2004-02-12 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
CommitLineData
5769d3cd 1/* Target-dependent code for GDB, the GNU debugger.
ca557f44 2
1e698235 3 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
ca557f44 4
5769d3cd
AC
5 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
6 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25#define S390_TDEP /* for special macros in tm-s390.h */
26#include <defs.h>
27#include "arch-utils.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "target.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "tm.h"
37#include "../bfd/bfd.h"
38#include "floatformat.h"
39#include "regcache.h"
fd0407d6 40#include "value.h"
78f8b424 41#include "gdb_assert.h"
a89aa300 42#include "dis-asm.h"
5769d3cd
AC
43
44
60e6cc42 45
5769d3cd 46/* Number of bytes of storage in the actual machine representation
23b7362f 47 for register N. */
a78f21af 48static int
5769d3cd
AC
49s390_register_raw_size (int reg_nr)
50{
23b7362f
JB
51 if (S390_FP0_REGNUM <= reg_nr
52 && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
53 return S390_FPR_SIZE;
54 else
55 return 4;
5769d3cd
AC
56}
57
a78f21af 58static int
5769d3cd
AC
59s390x_register_raw_size (int reg_nr)
60{
61 return (reg_nr == S390_FPC_REGNUM)
62 || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
63}
64
a78f21af 65static int
5769d3cd
AC
66s390_cannot_fetch_register (int regno)
67{
68 return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
69 (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
70}
71
a78f21af 72static int
5769d3cd
AC
73s390_register_byte (int reg_nr)
74{
75 if (reg_nr <= S390_GP_LAST_REGNUM)
76 return reg_nr * S390_GPR_SIZE;
77 if (reg_nr <= S390_LAST_ACR)
78 return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
79 if (reg_nr <= S390_LAST_CR)
80 return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
81 if (reg_nr == S390_FPC_REGNUM)
82 return S390_FPC_OFFSET;
83 else
84 return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
85}
86
5769d3cd
AC
87#define S390_MAX_INSTR_SIZE (6)
88#define S390_SYSCALL_OPCODE (0x0a)
89#define S390_SYSCALL_SIZE (2)
90#define S390_SIGCONTEXT_SREGS_OFFSET (8)
91#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
92#define S390_SIGREGS_FP0_OFFSET (144)
93#define S390X_SIGREGS_FP0_OFFSET (216)
94#define S390_UC_MCONTEXT_OFFSET (256)
95#define S390X_UC_MCONTEXT_OFFSET (344)
4d819d0e
JB
96#define S390_STACK_FRAME_OVERHEAD 16*DEPRECATED_REGISTER_SIZE+32
97#define S390_STACK_PARAMETER_ALIGNMENT DEPRECATED_REGISTER_SIZE
98#define S390_NUM_FP_PARAMETER_REGISTERS (GDB_TARGET_IS_ESAME ? 4:2)
5769d3cd
AC
99#define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
100#define s390_NR_sigreturn 119
101#define s390_NR_rt_sigreturn 173
102
103
104
105struct frame_extra_info
106{
107 int initialised;
108 int good_prologue;
109 CORE_ADDR function_start;
110 CORE_ADDR skip_prologue_function_start;
111 CORE_ADDR saved_pc_valid;
112 CORE_ADDR saved_pc;
113 CORE_ADDR sig_fixed_saved_pc_valid;
114 CORE_ADDR sig_fixed_saved_pc;
115 CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
a9dd42f1 116 CORE_ADDR stack_bought_valid;
5769d3cd
AC
117 CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
118 CORE_ADDR sigcontext;
119};
120
121
122static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
123
a78f21af 124static int
a788de9b 125s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
5769d3cd
AC
126{
127 int instrlen;
128
129 static int s390_instrlen[] = {
130 2,
131 4,
132 4,
133 6
134 };
a788de9b 135 if (target_read_memory (at, &instr[0], 2))
5769d3cd
AC
136 return -1;
137 instrlen = s390_instrlen[instr[0] >> 6];
c5e243bb
JB
138 if (instrlen > 2)
139 {
a788de9b 140 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
c5e243bb
JB
141 return -1;
142 }
5769d3cd
AC
143 return instrlen;
144}
145
146static void
147s390_memset_extra_info (struct frame_extra_info *fextra_info)
148{
149 memset (fextra_info, 0, sizeof (struct frame_extra_info));
150}
151
152
153
a78f21af 154static const char *
5769d3cd
AC
155s390_register_name (int reg_nr)
156{
157 static char *register_names[] = {
158 "pswm", "pswa",
4ed90530
JB
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5769d3cd
AC
161 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
162 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
163 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
164 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
165 "fpc",
4ed90530
JB
166 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
167 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
5769d3cd
AC
168 };
169
b09677dc
JB
170 if (reg_nr <= S390_LAST_REGNUM)
171 return register_names[reg_nr];
172 else
5769d3cd 173 return NULL;
5769d3cd
AC
174}
175
176
177
178
a78f21af 179static int
5769d3cd
AC
180s390_stab_reg_to_regnum (int regno)
181{
182 return regno >= 64 ? S390_PSWM_REGNUM - 64 :
183 regno >= 48 ? S390_FIRST_ACR - 48 :
184 regno >= 32 ? S390_FIRST_CR - 32 :
185 regno <= 15 ? (regno + 2) :
186 S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
187 (((regno - 16) & 4) >> 2);
188}
189
190
4bc8c588
JB
191/* Prologue analysis. */
192
193/* When we analyze a prologue, we're really doing 'abstract
194 interpretation' or 'pseudo-evaluation': running the function's code
195 in simulation, but using conservative approximations of the values
196 it would have when it actually runs. For example, if our function
197 starts with the instruction:
198
199 ahi r1, 42 # add halfword immediate 42 to r1
200
201 we don't know exactly what value will be in r1 after executing this
202 instruction, but we do know it'll be 42 greater than its original
203 value.
204
205 If we then see an instruction like:
206
207 ahi r1, 22 # add halfword immediate 22 to r1
208
209 we still don't know what r1's value is, but again, we can say it is
210 now 64 greater than its original value.
211
212 If the next instruction were:
213
214 lr r2, r1 # set r2 to r1's value
215
216 then we can say that r2's value is now the original value of r1
217 plus 64. And so on.
218
219 Of course, this can only go so far before it gets unreasonable. If
220 we wanted to be able to say anything about the value of r1 after
221 the instruction:
222
223 xr r1, r3 # exclusive-or r1 and r3, place result in r1
224
225 then things would get pretty complex. But remember, we're just
226 doing a conservative approximation; if exclusive-or instructions
227 aren't relevant to prologues, we can just say r1's value is now
228 'unknown'. We can ignore things that are too complex, if that loss
229 of information is acceptable for our application.
230
231 Once you've reached an instruction that you don't know how to
232 simulate, you stop. Now you examine the state of the registers and
233 stack slots you've kept track of. For example:
234
235 - To see how large your stack frame is, just check the value of sp;
236 if it's the original value of sp minus a constant, then that
237 constant is the stack frame's size. If the sp's value has been
238 marked as 'unknown', then that means the prologue has done
239 something too complex for us to track, and we don't know the
240 frame size.
241
242 - To see whether we've saved the SP in the current frame's back
243 chain slot, we just check whether the current value of the back
244 chain stack slot is the original value of the sp.
245
246 Sure, this takes some work. But prologue analyzers aren't
247 quick-and-simple pattern patching to recognize a few fixed prologue
248 forms any more; they're big, hairy functions. Along with inferior
249 function calls, prologue analysis accounts for a substantial
250 portion of the time needed to stabilize a GDB port. So I think
251 it's worthwhile to look for an approach that will be easier to
252 understand and maintain. In the approach used here:
253
254 - It's easier to see that the analyzer is correct: you just see
255 whether the analyzer properly (albiet conservatively) simulates
256 the effect of each instruction.
257
258 - It's easier to extend the analyzer: you can add support for new
259 instructions, and know that you haven't broken anything that
260 wasn't already broken before.
261
262 - It's orthogonal: to gather new information, you don't need to
263 complicate the code for each instruction. As long as your domain
264 of conservative values is already detailed enough to tell you
265 what you need, then all the existing instruction simulations are
266 already gathering the right data for you.
267
268 A 'struct prologue_value' is a conservative approximation of the
269 real value the register or stack slot will have. */
270
271struct prologue_value {
272
273 /* What sort of value is this? This determines the interpretation
274 of subsequent fields. */
275 enum {
276
277 /* We don't know anything about the value. This is also used for
278 values we could have kept track of, when doing so would have
279 been too complex and we don't want to bother. The bottom of
280 our lattice. */
281 pv_unknown,
282
283 /* A known constant. K is its value. */
284 pv_constant,
285
286 /* The value that register REG originally had *UPON ENTRY TO THE
287 FUNCTION*, plus K. If K is zero, this means, obviously, just
288 the value REG had upon entry to the function. REG is a GDB
289 register number. Before we start interpreting, we initialize
290 every register R to { pv_register, R, 0 }. */
291 pv_register,
292
293 } kind;
294
295 /* The meanings of the following fields depend on 'kind'; see the
296 comments for the specific 'kind' values. */
297 int reg;
298 CORE_ADDR k;
299};
300
301
302/* Set V to be unknown. */
303static void
304pv_set_to_unknown (struct prologue_value *v)
305{
306 v->kind = pv_unknown;
307}
308
309
310/* Set V to the constant K. */
311static void
312pv_set_to_constant (struct prologue_value *v, CORE_ADDR k)
313{
314 v->kind = pv_constant;
315 v->k = k;
316}
317
318
319/* Set V to the original value of register REG, plus K. */
320static void
321pv_set_to_register (struct prologue_value *v, int reg, CORE_ADDR k)
322{
323 v->kind = pv_register;
324 v->reg = reg;
325 v->k = k;
326}
327
328
329/* If one of *A and *B is a constant, and the other isn't, swap the
330 pointers as necessary to ensure that *B points to the constant.
331 This can reduce the number of cases we need to analyze in the
332 functions below. */
333static void
334pv_constant_last (struct prologue_value **a,
335 struct prologue_value **b)
336{
337 if ((*a)->kind == pv_constant
338 && (*b)->kind != pv_constant)
339 {
340 struct prologue_value *temp = *a;
341 *a = *b;
342 *b = temp;
343 }
344}
345
346
347/* Set SUM to the sum of A and B. SUM, A, and B may point to the same
348 'struct prologue_value' object. */
349static void
350pv_add (struct prologue_value *sum,
351 struct prologue_value *a,
352 struct prologue_value *b)
353{
354 pv_constant_last (&a, &b);
355
356 /* We can handle adding constants to registers, and other constants. */
357 if (b->kind == pv_constant
358 && (a->kind == pv_register
359 || a->kind == pv_constant))
360 {
361 sum->kind = a->kind;
362 sum->reg = a->reg; /* not meaningful if a is pv_constant, but
363 harmless */
364 sum->k = a->k + b->k;
365 }
366
367 /* Anything else we don't know how to add. We don't have a
368 representation for, say, the sum of two registers, or a multiple
369 of a register's value (adding a register to itself). */
370 else
371 sum->kind = pv_unknown;
372}
373
374
375/* Add the constant K to V. */
376static void
377pv_add_constant (struct prologue_value *v, CORE_ADDR k)
378{
379 struct prologue_value pv_k;
380
381 /* Rather than thinking of all the cases we can and can't handle,
382 we'll just let pv_add take care of that for us. */
383 pv_set_to_constant (&pv_k, k);
384 pv_add (v, v, &pv_k);
385}
386
387
388/* Subtract B from A, and put the result in DIFF.
389
390 This isn't quite the same as negating B and adding it to A, since
391 we don't have a representation for the negation of anything but a
392 constant. For example, we can't negate { pv_register, R1, 10 },
393 but we do know that { pv_register, R1, 10 } minus { pv_register,
394 R1, 5 } is { pv_constant, <ignored>, 5 }.
395
396 This means, for example, that we can subtract two stack addresses;
397 they're both relative to the original SP. Since the frame pointer
398 is set based on the SP, its value will be the original SP plus some
399 constant (probably zero), so we can use its value just fine. */
400static void
401pv_subtract (struct prologue_value *diff,
402 struct prologue_value *a,
403 struct prologue_value *b)
404{
405 pv_constant_last (&a, &b);
406
407 /* We can subtract a constant from another constant, or from a
408 register. */
409 if (b->kind == pv_constant
410 && (a->kind == pv_register
411 || a->kind == pv_constant))
412 {
413 diff->kind = a->kind;
414 diff->reg = a->reg; /* not always meaningful, but harmless */
415 diff->k = a->k - b->k;
416 }
417
418 /* We can subtract a register from itself, yielding a constant. */
419 else if (a->kind == pv_register
420 && b->kind == pv_register
421 && a->reg == b->reg)
422 {
423 diff->kind = pv_constant;
424 diff->k = a->k - b->k;
425 }
426
427 /* We don't know how to subtract anything else. */
428 else
429 diff->kind = pv_unknown;
430}
431
432
433/* Set AND to the logical and of A and B. */
434static void
435pv_logical_and (struct prologue_value *and,
436 struct prologue_value *a,
437 struct prologue_value *b)
438{
439 pv_constant_last (&a, &b);
440
441 /* We can 'and' two constants. */
442 if (a->kind == pv_constant
443 && b->kind == pv_constant)
444 {
445 and->kind = pv_constant;
446 and->k = a->k & b->k;
447 }
448
449 /* We can 'and' anything with the constant zero. */
450 else if (b->kind == pv_constant
451 && b->k == 0)
452 {
453 and->kind = pv_constant;
454 and->k = 0;
455 }
456
457 /* We can 'and' anything with ~0. */
458 else if (b->kind == pv_constant
459 && b->k == ~ (CORE_ADDR) 0)
460 *and = *a;
461
462 /* We can 'and' a register with itself. */
463 else if (a->kind == pv_register
464 && b->kind == pv_register
465 && a->reg == b->reg
466 && a->k == b->k)
467 *and = *a;
468
469 /* Otherwise, we don't know. */
470 else
471 pv_set_to_unknown (and);
472}
473
474
475/* Return non-zero iff A and B are identical expressions.
476
477 This is not the same as asking if the two values are equal; the
478 result of such a comparison would have to be a pv_boolean, and
479 asking whether two 'unknown' values were equal would give you
480 pv_maybe. Same for comparing, say, { pv_register, R1, 0 } and {
481 pv_register, R2, 0}. Instead, this is asking whether the two
482 representations are the same. */
12bffad7 483static int
4bc8c588
JB
484pv_is_identical (struct prologue_value *a,
485 struct prologue_value *b)
12bffad7 486{
4bc8c588
JB
487 if (a->kind != b->kind)
488 return 0;
489
490 switch (a->kind)
491 {
492 case pv_unknown:
493 return 1;
494 case pv_constant:
495 return (a->k == b->k);
496 case pv_register:
497 return (a->reg == b->reg && a->k == b->k);
498 default:
499 gdb_assert (0);
500 }
12bffad7
JB
501}
502
5769d3cd 503
4bc8c588
JB
504/* Return non-zero if A is the original value of register number R
505 plus K, zero otherwise. */
506static int
507pv_is_register (struct prologue_value *a, int r, CORE_ADDR k)
508{
509 return (a->kind == pv_register
510 && a->reg == r
511 && a->k == k);
512}
5769d3cd 513
5769d3cd 514
4bc8c588
JB
515/* A prologue-value-esque boolean type, including "maybe", when we
516 can't figure out whether something is true or not. */
517enum pv_boolean {
518 pv_maybe,
519 pv_definite_yes,
520 pv_definite_no,
521};
522
523
524/* Decide whether a reference to SIZE bytes at ADDR refers exactly to
525 an element of an array. The array starts at ARRAY_ADDR, and has
526 ARRAY_LEN values of ELT_SIZE bytes each. If ADDR definitely does
527 refer to an array element, set *I to the index of the referenced
528 element in the array, and return pv_definite_yes. If it definitely
529 doesn't, return pv_definite_no. If we can't tell, return pv_maybe.
530
531 If the reference does touch the array, but doesn't fall exactly on
532 an element boundary, or doesn't refer to the whole element, return
533 pv_maybe. */
534static enum pv_boolean
535pv_is_array_ref (struct prologue_value *addr,
536 CORE_ADDR size,
537 struct prologue_value *array_addr,
538 CORE_ADDR array_len,
539 CORE_ADDR elt_size,
540 int *i)
541{
542 struct prologue_value offset;
5769d3cd 543
4bc8c588
JB
544 /* Note that, since ->k is a CORE_ADDR, and CORE_ADDR is unsigned,
545 if addr is *before* the start of the array, then this isn't going
546 to be negative... */
547 pv_subtract (&offset, addr, array_addr);
548
549 if (offset.kind == pv_constant)
550 {
551 /* This is a rather odd test. We want to know if the SIZE bytes
552 at ADDR don't overlap the array at all, so you'd expect it to
553 be an || expression: "if we're completely before || we're
554 completely after". But with unsigned arithmetic, things are
555 different: since it's a number circle, not a number line, the
556 right values for offset.k are actually one contiguous range. */
557 if (offset.k <= -size
558 && offset.k >= array_len * elt_size)
559 return pv_definite_no;
560 else if (offset.k % elt_size != 0
561 || size != elt_size)
562 return pv_maybe;
563 else
564 {
565 *i = offset.k / elt_size;
566 return pv_definite_yes;
567 }
568 }
569 else
570 return pv_maybe;
571}
572
573
574
575/* Decoding S/390 instructions. */
576
577/* Named opcode values for the S/390 instructions we recognize. Some
578 instructions have their opcode split across two fields; those are the
579 op1_* and op2_* enums. */
580enum
581 {
582 op1_aghi = 0xa7, op2_aghi = 0xb,
583 op1_ahi = 0xa7, op2_ahi = 0xa,
584 op_ar = 0x1a,
585 op_basr = 0x0d,
586 op1_bras = 0xa7, op2_bras = 0x5,
587 op_l = 0x58,
588 op_la = 0x41,
589 op1_larl = 0xc0, op2_larl = 0x0,
590 op_lgr = 0xb904,
591 op1_lghi = 0xa7, op2_lghi = 0x9,
592 op1_lhi = 0xa7, op2_lhi = 0x8,
593 op_lr = 0x18,
594 op_nr = 0x14,
595 op_ngr = 0xb980,
596 op_s = 0x5b,
597 op_st = 0x50,
598 op_std = 0x60,
599 op1_stg = 0xe3, op2_stg = 0x24,
600 op_stm = 0x90,
601 op1_stmg = 0xeb, op2_stmg = 0x24,
602 op_svc = 0x0a,
603 };
604
605
606/* The functions below are for recognizing and decoding S/390
607 instructions of various formats. Each of them checks whether INSN
608 is an instruction of the given format, with the specified opcodes.
609 If it is, it sets the remaining arguments to the values of the
610 instruction's fields, and returns a non-zero value; otherwise, it
611 returns zero.
612
613 These functions' arguments appear in the order they appear in the
614 instruction, not in the machine-language form. So, opcodes always
615 come first, even though they're sometimes scattered around the
616 instructions. And displacements appear before base and extension
617 registers, as they do in the assembly syntax, not at the end, as
618 they do in the machine language. */
a78f21af 619static int
4bc8c588
JB
620is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
621{
622 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
623 {
624 *r1 = (insn[1] >> 4) & 0xf;
625 /* i2 is a 16-bit signed quantity. */
626 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
627 return 1;
628 }
629 else
630 return 0;
631}
8ac0e65a 632
5769d3cd 633
4bc8c588
JB
634static int
635is_ril (bfd_byte *insn, int op1, int op2,
636 unsigned int *r1, int *i2)
637{
638 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
639 {
640 *r1 = (insn[1] >> 4) & 0xf;
641 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
642 no sign extension is necessary, but we don't want to assume
643 that. */
644 *i2 = (((insn[2] << 24)
645 | (insn[3] << 16)
646 | (insn[4] << 8)
647 | (insn[5])) ^ 0x80000000) - 0x80000000;
648 return 1;
649 }
650 else
651 return 0;
652}
653
654
655static int
656is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
657{
658 if (insn[0] == op)
659 {
660 *r1 = (insn[1] >> 4) & 0xf;
661 *r2 = insn[1] & 0xf;
662 return 1;
663 }
664 else
665 return 0;
666}
667
668
669static int
670is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
671{
672 if (((insn[0] << 8) | insn[1]) == op)
673 {
674 /* Yes, insn[3]. insn[2] is unused in RRE format. */
675 *r1 = (insn[3] >> 4) & 0xf;
676 *r2 = insn[3] & 0xf;
677 return 1;
678 }
679 else
680 return 0;
681}
682
683
684static int
685is_rs (bfd_byte *insn, int op,
686 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
687{
688 if (insn[0] == op)
689 {
690 *r1 = (insn[1] >> 4) & 0xf;
691 *r3 = insn[1] & 0xf;
692 *b2 = (insn[2] >> 4) & 0xf;
693 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
694 return 1;
695 }
696 else
697 return 0;
698}
699
700
701static int
702is_rse (bfd_byte *insn, int op1, int op2,
703 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
704{
705 if (insn[0] == op1
706 /* Yes, insn[5]. insn[4] is unused. */
707 && insn[5] == op2)
708 {
709 *r1 = (insn[1] >> 4) & 0xf;
710 *r3 = insn[1] & 0xf;
711 *b2 = (insn[2] >> 4) & 0xf;
712 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
713 return 1;
714 }
715 else
716 return 0;
717}
718
719
720static int
721is_rx (bfd_byte *insn, int op,
722 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
723{
724 if (insn[0] == op)
725 {
726 *r1 = (insn[1] >> 4) & 0xf;
727 *x2 = insn[1] & 0xf;
728 *b2 = (insn[2] >> 4) & 0xf;
729 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
730 return 1;
731 }
732 else
733 return 0;
734}
735
736
737static int
738is_rxe (bfd_byte *insn, int op1, int op2,
739 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
740{
741 if (insn[0] == op1
742 /* Yes, insn[5]. insn[4] is unused. */
743 && insn[5] == op2)
744 {
745 *r1 = (insn[1] >> 4) & 0xf;
746 *x2 = insn[1] & 0xf;
747 *b2 = (insn[2] >> 4) & 0xf;
748 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
749 return 1;
750 }
751 else
752 return 0;
753}
754
755
756/* Set ADDR to the effective address for an X-style instruction, like:
757
758 L R1, D2(X2, B2)
759
760 Here, X2 and B2 are registers, and D2 is an unsigned 12-bit
761 constant; the effective address is the sum of all three. If either
762 X2 or B2 are zero, then it doesn't contribute to the sum --- this
763 means that r0 can't be used as either X2 or B2.
764
765 GPR is an array of general register values, indexed by GPR number,
766 not GDB register number. */
767static void
768compute_x_addr (struct prologue_value *addr,
769 struct prologue_value *gpr,
770 unsigned int d2, unsigned int x2, unsigned int b2)
771{
772 /* We can't just add stuff directly in addr; it might alias some of
773 the registers we need to read. */
774 struct prologue_value result;
775
776 pv_set_to_constant (&result, d2);
777 if (x2)
778 pv_add (&result, &result, &gpr[x2]);
779 if (b2)
780 pv_add (&result, &result, &gpr[b2]);
781
782 *addr = result;
783}
784
785
786/* The number of GPR and FPR spill slots in an S/390 stack frame. We
787 track general-purpose registers r2 -- r15, and floating-point
788 registers f0, f2, f4, and f6. */
789#define S390_NUM_SPILL_SLOTS (14 + 4)
790
791
792/* If the SIZE bytes at ADDR are a stack slot we're actually tracking,
793 return pv_definite_yes and set *STACK to point to the slot. If
794 we're sure that they are not any of our stack slots, then return
795 pv_definite_no. Otherwise, return pv_maybe.
796 - GPR is an array indexed by GPR number giving the current values
797 of the general-purpose registers.
798 - SPILL is an array tracking the spill area of the caller's frame;
799 SPILL[i] is the i'th spill slot. The spill slots are designated
800 for r2 -- r15, and then f0, f2, f4, and f6.
801 - BACK_CHAIN is the value of the back chain slot; it's only valid
802 when the current frame actually has some space for a back chain
803 slot --- that is, when the current value of the stack pointer
804 (according to GPR) is at least S390_STACK_FRAME_OVERHEAD bytes
805 less than its original value. */
806static enum pv_boolean
807s390_on_stack (struct prologue_value *addr,
808 CORE_ADDR size,
809 struct prologue_value *gpr,
810 struct prologue_value *spill,
811 struct prologue_value *back_chain,
812 struct prologue_value **stack)
813{
814 struct prologue_value gpr_spill_addr;
815 struct prologue_value fpr_spill_addr;
816 struct prologue_value back_chain_addr;
817 int i;
818 enum pv_boolean b;
819
820 /* Construct the addresses of the spill arrays and the back chain. */
821 pv_set_to_register (&gpr_spill_addr, S390_SP_REGNUM, 2 * S390_GPR_SIZE);
822 pv_set_to_register (&fpr_spill_addr, S390_SP_REGNUM, 16 * S390_GPR_SIZE);
823 back_chain_addr = gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
824
825 /* We have to check for GPR and FPR references using two separate
826 calls to pv_is_array_ref, since the GPR and FPR spill slots are
827 different sizes. (SPILL is an array, but the thing it tracks
828 isn't really an array.) */
829
830 /* Was it a reference to the GPR spill array? */
831 b = pv_is_array_ref (addr, size, &gpr_spill_addr, 14, S390_GPR_SIZE, &i);
832 if (b == pv_definite_yes)
833 {
834 *stack = &spill[i];
835 return pv_definite_yes;
836 }
837 if (b == pv_maybe)
838 return pv_maybe;
839
840 /* Was it a reference to the FPR spill array? */
841 b = pv_is_array_ref (addr, size, &fpr_spill_addr, 4, S390_FPR_SIZE, &i);
842 if (b == pv_definite_yes)
5769d3cd 843 {
4bc8c588
JB
844 *stack = &spill[14 + i];
845 return pv_definite_yes;
5769d3cd 846 }
4bc8c588
JB
847 if (b == pv_maybe)
848 return pv_maybe;
849
850 /* Was it a reference to the back chain?
851 This isn't quite right. We ought to check whether we have
852 actually allocated any new frame at all. */
853 b = pv_is_array_ref (addr, size, &back_chain_addr, 1, S390_GPR_SIZE, &i);
854 if (b == pv_definite_yes)
5769d3cd 855 {
4bc8c588
JB
856 *stack = back_chain;
857 return pv_definite_yes;
858 }
859 if (b == pv_maybe)
860 return pv_maybe;
861
862 /* All the above queries returned definite 'no's. */
863 return pv_definite_no;
864}
865
866
867/* Do a SIZE-byte store of VALUE to ADDR. GPR, SPILL, and BACK_CHAIN,
868 and the return value are as described for s390_on_stack, above.
869 Note that, when this returns pv_maybe, we have to assume that all
870 of our memory now contains unknown values. */
871static enum pv_boolean
872s390_store (struct prologue_value *addr,
873 CORE_ADDR size,
874 struct prologue_value *value,
875 struct prologue_value *gpr,
876 struct prologue_value *spill,
877 struct prologue_value *back_chain)
878{
879 struct prologue_value *stack;
880 enum pv_boolean on_stack
881 = s390_on_stack (addr, size, gpr, spill, back_chain, &stack);
882
883 if (on_stack == pv_definite_yes)
884 *stack = *value;
885
886 return on_stack;
887}
888
889
890/* The current frame looks like a signal delivery frame: the first
891 instruction is an 'svc' opcode. If the next frame is a signal
892 handler's frame, set FI's saved register map to point into the
893 signal context structure. */
894static void
895s390_get_signal_frame_info (struct frame_info *fi)
896{
897 struct frame_info *next_frame = get_next_frame (fi);
898
899 if (next_frame
900 && get_frame_extra_info (next_frame)
901 && get_frame_extra_info (next_frame)->sigcontext)
902 {
903 /* We're definitely backtracing from a signal handler. */
1b1d3794 904 CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi);
4bc8c588 905 CORE_ADDR save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
62700349 906 + DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM));
4bc8c588
JB
907 int reg;
908
909 for (reg = 0; reg < S390_NUM_GPRS; reg++)
7666f43c 910 {
4bc8c588
JB
911 saved_regs[S390_GP0_REGNUM + reg] = save_reg_addr;
912 save_reg_addr += S390_GPR_SIZE;
7666f43c
JB
913 }
914
4bc8c588
JB
915 save_reg_addr = (get_frame_extra_info (next_frame)->sigcontext
916 + (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
917 S390_SIGREGS_FP0_OFFSET));
918 for (reg = 0; reg < S390_NUM_FPRS; reg++)
919 {
920 saved_regs[S390_FP0_REGNUM + reg] = save_reg_addr;
921 save_reg_addr += S390_FPR_SIZE;
922 }
5769d3cd 923 }
4bc8c588
JB
924}
925
926
927static int
928s390_get_frame_info (CORE_ADDR start_pc,
929 struct frame_extra_info *fextra_info,
930 struct frame_info *fi,
931 int init_extra_info)
932{
933 /* Our return value:
934 zero if we were able to read all the instructions we wanted, or
935 -1 if we got an error trying to read memory. */
936 int result = 0;
937
4bc8c588
JB
938 /* The current PC for our abstract interpretation. */
939 CORE_ADDR pc;
940
941 /* The address of the next instruction after that. */
942 CORE_ADDR next_pc;
943
944 /* The general-purpose registers. */
945 struct prologue_value gpr[S390_NUM_GPRS];
946
947 /* The floating-point registers. */
948 struct prologue_value fpr[S390_NUM_FPRS];
949
950 /* The register spill stack slots in the caller's frame ---
951 general-purpose registers r2 through r15, and floating-point
952 registers. spill[i] is where gpr i+2 gets spilled;
953 spill[(14, 15, 16, 17)] is where (f0, f2, f4, f6) get spilled. */
954 struct prologue_value spill[S390_NUM_SPILL_SLOTS];
955
956 /* The value of the back chain slot. This is only valid if the stack
957 pointer is known to be less than its original value --- that is,
958 if we have indeed allocated space on the stack. */
959 struct prologue_value back_chain;
960
961 /* The address of the instruction after the last one that changed
962 the SP, FP, or back chain. */
963 CORE_ADDR after_last_frame_setup_insn = start_pc;
964
4bc8c588
JB
965 /* Set up everything's initial value. */
966 {
967 int i;
968
969 for (i = 0; i < S390_NUM_GPRS; i++)
970 pv_set_to_register (&gpr[i], S390_GP0_REGNUM + i, 0);
971
972 for (i = 0; i < S390_NUM_FPRS; i++)
973 pv_set_to_register (&fpr[i], S390_FP0_REGNUM + i, 0);
974
975 for (i = 0; i < S390_NUM_SPILL_SLOTS; i++)
976 pv_set_to_unknown (&spill[i]);
977
978 pv_set_to_unknown (&back_chain);
979 }
980
981 /* Start interpreting instructions, until we hit something we don't
982 know how to interpret. (Ideally, we should stop at the frame's
983 real current PC, but at the moment, our callers don't give us
984 that info.) */
985 for (pc = start_pc; ; pc = next_pc)
5769d3cd 986 {
4bc8c588 987 bfd_byte insn[S390_MAX_INSTR_SIZE];
a788de9b 988 int insn_len = s390_readinstruction (insn, pc);
4bc8c588
JB
989
990 /* Fields for various kinds of instructions. */
991 unsigned int b2, r1, r2, d2, x2, r3;
992 int i2;
993
994 /* The values of SP, FP, and back chain before this instruction,
995 for detecting instructions that change them. */
996 struct prologue_value pre_insn_sp, pre_insn_fp, pre_insn_back_chain;
997
998 /* If we got an error trying to read the instruction, report it. */
999 if (insn_len < 0)
8ac0e65a 1000 {
4bc8c588
JB
1001 result = -1;
1002 break;
1003 }
1004
1005 next_pc = pc + insn_len;
1006
1007 pre_insn_sp = gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
1008 pre_insn_fp = gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
1009 pre_insn_back_chain = back_chain;
1010
1011 /* A special case, first --- only recognized as the very first
1012 instruction of the function, for signal delivery frames:
1013 SVC i --- system call */
1014 if (pc == start_pc
1015 && is_rr (insn, op_svc, &r1, &r2))
1016 {
1017 if (fi)
1018 s390_get_signal_frame_info (fi);
1019 break;
8ac0e65a
JB
1020 }
1021
4bc8c588
JB
1022 /* AHI r1, i2 --- add halfword immediate */
1023 else if (is_ri (insn, op1_ahi, op2_ahi, &r1, &i2))
1024 pv_add_constant (&gpr[r1], i2);
1025
1026
1027 /* AGHI r1, i2 --- add halfword immediate (64-bit version) */
1028 else if (GDB_TARGET_IS_ESAME
1029 && is_ri (insn, op1_aghi, op2_aghi, &r1, &i2))
1030 pv_add_constant (&gpr[r1], i2);
1031
1032 /* AR r1, r2 -- add register */
1033 else if (is_rr (insn, op_ar, &r1, &r2))
1034 pv_add (&gpr[r1], &gpr[r1], &gpr[r2]);
1035
1036 /* BASR r1, 0 --- branch and save
1037 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1038 else if (is_rr (insn, op_basr, &r1, &r2)
1039 && r2 == 0)
1040 pv_set_to_constant (&gpr[r1], next_pc);
1041
1042 /* BRAS r1, i2 --- branch relative and save */
1043 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1044 {
1045 pv_set_to_constant (&gpr[r1], next_pc);
1046 next_pc = pc + i2 * 2;
1047
1048 /* We'd better not interpret any backward branches. We'll
1049 never terminate. */
1050 if (next_pc <= pc)
1051 break;
1052 }
1053
1054 /* L r1, d2(x2, b2) --- load */
1055 else if (is_rx (insn, op_l, &r1, &d2, &x2, &b2))
1056 {
1057 struct prologue_value addr;
1058 struct prologue_value *stack;
1059
1060 compute_x_addr (&addr, gpr, d2, x2, b2);
1061
1062 /* If it's a load from an in-line constant pool, then we can
1063 simulate that, under the assumption that the code isn't
1064 going to change between the time the processor actually
1065 executed it creating the current frame, and the time when
1066 we're analyzing the code to unwind past that frame. */
1067 if (addr.kind == pv_constant
1068 && start_pc <= addr.k
1069 && addr.k < next_pc)
1070 pv_set_to_constant (&gpr[r1],
1071 read_memory_integer (addr.k, 4));
1072
1073 /* If it's definitely a reference to something on the stack,
1074 we can do that. */
1075 else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
1076 == pv_definite_yes)
1077 gpr[r1] = *stack;
1078
1079 /* Otherwise, we don't know the value. */
1080 else
1081 pv_set_to_unknown (&gpr[r1]);
1082 }
1083
1084 /* LA r1, d2(x2, b2) --- load address */
1085 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2))
1086 compute_x_addr (&gpr[r1], gpr, d2, x2, b2);
1087
1088 /* LARL r1, i2 --- load address relative long */
1089 else if (GDB_TARGET_IS_ESAME
1090 && is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1091 pv_set_to_constant (&gpr[r1], pc + i2 * 2);
1092
1093 /* LGR r1, r2 --- load from register */
1094 else if (GDB_TARGET_IS_ESAME
1095 && is_rre (insn, op_lgr, &r1, &r2))
1096 gpr[r1] = gpr[r2];
1097
1098 /* LHI r1, i2 --- load halfword immediate */
1099 else if (is_ri (insn, op1_lhi, op2_lhi, &r1, &i2))
1100 pv_set_to_constant (&gpr[r1], i2);
1101
1102 /* LGHI r1, i2 --- load halfword immediate --- 64-bit version */
1103 else if (is_ri (insn, op1_lghi, op2_lghi, &r1, &i2))
1104 pv_set_to_constant (&gpr[r1], i2);
1105
1106 /* LR r1, r2 --- load from register */
1107 else if (is_rr (insn, op_lr, &r1, &r2))
1108 gpr[r1] = gpr[r2];
1109
1110 /* NGR r1, r2 --- logical and --- 64-bit version */
1111 else if (GDB_TARGET_IS_ESAME
1112 && is_rre (insn, op_ngr, &r1, &r2))
1113 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1114
1115 /* NR r1, r2 --- logical and */
1116 else if (is_rr (insn, op_nr, &r1, &r2))
1117 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1118
1119 /* NGR r1, r2 --- logical and --- 64-bit version */
1120 else if (GDB_TARGET_IS_ESAME
1121 && is_rre (insn, op_ngr, &r1, &r2))
1122 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1123
1124 /* NR r1, r2 --- logical and */
1125 else if (is_rr (insn, op_nr, &r1, &r2))
1126 pv_logical_and (&gpr[r1], &gpr[r1], &gpr[r2]);
1127
1128 /* S r1, d2(x2, b2) --- subtract from memory */
1129 else if (is_rx (insn, op_s, &r1, &d2, &x2, &b2))
1130 {
1131 struct prologue_value addr;
1132 struct prologue_value value;
1133 struct prologue_value *stack;
1134
1135 compute_x_addr (&addr, gpr, d2, x2, b2);
1136
1137 /* If it's a load from an in-line constant pool, then we can
1138 simulate that, under the assumption that the code isn't
1139 going to change between the time the processor actually
1140 executed it and the time when we're analyzing it. */
1141 if (addr.kind == pv_constant
1142 && start_pc <= addr.k
1143 && addr.k < pc)
1144 pv_set_to_constant (&value, read_memory_integer (addr.k, 4));
1145
1146 /* If it's definitely a reference to something on the stack,
1147 we could do that. */
1148 else if (s390_on_stack (&addr, 4, gpr, spill, &back_chain, &stack)
1149 == pv_definite_yes)
1150 value = *stack;
1151
1152 /* Otherwise, we don't know the value. */
1153 else
1154 pv_set_to_unknown (&value);
1155
1156 pv_subtract (&gpr[r1], &gpr[r1], &value);
1157 }
1158
1159 /* ST r1, d2(x2, b2) --- store */
1160 else if (is_rx (insn, op_st, &r1, &d2, &x2, &b2))
1161 {
1162 struct prologue_value addr;
1163
1164 compute_x_addr (&addr, gpr, d2, x2, b2);
1165
1166 /* The below really should be '4', not 'S390_GPR_SIZE'; this
1167 instruction always stores 32 bits, regardless of the full
1168 size of the GPR. */
1169 if (s390_store (&addr, 4, &gpr[r1], gpr, spill, &back_chain)
1170 == pv_maybe)
1171 /* If we can't be sure that it's *not* a store to
1172 something we're tracing, then we would have to mark all
1173 our memory as unknown --- after all, it *could* be a
1174 store to any of them --- so we might as well just stop
1175 interpreting. */
1176 break;
1177 }
1178
1179 /* STD r1, d2(x2,b2) --- store floating-point register */
1180 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
1181 {
1182 struct prologue_value addr;
1183
1184 compute_x_addr (&addr, gpr, d2, x2, b2);
1185
1186 if (s390_store (&addr, 8, &fpr[r1], gpr, spill, &back_chain)
1187 == pv_maybe)
1188 /* If we can't be sure that it's *not* a store to
1189 something we're tracing, then we would have to mark all
1190 our memory as unknown --- after all, it *could* be a
1191 store to any of them --- so we might as well just stop
1192 interpreting. */
1193 break;
1194 }
1195
1196 /* STG r1, d2(x2, b2) --- 64-bit store */
1197 else if (GDB_TARGET_IS_ESAME
1198 && is_rxe (insn, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1199 {
1200 struct prologue_value addr;
1201
1202 compute_x_addr (&addr, gpr, d2, x2, b2);
1203
1204 /* The below really should be '8', not 'S390_GPR_SIZE'; this
1205 instruction always stores 64 bits, regardless of the full
1206 size of the GPR. */
1207 if (s390_store (&addr, 8, &gpr[r1], gpr, spill, &back_chain)
1208 == pv_maybe)
1209 /* If we can't be sure that it's *not* a store to
1210 something we're tracing, then we would have to mark all
1211 our memory as unknown --- after all, it *could* be a
1212 store to any of them --- so we might as well just stop
1213 interpreting. */
1214 break;
1215 }
1216
1217 /* STM r1, r3, d2(b2) --- store multiple */
1218 else if (is_rs (insn, op_stm, &r1, &r3, &d2, &b2))
1219 {
1220 int regnum;
1221 int offset;
1222 struct prologue_value addr;
1223
1224 for (regnum = r1, offset = 0;
1225 regnum <= r3;
1226 regnum++, offset += 4)
1227 {
1228 compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
1229
1230 if (s390_store (&addr, 4, &gpr[regnum], gpr, spill, &back_chain)
1231 == pv_maybe)
1232 /* If we can't be sure that it's *not* a store to
1233 something we're tracing, then we would have to mark all
1234 our memory as unknown --- after all, it *could* be a
1235 store to any of them --- so we might as well just stop
1236 interpreting. */
1237 break;
1238 }
1239
1240 /* If we left the loop early, we should stop interpreting
1241 altogether. */
1242 if (regnum <= r3)
1243 break;
1244 }
1245
1246 /* STMG r1, r3, d2(b2) --- store multiple, 64-bit */
1247 else if (GDB_TARGET_IS_ESAME
1248 && is_rse (insn, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
1249 {
1250 int regnum;
1251 int offset;
1252 struct prologue_value addr;
1253
1254 for (regnum = r1, offset = 0;
1255 regnum <= r3;
1256 regnum++, offset += 8)
1257 {
1258 compute_x_addr (&addr, gpr, d2 + offset, 0, b2);
1259
1260 if (s390_store (&addr, 8, &gpr[regnum], gpr, spill, &back_chain)
1261 == pv_maybe)
1262 /* If we can't be sure that it's *not* a store to
1263 something we're tracing, then we would have to mark all
1264 our memory as unknown --- after all, it *could* be a
1265 store to any of them --- so we might as well just stop
1266 interpreting. */
1267 break;
1268 }
1269
1270 /* If we left the loop early, we should stop interpreting
1271 altogether. */
1272 if (regnum <= r3)
1273 break;
1274 }
1275
1276 else
1277 /* An instruction we don't know how to simulate. The only
1278 safe thing to do would be to set every value we're tracking
1279 to 'unknown'. Instead, we'll be optimistic: we just stop
1280 interpreting, and assume that the machine state we've got
1281 now is good enough for unwinding the stack. */
1282 break;
1283
1284 /* Record the address after the last instruction that changed
1285 the FP, SP, or backlink. Ignore instructions that changed
1286 them back to their original values --- those are probably
1287 restore instructions. (The back chain is never restored,
1288 just popped.) */
1289 {
1290 struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
1291 struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
1292
1293 if ((! pv_is_identical (&pre_insn_sp, sp)
1294 && ! pv_is_register (sp, S390_SP_REGNUM, 0))
1295 || (! pv_is_identical (&pre_insn_fp, fp)
1296 && ! pv_is_register (fp, S390_FRAME_REGNUM, 0))
1297 || ! pv_is_identical (&pre_insn_back_chain, &back_chain))
1298 after_last_frame_setup_insn = next_pc;
1299 }
5769d3cd 1300 }
4bc8c588
JB
1301
1302 /* Okay, now gpr[], fpr[], spill[], and back_chain reflect the state
1303 of the machine as of the first instruction we couldn't interpret
1304 (hopefully the first non-prologue instruction). */
1305 {
1306 /* The size of the frame, or (CORE_ADDR) -1 if we couldn't figure
1307 that out. */
1308 CORE_ADDR frame_size = -1;
1309
1310 /* The value the SP had upon entry to the function, or
1311 (CORE_ADDR) -1 if we can't figure that out. */
1312 CORE_ADDR original_sp = -1;
1313
1314 /* Are we using S390_FRAME_REGNUM as a frame pointer register? */
1315 int using_frame_pointer = 0;
1316
1317 /* If S390_FRAME_REGNUM is some constant offset from the SP, then
1318 that strongly suggests that we're going to use that as our
1319 frame pointer register, not the SP. */
5769d3cd 1320 {
4bc8c588
JB
1321 struct prologue_value *fp = &gpr[S390_FRAME_REGNUM - S390_GP0_REGNUM];
1322
1323 if (fp->kind == pv_register
1324 && fp->reg == S390_SP_REGNUM)
1325 using_frame_pointer = 1;
5769d3cd 1326 }
4bc8c588
JB
1327
1328 /* If we were given a frame_info structure, we may be able to use
1329 the frame's base address to figure out the actual value of the
1330 original SP. */
1331 if (fi && get_frame_base (fi))
1332 {
1333 int frame_base_regno;
1334 struct prologue_value *frame_base;
1335
1336 /* The meaning of the frame base depends on whether the
1337 function uses a frame pointer register other than the SP or
1338 not (see s390_read_fp):
1339 - If the function does use a frame pointer register other
1340 than the SP, then the frame base is that register's
1341 value.
1342 - If the function doesn't use a frame pointer, then the
1343 frame base is the SP itself.
1344 We're duplicating some of the logic of s390_fp_regnum here,
1345 but we don't want to call that, because it would just do
1346 exactly the same analysis we've already done above. */
1347 if (using_frame_pointer)
1348 frame_base_regno = S390_FRAME_REGNUM;
1349 else
1350 frame_base_regno = S390_SP_REGNUM;
1351
1352 frame_base = &gpr[frame_base_regno - S390_GP0_REGNUM];
1353
1354 /* We know the frame base address; if the value of whatever
1355 register it came from is a constant offset from the
1356 original SP, then we can reconstruct the original SP just
1357 by subtracting off that constant. */
1358 if (frame_base->kind == pv_register
1359 && frame_base->reg == S390_SP_REGNUM)
1360 original_sp = get_frame_base (fi) - frame_base->k;
1361 }
1362
1363 /* If the analysis said that the current SP value is the original
1364 value less some constant, then that constant is the frame size. */
1365 {
1366 struct prologue_value *sp = &gpr[S390_SP_REGNUM - S390_GP0_REGNUM];
1367
1368 if (sp->kind == pv_register
1369 && sp->reg == S390_SP_REGNUM)
1370 frame_size = -sp->k;
1371 }
1372
1373 /* If we knew other registers' current values, we could check if
1374 the analysis said any of those were related to the original SP
1375 value, too. But for now, we'll just punt. */
1376
1377 /* If the caller passed in an 'extra info' structure, fill in the
1378 parts we can. */
1379 if (fextra_info)
1380 {
1381 if (init_extra_info || ! fextra_info->initialised)
1382 {
1383 s390_memset_extra_info (fextra_info);
1384 fextra_info->function_start = start_pc;
1385 fextra_info->initialised = 1;
1386 }
1387
1388 if (frame_size != -1)
1389 {
a9dd42f1 1390 fextra_info->stack_bought_valid = 1;
4bc8c588
JB
1391 fextra_info->stack_bought = frame_size;
1392 }
1393
1394 /* Assume everything was okay, and indicate otherwise when we
1395 find something amiss. */
1396 fextra_info->good_prologue = 1;
1397
1398 if (using_frame_pointer)
1399 /* Actually, nobody cares about the exact PC, so any
1400 non-zero value will do here. */
1401 fextra_info->frame_pointer_saved_pc = 1;
1402
1403 /* If we weren't able to find the size of the frame, or find
1404 the original sp based on actual current register values,
1405 then we're not going to be able to unwind this frame.
1406
1407 (If we're just doing prologue analysis to set a breakpoint,
1408 then frame_size might be known, but original_sp unknown; if
1409 we're analyzing a real frame which uses alloca, then
1410 original_sp might be known (from the frame pointer
1411 register), but the frame size might be unknown.) */
1412 if (original_sp == -1 && frame_size == -1)
1413 fextra_info->good_prologue = 0;
1414
1415 if (fextra_info->good_prologue)
1416 fextra_info->skip_prologue_function_start
1417 = after_last_frame_setup_insn;
1418 else
1419 /* If the prologue was too complex for us to make sense of,
1420 then perhaps it's better to just not skip anything at
1421 all. */
1422 fextra_info->skip_prologue_function_start = start_pc;
1423 }
1424
1425 /* Indicate where registers were saved on the stack, if:
1426 - the caller seems to want to know,
1427 - the caller provided an actual SP, and
1428 - the analysis gave us enough information to actually figure it
1429 out. */
1430 if (fi
1b1d3794 1431 && deprecated_get_frame_saved_regs (fi)
4bc8c588
JB
1432 && original_sp != -1)
1433 {
1434 int slot_num;
1435 CORE_ADDR slot_addr;
1b1d3794 1436 CORE_ADDR *saved_regs = deprecated_get_frame_saved_regs (fi);
4bc8c588
JB
1437
1438 /* Scan the spill array; if a spill slot says it holds the
1439 original value of some register, then record that slot's
1440 address as the place that register was saved.
1441
1442 Just for kicks, note that, even if registers aren't saved
1443 in their officially-sanctioned slots, this will still work
1444 --- we know what really got put where. */
1445
1446 /* First, the slots for r2 -- r15. */
1447 for (slot_num = 0, slot_addr = original_sp + 2 * S390_GPR_SIZE;
1448 slot_num < 14;
1449 slot_num++, slot_addr += S390_GPR_SIZE)
1450 {
1451 struct prologue_value *slot = &spill[slot_num];
1452
1453 if (slot->kind == pv_register
1454 && slot->k == 0)
1455 saved_regs[slot->reg] = slot_addr;
1456 }
1457
1458 /* Then, the slots for f0, f2, f4, and f6. They're a
1459 different size. */
1460 for (slot_num = 14, slot_addr = original_sp + 16 * S390_GPR_SIZE;
1461 slot_num < S390_NUM_SPILL_SLOTS;
1462 slot_num++, slot_addr += S390_FPR_SIZE)
1463 {
1464 struct prologue_value *slot = &spill[slot_num];
1465
1466 if (slot->kind == pv_register
1467 && slot->k == 0)
1468 saved_regs[slot->reg] = slot_addr;
1469 }
1470
1471 /* The stack pointer's element of saved_regs[] is special. */
1472 saved_regs[S390_SP_REGNUM] = original_sp;
1473 }
1474 }
1475
1476 return result;
5769d3cd
AC
1477}
1478
1479
a78f21af 1480static int
5769d3cd
AC
1481s390_check_function_end (CORE_ADDR pc)
1482{
1483 bfd_byte instr[S390_MAX_INSTR_SIZE];
5769d3cd
AC
1484 int regidx, instrlen;
1485
a788de9b 1486 instrlen = s390_readinstruction (instr, pc);
5769d3cd
AC
1487 if (instrlen < 0)
1488 return -1;
1489 /* check for BR */
1490 if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
1491 return 0;
1492 regidx = instr[1] & 0xf;
1493 /* Check for LMG or LG */
1494 instrlen =
a788de9b 1495 s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4));
5769d3cd
AC
1496 if (instrlen < 0)
1497 return -1;
1498 if (GDB_TARGET_IS_ESAME)
1499 {
1500
1501 if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
1502 return 0;
1503 }
1504 else if (instrlen != 4 || instr[0] != 0x98)
1505 {
1506 return 0;
1507 }
1508 if ((instr[2] >> 4) != 0xf)
1509 return 0;
1510 if (regidx == 14)
1511 return 1;
a788de9b 1512 instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8));
5769d3cd
AC
1513 if (instrlen < 0)
1514 return -1;
1515 if (GDB_TARGET_IS_ESAME)
1516 {
1517 /* Check for LG */
1518 if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
1519 return 0;
1520 }
1521 else
1522 {
1523 /* Check for L */
1524 if (instrlen != 4 || instr[0] != 0x58)
1525 return 0;
1526 }
1527 if (instr[2] >> 4 != 0xf)
1528 return 0;
1529 if (instr[1] >> 4 != regidx)
1530 return 0;
1531 return 1;
1532}
1533
1534static CORE_ADDR
1535s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
1536{
1537 CORE_ADDR function_start, test_function_start;
1538 int loop_cnt, err, function_end;
1539 struct frame_extra_info fextra_info;
1540 function_start = get_pc_function_start (pc);
1541
1542 if (function_start == 0)
1543 {
1544 test_function_start = pc;
1545 if (test_function_start & 1)
1546 return 0; /* This has to be bogus */
1547 loop_cnt = 0;
1548 do
1549 {
1550
1551 err =
1552 s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
1553 loop_cnt++;
1554 test_function_start -= 2;
1555 function_end = s390_check_function_end (test_function_start);
1556 }
1557 while (!(function_end == 1 || err || loop_cnt >= 4096 ||
1558 (fextra_info.good_prologue)));
1559 if (fextra_info.good_prologue)
1560 function_start = fextra_info.function_start;
1561 else if (function_end == 1)
1562 function_start = test_function_start;
1563 }
1564 return function_start;
1565}
1566
1567
1568
a78f21af 1569static CORE_ADDR
5769d3cd
AC
1570s390_function_start (struct frame_info *fi)
1571{
1572 CORE_ADDR function_start = 0;
1573
da50a4b7
AC
1574 if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->initialised)
1575 function_start = get_frame_extra_info (fi)->function_start;
50abf9e5 1576 else if (get_frame_pc (fi))
be41e9f4 1577 function_start = get_frame_func (fi);
5769d3cd
AC
1578 return function_start;
1579}
1580
1581
1582
1583
a78f21af 1584static int
5769d3cd
AC
1585s390_frameless_function_invocation (struct frame_info *fi)
1586{
1587 struct frame_extra_info fextra_info, *fextra_info_ptr;
1588 int frameless = 0;
1589
11c02a10 1590 if (get_next_frame (fi) == NULL) /* no may be frameless */
5769d3cd 1591 {
da50a4b7
AC
1592 if (get_frame_extra_info (fi))
1593 fextra_info_ptr = get_frame_extra_info (fi);
5769d3cd
AC
1594 else
1595 {
1596 fextra_info_ptr = &fextra_info;
50abf9e5 1597 s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
5769d3cd
AC
1598 fextra_info_ptr, fi, 1);
1599 }
a9dd42f1
JB
1600 frameless = (fextra_info_ptr->stack_bought_valid
1601 && fextra_info_ptr->stack_bought == 0);
5769d3cd
AC
1602 }
1603 return frameless;
1604
1605}
1606
1607
1608static int
1609s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
1610 CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
1611{
1612 bfd_byte instr[S390_MAX_INSTR_SIZE];
5769d3cd
AC
1613 int instrlen;
1614 CORE_ADDR scontext;
1615 int retval = 0;
1616 CORE_ADDR orig_sp;
1617 CORE_ADDR temp_sregs;
1618
1619 scontext = temp_sregs = 0;
1620
a788de9b 1621 instrlen = s390_readinstruction (instr, pc);
5769d3cd
AC
1622 if (sigcaller_pc)
1623 *sigcaller_pc = 0;
1624 if (((instrlen == S390_SYSCALL_SIZE) &&
1625 (instr[0] == S390_SYSCALL_OPCODE)) &&
1626 ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
1627 {
1628 if (sighandler_fi)
1629 {
1630 if (s390_frameless_function_invocation (sighandler_fi))
1e2330ba 1631 orig_sp = get_frame_base (sighandler_fi);
5769d3cd
AC
1632 else
1633 orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
1e2330ba 1634 read_memory_integer (get_frame_base (sighandler_fi),
5769d3cd
AC
1635 S390_GPR_SIZE));
1636 if (orig_sp && sigcaller_pc)
1637 {
1638 scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
1639 if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
1640 {
1641 /* We got a new style rt_signal */
1642 /* get address of read ucontext->uc_mcontext */
1643 temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
1644 S390X_UC_MCONTEXT_OFFSET :
1645 S390_UC_MCONTEXT_OFFSET);
1646 }
1647 else
1648 {
1649 /* read sigcontext->sregs */
1650 temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
1651 read_memory_integer (scontext
1652 +
1653 (GDB_TARGET_IS_ESAME
1654 ?
1655 S390X_SIGCONTEXT_SREGS_OFFSET
1656 :
1657 S390_SIGCONTEXT_SREGS_OFFSET),
1658 S390_GPR_SIZE));
1659
1660 }
1661 /* read sigregs->psw.addr */
1662 *sigcaller_pc =
1663 ADDR_BITS_REMOVE ((CORE_ADDR)
1664 read_memory_integer (temp_sregs +
62700349 1665 DEPRECATED_REGISTER_BYTE (S390_PC_REGNUM),
5769d3cd
AC
1666 S390_PSW_ADDR_SIZE));
1667 }
1668 }
1669 retval = 1;
1670 }
1671 if (sregs)
1672 *sregs = temp_sregs;
1673 return retval;
1674}
1675
1676/*
1677 We need to do something better here but this will keep us out of trouble
1678 for the moment.
1679 For some reason the blockframe.c calls us with fi->next->fromleaf
1680 so this seems of little use to us. */
a78f21af 1681static CORE_ADDR
5769d3cd
AC
1682s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
1683{
1684 CORE_ADDR sigcaller_pc;
97f46953 1685 CORE_ADDR pc = 0;
5769d3cd
AC
1686 if (next_fromleaf)
1687 {
97f46953 1688 pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
5769d3cd
AC
1689 /* fix signal handlers */
1690 }
97f46953
AC
1691 else if (get_next_frame (fi) && get_frame_pc (get_next_frame (fi)))
1692 pc = s390_frame_saved_pc_nofix (get_next_frame (fi));
1693 if (pc && get_next_frame (fi) && get_frame_base (get_next_frame (fi))
1694 && s390_is_sigreturn (pc, get_next_frame (fi), NULL, &sigcaller_pc))
5769d3cd 1695 {
97f46953 1696 pc = sigcaller_pc;
5769d3cd 1697 }
97f46953 1698 return pc;
5769d3cd
AC
1699}
1700
a78f21af 1701static void
5769d3cd
AC
1702s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
1703{
a00a19e9 1704 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
50abf9e5
AC
1705 if (get_frame_pc (fi))
1706 s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
da50a4b7 1707 get_frame_extra_info (fi), fi, 1);
5769d3cd 1708 else
da50a4b7 1709 s390_memset_extra_info (get_frame_extra_info (fi));
5769d3cd
AC
1710}
1711
1712/* If saved registers of frame FI are not known yet, read and cache them.
1713 &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
1714 in which case the framedata are read. */
1715
a78f21af 1716static void
5769d3cd
AC
1717s390_frame_init_saved_regs (struct frame_info *fi)
1718{
1719
1720 int quick;
1721
1b1d3794 1722 if (deprecated_get_frame_saved_regs (fi) == NULL)
5769d3cd
AC
1723 {
1724 /* zalloc memsets the saved regs */
1725 frame_saved_regs_zalloc (fi);
50abf9e5 1726 if (get_frame_pc (fi))
5769d3cd 1727 {
da50a4b7
AC
1728 quick = (get_frame_extra_info (fi)
1729 && get_frame_extra_info (fi)->initialised
1730 && get_frame_extra_info (fi)->good_prologue);
1731 s390_get_frame_info (quick
1732 ? get_frame_extra_info (fi)->function_start
1733 : s390_sniff_pc_function_start (get_frame_pc (fi), fi),
1734 get_frame_extra_info (fi), fi, !quick);
5769d3cd
AC
1735 }
1736 }
1737}
1738
1739
1740
5769d3cd
AC
1741static CORE_ADDR
1742s390_frame_saved_pc_nofix (struct frame_info *fi)
1743{
da50a4b7
AC
1744 if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->saved_pc_valid)
1745 return get_frame_extra_info (fi)->saved_pc;
5c3cf190 1746
1e2330ba
AC
1747 if (deprecated_generic_find_dummy_frame (get_frame_pc (fi),
1748 get_frame_base (fi)))
1749 return deprecated_read_register_dummy (get_frame_pc (fi),
1750 get_frame_base (fi), S390_PC_REGNUM);
5c3cf190 1751
5769d3cd 1752 s390_frame_init_saved_regs (fi);
da50a4b7 1753 if (get_frame_extra_info (fi))
5769d3cd 1754 {
da50a4b7
AC
1755 get_frame_extra_info (fi)->saved_pc_valid = 1;
1756 if (get_frame_extra_info (fi)->good_prologue
1b1d3794 1757 && deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM])
da50a4b7 1758 get_frame_extra_info (fi)->saved_pc
529765f4 1759 = ADDR_BITS_REMOVE (read_memory_integer
1b1d3794 1760 (deprecated_get_frame_saved_regs (fi)[S390_RETADDR_REGNUM],
529765f4
JB
1761 S390_GPR_SIZE));
1762 else
da50a4b7 1763 get_frame_extra_info (fi)->saved_pc
529765f4 1764 = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
da50a4b7 1765 return get_frame_extra_info (fi)->saved_pc;
5769d3cd
AC
1766 }
1767 return 0;
1768}
1769
a78f21af 1770static CORE_ADDR
5769d3cd
AC
1771s390_frame_saved_pc (struct frame_info *fi)
1772{
1773 CORE_ADDR saved_pc = 0, sig_pc;
1774
da50a4b7
AC
1775 if (get_frame_extra_info (fi)
1776 && get_frame_extra_info (fi)->sig_fixed_saved_pc_valid)
1777 return get_frame_extra_info (fi)->sig_fixed_saved_pc;
5769d3cd
AC
1778 saved_pc = s390_frame_saved_pc_nofix (fi);
1779
da50a4b7 1780 if (get_frame_extra_info (fi))
5769d3cd 1781 {
da50a4b7 1782 get_frame_extra_info (fi)->sig_fixed_saved_pc_valid = 1;
5769d3cd
AC
1783 if (saved_pc)
1784 {
1785 if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
1786 saved_pc = sig_pc;
1787 }
da50a4b7 1788 get_frame_extra_info (fi)->sig_fixed_saved_pc = saved_pc;
5769d3cd
AC
1789 }
1790 return saved_pc;
1791}
1792
1793
1794
1795
5a203e44
AC
1796/* We want backtraces out of signal handlers so we don't set
1797 (get_frame_type (thisframe) == SIGTRAMP_FRAME) to 1 */
5769d3cd 1798
a78f21af 1799static CORE_ADDR
5769d3cd
AC
1800s390_frame_chain (struct frame_info *thisframe)
1801{
1802 CORE_ADDR prev_fp = 0;
1803
1e2330ba
AC
1804 if (deprecated_generic_find_dummy_frame (get_frame_pc (thisframe),
1805 get_frame_base (thisframe)))
1806 return deprecated_read_register_dummy (get_frame_pc (thisframe),
1807 get_frame_base (thisframe),
135c175f 1808 S390_SP_REGNUM);
5769d3cd
AC
1809 else
1810 {
1811 int sigreturn = 0;
1812 CORE_ADDR sregs = 0;
1813 struct frame_extra_info prev_fextra_info;
1814
1815 memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
50abf9e5 1816 if (get_frame_pc (thisframe))
5769d3cd
AC
1817 {
1818 CORE_ADDR saved_pc, sig_pc;
1819
1820 saved_pc = s390_frame_saved_pc_nofix (thisframe);
1821 if (saved_pc)
1822 {
1823 if ((sigreturn =
1824 s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
1825 saved_pc = sig_pc;
1826 s390_get_frame_info (s390_sniff_pc_function_start
1827 (saved_pc, NULL), &prev_fextra_info, NULL,
1828 1);
1829 }
1830 }
1831 if (sigreturn)
1832 {
1833 /* read sigregs,regs.gprs[11 or 15] */
1834 prev_fp = read_memory_integer (sregs +
62700349 1835 DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM +
5769d3cd
AC
1836 (prev_fextra_info.
1837 frame_pointer_saved_pc
1838 ? 11 : 15)),
1839 S390_GPR_SIZE);
da50a4b7 1840 get_frame_extra_info (thisframe)->sigcontext = sregs;
5769d3cd
AC
1841 }
1842 else
1843 {
1b1d3794 1844 if (deprecated_get_frame_saved_regs (thisframe))
5769d3cd 1845 {
5769d3cd
AC
1846 int regno;
1847
31c4d430 1848 if (prev_fextra_info.frame_pointer_saved_pc
1b1d3794 1849 && deprecated_get_frame_saved_regs (thisframe)[S390_FRAME_REGNUM])
31c4d430
JB
1850 regno = S390_FRAME_REGNUM;
1851 else
1852 regno = S390_SP_REGNUM;
1853
1b1d3794 1854 if (deprecated_get_frame_saved_regs (thisframe)[regno])
31c4d430
JB
1855 {
1856 /* The SP's entry of `saved_regs' is special. */
1857 if (regno == S390_SP_REGNUM)
1b1d3794 1858 prev_fp = deprecated_get_frame_saved_regs (thisframe)[regno];
31c4d430
JB
1859 else
1860 prev_fp =
1b1d3794 1861 read_memory_integer (deprecated_get_frame_saved_regs (thisframe)[regno],
31c4d430
JB
1862 S390_GPR_SIZE);
1863 }
5769d3cd
AC
1864 }
1865 }
1866 }
1867 return ADDR_BITS_REMOVE (prev_fp);
1868}
1869
1870/*
1871 Whether struct frame_extra_info is actually needed I'll have to figure
1872 out as our frames are similar to rs6000 there is a possibility
1873 i386 dosen't need it. */
1874
1875
1876
c8b91b89
AC
1877/* NOTE: cagney/2003-10-31: "return_value" makes
1878 "extract_struct_value_address", "extract_return_value", and
1879 "use_struct_convention" redundant. */
1880static CORE_ADDR
1881s390_cannot_extract_struct_value_address (struct regcache *regcache)
1882{
1883 return 0;
1884}
1885
5769d3cd
AC
1886/* a given return value in `regbuf' with a type `valtype', extract and copy its
1887 value into `valbuf' */
a78f21af 1888static void
5769d3cd
AC
1889s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1890{
1891 /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
1892 We need to truncate the return value into float size (4 byte) if
1893 necessary. */
1894 int len = TYPE_LENGTH (valtype);
1895
1896 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
62700349 1897 memcpy (valbuf, &regbuf[DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM)], len);
5769d3cd
AC
1898 else
1899 {
1900 int offset = 0;
1901 /* return value is copied starting from r2. */
1902 if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
1903 offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
1904 memcpy (valbuf,
62700349 1905 regbuf + DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
5769d3cd
AC
1906 TYPE_LENGTH (valtype));
1907 }
1908}
1909
1910
1911static char *
1912s390_promote_integer_argument (struct type *valtype, char *valbuf,
1913 char *reg_buff, int *arglen)
1914{
1915 char *value = valbuf;
1916 int len = TYPE_LENGTH (valtype);
1917
1918 if (len < S390_GPR_SIZE)
1919 {
1920 /* We need to upgrade this value to a register to pass it correctly */
1921 int idx, diff = S390_GPR_SIZE - len, negative =
1922 (!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
1923 for (idx = 0; idx < S390_GPR_SIZE; idx++)
1924 {
1925 reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
1926 value[idx - diff]);
1927 }
1928 value = reg_buff;
1929 *arglen = S390_GPR_SIZE;
1930 }
1931 else
1932 {
1933 if (len & (S390_GPR_SIZE - 1))
1934 {
1935 fprintf_unfiltered (gdb_stderr,
1936 "s390_promote_integer_argument detected an argument not "
1937 "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
1938 "we might not deal with this correctly.\n");
1939 }
1940 *arglen = len;
1941 }
1942
1943 return (value);
1944}
1945
a78f21af 1946static void
5769d3cd
AC
1947s390_store_return_value (struct type *valtype, char *valbuf)
1948{
1949 int arglen;
b1e29e33 1950 char *reg_buff = alloca (max (S390_FPR_SIZE, DEPRECATED_REGISTER_SIZE)), *value;
5769d3cd
AC
1951
1952 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1953 {
03a013f4
JB
1954 if (TYPE_LENGTH (valtype) == 4
1955 || TYPE_LENGTH (valtype) == 8)
62700349 1956 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM),
73937e03 1957 valbuf, TYPE_LENGTH (valtype));
03a013f4
JB
1958 else
1959 error ("GDB is unable to return `long double' values "
1960 "on this architecture.");
5769d3cd
AC
1961 }
1962 else
1963 {
1964 value =
1965 s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
1966 /* Everything else is returned in GPR2 and up. */
62700349 1967 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_GP0_REGNUM + 2),
73937e03 1968 value, arglen);
5769d3cd
AC
1969 }
1970}
5769d3cd
AC
1971
1972
1973/* Not the most efficent code in the world */
a78f21af 1974static int
5ae5f592 1975s390_fp_regnum (void)
5769d3cd
AC
1976{
1977 int regno = S390_SP_REGNUM;
1978 struct frame_extra_info fextra_info;
1979
1980 CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
1981
1982 s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
1983 NULL, 1);
1984 if (fextra_info.frame_pointer_saved_pc)
1985 regno = S390_FRAME_REGNUM;
1986 return regno;
1987}
1988
a78f21af 1989static CORE_ADDR
5ae5f592 1990s390_read_fp (void)
5769d3cd
AC
1991{
1992 return read_register (s390_fp_regnum ());
1993}
1994
1995
4c8287ac
JB
1996static void
1997s390_pop_frame_regular (struct frame_info *frame)
5769d3cd 1998{
4c8287ac
JB
1999 int regnum;
2000
8bedc050 2001 write_register (S390_PC_REGNUM, DEPRECATED_FRAME_SAVED_PC (frame));
4c8287ac
JB
2002
2003 /* Restore any saved registers. */
1b1d3794 2004 if (deprecated_get_frame_saved_regs (frame))
1a889ea5
JB
2005 {
2006 for (regnum = 0; regnum < NUM_REGS; regnum++)
1b1d3794 2007 if (deprecated_get_frame_saved_regs (frame)[regnum] != 0)
1a889ea5
JB
2008 {
2009 ULONGEST value;
2010
1b1d3794 2011 value = read_memory_unsigned_integer (deprecated_get_frame_saved_regs (frame)[regnum],
12c266ea 2012 DEPRECATED_REGISTER_RAW_SIZE (regnum));
1a889ea5
JB
2013 write_register (regnum, value);
2014 }
2015
2016 /* Actually cut back the stack. Remember that the SP's element of
2017 saved_regs is the old SP itself, not the address at which it is
2018 saved. */
1b1d3794 2019 write_register (S390_SP_REGNUM, deprecated_get_frame_saved_regs (frame)[S390_SP_REGNUM]);
1a889ea5 2020 }
5769d3cd 2021
4c8287ac
JB
2022 /* Throw away any cached frame information. */
2023 flush_cached_frames ();
5769d3cd
AC
2024}
2025
4c8287ac
JB
2026
2027/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
2028 machine state that was in effect before the frame was created.
2029 Used in the contexts of the "return" command, and of
2030 target function calls from the debugger. */
a78f21af 2031static void
5ae5f592 2032s390_pop_frame (void)
4c8287ac
JB
2033{
2034 /* This function checks for and handles generic dummy frames, and
2035 calls back to our function for ordinary frames. */
2036 generic_pop_current_frame (s390_pop_frame_regular);
2037}
2038
2039
78f8b424
JB
2040/* Return non-zero if TYPE is an integer-like type, zero otherwise.
2041 "Integer-like" types are those that should be passed the way
2042 integers are: integers, enums, ranges, characters, and booleans. */
2043static int
2044is_integer_like (struct type *type)
2045{
2046 enum type_code code = TYPE_CODE (type);
2047
2048 return (code == TYPE_CODE_INT
2049 || code == TYPE_CODE_ENUM
2050 || code == TYPE_CODE_RANGE
2051 || code == TYPE_CODE_CHAR
2052 || code == TYPE_CODE_BOOL);
2053}
2054
2055
2056/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2057 "Pointer-like" types are those that should be passed the way
2058 pointers are: pointers and references. */
2059static int
2060is_pointer_like (struct type *type)
2061{
2062 enum type_code code = TYPE_CODE (type);
2063
2064 return (code == TYPE_CODE_PTR
2065 || code == TYPE_CODE_REF);
2066}
2067
2068
20a940cc
JB
2069/* Return non-zero if TYPE is a `float singleton' or `double
2070 singleton', zero otherwise.
2071
2072 A `T singleton' is a struct type with one member, whose type is
2073 either T or a `T singleton'. So, the following are all float
2074 singletons:
2075
2076 struct { float x };
2077 struct { struct { float x; } x; };
2078 struct { struct { struct { float x; } x; } x; };
2079
2080 ... and so on.
2081
2082 WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
2083 passes all float singletons and double singletons as if they were
2084 simply floats or doubles. This is *not* what the ABI says it
2085 should do. */
2086static int
2087is_float_singleton (struct type *type)
2088{
2089 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
2090 && TYPE_NFIELDS (type) == 1
2091 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
2092 || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
2093}
2094
2095
2096/* Return non-zero if TYPE is a struct-like type, zero otherwise.
2097 "Struct-like" types are those that should be passed as structs are:
2098 structs and unions.
2099
2100 As an odd quirk, not mentioned in the ABI, GCC passes float and
2101 double singletons as if they were a plain float, double, etc. (The
2102 corresponding union types are handled normally.) So we exclude
2103 those types here. *shrug* */
2104static int
2105is_struct_like (struct type *type)
2106{
2107 enum type_code code = TYPE_CODE (type);
2108
2109 return (code == TYPE_CODE_UNION
2110 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2111}
2112
2113
2114/* Return non-zero if TYPE is a float-like type, zero otherwise.
2115 "Float-like" types are those that should be passed as
2116 floating-point values are.
2117
2118 You'd think this would just be floats, doubles, long doubles, etc.
2119 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2120 double singletons as if they were a plain float, double, etc. (The
4d819d0e 2121 corresponding union types are handled normally.) So we include
20a940cc
JB
2122 those types here. *shrug* */
2123static int
2124is_float_like (struct type *type)
2125{
2126 return (TYPE_CODE (type) == TYPE_CODE_FLT
2127 || is_float_singleton (type));
2128}
2129
2130
78f8b424
JB
2131/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
2132 defined by the parameter passing conventions described in the
ca557f44 2133 "GNU/Linux for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
2134 Otherwise, return zero. */
2135static int
2136is_double_or_float (struct type *type)
2137{
20a940cc 2138 return (is_float_like (type)
78f8b424
JB
2139 && (TYPE_LENGTH (type) == 4
2140 || TYPE_LENGTH (type) == 8));
2141}
2142
5769d3cd 2143
4d819d0e
JB
2144/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
2145 parameter passing conventions described in the "GNU/Linux for S/390
2146 ELF Application Binary Interface Supplement". Return zero
2147 otherwise. */
2148static int
2149is_double_arg (struct type *type)
2150{
2151 unsigned length = TYPE_LENGTH (type);
2152
2153 /* The s390x ABI doesn't handle DOUBLE_ARGS specially. */
2154 if (GDB_TARGET_IS_ESAME)
2155 return 0;
2156
2157 return ((is_integer_like (type)
2158 || is_struct_like (type))
2159 && length == 8);
2160}
2161
2162
78f8b424 2163/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
ca557f44
AC
2164 the parameter passing conventions described in the "GNU/Linux for
2165 S/390 ELF Application Binary Interface Supplement". Return zero
2166 otherwise. */
78f8b424
JB
2167static int
2168is_simple_arg (struct type *type)
2169{
78f8b424
JB
2170 unsigned length = TYPE_LENGTH (type);
2171
a1677dfb
JB
2172 /* This is almost a direct translation of the ABI's language, except
2173 that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
4d819d0e 2174 return ((is_integer_like (type) && length <= DEPRECATED_REGISTER_SIZE)
78f8b424 2175 || is_pointer_like (type)
4d819d0e 2176 || (is_struct_like (type) && !is_double_arg (type)));
78f8b424
JB
2177}
2178
2179
4d819d0e
JB
2180static int
2181is_power_of_two (unsigned int n)
2182{
2183 return ((n & (n - 1)) == 0);
2184}
2185
78f8b424
JB
2186/* Return non-zero if TYPE should be passed as a pointer to a copy,
2187 zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
2188 `is_simple_arg'. */
2189static int
2190pass_by_copy_ref (struct type *type)
2191{
78f8b424
JB
2192 unsigned length = TYPE_LENGTH (type);
2193
4d819d0e
JB
2194 return (is_struct_like (type)
2195 && !(is_power_of_two (length) && length <= DEPRECATED_REGISTER_SIZE));
78f8b424
JB
2196}
2197
2198
2199/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2200 word as required for the ABI. */
2201static LONGEST
2202extend_simple_arg (struct value *arg)
2203{
2204 struct type *type = VALUE_TYPE (arg);
2205
2206 /* Even structs get passed in the least significant bits of the
2207 register / memory word. It's not really right to extract them as
2208 an integer, but it does take care of the extension. */
2209 if (TYPE_UNSIGNED (type))
2210 return extract_unsigned_integer (VALUE_CONTENTS (arg),
2211 TYPE_LENGTH (type));
2212 else
2213 return extract_signed_integer (VALUE_CONTENTS (arg),
2214 TYPE_LENGTH (type));
2215}
2216
2217
78f8b424
JB
2218/* Return the alignment required by TYPE. */
2219static int
2220alignment_of (struct type *type)
2221{
2222 int alignment;
2223
2224 if (is_integer_like (type)
2225 || is_pointer_like (type)
2226 || TYPE_CODE (type) == TYPE_CODE_FLT)
2227 alignment = TYPE_LENGTH (type);
2228 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2229 || TYPE_CODE (type) == TYPE_CODE_UNION)
2230 {
2231 int i;
2232
2233 alignment = 1;
2234 for (i = 0; i < TYPE_NFIELDS (type); i++)
2235 {
2236 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
2237
2238 if (field_alignment > alignment)
2239 alignment = field_alignment;
2240 }
2241 }
2242 else
2243 alignment = 1;
2244
2245 /* Check that everything we ever return is a power of two. Lots of
2246 code doesn't want to deal with aligning things to arbitrary
2247 boundaries. */
2248 gdb_assert ((alignment & (alignment - 1)) == 0);
2249
2250 return alignment;
2251}
2252
2253
2254/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
ca557f44
AC
2255 place to be passed to a function, as specified by the "GNU/Linux
2256 for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
2257
2258 SP is the current stack pointer. We must put arguments, links,
2259 padding, etc. whereever they belong, and return the new stack
2260 pointer value.
2261
2262 If STRUCT_RETURN is non-zero, then the function we're calling is
2263 going to return a structure by value; STRUCT_ADDR is the address of
2264 a block we've allocated for it on the stack.
2265
2266 Our caller has taken care of any type promotions needed to satisfy
2267 prototypes or the old K&R argument-passing rules. */
a78f21af 2268static CORE_ADDR
d45fc520 2269s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
5769d3cd
AC
2270 int struct_return, CORE_ADDR struct_addr)
2271{
78f8b424
JB
2272 int i;
2273 int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
5769d3cd 2274
78f8b424
JB
2275 /* The number of arguments passed by reference-to-copy. */
2276 int num_copies;
5769d3cd 2277
78f8b424
JB
2278 /* If the i'th argument is passed as a reference to a copy, then
2279 copy_addr[i] is the address of the copy we made. */
2280 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
5769d3cd 2281
78f8b424
JB
2282 /* Build the reference-to-copy area. */
2283 num_copies = 0;
2284 for (i = 0; i < nargs; i++)
2285 {
2286 struct value *arg = args[i];
2287 struct type *type = VALUE_TYPE (arg);
2288 unsigned length = TYPE_LENGTH (type);
5769d3cd 2289
78f8b424
JB
2290 if (is_simple_arg (type)
2291 && pass_by_copy_ref (type))
01c464e9 2292 {
78f8b424 2293 sp -= length;
5b03f266 2294 sp = align_down (sp, alignment_of (type));
78f8b424
JB
2295 write_memory (sp, VALUE_CONTENTS (arg), length);
2296 copy_addr[i] = sp;
2297 num_copies++;
01c464e9 2298 }
5769d3cd 2299 }
5769d3cd 2300
78f8b424
JB
2301 /* Reserve space for the parameter area. As a conservative
2302 simplification, we assume that everything will be passed on the
2303 stack. */
2304 {
2305 int i;
2306
2307 for (i = 0; i < nargs; i++)
2308 {
2309 struct value *arg = args[i];
2310 struct type *type = VALUE_TYPE (arg);
2311 int length = TYPE_LENGTH (type);
2312
5b03f266 2313 sp = align_down (sp, alignment_of (type));
78f8b424 2314
4d819d0e
JB
2315 /* SIMPLE_ARG values get extended to DEPRECATED_REGISTER_SIZE bytes.
2316 Assume every argument is. */
2317 if (length < DEPRECATED_REGISTER_SIZE) length = DEPRECATED_REGISTER_SIZE;
78f8b424
JB
2318 sp -= length;
2319 }
2320 }
2321
2322 /* Include space for any reference-to-copy pointers. */
5b03f266 2323 sp = align_down (sp, pointer_size);
78f8b424
JB
2324 sp -= num_copies * pointer_size;
2325
2326 /* After all that, make sure it's still aligned on an eight-byte
2327 boundary. */
5b03f266 2328 sp = align_down (sp, 8);
78f8b424
JB
2329
2330 /* Finally, place the actual parameters, working from SP towards
2331 higher addresses. The code above is supposed to reserve enough
2332 space for this. */
2333 {
2334 int fr = 0;
2335 int gr = 2;
2336 CORE_ADDR starg = sp;
2337
4d819d0e
JB
2338 /* A struct is returned using general register 2 */
2339 if (struct_return)
2340 gr++;
2341
78f8b424
JB
2342 for (i = 0; i < nargs; i++)
2343 {
2344 struct value *arg = args[i];
2345 struct type *type = VALUE_TYPE (arg);
2346
2347 if (is_double_or_float (type)
4d819d0e 2348 && fr <= S390_NUM_FP_PARAMETER_REGISTERS * 2 - 2)
78f8b424
JB
2349 {
2350 /* When we store a single-precision value in an FP register,
2351 it occupies the leftmost bits. */
62700349 2352 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (S390_FP0_REGNUM + fr),
73937e03
AC
2353 VALUE_CONTENTS (arg),
2354 TYPE_LENGTH (type));
78f8b424
JB
2355 fr += 2;
2356 }
2357 else if (is_simple_arg (type)
2358 && gr <= 6)
2359 {
2360 /* Do we need to pass a pointer to our copy of this
2361 argument? */
2362 if (pass_by_copy_ref (type))
2363 write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
2364 else
2365 write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
2366
2367 gr++;
2368 }
2369 else if (is_double_arg (type)
2370 && gr <= 5)
2371 {
4caf0990
AC
2372 deprecated_write_register_gen (S390_GP0_REGNUM + gr,
2373 VALUE_CONTENTS (arg));
2374 deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1,
4d819d0e 2375 VALUE_CONTENTS (arg) + DEPRECATED_REGISTER_SIZE);
78f8b424
JB
2376 gr += 2;
2377 }
2378 else
2379 {
2380 /* The `OTHER' case. */
2381 enum type_code code = TYPE_CODE (type);
2382 unsigned length = TYPE_LENGTH (type);
2383
2384 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2385 in it, then don't go back and use it again later. */
2386 if (is_double_arg (type) && gr == 6)
2387 gr = 7;
2388
2389 if (is_simple_arg (type))
2390 {
4d819d0e
JB
2391 /* Simple args are always extended to
2392 DEPRECATED_REGISTER_SIZE bytes. */
5b03f266 2393 starg = align_up (starg, DEPRECATED_REGISTER_SIZE);
78f8b424
JB
2394
2395 /* Do we need to pass a pointer to our copy of this
2396 argument? */
2397 if (pass_by_copy_ref (type))
2398 write_memory_signed_integer (starg, pointer_size,
2399 copy_addr[i]);
2400 else
4d819d0e
JB
2401 /* Simple args are always extended to
2402 DEPRECATED_REGISTER_SIZE bytes. */
2403 write_memory_signed_integer (starg, DEPRECATED_REGISTER_SIZE,
78f8b424 2404 extend_simple_arg (arg));
4d819d0e 2405 starg += DEPRECATED_REGISTER_SIZE;
78f8b424
JB
2406 }
2407 else
2408 {
20a940cc 2409 /* You'd think we should say:
5b03f266 2410 starg = align_up (starg, alignment_of (type));
20a940cc 2411 Unfortunately, GCC seems to simply align the stack on
4d819d0e 2412 a four/eight-byte boundary, even when passing doubles. */
5b03f266 2413 starg = align_up (starg, S390_STACK_PARAMETER_ALIGNMENT);
78f8b424
JB
2414 write_memory (starg, VALUE_CONTENTS (arg), length);
2415 starg += length;
2416 }
2417 }
2418 }
2419 }
2420
2421 /* Allocate the standard frame areas: the register save area, the
2422 word reserved for the compiler (which seems kind of meaningless),
2423 and the back chain pointer. */
4d819d0e 2424 sp -= S390_STACK_FRAME_OVERHEAD;
78f8b424
JB
2425
2426 /* Write the back chain pointer into the first word of the stack
2427 frame. This will help us get backtraces from within functions
2428 called from GDB. */
2429 write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
0ba6dca9 2430 deprecated_read_fp ());
78f8b424
JB
2431
2432 return sp;
5769d3cd
AC
2433}
2434
c8f9d51c 2435
4074e13c
JB
2436static CORE_ADDR
2437s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2438{
2439 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2440 always be aligned on an eight-byte boundary. */
2441 return (addr & -8);
2442}
2443
2444
c8f9d51c
JB
2445static int
2446s390_use_struct_convention (int gcc_p, struct type *value_type)
2447{
2448 enum type_code code = TYPE_CODE (value_type);
2449
2450 return (code == TYPE_CODE_STRUCT
2451 || code == TYPE_CODE_UNION);
2452}
2453
2454
5769d3cd
AC
2455/* Return the GDB type object for the "standard" data type
2456 of data in register N. */
a78f21af 2457static struct type *
5769d3cd
AC
2458s390_register_virtual_type (int regno)
2459{
b09677dc
JB
2460 if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
2461 return builtin_type_double;
2462 else
2463 return builtin_type_int;
5769d3cd
AC
2464}
2465
2466
a78f21af 2467static struct type *
5769d3cd
AC
2468s390x_register_virtual_type (int regno)
2469{
2470 return (regno == S390_FPC_REGNUM) ||
2471 (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
2472 (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
2473}
2474
2475
2476
a78f21af 2477static void
5769d3cd
AC
2478s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2479{
2480 write_register (S390_GP0_REGNUM + 2, addr);
2481}
2482
2483
2484
a78f21af 2485static const unsigned char *
5769d3cd
AC
2486s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
2487{
2488 static unsigned char breakpoint[] = { 0x0, 0x1 };
2489
2490 *lenptr = sizeof (breakpoint);
2491 return breakpoint;
2492}
2493
2494/* Advance PC across any function entry prologue instructions to reach some
2495 "real" code. */
a78f21af 2496static CORE_ADDR
5769d3cd
AC
2497s390_skip_prologue (CORE_ADDR pc)
2498{
2499 struct frame_extra_info fextra_info;
2500
2501 s390_get_frame_info (pc, &fextra_info, NULL, 1);
2502 return fextra_info.skip_prologue_function_start;
2503}
2504
5769d3cd
AC
2505/* Immediately after a function call, return the saved pc.
2506 Can't go through the frames for this because on some machines
2507 the new frame is not set up until the new function executes
2508 some instructions. */
a78f21af 2509static CORE_ADDR
5769d3cd
AC
2510s390_saved_pc_after_call (struct frame_info *frame)
2511{
2512 return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
2513}
2514
2515static CORE_ADDR
2516s390_addr_bits_remove (CORE_ADDR addr)
2517{
2518 return (addr) & 0x7fffffff;
2519}
2520
2521
2522static CORE_ADDR
2523s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
2524{
88a82a65 2525 write_register (S390_RETADDR_REGNUM, entry_point_address ());
5769d3cd
AC
2526 return sp;
2527}
2528
ffc65945
KB
2529static int
2530s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2531{
2532 if (byte_size == 4)
2533 return TYPE_FLAG_ADDRESS_CLASS_1;
2534 else
2535 return 0;
2536}
2537
2538static const char *
2539s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2540{
2541 if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
2542 return "mode32";
2543 else
2544 return NULL;
2545}
2546
a78f21af 2547static int
ffc65945
KB
2548s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
2549 int *type_flags_ptr)
2550{
2551 if (strcmp (name, "mode32") == 0)
2552 {
2553 *type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
2554 return 1;
2555 }
2556 else
2557 return 0;
2558}
2559
a78f21af 2560static struct gdbarch *
5769d3cd
AC
2561s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2562{
d4d0c21e 2563 static LONGEST s390_call_dummy_words[] = { 0 };
5769d3cd
AC
2564 struct gdbarch *gdbarch;
2565 struct gdbarch_tdep *tdep;
2566 int elf_flags;
2567
2568 /* First see if there is already a gdbarch that can satisfy the request. */
2569 arches = gdbarch_list_lookup_by_info (arches, &info);
2570 if (arches != NULL)
2571 return arches->gdbarch;
2572
2573 /* None found: is the request for a s390 architecture? */
2574 if (info.bfd_arch_info->arch != bfd_arch_s390)
2575 return NULL; /* No; then it's not for us. */
2576
2577 /* Yes: create a new gdbarch for the specified machine type. */
2578 gdbarch = gdbarch_alloc (&info, NULL);
2579
a5afb99f
AC
2580 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
2581 ready to unwind the PC first (see frame.c:get_prev_frame()). */
0968aa8c 2582 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
a5afb99f 2583
5769d3cd 2584 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
4e409299 2585 set_gdbarch_char_signed (gdbarch, 0);
5769d3cd 2586
618ce49f 2587 set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
f30ee0bc 2588 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
4183d812 2589 set_gdbarch_deprecated_store_struct_return (gdbarch, s390_store_struct_return);
26e9b323 2590 set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
ebba8386 2591 set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value);
aaab4dba
AC
2592 /* Amount PC must be decremented by after a breakpoint. This is
2593 often the number of bytes returned by BREAKPOINT_FROM_PC but not
2594 always. */
5769d3cd 2595 set_gdbarch_decr_pc_after_break (gdbarch, 2);
749b82f6 2596 set_gdbarch_deprecated_pop_frame (gdbarch, s390_pop_frame);
5769d3cd
AC
2597 /* Stack grows downward. */
2598 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
a0ed5532
AC
2599 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 8);
2600 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5769d3cd
AC
2601 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2602 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
e9582e71 2603 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
2ca6c561 2604 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
0ba6dca9 2605 set_gdbarch_deprecated_target_read_fp (gdbarch, s390_read_fp);
5769d3cd
AC
2606 /* This function that tells us whether the function invocation represented
2607 by FI does not have a frame on the stack associated with it. If it
2608 does not, FRAMELESS is set to 1, else 0. */
2609 set_gdbarch_frameless_function_invocation (gdbarch,
2610 s390_frameless_function_invocation);
2611 /* Return saved PC from a frame */
8bedc050 2612 set_gdbarch_deprecated_frame_saved_pc (gdbarch, s390_frame_saved_pc);
618ce49f
AC
2613 /* DEPRECATED_FRAME_CHAIN takes a frame's nominal address and
2614 produces the frame's chain-pointer. */
2615 set_gdbarch_deprecated_frame_chain (gdbarch, s390_frame_chain);
6913c89a 2616 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
9c04cab7 2617 set_gdbarch_deprecated_register_byte (gdbarch, s390_register_byte);
5769d3cd
AC
2618 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
2619 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
0ba6dca9 2620 set_gdbarch_deprecated_fp_regnum (gdbarch, S390_FP_REGNUM);
5769d3cd
AC
2621 set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
2622 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
2623 set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
2624 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
c8f9d51c 2625 set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
5769d3cd
AC
2626 set_gdbarch_register_name (gdbarch, s390_register_name);
2627 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
2628 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
2629 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
74055713 2630 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, s390_cannot_extract_struct_value_address);
5769d3cd 2631
d4d0c21e 2632 /* Parameters for inferior function calls. */
ae45cd16 2633 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
4074e13c 2634 set_gdbarch_frame_align (gdbarch, s390_frame_align);
b81774d8 2635 set_gdbarch_deprecated_push_arguments (gdbarch, s390_push_arguments);
a59fe496 2636 set_gdbarch_deprecated_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
6e691f7a
JB
2637 set_gdbarch_deprecated_push_return_address (gdbarch,
2638 s390_push_return_address);
b1e29e33
AC
2639 set_gdbarch_deprecated_sizeof_call_dummy_words (gdbarch, sizeof (s390_call_dummy_words));
2640 set_gdbarch_deprecated_call_dummy_words (gdbarch, s390_call_dummy_words);
5769d3cd
AC
2641
2642 switch (info.bfd_arch_info->mach)
2643 {
b8b8b047 2644 case bfd_mach_s390_31:
b1e29e33 2645 set_gdbarch_deprecated_register_size (gdbarch, 4);
9c04cab7
AC
2646 set_gdbarch_deprecated_register_raw_size (gdbarch, s390_register_raw_size);
2647 set_gdbarch_deprecated_register_virtual_size (gdbarch, s390_register_raw_size);
2648 set_gdbarch_deprecated_register_virtual_type (gdbarch, s390_register_virtual_type);
5769d3cd
AC
2649
2650 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
b8b527c5 2651 set_gdbarch_deprecated_register_bytes (gdbarch, S390_REGISTER_BYTES);
5769d3cd 2652 break;
b8b8b047 2653 case bfd_mach_s390_64:
b1e29e33 2654 set_gdbarch_deprecated_register_size (gdbarch, 8);
9c04cab7
AC
2655 set_gdbarch_deprecated_register_raw_size (gdbarch, s390x_register_raw_size);
2656 set_gdbarch_deprecated_register_virtual_size (gdbarch, s390x_register_raw_size);
2657 set_gdbarch_deprecated_register_virtual_type (gdbarch, s390x_register_virtual_type);
5769d3cd
AC
2658
2659 set_gdbarch_long_bit (gdbarch, 64);
2660 set_gdbarch_long_long_bit (gdbarch, 64);
2661 set_gdbarch_ptr_bit (gdbarch, 64);
b8b527c5 2662 set_gdbarch_deprecated_register_bytes (gdbarch, S390X_REGISTER_BYTES);
ffc65945
KB
2663 set_gdbarch_address_class_type_flags (gdbarch,
2664 s390_address_class_type_flags);
2665 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2666 s390_address_class_type_flags_to_name);
2667 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2668 s390_address_class_name_to_type_flags);
5769d3cd
AC
2669 break;
2670 }
2671
6c0e89ed 2672 /* Should be using push_dummy_call. */
b46e02f6 2673 set_gdbarch_deprecated_dummy_write_sp (gdbarch, deprecated_write_sp);
6c0e89ed 2674
36482093
AC
2675 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2676
5769d3cd
AC
2677 return gdbarch;
2678}
2679
2680
2681
a78f21af
AC
2682extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2683
5769d3cd 2684void
5ae5f592 2685_initialize_s390_tdep (void)
5769d3cd
AC
2686{
2687
2688 /* Hook us into the gdbarch mechanism. */
2689 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
5769d3cd 2690}
This page took 0.429876 seconds and 4 git commands to generate.