_by_pc (call_dest);
8ab3d180
KB
2233
2234 /* We check for ___eabi (three leading underscores) in addition
2235 to __eabi in case the GCC option "-fleading-underscore" was
2236 used to compile the program. */
7cbd4a93 2237 if (s.minsym != NULL
efd66ac6
TT
2238 && MSYMBOL_LINKAGE_NAME (s.minsym) != NULL
2239 && (strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "__eabi") == 0
2240 || strcmp (MSYMBOL_LINKAGE_NAME (s.minsym), "___eabi") == 0))
8ab3d180
KB
2241 pc += 4;
2242 }
2243 return pc;
2244}
383f0f5b 2245
4a7622d1
UW
2246/* All the ABI's require 16 byte alignment. */
2247static CORE_ADDR
2248rs6000_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2249{
2250 return (addr & -16);
c906108c
SS
2251}
2252
977adac5
ND
2253/* Return whether handle_inferior_event() should proceed through code
2254 starting at PC in function NAME when stepping.
2255
2256 The AIX -bbigtoc linker option generates functions @FIX0, @FIX1, etc. to
2257 handle memory references that are too distant to fit in instructions
2258 generated by the compiler. For example, if 'foo' in the following
2259 instruction:
2260
2261 lwz r9,foo(r2)
2262
2263 is greater than 32767, the linker might replace the lwz with a branch to
2264 somewhere in @FIX1 that does the load in 2 instructions and then branches
2265 back to where execution should continue.
2266
2267 GDB should silently step over @FIX code, just like AIX dbx does.
2ec664f5
MS
2268 Unfortunately, the linker uses the "b" instruction for the
2269 branches, meaning that the link register doesn't get set.
2270 Therefore, GDB's usual step_over_function () mechanism won't work.
977adac5 2271
e76f05fa
UW
2272 Instead, use the gdbarch_skip_trampoline_code and
2273 gdbarch_skip_trampoline_code hooks in handle_inferior_event() to skip past
2ec664f5 2274 @FIX code. */
977adac5 2275
63807e1d 2276static int
e17a4113 2277rs6000_in_solib_return_trampoline (struct gdbarch *gdbarch,
2c02bd72 2278 CORE_ADDR pc, const char *name)
977adac5 2279{
61012eef 2280 return name && startswith (name, "@FIX");
977adac5
ND
2281}
2282
2283/* Skip code that the user doesn't want to see when stepping:
2284
2285 1. Indirect function calls use a piece of trampoline code to do context
2286 switching, i.e. to set the new TOC table. Skip such code if we are on
2287 its first instruction (as when we have single-stepped to here).
2288
2289 2. Skip shared library trampoline code (which is different from
c906108c 2290 indirect function call trampolines).
977adac5
ND
2291
2292 3. Skip bigtoc fixup code.
2293
c906108c 2294 Result is desired PC to step until, or NULL if we are not in
977adac5 2295 code that should be skipped. */
c906108c 2296
63807e1d 2297static CORE_ADDR
52f729a7 2298rs6000_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
c906108c 2299{
e17a4113
UW
2300 struct gdbarch *gdbarch = get_frame_arch (frame);
2301 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2302 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
52f0bd74 2303 unsigned int ii, op;
977adac5 2304 int rel;
c906108c 2305 CORE_ADDR solib_target_pc;
7cbd4a93 2306 struct bound_minimal_symbol msymbol;
c906108c 2307
c5aa993b
JM
2308 static unsigned trampoline_code[] =
2309 {
2310 0x800b0000, /* l r0,0x0(r11) */
2311 0x90410014, /* st r2,0x14(r1) */
2312 0x7c0903a6, /* mtctr r0 */
2313 0x804b0004, /* l r2,0x4(r11) */
2314 0x816b0008, /* l r11,0x8(r11) */
2315 0x4e800420, /* bctr */
2316 0x4e800020, /* br */
2317 0
c906108c
SS
2318 };
2319
977adac5
ND
2320 /* Check for bigtoc fixup code. */
2321 msymbol = lookup_minimal_symbol_by_pc (pc);
7cbd4a93 2322 if (msymbol.minsym
e17a4113 2323 && rs6000_in_solib_return_trampoline (gdbarch, pc,
efd66ac6 2324 MSYMBOL_LINKAGE_NAME (msymbol.minsym)))
977adac5
ND
2325 {
2326 /* Double-check that the third instruction from PC is relative "b". */
e17a4113 2327 op = read_memory_integer (pc + 8, 4, byte_order);
977adac5
ND
2328 if ((op & 0xfc000003) == 0x48000000)
2329 {
2330 /* Extract bits 6-29 as a signed 24-bit relative word address and
2331 add it to the containing PC. */
2332 rel = ((int)(op << 6) >> 6);
2333 return pc + 8 + rel;
2334 }
2335 }
2336
c906108c 2337 /* If pc is in a shared library trampoline, return its target. */
52f729a7 2338 solib_target_pc = find_solib_trampoline_target (frame, pc);
c906108c
SS
2339 if (solib_target_pc)
2340 return solib_target_pc;
2341
c5aa993b
JM
2342 for (ii = 0; trampoline_code[ii]; ++ii)
2343 {
e17a4113 2344 op = read_memory_integer (pc + (ii * 4), 4, byte_order);
c5aa993b
JM
2345 if (op != trampoline_code[ii])
2346 return 0;
2347 }
0df8b418
MS
2348 ii = get_frame_register_unsigned (frame, 11); /* r11 holds destination
2349 addr. */
e17a4113 2350 pc = read_memory_unsigned_integer (ii, tdep->wordsize, byte_order);
c906108c
SS
2351 return pc;
2352}
2353
794ac428
UW
2354/* ISA-specific vector types. */
2355
2356static struct type *
2357rs6000_builtin_type_vec64 (struct gdbarch *gdbarch)
2358{
2359 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2360
2361 if (!tdep->ppc_builtin_type_vec64)
2362 {
df4df182
UW
2363 const struct builtin_type *bt = builtin_type (gdbarch);
2364
794ac428
UW
2365 /* The type we're building is this: */
2366#if 0
2367 union __gdb_builtin_type_vec64
2368 {
2369 int64_t uint64;
2370 float v2_float[2];
2371 int32_t v2_int32[2];
2372 int16_t v4_int16[4];
2373 int8_t v8_int8[8];
2374 };
2375#endif
2376
2377 struct type *t;
2378
e9bb382b
UW
2379 t = arch_composite_type (gdbarch,
2380 "__ppc_builtin_type_vec64", TYPE_CODE_UNION);
df4df182 2381 append_composite_type_field (t, "uint64", bt->builtin_int64);
794ac428 2382 append_composite_type_field (t, "v2_float",
df4df182 2383 init_vector_type (bt->builtin_float, 2));
794ac428 2384 append_composite_type_field (t, "v2_int32",
df4df182 2385 init_vector_type (bt->builtin_int32, 2));
794ac428 2386 append_composite_type_field (t, "v4_int16",
df4df182 2387 init_vector_type (bt->builtin_int16, 4));
794ac428 2388 append_composite_type_field (t, "v8_int8",
df4df182 2389 init_vector_type (bt->builtin_int8, 8));
794ac428 2390
876cecd0 2391 TYPE_VECTOR (t) = 1;
794ac428
UW
2392 TYPE_NAME (t) = "ppc_builtin_type_vec64";
2393 tdep->ppc_builtin_type_vec64 = t;
2394 }
2395
2396 return tdep->ppc_builtin_type_vec64;
2397}
2398
604c2f83
LM
2399/* Vector 128 type. */
2400
2401static struct type *
2402rs6000_builtin_type_vec128 (struct gdbarch *gdbarch)
2403{
2404 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2405
2406 if (!tdep->ppc_builtin_type_vec128)
2407 {
df4df182
UW
2408 const struct builtin_type *bt = builtin_type (gdbarch);
2409
604c2f83
LM
2410 /* The type we're building is this
2411
2412 type = union __ppc_builtin_type_vec128 {
2413 uint128_t uint128;
db9f5df8 2414 double v2_double[2];
604c2f83
LM
2415 float v4_float[4];
2416 int32_t v4_int32[4];
2417 int16_t v8_int16[8];
2418 int8_t v16_int8[16];
2419 }
2420 */
2421
2422 struct type *t;
2423
e9bb382b
UW
2424 t = arch_composite_type (gdbarch,
2425 "__ppc_builtin_type_vec128", TYPE_CODE_UNION);
df4df182 2426 append_composite_type_field (t, "uint128", bt->builtin_uint128);
db9f5df8
UW
2427 append_composite_type_field (t, "v2_double",
2428 init_vector_type (bt->builtin_double, 2));
604c2f83 2429 append_composite_type_field (t, "v4_float",
df4df182 2430 init_vector_type (bt->builtin_float, 4));
604c2f83 2431 append_composite_type_field (t, "v4_int32",
df4df182 2432 init_vector_type (bt->builtin_int32, 4));
604c2f83 2433 append_composite_type_field (t, "v8_int16",
df4df182 2434 init_vector_type (bt->builtin_int16, 8));
604c2f83 2435 append_composite_type_field (t, "v16_int8",
df4df182 2436 init_vector_type (bt->builtin_int8, 16));
604c2f83 2437
803e1097 2438 TYPE_VECTOR (t) = 1;
604c2f83
LM
2439 TYPE_NAME (t) = "ppc_builtin_type_vec128";
2440 tdep->ppc_builtin_type_vec128 = t;
2441 }
2442
2443 return tdep->ppc_builtin_type_vec128;
2444}
2445
7cc46491
DJ
2446/* Return the name of register number REGNO, or the empty string if it
2447 is an anonymous register. */
7a78ae4e 2448
fa88f677 2449static const char *
d93859e2 2450rs6000_register_name (struct gdbarch *gdbarch, int regno)
7a78ae4e 2451{
d93859e2 2452 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2453
7cc46491
DJ
2454 /* The upper half "registers" have names in the XML description,
2455 but we present only the low GPRs and the full 64-bit registers
2456 to the user. */
2457 if (tdep->ppc_ev0_upper_regnum >= 0
2458 && tdep->ppc_ev0_upper_regnum <= regno
2459 && regno < tdep->ppc_ev0_upper_regnum + ppc_num_gprs)
2460 return "";
2461
604c2f83
LM
2462 /* Hide the upper halves of the vs0~vs31 registers. */
2463 if (tdep->ppc_vsr0_regnum >= 0
2464 && tdep->ppc_vsr0_upper_regnum <= regno
2465 && regno < tdep->ppc_vsr0_upper_regnum + ppc_num_gprs)
2466 return "";
2467
7cc46491 2468 /* Check if the SPE pseudo registers are available. */
5a9e69ba 2469 if (IS_SPE_PSEUDOREG (tdep, regno))
7cc46491
DJ
2470 {
2471 static const char *const spe_regnames[] = {
2472 "ev0", "ev1", "ev2", "ev3", "ev4", "ev5", "ev6", "ev7",
2473 "ev8", "ev9", "ev10", "ev11", "ev12", "ev13", "ev14", "ev15",
2474 "ev16", "ev17", "ev18", "ev19", "ev20", "ev21", "ev22", "ev23",
2475 "ev24", "ev25", "ev26", "ev27", "ev28", "ev29", "ev30", "ev31",
2476 };
2477 return spe_regnames[regno - tdep->ppc_ev0_regnum];
2478 }
2479
f949c649
TJB
2480 /* Check if the decimal128 pseudo-registers are available. */
2481 if (IS_DFP_PSEUDOREG (tdep, regno))
2482 {
2483 static const char *const dfp128_regnames[] = {
2484 "dl0", "dl1", "dl2", "dl3",
2485 "dl4", "dl5", "dl6", "dl7",
2486 "dl8", "dl9", "dl10", "dl11",
2487 "dl12", "dl13", "dl14", "dl15"
2488 };
2489 return dfp128_regnames[regno - tdep->ppc_dl0_regnum];
2490 }
2491
604c2f83
LM
2492 /* Check if this is a VSX pseudo-register. */
2493 if (IS_VSX_PSEUDOREG (tdep, regno))
2494 {
2495 static const char *const vsx_regnames[] = {
2496 "vs0", "vs1", "vs2", "vs3", "vs4", "vs5", "vs6", "vs7",
2497 "vs8", "vs9", "vs10", "vs11", "vs12", "vs13", "vs14",
2498 "vs15", "vs16", "vs17", "vs18", "vs19", "vs20", "vs21",
2499 "vs22", "vs23", "vs24", "vs25", "vs26", "vs27", "vs28",
2500 "vs29", "vs30", "vs31", "vs32", "vs33", "vs34", "vs35",
2501 "vs36", "vs37", "vs38", "vs39", "vs40", "vs41", "vs42",
2502 "vs43", "vs44", "vs45", "vs46", "vs47", "vs48", "vs49",
2503 "vs50", "vs51", "vs52", "vs53", "vs54", "vs55", "vs56",
2504 "vs57", "vs58", "vs59", "vs60", "vs61", "vs62", "vs63"
2505 };
2506 return vsx_regnames[regno - tdep->ppc_vsr0_regnum];
2507 }
2508
2509 /* Check if the this is a Extended FP pseudo-register. */
2510 if (IS_EFP_PSEUDOREG (tdep, regno))
2511 {
2512 static const char *const efpr_regnames[] = {
2513 "f32", "f33", "f34", "f35", "f36", "f37", "f38",
2514 "f39", "f40", "f41", "f42", "f43", "f44", "f45",
2515 "f46", "f47", "f48", "f49", "f50", "f51",
2516 "f52", "f53", "f54", "f55", "f56", "f57",
2517 "f58", "f59", "f60", "f61", "f62", "f63"
2518 };
2519 return efpr_regnames[regno - tdep->ppc_efpr0_regnum];
2520 }
2521
d93859e2 2522 return tdesc_register_name (gdbarch, regno);
7a78ae4e
ND
2523}
2524
7cc46491
DJ
2525/* Return the GDB type object for the "standard" data type of data in
2526 register N. */
7a78ae4e
ND
2527
2528static struct type *
7cc46491 2529rs6000_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
7a78ae4e 2530{
691d145a 2531 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7a78ae4e 2532
7cc46491 2533 /* These are the only pseudo-registers we support. */
f949c649 2534 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2535 || IS_DFP_PSEUDOREG (tdep, regnum)
2536 || IS_VSX_PSEUDOREG (tdep, regnum)
2537 || IS_EFP_PSEUDOREG (tdep, regnum));
7cc46491 2538
f949c649
TJB
2539 /* These are the e500 pseudo-registers. */
2540 if (IS_SPE_PSEUDOREG (tdep, regnum))
2541 return rs6000_builtin_type_vec64 (gdbarch);
604c2f83
LM
2542 else if (IS_DFP_PSEUDOREG (tdep, regnum))
2543 /* PPC decimal128 pseudo-registers. */
f949c649 2544 return builtin_type (gdbarch)->builtin_declong;
604c2f83
LM
2545 else if (IS_VSX_PSEUDOREG (tdep, regnum))
2546 /* POWER7 VSX pseudo-registers. */
2547 return rs6000_builtin_type_vec128 (gdbarch);
2548 else
2549 /* POWER7 Extended FP pseudo-registers. */
2550 return builtin_type (gdbarch)->builtin_double;
7a78ae4e
ND
2551}
2552
c44ca51c
AC
2553/* Is REGNUM a member of REGGROUP? */
2554static int
7cc46491
DJ
2555rs6000_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2556 struct reggroup *group)
c44ca51c
AC
2557{
2558 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c44ca51c 2559
7cc46491 2560 /* These are the only pseudo-registers we support. */
f949c649 2561 gdb_assert (IS_SPE_PSEUDOREG (tdep, regnum)
604c2f83
LM
2562 || IS_DFP_PSEUDOREG (tdep, regnum)
2563 || IS_VSX_PSEUDOREG (tdep, regnum)
2564 || IS_EFP_PSEUDOREG (tdep, regnum));
c44ca51c 2565
604c2f83
LM
2566 /* These are the e500 pseudo-registers or the POWER7 VSX registers. */
2567 if (IS_SPE_PSEUDOREG (tdep, regnum) || IS_VSX_PSEUDOREG (tdep, regnum))
f949c649 2568 return group == all_reggroup || group == vector_reggroup;
7cc46491 2569 else
604c2f83 2570 /* PPC decimal128 or Extended FP pseudo-registers. */
f949c649 2571 return group == all_reggroup || group == float_reggroup;
c44ca51c
AC
2572}
2573
691d145a 2574/* The register format for RS/6000 floating point registers is always
64366f1c 2575 double, we need a conversion if the memory format is float. */
7a78ae4e
ND
2576
2577static int
0abe36f5
MD
2578rs6000_convert_register_p (struct gdbarch *gdbarch, int regnum,
2579 struct type *type)
7a78ae4e 2580{
0abe36f5 2581 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7cc46491
DJ
2582
2583 return (tdep->ppc_fp0_regnum >= 0
2584 && regnum >= tdep->ppc_fp0_regnum
2585 && regnum < tdep->ppc_fp0_regnum + ppc_num_fprs
2586 && TYPE_CODE (type) == TYPE_CODE_FLT
0dfff4cb
UW
2587 && TYPE_LENGTH (type)
2588 != TYPE_LENGTH (builtin_type (gdbarch)->builtin_double));
7a78ae4e
ND
2589}
2590
8dccd430 2591static int
691d145a
JB
2592rs6000_register_to_value (struct frame_info *frame,
2593 int regnum,
2594 struct type *type,
8dccd430
PA
2595 gdb_byte *to,
2596 int *optimizedp, int *unavailablep)
7a78ae4e 2597{
0dfff4cb 2598 struct gdbarch *gdbarch = get_frame_arch (frame);
50fd1280 2599 gdb_byte from[MAX_REGISTER_SIZE];
691d145a 2600
691d145a 2601 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
7a78ae4e 2602
8dccd430
PA
2603 if (!get_frame_register_bytes (frame, regnum, 0,
2604 register_size (gdbarch, regnum),
2605 from, optimizedp, unavailablep))
2606 return 0;
2607
0dfff4cb
UW
2608 convert_typed_floating (from, builtin_type (gdbarch)->builtin_double,
2609 to, type);
8dccd430
PA
2610 *optimizedp = *unavailablep = 0;
2611 return 1;
691d145a 2612}
7a292a7a 2613
7a78ae4e 2614static void
691d145a
JB
2615rs6000_value_to_register (struct frame_info *frame,
2616 int regnum,
2617 struct type *type,
50fd1280 2618 const gdb_byte *from)
7a78ae4e 2619{
0dfff4cb 2620 struct gdbarch *gdbarch = get_frame_arch (frame);
50fd1280 2621 gdb_byte to[MAX_REGISTER_SIZE];
691d145a 2622
691d145a
JB
2623 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2624
0dfff4cb
UW
2625 convert_typed_floating (from, type,
2626 to, builtin_type (gdbarch)->builtin_double);
691d145a 2627 put_frame_register (frame, regnum, to);
7a78ae4e 2628}
c906108c 2629
05d1431c
PA
2630 /* The type of a function that moves the value of REG between CACHE
2631 or BUF --- in either direction. */
2632typedef enum register_status (*move_ev_register_func) (struct regcache *,
2633 int, void *);
2634
6ced10dd
JB
2635/* Move SPE vector register values between a 64-bit buffer and the two
2636 32-bit raw register halves in a regcache. This function handles
2637 both splitting a 64-bit value into two 32-bit halves, and joining
2638 two halves into a whole 64-bit value, depending on the function
2639 passed as the MOVE argument.
2640
2641 EV_REG must be the number of an SPE evN vector register --- a
2642 pseudoregister. REGCACHE must be a regcache, and BUFFER must be a
2643 64-bit buffer.
2644
2645 Call MOVE once for each 32-bit half of that register, passing
2646 REGCACHE, the number of the raw register corresponding to that
2647 half, and the address of the appropriate half of BUFFER.
2648
2649 For example, passing 'regcache_raw_read' as the MOVE function will
2650 fill BUFFER with the full 64-bit contents of EV_REG. Or, passing
2651 'regcache_raw_supply' will supply the contents of BUFFER to the
2652 appropriate pair of raw registers in REGCACHE.
2653
2654 You may need to cast away some 'const' qualifiers when passing
2655 MOVE, since this function can't tell at compile-time which of
2656 REGCACHE or BUFFER is acting as the source of the data. If C had
2657 co-variant type qualifiers, ... */
05d1431c
PA
2658
2659static enum register_status
2660e500_move_ev_register (move_ev_register_func move,
2661 struct regcache *regcache, int ev_reg, void *buffer)
6ced10dd
JB
2662{
2663 struct gdbarch *arch = get_regcache_arch (regcache);
2664 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
2665 int reg_index;
19ba03f4 2666 gdb_byte *byte_buffer = (gdb_byte *) buffer;
05d1431c 2667 enum register_status status;
6ced10dd 2668
5a9e69ba 2669 gdb_assert (IS_SPE_PSEUDOREG (tdep, ev_reg));
6ced10dd
JB
2670
2671 reg_index = ev_reg - tdep->ppc_ev0_regnum;
2672
8b164abb 2673 if (gdbarch_byte_order (arch) == BFD_ENDIAN_BIG)
6ced10dd 2674 {
05d1431c
PA
2675 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2676 byte_buffer);
2677 if (status == REG_VALID)
2678 status = move (regcache, tdep->ppc_gp0_regnum + reg_index,
2679 byte_buffer + 4);
6ced10dd
JB
2680 }
2681 else
2682 {
05d1431c
PA
2683 status = move (regcache, tdep->ppc_gp0_regnum + reg_index, byte_buffer);
2684 if (status == REG_VALID)
2685 status = move (regcache, tdep->ppc_ev0_upper_regnum + reg_index,
2686 byte_buffer + 4);
6ced10dd 2687 }
05d1431c
PA
2688
2689 return status;
6ced10dd
JB
2690}
2691
05d1431c
PA
2692static enum register_status
2693do_regcache_raw_read (struct regcache *regcache, int regnum, void *buffer)
2694{
19ba03f4 2695 return regcache_raw_read (regcache, regnum, (gdb_byte *) buffer);
05d1431c
PA
2696}
2697
2698static enum register_status
2699do_regcache_raw_write (struct regcache *regcache, int regnum, void *buffer)
2700{
19ba03f4 2701 regcache_raw_write (regcache, regnum, (const gdb_byte *) buffer);
05d1431c
PA
2702
2703 return REG_VALID;
2704}
2705
2706static enum register_status
c8001721 2707e500_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
50fd1280 2708 int reg_nr, gdb_byte *buffer)
f949c649 2709{
05d1431c 2710 return e500_move_ev_register (do_regcache_raw_read, regcache, reg_nr, buffer);
f949c649
TJB
2711}
2712
2713static void
2714e500_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2715 int reg_nr, const gdb_byte *buffer)
2716{
05d1431c
PA
2717 e500_move_ev_register (do_regcache_raw_write, regcache,
2718 reg_nr, (void *) buffer);
f949c649
TJB
2719}
2720
604c2f83 2721/* Read method for DFP pseudo-registers. */
05d1431c 2722static enum register_status
604c2f83 2723dfp_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2724 int reg_nr, gdb_byte *buffer)
2725{
2726 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2727 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
05d1431c 2728 enum register_status status;
f949c649
TJB
2729
2730 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2731 {
2732 /* Read two FP registers to form a whole dl register. */
05d1431c
PA
2733 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2734 2 * reg_index, buffer);
2735 if (status == REG_VALID)
2736 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2737 2 * reg_index + 1, buffer + 8);
f949c649
TJB
2738 }
2739 else
2740 {
05d1431c 2741 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2742 2 * reg_index + 1, buffer);
05d1431c
PA
2743 if (status == REG_VALID)
2744 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2745 2 * reg_index, buffer + 8);
f949c649 2746 }
05d1431c
PA
2747
2748 return status;
f949c649
TJB
2749}
2750
604c2f83 2751/* Write method for DFP pseudo-registers. */
f949c649 2752static void
604c2f83 2753dfp_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
f949c649
TJB
2754 int reg_nr, const gdb_byte *buffer)
2755{
2756 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2757 int reg_index = reg_nr - tdep->ppc_dl0_regnum;
2758
2759 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2760 {
2761 /* Write each half of the dl register into a separate
2762 FP register. */
2763 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2764 2 * reg_index, buffer);
2765 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2766 2 * reg_index + 1, buffer + 8);
2767 }
2768 else
2769 {
2770 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2771 2 * reg_index + 1, buffer);
f949c649 2772 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
0ff3e01f 2773 2 * reg_index, buffer + 8);
f949c649
TJB
2774 }
2775}
2776
604c2f83 2777/* Read method for POWER7 VSX pseudo-registers. */
05d1431c 2778static enum register_status
604c2f83
LM
2779vsx_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2780 int reg_nr, gdb_byte *buffer)
2781{
2782 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2783 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
05d1431c 2784 enum register_status status;
604c2f83
LM
2785
2786 /* Read the portion that overlaps the VMX registers. */
2787 if (reg_index > 31)
05d1431c
PA
2788 status = regcache_raw_read (regcache, tdep->ppc_vr0_regnum +
2789 reg_index - 32, buffer);
604c2f83
LM
2790 else
2791 /* Read the portion that overlaps the FPR registers. */
2792 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2793 {
05d1431c
PA
2794 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2795 reg_index, buffer);
2796 if (status == REG_VALID)
2797 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2798 reg_index, buffer + 8);
604c2f83
LM
2799 }
2800 else
2801 {
05d1431c
PA
2802 status = regcache_raw_read (regcache, tdep->ppc_fp0_regnum +
2803 reg_index, buffer + 8);
2804 if (status == REG_VALID)
2805 status = regcache_raw_read (regcache, tdep->ppc_vsr0_upper_regnum +
2806 reg_index, buffer);
604c2f83 2807 }
05d1431c
PA
2808
2809 return status;
604c2f83
LM
2810}
2811
2812/* Write method for POWER7 VSX pseudo-registers. */
2813static void
2814vsx_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2815 int reg_nr, const gdb_byte *buffer)
2816{
2817 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2818 int reg_index = reg_nr - tdep->ppc_vsr0_regnum;
2819
2820 /* Write the portion that overlaps the VMX registers. */
2821 if (reg_index > 31)
2822 regcache_raw_write (regcache, tdep->ppc_vr0_regnum +
2823 reg_index - 32, buffer);
2824 else
2825 /* Write the portion that overlaps the FPR registers. */
2826 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
2827 {
2828 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2829 reg_index, buffer);
2830 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2831 reg_index, buffer + 8);
2832 }
2833 else
2834 {
2835 regcache_raw_write (regcache, tdep->ppc_fp0_regnum +
2836 reg_index, buffer + 8);
2837 regcache_raw_write (regcache, tdep->ppc_vsr0_upper_regnum +
2838 reg_index, buffer);
2839 }
2840}
2841
2842/* Read method for POWER7 Extended FP pseudo-registers. */
05d1431c 2843static enum register_status
604c2f83
LM
2844efpr_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2845 int reg_nr, gdb_byte *buffer)
2846{
2847 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2848 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2849 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2850
d9492458 2851 /* Read the portion that overlaps the VMX register. */
084ee545
UW
2852 return regcache_raw_read_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2853 offset, register_size (gdbarch, reg_nr),
2854 buffer);
604c2f83
LM
2855}
2856
2857/* Write method for POWER7 Extended FP pseudo-registers. */
2858static void
2859efpr_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
2860 int reg_nr, const gdb_byte *buffer)
2861{
2862 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2863 int reg_index = reg_nr - tdep->ppc_efpr0_regnum;
084ee545 2864 int offset = gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG ? 0 : 8;
604c2f83 2865
d9492458 2866 /* Write the portion that overlaps the VMX register. */
084ee545
UW
2867 regcache_raw_write_part (regcache, tdep->ppc_vr0_regnum + reg_index,
2868 offset, register_size (gdbarch, reg_nr),
2869 buffer);
604c2f83
LM
2870}
2871
05d1431c 2872static enum register_status
0df8b418
MS
2873rs6000_pseudo_register_read (struct gdbarch *gdbarch,
2874 struct regcache *regcache,
f949c649 2875 int reg_nr, gdb_byte *buffer)
c8001721 2876{
6ced10dd 2877 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2878 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2879
6ced10dd 2880 gdb_assert (regcache_arch == gdbarch);
f949c649 2881
5a9e69ba 2882 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
05d1431c 2883 return e500_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
f949c649 2884 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2885 return dfp_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2886 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
05d1431c 2887 return vsx_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
604c2f83 2888 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
05d1431c 2889 return efpr_pseudo_register_read (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2890 else
a44bddec 2891 internal_error (__FILE__, __LINE__,
f949c649
TJB
2892 _("rs6000_pseudo_register_read: "
2893 "called on unexpected register '%s' (%d)"),
2894 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
c8001721
EZ
2895}
2896
2897static void
f949c649
TJB
2898rs6000_pseudo_register_write (struct gdbarch *gdbarch,
2899 struct regcache *regcache,
2900 int reg_nr, const gdb_byte *buffer)
c8001721 2901{
6ced10dd 2902 struct gdbarch *regcache_arch = get_regcache_arch (regcache);
c8001721
EZ
2903 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2904
6ced10dd 2905 gdb_assert (regcache_arch == gdbarch);
f949c649 2906
5a9e69ba 2907 if (IS_SPE_PSEUDOREG (tdep, reg_nr))
f949c649
TJB
2908 e500_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2909 else if (IS_DFP_PSEUDOREG (tdep, reg_nr))
604c2f83
LM
2910 dfp_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2911 else if (IS_VSX_PSEUDOREG (tdep, reg_nr))
2912 vsx_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
2913 else if (IS_EFP_PSEUDOREG (tdep, reg_nr))
2914 efpr_pseudo_register_write (gdbarch, regcache, reg_nr, buffer);
6ced10dd 2915 else
a44bddec 2916 internal_error (__FILE__, __LINE__,
f949c649
TJB
2917 _("rs6000_pseudo_register_write: "
2918 "called on unexpected register '%s' (%d)"),
2919 gdbarch_register_name (gdbarch, reg_nr), reg_nr);
6ced10dd
JB
2920}
2921
18ed0c4e 2922/* Convert a DBX STABS register number to a GDB register number. */
c8001721 2923static int
d3f73121 2924rs6000_stab_reg_to_regnum (struct gdbarch *gdbarch, int num)
c8001721 2925{
d3f73121 2926 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
c8001721 2927
9f744501
JB
2928 if (0 <= num && num <= 31)
2929 return tdep->ppc_gp0_regnum + num;
2930 else if (32 <= num && num <= 63)
383f0f5b
JB
2931 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2932 specifies registers the architecture doesn't have? Our
2933 callers don't check the value we return. */
366f009f 2934 return tdep->ppc_fp0_regnum + (num - 32);
18ed0c4e
JB
2935 else if (77 <= num && num <= 108)
2936 return tdep->ppc_vr0_regnum + (num - 77);
9f744501 2937 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 2938 return tdep->ppc_ev0_upper_regnum + (num - 1200);
9f744501
JB
2939 else
2940 switch (num)
2941 {
2942 case 64:
2943 return tdep->ppc_mq_regnum;
2944 case 65:
2945 return tdep->ppc_lr_regnum;
2946 case 66:
2947 return tdep->ppc_ctr_regnum;
2948 case 76:
2949 return tdep->ppc_xer_regnum;
2950 case 109:
2951 return tdep->ppc_vrsave_regnum;
18ed0c4e
JB
2952 case 110:
2953 return tdep->ppc_vrsave_regnum - 1; /* vscr */
867e2dc5 2954 case 111:
18ed0c4e 2955 return tdep->ppc_acc_regnum;
867e2dc5 2956 case 112:
18ed0c4e 2957 return tdep->ppc_spefscr_regnum;
9f744501
JB
2958 default:
2959 return num;
2960 }
18ed0c4e 2961}
9f744501 2962
9f744501 2963
18ed0c4e
JB
2964/* Convert a Dwarf 2 register number to a GDB register number. */
2965static int
d3f73121 2966rs6000_dwarf2_reg_to_regnum (struct gdbarch *gdbarch, int num)
18ed0c4e 2967{
d3f73121 2968 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
9f744501 2969
18ed0c4e
JB
2970 if (0 <= num && num <= 31)
2971 return tdep->ppc_gp0_regnum + num;
2972 else if (32 <= num && num <= 63)
2973 /* FIXME: jimb/2004-05-05: What should we do when the debug info
2974 specifies registers the architecture doesn't have? Our
2975 callers don't check the value we return. */
2976 return tdep->ppc_fp0_regnum + (num - 32);
2977 else if (1124 <= num && num < 1124 + 32)
2978 return tdep->ppc_vr0_regnum + (num - 1124);
2979 else if (1200 <= num && num < 1200 + 32)
e1ec1b42 2980 return tdep->ppc_ev0_upper_regnum + (num - 1200);
18ed0c4e
JB
2981 else
2982 switch (num)
2983 {
a489f789
AS
2984 case 64:
2985 return tdep->ppc_cr_regnum;
18ed0c4e
JB
2986 case 67:
2987 return tdep->ppc_vrsave_regnum - 1; /* vscr */
2988 case 99:
2989 return tdep->ppc_acc_regnum;
2990 case 100:
2991 return tdep->ppc_mq_regnum;
2992 case 101:
2993 return tdep->ppc_xer_regnum;
2994 case 108:
2995 return tdep->ppc_lr_regnum;
2996 case 109:
2997 return tdep->ppc_ctr_regnum;
2998 case 356:
2999 return tdep->ppc_vrsave_regnum;
3000 case 612:
3001 return tdep->ppc_spefscr_regnum;
3002 default:
3003 return num;
3004 }
2188cbdd
EZ
3005}
3006
4fc771b8
DJ
3007/* Translate a .eh_frame register to DWARF register, or adjust a
3008 .debug_frame register. */
3009
3010static int
3011rs6000_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
3012{
3013 /* GCC releases before 3.4 use GCC internal register numbering in
3014 .debug_frame (and .debug_info, et cetera). The numbering is
3015 different from the standard SysV numbering for everything except
3016 for GPRs and FPRs. We can not detect this problem in most cases
3017 - to get accurate debug info for variables living in lr, ctr, v0,
3018 et cetera, use a newer version of GCC. But we must detect
3019 one important case - lr is in column 65 in .debug_frame output,
3020 instead of 108.
3021
3022 GCC 3.4, and the "hammer" branch, have a related problem. They
3023 record lr register saves in .debug_frame as 108, but still record
3024 the return column as 65. We fix that up too.
3025
3026 We can do this because 65 is assigned to fpsr, and GCC never
3027 generates debug info referring to it. To add support for
3028 handwritten debug info that restores fpsr, we would need to add a
3029 producer version check to this. */
3030 if (!eh_frame_p)
3031 {
3032 if (num == 65)
3033 return 108;
3034 else
3035 return num;
3036 }
3037
3038 /* .eh_frame is GCC specific. For binary compatibility, it uses GCC
3039 internal register numbering; translate that to the standard DWARF2
3040 register numbering. */
3041 if (0 <= num && num <= 63) /* r0-r31,fp0-fp31 */
3042 return num;
3043 else if (68 <= num && num <= 75) /* cr0-cr8 */
3044 return num - 68 + 86;
3045 else if (77 <= num && num <= 108) /* vr0-vr31 */
3046 return num - 77 + 1124;
3047 else
3048 switch (num)
3049 {
3050 case 64: /* mq */
3051 return 100;
3052 case 65: /* lr */
3053 return 108;
3054 case 66: /* ctr */
3055 return 109;
3056 case 76: /* xer */
3057 return 101;
3058 case 109: /* vrsave */
3059 return 356;
3060 case 110: /* vscr */
3061 return 67;
3062 case 111: /* spe_acc */
3063 return 99;
3064 case 112: /* spefscr */
3065 return 612;
3066 default:
3067 return num;
3068 }
3069}
c906108c 3070\f
c5aa993b 3071
7a78ae4e 3072/* Handling the various POWER/PowerPC variants. */
c906108c 3073
c906108c 3074/* Information about a particular processor variant. */
7a78ae4e 3075
c906108c 3076struct variant
c5aa993b
JM
3077 {
3078 /* Name of this variant. */
3079 char *name;
c906108c 3080
c5aa993b
JM
3081 /* English description of the variant. */
3082 char *description;
c906108c 3083
64366f1c 3084 /* bfd_arch_info.arch corresponding to variant. */
7a78ae4e
ND
3085 enum bfd_architecture arch;
3086
64366f1c 3087 /* bfd_arch_info.mach corresponding to variant. */
7a78ae4e
ND
3088 unsigned long mach;
3089
7cc46491
DJ
3090 /* Target description for this variant. */
3091 struct target_desc **tdesc;
c5aa993b 3092 };
c906108c 3093
489461e2 3094static struct variant variants[] =
c906108c 3095{
7a78ae4e 3096 {"powerpc", "PowerPC user-level", bfd_arch_powerpc,
7284e1be 3097 bfd_mach_ppc, &tdesc_powerpc_altivec32},
7a78ae4e 3098 {"power", "POWER user-level", bfd_arch_rs6000,
7cc46491 3099 bfd_mach_rs6k, &tdesc_rs6000},
7a78ae4e 3100 {"403", "IBM PowerPC 403", bfd_arch_powerpc,
7cc46491 3101 bfd_mach_ppc_403, &tdesc_powerpc_403},
4d09ffea
MS
3102 {"405", "IBM PowerPC 405", bfd_arch_powerpc,
3103 bfd_mach_ppc_405, &tdesc_powerpc_405},
7a78ae4e 3104 {"601", "Motorola PowerPC 601", bfd_arch_powerpc,
7cc46491 3105 bfd_mach_ppc_601, &tdesc_powerpc_601},
7a78ae4e 3106 {"602", "Motorola PowerPC 602", bfd_arch_powerpc,
7cc46491 3107 bfd_mach_ppc_602, &tdesc_powerpc_602},
7a78ae4e 3108 {"603", "Motorola/IBM PowerPC 603 or 603e", bfd_arch_powerpc,
7cc46491 3109 bfd_mach_ppc_603, &tdesc_powerpc_603},
7a78ae4e 3110 {"604", "Motorola PowerPC 604 or 604e", bfd_arch_powerpc,
7cc46491 3111 604, &tdesc_powerpc_604},
7a78ae4e 3112 {"403GC", "IBM PowerPC 403GC", bfd_arch_powerpc,
7cc46491 3113 bfd_mach_ppc_403gc, &tdesc_powerpc_403gc},
7a78ae4e 3114 {"505", "Motorola PowerPC 505", bfd_arch_powerpc,
7cc46491 3115 bfd_mach_ppc_505, &tdesc_powerpc_505},
7a78ae4e 3116 {"860", "Motorola PowerPC 860 or 850", bfd_arch_powerpc,
7cc46491 3117 bfd_mach_ppc_860, &tdesc_powerpc_860},
7a78ae4e 3118 {"750", "Motorola/IBM PowerPC 750 or 740", bfd_arch_powerpc,
7cc46491 3119 bfd_mach_ppc_750, &tdesc_powerpc_750},
1fcc0bb8 3120 {"7400", "Motorola/IBM PowerPC 7400 (G4)", bfd_arch_powerpc,
7cc46491 3121 bfd_mach_ppc_7400, &tdesc_powerpc_7400},
c8001721 3122 {"e500", "Motorola PowerPC e500", bfd_arch_powerpc,
7cc46491 3123 bfd_mach_ppc_e500, &tdesc_powerpc_e500},
7a78ae4e 3124
5d57ee30
KB
3125 /* 64-bit */
3126 {"powerpc64", "PowerPC 64-bit user-level", bfd_arch_powerpc,
7284e1be 3127 bfd_mach_ppc64, &tdesc_powerpc_altivec64},
7a78ae4e 3128 {"620", "Motorola PowerPC 620", bfd_arch_powerpc,
7cc46491 3129 bfd_mach_ppc_620, &tdesc_powerpc_64},
5d57ee30 3130 {"630", "Motorola PowerPC 630", bfd_arch_powerpc,
7cc46491 3131 bfd_mach_ppc_630, &tdesc_powerpc_64},
7a78ae4e 3132 {"a35", "PowerPC A35", bfd_arch_powerpc,
7cc46491 3133 bfd_mach_ppc_a35, &tdesc_powerpc_64},
5d57ee30 3134 {"rs64ii", "PowerPC rs64ii", bfd_arch_powerpc,
7cc46491 3135 bfd_mach_ppc_rs64ii, &tdesc_powerpc_64},
5d57ee30 3136 {"rs64iii", "PowerPC rs64iii", bfd_arch_powerpc,
7cc46491 3137 bfd_mach_ppc_rs64iii, &tdesc_powerpc_64},
5d57ee30 3138
64366f1c 3139 /* FIXME: I haven't checked the register sets of the following. */
7a78ae4e 3140 {"rs1", "IBM POWER RS1", bfd_arch_rs6000,
7cc46491 3141 bfd_mach_rs6k_rs1, &tdesc_rs6000},
7a78ae4e 3142 {"rsc", "IBM POWER RSC", bfd_arch_rs6000,
7cc46491 3143 bfd_mach_rs6k_rsc, &tdesc_rs6000},
7a78ae4e 3144 {"rs2", "IBM POWER RS2", bfd_arch_rs6000,
7cc46491 3145 bfd_mach_rs6k_rs2, &tdesc_rs6000},
7a78ae4e 3146
3e45d68b 3147 {0, 0, (enum bfd_architecture) 0, 0, 0}
c906108c
SS
3148};
3149
7a78ae4e 3150/* Return the variant corresponding to architecture ARCH and machine number
64366f1c 3151 MACH. If no such variant exists, return null. */
c906108c 3152
7a78ae4e
ND
3153static const struct variant *
3154find_variant_by_arch (enum bfd_architecture arch, unsigned long mach)
c906108c 3155{
7a78ae4e 3156 const struct variant *v;
c5aa993b 3157
7a78ae4e
ND
3158 for (v = variants; v->name; v++)
3159 if (arch == v->arch && mach == v->mach)
3160 return v;
c906108c 3161
7a78ae4e 3162 return NULL;
c906108c 3163}
9364a0ef
EZ
3164
3165static int
3166gdb_print_insn_powerpc (bfd_vma memaddr, disassemble_info *info)
3167{
40887e1a 3168 if (info->endian == BFD_ENDIAN_BIG)
9364a0ef
EZ
3169 return print_insn_big_powerpc (memaddr, info);
3170 else
3171 return print_insn_little_powerpc (memaddr, info);
3172}
7a78ae4e 3173\f
61a65099
KB
3174static CORE_ADDR
3175rs6000_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
3176{
3e8c568d 3177 return frame_unwind_register_unsigned (next_frame,
8b164abb 3178 gdbarch_pc_regnum (gdbarch));
61a65099
KB
3179}
3180
3181static struct frame_id
1af5d7ce 3182rs6000_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
61a65099 3183{
1af5d7ce
UW
3184 return frame_id_build (get_frame_register_unsigned
3185 (this_frame, gdbarch_sp_regnum (gdbarch)),
3186 get_frame_pc (this_frame));
61a65099
KB
3187}
3188
3189struct rs6000_frame_cache
3190{
3191 CORE_ADDR base;
3192 CORE_ADDR initial_sp;
3193 struct trad_frame_saved_reg *saved_regs;
50ae56ec
WW
3194
3195 /* Set BASE_P to true if this frame cache is properly initialized.
3196 Otherwise set to false because some registers or memory cannot
3197 collected. */
3198 int base_p;
3199 /* Cache PC for building unavailable frame. */
3200 CORE_ADDR pc;
61a65099
KB
3201};
3202
3203static struct rs6000_frame_cache *
1af5d7ce 3204rs6000_frame_cache (struct frame_info *this_frame, void **this_cache)
61a65099
KB
3205{
3206 struct rs6000_frame_cache *cache;
1af5d7ce 3207 struct gdbarch *gdbarch = get_frame_arch (this_frame);
61a65099 3208 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 3209 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
61a65099
KB
3210 struct rs6000_framedata fdata;
3211 int wordsize = tdep->wordsize;
338435ef 3212 CORE_ADDR func = 0, pc = 0;
61a65099
KB
3213
3214 if ((*this_cache) != NULL)
19ba03f4 3215 return (struct rs6000_frame_cache *) (*this_cache);
61a65099
KB
3216 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3217 (*this_cache) = cache;
50ae56ec 3218 cache->pc = 0;
1af5d7ce 3219 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
61a65099 3220
50ae56ec
WW
3221 TRY
3222 {
3223 func = get_frame_func (this_frame);
3224 cache->pc = func;
3225 pc = get_frame_pc (this_frame);
3226 skip_prologue (gdbarch, func, pc, &fdata);
3227
3228 /* Figure out the parent's stack pointer. */
3229
3230 /* NOTE: cagney/2002-04-14: The ->frame points to the inner-most
3231 address of the current frame. Things might be easier if the
3232 ->frame pointed to the outer-most address of the frame. In
3233 the mean time, the address of the prev frame is used as the
3234 base address of this frame. */
3235 cache->base = get_frame_register_unsigned
3236 (this_frame, gdbarch_sp_regnum (gdbarch));
3237 }
3238 CATCH (ex, RETURN_MASK_ERROR)
3239 {
3240 if (ex.error != NOT_AVAILABLE_ERROR)
3241 throw_exception (ex);
1ed0c2a4 3242 return (struct rs6000_frame_cache *) (*this_cache);
50ae56ec
WW
3243 }
3244 END_CATCH
e10b1c4c
DJ
3245
3246 /* If the function appears to be frameless, check a couple of likely
3247 indicators that we have simply failed to find the frame setup.
3248 Two common cases of this are missing symbols (i.e.
ef02daa9 3249 get_frame_func returns the wrong address or 0), and assembly
e10b1c4c
DJ
3250 stubs which have a fast exit path but set up a frame on the slow
3251 path.
3252
3253 If the LR appears to return to this function, then presume that
3254 we have an ABI compliant frame that we failed to find. */
3255 if (fdata.frameless && fdata.lr_offset == 0)
61a65099 3256 {
e10b1c4c
DJ
3257 CORE_ADDR saved_lr;
3258 int make_frame = 0;
3259
1af5d7ce 3260 saved_lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
e10b1c4c
DJ
3261 if (func == 0 && saved_lr == pc)
3262 make_frame = 1;
3263 else if (func != 0)
3264 {
3265 CORE_ADDR saved_func = get_pc_function_start (saved_lr);
3266 if (func == saved_func)
3267 make_frame = 1;
3268 }
3269
3270 if (make_frame)
3271 {
3272 fdata.frameless = 0;
de6a76fd 3273 fdata.lr_offset = tdep->lr_frame_offset;
e10b1c4c 3274 }
61a65099 3275 }
e10b1c4c
DJ
3276
3277 if (!fdata.frameless)
9d9bf2df
EBM
3278 {
3279 /* Frameless really means stackless. */
3280 LONGEST backchain;
3281
3282 if (safe_read_memory_integer (cache->base, wordsize,
3283 byte_order, &backchain))
3284 cache->base = (CORE_ADDR) backchain;
3285 }
e10b1c4c 3286
3e8c568d 3287 trad_frame_set_value (cache->saved_regs,
8b164abb 3288 gdbarch_sp_regnum (gdbarch), cache->base);
61a65099
KB
3289
3290 /* if != -1, fdata.saved_fpr is the smallest number of saved_fpr.
3291 All fpr's from saved_fpr to fp31 are saved. */
3292
3293 if (fdata.saved_fpr >= 0)
3294 {
3295 int i;
3296 CORE_ADDR fpr_addr = cache->base + fdata.fpr_offset;
383f0f5b
JB
3297
3298 /* If skip_prologue says floating-point registers were saved,
3299 but the current architecture has no floating-point registers,
3300 then that's strange. But we have no indices to even record
3301 the addresses under, so we just ignore it. */
3302 if (ppc_floating_point_unit_p (gdbarch))
063715bf 3303 for (i = fdata.saved_fpr; i < ppc_num_fprs; i++)
383f0f5b
JB
3304 {
3305 cache->saved_regs[tdep->ppc_fp0_regnum + i].addr = fpr_addr;
3306 fpr_addr += 8;
3307 }
61a65099
KB
3308 }
3309
3310 /* if != -1, fdata.saved_gpr is the smallest number of saved_gpr.
46a9b8ed
DJ
3311 All gpr's from saved_gpr to gpr31 are saved (except during the
3312 prologue). */
61a65099
KB
3313
3314 if (fdata.saved_gpr >= 0)
3315 {
3316 int i;
3317 CORE_ADDR gpr_addr = cache->base + fdata.gpr_offset;
063715bf 3318 for (i = fdata.saved_gpr; i < ppc_num_gprs; i++)
61a65099 3319 {
46a9b8ed
DJ
3320 if (fdata.gpr_mask & (1U << i))
3321 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = gpr_addr;
61a65099
KB
3322 gpr_addr += wordsize;
3323 }
3324 }
3325
3326 /* if != -1, fdata.saved_vr is the smallest number of saved_vr.
3327 All vr's from saved_vr to vr31 are saved. */
3328 if (tdep->ppc_vr0_regnum != -1 && tdep->ppc_vrsave_regnum != -1)
3329 {
3330 if (fdata.saved_vr >= 0)
3331 {
3332 int i;
3333 CORE_ADDR vr_addr = cache->base + fdata.vr_offset;
3334 for (i = fdata.saved_vr; i < 32; i++)
3335 {
3336 cache->saved_regs[tdep->ppc_vr0_regnum + i].addr = vr_addr;
3337 vr_addr += register_size (gdbarch, tdep->ppc_vr0_regnum);
3338 }
3339 }
3340 }
3341
3342 /* if != -1, fdata.saved_ev is the smallest number of saved_ev.
0df8b418 3343 All vr's from saved_ev to ev31 are saved. ????? */
5a9e69ba 3344 if (tdep->ppc_ev0_regnum != -1)
61a65099
KB
3345 {
3346 if (fdata.saved_ev >= 0)
3347 {
3348 int i;
3349 CORE_ADDR ev_addr = cache->base + fdata.ev_offset;
dea80df0
MR
3350 CORE_ADDR off = (byte_order == BFD_ENDIAN_BIG ? 4 : 0);
3351
063715bf 3352 for (i = fdata.saved_ev; i < ppc_num_gprs; i++)
61a65099
KB
3353 {
3354 cache->saved_regs[tdep->ppc_ev0_regnum + i].addr = ev_addr;
dea80df0 3355 cache->saved_regs[tdep->ppc_gp0_regnum + i].addr = ev_addr + off;
61a65099 3356 ev_addr += register_size (gdbarch, tdep->ppc_ev0_regnum);
dea80df0 3357 }
61a65099
KB
3358 }
3359 }
3360
3361 /* If != 0, fdata.cr_offset is the offset from the frame that
3362 holds the CR. */
3363 if (fdata.cr_offset != 0)
0df8b418
MS
3364 cache->saved_regs[tdep->ppc_cr_regnum].addr
3365 = cache->base + fdata.cr_offset;
61a65099
KB
3366
3367 /* If != 0, fdata.lr_offset is the offset from the frame that
3368 holds the LR. */
3369 if (fdata.lr_offset != 0)
0df8b418
MS
3370 cache->saved_regs[tdep->ppc_lr_regnum].addr
3371 = cache->base + fdata.lr_offset;
46a9b8ed
DJ
3372 else if (fdata.lr_register != -1)
3373 cache->saved_regs[tdep->ppc_lr_regnum].realreg = fdata.lr_register;
61a65099 3374 /* The PC is found in the link register. */
8b164abb 3375 cache->saved_regs[gdbarch_pc_regnum (gdbarch)] =
3e8c568d 3376 cache->saved_regs[tdep->ppc_lr_regnum];
61a65099
KB
3377
3378 /* If != 0, fdata.vrsave_offset is the offset from the frame that
3379 holds the VRSAVE. */
3380 if (fdata.vrsave_offset != 0)
0df8b418
MS
3381 cache->saved_regs[tdep->ppc_vrsave_regnum].addr
3382 = cache->base + fdata.vrsave_offset;
61a65099
KB
3383
3384 if (fdata.alloca_reg < 0)
3385 /* If no alloca register used, then fi->frame is the value of the
3386 %sp for this frame, and it is good enough. */
1af5d7ce
UW
3387 cache->initial_sp
3388 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
61a65099 3389 else
1af5d7ce
UW
3390 cache->initial_sp
3391 = get_frame_register_unsigned (this_frame, fdata.alloca_reg);
61a65099 3392
50ae56ec 3393 cache->base_p = 1;
61a65099
KB
3394 return cache;
3395}
3396
3397static void
1af5d7ce 3398rs6000_frame_this_id (struct frame_info *this_frame, void **this_cache,
61a65099
KB
3399 struct frame_id *this_id)
3400{
1af5d7ce 3401 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3402 this_cache);
50ae56ec
WW
3403
3404 if (!info->base_p)
3405 {
3406 (*this_id) = frame_id_build_unavailable_stack (info->pc);
3407 return;
3408 }
3409
5b197912
UW
3410 /* This marks the outermost frame. */
3411 if (info->base == 0)
3412 return;
3413
1af5d7ce 3414 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
61a65099
KB
3415}
3416
1af5d7ce
UW
3417static struct value *
3418rs6000_frame_prev_register (struct frame_info *this_frame,
3419 void **this_cache, int regnum)
61a65099 3420{
1af5d7ce 3421 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099 3422 this_cache);
1af5d7ce 3423 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
61a65099
KB
3424}
3425
3426static const struct frame_unwind rs6000_frame_unwind =
3427{
3428 NORMAL_FRAME,
8fbca658 3429 default_frame_unwind_stop_reason,
61a65099 3430 rs6000_frame_this_id,
1af5d7ce
UW
3431 rs6000_frame_prev_register,
3432 NULL,
3433 default_frame_sniffer
61a65099 3434};
2608dbf8 3435
ddeca1df
WW
3436/* Allocate and initialize a frame cache for an epilogue frame.
3437 SP is restored and prev-PC is stored in LR. */
3438
2608dbf8
WW
3439static struct rs6000_frame_cache *
3440rs6000_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
3441{
2608dbf8
WW
3442 struct rs6000_frame_cache *cache;
3443 struct gdbarch *gdbarch = get_frame_arch (this_frame);
3444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2608dbf8
WW
3445
3446 if (*this_cache)
19ba03f4 3447 return (struct rs6000_frame_cache *) *this_cache;
2608dbf8
WW
3448
3449 cache = FRAME_OBSTACK_ZALLOC (struct rs6000_frame_cache);
3450 (*this_cache) = cache;
3451 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
3452
492d29ea 3453 TRY
2608dbf8
WW
3454 {
3455 /* At this point the stack looks as if we just entered the
3456 function, and the return address is stored in LR. */
3457 CORE_ADDR sp, lr;
3458
3459 sp = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
3460 lr = get_frame_register_unsigned (this_frame, tdep->ppc_lr_regnum);
3461
3462 cache->base = sp;
3463 cache->initial_sp = sp;
3464
3465 trad_frame_set_value (cache->saved_regs,
3466 gdbarch_pc_regnum (gdbarch), lr);
3467 }
492d29ea 3468 CATCH (ex, RETURN_MASK_ERROR)
7556d4a4
PA
3469 {
3470 if (ex.error != NOT_AVAILABLE_ERROR)
3471 throw_exception (ex);
3472 }
492d29ea 3473 END_CATCH
2608dbf8
WW
3474
3475 return cache;
3476}
3477
ddeca1df
WW
3478/* Implementation of frame_unwind.this_id, as defined in frame_unwind.h.
3479 Return the frame ID of an epilogue frame. */
3480
2608dbf8
WW
3481static void
3482rs6000_epilogue_frame_this_id (struct frame_info *this_frame,
3483 void **this_cache, struct frame_id *this_id)
3484{
3485 CORE_ADDR pc;
3486 struct rs6000_frame_cache *info =
3487 rs6000_epilogue_frame_cache (this_frame, this_cache);
3488
3489 pc = get_frame_func (this_frame);
3490 if (info->base == 0)
3491 (*this_id) = frame_id_build_unavailable_stack (pc);
3492 else
3493 (*this_id) = frame_id_build (info->base, pc);
3494}
3495
ddeca1df
WW
3496/* Implementation of frame_unwind.prev_register, as defined in frame_unwind.h.
3497 Return the register value of REGNUM in previous frame. */
3498
2608dbf8
WW
3499static struct value *
3500rs6000_epilogue_frame_prev_register (struct frame_info *this_frame,
3501 void **this_cache, int regnum)
3502{
3503 struct rs6000_frame_cache *info =
3504 rs6000_epilogue_frame_cache (this_frame, this_cache);
3505 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
3506}
3507
ddeca1df
WW
3508/* Implementation of frame_unwind.sniffer, as defined in frame_unwind.h.
3509 Check whether this an epilogue frame. */
3510
2608dbf8
WW
3511static int
3512rs6000_epilogue_frame_sniffer (const struct frame_unwind *self,
3513 struct frame_info *this_frame,
3514 void **this_prologue_cache)
3515{
3516 if (frame_relative_level (this_frame) == 0)
3517 return rs6000_in_function_epilogue_frame_p (this_frame,
3518 get_frame_arch (this_frame),
3519 get_frame_pc (this_frame));
3520 else
3521 return 0;
3522}
3523
ddeca1df
WW
3524/* Frame unwinder for epilogue frame. This is required for reverse step-over
3525 a function without debug information. */
3526
2608dbf8
WW
3527static const struct frame_unwind rs6000_epilogue_frame_unwind =
3528{
3529 NORMAL_FRAME,
3530 default_frame_unwind_stop_reason,
3531 rs6000_epilogue_frame_this_id, rs6000_epilogue_frame_prev_register,
3532 NULL,
3533 rs6000_epilogue_frame_sniffer
3534};
61a65099
KB
3535\f
3536
3537static CORE_ADDR
1af5d7ce 3538rs6000_frame_base_address (struct frame_info *this_frame, void **this_cache)
61a65099 3539{
1af5d7ce 3540 struct rs6000_frame_cache *info = rs6000_frame_cache (this_frame,
61a65099
KB
3541 this_cache);
3542 return info->initial_sp;
3543}
3544
3545static const struct frame_base rs6000_frame_base = {
3546 &rs6000_frame_unwind,
3547 rs6000_frame_base_address,
3548 rs6000_frame_base_address,
3549 rs6000_frame_base_address
3550};
3551
3552static const struct frame_base *
1af5d7ce 3553rs6000_frame_base_sniffer (struct frame_info *this_frame)
61a65099
KB
3554{
3555 return &rs6000_frame_base;
3556}
3557
9274a07c
LM
3558/* DWARF-2 frame support. Used to handle the detection of
3559 clobbered registers during function calls. */
3560
3561static void
3562ppc_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
3563 struct dwarf2_frame_state_reg *reg,
4a4e5149 3564 struct frame_info *this_frame)
9274a07c
LM
3565{
3566 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3567
3568 /* PPC32 and PPC64 ABI's are the same regarding volatile and
3569 non-volatile registers. We will use the same code for both. */
3570
3571 /* Call-saved GP registers. */
3572 if ((regnum >= tdep->ppc_gp0_regnum + 14
3573 && regnum <= tdep->ppc_gp0_regnum + 31)
3574 || (regnum == tdep->ppc_gp0_regnum + 1))
3575 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3576
3577 /* Call-clobbered GP registers. */
3578 if ((regnum >= tdep->ppc_gp0_regnum + 3
3579 && regnum <= tdep->ppc_gp0_regnum + 12)
3580 || (regnum == tdep->ppc_gp0_regnum))
3581 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3582
3583 /* Deal with FP registers, if supported. */
3584 if (tdep->ppc_fp0_regnum >= 0)
3585 {
3586 /* Call-saved FP registers. */
3587 if ((regnum >= tdep->ppc_fp0_regnum + 14
3588 && regnum <= tdep->ppc_fp0_regnum + 31))
3589 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3590
3591 /* Call-clobbered FP registers. */
3592 if ((regnum >= tdep->ppc_fp0_regnum
3593 && regnum <= tdep->ppc_fp0_regnum + 13))
3594 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3595 }
3596
3597 /* Deal with ALTIVEC registers, if supported. */
3598 if (tdep->ppc_vr0_regnum > 0 && tdep->ppc_vrsave_regnum > 0)
3599 {
3600 /* Call-saved Altivec registers. */
3601 if ((regnum >= tdep->ppc_vr0_regnum + 20
3602 && regnum <= tdep->ppc_vr0_regnum + 31)
3603 || regnum == tdep->ppc_vrsave_regnum)
3604 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
3605
3606 /* Call-clobbered Altivec registers. */
3607 if ((regnum >= tdep->ppc_vr0_regnum
3608 && regnum <= tdep->ppc_vr0_regnum + 19))
3609 reg->how = DWARF2_FRAME_REG_UNDEFINED;
3610 }
3611
3612 /* Handle PC register and Stack Pointer correctly. */
40a6adc1 3613 if (regnum == gdbarch_pc_regnum (gdbarch))
9274a07c 3614 reg->how = DWARF2_FRAME_REG_RA;
40a6adc1 3615 else if (regnum == gdbarch_sp_regnum (gdbarch))
9274a07c
LM
3616 reg->how = DWARF2_FRAME_REG_CFA;
3617}
3618
3619
74af9197
NF
3620/* Return true if a .gnu_attributes section exists in BFD and it
3621 indicates we are using SPE extensions OR if a .PPC.EMB.apuinfo
3622 section exists in BFD and it indicates that SPE extensions are in
3623 use. Check the .gnu.attributes section first, as the binary might be
3624 compiled for SPE, but not actually using SPE instructions. */
3625
3626static int
3627bfd_uses_spe_extensions (bfd *abfd)
3628{
3629 asection *sect;
3630 gdb_byte *contents = NULL;
3631 bfd_size_type size;
3632 gdb_byte *ptr;
3633 int success = 0;
3634 int vector_abi;
3635
3636 if (!abfd)
3637 return 0;
3638
50a99728 3639#ifdef HAVE_ELF
74af9197
NF
3640 /* Using Tag_GNU_Power_ABI_Vector here is a bit of a hack, as the user
3641 could be using the SPE vector abi without actually using any spe
3642 bits whatsoever. But it's close enough for now. */
3643 vector_abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_GNU,
3644 Tag_GNU_Power_ABI_Vector);
3645 if (vector_abi == 3)
3646 return 1;
50a99728 3647#endif
74af9197
NF
3648
3649 sect = bfd_get_section_by_name (abfd, ".PPC.EMB.apuinfo");
3650 if (!sect)
3651 return 0;
3652
3653 size = bfd_get_section_size (sect);
224c3ddb 3654 contents = (gdb_byte *) xmalloc (size);
74af9197
NF
3655 if (!bfd_get_section_contents (abfd, sect, contents, 0, size))
3656 {
3657 xfree (contents);
3658 return 0;
3659 }
3660
3661 /* Parse the .PPC.EMB.apuinfo section. The layout is as follows:
3662
3663 struct {
3664 uint32 name_len;
3665 uint32 data_len;
3666 uint32 type;
3667 char name[name_len rounded up to 4-byte alignment];
3668 char data[data_len];
3669 };
3670
3671 Technically, there's only supposed to be one such structure in a
3672 given apuinfo section, but the linker is not always vigilant about
3673 merging apuinfo sections from input files. Just go ahead and parse
3674 them all, exiting early when we discover the binary uses SPE
3675 insns.
3676
3677 It's not specified in what endianness the information in this
3678 section is stored. Assume that it's the endianness of the BFD. */
3679 ptr = contents;
3680 while (1)
3681 {
3682 unsigned int name_len;
3683 unsigned int data_len;
3684 unsigned int type;
3685
3686 /* If we can't read the first three fields, we're done. */
3687 if (size < 12)
3688 break;
3689
3690 name_len = bfd_get_32 (abfd, ptr);
3691 name_len = (name_len + 3) & ~3U; /* Round to 4 bytes. */
3692 data_len = bfd_get_32 (abfd, ptr + 4);
3693 type = bfd_get_32 (abfd, ptr + 8);
3694 ptr += 12;
3695
3696 /* The name must be "APUinfo\0". */
3697 if (name_len != 8
3698 && strcmp ((const char *) ptr, "APUinfo") != 0)
3699 break;
3700 ptr += name_len;
3701
3702 /* The type must be 2. */
3703 if (type != 2)
3704 break;
3705
3706 /* The data is stored as a series of uint32. The upper half of
3707 each uint32 indicates the particular APU used and the lower
3708 half indicates the revision of that APU. We just care about
3709 the upper half. */
3710
3711 /* Not 4-byte quantities. */
3712 if (data_len & 3U)
3713 break;
3714
3715 while (data_len)
3716 {
3717 unsigned int apuinfo = bfd_get_32 (abfd, ptr);
3718 unsigned int apu = apuinfo >> 16;
3719 ptr += 4;
3720 data_len -= 4;
3721
3722 /* The SPE APU is 0x100; the SPEFP APU is 0x101. Accept
3723 either. */
3724 if (apu == 0x100 || apu == 0x101)
3725 {
3726 success = 1;
3727 data_len = 0;
3728 }
3729 }
3730
3731 if (success)
3732 break;
3733 }
3734
3735 xfree (contents);
3736 return success;
3737}
3738
b4cdae6f
WW
3739/* These are macros for parsing instruction fields (I.1.6.28) */
3740
3741#define PPC_FIELD(value, from, len) \
3742 (((value) >> (32 - (from) - (len))) & ((1 << (len)) - 1))
3743#define PPC_SEXT(v, bs) \
3744 ((((CORE_ADDR) (v) & (((CORE_ADDR) 1 << (bs)) - 1)) \
3745 ^ ((CORE_ADDR) 1 << ((bs) - 1))) \
3746 - ((CORE_ADDR) 1 << ((bs) - 1)))
3747#define PPC_OP6(insn) PPC_FIELD (insn, 0, 6)
3748#define PPC_EXTOP(insn) PPC_FIELD (insn, 21, 10)
3749#define PPC_RT(insn) PPC_FIELD (insn, 6, 5)
3750#define PPC_RS(insn) PPC_FIELD (insn, 6, 5)
3751#define PPC_RA(insn) PPC_FIELD (insn, 11, 5)
3752#define PPC_RB(insn) PPC_FIELD (insn, 16, 5)
3753#define PPC_NB(insn) PPC_FIELD (insn, 16, 5)
3754#define PPC_VRT(insn) PPC_FIELD (insn, 6, 5)
3755#define PPC_FRT(insn) PPC_FIELD (insn, 6, 5)
3756#define PPC_SPR(insn) (PPC_FIELD (insn, 11, 5) \
3757 | (PPC_FIELD (insn, 16, 5) << 5))
3758#define PPC_BO(insn) PPC_FIELD (insn, 6, 5)
3759#define PPC_T(insn) PPC_FIELD (insn, 6, 5)
3760#define PPC_D(insn) PPC_SEXT (PPC_FIELD (insn, 16, 16), 16)
3761#define PPC_DS(insn) PPC_SEXT (PPC_FIELD (insn, 16, 14), 14)
3762#define PPC_BIT(insn,n) ((insn & (1 << (31 - (n)))) ? 1 : 0)
3763#define PPC_OE(insn) PPC_BIT (insn, 21)
3764#define PPC_RC(insn) PPC_BIT (insn, 31)
3765#define PPC_Rc(insn) PPC_BIT (insn, 21)
3766#define PPC_LK(insn) PPC_BIT (insn, 31)
3767#define PPC_TX(insn) PPC_BIT (insn, 31)
3768#define PPC_LEV(insn) PPC_FIELD (insn, 20, 7)
3769
3770#define PPC_XT(insn) ((PPC_TX (insn) << 5) | PPC_T (insn))
3771#define PPC_XER_NB(xer) (xer & 0x7f)
3772
ddeca1df
WW
3773/* Record Vector-Scalar Registers.
3774 For VSR less than 32, it's represented by an FPR and an VSR-upper register.
3775 Otherwise, it's just a VR register. Record them accordingly. */
b4cdae6f
WW
3776
3777static int
3778ppc_record_vsr (struct regcache *regcache, struct gdbarch_tdep *tdep, int vsr)
3779{
3780 if (vsr < 0 || vsr >= 64)
3781 return -1;
3782
3783 if (vsr >= 32)
3784 {
3785 if (tdep->ppc_vr0_regnum >= 0)
3786 record_full_arch_list_add_reg (regcache, tdep->ppc_vr0_regnum + vsr - 32);
3787 }
3788 else
3789 {
3790 if (tdep->ppc_fp0_regnum >= 0)
3791 record_full_arch_list_add_reg (regcache, tdep->ppc_fp0_regnum + vsr);
3792 if (tdep->ppc_vsr0_upper_regnum >= 0)
3793 record_full_arch_list_add_reg (regcache,
3794 tdep->ppc_vsr0_upper_regnum + vsr);
3795 }
3796
3797 return 0;
3798}
3799
ddeca1df
WW
3800/* Parse and record instructions primary opcode-4 at ADDR.
3801 Return 0 if successful. */
b4cdae6f
WW
3802
3803static int
3804ppc_process_record_op4 (struct gdbarch *gdbarch, struct regcache *regcache,
ddeca1df 3805 CORE_ADDR addr, uint32_t insn)
b4cdae6f
WW
3806{
3807 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3808 int ext = PPC_FIELD (insn, 21, 11);
3809
3810 switch (ext & 0x3f)
3811 {
3812 case 32: /* Vector Multiply-High-Add Signed Halfword Saturate */
3813 case 33: /* Vector Multiply-High-Round-Add Signed Halfword Saturate */
3814 case 39: /* Vector Multiply-Sum Unsigned Halfword Saturate */
3815 case 41: /* Vector Multiply-Sum Signed Halfword Saturate */
3816 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3817 /* FALL-THROUGH */
3818 case 42: /* Vector Select */
3819 case 43: /* Vector Permute */
3820 case 44: /* Vector Shift Left Double by Octet Immediate */
3821 case 45: /* Vector Permute and Exclusive-OR */
3822 case 60: /* Vector Add Extended Unsigned Quadword Modulo */
3823 case 61: /* Vector Add Extended & write Carry Unsigned Quadword */
3824 case 62: /* Vector Subtract Extended Unsigned Quadword Modulo */
3825 case 63: /* Vector Subtract Extended & write Carry Unsigned Quadword */
3826 case 34: /* Vector Multiply-Low-Add Unsigned Halfword Modulo */
3827 case 36: /* Vector Multiply-Sum Unsigned Byte Modulo */
3828 case 37: /* Vector Multiply-Sum Mixed Byte Modulo */
3829 case 38: /* Vector Multiply-Sum Unsigned Halfword Modulo */
3830 case 40: /* Vector Multiply-Sum Signed Halfword Modulo */
3831 case 46: /* Vector Multiply-Add Single-Precision */
3832 case 47: /* Vector Negative Multiply-Subtract Single-Precision */
3833 record_full_arch_list_add_reg (regcache,
3834 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3835 return 0;
3836 }
3837
3838 switch ((ext & 0x1ff))
3839 {
3840 /* 5.16 Decimal Integer Arithmetic Instructions */
3841 case 1: /* Decimal Add Modulo */
3842 case 65: /* Decimal Subtract Modulo */
3843
3844 /* Bit-21 should be set. */
3845 if (!PPC_BIT (insn, 21))
3846 break;
3847
3848 record_full_arch_list_add_reg (regcache,
3849 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3850 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3851 return 0;
3852 }
3853
3854 /* Bit-21 is used for RC */
3855 switch (ext & 0x3ff)
3856 {
3857 case 6: /* Vector Compare Equal To Unsigned Byte */
3858 case 70: /* Vector Compare Equal To Unsigned Halfword */
3859 case 134: /* Vector Compare Equal To Unsigned Word */
3860 case 199: /* Vector Compare Equal To Unsigned Doubleword */
3861 case 774: /* Vector Compare Greater Than Signed Byte */
3862 case 838: /* Vector Compare Greater Than Signed Halfword */
3863 case 902: /* Vector Compare Greater Than Signed Word */
3864 case 967: /* Vector Compare Greater Than Signed Doubleword */
3865 case 518: /* Vector Compare Greater Than Unsigned Byte */
3866 case 646: /* Vector Compare Greater Than Unsigned Word */
3867 case 582: /* Vector Compare Greater Than Unsigned Halfword */
3868 case 711: /* Vector Compare Greater Than Unsigned Doubleword */
3869 case 966: /* Vector Compare Bounds Single-Precision */
3870 case 198: /* Vector Compare Equal To Single-Precision */
3871 case 454: /* Vector Compare Greater Than or Equal To Single-Precision */
3872 case 710: /* Vector Compare Greater Than Single-Precision */
3873 if (PPC_Rc (insn))
3874 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
3875 record_full_arch_list_add_reg (regcache,
3876 tdep->ppc_vr0_regnum + PPC_VRT (insn));
3877 return 0;
3878 }
3879
3880 switch (ext)
3881 {
3882 case 142: /* Vector Pack Unsigned Halfword Unsigned Saturate */
3883 case 206: /* Vector Pack Unsigned Word Unsigned Saturate */
3884 case 270: /* Vector Pack Signed Halfword Unsigned Saturate */
3885 case 334: /* Vector Pack Signed Word Unsigned Saturate */
3886 case 398: /* Vector Pack Signed Halfword Signed Saturate */
3887 case 462: /* Vector Pack Signed Word Signed Saturate */
3888 case 1230: /* Vector Pack Unsigned Doubleword Unsigned Saturate */
3889 case 1358: /* Vector Pack Signed Doubleword Unsigned Saturate */
3890 case 1486: /* Vector Pack Signed Doubleword Signed Saturate */
3891 case 512: /* Vector Add Unsigned Byte Saturate */
3892 case 576: /* Vector Add Unsigned Halfword Saturate */
3893 case 640: /* Vector Add Unsigned Word Saturate */
3894 case 768: /* Vector Add Signed Byte Saturate */
3895 case 832: /* Vector Add Signed Halfword Saturate */
3896 case 896: /* Vector Add Signed Word Saturate */
3897 case 1536: /* Vector Subtract Unsigned Byte Saturate */
3898 case 1600: /* Vector Subtract Unsigned Halfword Saturate */
3899 case 1664: /* Vector Subtract Unsigned Word Saturate */
3900 case 1792: /* Vector Subtract Signed Byte Saturate */
3901 case 1856: /* Vector Subtract Signed Halfword Saturate */
3902 case 1920: /* Vector Subtract Signed Word Saturate */
3903
3904 case 1544: /* Vector Sum across Quarter Unsigned Byte Saturate */
3905 case 1800: /* Vector Sum across Quarter Signed Byte Saturate */
3906 case 1608: /* Vector Sum across Quarter Signed Halfword Saturate */
3907 case 1672: /* Vector Sum across Half Signed Word Saturate */
3908 case 1928: /* Vector Sum across Signed Word Saturate */
3909 case 970: /* Vector Convert To Signed Fixed-Point Word Saturate */
3910 case 906: /* Vector Convert To Unsigned Fixed-Point Word Saturate */
3911 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
3912 /* FALL-THROUGH */
3913 case 12: /* Vector Merge High Byte */
3914 case 14: /* Vector Pack Unsigned Halfword Unsigned Modulo */
3915 case 76: /* Vector Merge High Halfword */
3916 case 78: /* Vector Pack Unsigned Word Unsigned Modulo */
3917 case 140: /* Vector Merge High Word */
3918 case 268: /* Vector Merge Low Byte */
3919 case 332: /* Vector Merge Low Halfword */
3920 case 396: /* Vector Merge Low Word */
3921 case 526: /* Vector Unpack High Signed Byte */
3922 case 590: /* Vector Unpack High Signed Halfword */
3923 case 654: /* Vector Unpack Low Signed Byte */
3924 case 718: /* Vector Unpack Low Signed Halfword */
3925 case 782: /* Vector Pack Pixel */
3926 case 846: /* Vector Unpack High Pixel */
3927 case 974: /* Vector Unpack Low Pixel */
3928 case 1102: /* Vector Pack Unsigned Doubleword Unsigned Modulo */
3929 case 1614: /* Vector Unpack High Signed Word */
3930 case 1676: /* Vector Merge Odd Word */
3931 case 1742: /* Vector Unpack Low Signed Word */
3932 case 1932: /* Vector Merge Even Word */
3933 case 524: /* Vector Splat Byte */
3934 case 588: /* Vector Splat Halfword */
3935 case 652: /* Vector Splat Word */
3936 case 780: /* Vector Splat Immediate Signed Byte */
3937 case 844: /* Vector Splat Immediate Signed Halfword */
3938 case 908: /* Vector Splat Immediate Signed Word */
3939 case 452: /* Vector Shift Left */
3940 case 708: /* Vector Shift Right */
3941 case 1036: /* Vector Shift Left by Octet */
3942 case 1100: /* Vector Shift Right by Octet */
3943 case 0: /* Vector Add Unsigned Byte Modulo */
3944 case 64: /* Vector Add Unsigned Halfword Modulo */
3945 case 128: /* Vector Add Unsigned Word Modulo */
3946 case 192: /* Vector Add Unsigned Doubleword Modulo */
3947 case 256: /* Vector Add Unsigned Quadword Modulo */
3948 case 320: /* Vector Add & write Carry Unsigned Quadword */
3949 case 384: /* Vector Add and Write Carry-Out Unsigned Word */
3950 case 8: /* Vector Multiply Odd Unsigned Byte */
3951 case 72: /* Vector Multiply Odd Unsigned Halfword */
3952 case 136: /* Vector Multiply Odd Unsigned Word */
3953 case 264: /* Vector Multiply Odd Signed Byte */
3954 case 328: /* Vector Multiply Odd Signed Halfword */
3955 case 392: /* Vector Multiply Odd Signed Word */
3956 case 520: /* Vector Multiply Even Unsigned Byte */
3957 case 584: /* Vector Multiply Even Unsigned Halfword */
3958 case 648: /* Vector Multiply Even Unsigned Word */
3959 case 776: /* Vector Multiply Even Signed Byte */
3960 case 840: /* Vector Multiply Even Signed Halfword */
3961 case 904: /* Vector Multiply Even Signed Word */
3962 case 137: /* Vector Multiply Unsigned Word Modulo */
3963 case 1024: /* Vector Subtract Unsigned Byte Modulo */
3964 case 1088: /* Vector Subtract Unsigned Halfword Modulo */
3965 case 1152: /* Vector Subtract Unsigned Word Modulo */
3966 case 1216: /* Vector Subtract Unsigned Doubleword Modulo */
3967 case 1280: /* Vector Subtract Unsigned Quadword Modulo */
3968 case 1344: /* Vector Subtract & write Carry Unsigned Quadword */
3969 case 1408: /* Vector Subtract and Write Carry-Out Unsigned Word */
3970 case 1282: /* Vector Average Signed Byte */
3971 case 1346: /* Vector Average Signed Halfword */
3972 case 1410: /* Vector Average Signed Word */
3973 case 1026: /* Vector Average Unsigned Byte */
3974 case 1090: /* Vector Average Unsigned Halfword */
3975 case 1154: /* Vector Average Unsigned Word */
3976 case 258: /* Vector Maximum Signed Byte */
3977 case 322: /* Vector Maximum Signed Halfword */
3978 case 386: /* Vector Maximum Signed Word */
3979 case 450: /* Vector Maximum Signed Doubleword */
3980 case 2: /* Vector Maximum Unsigned Byte */
3981 case 66: /* Vector Maximum Unsigned Halfword */
3982 case 130: /* Vector Maximum Unsigned Word */
3983 case 194: /* Vector Maximum Unsigned Doubleword */
3984 case 770: /* Vector Minimum Signed Byte */
3985 case 834: /* Vector Minimum Signed Halfword */
3986 case 898: /* Vector Minimum Signed Word */
3987 case 962: /* Vector Minimum Signed Doubleword */
3988 case 514: /* Vector Minimum Unsigned Byte */
3989 case 578: /* Vector Minimum Unsigned Halfword */
3990 case 642: /* Vector Minimum Unsigned Word */
3991 case 706: /* Vector Minimum Unsigned Doubleword */
3992 case 1028: /* Vector Logical AND */
3993 case 1668: /* Vector Logical Equivalent */
3994 case 1092: /* Vector Logical AND with Complement */
3995 case 1412: /* Vector Logical NAND */
3996 case 1348: /* Vector Logical OR with Complement */
3997 case 1156: /* Vector Logical OR */
3998 case 1284: /* Vector Logical NOR */
3999 case 1220: /* Vector Logical XOR */
4000 case 4: /* Vector Rotate Left Byte */
4001 case 132: /* Vector Rotate Left Word VX-form */
4002 case 68: /* Vector Rotate Left Halfword */
4003 case 196: /* Vector Rotate Left Doubleword */
4004 case 260: /* Vector Shift Left Byte */
4005 case 388: /* Vector Shift Left Word */
4006 case 324: /* Vector Shift Left Halfword */
4007 case 1476: /* Vector Shift Left Doubleword */
4008 case 516: /* Vector Shift Right Byte */
4009 case 644: /* Vector Shift Right Word */
4010 case 580: /* Vector Shift Right Halfword */
4011 case 1732: /* Vector Shift Right Doubleword */
4012 case 772: /* Vector Shift Right Algebraic Byte */
4013 case 900: /* Vector Shift Right Algebraic Word */
4014 case 836: /* Vector Shift Right Algebraic Halfword */
4015 case 964: /* Vector Shift Right Algebraic Doubleword */
4016 case 10: /* Vector Add Single-Precision */
4017 case 74: /* Vector Subtract Single-Precision */
4018 case 1034: /* Vector Maximum Single-Precision */
4019 case 1098: /* Vector Minimum Single-Precision */
4020 case 842: /* Vector Convert From Signed Fixed-Point Word */
4021 case 778: /* Vector Convert From Unsigned Fixed-Point Word */
4022 case 714: /* Vector Round to Single-Precision Integer toward -Infinity */
4023 case 522: /* Vector Round to Single-Precision Integer Nearest */
4024 case 650: /* Vector Round to Single-Precision Integer toward +Infinity */
4025 case 586: /* Vector Round to Single-Precision Integer toward Zero */
4026 case 394: /* Vector 2 Raised to the Exponent Estimate Floating-Point */
4027 case 458: /* Vector Log Base 2 Estimate Floating-Point */
4028 case 266: /* Vector Reciprocal Estimate Single-Precision */
4029 case 330: /* Vector Reciprocal Square Root Estimate Single-Precision */
4030 case 1288: /* Vector AES Cipher */
4031 case 1289: /* Vector AES Cipher Last */
4032 case 1352: /* Vector AES Inverse Cipher */
4033 case 1353: /* Vector AES Inverse Cipher Last */
4034 case 1480: /* Vector AES SubBytes */
4035 case 1730: /* Vector SHA-512 Sigma Doubleword */
4036 case 1666: /* Vector SHA-256 Sigma Word */
4037 case 1032: /* Vector Polynomial Multiply-Sum Byte */
4038 case 1160: /* Vector Polynomial Multiply-Sum Word */
4039 case 1096: /* Vector Polynomial Multiply-Sum Halfword */
4040 case 1224: /* Vector Polynomial Multiply-Sum Doubleword */
4041 case 1292: /* Vector Gather Bits by Bytes by Doubleword */
4042 case 1794: /* Vector Count Leading Zeros Byte */
4043 case 1858: /* Vector Count Leading Zeros Halfword */
4044 case 1922: /* Vector Count Leading Zeros Word */
4045 case 1986: /* Vector Count Leading Zeros Doubleword */
4046 case 1795: /* Vector Population Count Byte */
4047 case 1859: /* Vector Population Count Halfword */
4048 case 1923: /* Vector Population Count Word */
4049 case 1987: /* Vector Population Count Doubleword */
4050 case 1356: /* Vector Bit Permute Quadword */
4051 record_full_arch_list_add_reg (regcache,
4052 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4053 return 0;
4054
4055 case 1604: /* Move To Vector Status and Control Register */
4056 record_full_arch_list_add_reg (regcache, PPC_VSCR_REGNUM);
4057 return 0;
4058 case 1540: /* Move From Vector Status and Control Register */
4059 record_full_arch_list_add_reg (regcache,
4060 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4061 return 0;
4062 }
4063
810c1026
WW
4064 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4065 "at %s, 4-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4066 return -1;
4067}
4068
ddeca1df
WW
4069/* Parse and record instructions of primary opcode-19 at ADDR.
4070 Return 0 if successful. */
b4cdae6f
WW
4071
4072static int
4073ppc_process_record_op19 (struct gdbarch *gdbarch, struct regcache *regcache,
4074 CORE_ADDR addr, uint32_t insn)
4075{
4076 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4077 int ext = PPC_EXTOP (insn);
4078
4079 switch (ext)
4080 {
4081 case 0: /* Move Condition Register Field */
4082 case 33: /* Condition Register NOR */
4083 case 129: /* Condition Register AND with Complement */
4084 case 193: /* Condition Register XOR */
4085 case 225: /* Condition Register NAND */
4086 case 257: /* Condition Register AND */
4087 case 289: /* Condition Register Equivalent */
4088 case 417: /* Condition Register OR with Complement */
4089 case 449: /* Condition Register OR */
4090 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4091 return 0;
4092
4093 case 16: /* Branch Conditional */
4094 case 560: /* Branch Conditional to Branch Target Address Register */
4095 if ((PPC_BO (insn) & 0x4) == 0)
4096 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4097 /* FALL-THROUGH */
4098 case 528: /* Branch Conditional to Count Register */
4099 if (PPC_LK (insn))
4100 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4101 return 0;
4102
4103 case 150: /* Instruction Synchronize */
4104 /* Do nothing. */
4105 return 0;
4106 }
4107
810c1026
WW
4108 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4109 "at %s, 19-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4110 return -1;
4111}
4112
ddeca1df
WW
4113/* Parse and record instructions of primary opcode-31 at ADDR.
4114 Return 0 if successful. */
b4cdae6f
WW
4115
4116static int
4117ppc_process_record_op31 (struct gdbarch *gdbarch, struct regcache *regcache,
4118 CORE_ADDR addr, uint32_t insn)
4119{
4120 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4121 int ext = PPC_EXTOP (insn);
4122 int tmp, nr, nb, i;
4123 CORE_ADDR at_dcsz, ea = 0;
4124 ULONGEST rb, ra, xer;
4125 int size = 0;
4126
4127 /* These instructions have OE bit. */
4128 switch (ext & 0x1ff)
4129 {
4130 /* These write RT and XER. Update CR if RC is set. */
4131 case 8: /* Subtract from carrying */
4132 case 10: /* Add carrying */
4133 case 136: /* Subtract from extended */
4134 case 138: /* Add extended */
4135 case 200: /* Subtract from zero extended */
4136 case 202: /* Add to zero extended */
4137 case 232: /* Subtract from minus one extended */
4138 case 234: /* Add to minus one extended */
4139 /* CA is always altered, but SO/OV are only altered when OE=1.
4140 In any case, XER is always altered. */
4141 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4142 if (PPC_RC (insn))
4143 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4144 record_full_arch_list_add_reg (regcache,
4145 tdep->ppc_gp0_regnum + PPC_RT (insn));
4146 return 0;
4147
4148 /* These write RT. Update CR if RC is set and update XER if OE is set. */
4149 case 40: /* Subtract from */
4150 case 104: /* Negate */
4151 case 233: /* Multiply low doubleword */
4152 case 235: /* Multiply low word */
4153 case 266: /* Add */
4154 case 393: /* Divide Doubleword Extended Unsigned */
4155 case 395: /* Divide Word Extended Unsigned */
4156 case 425: /* Divide Doubleword Extended */
4157 case 427: /* Divide Word Extended */
4158 case 457: /* Divide Doubleword Unsigned */
4159 case 459: /* Divide Word Unsigned */
4160 case 489: /* Divide Doubleword */
4161 case 491: /* Divide Word */
4162 if (PPC_OE (insn))
4163 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4164 /* FALL-THROUGH */
4165 case 9: /* Multiply High Doubleword Unsigned */
4166 case 11: /* Multiply High Word Unsigned */
4167 case 73: /* Multiply High Doubleword */
4168 case 75: /* Multiply High Word */
4169 if (PPC_RC (insn))
4170 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4171 record_full_arch_list_add_reg (regcache,
4172 tdep->ppc_gp0_regnum + PPC_RT (insn));
4173 return 0;
4174 }
4175
4176 if ((ext & 0x1f) == 15)
4177 {
4178 /* Integer Select. bit[16:20] is used for BC. */
4179 record_full_arch_list_add_reg (regcache,
4180 tdep->ppc_gp0_regnum + PPC_RT (insn));
4181 return 0;
4182 }
4183
4184 switch (ext)
4185 {
4186 case 78: /* Determine Leftmost Zero Byte */
4187 if (PPC_RC (insn))
4188 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4189 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4190 record_full_arch_list_add_reg (regcache,
4191 tdep->ppc_gp0_regnum + PPC_RT (insn));
4192 return 0;
4193
4194 /* These only write RT. */
4195 case 19: /* Move from condition register */
4196 /* Move From One Condition Register Field */
4197 case 74: /* Add and Generate Sixes */
4198 case 74 | 0x200: /* Add and Generate Sixes (bit-21 dont-care) */
4199 case 302: /* Move From Branch History Rolling Buffer */
4200 case 339: /* Move From Special Purpose Register */
4201 case 371: /* Move From Time Base [Phased-Out] */
4202 record_full_arch_list_add_reg (regcache,
4203 tdep->ppc_gp0_regnum + PPC_RT (insn));
4204 return 0;
4205
4206 /* These only write to RA. */
4207 case 51: /* Move From VSR Doubleword */
4208 case 115: /* Move From VSR Word and Zero */
4209 case 122: /* Population count bytes */
4210 case 378: /* Population count words */
4211 case 506: /* Population count doublewords */
4212 case 154: /* Parity Word */
4213 case 186: /* Parity Doubleword */
4214 case 252: /* Bit Permute Doubleword */
4215 case 282: /* Convert Declets To Binary Coded Decimal */
4216 case 314: /* Convert Binary Coded Decimal To Declets */
4217 case 508: /* Compare bytes */
4218 record_full_arch_list_add_reg (regcache,
4219 tdep->ppc_gp0_regnum + PPC_RA (insn));
4220 return 0;
4221
4222 /* These write CR and optional RA. */
4223 case 792: /* Shift Right Algebraic Word */
4224 case 794: /* Shift Right Algebraic Doubleword */
4225 case 824: /* Shift Right Algebraic Word Immediate */
4226 case 826: /* Shift Right Algebraic Doubleword Immediate (413) */
4227 case 826 | 1: /* Shift Right Algebraic Doubleword Immediate (413) */
4228 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4229 record_full_arch_list_add_reg (regcache,
4230 tdep->ppc_gp0_regnum + PPC_RA (insn));
4231 /* FALL-THROUGH */
4232 case 0: /* Compare */
4233 case 32: /* Compare logical */
4234 case 144: /* Move To Condition Register Fields */
4235 /* Move To One Condition Register Field */
4236 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4237 return 0;
4238
4239 /* These write to RT. Update RA if 'update indexed.' */
4240 case 53: /* Load Doubleword with Update Indexed */
4241 case 119: /* Load Byte and Zero with Update Indexed */
4242 case 311: /* Load Halfword and Zero with Update Indexed */
4243 case 55: /* Load Word and Zero with Update Indexed */
4244 case 375: /* Load Halfword Algebraic with Update Indexed */
4245 case 373: /* Load Word Algebraic with Update Indexed */
4246 record_full_arch_list_add_reg (regcache,
4247 tdep->ppc_gp0_regnum + PPC_RA (insn));
4248 /* FALL-THROUGH */
4249 case 21: /* Load Doubleword Indexed */
4250 case 52: /* Load Byte And Reserve Indexed */
4251 case 116: /* Load Halfword And Reserve Indexed */
4252 case 20: /* Load Word And Reserve Indexed */
4253 case 84: /* Load Doubleword And Reserve Indexed */
4254 case 87: /* Load Byte and Zero Indexed */
4255 case 279: /* Load Halfword and Zero Indexed */
4256 case 23: /* Load Word and Zero Indexed */
4257 case 343: /* Load Halfword Algebraic Indexed */
4258 case 341: /* Load Word Algebraic Indexed */
4259 case 790: /* Load Halfword Byte-Reverse Indexed */
4260 case 534: /* Load Word Byte-Reverse Indexed */
4261 case 532: /* Load Doubleword Byte-Reverse Indexed */
4262 record_full_arch_list_add_reg (regcache,
4263 tdep->ppc_gp0_regnum + PPC_RT (insn));
4264 return 0;
4265
4266 case 597: /* Load String Word Immediate */
4267 case 533: /* Load String Word Indexed */
4268 if (ext == 597)
4269 {
4270 nr = PPC_NB (insn);
4271 if (nr == 0)
4272 nr = 32;
4273 }
4274 else
4275 {
4276 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4277 nr = PPC_XER_NB (xer);
4278 }
4279
4280 nr = (nr + 3) >> 2;
4281
4282 /* If n=0, the contents of register RT are undefined. */
4283 if (nr == 0)
4284 nr = 1;
4285
4286 for (i = 0; i < nr; i++)
4287 record_full_arch_list_add_reg (regcache,
4288 tdep->ppc_gp0_regnum
4289 + ((PPC_RT (insn) + i) & 0x1f));
4290 return 0;
4291
4292 case 276: /* Load Quadword And Reserve Indexed */
4293 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
4294 record_full_arch_list_add_reg (regcache, tmp);
4295 record_full_arch_list_add_reg (regcache, tmp + 1);
4296 return 0;
4297
4298 /* These write VRT. */
4299 case 6: /* Load Vector for Shift Left Indexed */
4300 case 38: /* Load Vector for Shift Right Indexed */
4301 case 7: /* Load Vector Element Byte Indexed */
4302 case 39: /* Load Vector Element Halfword Indexed */
4303 case 71: /* Load Vector Element Word Indexed */
4304 case 103: /* Load Vector Indexed */
4305 case 359: /* Load Vector Indexed LRU */
4306 record_full_arch_list_add_reg (regcache,
4307 tdep->ppc_vr0_regnum + PPC_VRT (insn));
4308 return 0;
4309
4310 /* These write FRT. Update RA if 'update indexed.' */
4311 case 567: /* Load Floating-Point Single with Update Indexed */
4312 case 631: /* Load Floating-Point Double with Update Indexed */
4313 record_full_arch_list_add_reg (regcache,
4314 tdep->ppc_gp0_regnum + PPC_RA (insn));
4315 /* FALL-THROUGH */
4316 case 535: /* Load Floating-Point Single Indexed */
4317 case 599: /* Load Floating-Point Double Indexed */
4318 case 855: /* Load Floating-Point as Integer Word Algebraic Indexed */
4319 case 887: /* Load Floating-Point as Integer Word and Zero Indexed */
4320 record_full_arch_list_add_reg (regcache,
4321 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4322 return 0;
4323
4324 case 791: /* Load Floating-Point Double Pair Indexed */
4325 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
4326 record_full_arch_list_add_reg (regcache, tmp);
4327 record_full_arch_list_add_reg (regcache, tmp + 1);
4328 return 0;
4329
4330 case 179: /* Move To VSR Doubleword */
4331 case 211: /* Move To VSR Word Algebraic */
4332 case 243: /* Move To VSR Word and Zero */
4333 case 588: /* Load VSX Scalar Doubleword Indexed */
4334 case 524: /* Load VSX Scalar Single-Precision Indexed */
4335 case 76: /* Load VSX Scalar as Integer Word Algebraic Indexed */
4336 case 12: /* Load VSX Scalar as Integer Word and Zero Indexed */
4337 case 844: /* Load VSX Vector Doubleword*2 Indexed */
4338 case 332: /* Load VSX Vector Doubleword & Splat Indexed */
4339 case 780: /* Load VSX Vector Word*4 Indexed */
4340 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4341 return 0;
4342
4343 /* These write RA. Update CR if RC is set. */
4344 case 24: /* Shift Left Word */
4345 case 26: /* Count Leading Zeros Word */
4346 case 27: /* Shift Left Doubleword */
4347 case 28: /* AND */
4348 case 58: /* Count Leading Zeros Doubleword */
4349 case 60: /* AND with Complement */
4350 case 124: /* NOR */
4351 case 284: /* Equivalent */
4352 case 316: /* XOR */
4353 case 476: /* NAND */
4354 case 412: /* OR with Complement */
4355 case 444: /* OR */
4356 case 536: /* Shift Right Word */
4357 case 539: /* Shift Right Doubleword */
4358 case 922: /* Extend Sign Halfword */
4359 case 954: /* Extend Sign Byte */
4360 case 986: /* Extend Sign Word */
4361 if (PPC_RC (insn))
4362 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4363 record_full_arch_list_add_reg (regcache,
4364 tdep->ppc_gp0_regnum + PPC_RA (insn));
4365 return 0;
4366
4367 /* Store memory. */
4368 case 181: /* Store Doubleword with Update Indexed */
4369 case 183: /* Store Word with Update Indexed */
4370 case 247: /* Store Byte with Update Indexed */
4371 case 439: /* Store Half Word with Update Indexed */
4372 case 695: /* Store Floating-Point Single with Update Indexed */
4373 case 759: /* Store Floating-Point Double with Update Indexed */
4374 record_full_arch_list_add_reg (regcache,
4375 tdep->ppc_gp0_regnum + PPC_RA (insn));
4376 /* FALL-THROUGH */
4377 case 135: /* Store Vector Element Byte Indexed */
4378 case 167: /* Store Vector Element Halfword Indexed */
4379 case 199: /* Store Vector Element Word Indexed */
4380 case 231: /* Store Vector Indexed */
4381 case 487: /* Store Vector Indexed LRU */
4382 case 716: /* Store VSX Scalar Doubleword Indexed */
4383 case 140: /* Store VSX Scalar as Integer Word Indexed */
4384 case 652: /* Store VSX Scalar Single-Precision Indexed */
4385 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4386 case 908: /* Store VSX Vector Word*4 Indexed */
4387 case 149: /* Store Doubleword Indexed */
4388 case 151: /* Store Word Indexed */
4389 case 215: /* Store Byte Indexed */
4390 case 407: /* Store Half Word Indexed */
4391 case 694: /* Store Byte Conditional Indexed */
4392 case 726: /* Store Halfword Conditional Indexed */
4393 case 150: /* Store Word Conditional Indexed */
4394 case 214: /* Store Doubleword Conditional Indexed */
4395 case 182: /* Store Quadword Conditional Indexed */
4396 case 662: /* Store Word Byte-Reverse Indexed */
4397 case 918: /* Store Halfword Byte-Reverse Indexed */
4398 case 660: /* Store Doubleword Byte-Reverse Indexed */
4399 case 663: /* Store Floating-Point Single Indexed */
4400 case 727: /* Store Floating-Point Double Indexed */
4401 case 919: /* Store Floating-Point Double Pair Indexed */
4402 case 983: /* Store Floating-Point as Integer Word Indexed */
4403 if (ext == 694 || ext == 726 || ext == 150 || ext == 214 || ext == 182)
4404 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4405
4406 ra = 0;
4407 if (PPC_RA (insn) != 0)
4408 regcache_raw_read_unsigned (regcache,
4409 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4410 regcache_raw_read_unsigned (regcache,
4411 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4412 ea = ra + rb;
4413
4414 switch (ext)
4415 {
4416 case 183: /* Store Word with Update Indexed */
4417 case 199: /* Store Vector Element Word Indexed */
4418 case 140: /* Store VSX Scalar as Integer Word Indexed */
4419 case 652: /* Store VSX Scalar Single-Precision Indexed */
4420 case 151: /* Store Word Indexed */
4421 case 150: /* Store Word Conditional Indexed */
4422 case 662: /* Store Word Byte-Reverse Indexed */
4423 case 663: /* Store Floating-Point Single Indexed */
4424 case 695: /* Store Floating-Point Single with Update Indexed */
4425 case 983: /* Store Floating-Point as Integer Word Indexed */
4426 size = 4;
4427 break;
4428 case 247: /* Store Byte with Update Indexed */
4429 case 135: /* Store Vector Element Byte Indexed */
4430 case 215: /* Store Byte Indexed */
4431 case 694: /* Store Byte Conditional Indexed */
4432 size = 1;
4433 break;
4434 case 439: /* Store Halfword with Update Indexed */
4435 case 167: /* Store Vector Element Halfword Indexed */
4436 case 407: /* Store Halfword Indexed */
4437 case 726: /* Store Halfword Conditional Indexed */
4438 case 918: /* Store Halfword Byte-Reverse Indexed */
4439 size = 2;
4440 break;
4441 case 181: /* Store Doubleword with Update Indexed */
4442 case 716: /* Store VSX Scalar Doubleword Indexed */
4443 case 149: /* Store Doubleword Indexed */
4444 case 214: /* Store Doubleword Conditional Indexed */
4445 case 660: /* Store Doubleword Byte-Reverse Indexed */
4446 case 727: /* Store Floating-Point Double Indexed */
4447 case 759: /* Store Floating-Point Double with Update Indexed */
4448 size = 8;
4449 break;
4450 case 972: /* Store VSX Vector Doubleword*2 Indexed */
4451 case 908: /* Store VSX Vector Word*4 Indexed */
4452 case 182: /* Store Quadword Conditional Indexed */
4453 case 231: /* Store Vector Indexed */
4454 case 487: /* Store Vector Indexed LRU */
4455 case 919: /* Store Floating-Point Double Pair Indexed */
4456 size = 16;
4457 break;
4458 default:
4459 gdb_assert (0);
4460 }
4461
4462 /* Align address for Store Vector instructions. */
4463 switch (ext)
4464 {
4465 case 167: /* Store Vector Element Halfword Indexed */
4466 addr = addr & ~0x1ULL;
4467 break;
4468
4469 case 199: /* Store Vector Element Word Indexed */
4470 addr = addr & ~0x3ULL;
4471 break;
4472
4473 case 231: /* Store Vector Indexed */
4474 case 487: /* Store Vector Indexed LRU */
4475 addr = addr & ~0xfULL;
4476 break;
4477 }
4478
4479 record_full_arch_list_add_mem (addr, size);
4480 return 0;
4481
4482 case 725: /* Store String Word Immediate */
4483 ra = 0;
4484 if (PPC_RA (insn) != 0)
4485 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4486 ea += ra;
4487
4488 nb = PPC_NB (insn);
4489 if (nb == 0)
4490 nb = 32;
4491
4492 record_full_arch_list_add_mem (ea, nb);
4493
4494 return 0;
4495
4496 case 661: /* Store String Word Indexed */
4497 ra = 0;
4498 if (PPC_RA (insn) != 0)
4499 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &ra);
4500 ea += ra;
4501
4502 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &xer);
4503 nb = PPC_XER_NB (xer);
4504
4505 if (nb != 0)
4506 {
4507 regcache_raw_read_unsigned (regcache, tdep->ppc_xer_regnum, &rb);
4508 ea += rb;
4509 record_full_arch_list_add_mem (ea, nb);
4510 }
4511
4512 return 0;
4513
4514 case 467: /* Move To Special Purpose Register */
4515 switch (PPC_SPR (insn))
4516 {
4517 case 1: /* XER */
4518 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4519 return 0;
4520 case 8: /* LR */
4521 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
4522 return 0;
4523 case 9: /* CTR */
4524 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
4525 return 0;
4526 case 256: /* VRSAVE */
4527 record_full_arch_list_add_reg (regcache, tdep->ppc_vrsave_regnum);
4528 return 0;
4529 }
4530
4531 goto UNKNOWN_OP;
4532
4533 case 147: /* Move To Split Little Endian */
4534 record_full_arch_list_add_reg (regcache, tdep->ppc_ps_regnum);
4535 return 0;
4536
4537 case 512: /* Move to Condition Register from XER */
4538 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4539 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
4540 return 0;
4541
4542 case 4: /* Trap Word */
4543 case 68: /* Trap Doubleword */
4544 case 430: /* Clear BHRB */
4545 case 598: /* Synchronize */
4546 case 62: /* Wait for Interrupt */
4547 case 22: /* Instruction Cache Block Touch */
4548 case 854: /* Enforce In-order Execution of I/O */
4549 case 246: /* Data Cache Block Touch for Store */
4550 case 54: /* Data Cache Block Store */
4551 case 86: /* Data Cache Block Flush */
4552 case 278: /* Data Cache Block Touch */
4553 case 758: /* Data Cache Block Allocate */
4554 case 982: /* Instruction Cache Block Invalidate */
4555 return 0;
4556
4557 case 654: /* Transaction Begin */
4558 case 686: /* Transaction End */
4559 case 718: /* Transaction Check */
4560 case 750: /* Transaction Suspend or Resume */
4561 case 782: /* Transaction Abort Word Conditional */
4562 case 814: /* Transaction Abort Doubleword Conditional */
4563 case 846: /* Transaction Abort Word Conditional Immediate */
4564 case 878: /* Transaction Abort Doubleword Conditional Immediate */
4565 case 910: /* Transaction Abort */
4566 fprintf_unfiltered (gdb_stdlog, "Cannot record Transaction instructions. "
810c1026
WW
4567 "%08x at %s, 31-%d.\n",
4568 insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4569 return -1;
4570
4571 case 1014: /* Data Cache Block set to Zero */
4572 if (target_auxv_search (&current_target, AT_DCACHEBSIZE, &at_dcsz) <= 0
4573 || at_dcsz == 0)
4574 at_dcsz = 128; /* Assume 128-byte cache line size (POWER8) */
4575
4576 if (PPC_RA (insn) != 0)
4577 regcache_raw_read_unsigned (regcache,
4578 tdep->ppc_gp0_regnum + PPC_RA (insn), &ra);
4579 regcache_raw_read_unsigned (regcache,
4580 tdep->ppc_gp0_regnum + PPC_RB (insn), &rb);
4581 ea = (ra + rb) & ~((ULONGEST) (at_dcsz - 1));
4582 record_full_arch_list_add_mem (ea, at_dcsz);
4583 return 0;
4584 }
4585
4586UNKNOWN_OP:
810c1026
WW
4587 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4588 "at %s, 31-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4589 return -1;
4590}
4591
ddeca1df
WW
4592/* Parse and record instructions of primary opcode-59 at ADDR.
4593 Return 0 if successful. */
b4cdae6f
WW
4594
4595static int
4596ppc_process_record_op59 (struct gdbarch *gdbarch, struct regcache *regcache,
4597 CORE_ADDR addr, uint32_t insn)
4598{
4599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4600 int ext = PPC_EXTOP (insn);
4601
4602 switch (ext & 0x1f)
4603 {
4604 case 18: /* Floating Divide */
4605 case 20: /* Floating Subtract */
4606 case 21: /* Floating Add */
4607 case 22: /* Floating Square Root */
4608 case 24: /* Floating Reciprocal Estimate */
4609 case 25: /* Floating Multiply */
4610 case 26: /* Floating Reciprocal Square Root Estimate */
4611 case 28: /* Floating Multiply-Subtract */
4612 case 29: /* Floating Multiply-Add */
4613 case 30: /* Floating Negative Multiply-Subtract */
4614 case 31: /* Floating Negative Multiply-Add */
4615 record_full_arch_list_add_reg (regcache,
4616 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4617 if (PPC_RC (insn))
4618 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4619 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4620
4621 return 0;
4622 }
4623
4624 switch (ext)
4625 {
4626 case 2: /* DFP Add */
4627 case 3: /* DFP Quantize */
4628 case 34: /* DFP Multiply */
4629 case 35: /* DFP Reround */
4630 case 67: /* DFP Quantize Immediate */
4631 case 99: /* DFP Round To FP Integer With Inexact */
4632 case 227: /* DFP Round To FP Integer Without Inexact */
4633 case 258: /* DFP Convert To DFP Long! */
4634 case 290: /* DFP Convert To Fixed */
4635 case 514: /* DFP Subtract */
4636 case 546: /* DFP Divide */
4637 case 770: /* DFP Round To DFP Short! */
4638 case 802: /* DFP Convert From Fixed */
4639 case 834: /* DFP Encode BCD To DPD */
4640 if (PPC_RC (insn))
4641 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4642 record_full_arch_list_add_reg (regcache,
4643 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4644 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4645 return 0;
4646
4647 case 130: /* DFP Compare Ordered */
4648 case 162: /* DFP Test Exponent */
4649 case 194: /* DFP Test Data Class */
4650 case 226: /* DFP Test Data Group */
4651 case 642: /* DFP Compare Unordered */
4652 case 674: /* DFP Test Significance */
4653 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4654 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4655 return 0;
4656
4657 case 66: /* DFP Shift Significand Left Immediate */
4658 case 98: /* DFP Shift Significand Right Immediate */
4659 case 322: /* DFP Decode DPD To BCD */
4660 case 354: /* DFP Extract Biased Exponent */
4661 case 866: /* DFP Insert Biased Exponent */
4662 record_full_arch_list_add_reg (regcache,
4663 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4664 if (PPC_RC (insn))
4665 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4666 return 0;
4667
4668 case 846: /* Floating Convert From Integer Doubleword Single */
4669 case 974: /* Floating Convert From Integer Doubleword Unsigned
4670 Single */
4671 record_full_arch_list_add_reg (regcache,
4672 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4673 if (PPC_RC (insn))
4674 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4675 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4676
4677 return 0;
4678 }
4679
810c1026
WW
4680 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4681 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4682 return -1;
4683}
4684
ddeca1df
WW
4685/* Parse and record instructions of primary opcode-60 at ADDR.
4686 Return 0 if successful. */
b4cdae6f
WW
4687
4688static int
4689ppc_process_record_op60 (struct gdbarch *gdbarch, struct regcache *regcache,
4690 CORE_ADDR addr, uint32_t insn)
4691{
4692 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4693 int ext = PPC_EXTOP (insn);
b4cdae6f
WW
4694
4695 switch (ext >> 2)
4696 {
4697 case 0: /* VSX Scalar Add Single-Precision */
4698 case 32: /* VSX Scalar Add Double-Precision */
4699 case 24: /* VSX Scalar Divide Single-Precision */
4700 case 56: /* VSX Scalar Divide Double-Precision */
4701 case 176: /* VSX Scalar Copy Sign Double-Precision */
4702 case 33: /* VSX Scalar Multiply-Add Double-Precision */
4703 case 41: /* ditto */
4704 case 1: /* VSX Scalar Multiply-Add Single-Precision */
4705 case 9: /* ditto */
4706 case 160: /* VSX Scalar Maximum Double-Precision */
4707 case 168: /* VSX Scalar Minimum Double-Precision */
4708 case 49: /* VSX Scalar Multiply-Subtract Double-Precision */
4709 case 57: /* ditto */
4710 case 17: /* VSX Scalar Multiply-Subtract Single-Precision */
4711 case 25: /* ditto */
4712 case 48: /* VSX Scalar Multiply Double-Precision */
4713 case 16: /* VSX Scalar Multiply Single-Precision */
4714 case 161: /* VSX Scalar Negative Multiply-Add Double-Precision */
4715 case 169: /* ditto */
4716 case 129: /* VSX Scalar Negative Multiply-Add Single-Precision */
4717 case 137: /* ditto */
4718 case 177: /* VSX Scalar Negative Multiply-Subtract Double-Precision */
4719 case 185: /* ditto */
4720 case 145: /* VSX Scalar Negative Multiply-Subtract Single-Precision */
4721 case 153: /* ditto */
4722 case 40: /* VSX Scalar Subtract Double-Precision */
4723 case 8: /* VSX Scalar Subtract Single-Precision */
4724 case 96: /* VSX Vector Add Double-Precision */
4725 case 64: /* VSX Vector Add Single-Precision */
4726 case 120: /* VSX Vector Divide Double-Precision */
4727 case 88: /* VSX Vector Divide Single-Precision */
4728 case 97: /* VSX Vector Multiply-Add Double-Precision */
4729 case 105: /* ditto */
4730 case 65: /* VSX Vector Multiply-Add Single-Precision */
4731 case 73: /* ditto */
4732 case 224: /* VSX Vector Maximum Double-Precision */
4733 case 192: /* VSX Vector Maximum Single-Precision */
4734 case 232: /* VSX Vector Minimum Double-Precision */
4735 case 200: /* VSX Vector Minimum Single-Precision */
4736 case 113: /* VSX Vector Multiply-Subtract Double-Precision */
4737 case 121: /* ditto */
4738 case 81: /* VSX Vector Multiply-Subtract Single-Precision */
4739 case 89: /* ditto */
4740 case 112: /* VSX Vector Multiply Double-Precision */
4741 case 80: /* VSX Vector Multiply Single-Precision */
4742 case 225: /* VSX Vector Negative Multiply-Add Double-Precision */
4743 case 233: /* ditto */
4744 case 193: /* VSX Vector Negative Multiply-Add Single-Precision */
4745 case 201: /* ditto */
4746 case 241: /* VSX Vector Negative Multiply-Subtract Double-Precision */
4747 case 249: /* ditto */
4748 case 209: /* VSX Vector Negative Multiply-Subtract Single-Precision */
4749 case 217: /* ditto */
4750 case 104: /* VSX Vector Subtract Double-Precision */
4751 case 72: /* VSX Vector Subtract Single-Precision */
4752 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4753 case 240: /* VSX Vector Copy Sign Double-Precision */
4754 case 208: /* VSX Vector Copy Sign Single-Precision */
4755 case 130: /* VSX Logical AND */
4756 case 138: /* VSX Logical AND with Complement */
4757 case 186: /* VSX Logical Equivalence */
4758 case 178: /* VSX Logical NAND */
4759 case 170: /* VSX Logical OR with Complement */
4760 case 162: /* VSX Logical NOR */
4761 case 146: /* VSX Logical OR */
4762 case 154: /* VSX Logical XOR */
4763 case 18: /* VSX Merge High Word */
4764 case 50: /* VSX Merge Low Word */
4765 case 10: /* VSX Permute Doubleword Immediate (DM=0) */
4766 case 10 | 0x20: /* VSX Permute Doubleword Immediate (DM=1) */
4767 case 10 | 0x40: /* VSX Permute Doubleword Immediate (DM=2) */
4768 case 10 | 0x60: /* VSX Permute Doubleword Immediate (DM=3) */
4769 case 2: /* VSX Shift Left Double by Word Immediate (SHW=0) */
4770 case 2 | 0x20: /* VSX Shift Left Double by Word Immediate (SHW=1) */
4771 case 2 | 0x40: /* VSX Shift Left Double by Word Immediate (SHW=2) */
4772 case 2 | 0x60: /* VSX Shift Left Double by Word Immediate (SHW=3) */
4773 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4774 return 0;
4775
4776 case 61: /* VSX Scalar Test for software Divide Double-Precision */
4777 case 125: /* VSX Vector Test for software Divide Double-Precision */
4778 case 93: /* VSX Vector Test for software Divide Single-Precision */
4779 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4780 return 0;
4781
4782 case 35: /* VSX Scalar Compare Unordered Double-Precision */
4783 case 43: /* VSX Scalar Compare Ordered Double-Precision */
4784 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4785 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4786 return 0;
4787 }
4788
4789 switch ((ext >> 2) & 0x7f) /* Mask out Rc-bit. */
4790 {
4791 case 99: /* VSX Vector Compare Equal To Double-Precision */
4792 case 67: /* VSX Vector Compare Equal To Single-Precision */
4793 case 115: /* VSX Vector Compare Greater Than or
4794 Equal To Double-Precision */
4795 case 83: /* VSX Vector Compare Greater Than or
4796 Equal To Single-Precision */
4797 case 107: /* VSX Vector Compare Greater Than Double-Precision */
4798 case 75: /* VSX Vector Compare Greater Than Single-Precision */
4799 if (PPC_Rc (insn))
4800 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4801 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4802 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4803 return 0;
4804 }
4805
4806 switch (ext >> 1)
4807 {
4808 case 265: /* VSX Scalar round Double-Precision to
4809 Single-Precision and Convert to
4810 Single-Precision format */
4811 case 344: /* VSX Scalar truncate Double-Precision to
4812 Integer and Convert to Signed Integer
4813 Doubleword format with Saturate */
4814 case 88: /* VSX Scalar truncate Double-Precision to
4815 Integer and Convert to Signed Integer Word
4816 Format with Saturate */
4817 case 328: /* VSX Scalar truncate Double-Precision integer
4818 and Convert to Unsigned Integer Doubleword
4819 Format with Saturate */
4820 case 72: /* VSX Scalar truncate Double-Precision to
4821 Integer and Convert to Unsigned Integer Word
4822 Format with Saturate */
4823 case 329: /* VSX Scalar Convert Single-Precision to
4824 Double-Precision format */
4825 case 376: /* VSX Scalar Convert Signed Integer
4826 Doubleword to floating-point format and
4827 Round to Double-Precision format */
4828 case 312: /* VSX Scalar Convert Signed Integer
4829 Doubleword to floating-point format and
4830 round to Single-Precision */
4831 case 360: /* VSX Scalar Convert Unsigned Integer
4832 Doubleword to floating-point format and
4833 Round to Double-Precision format */
4834 case 296: /* VSX Scalar Convert Unsigned Integer
4835 Doubleword to floating-point format and
4836 Round to Single-Precision */
4837 case 73: /* VSX Scalar Round to Double-Precision Integer
4838 Using Round to Nearest Away */
4839 case 107: /* VSX Scalar Round to Double-Precision Integer
4840 Exact using Current rounding mode */
4841 case 121: /* VSX Scalar Round to Double-Precision Integer
4842 Using Round toward -Infinity */
4843 case 105: /* VSX Scalar Round to Double-Precision Integer
4844 Using Round toward +Infinity */
4845 case 89: /* VSX Scalar Round to Double-Precision Integer
4846 Using Round toward Zero */
4847 case 90: /* VSX Scalar Reciprocal Estimate Double-Precision */
4848 case 26: /* VSX Scalar Reciprocal Estimate Single-Precision */
4849 case 281: /* VSX Scalar Round to Single-Precision */
4850 case 74: /* VSX Scalar Reciprocal Square Root Estimate
4851 Double-Precision */
4852 case 10: /* VSX Scalar Reciprocal Square Root Estimate
4853 Single-Precision */
4854 case 75: /* VSX Scalar Square Root Double-Precision */
4855 case 11: /* VSX Scalar Square Root Single-Precision */
4856 case 393: /* VSX Vector round Double-Precision to
4857 Single-Precision and Convert to
4858 Single-Precision format */
4859 case 472: /* VSX Vector truncate Double-Precision to
4860 Integer and Convert to Signed Integer
4861 Doubleword format with Saturate */
4862 case 216: /* VSX Vector truncate Double-Precision to
4863 Integer and Convert to Signed Integer Word
4864 Format with Saturate */
4865 case 456: /* VSX Vector truncate Double-Precision to
4866 Integer and Convert to Unsigned Integer
4867 Doubleword format with Saturate */
4868 case 200: /* VSX Vector truncate Double-Precision to
4869 Integer and Convert to Unsigned Integer Word
4870 Format with Saturate */
4871 case 457: /* VSX Vector Convert Single-Precision to
4872 Double-Precision format */
4873 case 408: /* VSX Vector truncate Single-Precision to
4874 Integer and Convert to Signed Integer
4875 Doubleword format with Saturate */
4876 case 152: /* VSX Vector truncate Single-Precision to
4877 Integer and Convert to Signed Integer Word
4878 Format with Saturate */
4879 case 392: /* VSX Vector truncate Single-Precision to
4880 Integer and Convert to Unsigned Integer
4881 Doubleword format with Saturate */
4882 case 136: /* VSX Vector truncate Single-Precision to
4883 Integer and Convert to Unsigned Integer Word
4884 Format with Saturate */
4885 case 504: /* VSX Vector Convert and round Signed Integer
4886 Doubleword to Double-Precision format */
4887 case 440: /* VSX Vector Convert and round Signed Integer
4888 Doubleword to Single-Precision format */
4889 case 248: /* VSX Vector Convert Signed Integer Word to
4890 Double-Precision format */
4891 case 184: /* VSX Vector Convert and round Signed Integer
4892 Word to Single-Precision format */
4893 case 488: /* VSX Vector Convert and round Unsigned
4894 Integer Doubleword to Double-Precision format */
4895 case 424: /* VSX Vector Convert and round Unsigned
4896 Integer Doubleword to Single-Precision format */
4897 case 232: /* VSX Vector Convert and round Unsigned
4898 Integer Word to Double-Precision format */
4899 case 168: /* VSX Vector Convert and round Unsigned
4900 Integer Word to Single-Precision format */
4901 case 201: /* VSX Vector Round to Double-Precision
4902 Integer using round to Nearest Away */
4903 case 235: /* VSX Vector Round to Double-Precision
4904 Integer Exact using Current rounding mode */
4905 case 249: /* VSX Vector Round to Double-Precision
4906 Integer using round toward -Infinity */
4907 case 233: /* VSX Vector Round to Double-Precision
4908 Integer using round toward +Infinity */
4909 case 217: /* VSX Vector Round to Double-Precision
4910 Integer using round toward Zero */
4911 case 218: /* VSX Vector Reciprocal Estimate Double-Precision */
4912 case 154: /* VSX Vector Reciprocal Estimate Single-Precision */
4913 case 137: /* VSX Vector Round to Single-Precision Integer
4914 Using Round to Nearest Away */
4915 case 171: /* VSX Vector Round to Single-Precision Integer
4916 Exact Using Current rounding mode */
4917 case 185: /* VSX Vector Round to Single-Precision Integer
4918 Using Round toward -Infinity */
4919 case 169: /* VSX Vector Round to Single-Precision Integer
4920 Using Round toward +Infinity */
4921 case 153: /* VSX Vector Round to Single-Precision Integer
4922 Using round toward Zero */
4923 case 202: /* VSX Vector Reciprocal Square Root Estimate
4924 Double-Precision */
4925 case 138: /* VSX Vector Reciprocal Square Root Estimate
4926 Single-Precision */
4927 case 203: /* VSX Vector Square Root Double-Precision */
4928 case 139: /* VSX Vector Square Root Single-Precision */
4929 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4930 case 345: /* VSX Scalar Absolute Value Double-Precision */
4931 case 267: /* VSX Scalar Convert Scalar Single-Precision to
4932 Vector Single-Precision format Non-signalling */
4933 case 331: /* VSX Scalar Convert Single-Precision to
4934 Double-Precision format Non-signalling */
4935 case 361: /* VSX Scalar Negative Absolute Value Double-Precision */
4936 case 377: /* VSX Scalar Negate Double-Precision */
4937 case 473: /* VSX Vector Absolute Value Double-Precision */
4938 case 409: /* VSX Vector Absolute Value Single-Precision */
4939 case 489: /* VSX Vector Negative Absolute Value Double-Precision */
4940 case 425: /* VSX Vector Negative Absolute Value Single-Precision */
4941 case 505: /* VSX Vector Negate Double-Precision */
4942 case 441: /* VSX Vector Negate Single-Precision */
4943 case 164: /* VSX Splat Word */
4944 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4945 return 0;
4946
4947 case 106: /* VSX Scalar Test for software Square Root
4948 Double-Precision */
4949 case 234: /* VSX Vector Test for software Square Root
4950 Double-Precision */
4951 case 170: /* VSX Vector Test for software Square Root
4952 Single-Precision */
4953 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4954 return 0;
4955 }
4956
4957 if (((ext >> 3) & 0x3) == 3) /* VSX Select */
4958 {
4959 ppc_record_vsr (regcache, tdep, PPC_XT (insn));
4960 return 0;
4961 }
4962
810c1026
WW
4963 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
4964 "at %s, 60-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
4965 return -1;
4966}
4967
ddeca1df
WW
4968/* Parse and record instructions of primary opcode-63 at ADDR.
4969 Return 0 if successful. */
b4cdae6f
WW
4970
4971static int
4972ppc_process_record_op63 (struct gdbarch *gdbarch, struct regcache *regcache,
4973 CORE_ADDR addr, uint32_t insn)
4974{
4975 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
4976 int ext = PPC_EXTOP (insn);
4977 int tmp;
4978
4979 switch (ext & 0x1f)
4980 {
4981 case 18: /* Floating Divide */
4982 case 20: /* Floating Subtract */
4983 case 21: /* Floating Add */
4984 case 22: /* Floating Square Root */
4985 case 24: /* Floating Reciprocal Estimate */
4986 case 25: /* Floating Multiply */
4987 case 26: /* Floating Reciprocal Square Root Estimate */
4988 case 28: /* Floating Multiply-Subtract */
4989 case 29: /* Floating Multiply-Add */
4990 case 30: /* Floating Negative Multiply-Subtract */
4991 case 31: /* Floating Negative Multiply-Add */
4992 record_full_arch_list_add_reg (regcache,
4993 tdep->ppc_fp0_regnum + PPC_FRT (insn));
4994 if (PPC_RC (insn))
4995 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
4996 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
4997 return 0;
4998
4999 case 23: /* Floating Select */
5000 record_full_arch_list_add_reg (regcache,
5001 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5002 if (PPC_RC (insn))
5003 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5004 }
5005
5006 switch (ext)
5007 {
5008 case 2: /* DFP Add Quad */
5009 case 3: /* DFP Quantize Quad */
5010 case 34: /* DFP Multiply Quad */
5011 case 35: /* DFP Reround Quad */
5012 case 67: /* DFP Quantize Immediate Quad */
5013 case 99: /* DFP Round To FP Integer With Inexact Quad */
5014 case 227: /* DFP Round To FP Integer Without Inexact Quad */
5015 case 258: /* DFP Convert To DFP Extended Quad */
5016 case 514: /* DFP Subtract Quad */
5017 case 546: /* DFP Divide Quad */
5018 case 770: /* DFP Round To DFP Long Quad */
5019 case 802: /* DFP Convert From Fixed Quad */
5020 case 834: /* DFP Encode BCD To DPD Quad */
5021 if (PPC_RC (insn))
5022 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5023 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5024 record_full_arch_list_add_reg (regcache, tmp);
5025 record_full_arch_list_add_reg (regcache, tmp + 1);
5026 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5027 return 0;
5028
5029 case 130: /* DFP Compare Ordered Quad */
5030 case 162: /* DFP Test Exponent Quad */
5031 case 194: /* DFP Test Data Class Quad */
5032 case 226: /* DFP Test Data Group Quad */
5033 case 642: /* DFP Compare Unordered Quad */
5034 case 674: /* DFP Test Significance Quad */
5035 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5036 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5037 return 0;
5038
5039 case 66: /* DFP Shift Significand Left Immediate Quad */
5040 case 98: /* DFP Shift Significand Right Immediate Quad */
5041 case 322: /* DFP Decode DPD To BCD Quad */
5042 case 866: /* DFP Insert Biased Exponent Quad */
5043 tmp = tdep->ppc_fp0_regnum + (PPC_FRT (insn) & ~1);
5044 record_full_arch_list_add_reg (regcache, tmp);
5045 record_full_arch_list_add_reg (regcache, tmp + 1);
5046 if (PPC_RC (insn))
5047 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5048 return 0;
5049
5050 case 290: /* DFP Convert To Fixed Quad */
5051 record_full_arch_list_add_reg (regcache,
5052 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5053 if (PPC_RC (insn))
5054 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5055 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5056 break;
5057
5058 case 354: /* DFP Extract Biased Exponent Quad */
5059 record_full_arch_list_add_reg (regcache,
5060 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5061 if (PPC_RC (insn))
5062 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5063 return 0;
5064
5065 case 12: /* Floating Round to Single-Precision */
5066 case 14: /* Floating Convert To Integer Word */
5067 case 15: /* Floating Convert To Integer Word
5068 with round toward Zero */
5069 case 142: /* Floating Convert To Integer Word Unsigned */
5070 case 143: /* Floating Convert To Integer Word Unsigned
5071 with round toward Zero */
5072 case 392: /* Floating Round to Integer Nearest */
5073 case 424: /* Floating Round to Integer Toward Zero */
5074 case 456: /* Floating Round to Integer Plus */
5075 case 488: /* Floating Round to Integer Minus */
5076 case 814: /* Floating Convert To Integer Doubleword */
5077 case 815: /* Floating Convert To Integer Doubleword
5078 with round toward Zero */
5079 case 846: /* Floating Convert From Integer Doubleword */
5080 case 942: /* Floating Convert To Integer Doubleword Unsigned */
5081 case 943: /* Floating Convert To Integer Doubleword Unsigned
5082 with round toward Zero */
5083 case 974: /* Floating Convert From Integer Doubleword Unsigned */
5084 record_full_arch_list_add_reg (regcache,
5085 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5086 if (PPC_RC (insn))
5087 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5088 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5089 return 0;
5090
5091 case 583: /* Move From FPSCR */
5092 case 8: /* Floating Copy Sign */
5093 case 40: /* Floating Negate */
5094 case 72: /* Floating Move Register */
5095 case 136: /* Floating Negative Absolute Value */
5096 case 264: /* Floating Absolute Value */
5097 record_full_arch_list_add_reg (regcache,
5098 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5099 if (PPC_RC (insn))
5100 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5101 return 0;
5102
5103 case 838: /* Floating Merge Odd Word */
5104 case 966: /* Floating Merge Even Word */
5105 record_full_arch_list_add_reg (regcache,
5106 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5107 return 0;
5108
5109 case 38: /* Move To FPSCR Bit 1 */
5110 case 70: /* Move To FPSCR Bit 0 */
5111 case 134: /* Move To FPSCR Field Immediate */
5112 case 711: /* Move To FPSCR Fields */
5113 if (PPC_RC (insn))
5114 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5115 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5116 break;
5117
5118 case 0: /* Floating Compare Unordered */
5119 case 32: /* Floating Compare Ordered */
5120 case 64: /* Move to Condition Register from FPSCR */
5121 record_full_arch_list_add_reg (regcache, tdep->ppc_fpscr_regnum);
5122 /* FALL-THROUGH */
5123 case 128: /* Floating Test for software Divide */
5124 case 160: /* Floating Test for software Square Root */
5125 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5126 return 0;
5127
5128 }
5129
810c1026
WW
5130 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5131 "at %s, 59-%d.\n", insn, paddress (gdbarch, addr), ext);
b4cdae6f
WW
5132 return -1;
5133}
5134
5135/* Parse the current instruction and record the values of the registers and
5136 memory that will be changed in current instruction to "record_arch_list".
5137 Return -1 if something wrong. */
5138
5139int
5140ppc_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
5141 CORE_ADDR addr)
5142{
5143 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
5144 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
5145 uint32_t insn;
5146 int op6, tmp, i;
5147
5148 insn = read_memory_unsigned_integer (addr, 4, byte_order);
5149 op6 = PPC_OP6 (insn);
5150
5151 switch (op6)
5152 {
5153 case 2: /* Trap Doubleword Immediate */
5154 case 3: /* Trap Word Immediate */
5155 /* Do nothing. */
5156 break;
5157
5158 case 4:
5159 if (ppc_process_record_op4 (gdbarch, regcache, addr, insn) != 0)
5160 return -1;
5161 break;
5162
5163 case 17: /* System call */
5164 if (PPC_LEV (insn) != 0)
5165 goto UNKNOWN_OP;
5166
5167 if (tdep->ppc_syscall_record != NULL)
5168 {
5169 if (tdep->ppc_syscall_record (regcache) != 0)
5170 return -1;
5171 }
5172 else
5173 {
5174 printf_unfiltered (_("no syscall record support\n"));
5175 return -1;
5176 }
5177 break;
5178
5179 case 7: /* Multiply Low Immediate */
5180 record_full_arch_list_add_reg (regcache,
5181 tdep->ppc_gp0_regnum + PPC_RT (insn));
5182 break;
5183
5184 case 8: /* Subtract From Immediate Carrying */
5185 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5186 record_full_arch_list_add_reg (regcache,
5187 tdep->ppc_gp0_regnum + PPC_RT (insn));
5188 break;
5189
5190 case 10: /* Compare Logical Immediate */
5191 case 11: /* Compare Immediate */
5192 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5193 break;
5194
5195 case 13: /* Add Immediate Carrying and Record */
5196 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5197 /* FALL-THROUGH */
5198 case 12: /* Add Immediate Carrying */
5199 record_full_arch_list_add_reg (regcache, tdep->ppc_xer_regnum);
5200 /* FALL-THROUGH */
5201 case 14: /* Add Immediate */
5202 case 15: /* Add Immediate Shifted */
5203 record_full_arch_list_add_reg (regcache,
5204 tdep->ppc_gp0_regnum + PPC_RT (insn));
5205 break;
5206
5207 case 16: /* Branch Conditional */
5208 if ((PPC_BO (insn) & 0x4) == 0)
5209 record_full_arch_list_add_reg (regcache, tdep->ppc_ctr_regnum);
5210 /* FALL-THROUGH */
5211 case 18: /* Branch */
5212 if (PPC_LK (insn))
5213 record_full_arch_list_add_reg (regcache, tdep->ppc_lr_regnum);
5214 break;
5215
5216 case 19:
5217 if (ppc_process_record_op19 (gdbarch, regcache, addr, insn) != 0)
5218 return -1;
5219 break;
5220
5221 case 20: /* Rotate Left Word Immediate then Mask Insert */
5222 case 21: /* Rotate Left Word Immediate then AND with Mask */
5223 case 23: /* Rotate Left Word then AND with Mask */
5224 case 30: /* Rotate Left Doubleword Immediate then Clear Left */
5225 /* Rotate Left Doubleword Immediate then Clear Right */
5226 /* Rotate Left Doubleword Immediate then Clear */
5227 /* Rotate Left Doubleword then Clear Left */
5228 /* Rotate Left Doubleword then Clear Right */
5229 /* Rotate Left Doubleword Immediate then Mask Insert */
5230 if (PPC_RC (insn))
5231 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5232 record_full_arch_list_add_reg (regcache,
5233 tdep->ppc_gp0_regnum + PPC_RA (insn));
5234 break;
5235
5236 case 28: /* AND Immediate */
5237 case 29: /* AND Immediate Shifted */
5238 record_full_arch_list_add_reg (regcache, tdep->ppc_cr_regnum);
5239 /* FALL-THROUGH */
5240 case 24: /* OR Immediate */
5241 case 25: /* OR Immediate Shifted */
5242 case 26: /* XOR Immediate */
5243 case 27: /* XOR Immediate Shifted */
5244 record_full_arch_list_add_reg (regcache,
5245 tdep->ppc_gp0_regnum + PPC_RA (insn));
5246 break;
5247
5248 case 31:
5249 if (ppc_process_record_op31 (gdbarch, regcache, addr, insn) != 0)
5250 return -1;
5251 break;
5252
5253 case 33: /* Load Word and Zero with Update */
5254 case 35: /* Load Byte and Zero with Update */
5255 case 41: /* Load Halfword and Zero with Update */
5256 case 43: /* Load Halfword Algebraic with Update */
5257 record_full_arch_list_add_reg (regcache,
5258 tdep->ppc_gp0_regnum + PPC_RA (insn));
5259 /* FALL-THROUGH */
5260 case 32: /* Load Word and Zero */
5261 case 34: /* Load Byte and Zero */
5262 case 40: /* Load Halfword and Zero */
5263 case 42: /* Load Halfword Algebraic */
5264 record_full_arch_list_add_reg (regcache,
5265 tdep->ppc_gp0_regnum + PPC_RT (insn));
5266 break;
5267
5268 case 46: /* Load Multiple Word */
5269 for (i = PPC_RT (insn); i < 32; i++)
5270 record_full_arch_list_add_reg (regcache, tdep->ppc_gp0_regnum + i);
5271 break;
5272
5273 case 56: /* Load Quadword */
5274 tmp = tdep->ppc_gp0_regnum + (PPC_RT (insn) & ~1);
5275 record_full_arch_list_add_reg (regcache, tmp);
5276 record_full_arch_list_add_reg (regcache, tmp + 1);
5277 break;
5278
5279 case 49: /* Load Floating-Point Single with Update */
5280 case 51: /* Load Floating-Point Double with Update */
5281 record_full_arch_list_add_reg (regcache,
5282 tdep->ppc_gp0_regnum + PPC_RA (insn));
5283 /* FALL-THROUGH */
5284 case 48: /* Load Floating-Point Single */
5285 case 50: /* Load Floating-Point Double */
5286 record_full_arch_list_add_reg (regcache,
5287 tdep->ppc_fp0_regnum + PPC_FRT (insn));
5288 break;
5289
5290 case 47: /* Store Multiple Word */
5291 {
5292 ULONGEST addr = 0;
5293
5294 if (PPC_RA (insn) != 0)
5295 regcache_raw_read_unsigned (regcache,
5296 tdep->ppc_gp0_regnum + PPC_RA (insn),
5297 &addr);
5298
5299 addr += PPC_D (insn);
5300 record_full_arch_list_add_mem (addr, 4 * (32 - PPC_RS (insn)));
5301 }
5302 break;
5303
5304 case 37: /* Store Word with Update */
5305 case 39: /* Store Byte with Update */
5306 case 45: /* Store Halfword with Update */
5307 case 53: /* Store Floating-Point Single with Update */
5308 case 55: /* Store Floating-Point Double with Update */
5309 record_full_arch_list_add_reg (regcache,
5310 tdep->ppc_gp0_regnum + PPC_RA (insn));
5311 /* FALL-THROUGH */
5312 case 36: /* Store Word */
5313 case 38: /* Store Byte */
5314 case 44: /* Store Halfword */
5315 case 52: /* Store Floating-Point Single */
5316 case 54: /* Store Floating-Point Double */
5317 {
5318 ULONGEST addr = 0;
5319 int size = -1;
5320
5321 if (PPC_RA (insn) != 0)
5322 regcache_raw_read_unsigned (regcache,
5323 tdep->ppc_gp0_regnum + PPC_RA (insn),
5324 &addr);
5325 addr += PPC_D (insn);
5326
5327 if (op6 == 36 || op6 == 37 || op6 == 52 || op6 == 53)
5328 size = 4;
5329 else if (op6 == 54 || op6 == 55)
5330 size = 8;
5331 else if (op6 == 44 || op6 == 45)
5332 size = 2;
5333 else if (op6 == 38 || op6 == 39)
5334 size = 1;
5335 else
5336 gdb_assert (0);
5337
5338 record_full_arch_list_add_mem (addr, size);
5339 }
5340 break;
5341
5342 case 57: /* Load Floating-Point Double Pair */
5343 if (PPC_FIELD (insn, 30, 2) != 0)
5344 goto UNKNOWN_OP;
5345 tmp = tdep->ppc_fp0_regnum + (PPC_RT (insn) & ~1);
5346 record_full_arch_list_add_reg (regcache, tmp);
5347 record_full_arch_list_add_reg (regcache, tmp + 1);
5348 break;
5349
5350 case 58: /* Load Doubleword */
5351 /* Load Doubleword with Update */
5352 /* Load Word Algebraic */
5353 if (PPC_FIELD (insn, 30, 2) > 2)
5354 goto UNKNOWN_OP;
5355
5356 record_full_arch_list_add_reg (regcache,
5357 tdep->ppc_gp0_regnum + PPC_RT (insn));
5358 if (PPC_BIT (insn, 31))
5359 record_full_arch_list_add_reg (regcache,
5360 tdep->ppc_gp0_regnum + PPC_RA (insn));
5361 break;
5362
5363 case 59:
5364 if (ppc_process_record_op59 (gdbarch, regcache, addr, insn) != 0)
5365 return -1;
5366 break;
5367
5368 case 60:
5369 if (ppc_process_record_op60 (gdbarch, regcache, addr, insn) != 0)
5370 return -1;
5371 break;
5372
5373 case 61: /* Store Floating-Point Double Pair */
5374 case 62: /* Store Doubleword */
5375 /* Store Doubleword with Update */
5376 /* Store Quadword with Update */
5377 {
5378 ULONGEST addr = 0;
5379 int size;
5380 int sub2 = PPC_FIELD (insn, 30, 2);
5381
5382 if ((op6 == 61 && sub2 != 0) || (op6 == 62 && sub2 > 2))
5383 goto UNKNOWN_OP;
5384
5385 if (PPC_RA (insn) != 0)
5386 regcache_raw_read_unsigned (regcache,
5387 tdep->ppc_gp0_regnum + PPC_RA (insn),
5388 &addr);
5389
5390 size = ((op6 == 61) || sub2 == 2) ? 16 : 8;
5391
5392 addr += PPC_DS (insn) << 2;
5393 record_full_arch_list_add_mem (addr, size);
5394
5395 if (op6 == 62 && sub2 == 1)
5396 record_full_arch_list_add_reg (regcache,
5397 tdep->ppc_gp0_regnum +
5398 PPC_RA (insn));
5399
5400 break;
5401 }
5402
5403 case 63:
5404 if (ppc_process_record_op63 (gdbarch, regcache, addr, insn) != 0)
5405 return -1;
5406 break;
5407
5408 default:
5409UNKNOWN_OP:
810c1026
WW
5410 fprintf_unfiltered (gdb_stdlog, "Warning: Don't know how to record %08x "
5411 "at %s, %d.\n", insn, paddress (gdbarch, addr), op6);
b4cdae6f
WW
5412 return -1;
5413 }
5414
5415 if (record_full_arch_list_add_reg (regcache, PPC_PC_REGNUM))
5416 return -1;
5417 if (record_full_arch_list_add_end ())
5418 return -1;
5419 return 0;
5420}
5421
7a78ae4e
ND
5422/* Initialize the current architecture based on INFO. If possible, re-use an
5423 architecture from ARCHES, which is a list of architectures already created
5424 during this debugging session.
c906108c 5425
7a78ae4e 5426 Called e.g. at program startup, when reading a core file, and when reading
64366f1c 5427 a binary file. */
c906108c 5428
7a78ae4e
ND
5429static struct gdbarch *
5430rs6000_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5431{
5432 struct gdbarch *gdbarch;
5433 struct gdbarch_tdep *tdep;
7cc46491 5434 int wordsize, from_xcoff_exec, from_elf_exec;
7a78ae4e
ND
5435 enum bfd_architecture arch;
5436 unsigned long mach;
5437 bfd abfd;
55eddb0f
DJ
5438 enum auto_boolean soft_float_flag = powerpc_soft_float_global;
5439 int soft_float;
5440 enum powerpc_vector_abi vector_abi = powerpc_vector_abi_global;
cd453cd0 5441 enum powerpc_elf_abi elf_abi = POWERPC_ELF_AUTO;
604c2f83
LM
5442 int have_fpu = 1, have_spe = 0, have_mq = 0, have_altivec = 0, have_dfp = 0,
5443 have_vsx = 0;
7cc46491
DJ
5444 int tdesc_wordsize = -1;
5445 const struct target_desc *tdesc = info.target_desc;
5446 struct tdesc_arch_data *tdesc_data = NULL;
f949c649 5447 int num_pseudoregs = 0;
604c2f83 5448 int cur_reg;
7a78ae4e 5449
f4d9bade
UW
5450 /* INFO may refer to a binary that is not of the PowerPC architecture,
5451 e.g. when debugging a stand-alone SPE executable on a Cell/B.E. system.
5452 In this case, we must not attempt to infer properties of the (PowerPC
5453 side) of the target system from properties of that executable. Trust
5454 the target description instead. */
5455 if (info.abfd
5456 && bfd_get_arch (info.abfd) != bfd_arch_powerpc
5457 && bfd_get_arch (info.abfd) != bfd_arch_rs6000)
5458 info.abfd = NULL;
5459
9aa1e687 5460 from_xcoff_exec = info.abfd && info.abfd->format == bfd_object &&
7a78ae4e
ND
5461 bfd_get_flavour (info.abfd) == bfd_target_xcoff_flavour;
5462
9aa1e687
KB
5463 from_elf_exec = info.abfd && info.abfd->format == bfd_object &&
5464 bfd_get_flavour (info.abfd) == bfd_target_elf_flavour;
5465
e712c1cf 5466 /* Check word size. If INFO is from a binary file, infer it from
64366f1c 5467 that, else choose a likely default. */
9aa1e687 5468 if (from_xcoff_exec)
c906108c 5469 {
11ed25ac 5470 if (bfd_xcoff_is_xcoff64 (info.abfd))
7a78ae4e
ND
5471 wordsize = 8;
5472 else
5473 wordsize = 4;
c906108c 5474 }
9aa1e687
KB
5475 else if (from_elf_exec)
5476 {
5477 if (elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
5478 wordsize = 8;
5479 else
5480 wordsize = 4;
5481 }
7cc46491
DJ
5482 else if (tdesc_has_registers (tdesc))
5483 wordsize = -1;
c906108c 5484 else
7a78ae4e 5485 {
27b15785 5486 if (info.bfd_arch_info != NULL && info.bfd_arch_info->bits_per_word != 0)
16d8013c
JB
5487 wordsize = (info.bfd_arch_info->bits_per_word
5488 / info.bfd_arch_info->bits_per_byte);
27b15785
KB
5489 else
5490 wordsize = 4;
7a78ae4e 5491 }
c906108c 5492
475bbd17
JB
5493 /* Get the architecture and machine from the BFD. */
5494 arch = info.bfd_arch_info->arch;
5495 mach = info.bfd_arch_info->mach;
5bf1c677
EZ
5496
5497 /* For e500 executables, the apuinfo section is of help here. Such
5498 section contains the identifier and revision number of each
5499 Application-specific Processing Unit that is present on the
5500 chip. The content of the section is determined by the assembler
5501 which looks at each instruction and determines which unit (and
74af9197
NF
5502 which version of it) can execute it. Grovel through the section
5503 looking for relevant e500 APUs. */
5bf1c677 5504
74af9197 5505 if (bfd_uses_spe_extensions (info.abfd))
5bf1c677 5506 {
74af9197
NF
5507 arch = info.bfd_arch_info->arch;
5508 mach = bfd_mach_ppc_e500;
5509 bfd_default_set_arch_mach (&abfd, arch, mach);
5510 info.bfd_arch_info = bfd_get_arch_info (&abfd);
5bf1c677
EZ
5511 }
5512
7cc46491
DJ
5513 /* Find a default target description which describes our register
5514 layout, if we do not already have one. */
5515 if (! tdesc_has_registers (tdesc))
5516 {
5517 const struct variant *v;
5518
5519 /* Choose variant. */
5520 v = find_variant_by_arch (arch, mach);
5521 if (!v)
5522 return NULL;
5523
5524 tdesc = *v->tdesc;
5525 }
5526
5527 gdb_assert (tdesc_has_registers (tdesc));
5528
5529 /* Check any target description for validity. */
5530 if (tdesc_has_registers (tdesc))
5531 {
5532 static const char *const gprs[] = {
5533 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
5534 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5535 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
5536 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31"
5537 };
7cc46491
DJ
5538 const struct tdesc_feature *feature;
5539 int i, valid_p;
5540 static const char *const msr_names[] = { "msr", "ps" };
5541 static const char *const cr_names[] = { "cr", "cnd" };
5542 static const char *const ctr_names[] = { "ctr", "cnt" };
5543
5544 feature = tdesc_find_feature (tdesc,
5545 "org.gnu.gdb.power.core");
5546 if (feature == NULL)
5547 return NULL;
5548
5549 tdesc_data = tdesc_data_alloc ();
5550
5551 valid_p = 1;
5552 for (i = 0; i < ppc_num_gprs; i++)
5553 valid_p &= tdesc_numbered_register (feature, tdesc_data, i, gprs[i]);
5554 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_PC_REGNUM,
5555 "pc");
5556 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_LR_REGNUM,
5557 "lr");
5558 valid_p &= tdesc_numbered_register (feature, tdesc_data, PPC_XER_REGNUM,
5559 "xer");
5560
5561 /* Allow alternate names for these registers, to accomodate GDB's
5562 historic naming. */
5563 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5564 PPC_MSR_REGNUM, msr_names);
5565 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5566 PPC_CR_REGNUM, cr_names);
5567 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
5568 PPC_CTR_REGNUM, ctr_names);
5569
5570 if (!valid_p)
5571 {
5572 tdesc_data_cleanup (tdesc_data);
5573 return NULL;
5574 }
5575
5576 have_mq = tdesc_numbered_register (feature, tdesc_data, PPC_MQ_REGNUM,
5577 "mq");
5578
5579 tdesc_wordsize = tdesc_register_size (feature, "pc") / 8;
5580 if (wordsize == -1)
5581 wordsize = tdesc_wordsize;
5582
5583 feature = tdesc_find_feature (tdesc,
5584 "org.gnu.gdb.power.fpu");
5585 if (feature != NULL)
5586 {
5587 static const char *const fprs[] = {
5588 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
5589 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
5590 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
5591 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31"
5592 };
5593 valid_p = 1;
5594 for (i = 0; i < ppc_num_fprs; i++)
5595 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5596 PPC_F0_REGNUM + i, fprs[i]);
5597 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5598 PPC_FPSCR_REGNUM, "fpscr");
5599
5600 if (!valid_p)
5601 {
5602 tdesc_data_cleanup (tdesc_data);
5603 return NULL;
5604 }
5605 have_fpu = 1;
5606 }
5607 else
5608 have_fpu = 0;
5609
f949c649
TJB
5610 /* The DFP pseudo-registers will be available when there are floating
5611 point registers. */
5612 have_dfp = have_fpu;
5613
7cc46491
DJ
5614 feature = tdesc_find_feature (tdesc,
5615 "org.gnu.gdb.power.altivec");
5616 if (feature != NULL)
5617 {
5618 static const char *const vector_regs[] = {
5619 "vr0", "vr1", "vr2", "vr3", "vr4", "vr5", "vr6", "vr7",
5620 "vr8", "vr9", "vr10", "vr11", "vr12", "vr13", "vr14", "vr15",
5621 "vr16", "vr17", "vr18", "vr19", "vr20", "vr21", "vr22", "vr23",
5622 "vr24", "vr25", "vr26", "vr27", "vr28", "vr29", "vr30", "vr31"
5623 };
5624
5625 valid_p = 1;
5626 for (i = 0; i < ppc_num_gprs; i++)
5627 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5628 PPC_VR0_REGNUM + i,
5629 vector_regs[i]);
5630 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5631 PPC_VSCR_REGNUM, "vscr");
5632 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5633 PPC_VRSAVE_REGNUM, "vrsave");
5634
5635 if (have_spe || !valid_p)
5636 {
5637 tdesc_data_cleanup (tdesc_data);
5638 return NULL;
5639 }
5640 have_altivec = 1;
5641 }
5642 else
5643 have_altivec = 0;
5644
604c2f83
LM
5645 /* Check for POWER7 VSX registers support. */
5646 feature = tdesc_find_feature (tdesc,
5647 "org.gnu.gdb.power.vsx");
5648
5649 if (feature != NULL)
5650 {
5651 static const char *const vsx_regs[] = {
5652 "vs0h", "vs1h", "vs2h", "vs3h", "vs4h", "vs5h",
5653 "vs6h", "vs7h", "vs8h", "vs9h", "vs10h", "vs11h",
5654 "vs12h", "vs13h", "vs14h", "vs15h", "vs16h", "vs17h",
5655 "vs18h", "vs19h", "vs20h", "vs21h", "vs22h", "vs23h",
5656 "vs24h", "vs25h", "vs26h", "vs27h", "vs28h", "vs29h",
5657 "vs30h", "vs31h"
5658 };
5659
5660 valid_p = 1;
5661
5662 for (i = 0; i < ppc_num_vshrs; i++)
5663 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5664 PPC_VSR0_UPPER_REGNUM + i,
5665 vsx_regs[i]);
5666 if (!valid_p)
5667 {
5668 tdesc_data_cleanup (tdesc_data);
5669 return NULL;
5670 }
5671
5672 have_vsx = 1;
5673 }
5674 else
5675 have_vsx = 0;
5676
7cc46491
DJ
5677 /* On machines supporting the SPE APU, the general-purpose registers
5678 are 64 bits long. There are SIMD vector instructions to treat them
5679 as pairs of floats, but the rest of the instruction set treats them
5680 as 32-bit registers, and only operates on their lower halves.
5681
5682 In the GDB regcache, we treat their high and low halves as separate
5683 registers. The low halves we present as the general-purpose
5684 registers, and then we have pseudo-registers that stitch together
5685 the upper and lower halves and present them as pseudo-registers.
5686
5687 Thus, the target description is expected to supply the upper
5688 halves separately. */
5689
5690 feature = tdesc_find_feature (tdesc,
5691 "org.gnu.gdb.power.spe");
5692 if (feature != NULL)
5693 {
5694 static const char *const upper_spe[] = {
5695 "ev0h", "ev1h", "ev2h", "ev3h",
5696 "ev4h", "ev5h", "ev6h", "ev7h",
5697 "ev8h", "ev9h", "ev10h", "ev11h",
5698 "ev12h", "ev13h", "ev14h", "ev15h",
5699 "ev16h", "ev17h", "ev18h", "ev19h",
5700 "ev20h", "ev21h", "ev22h", "ev23h",
5701 "ev24h", "ev25h", "ev26h", "ev27h",
5702 "ev28h", "ev29h", "ev30h", "ev31h"
5703 };
5704
5705 valid_p = 1;
5706 for (i = 0; i < ppc_num_gprs; i++)
5707 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5708 PPC_SPE_UPPER_GP0_REGNUM + i,
5709 upper_spe[i]);
5710 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5711 PPC_SPE_ACC_REGNUM, "acc");
5712 valid_p &= tdesc_numbered_register (feature, tdesc_data,
5713 PPC_SPE_FSCR_REGNUM, "spefscr");
5714
5715 if (have_mq || have_fpu || !valid_p)
5716 {
5717 tdesc_data_cleanup (tdesc_data);
5718 return NULL;
5719 }
5720 have_spe = 1;
5721 }
5722 else
5723 have_spe = 0;
5724 }
5725
5726 /* If we have a 64-bit binary on a 32-bit target, complain. Also
5727 complain for a 32-bit binary on a 64-bit target; we do not yet
5728 support that. For instance, the 32-bit ABI routines expect
5729 32-bit GPRs.
5730
5731 As long as there isn't an explicit target description, we'll
5732 choose one based on the BFD architecture and get a word size
5733 matching the binary (probably powerpc:common or
5734 powerpc:common64). So there is only trouble if a 64-bit target
5735 supplies a 64-bit description while debugging a 32-bit
5736 binary. */
5737 if (tdesc_wordsize != -1 && tdesc_wordsize != wordsize)
5738 {
5739 tdesc_data_cleanup (tdesc_data);
5740 return NULL;
5741 }
5742
55eddb0f 5743#ifdef HAVE_ELF
cd453cd0
UW
5744 if (from_elf_exec)
5745 {
5746 switch (elf_elfheader (info.abfd)->e_flags & EF_PPC64_ABI)
5747 {
5748 case 1:
5749 elf_abi = POWERPC_ELF_V1;
5750 break;
5751 case 2:
5752 elf_abi = POWERPC_ELF_V2;
5753 break;
5754 default:
5755 break;
5756 }
5757 }
5758
55eddb0f
DJ
5759 if (soft_float_flag == AUTO_BOOLEAN_AUTO && from_elf_exec)
5760 {
5761 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5762 Tag_GNU_Power_ABI_FP))
5763 {
5764 case 1:
5765 soft_float_flag = AUTO_BOOLEAN_FALSE;
5766 break;
5767 case 2:
5768 soft_float_flag = AUTO_BOOLEAN_TRUE;
5769 break;
5770 default:
5771 break;
5772 }
5773 }
5774
5775 if (vector_abi == POWERPC_VEC_AUTO && from_elf_exec)
5776 {
5777 switch (bfd_elf_get_obj_attr_int (info.abfd, OBJ_ATTR_GNU,
5778 Tag_GNU_Power_ABI_Vector))
5779 {
5780 case 1:
5781 vector_abi = POWERPC_VEC_GENERIC;
5782 break;
5783 case 2:
5784 vector_abi = POWERPC_VEC_ALTIVEC;
5785 break;
5786 case 3:
5787 vector_abi = POWERPC_VEC_SPE;
5788 break;
5789 default:
5790 break;
5791 }
5792 }
5793#endif
5794
cd453cd0
UW
5795 /* At this point, the only supported ELF-based 64-bit little-endian
5796 operating system is GNU/Linux, and this uses the ELFv2 ABI by
5797 default. All other supported ELF-based operating systems use the
5798 ELFv1 ABI by default. Therefore, if the ABI marker is missing,
5799 e.g. because we run a legacy binary, or have attached to a process
5800 and have not found any associated binary file, set the default
5801 according to this heuristic. */
5802 if (elf_abi == POWERPC_ELF_AUTO)
5803 {
5804 if (wordsize == 8 && info.byte_order == BFD_ENDIAN_LITTLE)
5805 elf_abi = POWERPC_ELF_V2;
5806 else
5807 elf_abi = POWERPC_ELF_V1;
5808 }
5809
55eddb0f
DJ
5810 if (soft_float_flag == AUTO_BOOLEAN_TRUE)
5811 soft_float = 1;
5812 else if (soft_float_flag == AUTO_BOOLEAN_FALSE)
5813 soft_float = 0;
5814 else
5815 soft_float = !have_fpu;
5816
5817 /* If we have a hard float binary or setting but no floating point
5818 registers, downgrade to soft float anyway. We're still somewhat
5819 useful in this scenario. */
5820 if (!soft_float && !have_fpu)
5821 soft_float = 1;
5822
5823 /* Similarly for vector registers. */
5824 if (vector_abi == POWERPC_VEC_ALTIVEC && !have_altivec)
5825 vector_abi = POWERPC_VEC_GENERIC;
5826
5827 if (vector_abi == POWERPC_VEC_SPE && !have_spe)
5828 vector_abi = POWERPC_VEC_GENERIC;
5829
5830 if (vector_abi == POWERPC_VEC_AUTO)
5831 {
5832 if (have_altivec)
5833 vector_abi = POWERPC_VEC_ALTIVEC;
5834 else if (have_spe)
5835 vector_abi = POWERPC_VEC_SPE;
5836 else
5837 vector_abi = POWERPC_VEC_GENERIC;
5838 }
5839
5840 /* Do not limit the vector ABI based on available hardware, since we
5841 do not yet know what hardware we'll decide we have. Yuck! FIXME! */
5842
7cc46491
DJ
5843 /* Find a candidate among extant architectures. */
5844 for (arches = gdbarch_list_lookup_by_info (arches, &info);
5845 arches != NULL;
5846 arches = gdbarch_list_lookup_by_info (arches->next, &info))
5847 {
5848 /* Word size in the various PowerPC bfd_arch_info structs isn't
5849 meaningful, because 64-bit CPUs can run in 32-bit mode. So, perform
5850 separate word size check. */
5851 tdep = gdbarch_tdep (arches->gdbarch);
cd453cd0
UW
5852 if (tdep && tdep->elf_abi != elf_abi)
5853 continue;
55eddb0f
DJ
5854 if (tdep && tdep->soft_float != soft_float)
5855 continue;
5856 if (tdep && tdep->vector_abi != vector_abi)
5857 continue;
7cc46491
DJ
5858 if (tdep && tdep->wordsize == wordsize)
5859 {
5860 if (tdesc_data != NULL)
5861 tdesc_data_cleanup (tdesc_data);
5862 return arches->gdbarch;
5863 }
5864 }
5865
5866 /* None found, create a new architecture from INFO, whose bfd_arch_info
5867 validity depends on the source:
5868 - executable useless
5869 - rs6000_host_arch() good
5870 - core file good
5871 - "set arch" trust blindly
5872 - GDB startup useless but harmless */
5873
fc270c35 5874 tdep = XCNEW (struct gdbarch_tdep);
7cc46491 5875 tdep->wordsize = wordsize;
cd453cd0 5876 tdep->elf_abi = elf_abi;
55eddb0f
DJ
5877 tdep->soft_float = soft_float;
5878 tdep->vector_abi = vector_abi;
7cc46491 5879
7a78ae4e 5880 gdbarch = gdbarch_alloc (&info, tdep);
7a78ae4e 5881
7cc46491
DJ
5882 tdep->ppc_gp0_regnum = PPC_R0_REGNUM;
5883 tdep->ppc_toc_regnum = PPC_R0_REGNUM + 2;
5884 tdep->ppc_ps_regnum = PPC_MSR_REGNUM;
5885 tdep->ppc_cr_regnum = PPC_CR_REGNUM;
5886 tdep->ppc_lr_regnum = PPC_LR_REGNUM;
5887 tdep->ppc_ctr_regnum = PPC_CTR_REGNUM;
5888 tdep->ppc_xer_regnum = PPC_XER_REGNUM;
5889 tdep->ppc_mq_regnum = have_mq ? PPC_MQ_REGNUM : -1;
5890
5891 tdep->ppc_fp0_regnum = have_fpu ? PPC_F0_REGNUM : -1;
5892 tdep->ppc_fpscr_regnum = have_fpu ? PPC_FPSCR_REGNUM : -1;
604c2f83 5893 tdep->ppc_vsr0_upper_regnum = have_vsx ? PPC_VSR0_UPPER_REGNUM : -1;
7cc46491
DJ
5894 tdep->ppc_vr0_regnum = have_altivec ? PPC_VR0_REGNUM : -1;
5895 tdep->ppc_vrsave_regnum = have_altivec ? PPC_VRSAVE_REGNUM : -1;
5896 tdep->ppc_ev0_upper_regnum = have_spe ? PPC_SPE_UPPER_GP0_REGNUM : -1;
5897 tdep->ppc_acc_regnum = have_spe ? PPC_SPE_ACC_REGNUM : -1;
5898 tdep->ppc_spefscr_regnum = have_spe ? PPC_SPE_FSCR_REGNUM : -1;
5899
5900 set_gdbarch_pc_regnum (gdbarch, PPC_PC_REGNUM);
5901 set_gdbarch_sp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5902 set_gdbarch_deprecated_fp_regnum (gdbarch, PPC_R0_REGNUM + 1);
5903 set_gdbarch_fp0_regnum (gdbarch, tdep->ppc_fp0_regnum);
9f643768 5904 set_gdbarch_register_sim_regno (gdbarch, rs6000_register_sim_regno);
7cc46491
DJ
5905
5906 /* The XML specification for PowerPC sensibly calls the MSR "msr".
5907 GDB traditionally called it "ps", though, so let GDB add an
5908 alias. */
5909 set_gdbarch_ps_regnum (gdbarch, tdep->ppc_ps_regnum);
5910
4a7622d1 5911 if (wordsize == 8)
05580c65 5912 set_gdbarch_return_value (gdbarch, ppc64_sysv_abi_return_value);
afd48b75 5913 else
4a7622d1 5914 set_gdbarch_return_value (gdbarch, ppc_sysv_abi_return_value);
c8001721 5915
baffbae0
JB
5916 /* Set lr_frame_offset. */
5917 if (wordsize == 8)
5918 tdep->lr_frame_offset = 16;
baffbae0 5919 else
4a7622d1 5920 tdep->lr_frame_offset = 4;
baffbae0 5921
604c2f83 5922 if (have_spe || have_dfp || have_vsx)
7cc46491 5923 {
f949c649 5924 set_gdbarch_pseudo_register_read (gdbarch, rs6000_pseudo_register_read);
0df8b418
MS
5925 set_gdbarch_pseudo_register_write (gdbarch,
5926 rs6000_pseudo_register_write);
7cc46491 5927 }
1fcc0bb8 5928
e0d24f8d
WZ
5929 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5930
56a6dfb9 5931 /* Select instruction printer. */
708ff411 5932 if (arch == bfd_arch_rs6000)
9364a0ef 5933 set_gdbarch_print_insn (gdbarch, print_insn_rs6000);
56a6dfb9 5934 else
9364a0ef 5935 set_gdbarch_print_insn (gdbarch, gdb_print_insn_powerpc);
7495d1dc 5936
5a9e69ba 5937 set_gdbarch_num_regs (gdbarch, PPC_NUM_REGS);
f949c649
TJB
5938
5939 if (have_spe)
5940 num_pseudoregs += 32;
5941 if (have_dfp)
5942 num_pseudoregs += 16;
604c2f83
LM
5943 if (have_vsx)
5944 /* Include both VSX and Extended FP registers. */
5945 num_pseudoregs += 96;
f949c649
TJB
5946
5947 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudoregs);
7a78ae4e
ND
5948
5949 set_gdbarch_ptr_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5950 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
5951 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
5952 set_gdbarch_long_bit (gdbarch, wordsize * TARGET_CHAR_BIT);
5953 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
5954 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
5955 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
4a7622d1 5956 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
4e409299 5957 set_gdbarch_char_signed (gdbarch, 0);
7a78ae4e 5958
11269d7e 5959 set_gdbarch_frame_align (gdbarch, rs6000_frame_align);
4a7622d1 5960 if (wordsize == 8)
8b148df9
AC
5961 /* PPC64 SYSV. */
5962 set_gdbarch_frame_red_zone_size (gdbarch, 288);
7a78ae4e 5963
691d145a
JB
5964 set_gdbarch_convert_register_p (gdbarch, rs6000_convert_register_p);
5965 set_gdbarch_register_to_value (gdbarch, rs6000_register_to_value);
5966 set_gdbarch_value_to_register (gdbarch, rs6000_value_to_register);
5967
18ed0c4e
JB
5968 set_gdbarch_stab_reg_to_regnum (gdbarch, rs6000_stab_reg_to_regnum);
5969 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, rs6000_dwarf2_reg_to_regnum);
d217aaed 5970
4a7622d1 5971 if (wordsize == 4)
77b2b6d4 5972 set_gdbarch_push_dummy_call (gdbarch, ppc_sysv_abi_push_dummy_call);
4a7622d1 5973 else if (wordsize == 8)
8be9034a 5974 set_gdbarch_push_dummy_call (gdbarch, ppc64_sysv_abi_push_dummy_call);
7a78ae4e 5975
7a78ae4e 5976 set_gdbarch_skip_prologue (gdbarch, rs6000_skip_prologue);
c9cf6e20 5977 set_gdbarch_stack_frame_destroyed_p (gdbarch, rs6000_stack_frame_destroyed_p);
8ab3d180 5978 set_gdbarch_skip_main_prologue (gdbarch, rs6000_skip_main_prologue);
0d1243d9 5979
7a78ae4e 5980 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
7a78ae4e
ND
5981 set_gdbarch_breakpoint_from_pc (gdbarch, rs6000_breakpoint_from_pc);
5982
203c3895 5983 /* The value of symbols of type N_SO and N_FUN maybe null when
0df8b418 5984 it shouldn't be. */
203c3895
UW
5985 set_gdbarch_sofun_address_maybe_missing (gdbarch, 1);
5986
ce5eab59 5987 /* Handles single stepping of atomic sequences. */
4a7622d1 5988 set_gdbarch_software_single_step (gdbarch, ppc_deal_with_atomic_sequence);
ce5eab59 5989
0df8b418 5990 /* Not sure on this. FIXMEmgo */
7a78ae4e
ND
5991 set_gdbarch_frame_args_skip (gdbarch, 8);
5992
143985b7
AF
5993 /* Helpers for function argument information. */
5994 set_gdbarch_fetch_pointer_argument (gdbarch, rs6000_fetch_pointer_argument);
5995
6f7f3f0d
UW
5996 /* Trampoline. */
5997 set_gdbarch_in_solib_return_trampoline
5998 (gdbarch, rs6000_in_solib_return_trampoline);
5999 set_gdbarch_skip_trampoline_code (gdbarch, rs6000_skip_trampoline_code);
6000
4fc771b8 6001 /* Hook in the DWARF CFI frame unwinder. */
1af5d7ce 6002 dwarf2_append_unwinders (gdbarch);
4fc771b8
DJ
6003 dwarf2_frame_set_adjust_regnum (gdbarch, rs6000_adjust_frame_regnum);
6004
9274a07c
LM
6005 /* Frame handling. */
6006 dwarf2_frame_set_init_reg (gdbarch, ppc_dwarf2_frame_init_reg);
6007
2454a024
UW
6008 /* Setup displaced stepping. */
6009 set_gdbarch_displaced_step_copy_insn (gdbarch,
7f03bd92 6010 ppc_displaced_step_copy_insn);
99e40580
UW
6011 set_gdbarch_displaced_step_hw_singlestep (gdbarch,
6012 ppc_displaced_step_hw_singlestep);
2454a024
UW
6013 set_gdbarch_displaced_step_fixup (gdbarch, ppc_displaced_step_fixup);
6014 set_gdbarch_displaced_step_free_closure (gdbarch,
6015 simple_displaced_step_free_closure);
6016 set_gdbarch_displaced_step_location (gdbarch,
6017 displaced_step_at_entry_point);
6018
6019 set_gdbarch_max_insn_length (gdbarch, PPC_INSN_SIZE);
6020
7b112f9c 6021 /* Hook in ABI-specific overrides, if they have been registered. */
8a4c2d24 6022 info.target_desc = tdesc;
ede5f151 6023 info.tdep_info = tdesc_data;
4be87837 6024 gdbarch_init_osabi (info, gdbarch);
7b112f9c 6025
61a65099
KB
6026 switch (info.osabi)
6027 {
f5aecab8 6028 case GDB_OSABI_LINUX:
61a65099
KB
6029 case GDB_OSABI_NETBSD_AOUT:
6030 case GDB_OSABI_NETBSD_ELF:
6031 case GDB_OSABI_UNKNOWN:
61a65099 6032 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6033 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6034 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6035 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
61a65099
KB
6036 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
6037 break;
6038 default:
61a65099 6039 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
81332287
KB
6040
6041 set_gdbarch_unwind_pc (gdbarch, rs6000_unwind_pc);
2608dbf8 6042 frame_unwind_append_unwinder (gdbarch, &rs6000_epilogue_frame_unwind);
1af5d7ce
UW
6043 frame_unwind_append_unwinder (gdbarch, &rs6000_frame_unwind);
6044 set_gdbarch_dummy_id (gdbarch, rs6000_dummy_id);
81332287 6045 frame_base_append_sniffer (gdbarch, rs6000_frame_base_sniffer);
61a65099
KB
6046 }
6047
7cc46491
DJ
6048 set_tdesc_pseudo_register_type (gdbarch, rs6000_pseudo_register_type);
6049 set_tdesc_pseudo_register_reggroup_p (gdbarch,
6050 rs6000_pseudo_register_reggroup_p);
6051 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
6052
6053 /* Override the normal target description method to make the SPE upper
6054 halves anonymous. */
6055 set_gdbarch_register_name (gdbarch, rs6000_register_name);
6056
604c2f83
LM
6057 /* Choose register numbers for all supported pseudo-registers. */
6058 tdep->ppc_ev0_regnum = -1;
6059 tdep->ppc_dl0_regnum = -1;
6060 tdep->ppc_vsr0_regnum = -1;
6061 tdep->ppc_efpr0_regnum = -1;
9f643768 6062
604c2f83
LM
6063 cur_reg = gdbarch_num_regs (gdbarch);
6064
6065 if (have_spe)
6066 {
6067 tdep->ppc_ev0_regnum = cur_reg;
6068 cur_reg += 32;
6069 }
6070 if (have_dfp)
6071 {
6072 tdep->ppc_dl0_regnum = cur_reg;
6073 cur_reg += 16;
6074 }
6075 if (have_vsx)
6076 {
6077 tdep->ppc_vsr0_regnum = cur_reg;
6078 cur_reg += 64;
6079 tdep->ppc_efpr0_regnum = cur_reg;
6080 cur_reg += 32;
6081 }
f949c649 6082
604c2f83
LM
6083 gdb_assert (gdbarch_num_regs (gdbarch)
6084 + gdbarch_num_pseudo_regs (gdbarch) == cur_reg);
f949c649 6085
debb1f09
JB
6086 /* Register the ravenscar_arch_ops. */
6087 if (mach == bfd_mach_ppc_e500)
6088 register_e500_ravenscar_ops (gdbarch);
6089 else
6090 register_ppc_ravenscar_ops (gdbarch);
6091
7a78ae4e 6092 return gdbarch;
c906108c
SS
6093}
6094
7b112f9c 6095static void
8b164abb 6096rs6000_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
7b112f9c 6097{
8b164abb 6098 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
7b112f9c
JT
6099
6100 if (tdep == NULL)
6101 return;
6102
4be87837 6103 /* FIXME: Dump gdbarch_tdep. */
7b112f9c
JT
6104}
6105
55eddb0f
DJ
6106/* PowerPC-specific commands. */
6107
6108static void
6109set_powerpc_command (char *args, int from_tty)
6110{
6111 printf_unfiltered (_("\
6112\"set powerpc\" must be followed by an appropriate subcommand.\n"));
6113 help_list (setpowerpccmdlist, "set powerpc ", all_commands, gdb_stdout);
6114}
6115
6116static void
6117show_powerpc_command (char *args, int from_tty)
6118{
6119 cmd_show_list (showpowerpccmdlist, from_tty, "");
6120}
6121
6122static void
6123powerpc_set_soft_float (char *args, int from_tty,
6124 struct cmd_list_element *c)
6125{
6126 struct gdbarch_info info;
6127
6128 /* Update the architecture. */
6129 gdbarch_info_init (&info);
6130 if (!gdbarch_update_p (info))
9b20d036 6131 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6132}
6133
6134static void
6135powerpc_set_vector_abi (char *args, int from_tty,
6136 struct cmd_list_element *c)
6137{
6138 struct gdbarch_info info;
570dc176 6139 int vector_abi;
55eddb0f
DJ
6140
6141 for (vector_abi = POWERPC_VEC_AUTO;
6142 vector_abi != POWERPC_VEC_LAST;
6143 vector_abi++)
6144 if (strcmp (powerpc_vector_abi_string,
6145 powerpc_vector_strings[vector_abi]) == 0)
6146 {
aead7601 6147 powerpc_vector_abi_global = (enum powerpc_vector_abi) vector_abi;
55eddb0f
DJ
6148 break;
6149 }
6150
6151 if (vector_abi == POWERPC_VEC_LAST)
6152 internal_error (__FILE__, __LINE__, _("Invalid vector ABI accepted: %s."),
6153 powerpc_vector_abi_string);
6154
6155 /* Update the architecture. */
6156 gdbarch_info_init (&info);
6157 if (!gdbarch_update_p (info))
9b20d036 6158 internal_error (__FILE__, __LINE__, _("could not update architecture"));
55eddb0f
DJ
6159}
6160
e09342b5
TJB
6161/* Show the current setting of the exact watchpoints flag. */
6162
6163static void
6164show_powerpc_exact_watchpoints (struct ui_file *file, int from_tty,
6165 struct cmd_list_element *c,
6166 const char *value)
6167{
6168 fprintf_filtered (file, _("Use of exact watchpoints is %s.\n"), value);
6169}
6170
845d4708 6171/* Read a PPC instruction from memory. */
d78489bf
AT
6172
6173static unsigned int
845d4708 6174read_insn (struct frame_info *frame, CORE_ADDR pc)
d78489bf 6175{
845d4708
AM
6176 struct gdbarch *gdbarch = get_frame_arch (frame);
6177 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
6178
6179 return read_memory_unsigned_integer (pc, 4, byte_order);
d78489bf
AT
6180}
6181
6182/* Return non-zero if the instructions at PC match the series
6183 described in PATTERN, or zero otherwise. PATTERN is an array of
6184 'struct ppc_insn_pattern' objects, terminated by an entry whose
6185 mask is zero.
6186
6187 When the match is successful, fill INSN[i] with what PATTERN[i]
6188 matched. If PATTERN[i] is optional, and the instruction wasn't
6189 present, set INSN[i] to 0 (which is not a valid PPC instruction).
6190 INSN should have as many elements as PATTERN. Note that, if
6191 PATTERN contains optional instructions which aren't present in
6192 memory, then INSN will have holes, so INSN[i] isn't necessarily the
6193 i'th instruction in memory. */
6194
6195int
845d4708
AM
6196ppc_insns_match_pattern (struct frame_info *frame, CORE_ADDR pc,
6197 struct ppc_insn_pattern *pattern,
6198 unsigned int *insns)
d78489bf
AT
6199{
6200 int i;
845d4708 6201 unsigned int insn;
d78489bf 6202
845d4708 6203 for (i = 0, insn = 0; pattern[i].mask; i++)
d78489bf 6204 {
845d4708
AM
6205 if (insn == 0)
6206 insn = read_insn (frame, pc);
6207 insns[i] = 0;
6208 if ((insn & pattern[i].mask) == pattern[i].data)
6209 {
6210 insns[i] = insn;
6211 pc += 4;
6212 insn = 0;
6213 }
6214 else if (!pattern[i].optional)
d78489bf
AT
6215 return 0;
6216 }
6217
6218 return 1;
6219}
6220
6221/* Return the 'd' field of the d-form instruction INSN, properly
6222 sign-extended. */
6223
6224CORE_ADDR
6225ppc_insn_d_field (unsigned int insn)
6226{
6227 return ((((CORE_ADDR) insn & 0xffff) ^ 0x8000) - 0x8000);
6228}
6229
6230/* Return the 'ds' field of the ds-form instruction INSN, with the two
6231 zero bits concatenated at the right, and properly
6232 sign-extended. */
6233
6234CORE_ADDR
6235ppc_insn_ds_field (unsigned int insn)
6236{
6237 return ((((CORE_ADDR) insn & 0xfffc) ^ 0x8000) - 0x8000);
6238}
6239
c906108c
SS
6240/* Initialization code. */
6241
0df8b418
MS
6242/* -Wmissing-prototypes */
6243extern initialize_file_ftype _initialize_rs6000_tdep;
b9362cc7 6244
c906108c 6245void
fba45db2 6246_initialize_rs6000_tdep (void)
c906108c 6247{
7b112f9c
JT
6248 gdbarch_register (bfd_arch_rs6000, rs6000_gdbarch_init, rs6000_dump_tdep);
6249 gdbarch_register (bfd_arch_powerpc, rs6000_gdbarch_init, rs6000_dump_tdep);
7cc46491
DJ
6250
6251 /* Initialize the standard target descriptions. */
6252 initialize_tdesc_powerpc_32 ();
7284e1be 6253 initialize_tdesc_powerpc_altivec32 ();
604c2f83 6254 initialize_tdesc_powerpc_vsx32 ();
7cc46491
DJ
6255 initialize_tdesc_powerpc_403 ();
6256 initialize_tdesc_powerpc_403gc ();
4d09ffea 6257 initialize_tdesc_powerpc_405 ();
7cc46491
DJ
6258 initialize_tdesc_powerpc_505 ();
6259 initialize_tdesc_powerpc_601 ();
6260 initialize_tdesc_powerpc_602 ();
6261 initialize_tdesc_powerpc_603 ();
6262 initialize_tdesc_powerpc_604 ();
6263 initialize_tdesc_powerpc_64 ();
7284e1be 6264 initialize_tdesc_powerpc_altivec64 ();
604c2f83 6265 initialize_tdesc_powerpc_vsx64 ();
7cc46491
DJ
6266 initialize_tdesc_powerpc_7400 ();
6267 initialize_tdesc_powerpc_750 ();
6268 initialize_tdesc_powerpc_860 ();
6269 initialize_tdesc_powerpc_e500 ();
6270 initialize_tdesc_rs6000 ();
55eddb0f
DJ
6271
6272 /* Add root prefix command for all "set powerpc"/"show powerpc"
6273 commands. */
6274 add_prefix_cmd ("powerpc", no_class, set_powerpc_command,
6275 _("Various PowerPC-specific commands."),
6276 &setpowerpccmdlist, "set powerpc ", 0, &setlist);
6277
6278 add_prefix_cmd ("powerpc", no_class, show_powerpc_command,
6279 _("Various PowerPC-specific commands."),
6280 &showpowerpccmdlist, "show powerpc ", 0, &showlist);
6281
6282 /* Add a command to allow the user to force the ABI. */
6283 add_setshow_auto_boolean_cmd ("soft-float", class_support,
6284 &powerpc_soft_float_global,
6285 _("Set whether to use a soft-float ABI."),
6286 _("Show whether to use a soft-float ABI."),
6287 NULL,
6288 powerpc_set_soft_float, NULL,
6289 &setpowerpccmdlist, &showpowerpccmdlist);
6290
6291 add_setshow_enum_cmd ("vector-abi", class_support, powerpc_vector_strings,
6292 &powerpc_vector_abi_string,
6293 _("Set the vector ABI."),
6294 _("Show the vector ABI."),
6295 NULL, powerpc_set_vector_abi, NULL,
6296 &setpowerpccmdlist, &showpowerpccmdlist);
e09342b5
TJB
6297
6298 add_setshow_boolean_cmd ("exact-watchpoints", class_support,
6299 &target_exact_watchpoints,
6300 _("\
6301Set whether to use just one debug register for watchpoints on scalars."),
6302 _("\
6303Show whether to use just one debug register for watchpoints on scalars."),
6304 _("\
6305If true, GDB will use only one debug register when watching a variable of\n\
6306scalar type, thus assuming that the variable is accessed through the address\n\
6307of its first byte."),
6308 NULL, show_powerpc_exact_watchpoints,
6309 &setpowerpccmdlist, &showpowerpccmdlist);
c906108c 6310}
This page took 2.009746 seconds and 4 git commands to generate.