Commit | Line | Data |
---|---|---|
baa835b4 KB |
1 | /* Target-dependent code for the Renesas RX for GDB, the GNU debugger. |
2 | ||
4c38e0a4 | 3 | Copyright (C) 2008, 2009, 2010 Free Software Foundation, Inc. |
baa835b4 KB |
4 | |
5 | Contributed by Red Hat, Inc. | |
6 | ||
7 | This file is part of GDB. | |
8 | ||
9 | This program is free software; you can redistribute it and/or modify | |
10 | it under the terms of the GNU General Public License as published by | |
11 | the Free Software Foundation; either version 3 of the License, or | |
12 | (at your option) any later version. | |
13 | ||
14 | This program is distributed in the hope that it will be useful, | |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
18 | ||
19 | You should have received a copy of the GNU General Public License | |
20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ | |
21 | ||
22 | #include "defs.h" | |
23 | #include "arch-utils.h" | |
24 | #include "prologue-value.h" | |
25 | #include "target.h" | |
26 | #include "regcache.h" | |
27 | #include "opcode/rx.h" | |
28 | #include "dis-asm.h" | |
29 | #include "gdbtypes.h" | |
30 | #include "frame.h" | |
31 | #include "frame-unwind.h" | |
32 | #include "frame-base.h" | |
33 | #include "value.h" | |
34 | #include "gdbcore.h" | |
35 | #include "dwarf2-frame.h" | |
36 | ||
37 | #include "elf/rx.h" | |
38 | #include "elf-bfd.h" | |
39 | ||
40 | /* Certain important register numbers. */ | |
41 | enum | |
42 | { | |
43 | RX_SP_REGNUM = 0, | |
44 | RX_R1_REGNUM = 1, | |
45 | RX_R4_REGNUM = 4, | |
46 | RX_FP_REGNUM = 6, | |
47 | RX_R15_REGNUM = 15, | |
48 | RX_PC_REGNUM = 19, | |
fd60dc69 KB |
49 | RX_ACC_REGNUM = 25, |
50 | RX_NUM_REGS = 26 | |
baa835b4 KB |
51 | }; |
52 | ||
53 | /* Architecture specific data. */ | |
54 | struct gdbarch_tdep | |
55 | { | |
56 | /* The ELF header flags specify the multilib used. */ | |
57 | int elf_flags; | |
58 | }; | |
59 | ||
60 | /* This structure holds the results of a prologue analysis. */ | |
61 | struct rx_prologue | |
62 | { | |
63 | /* The offset from the frame base to the stack pointer --- always | |
64 | zero or negative. | |
65 | ||
66 | Calling this a "size" is a bit misleading, but given that the | |
67 | stack grows downwards, using offsets for everything keeps one | |
68 | from going completely sign-crazy: you never change anything's | |
69 | sign for an ADD instruction; always change the second operand's | |
70 | sign for a SUB instruction; and everything takes care of | |
71 | itself. */ | |
72 | int frame_size; | |
73 | ||
74 | /* Non-zero if this function has initialized the frame pointer from | |
75 | the stack pointer, zero otherwise. */ | |
76 | int has_frame_ptr; | |
77 | ||
78 | /* If has_frame_ptr is non-zero, this is the offset from the frame | |
79 | base to where the frame pointer points. This is always zero or | |
80 | negative. */ | |
81 | int frame_ptr_offset; | |
82 | ||
83 | /* The address of the first instruction at which the frame has been | |
84 | set up and the arguments are where the debug info says they are | |
85 | --- as best as we can tell. */ | |
86 | CORE_ADDR prologue_end; | |
87 | ||
88 | /* reg_offset[R] is the offset from the CFA at which register R is | |
89 | saved, or 1 if register R has not been saved. (Real values are | |
90 | always zero or negative.) */ | |
91 | int reg_offset[RX_NUM_REGS]; | |
92 | }; | |
93 | ||
94 | /* Implement the "register_name" gdbarch method. */ | |
95 | static const char * | |
96 | rx_register_name (struct gdbarch *gdbarch, int regnr) | |
97 | { | |
98 | static const char *const reg_names[] = { | |
99 | "r0", | |
100 | "r1", | |
101 | "r2", | |
102 | "r3", | |
103 | "r4", | |
104 | "r5", | |
105 | "r6", | |
106 | "r7", | |
107 | "r8", | |
108 | "r9", | |
109 | "r10", | |
110 | "r11", | |
111 | "r12", | |
112 | "r13", | |
113 | "r14", | |
114 | "r15", | |
baa835b4 | 115 | "usp", |
fd60dc69 | 116 | "isp", |
baa835b4 | 117 | "psw", |
fd60dc69 KB |
118 | "pc", |
119 | "intb", | |
baa835b4 | 120 | "bpsw", |
fd60dc69 KB |
121 | "bpc", |
122 | "fintv", | |
123 | "fpsw", | |
124 | "acc" | |
baa835b4 KB |
125 | }; |
126 | ||
127 | return reg_names[regnr]; | |
128 | } | |
129 | ||
130 | /* Implement the "register_type" gdbarch method. */ | |
131 | static struct type * | |
132 | rx_register_type (struct gdbarch *gdbarch, int reg_nr) | |
133 | { | |
134 | if (reg_nr == RX_PC_REGNUM) | |
135 | return builtin_type (gdbarch)->builtin_func_ptr; | |
fd60dc69 KB |
136 | else if (reg_nr == RX_ACC_REGNUM) |
137 | return builtin_type (gdbarch)->builtin_unsigned_long_long; | |
baa835b4 KB |
138 | else |
139 | return builtin_type (gdbarch)->builtin_unsigned_long; | |
140 | } | |
141 | ||
142 | ||
143 | /* Function for finding saved registers in a 'struct pv_area'; this | |
144 | function is passed to pv_area_scan. | |
145 | ||
146 | If VALUE is a saved register, ADDR says it was saved at a constant | |
147 | offset from the frame base, and SIZE indicates that the whole | |
148 | register was saved, record its offset. */ | |
149 | static void | |
150 | check_for_saved (void *result_untyped, pv_t addr, CORE_ADDR size, pv_t value) | |
151 | { | |
152 | struct rx_prologue *result = (struct rx_prologue *) result_untyped; | |
153 | ||
154 | if (value.kind == pvk_register | |
155 | && value.k == 0 | |
156 | && pv_is_register (addr, RX_SP_REGNUM) | |
157 | && size == register_size (target_gdbarch, value.reg)) | |
158 | result->reg_offset[value.reg] = addr.k; | |
159 | } | |
160 | ||
161 | /* Define a "handle" struct for fetching the next opcode. */ | |
162 | struct rx_get_opcode_byte_handle | |
163 | { | |
164 | CORE_ADDR pc; | |
165 | }; | |
166 | ||
167 | /* Fetch a byte on behalf of the opcode decoder. HANDLE contains | |
168 | the memory address of the next byte to fetch. If successful, | |
169 | the address in the handle is updated and the byte fetched is | |
170 | returned as the value of the function. If not successful, -1 | |
171 | is returned. */ | |
172 | static int | |
173 | rx_get_opcode_byte (void *handle) | |
174 | { | |
175 | struct rx_get_opcode_byte_handle *opcdata = handle; | |
176 | int status; | |
177 | gdb_byte byte; | |
178 | ||
179 | status = target_read_memory (opcdata->pc, &byte, 1); | |
180 | if (status == 0) | |
181 | { | |
182 | opcdata->pc += 1; | |
183 | return byte; | |
184 | } | |
185 | else | |
186 | return -1; | |
187 | } | |
188 | ||
189 | /* Analyze a prologue starting at START_PC, going no further than | |
190 | LIMIT_PC. Fill in RESULT as appropriate. */ | |
191 | static void | |
192 | rx_analyze_prologue (CORE_ADDR start_pc, | |
193 | CORE_ADDR limit_pc, struct rx_prologue *result) | |
194 | { | |
195 | CORE_ADDR pc, next_pc; | |
196 | int rn; | |
197 | pv_t reg[RX_NUM_REGS]; | |
198 | struct pv_area *stack; | |
199 | struct cleanup *back_to; | |
200 | CORE_ADDR after_last_frame_setup_insn = start_pc; | |
201 | ||
202 | memset (result, 0, sizeof (*result)); | |
203 | ||
204 | for (rn = 0; rn < RX_NUM_REGS; rn++) | |
205 | { | |
206 | reg[rn] = pv_register (rn, 0); | |
207 | result->reg_offset[rn] = 1; | |
208 | } | |
209 | ||
210 | stack = make_pv_area (RX_SP_REGNUM, gdbarch_addr_bit (target_gdbarch)); | |
211 | back_to = make_cleanup_free_pv_area (stack); | |
212 | ||
213 | /* The call instruction has saved the return address on the stack. */ | |
214 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
215 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[RX_PC_REGNUM]); | |
216 | ||
217 | pc = start_pc; | |
218 | while (pc < limit_pc) | |
219 | { | |
220 | int bytes_read; | |
221 | struct rx_get_opcode_byte_handle opcode_handle; | |
222 | RX_Opcode_Decoded opc; | |
223 | ||
224 | opcode_handle.pc = pc; | |
225 | bytes_read = rx_decode_opcode (pc, &opc, rx_get_opcode_byte, | |
226 | &opcode_handle); | |
227 | next_pc = pc + bytes_read; | |
228 | ||
229 | if (opc.id == RXO_pushm /* pushm r1, r2 */ | |
230 | && opc.op[1].type == RX_Operand_Register | |
231 | && opc.op[2].type == RX_Operand_Register) | |
232 | { | |
233 | int r1, r2; | |
234 | int r; | |
235 | ||
236 | r1 = opc.op[1].reg; | |
237 | r2 = opc.op[2].reg; | |
238 | for (r = r2; r >= r1; r--) | |
239 | { | |
240 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
241 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[r]); | |
242 | } | |
243 | after_last_frame_setup_insn = next_pc; | |
244 | } | |
245 | else if (opc.id == RXO_mov /* mov.l rdst, rsrc */ | |
246 | && opc.op[0].type == RX_Operand_Register | |
247 | && opc.op[1].type == RX_Operand_Register | |
248 | && opc.size == RX_Long) | |
249 | { | |
250 | int rdst, rsrc; | |
251 | ||
252 | rdst = opc.op[0].reg; | |
253 | rsrc = opc.op[1].reg; | |
254 | reg[rdst] = reg[rsrc]; | |
255 | if (rdst == RX_FP_REGNUM && rsrc == RX_SP_REGNUM) | |
256 | after_last_frame_setup_insn = next_pc; | |
257 | } | |
258 | else if (opc.id == RXO_mov /* mov.l rsrc, [-SP] */ | |
259 | && opc.op[0].type == RX_Operand_Predec | |
260 | && opc.op[0].reg == RX_SP_REGNUM | |
261 | && opc.op[1].type == RX_Operand_Register | |
262 | && opc.size == RX_Long) | |
263 | { | |
264 | int rsrc; | |
265 | ||
266 | rsrc = opc.op[1].reg; | |
267 | reg[RX_SP_REGNUM] = pv_add_constant (reg[RX_SP_REGNUM], -4); | |
268 | pv_area_store (stack, reg[RX_SP_REGNUM], 4, reg[rsrc]); | |
269 | after_last_frame_setup_insn = next_pc; | |
270 | } | |
271 | else if (opc.id == RXO_add /* add #const, rsrc, rdst */ | |
272 | && opc.op[0].type == RX_Operand_Register | |
273 | && opc.op[1].type == RX_Operand_Immediate | |
274 | && opc.op[2].type == RX_Operand_Register) | |
275 | { | |
276 | int rdst = opc.op[0].reg; | |
277 | int addend = opc.op[1].addend; | |
278 | int rsrc = opc.op[2].reg; | |
279 | reg[rdst] = pv_add_constant (reg[rsrc], addend); | |
280 | /* Negative adjustments to the stack pointer or frame pointer | |
281 | are (most likely) part of the prologue. */ | |
282 | if ((rdst == RX_SP_REGNUM || rdst == RX_FP_REGNUM) && addend < 0) | |
283 | after_last_frame_setup_insn = next_pc; | |
284 | } | |
285 | else if (opc.id == RXO_mov | |
286 | && opc.op[0].type == RX_Operand_Indirect | |
287 | && opc.op[1].type == RX_Operand_Register | |
288 | && opc.size == RX_Long | |
289 | && (opc.op[0].reg == RX_SP_REGNUM | |
290 | || opc.op[0].reg == RX_FP_REGNUM) | |
291 | && (RX_R1_REGNUM <= opc.op[1].reg | |
292 | && opc.op[1].reg <= RX_R4_REGNUM)) | |
293 | { | |
294 | /* This moves an argument register to the stack. Don't | |
295 | record it, but allow it to be a part of the prologue. */ | |
296 | } | |
297 | else if (opc.id == RXO_branch | |
298 | && opc.op[0].type == RX_Operand_Immediate | |
299 | && opc.op[1].type == RX_Operand_Condition | |
300 | && next_pc < opc.op[0].addend) | |
301 | { | |
302 | /* When a loop appears as the first statement of a function | |
303 | body, gcc 4.x will use a BRA instruction to branch to the | |
304 | loop condition checking code. This BRA instruction is | |
305 | marked as part of the prologue. We therefore set next_pc | |
306 | to this branch target and also stop the prologue scan. | |
307 | The instructions at and beyond the branch target should | |
308 | no longer be associated with the prologue. | |
309 | ||
310 | Note that we only consider forward branches here. We | |
311 | presume that a forward branch is being used to skip over | |
312 | a loop body. | |
313 | ||
314 | A backwards branch is covered by the default case below. | |
315 | If we were to encounter a backwards branch, that would | |
316 | most likely mean that we've scanned through a loop body. | |
317 | We definitely want to stop the prologue scan when this | |
318 | happens and that is precisely what is done by the default | |
319 | case below. */ | |
320 | ||
321 | after_last_frame_setup_insn = opc.op[0].addend; | |
322 | break; /* Scan no further if we hit this case. */ | |
323 | } | |
324 | else | |
325 | { | |
326 | /* Terminate the prologue scan. */ | |
327 | break; | |
328 | } | |
329 | ||
330 | pc = next_pc; | |
331 | } | |
332 | ||
333 | /* Is the frame size (offset, really) a known constant? */ | |
334 | if (pv_is_register (reg[RX_SP_REGNUM], RX_SP_REGNUM)) | |
335 | result->frame_size = reg[RX_SP_REGNUM].k; | |
336 | ||
337 | /* Was the frame pointer initialized? */ | |
338 | if (pv_is_register (reg[RX_FP_REGNUM], RX_SP_REGNUM)) | |
339 | { | |
340 | result->has_frame_ptr = 1; | |
341 | result->frame_ptr_offset = reg[RX_FP_REGNUM].k; | |
342 | } | |
343 | ||
344 | /* Record where all the registers were saved. */ | |
345 | pv_area_scan (stack, check_for_saved, (void *) result); | |
346 | ||
347 | result->prologue_end = after_last_frame_setup_insn; | |
348 | ||
349 | do_cleanups (back_to); | |
350 | } | |
351 | ||
352 | ||
353 | /* Implement the "skip_prologue" gdbarch method. */ | |
354 | static CORE_ADDR | |
355 | rx_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc) | |
356 | { | |
357 | char *name; | |
358 | CORE_ADDR func_addr, func_end; | |
359 | struct rx_prologue p; | |
360 | ||
361 | /* Try to find the extent of the function that contains PC. */ | |
362 | if (!find_pc_partial_function (pc, &name, &func_addr, &func_end)) | |
363 | return pc; | |
364 | ||
365 | rx_analyze_prologue (pc, func_end, &p); | |
366 | return p.prologue_end; | |
367 | } | |
368 | ||
369 | /* Given a frame described by THIS_FRAME, decode the prologue of its | |
370 | associated function if there is not cache entry as specified by | |
371 | THIS_PROLOGUE_CACHE. Save the decoded prologue in the cache and | |
372 | return that struct as the value of this function. */ | |
373 | static struct rx_prologue * | |
374 | rx_analyze_frame_prologue (struct frame_info *this_frame, | |
375 | void **this_prologue_cache) | |
376 | { | |
377 | if (!*this_prologue_cache) | |
378 | { | |
379 | CORE_ADDR func_start, stop_addr; | |
380 | ||
381 | *this_prologue_cache = FRAME_OBSTACK_ZALLOC (struct rx_prologue); | |
382 | ||
383 | func_start = get_frame_func (this_frame); | |
384 | stop_addr = get_frame_pc (this_frame); | |
385 | ||
386 | /* If we couldn't find any function containing the PC, then | |
387 | just initialize the prologue cache, but don't do anything. */ | |
388 | if (!func_start) | |
389 | stop_addr = func_start; | |
390 | ||
391 | rx_analyze_prologue (func_start, stop_addr, *this_prologue_cache); | |
392 | } | |
393 | ||
394 | return *this_prologue_cache; | |
395 | } | |
396 | ||
397 | /* Given the next frame and a prologue cache, return this frame's | |
398 | base. */ | |
399 | static CORE_ADDR | |
400 | rx_frame_base (struct frame_info *this_frame, void **this_prologue_cache) | |
401 | { | |
402 | struct rx_prologue *p | |
403 | = rx_analyze_frame_prologue (this_frame, this_prologue_cache); | |
404 | ||
405 | /* In functions that use alloca, the distance between the stack | |
406 | pointer and the frame base varies dynamically, so we can't use | |
407 | the SP plus static information like prologue analysis to find the | |
408 | frame base. However, such functions must have a frame pointer, | |
409 | to be able to restore the SP on exit. So whenever we do have a | |
410 | frame pointer, use that to find the base. */ | |
411 | if (p->has_frame_ptr) | |
412 | { | |
413 | CORE_ADDR fp = get_frame_register_unsigned (this_frame, RX_FP_REGNUM); | |
414 | return fp - p->frame_ptr_offset; | |
415 | } | |
416 | else | |
417 | { | |
418 | CORE_ADDR sp = get_frame_register_unsigned (this_frame, RX_SP_REGNUM); | |
419 | return sp - p->frame_size; | |
420 | } | |
421 | } | |
422 | ||
423 | /* Implement the "frame_this_id" method for unwinding frames. */ | |
424 | static void | |
425 | rx_frame_this_id (struct frame_info *this_frame, | |
426 | void **this_prologue_cache, struct frame_id *this_id) | |
427 | { | |
428 | *this_id = frame_id_build (rx_frame_base (this_frame, this_prologue_cache), | |
429 | get_frame_func (this_frame)); | |
430 | } | |
431 | ||
432 | /* Implement the "frame_prev_register" method for unwinding frames. */ | |
433 | static struct value * | |
434 | rx_frame_prev_register (struct frame_info *this_frame, | |
435 | void **this_prologue_cache, int regnum) | |
436 | { | |
437 | struct rx_prologue *p | |
438 | = rx_analyze_frame_prologue (this_frame, this_prologue_cache); | |
439 | CORE_ADDR frame_base = rx_frame_base (this_frame, this_prologue_cache); | |
440 | int reg_size = register_size (get_frame_arch (this_frame), regnum); | |
441 | ||
442 | if (regnum == RX_SP_REGNUM) | |
443 | return frame_unwind_got_constant (this_frame, regnum, frame_base); | |
444 | ||
445 | /* If prologue analysis says we saved this register somewhere, | |
446 | return a description of the stack slot holding it. */ | |
447 | else if (p->reg_offset[regnum] != 1) | |
448 | return frame_unwind_got_memory (this_frame, regnum, | |
449 | frame_base + p->reg_offset[regnum]); | |
450 | ||
451 | /* Otherwise, presume we haven't changed the value of this | |
452 | register, and get it from the next frame. */ | |
453 | else | |
454 | return frame_unwind_got_register (this_frame, regnum, regnum); | |
455 | } | |
456 | ||
457 | static const struct frame_unwind rx_frame_unwind = { | |
458 | NORMAL_FRAME, | |
459 | rx_frame_this_id, | |
460 | rx_frame_prev_register, | |
461 | NULL, | |
462 | default_frame_sniffer | |
463 | }; | |
464 | ||
465 | /* Implement the "unwind_pc" gdbarch method. */ | |
466 | static CORE_ADDR | |
467 | rx_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
468 | { | |
469 | ULONGEST pc; | |
470 | ||
471 | pc = frame_unwind_register_unsigned (this_frame, RX_PC_REGNUM); | |
472 | return pc; | |
473 | } | |
474 | ||
475 | /* Implement the "unwind_sp" gdbarch method. */ | |
476 | static CORE_ADDR | |
477 | rx_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
478 | { | |
479 | ULONGEST sp; | |
480 | ||
481 | sp = frame_unwind_register_unsigned (this_frame, RX_SP_REGNUM); | |
482 | return sp; | |
483 | } | |
484 | ||
485 | /* Implement the "dummy_id" gdbarch method. */ | |
486 | static struct frame_id | |
487 | rx_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame) | |
488 | { | |
489 | return | |
490 | frame_id_build (get_frame_register_unsigned (this_frame, RX_SP_REGNUM), | |
491 | get_frame_pc (this_frame)); | |
492 | } | |
493 | ||
494 | /* Implement the "push_dummy_call" gdbarch method. */ | |
495 | static CORE_ADDR | |
496 | rx_push_dummy_call (struct gdbarch *gdbarch, struct value *function, | |
497 | struct regcache *regcache, CORE_ADDR bp_addr, int nargs, | |
498 | struct value **args, CORE_ADDR sp, int struct_return, | |
499 | CORE_ADDR struct_addr) | |
500 | { | |
501 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
502 | int write_pass; | |
503 | int sp_off = 0; | |
504 | CORE_ADDR cfa; | |
505 | int num_register_candidate_args; | |
506 | ||
507 | struct type *func_type = value_type (function); | |
508 | ||
509 | /* Dereference function pointer types. */ | |
510 | while (TYPE_CODE (func_type) == TYPE_CODE_PTR) | |
511 | func_type = TYPE_TARGET_TYPE (func_type); | |
512 | ||
513 | /* The end result had better be a function or a method. */ | |
514 | gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC | |
515 | || TYPE_CODE (func_type) == TYPE_CODE_METHOD); | |
516 | ||
517 | /* Functions with a variable number of arguments have all of their | |
518 | variable arguments and the last non-variable argument passed | |
519 | on the stack. | |
520 | ||
521 | Otherwise, we can pass up to four arguments on the stack. | |
522 | ||
523 | Once computed, we leave this value alone. I.e. we don't update | |
524 | it in case of a struct return going in a register or an argument | |
525 | requiring multiple registers, etc. We rely instead on the value | |
526 | of the ``arg_reg'' variable to get these other details correct. */ | |
527 | ||
528 | if (TYPE_VARARGS (func_type)) | |
529 | num_register_candidate_args = TYPE_NFIELDS (func_type) - 1; | |
530 | else | |
531 | num_register_candidate_args = 4; | |
532 | ||
533 | /* We make two passes; the first does the stack allocation, | |
534 | the second actually stores the arguments. */ | |
535 | for (write_pass = 0; write_pass <= 1; write_pass++) | |
536 | { | |
537 | int i; | |
538 | int arg_reg = RX_R1_REGNUM; | |
539 | ||
540 | if (write_pass) | |
541 | sp = align_down (sp - sp_off, 4); | |
542 | sp_off = 0; | |
543 | ||
544 | if (struct_return) | |
545 | { | |
546 | struct type *return_type = TYPE_TARGET_TYPE (func_type); | |
547 | ||
548 | gdb_assert (TYPE_CODE (return_type) == TYPE_CODE_STRUCT | |
549 | || TYPE_CODE (func_type) == TYPE_CODE_UNION); | |
550 | ||
551 | if (TYPE_LENGTH (return_type) > 16 | |
552 | || TYPE_LENGTH (return_type) % 4 != 0) | |
553 | { | |
554 | if (write_pass) | |
555 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | |
556 | struct_addr); | |
557 | } | |
558 | } | |
559 | ||
560 | /* Push the arguments. */ | |
561 | for (i = 0; i < nargs; i++) | |
562 | { | |
563 | struct value *arg = args[i]; | |
564 | const gdb_byte *arg_bits = value_contents_all (arg); | |
565 | struct type *arg_type = check_typedef (value_type (arg)); | |
566 | ULONGEST arg_size = TYPE_LENGTH (arg_type); | |
567 | ||
568 | if (i == 0 && struct_addr != 0 && !struct_return | |
569 | && TYPE_CODE (arg_type) == TYPE_CODE_PTR | |
570 | && extract_unsigned_integer (arg_bits, 4, | |
571 | byte_order) == struct_addr) | |
572 | { | |
573 | /* This argument represents the address at which C++ (and | |
574 | possibly other languages) store their return value. | |
575 | Put this value in R15. */ | |
576 | if (write_pass) | |
577 | regcache_cooked_write_unsigned (regcache, RX_R15_REGNUM, | |
578 | struct_addr); | |
579 | } | |
580 | else if (TYPE_CODE (arg_type) != TYPE_CODE_STRUCT | |
581 | && TYPE_CODE (arg_type) != TYPE_CODE_UNION) | |
582 | { | |
583 | /* Argument is a scalar. */ | |
584 | if (arg_size == 8) | |
585 | { | |
586 | if (i < num_register_candidate_args | |
587 | && arg_reg <= RX_R4_REGNUM - 1) | |
588 | { | |
589 | /* If argument registers are going to be used to pass | |
590 | an 8 byte scalar, the ABI specifies that two registers | |
591 | must be available. */ | |
592 | if (write_pass) | |
593 | { | |
594 | regcache_cooked_write_unsigned (regcache, arg_reg, | |
595 | extract_unsigned_integer | |
596 | (arg_bits, 4, | |
597 | byte_order)); | |
598 | regcache_cooked_write_unsigned (regcache, | |
599 | arg_reg + 1, | |
600 | extract_unsigned_integer | |
601 | (arg_bits + 4, 4, | |
602 | byte_order)); | |
603 | } | |
604 | arg_reg += 2; | |
605 | } | |
606 | else | |
607 | { | |
608 | sp_off = align_up (sp_off, 4); | |
609 | /* Otherwise, pass the 8 byte scalar on the stack. */ | |
610 | if (write_pass) | |
611 | write_memory (sp + sp_off, arg_bits, 8); | |
612 | sp_off += 8; | |
613 | } | |
614 | } | |
615 | else | |
616 | { | |
617 | ULONGEST u; | |
618 | ||
619 | gdb_assert (arg_size <= 4); | |
620 | ||
621 | u = | |
622 | extract_unsigned_integer (arg_bits, arg_size, byte_order); | |
623 | ||
624 | if (i < num_register_candidate_args | |
625 | && arg_reg <= RX_R4_REGNUM) | |
626 | { | |
627 | if (write_pass) | |
628 | regcache_cooked_write_unsigned (regcache, arg_reg, u); | |
629 | arg_reg += 1; | |
630 | } | |
631 | else | |
632 | { | |
633 | int p_arg_size = 4; | |
634 | ||
635 | if (TYPE_PROTOTYPED (func_type) | |
636 | && i < TYPE_NFIELDS (func_type)) | |
637 | { | |
638 | struct type *p_arg_type = | |
639 | TYPE_FIELD_TYPE (func_type, i); | |
640 | p_arg_size = TYPE_LENGTH (p_arg_type); | |
641 | } | |
642 | ||
643 | sp_off = align_up (sp_off, p_arg_size); | |
644 | ||
645 | if (write_pass) | |
646 | write_memory_unsigned_integer (sp + sp_off, | |
647 | p_arg_size, byte_order, | |
648 | u); | |
649 | sp_off += p_arg_size; | |
650 | } | |
651 | } | |
652 | } | |
653 | else | |
654 | { | |
655 | /* Argument is a struct or union. Pass as much of the struct | |
656 | in registers, if possible. Pass the rest on the stack. */ | |
657 | while (arg_size > 0) | |
658 | { | |
659 | if (i < num_register_candidate_args | |
660 | && arg_reg <= RX_R4_REGNUM | |
661 | && arg_size <= 4 * (RX_R4_REGNUM - arg_reg + 1) | |
662 | && arg_size % 4 == 0) | |
663 | { | |
664 | int len = min (arg_size, 4); | |
665 | ||
666 | if (write_pass) | |
667 | regcache_cooked_write_unsigned (regcache, arg_reg, | |
668 | extract_unsigned_integer | |
669 | (arg_bits, len, | |
670 | byte_order)); | |
671 | arg_bits += len; | |
672 | arg_size -= len; | |
673 | arg_reg++; | |
674 | } | |
675 | else | |
676 | { | |
677 | sp_off = align_up (sp_off, 4); | |
678 | if (write_pass) | |
679 | write_memory (sp + sp_off, arg_bits, arg_size); | |
680 | sp_off += align_up (arg_size, 4); | |
681 | arg_size = 0; | |
682 | } | |
683 | } | |
684 | } | |
685 | } | |
686 | } | |
687 | ||
688 | /* Keep track of the stack address prior to pushing the return address. | |
689 | This is the value that we'll return. */ | |
690 | cfa = sp; | |
691 | ||
692 | /* Push the return address. */ | |
693 | sp = sp - 4; | |
694 | write_memory_unsigned_integer (sp, 4, byte_order, bp_addr); | |
695 | ||
696 | /* Update the stack pointer. */ | |
697 | regcache_cooked_write_unsigned (regcache, RX_SP_REGNUM, sp); | |
698 | ||
699 | return cfa; | |
700 | } | |
701 | ||
702 | /* Implement the "return_value" gdbarch method. */ | |
703 | static enum return_value_convention | |
704 | rx_return_value (struct gdbarch *gdbarch, | |
705 | struct type *func_type, | |
706 | struct type *valtype, | |
707 | struct regcache *regcache, | |
708 | gdb_byte *readbuf, const gdb_byte *writebuf) | |
709 | { | |
710 | enum bfd_endian byte_order = gdbarch_byte_order (gdbarch); | |
711 | ULONGEST valtype_len = TYPE_LENGTH (valtype); | |
712 | ||
713 | if (TYPE_LENGTH (valtype) > 16 | |
714 | || ((TYPE_CODE (valtype) == TYPE_CODE_STRUCT | |
715 | || TYPE_CODE (valtype) == TYPE_CODE_UNION) | |
716 | && TYPE_LENGTH (valtype) % 4 != 0)) | |
717 | return RETURN_VALUE_STRUCT_CONVENTION; | |
718 | ||
719 | if (readbuf) | |
720 | { | |
721 | ULONGEST u; | |
722 | int argreg = RX_R1_REGNUM; | |
723 | int offset = 0; | |
724 | ||
725 | while (valtype_len > 0) | |
726 | { | |
727 | int len = min (valtype_len, 4); | |
728 | ||
729 | regcache_cooked_read_unsigned (regcache, argreg, &u); | |
730 | store_unsigned_integer (readbuf + offset, len, byte_order, u); | |
731 | valtype_len -= len; | |
732 | offset += len; | |
733 | argreg++; | |
734 | } | |
735 | } | |
736 | ||
737 | if (writebuf) | |
738 | { | |
739 | ULONGEST u; | |
740 | int argreg = RX_R1_REGNUM; | |
741 | int offset = 0; | |
742 | ||
743 | while (valtype_len > 0) | |
744 | { | |
745 | int len = min (valtype_len, 4); | |
746 | ||
747 | u = extract_unsigned_integer (writebuf + offset, len, byte_order); | |
748 | regcache_cooked_write_unsigned (regcache, argreg, u); | |
749 | valtype_len -= len; | |
750 | offset += len; | |
751 | argreg++; | |
752 | } | |
753 | } | |
754 | ||
755 | return RETURN_VALUE_REGISTER_CONVENTION; | |
756 | } | |
757 | ||
758 | /* Implement the "breakpoint_from_pc" gdbarch method. */ | |
759 | const gdb_byte * | |
760 | rx_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr) | |
761 | { | |
762 | static gdb_byte breakpoint[] = { 0x00 }; | |
763 | *lenptr = sizeof breakpoint; | |
764 | return breakpoint; | |
765 | } | |
766 | ||
767 | /* Allocate and initialize a gdbarch object. */ | |
768 | static struct gdbarch * | |
769 | rx_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) | |
770 | { | |
771 | struct gdbarch *gdbarch; | |
772 | struct gdbarch_tdep *tdep; | |
773 | int elf_flags; | |
774 | ||
775 | /* Extract the elf_flags if available. */ | |
776 | if (info.abfd != NULL | |
777 | && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour) | |
778 | elf_flags = elf_elfheader (info.abfd)->e_flags; | |
779 | else | |
780 | elf_flags = 0; | |
781 | ||
782 | ||
783 | /* Try to find the architecture in the list of already defined | |
784 | architectures. */ | |
785 | for (arches = gdbarch_list_lookup_by_info (arches, &info); | |
786 | arches != NULL; | |
787 | arches = gdbarch_list_lookup_by_info (arches->next, &info)) | |
788 | { | |
789 | if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags) | |
790 | continue; | |
791 | ||
792 | return arches->gdbarch; | |
793 | } | |
794 | ||
795 | /* None found, create a new architecture from the information | |
796 | provided. */ | |
797 | tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep)); | |
798 | gdbarch = gdbarch_alloc (&info, tdep); | |
799 | tdep->elf_flags = elf_flags; | |
800 | ||
801 | set_gdbarch_num_regs (gdbarch, RX_NUM_REGS); | |
802 | set_gdbarch_num_pseudo_regs (gdbarch, 0); | |
803 | set_gdbarch_register_name (gdbarch, rx_register_name); | |
804 | set_gdbarch_register_type (gdbarch, rx_register_type); | |
805 | set_gdbarch_pc_regnum (gdbarch, RX_PC_REGNUM); | |
806 | set_gdbarch_sp_regnum (gdbarch, RX_SP_REGNUM); | |
807 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
808 | set_gdbarch_decr_pc_after_break (gdbarch, 1); | |
809 | set_gdbarch_breakpoint_from_pc (gdbarch, rx_breakpoint_from_pc); | |
810 | set_gdbarch_skip_prologue (gdbarch, rx_skip_prologue); | |
811 | ||
812 | set_gdbarch_print_insn (gdbarch, print_insn_rx); | |
813 | ||
814 | set_gdbarch_unwind_pc (gdbarch, rx_unwind_pc); | |
815 | set_gdbarch_unwind_sp (gdbarch, rx_unwind_sp); | |
816 | ||
817 | /* Target builtin data types. */ | |
818 | set_gdbarch_char_signed (gdbarch, 0); | |
819 | set_gdbarch_short_bit (gdbarch, 16); | |
820 | set_gdbarch_int_bit (gdbarch, 32); | |
821 | set_gdbarch_long_bit (gdbarch, 32); | |
822 | set_gdbarch_long_long_bit (gdbarch, 64); | |
823 | set_gdbarch_ptr_bit (gdbarch, 32); | |
824 | set_gdbarch_float_bit (gdbarch, 32); | |
825 | set_gdbarch_float_format (gdbarch, floatformats_ieee_single); | |
826 | if (elf_flags & E_FLAG_RX_64BIT_DOUBLES) | |
827 | { | |
828 | set_gdbarch_double_bit (gdbarch, 64); | |
829 | set_gdbarch_long_double_bit (gdbarch, 64); | |
830 | set_gdbarch_double_format (gdbarch, floatformats_ieee_double); | |
831 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double); | |
832 | } | |
833 | else | |
834 | { | |
835 | set_gdbarch_double_bit (gdbarch, 32); | |
836 | set_gdbarch_long_double_bit (gdbarch, 32); | |
837 | set_gdbarch_double_format (gdbarch, floatformats_ieee_single); | |
838 | set_gdbarch_long_double_format (gdbarch, floatformats_ieee_single); | |
839 | } | |
840 | ||
841 | /* Frame unwinding. */ | |
842 | #if 0 | |
843 | /* Note: The test results are better with the dwarf2 unwinder disabled, | |
844 | so it's turned off for now. */ | |
845 | dwarf2_append_unwinders (gdbarch); | |
846 | #endif | |
847 | frame_unwind_append_unwinder (gdbarch, &rx_frame_unwind); | |
848 | ||
849 | /* Methods for saving / extracting a dummy frame's ID. | |
850 | The ID's stack address must match the SP value returned by | |
851 | PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */ | |
852 | set_gdbarch_dummy_id (gdbarch, rx_dummy_id); | |
853 | set_gdbarch_push_dummy_call (gdbarch, rx_push_dummy_call); | |
854 | set_gdbarch_return_value (gdbarch, rx_return_value); | |
855 | ||
856 | /* Virtual tables. */ | |
857 | set_gdbarch_vbit_in_delta (gdbarch, 1); | |
858 | ||
859 | return gdbarch; | |
860 | } | |
861 | ||
862 | /* Register the above initialization routine. */ | |
863 | void | |
864 | _initialize_rx_tdep (void) | |
865 | { | |
866 | register_gdbarch_init (bfd_arch_rx, rx_gdbarch_init); | |
867 | } |