Commit | Line | Data |
---|---|---|
5769d3cd | 1 | /* Target-dependent code for GDB, the GNU debugger. |
ca557f44 | 2 | |
469db033 MK |
3 | Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 |
4 | Free Software Foundation, Inc. | |
ca557f44 | 5 | |
5769d3cd AC |
6 | Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com) |
7 | for IBM Deutschland Entwicklung GmbH, IBM Corporation. | |
8 | ||
9 | This file is part of GDB. | |
10 | ||
11 | This program is free software; you can redistribute it and/or modify | |
12 | it under the terms of the GNU General Public License as published by | |
13 | the Free Software Foundation; either version 2 of the License, or | |
14 | (at your option) any later version. | |
15 | ||
16 | This program is distributed in the hope that it will be useful, | |
17 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
18 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
19 | GNU General Public License for more details. | |
20 | ||
21 | You should have received a copy of the GNU General Public License | |
22 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
23 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
24 | Boston, MA 02110-1301, USA. */ | |
5769d3cd | 25 | |
d0f54f9d | 26 | #include "defs.h" |
5769d3cd AC |
27 | #include "arch-utils.h" |
28 | #include "frame.h" | |
29 | #include "inferior.h" | |
30 | #include "symtab.h" | |
31 | #include "target.h" | |
32 | #include "gdbcore.h" | |
33 | #include "gdbcmd.h" | |
5769d3cd | 34 | #include "objfiles.h" |
5769d3cd AC |
35 | #include "floatformat.h" |
36 | #include "regcache.h" | |
a8c99f38 JB |
37 | #include "trad-frame.h" |
38 | #include "frame-base.h" | |
39 | #include "frame-unwind.h" | |
a431654a | 40 | #include "dwarf2-frame.h" |
d0f54f9d JB |
41 | #include "reggroups.h" |
42 | #include "regset.h" | |
fd0407d6 | 43 | #include "value.h" |
78f8b424 | 44 | #include "gdb_assert.h" |
a89aa300 | 45 | #include "dis-asm.h" |
76a9d10f | 46 | #include "solib-svr4.h" |
3fc46200 | 47 | #include "prologue-value.h" |
5769d3cd | 48 | |
d0f54f9d | 49 | #include "s390-tdep.h" |
5769d3cd | 50 | |
60e6cc42 | 51 | |
d0f54f9d JB |
52 | /* The tdep structure. */ |
53 | ||
54 | struct gdbarch_tdep | |
5769d3cd | 55 | { |
b0cf273e JB |
56 | /* ABI version. */ |
57 | enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi; | |
58 | ||
d0f54f9d JB |
59 | /* Core file register sets. */ |
60 | const struct regset *gregset; | |
61 | int sizeof_gregset; | |
62 | ||
63 | const struct regset *fpregset; | |
64 | int sizeof_fpregset; | |
65 | }; | |
66 | ||
67 | ||
68 | /* Register information. */ | |
69 | ||
70 | struct s390_register_info | |
71 | { | |
72 | char *name; | |
73 | struct type **type; | |
74 | }; | |
75 | ||
76 | static struct s390_register_info s390_register_info[S390_NUM_TOTAL_REGS] = | |
77 | { | |
78 | /* Program Status Word. */ | |
79 | { "pswm", &builtin_type_long }, | |
80 | { "pswa", &builtin_type_long }, | |
81 | ||
82 | /* General Purpose Registers. */ | |
83 | { "r0", &builtin_type_long }, | |
84 | { "r1", &builtin_type_long }, | |
85 | { "r2", &builtin_type_long }, | |
86 | { "r3", &builtin_type_long }, | |
87 | { "r4", &builtin_type_long }, | |
88 | { "r5", &builtin_type_long }, | |
89 | { "r6", &builtin_type_long }, | |
90 | { "r7", &builtin_type_long }, | |
91 | { "r8", &builtin_type_long }, | |
92 | { "r9", &builtin_type_long }, | |
93 | { "r10", &builtin_type_long }, | |
94 | { "r11", &builtin_type_long }, | |
95 | { "r12", &builtin_type_long }, | |
96 | { "r13", &builtin_type_long }, | |
97 | { "r14", &builtin_type_long }, | |
98 | { "r15", &builtin_type_long }, | |
99 | ||
100 | /* Access Registers. */ | |
101 | { "acr0", &builtin_type_int }, | |
102 | { "acr1", &builtin_type_int }, | |
103 | { "acr2", &builtin_type_int }, | |
104 | { "acr3", &builtin_type_int }, | |
105 | { "acr4", &builtin_type_int }, | |
106 | { "acr5", &builtin_type_int }, | |
107 | { "acr6", &builtin_type_int }, | |
108 | { "acr7", &builtin_type_int }, | |
109 | { "acr8", &builtin_type_int }, | |
110 | { "acr9", &builtin_type_int }, | |
111 | { "acr10", &builtin_type_int }, | |
112 | { "acr11", &builtin_type_int }, | |
113 | { "acr12", &builtin_type_int }, | |
114 | { "acr13", &builtin_type_int }, | |
115 | { "acr14", &builtin_type_int }, | |
116 | { "acr15", &builtin_type_int }, | |
117 | ||
118 | /* Floating Point Control Word. */ | |
119 | { "fpc", &builtin_type_int }, | |
120 | ||
121 | /* Floating Point Registers. */ | |
122 | { "f0", &builtin_type_double }, | |
123 | { "f1", &builtin_type_double }, | |
124 | { "f2", &builtin_type_double }, | |
125 | { "f3", &builtin_type_double }, | |
126 | { "f4", &builtin_type_double }, | |
127 | { "f5", &builtin_type_double }, | |
128 | { "f6", &builtin_type_double }, | |
129 | { "f7", &builtin_type_double }, | |
130 | { "f8", &builtin_type_double }, | |
131 | { "f9", &builtin_type_double }, | |
132 | { "f10", &builtin_type_double }, | |
133 | { "f11", &builtin_type_double }, | |
134 | { "f12", &builtin_type_double }, | |
135 | { "f13", &builtin_type_double }, | |
136 | { "f14", &builtin_type_double }, | |
137 | { "f15", &builtin_type_double }, | |
138 | ||
139 | /* Pseudo registers. */ | |
140 | { "pc", &builtin_type_void_func_ptr }, | |
141 | { "cc", &builtin_type_int }, | |
142 | }; | |
143 | ||
144 | /* Return the name of register REGNUM. */ | |
145 | static const char * | |
146 | s390_register_name (int regnum) | |
147 | { | |
148 | gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS); | |
149 | return s390_register_info[regnum].name; | |
150 | } | |
151 | ||
152 | /* Return the GDB type object for the "standard" data type of data in | |
153 | register REGNUM. */ | |
154 | static struct type * | |
155 | s390_register_type (struct gdbarch *gdbarch, int regnum) | |
156 | { | |
157 | gdb_assert (regnum >= 0 && regnum < S390_NUM_TOTAL_REGS); | |
158 | return *s390_register_info[regnum].type; | |
5769d3cd AC |
159 | } |
160 | ||
d0f54f9d JB |
161 | /* DWARF Register Mapping. */ |
162 | ||
163 | static int s390_dwarf_regmap[] = | |
164 | { | |
165 | /* General Purpose Registers. */ | |
166 | S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM, | |
167 | S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM, | |
168 | S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM, | |
169 | S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM, | |
170 | ||
171 | /* Floating Point Registers. */ | |
172 | S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM, | |
173 | S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM, | |
174 | S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM, | |
175 | S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM, | |
176 | ||
177 | /* Control Registers (not mapped). */ | |
178 | -1, -1, -1, -1, -1, -1, -1, -1, | |
179 | -1, -1, -1, -1, -1, -1, -1, -1, | |
180 | ||
181 | /* Access Registers. */ | |
182 | S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM, | |
183 | S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM, | |
184 | S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM, | |
185 | S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM, | |
186 | ||
187 | /* Program Status Word. */ | |
188 | S390_PSWM_REGNUM, | |
189 | S390_PSWA_REGNUM | |
190 | }; | |
191 | ||
192 | /* Convert DWARF register number REG to the appropriate register | |
193 | number used by GDB. */ | |
a78f21af | 194 | static int |
d0f54f9d JB |
195 | s390_dwarf_reg_to_regnum (int reg) |
196 | { | |
197 | int regnum = -1; | |
198 | ||
16aff9a6 | 199 | if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap)) |
d0f54f9d JB |
200 | regnum = s390_dwarf_regmap[reg]; |
201 | ||
202 | if (regnum == -1) | |
8a3fe4f8 | 203 | warning (_("Unmapped DWARF Register #%d encountered."), reg); |
d0f54f9d JB |
204 | |
205 | return regnum; | |
206 | } | |
207 | ||
208 | /* Pseudo registers - PC and condition code. */ | |
209 | ||
210 | static void | |
211 | s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 212 | int regnum, gdb_byte *buf) |
d0f54f9d JB |
213 | { |
214 | ULONGEST val; | |
215 | ||
216 | switch (regnum) | |
217 | { | |
218 | case S390_PC_REGNUM: | |
219 | regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val); | |
220 | store_unsigned_integer (buf, 4, val & 0x7fffffff); | |
221 | break; | |
222 | ||
223 | case S390_CC_REGNUM: | |
224 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); | |
225 | store_unsigned_integer (buf, 4, (val >> 12) & 3); | |
226 | break; | |
227 | ||
228 | default: | |
e2e0b3e5 | 229 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d JB |
230 | } |
231 | } | |
232 | ||
233 | static void | |
234 | s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 235 | int regnum, const gdb_byte *buf) |
5769d3cd | 236 | { |
d0f54f9d JB |
237 | ULONGEST val, psw; |
238 | ||
239 | switch (regnum) | |
240 | { | |
241 | case S390_PC_REGNUM: | |
242 | val = extract_unsigned_integer (buf, 4); | |
243 | regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw); | |
244 | psw = (psw & 0x80000000) | (val & 0x7fffffff); | |
245 | regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, psw); | |
246 | break; | |
247 | ||
248 | case S390_CC_REGNUM: | |
249 | val = extract_unsigned_integer (buf, 4); | |
250 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); | |
251 | psw = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12); | |
252 | regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw); | |
253 | break; | |
254 | ||
255 | default: | |
e2e0b3e5 | 256 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d | 257 | } |
5769d3cd AC |
258 | } |
259 | ||
d0f54f9d JB |
260 | static void |
261 | s390x_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 262 | int regnum, gdb_byte *buf) |
d0f54f9d JB |
263 | { |
264 | ULONGEST val; | |
265 | ||
266 | switch (regnum) | |
267 | { | |
268 | case S390_PC_REGNUM: | |
269 | regcache_raw_read (regcache, S390_PSWA_REGNUM, buf); | |
270 | break; | |
271 | ||
272 | case S390_CC_REGNUM: | |
273 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val); | |
274 | store_unsigned_integer (buf, 4, (val >> 44) & 3); | |
275 | break; | |
276 | ||
277 | default: | |
e2e0b3e5 | 278 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d JB |
279 | } |
280 | } | |
281 | ||
282 | static void | |
283 | s390x_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache, | |
2e82d168 | 284 | int regnum, const gdb_byte *buf) |
d0f54f9d JB |
285 | { |
286 | ULONGEST val, psw; | |
287 | ||
288 | switch (regnum) | |
289 | { | |
290 | case S390_PC_REGNUM: | |
291 | regcache_raw_write (regcache, S390_PSWA_REGNUM, buf); | |
292 | break; | |
293 | ||
294 | case S390_CC_REGNUM: | |
295 | val = extract_unsigned_integer (buf, 4); | |
296 | regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw); | |
297 | psw = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44); | |
298 | regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, psw); | |
299 | break; | |
300 | ||
301 | default: | |
e2e0b3e5 | 302 | internal_error (__FILE__, __LINE__, _("invalid regnum")); |
d0f54f9d JB |
303 | } |
304 | } | |
305 | ||
306 | /* 'float' values are stored in the upper half of floating-point | |
307 | registers, even though we are otherwise a big-endian platform. */ | |
308 | ||
a78f21af | 309 | static int |
d0f54f9d | 310 | s390_convert_register_p (int regno, struct type *type) |
5769d3cd | 311 | { |
d0f54f9d JB |
312 | return (regno >= S390_F0_REGNUM && regno <= S390_F15_REGNUM) |
313 | && TYPE_LENGTH (type) < 8; | |
5769d3cd AC |
314 | } |
315 | ||
d0f54f9d JB |
316 | static void |
317 | s390_register_to_value (struct frame_info *frame, int regnum, | |
2e82d168 | 318 | struct type *valtype, gdb_byte *out) |
d0f54f9d | 319 | { |
2e82d168 | 320 | gdb_byte in[8]; |
d0f54f9d JB |
321 | int len = TYPE_LENGTH (valtype); |
322 | gdb_assert (len < 8); | |
323 | ||
324 | get_frame_register (frame, regnum, in); | |
325 | memcpy (out, in, len); | |
326 | } | |
327 | ||
328 | static void | |
329 | s390_value_to_register (struct frame_info *frame, int regnum, | |
2e82d168 | 330 | struct type *valtype, const gdb_byte *in) |
d0f54f9d | 331 | { |
2e82d168 | 332 | gdb_byte out[8]; |
d0f54f9d JB |
333 | int len = TYPE_LENGTH (valtype); |
334 | gdb_assert (len < 8); | |
335 | ||
336 | memset (out, 0, 8); | |
337 | memcpy (out, in, len); | |
338 | put_frame_register (frame, regnum, out); | |
339 | } | |
340 | ||
341 | /* Register groups. */ | |
342 | ||
a78f21af | 343 | static int |
d0f54f9d JB |
344 | s390_register_reggroup_p (struct gdbarch *gdbarch, int regnum, |
345 | struct reggroup *group) | |
346 | { | |
347 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
348 | ||
349 | /* Registers displayed via 'info regs'. */ | |
350 | if (group == general_reggroup) | |
351 | return (regnum >= S390_R0_REGNUM && regnum <= S390_R15_REGNUM) | |
352 | || regnum == S390_PC_REGNUM | |
353 | || regnum == S390_CC_REGNUM; | |
354 | ||
355 | /* Registers displayed via 'info float'. */ | |
356 | if (group == float_reggroup) | |
357 | return (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM) | |
358 | || regnum == S390_FPC_REGNUM; | |
359 | ||
360 | /* Registers that need to be saved/restored in order to | |
361 | push or pop frames. */ | |
362 | if (group == save_reggroup || group == restore_reggroup) | |
363 | return regnum != S390_PSWM_REGNUM && regnum != S390_PSWA_REGNUM; | |
364 | ||
365 | return default_register_reggroup_p (gdbarch, regnum, group); | |
366 | } | |
367 | ||
368 | ||
369 | /* Core file register sets. */ | |
370 | ||
371 | int s390_regmap_gregset[S390_NUM_REGS] = | |
372 | { | |
373 | /* Program Status Word. */ | |
374 | 0x00, 0x04, | |
375 | /* General Purpose Registers. */ | |
376 | 0x08, 0x0c, 0x10, 0x14, | |
377 | 0x18, 0x1c, 0x20, 0x24, | |
378 | 0x28, 0x2c, 0x30, 0x34, | |
379 | 0x38, 0x3c, 0x40, 0x44, | |
380 | /* Access Registers. */ | |
381 | 0x48, 0x4c, 0x50, 0x54, | |
382 | 0x58, 0x5c, 0x60, 0x64, | |
383 | 0x68, 0x6c, 0x70, 0x74, | |
384 | 0x78, 0x7c, 0x80, 0x84, | |
385 | /* Floating Point Control Word. */ | |
386 | -1, | |
387 | /* Floating Point Registers. */ | |
388 | -1, -1, -1, -1, -1, -1, -1, -1, | |
389 | -1, -1, -1, -1, -1, -1, -1, -1, | |
390 | }; | |
391 | ||
392 | int s390x_regmap_gregset[S390_NUM_REGS] = | |
393 | { | |
394 | 0x00, 0x08, | |
395 | /* General Purpose Registers. */ | |
396 | 0x10, 0x18, 0x20, 0x28, | |
397 | 0x30, 0x38, 0x40, 0x48, | |
398 | 0x50, 0x58, 0x60, 0x68, | |
399 | 0x70, 0x78, 0x80, 0x88, | |
400 | /* Access Registers. */ | |
401 | 0x90, 0x94, 0x98, 0x9c, | |
402 | 0xa0, 0xa4, 0xa8, 0xac, | |
403 | 0xb0, 0xb4, 0xb8, 0xbc, | |
404 | 0xc0, 0xc4, 0xc8, 0xcc, | |
405 | /* Floating Point Control Word. */ | |
406 | -1, | |
407 | /* Floating Point Registers. */ | |
408 | -1, -1, -1, -1, -1, -1, -1, -1, | |
409 | -1, -1, -1, -1, -1, -1, -1, -1, | |
410 | }; | |
411 | ||
412 | int s390_regmap_fpregset[S390_NUM_REGS] = | |
413 | { | |
414 | /* Program Status Word. */ | |
415 | -1, -1, | |
416 | /* General Purpose Registers. */ | |
417 | -1, -1, -1, -1, -1, -1, -1, -1, | |
418 | -1, -1, -1, -1, -1, -1, -1, -1, | |
419 | /* Access Registers. */ | |
420 | -1, -1, -1, -1, -1, -1, -1, -1, | |
421 | -1, -1, -1, -1, -1, -1, -1, -1, | |
422 | /* Floating Point Control Word. */ | |
423 | 0x00, | |
424 | /* Floating Point Registers. */ | |
425 | 0x08, 0x10, 0x18, 0x20, | |
426 | 0x28, 0x30, 0x38, 0x40, | |
427 | 0x48, 0x50, 0x58, 0x60, | |
428 | 0x68, 0x70, 0x78, 0x80, | |
429 | }; | |
430 | ||
431 | /* Supply register REGNUM from the register set REGSET to register cache | |
432 | REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */ | |
433 | static void | |
434 | s390_supply_regset (const struct regset *regset, struct regcache *regcache, | |
435 | int regnum, const void *regs, size_t len) | |
436 | { | |
437 | const int *offset = regset->descr; | |
438 | int i; | |
439 | ||
440 | for (i = 0; i < S390_NUM_REGS; i++) | |
441 | { | |
442 | if ((regnum == i || regnum == -1) && offset[i] != -1) | |
443 | regcache_raw_supply (regcache, i, (const char *)regs + offset[i]); | |
444 | } | |
445 | } | |
446 | ||
92f38ec2 UW |
447 | /* Collect register REGNUM from the register cache REGCACHE and store |
448 | it in the buffer specified by REGS and LEN as described by the | |
449 | general-purpose register set REGSET. If REGNUM is -1, do this for | |
450 | all registers in REGSET. */ | |
451 | static void | |
452 | s390_collect_regset (const struct regset *regset, | |
453 | const struct regcache *regcache, | |
454 | int regnum, void *regs, size_t len) | |
455 | { | |
456 | const int *offset = regset->descr; | |
457 | int i; | |
458 | ||
459 | for (i = 0; i < S390_NUM_REGS; i++) | |
460 | { | |
461 | if ((regnum == i || regnum == -1) && offset[i] != -1) | |
462 | regcache_raw_collect (regcache, i, (char *)regs + offset[i]); | |
463 | } | |
464 | } | |
465 | ||
d0f54f9d JB |
466 | static const struct regset s390_gregset = { |
467 | s390_regmap_gregset, | |
92f38ec2 UW |
468 | s390_supply_regset, |
469 | s390_collect_regset | |
d0f54f9d JB |
470 | }; |
471 | ||
472 | static const struct regset s390x_gregset = { | |
473 | s390x_regmap_gregset, | |
92f38ec2 UW |
474 | s390_supply_regset, |
475 | s390_collect_regset | |
d0f54f9d JB |
476 | }; |
477 | ||
478 | static const struct regset s390_fpregset = { | |
479 | s390_regmap_fpregset, | |
92f38ec2 UW |
480 | s390_supply_regset, |
481 | s390_collect_regset | |
d0f54f9d JB |
482 | }; |
483 | ||
484 | /* Return the appropriate register set for the core section identified | |
485 | by SECT_NAME and SECT_SIZE. */ | |
486 | const struct regset * | |
487 | s390_regset_from_core_section (struct gdbarch *gdbarch, | |
488 | const char *sect_name, size_t sect_size) | |
489 | { | |
490 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
491 | ||
492 | if (strcmp (sect_name, ".reg") == 0 && sect_size == tdep->sizeof_gregset) | |
493 | return tdep->gregset; | |
494 | ||
495 | if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset) | |
496 | return tdep->fpregset; | |
497 | ||
498 | return NULL; | |
5769d3cd AC |
499 | } |
500 | ||
d0f54f9d | 501 | |
4bc8c588 JB |
502 | /* Decoding S/390 instructions. */ |
503 | ||
504 | /* Named opcode values for the S/390 instructions we recognize. Some | |
505 | instructions have their opcode split across two fields; those are the | |
506 | op1_* and op2_* enums. */ | |
507 | enum | |
508 | { | |
a8c99f38 JB |
509 | op1_lhi = 0xa7, op2_lhi = 0x08, |
510 | op1_lghi = 0xa7, op2_lghi = 0x09, | |
00ce08ef | 511 | op1_lgfi = 0xc0, op2_lgfi = 0x01, |
4bc8c588 | 512 | op_lr = 0x18, |
a8c99f38 JB |
513 | op_lgr = 0xb904, |
514 | op_l = 0x58, | |
515 | op1_ly = 0xe3, op2_ly = 0x58, | |
516 | op1_lg = 0xe3, op2_lg = 0x04, | |
517 | op_lm = 0x98, | |
518 | op1_lmy = 0xeb, op2_lmy = 0x98, | |
519 | op1_lmg = 0xeb, op2_lmg = 0x04, | |
4bc8c588 | 520 | op_st = 0x50, |
a8c99f38 | 521 | op1_sty = 0xe3, op2_sty = 0x50, |
4bc8c588 | 522 | op1_stg = 0xe3, op2_stg = 0x24, |
a8c99f38 | 523 | op_std = 0x60, |
4bc8c588 | 524 | op_stm = 0x90, |
a8c99f38 | 525 | op1_stmy = 0xeb, op2_stmy = 0x90, |
4bc8c588 | 526 | op1_stmg = 0xeb, op2_stmg = 0x24, |
a8c99f38 JB |
527 | op1_aghi = 0xa7, op2_aghi = 0x0b, |
528 | op1_ahi = 0xa7, op2_ahi = 0x0a, | |
00ce08ef UW |
529 | op1_agfi = 0xc2, op2_agfi = 0x08, |
530 | op1_afi = 0xc2, op2_afi = 0x09, | |
531 | op1_algfi= 0xc2, op2_algfi= 0x0a, | |
532 | op1_alfi = 0xc2, op2_alfi = 0x0b, | |
a8c99f38 JB |
533 | op_ar = 0x1a, |
534 | op_agr = 0xb908, | |
535 | op_a = 0x5a, | |
536 | op1_ay = 0xe3, op2_ay = 0x5a, | |
537 | op1_ag = 0xe3, op2_ag = 0x08, | |
00ce08ef UW |
538 | op1_slgfi= 0xc2, op2_slgfi= 0x04, |
539 | op1_slfi = 0xc2, op2_slfi = 0x05, | |
a8c99f38 JB |
540 | op_sr = 0x1b, |
541 | op_sgr = 0xb909, | |
542 | op_s = 0x5b, | |
543 | op1_sy = 0xe3, op2_sy = 0x5b, | |
544 | op1_sg = 0xe3, op2_sg = 0x09, | |
545 | op_nr = 0x14, | |
546 | op_ngr = 0xb980, | |
547 | op_la = 0x41, | |
548 | op1_lay = 0xe3, op2_lay = 0x71, | |
549 | op1_larl = 0xc0, op2_larl = 0x00, | |
550 | op_basr = 0x0d, | |
551 | op_bas = 0x4d, | |
552 | op_bcr = 0x07, | |
553 | op_bc = 0x0d, | |
554 | op1_bras = 0xa7, op2_bras = 0x05, | |
555 | op1_brasl= 0xc0, op2_brasl= 0x05, | |
556 | op1_brc = 0xa7, op2_brc = 0x04, | |
557 | op1_brcl = 0xc0, op2_brcl = 0x04, | |
4bc8c588 JB |
558 | }; |
559 | ||
560 | ||
a8c99f38 JB |
561 | /* Read a single instruction from address AT. */ |
562 | ||
563 | #define S390_MAX_INSTR_SIZE 6 | |
564 | static int | |
565 | s390_readinstruction (bfd_byte instr[], CORE_ADDR at) | |
566 | { | |
567 | static int s390_instrlen[] = { 2, 4, 4, 6 }; | |
568 | int instrlen; | |
569 | ||
1f602b35 | 570 | if (deprecated_read_memory_nobpt (at, &instr[0], 2)) |
a8c99f38 JB |
571 | return -1; |
572 | instrlen = s390_instrlen[instr[0] >> 6]; | |
573 | if (instrlen > 2) | |
574 | { | |
1f602b35 | 575 | if (deprecated_read_memory_nobpt (at + 2, &instr[2], instrlen - 2)) |
a8c99f38 JB |
576 | return -1; |
577 | } | |
578 | return instrlen; | |
579 | } | |
580 | ||
581 | ||
4bc8c588 JB |
582 | /* The functions below are for recognizing and decoding S/390 |
583 | instructions of various formats. Each of them checks whether INSN | |
584 | is an instruction of the given format, with the specified opcodes. | |
585 | If it is, it sets the remaining arguments to the values of the | |
586 | instruction's fields, and returns a non-zero value; otherwise, it | |
587 | returns zero. | |
588 | ||
589 | These functions' arguments appear in the order they appear in the | |
590 | instruction, not in the machine-language form. So, opcodes always | |
591 | come first, even though they're sometimes scattered around the | |
592 | instructions. And displacements appear before base and extension | |
593 | registers, as they do in the assembly syntax, not at the end, as | |
594 | they do in the machine language. */ | |
a78f21af | 595 | static int |
4bc8c588 JB |
596 | is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2) |
597 | { | |
598 | if (insn[0] == op1 && (insn[1] & 0xf) == op2) | |
599 | { | |
600 | *r1 = (insn[1] >> 4) & 0xf; | |
601 | /* i2 is a 16-bit signed quantity. */ | |
602 | *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000; | |
603 | return 1; | |
604 | } | |
605 | else | |
606 | return 0; | |
607 | } | |
8ac0e65a | 608 | |
5769d3cd | 609 | |
4bc8c588 JB |
610 | static int |
611 | is_ril (bfd_byte *insn, int op1, int op2, | |
612 | unsigned int *r1, int *i2) | |
613 | { | |
614 | if (insn[0] == op1 && (insn[1] & 0xf) == op2) | |
615 | { | |
616 | *r1 = (insn[1] >> 4) & 0xf; | |
617 | /* i2 is a signed quantity. If the host 'int' is 32 bits long, | |
618 | no sign extension is necessary, but we don't want to assume | |
619 | that. */ | |
620 | *i2 = (((insn[2] << 24) | |
621 | | (insn[3] << 16) | |
622 | | (insn[4] << 8) | |
623 | | (insn[5])) ^ 0x80000000) - 0x80000000; | |
624 | return 1; | |
625 | } | |
626 | else | |
627 | return 0; | |
628 | } | |
629 | ||
630 | ||
631 | static int | |
632 | is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) | |
633 | { | |
634 | if (insn[0] == op) | |
635 | { | |
636 | *r1 = (insn[1] >> 4) & 0xf; | |
637 | *r2 = insn[1] & 0xf; | |
638 | return 1; | |
639 | } | |
640 | else | |
641 | return 0; | |
642 | } | |
643 | ||
644 | ||
645 | static int | |
646 | is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2) | |
647 | { | |
648 | if (((insn[0] << 8) | insn[1]) == op) | |
649 | { | |
650 | /* Yes, insn[3]. insn[2] is unused in RRE format. */ | |
651 | *r1 = (insn[3] >> 4) & 0xf; | |
652 | *r2 = insn[3] & 0xf; | |
653 | return 1; | |
654 | } | |
655 | else | |
656 | return 0; | |
657 | } | |
658 | ||
659 | ||
660 | static int | |
661 | is_rs (bfd_byte *insn, int op, | |
662 | unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) | |
663 | { | |
664 | if (insn[0] == op) | |
665 | { | |
666 | *r1 = (insn[1] >> 4) & 0xf; | |
667 | *r3 = insn[1] & 0xf; | |
668 | *b2 = (insn[2] >> 4) & 0xf; | |
669 | *d2 = ((insn[2] & 0xf) << 8) | insn[3]; | |
670 | return 1; | |
671 | } | |
672 | else | |
673 | return 0; | |
674 | } | |
675 | ||
676 | ||
677 | static int | |
a8c99f38 | 678 | is_rsy (bfd_byte *insn, int op1, int op2, |
4bc8c588 JB |
679 | unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2) |
680 | { | |
681 | if (insn[0] == op1 | |
4bc8c588 JB |
682 | && insn[5] == op2) |
683 | { | |
684 | *r1 = (insn[1] >> 4) & 0xf; | |
685 | *r3 = insn[1] & 0xf; | |
686 | *b2 = (insn[2] >> 4) & 0xf; | |
a8c99f38 JB |
687 | /* The 'long displacement' is a 20-bit signed integer. */ |
688 | *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) | |
689 | ^ 0x80000) - 0x80000; | |
4bc8c588 JB |
690 | return 1; |
691 | } | |
692 | else | |
693 | return 0; | |
694 | } | |
695 | ||
696 | ||
697 | static int | |
698 | is_rx (bfd_byte *insn, int op, | |
699 | unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) | |
700 | { | |
701 | if (insn[0] == op) | |
702 | { | |
703 | *r1 = (insn[1] >> 4) & 0xf; | |
704 | *x2 = insn[1] & 0xf; | |
705 | *b2 = (insn[2] >> 4) & 0xf; | |
706 | *d2 = ((insn[2] & 0xf) << 8) | insn[3]; | |
707 | return 1; | |
708 | } | |
709 | else | |
710 | return 0; | |
711 | } | |
712 | ||
713 | ||
714 | static int | |
a8c99f38 | 715 | is_rxy (bfd_byte *insn, int op1, int op2, |
4bc8c588 JB |
716 | unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2) |
717 | { | |
718 | if (insn[0] == op1 | |
4bc8c588 JB |
719 | && insn[5] == op2) |
720 | { | |
721 | *r1 = (insn[1] >> 4) & 0xf; | |
722 | *x2 = insn[1] & 0xf; | |
723 | *b2 = (insn[2] >> 4) & 0xf; | |
a8c99f38 JB |
724 | /* The 'long displacement' is a 20-bit signed integer. */ |
725 | *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12)) | |
726 | ^ 0x80000) - 0x80000; | |
4bc8c588 JB |
727 | return 1; |
728 | } | |
729 | else | |
730 | return 0; | |
731 | } | |
732 | ||
733 | ||
3fc46200 | 734 | /* Prologue analysis. */ |
4bc8c588 | 735 | |
d0f54f9d JB |
736 | #define S390_NUM_GPRS 16 |
737 | #define S390_NUM_FPRS 16 | |
4bc8c588 | 738 | |
a8c99f38 JB |
739 | struct s390_prologue_data { |
740 | ||
ee1b3323 UW |
741 | /* The stack. */ |
742 | struct pv_area *stack; | |
743 | ||
a8c99f38 JB |
744 | /* The size of a GPR or FPR. */ |
745 | int gpr_size; | |
746 | int fpr_size; | |
747 | ||
748 | /* The general-purpose registers. */ | |
3fc46200 | 749 | pv_t gpr[S390_NUM_GPRS]; |
a8c99f38 JB |
750 | |
751 | /* The floating-point registers. */ | |
3fc46200 | 752 | pv_t fpr[S390_NUM_FPRS]; |
a8c99f38 | 753 | |
121d8485 UW |
754 | /* The offset relative to the CFA where the incoming GPR N was saved |
755 | by the function prologue. 0 if not saved or unknown. */ | |
756 | int gpr_slot[S390_NUM_GPRS]; | |
4bc8c588 | 757 | |
121d8485 UW |
758 | /* Likewise for FPRs. */ |
759 | int fpr_slot[S390_NUM_FPRS]; | |
4bc8c588 | 760 | |
121d8485 UW |
761 | /* Nonzero if the backchain was saved. This is assumed to be the |
762 | case when the incoming SP is saved at the current SP location. */ | |
763 | int back_chain_saved_p; | |
764 | }; | |
4bc8c588 | 765 | |
3fc46200 UW |
766 | /* Return the effective address for an X-style instruction, like: |
767 | ||
768 | L R1, D2(X2, B2) | |
769 | ||
770 | Here, X2 and B2 are registers, and D2 is a signed 20-bit | |
771 | constant; the effective address is the sum of all three. If either | |
772 | X2 or B2 are zero, then it doesn't contribute to the sum --- this | |
773 | means that r0 can't be used as either X2 or B2. */ | |
774 | static pv_t | |
775 | s390_addr (struct s390_prologue_data *data, | |
776 | int d2, unsigned int x2, unsigned int b2) | |
777 | { | |
778 | pv_t result; | |
779 | ||
780 | result = pv_constant (d2); | |
781 | if (x2) | |
782 | result = pv_add (result, data->gpr[x2]); | |
783 | if (b2) | |
784 | result = pv_add (result, data->gpr[b2]); | |
785 | ||
786 | return result; | |
787 | } | |
788 | ||
789 | /* Do a SIZE-byte store of VALUE to D2(X2,B2). */ | |
a8c99f38 | 790 | static void |
3fc46200 UW |
791 | s390_store (struct s390_prologue_data *data, |
792 | int d2, unsigned int x2, unsigned int b2, CORE_ADDR size, | |
793 | pv_t value) | |
4bc8c588 | 794 | { |
3fc46200 | 795 | pv_t addr = s390_addr (data, d2, x2, b2); |
ee1b3323 | 796 | pv_t offset; |
121d8485 UW |
797 | |
798 | /* Check whether we are storing the backchain. */ | |
3fc46200 | 799 | offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr); |
121d8485 | 800 | |
3fc46200 | 801 | if (pv_is_constant (offset) && offset.k == 0) |
121d8485 | 802 | if (size == data->gpr_size |
3fc46200 | 803 | && pv_is_register_k (value, S390_SP_REGNUM, 0)) |
121d8485 UW |
804 | { |
805 | data->back_chain_saved_p = 1; | |
806 | return; | |
807 | } | |
808 | ||
809 | ||
810 | /* Check whether we are storing a register into the stack. */ | |
ee1b3323 UW |
811 | if (!pv_area_store_would_trash (data->stack, addr)) |
812 | pv_area_store (data->stack, addr, size, value); | |
4bc8c588 | 813 | |
a8c99f38 | 814 | |
121d8485 UW |
815 | /* Note: If this is some store we cannot identify, you might think we |
816 | should forget our cached values, as any of those might have been hit. | |
817 | ||
818 | However, we make the assumption that the register save areas are only | |
819 | ever stored to once in any given function, and we do recognize these | |
820 | stores. Thus every store we cannot recognize does not hit our data. */ | |
4bc8c588 | 821 | } |
4bc8c588 | 822 | |
3fc46200 UW |
823 | /* Do a SIZE-byte load from D2(X2,B2). */ |
824 | static pv_t | |
825 | s390_load (struct s390_prologue_data *data, | |
826 | int d2, unsigned int x2, unsigned int b2, CORE_ADDR size) | |
827 | ||
4bc8c588 | 828 | { |
3fc46200 | 829 | pv_t addr = s390_addr (data, d2, x2, b2); |
ee1b3323 | 830 | pv_t offset; |
4bc8c588 | 831 | |
a8c99f38 JB |
832 | /* If it's a load from an in-line constant pool, then we can |
833 | simulate that, under the assumption that the code isn't | |
834 | going to change between the time the processor actually | |
835 | executed it creating the current frame, and the time when | |
836 | we're analyzing the code to unwind past that frame. */ | |
3fc46200 | 837 | if (pv_is_constant (addr)) |
4bc8c588 | 838 | { |
a8c99f38 | 839 | struct section_table *secp; |
3fc46200 | 840 | secp = target_section_by_addr (¤t_target, addr.k); |
a8c99f38 JB |
841 | if (secp != NULL |
842 | && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section) | |
843 | & SEC_READONLY)) | |
3fc46200 | 844 | return pv_constant (read_memory_integer (addr.k, size)); |
a8c99f38 | 845 | } |
7666f43c | 846 | |
121d8485 | 847 | /* Check whether we are accessing one of our save slots. */ |
ee1b3323 UW |
848 | return pv_area_fetch (data->stack, addr, size); |
849 | } | |
121d8485 | 850 | |
ee1b3323 UW |
851 | /* Function for finding saved registers in a 'struct pv_area'; we pass |
852 | this to pv_area_scan. | |
121d8485 | 853 | |
ee1b3323 UW |
854 | If VALUE is a saved register, ADDR says it was saved at a constant |
855 | offset from the frame base, and SIZE indicates that the whole | |
856 | register was saved, record its offset in the reg_offset table in | |
857 | PROLOGUE_UNTYPED. */ | |
858 | static void | |
859 | s390_check_for_saved (void *data_untyped, pv_t addr, CORE_ADDR size, pv_t value) | |
860 | { | |
861 | struct s390_prologue_data *data = data_untyped; | |
862 | int i, offset; | |
863 | ||
864 | if (!pv_is_register (addr, S390_SP_REGNUM)) | |
865 | return; | |
866 | ||
867 | offset = 16 * data->gpr_size + 32 - addr.k; | |
4bc8c588 | 868 | |
ee1b3323 UW |
869 | /* If we are storing the original value of a register, we want to |
870 | record the CFA offset. If the same register is stored multiple | |
871 | times, the stack slot with the highest address counts. */ | |
872 | ||
873 | for (i = 0; i < S390_NUM_GPRS; i++) | |
874 | if (size == data->gpr_size | |
875 | && pv_is_register_k (value, S390_R0_REGNUM + i, 0)) | |
876 | if (data->gpr_slot[i] == 0 | |
877 | || data->gpr_slot[i] > offset) | |
878 | { | |
879 | data->gpr_slot[i] = offset; | |
880 | return; | |
881 | } | |
882 | ||
883 | for (i = 0; i < S390_NUM_FPRS; i++) | |
884 | if (size == data->fpr_size | |
885 | && pv_is_register_k (value, S390_F0_REGNUM + i, 0)) | |
886 | if (data->fpr_slot[i] == 0 | |
887 | || data->fpr_slot[i] > offset) | |
888 | { | |
889 | data->fpr_slot[i] = offset; | |
890 | return; | |
891 | } | |
a8c99f38 | 892 | } |
4bc8c588 | 893 | |
a8c99f38 JB |
894 | /* Analyze the prologue of the function starting at START_PC, |
895 | continuing at most until CURRENT_PC. Initialize DATA to | |
896 | hold all information we find out about the state of the registers | |
897 | and stack slots. Return the address of the instruction after | |
898 | the last one that changed the SP, FP, or back chain; or zero | |
899 | on error. */ | |
900 | static CORE_ADDR | |
901 | s390_analyze_prologue (struct gdbarch *gdbarch, | |
902 | CORE_ADDR start_pc, | |
903 | CORE_ADDR current_pc, | |
904 | struct s390_prologue_data *data) | |
4bc8c588 | 905 | { |
a8c99f38 JB |
906 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
907 | ||
4bc8c588 | 908 | /* Our return value: |
a8c99f38 JB |
909 | The address of the instruction after the last one that changed |
910 | the SP, FP, or back chain; zero if we got an error trying to | |
911 | read memory. */ | |
912 | CORE_ADDR result = start_pc; | |
4bc8c588 | 913 | |
4bc8c588 JB |
914 | /* The current PC for our abstract interpretation. */ |
915 | CORE_ADDR pc; | |
916 | ||
917 | /* The address of the next instruction after that. */ | |
918 | CORE_ADDR next_pc; | |
919 | ||
4bc8c588 JB |
920 | /* Set up everything's initial value. */ |
921 | { | |
922 | int i; | |
923 | ||
ee1b3323 UW |
924 | data->stack = make_pv_area (S390_SP_REGNUM); |
925 | ||
a8c99f38 JB |
926 | /* For the purpose of prologue tracking, we consider the GPR size to |
927 | be equal to the ABI word size, even if it is actually larger | |
928 | (i.e. when running a 32-bit binary under a 64-bit kernel). */ | |
929 | data->gpr_size = word_size; | |
930 | data->fpr_size = 8; | |
931 | ||
4bc8c588 | 932 | for (i = 0; i < S390_NUM_GPRS; i++) |
3fc46200 | 933 | data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0); |
4bc8c588 JB |
934 | |
935 | for (i = 0; i < S390_NUM_FPRS; i++) | |
3fc46200 | 936 | data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0); |
4bc8c588 | 937 | |
121d8485 UW |
938 | for (i = 0; i < S390_NUM_GPRS; i++) |
939 | data->gpr_slot[i] = 0; | |
940 | ||
941 | for (i = 0; i < S390_NUM_FPRS; i++) | |
942 | data->fpr_slot[i] = 0; | |
4bc8c588 | 943 | |
121d8485 | 944 | data->back_chain_saved_p = 0; |
4bc8c588 JB |
945 | } |
946 | ||
a8c99f38 JB |
947 | /* Start interpreting instructions, until we hit the frame's |
948 | current PC or the first branch instruction. */ | |
949 | for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc) | |
5769d3cd | 950 | { |
4bc8c588 | 951 | bfd_byte insn[S390_MAX_INSTR_SIZE]; |
a788de9b | 952 | int insn_len = s390_readinstruction (insn, pc); |
4bc8c588 | 953 | |
3fc46200 UW |
954 | bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 }; |
955 | bfd_byte *insn32 = word_size == 4 ? insn : dummy; | |
956 | bfd_byte *insn64 = word_size == 8 ? insn : dummy; | |
957 | ||
4bc8c588 | 958 | /* Fields for various kinds of instructions. */ |
a8c99f38 JB |
959 | unsigned int b2, r1, r2, x2, r3; |
960 | int i2, d2; | |
4bc8c588 | 961 | |
121d8485 | 962 | /* The values of SP and FP before this instruction, |
4bc8c588 | 963 | for detecting instructions that change them. */ |
3fc46200 | 964 | pv_t pre_insn_sp, pre_insn_fp; |
121d8485 UW |
965 | /* Likewise for the flag whether the back chain was saved. */ |
966 | int pre_insn_back_chain_saved_p; | |
4bc8c588 JB |
967 | |
968 | /* If we got an error trying to read the instruction, report it. */ | |
969 | if (insn_len < 0) | |
8ac0e65a | 970 | { |
a8c99f38 | 971 | result = 0; |
4bc8c588 JB |
972 | break; |
973 | } | |
974 | ||
975 | next_pc = pc + insn_len; | |
976 | ||
a8c99f38 JB |
977 | pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
978 | pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; | |
121d8485 | 979 | pre_insn_back_chain_saved_p = data->back_chain_saved_p; |
4bc8c588 | 980 | |
4bc8c588 | 981 | |
3fc46200 UW |
982 | /* LHI r1, i2 --- load halfword immediate. */ |
983 | /* LGHI r1, i2 --- load halfword immediate (64-bit version). */ | |
984 | /* LGFI r1, i2 --- load fullword immediate. */ | |
985 | if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2) | |
986 | || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2) | |
987 | || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2)) | |
988 | data->gpr[r1] = pv_constant (i2); | |
989 | ||
990 | /* LR r1, r2 --- load from register. */ | |
991 | /* LGR r1, r2 --- load from register (64-bit version). */ | |
992 | else if (is_rr (insn32, op_lr, &r1, &r2) | |
993 | || is_rre (insn64, op_lgr, &r1, &r2)) | |
994 | data->gpr[r1] = data->gpr[r2]; | |
995 | ||
996 | /* L r1, d2(x2, b2) --- load. */ | |
997 | /* LY r1, d2(x2, b2) --- load (long-displacement version). */ | |
998 | /* LG r1, d2(x2, b2) --- load (64-bit version). */ | |
999 | else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2) | |
1000 | || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2) | |
1001 | || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2)) | |
1002 | data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size); | |
1003 | ||
1004 | /* ST r1, d2(x2, b2) --- store. */ | |
1005 | /* STY r1, d2(x2, b2) --- store (long-displacement version). */ | |
1006 | /* STG r1, d2(x2, b2) --- store (64-bit version). */ | |
1007 | else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2) | |
1008 | || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2) | |
1009 | || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2)) | |
1010 | s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]); | |
1011 | ||
1012 | /* STD r1, d2(x2,b2) --- store floating-point register. */ | |
4bc8c588 | 1013 | else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2)) |
3fc46200 UW |
1014 | s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]); |
1015 | ||
1016 | /* STM r1, r3, d2(b2) --- store multiple. */ | |
1017 | /* STMY r1, r3, d2(b2) --- store multiple (long-displacement version). */ | |
1018 | /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */ | |
1019 | else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2) | |
1020 | || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2) | |
1021 | || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2)) | |
4bc8c588 | 1022 | { |
3fc46200 UW |
1023 | for (; r1 <= r3; r1++, d2 += data->gpr_size) |
1024 | s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]); | |
4bc8c588 JB |
1025 | } |
1026 | ||
3fc46200 UW |
1027 | /* AHI r1, i2 --- add halfword immediate. */ |
1028 | /* AGHI r1, i2 --- add halfword immediate (64-bit version). */ | |
1029 | /* AFI r1, i2 --- add fullword immediate. */ | |
1030 | /* AGFI r1, i2 --- add fullword immediate (64-bit version). */ | |
1031 | else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2) | |
1032 | || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2) | |
1033 | || is_ril (insn32, op1_afi, op2_afi, &r1, &i2) | |
1034 | || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2)) | |
1035 | data->gpr[r1] = pv_add_constant (data->gpr[r1], i2); | |
1036 | ||
1037 | /* ALFI r1, i2 --- add logical immediate. */ | |
1038 | /* ALGFI r1, i2 --- add logical immediate (64-bit version). */ | |
1039 | else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2) | |
1040 | || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2)) | |
1041 | data->gpr[r1] = pv_add_constant (data->gpr[r1], | |
1042 | (CORE_ADDR)i2 & 0xffffffff); | |
1043 | ||
1044 | /* AR r1, r2 -- add register. */ | |
1045 | /* AGR r1, r2 -- add register (64-bit version). */ | |
1046 | else if (is_rr (insn32, op_ar, &r1, &r2) | |
1047 | || is_rre (insn64, op_agr, &r1, &r2)) | |
1048 | data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]); | |
1049 | ||
1050 | /* A r1, d2(x2, b2) -- add. */ | |
1051 | /* AY r1, d2(x2, b2) -- add (long-displacement version). */ | |
1052 | /* AG r1, d2(x2, b2) -- add (64-bit version). */ | |
1053 | else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2) | |
1054 | || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2) | |
1055 | || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2)) | |
1056 | data->gpr[r1] = pv_add (data->gpr[r1], | |
1057 | s390_load (data, d2, x2, b2, data->gpr_size)); | |
1058 | ||
1059 | /* SLFI r1, i2 --- subtract logical immediate. */ | |
1060 | /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */ | |
1061 | else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2) | |
1062 | || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2)) | |
1063 | data->gpr[r1] = pv_add_constant (data->gpr[r1], | |
1064 | -((CORE_ADDR)i2 & 0xffffffff)); | |
1065 | ||
1066 | /* SR r1, r2 -- subtract register. */ | |
1067 | /* SGR r1, r2 -- subtract register (64-bit version). */ | |
1068 | else if (is_rr (insn32, op_sr, &r1, &r2) | |
1069 | || is_rre (insn64, op_sgr, &r1, &r2)) | |
1070 | data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]); | |
1071 | ||
1072 | /* S r1, d2(x2, b2) -- subtract. */ | |
1073 | /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */ | |
1074 | /* SG r1, d2(x2, b2) -- subtract (64-bit version). */ | |
1075 | else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2) | |
1076 | || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2) | |
1077 | || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2)) | |
1078 | data->gpr[r1] = pv_subtract (data->gpr[r1], | |
1079 | s390_load (data, d2, x2, b2, data->gpr_size)); | |
1080 | ||
1081 | /* LA r1, d2(x2, b2) --- load address. */ | |
1082 | /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */ | |
1083 | else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2) | |
1084 | || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2)) | |
1085 | data->gpr[r1] = s390_addr (data, d2, x2, b2); | |
1086 | ||
1087 | /* LARL r1, i2 --- load address relative long. */ | |
a8c99f38 | 1088 | else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2)) |
3fc46200 | 1089 | data->gpr[r1] = pv_constant (pc + i2 * 2); |
a8c99f38 | 1090 | |
3fc46200 | 1091 | /* BASR r1, 0 --- branch and save. |
a8c99f38 JB |
1092 | Since r2 is zero, this saves the PC in r1, but doesn't branch. */ |
1093 | else if (is_rr (insn, op_basr, &r1, &r2) | |
1094 | && r2 == 0) | |
3fc46200 | 1095 | data->gpr[r1] = pv_constant (next_pc); |
a8c99f38 | 1096 | |
3fc46200 | 1097 | /* BRAS r1, i2 --- branch relative and save. */ |
a8c99f38 JB |
1098 | else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)) |
1099 | { | |
3fc46200 | 1100 | data->gpr[r1] = pv_constant (next_pc); |
a8c99f38 | 1101 | next_pc = pc + i2 * 2; |
4bc8c588 | 1102 | |
a8c99f38 JB |
1103 | /* We'd better not interpret any backward branches. We'll |
1104 | never terminate. */ | |
1105 | if (next_pc <= pc) | |
4bc8c588 JB |
1106 | break; |
1107 | } | |
1108 | ||
a8c99f38 JB |
1109 | /* Terminate search when hitting any other branch instruction. */ |
1110 | else if (is_rr (insn, op_basr, &r1, &r2) | |
1111 | || is_rx (insn, op_bas, &r1, &d2, &x2, &b2) | |
1112 | || is_rr (insn, op_bcr, &r1, &r2) | |
1113 | || is_rx (insn, op_bc, &r1, &d2, &x2, &b2) | |
1114 | || is_ri (insn, op1_brc, op2_brc, &r1, &i2) | |
1115 | || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2) | |
1116 | || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2)) | |
1117 | break; | |
1118 | ||
4bc8c588 JB |
1119 | else |
1120 | /* An instruction we don't know how to simulate. The only | |
1121 | safe thing to do would be to set every value we're tracking | |
a8c99f38 JB |
1122 | to 'unknown'. Instead, we'll be optimistic: we assume that |
1123 | we *can* interpret every instruction that the compiler uses | |
1124 | to manipulate any of the data we're interested in here -- | |
1125 | then we can just ignore anything else. */ | |
1126 | ; | |
4bc8c588 JB |
1127 | |
1128 | /* Record the address after the last instruction that changed | |
1129 | the FP, SP, or backlink. Ignore instructions that changed | |
1130 | them back to their original values --- those are probably | |
1131 | restore instructions. (The back chain is never restored, | |
1132 | just popped.) */ | |
1133 | { | |
3fc46200 UW |
1134 | pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
1135 | pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; | |
4bc8c588 | 1136 | |
3fc46200 UW |
1137 | if ((! pv_is_identical (pre_insn_sp, sp) |
1138 | && ! pv_is_register_k (sp, S390_SP_REGNUM, 0) | |
1139 | && sp.kind != pvk_unknown) | |
1140 | || (! pv_is_identical (pre_insn_fp, fp) | |
1141 | && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0) | |
1142 | && fp.kind != pvk_unknown) | |
121d8485 | 1143 | || pre_insn_back_chain_saved_p != data->back_chain_saved_p) |
a8c99f38 | 1144 | result = next_pc; |
4bc8c588 | 1145 | } |
5769d3cd | 1146 | } |
4bc8c588 | 1147 | |
ee1b3323 UW |
1148 | /* Record where all the registers were saved. */ |
1149 | pv_area_scan (data->stack, s390_check_for_saved, data); | |
1150 | ||
1151 | free_pv_area (data->stack); | |
1152 | data->stack = NULL; | |
1153 | ||
4bc8c588 | 1154 | return result; |
5769d3cd AC |
1155 | } |
1156 | ||
a8c99f38 JB |
1157 | /* Advance PC across any function entry prologue instructions to reach |
1158 | some "real" code. */ | |
1159 | static CORE_ADDR | |
1160 | s390_skip_prologue (CORE_ADDR pc) | |
1161 | { | |
1162 | struct s390_prologue_data data; | |
1163 | CORE_ADDR skip_pc; | |
1164 | skip_pc = s390_analyze_prologue (current_gdbarch, pc, (CORE_ADDR)-1, &data); | |
1165 | return skip_pc ? skip_pc : pc; | |
1166 | } | |
1167 | ||
d0f54f9d JB |
1168 | /* Return true if we are in the functin's epilogue, i.e. after the |
1169 | instruction that destroyed the function's stack frame. */ | |
1170 | static int | |
1171 | s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc) | |
1172 | { | |
1173 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
1174 | ||
1175 | /* In frameless functions, there's not frame to destroy and thus | |
1176 | we don't care about the epilogue. | |
1177 | ||
1178 | In functions with frame, the epilogue sequence is a pair of | |
1179 | a LM-type instruction that restores (amongst others) the | |
1180 | return register %r14 and the stack pointer %r15, followed | |
1181 | by a branch 'br %r14' --or equivalent-- that effects the | |
1182 | actual return. | |
1183 | ||
1184 | In that situation, this function needs to return 'true' in | |
1185 | exactly one case: when pc points to that branch instruction. | |
1186 | ||
1187 | Thus we try to disassemble the one instructions immediately | |
1188 | preceeding pc and check whether it is an LM-type instruction | |
1189 | modifying the stack pointer. | |
1190 | ||
1191 | Note that disassembling backwards is not reliable, so there | |
1192 | is a slight chance of false positives here ... */ | |
1193 | ||
1194 | bfd_byte insn[6]; | |
1195 | unsigned int r1, r3, b2; | |
1196 | int d2; | |
1197 | ||
1198 | if (word_size == 4 | |
1f602b35 | 1199 | && !deprecated_read_memory_nobpt (pc - 4, insn, 4) |
d0f54f9d JB |
1200 | && is_rs (insn, op_lm, &r1, &r3, &d2, &b2) |
1201 | && r3 == S390_SP_REGNUM - S390_R0_REGNUM) | |
1202 | return 1; | |
1203 | ||
a8c99f38 | 1204 | if (word_size == 4 |
1f602b35 | 1205 | && !deprecated_read_memory_nobpt (pc - 6, insn, 6) |
a8c99f38 JB |
1206 | && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2) |
1207 | && r3 == S390_SP_REGNUM - S390_R0_REGNUM) | |
1208 | return 1; | |
1209 | ||
d0f54f9d | 1210 | if (word_size == 8 |
1f602b35 | 1211 | && !deprecated_read_memory_nobpt (pc - 6, insn, 6) |
a8c99f38 | 1212 | && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2) |
d0f54f9d JB |
1213 | && r3 == S390_SP_REGNUM - S390_R0_REGNUM) |
1214 | return 1; | |
1215 | ||
1216 | return 0; | |
1217 | } | |
5769d3cd | 1218 | |
a8c99f38 JB |
1219 | |
1220 | /* Normal stack frames. */ | |
1221 | ||
1222 | struct s390_unwind_cache { | |
1223 | ||
1224 | CORE_ADDR func; | |
1225 | CORE_ADDR frame_base; | |
1226 | CORE_ADDR local_base; | |
1227 | ||
1228 | struct trad_frame_saved_reg *saved_regs; | |
1229 | }; | |
1230 | ||
a78f21af | 1231 | static int |
a8c99f38 JB |
1232 | s390_prologue_frame_unwind_cache (struct frame_info *next_frame, |
1233 | struct s390_unwind_cache *info) | |
5769d3cd | 1234 | { |
a8c99f38 | 1235 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
121d8485 | 1236 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
a8c99f38 JB |
1237 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
1238 | struct s390_prologue_data data; | |
3fc46200 UW |
1239 | pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM]; |
1240 | pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; | |
121d8485 UW |
1241 | int i; |
1242 | CORE_ADDR cfa; | |
a8c99f38 JB |
1243 | CORE_ADDR func; |
1244 | CORE_ADDR result; | |
1245 | ULONGEST reg; | |
1246 | CORE_ADDR prev_sp; | |
1247 | int frame_pointer; | |
1248 | int size; | |
1249 | ||
1250 | /* Try to find the function start address. If we can't find it, we don't | |
1251 | bother searching for it -- with modern compilers this would be mostly | |
1252 | pointless anyway. Trust that we'll either have valid DWARF-2 CFI data | |
1253 | or else a valid backchain ... */ | |
1254 | func = frame_func_unwind (next_frame); | |
1255 | if (!func) | |
1256 | return 0; | |
5769d3cd | 1257 | |
a8c99f38 JB |
1258 | /* Try to analyze the prologue. */ |
1259 | result = s390_analyze_prologue (gdbarch, func, | |
1260 | frame_pc_unwind (next_frame), &data); | |
1261 | if (!result) | |
5769d3cd | 1262 | return 0; |
5769d3cd | 1263 | |
a8c99f38 JB |
1264 | /* If this was successful, we should have found the instruction that |
1265 | sets the stack pointer register to the previous value of the stack | |
1266 | pointer minus the frame size. */ | |
3fc46200 | 1267 | if (!pv_is_register (*sp, S390_SP_REGNUM)) |
5769d3cd | 1268 | return 0; |
a8c99f38 JB |
1269 | |
1270 | /* A frame size of zero at this point can mean either a real | |
1271 | frameless function, or else a failure to find the prologue. | |
1272 | Perform some sanity checks to verify we really have a | |
1273 | frameless function. */ | |
1274 | if (sp->k == 0) | |
5769d3cd | 1275 | { |
a8c99f38 JB |
1276 | /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame |
1277 | size zero. This is only possible if the next frame is a sentinel | |
1278 | frame, a dummy frame, or a signal trampoline frame. */ | |
0e100dab AC |
1279 | /* FIXME: cagney/2004-05-01: This sanity check shouldn't be |
1280 | needed, instead the code should simpliy rely on its | |
1281 | analysis. */ | |
1282 | if (get_frame_type (next_frame) == NORMAL_FRAME) | |
5769d3cd | 1283 | return 0; |
5769d3cd | 1284 | |
a8c99f38 JB |
1285 | /* If we really have a frameless function, %r14 must be valid |
1286 | -- in particular, it must point to a different function. */ | |
1287 | reg = frame_unwind_register_unsigned (next_frame, S390_RETADDR_REGNUM); | |
1288 | reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1; | |
1289 | if (get_pc_function_start (reg) == func) | |
5769d3cd | 1290 | { |
a8c99f38 JB |
1291 | /* However, there is one case where it *is* valid for %r14 |
1292 | to point to the same function -- if this is a recursive | |
1293 | call, and we have stopped in the prologue *before* the | |
1294 | stack frame was allocated. | |
1295 | ||
1296 | Recognize this case by looking ahead a bit ... */ | |
5769d3cd | 1297 | |
a8c99f38 | 1298 | struct s390_prologue_data data2; |
3fc46200 | 1299 | pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM]; |
a8c99f38 JB |
1300 | |
1301 | if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2) | |
3fc46200 | 1302 | && pv_is_register (*sp, S390_SP_REGNUM) |
a8c99f38 JB |
1303 | && sp->k != 0)) |
1304 | return 0; | |
5769d3cd | 1305 | } |
5769d3cd | 1306 | } |
5769d3cd AC |
1307 | |
1308 | ||
a8c99f38 JB |
1309 | /* OK, we've found valid prologue data. */ |
1310 | size = -sp->k; | |
5769d3cd | 1311 | |
a8c99f38 JB |
1312 | /* If the frame pointer originally also holds the same value |
1313 | as the stack pointer, we're probably using it. If it holds | |
1314 | some other value -- even a constant offset -- it is most | |
1315 | likely used as temp register. */ | |
3fc46200 | 1316 | if (pv_is_identical (*sp, *fp)) |
a8c99f38 JB |
1317 | frame_pointer = S390_FRAME_REGNUM; |
1318 | else | |
1319 | frame_pointer = S390_SP_REGNUM; | |
1320 | ||
1321 | /* If we've detected a function with stack frame, we'll still have to | |
1322 | treat it as frameless if we're currently within the function epilog | |
1323 | code at a point where the frame pointer has already been restored. | |
1324 | This can only happen in an innermost frame. */ | |
0e100dab AC |
1325 | /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed, |
1326 | instead the code should simpliy rely on its analysis. */ | |
1327 | if (size > 0 && get_frame_type (next_frame) != NORMAL_FRAME) | |
5769d3cd | 1328 | { |
a8c99f38 JB |
1329 | /* See the comment in s390_in_function_epilogue_p on why this is |
1330 | not completely reliable ... */ | |
1331 | if (s390_in_function_epilogue_p (gdbarch, frame_pc_unwind (next_frame))) | |
5769d3cd | 1332 | { |
a8c99f38 JB |
1333 | memset (&data, 0, sizeof (data)); |
1334 | size = 0; | |
1335 | frame_pointer = S390_SP_REGNUM; | |
5769d3cd | 1336 | } |
5769d3cd | 1337 | } |
5769d3cd | 1338 | |
a8c99f38 JB |
1339 | /* Once we know the frame register and the frame size, we can unwind |
1340 | the current value of the frame register from the next frame, and | |
1341 | add back the frame size to arrive that the previous frame's | |
1342 | stack pointer value. */ | |
1343 | prev_sp = frame_unwind_register_unsigned (next_frame, frame_pointer) + size; | |
121d8485 | 1344 | cfa = prev_sp + 16*word_size + 32; |
5769d3cd | 1345 | |
121d8485 UW |
1346 | /* Record the addresses of all register spill slots the prologue parser |
1347 | has recognized. Consider only registers defined as call-saved by the | |
1348 | ABI; for call-clobbered registers the parser may have recognized | |
1349 | spurious stores. */ | |
5769d3cd | 1350 | |
121d8485 UW |
1351 | for (i = 6; i <= 15; i++) |
1352 | if (data.gpr_slot[i] != 0) | |
1353 | info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i]; | |
a8c99f38 | 1354 | |
121d8485 | 1355 | switch (tdep->abi) |
5769d3cd | 1356 | { |
121d8485 UW |
1357 | case ABI_LINUX_S390: |
1358 | if (data.fpr_slot[4] != 0) | |
1359 | info->saved_regs[S390_F4_REGNUM].addr = cfa - data.fpr_slot[4]; | |
1360 | if (data.fpr_slot[6] != 0) | |
1361 | info->saved_regs[S390_F6_REGNUM].addr = cfa - data.fpr_slot[6]; | |
1362 | break; | |
a8c99f38 | 1363 | |
121d8485 UW |
1364 | case ABI_LINUX_ZSERIES: |
1365 | for (i = 8; i <= 15; i++) | |
1366 | if (data.fpr_slot[i] != 0) | |
1367 | info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i]; | |
1368 | break; | |
a8c99f38 JB |
1369 | } |
1370 | ||
1371 | /* Function return will set PC to %r14. */ | |
1372 | info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; | |
1373 | ||
1374 | /* In frameless functions, we unwind simply by moving the return | |
1375 | address to the PC. However, if we actually stored to the | |
1376 | save area, use that -- we might only think the function frameless | |
1377 | because we're in the middle of the prologue ... */ | |
1378 | if (size == 0 | |
1379 | && !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM)) | |
1380 | { | |
1381 | info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM; | |
5769d3cd | 1382 | } |
a8c99f38 JB |
1383 | |
1384 | /* Another sanity check: unless this is a frameless function, | |
1385 | we should have found spill slots for SP and PC. | |
1386 | If not, we cannot unwind further -- this happens e.g. in | |
1387 | libc's thread_start routine. */ | |
1388 | if (size > 0) | |
5769d3cd | 1389 | { |
a8c99f38 JB |
1390 | if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM) |
1391 | || !trad_frame_addr_p (info->saved_regs, S390_PC_REGNUM)) | |
1392 | prev_sp = -1; | |
5769d3cd | 1393 | } |
a8c99f38 JB |
1394 | |
1395 | /* We use the current value of the frame register as local_base, | |
1396 | and the top of the register save area as frame_base. */ | |
1397 | if (prev_sp != -1) | |
1398 | { | |
1399 | info->frame_base = prev_sp + 16*word_size + 32; | |
1400 | info->local_base = prev_sp - size; | |
1401 | } | |
1402 | ||
1403 | info->func = func; | |
1404 | return 1; | |
5769d3cd AC |
1405 | } |
1406 | ||
a78f21af | 1407 | static void |
a8c99f38 JB |
1408 | s390_backchain_frame_unwind_cache (struct frame_info *next_frame, |
1409 | struct s390_unwind_cache *info) | |
5769d3cd | 1410 | { |
a8c99f38 JB |
1411 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
1412 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
1413 | CORE_ADDR backchain; | |
1414 | ULONGEST reg; | |
1415 | LONGEST sp; | |
1416 | ||
1417 | /* Get the backchain. */ | |
1418 | reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); | |
1419 | backchain = read_memory_unsigned_integer (reg, word_size); | |
1420 | ||
1421 | /* A zero backchain terminates the frame chain. As additional | |
1422 | sanity check, let's verify that the spill slot for SP in the | |
1423 | save area pointed to by the backchain in fact links back to | |
1424 | the save area. */ | |
1425 | if (backchain != 0 | |
1426 | && safe_read_memory_integer (backchain + 15*word_size, word_size, &sp) | |
1427 | && (CORE_ADDR)sp == backchain) | |
1428 | { | |
1429 | /* We don't know which registers were saved, but it will have | |
1430 | to be at least %r14 and %r15. This will allow us to continue | |
1431 | unwinding, but other prev-frame registers may be incorrect ... */ | |
1432 | info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size; | |
1433 | info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size; | |
1434 | ||
1435 | /* Function return will set PC to %r14. */ | |
1436 | info->saved_regs[S390_PC_REGNUM] = info->saved_regs[S390_RETADDR_REGNUM]; | |
1437 | ||
1438 | /* We use the current value of the frame register as local_base, | |
1439 | and the top of the register save area as frame_base. */ | |
1440 | info->frame_base = backchain + 16*word_size + 32; | |
1441 | info->local_base = reg; | |
1442 | } | |
1443 | ||
1444 | info->func = frame_pc_unwind (next_frame); | |
5769d3cd AC |
1445 | } |
1446 | ||
a8c99f38 JB |
1447 | static struct s390_unwind_cache * |
1448 | s390_frame_unwind_cache (struct frame_info *next_frame, | |
1449 | void **this_prologue_cache) | |
1450 | { | |
1451 | struct s390_unwind_cache *info; | |
1452 | if (*this_prologue_cache) | |
1453 | return *this_prologue_cache; | |
1454 | ||
1455 | info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache); | |
1456 | *this_prologue_cache = info; | |
1457 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1458 | info->func = -1; | |
1459 | info->frame_base = -1; | |
1460 | info->local_base = -1; | |
1461 | ||
1462 | /* Try to use prologue analysis to fill the unwind cache. | |
1463 | If this fails, fall back to reading the stack backchain. */ | |
1464 | if (!s390_prologue_frame_unwind_cache (next_frame, info)) | |
1465 | s390_backchain_frame_unwind_cache (next_frame, info); | |
1466 | ||
1467 | return info; | |
1468 | } | |
5769d3cd | 1469 | |
a78f21af | 1470 | static void |
a8c99f38 JB |
1471 | s390_frame_this_id (struct frame_info *next_frame, |
1472 | void **this_prologue_cache, | |
1473 | struct frame_id *this_id) | |
5769d3cd | 1474 | { |
a8c99f38 JB |
1475 | struct s390_unwind_cache *info |
1476 | = s390_frame_unwind_cache (next_frame, this_prologue_cache); | |
5769d3cd | 1477 | |
a8c99f38 JB |
1478 | if (info->frame_base == -1) |
1479 | return; | |
5769d3cd | 1480 | |
a8c99f38 | 1481 | *this_id = frame_id_build (info->frame_base, info->func); |
5769d3cd AC |
1482 | } |
1483 | ||
a8c99f38 JB |
1484 | static void |
1485 | s390_frame_prev_register (struct frame_info *next_frame, | |
1486 | void **this_prologue_cache, | |
1487 | int regnum, int *optimizedp, | |
1488 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
f127898a | 1489 | int *realnump, gdb_byte *bufferp) |
a8c99f38 JB |
1490 | { |
1491 | struct s390_unwind_cache *info | |
1492 | = s390_frame_unwind_cache (next_frame, this_prologue_cache); | |
1f67027d AC |
1493 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
1494 | optimizedp, lvalp, addrp, realnump, bufferp); | |
a8c99f38 JB |
1495 | } |
1496 | ||
1497 | static const struct frame_unwind s390_frame_unwind = { | |
1498 | NORMAL_FRAME, | |
1499 | s390_frame_this_id, | |
1500 | s390_frame_prev_register | |
1501 | }; | |
1502 | ||
1503 | static const struct frame_unwind * | |
1504 | s390_frame_sniffer (struct frame_info *next_frame) | |
1505 | { | |
1506 | return &s390_frame_unwind; | |
1507 | } | |
5769d3cd AC |
1508 | |
1509 | ||
8e645ae7 AC |
1510 | /* Code stubs and their stack frames. For things like PLTs and NULL |
1511 | function calls (where there is no true frame and the return address | |
1512 | is in the RETADDR register). */ | |
a8c99f38 | 1513 | |
8e645ae7 AC |
1514 | struct s390_stub_unwind_cache |
1515 | { | |
a8c99f38 JB |
1516 | CORE_ADDR frame_base; |
1517 | struct trad_frame_saved_reg *saved_regs; | |
1518 | }; | |
1519 | ||
8e645ae7 AC |
1520 | static struct s390_stub_unwind_cache * |
1521 | s390_stub_frame_unwind_cache (struct frame_info *next_frame, | |
1522 | void **this_prologue_cache) | |
5769d3cd | 1523 | { |
a8c99f38 JB |
1524 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
1525 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
8e645ae7 | 1526 | struct s390_stub_unwind_cache *info; |
a8c99f38 | 1527 | ULONGEST reg; |
5c3cf190 | 1528 | |
a8c99f38 JB |
1529 | if (*this_prologue_cache) |
1530 | return *this_prologue_cache; | |
5c3cf190 | 1531 | |
8e645ae7 | 1532 | info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache); |
a8c99f38 JB |
1533 | *this_prologue_cache = info; |
1534 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1535 | ||
1536 | /* The return address is in register %r14. */ | |
1537 | info->saved_regs[S390_PC_REGNUM].realreg = S390_RETADDR_REGNUM; | |
1538 | ||
1539 | /* Retrieve stack pointer and determine our frame base. */ | |
1540 | reg = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); | |
1541 | info->frame_base = reg + 16*word_size + 32; | |
1542 | ||
1543 | return info; | |
5769d3cd AC |
1544 | } |
1545 | ||
a8c99f38 | 1546 | static void |
8e645ae7 AC |
1547 | s390_stub_frame_this_id (struct frame_info *next_frame, |
1548 | void **this_prologue_cache, | |
1549 | struct frame_id *this_id) | |
5769d3cd | 1550 | { |
8e645ae7 AC |
1551 | struct s390_stub_unwind_cache *info |
1552 | = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache); | |
a8c99f38 JB |
1553 | *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame)); |
1554 | } | |
5769d3cd | 1555 | |
a8c99f38 | 1556 | static void |
8e645ae7 AC |
1557 | s390_stub_frame_prev_register (struct frame_info *next_frame, |
1558 | void **this_prologue_cache, | |
1559 | int regnum, int *optimizedp, | |
1560 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
f127898a | 1561 | int *realnump, gdb_byte *bufferp) |
8e645ae7 AC |
1562 | { |
1563 | struct s390_stub_unwind_cache *info | |
1564 | = s390_stub_frame_unwind_cache (next_frame, this_prologue_cache); | |
1f67027d AC |
1565 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
1566 | optimizedp, lvalp, addrp, realnump, bufferp); | |
a8c99f38 JB |
1567 | } |
1568 | ||
8e645ae7 | 1569 | static const struct frame_unwind s390_stub_frame_unwind = { |
a8c99f38 | 1570 | NORMAL_FRAME, |
8e645ae7 AC |
1571 | s390_stub_frame_this_id, |
1572 | s390_stub_frame_prev_register | |
a8c99f38 | 1573 | }; |
5769d3cd | 1574 | |
a8c99f38 | 1575 | static const struct frame_unwind * |
8e645ae7 | 1576 | s390_stub_frame_sniffer (struct frame_info *next_frame) |
a8c99f38 | 1577 | { |
8e645ae7 AC |
1578 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
1579 | bfd_byte insn[S390_MAX_INSTR_SIZE]; | |
1580 | ||
1581 | /* If the current PC points to non-readable memory, we assume we | |
1582 | have trapped due to an invalid function pointer call. We handle | |
1583 | the non-existing current function like a PLT stub. */ | |
1584 | if (in_plt_section (pc, NULL) | |
1585 | || s390_readinstruction (insn, pc) < 0) | |
1586 | return &s390_stub_frame_unwind; | |
1587 | return NULL; | |
a8c99f38 | 1588 | } |
5769d3cd AC |
1589 | |
1590 | ||
a8c99f38 | 1591 | /* Signal trampoline stack frames. */ |
5769d3cd | 1592 | |
a8c99f38 JB |
1593 | struct s390_sigtramp_unwind_cache { |
1594 | CORE_ADDR frame_base; | |
1595 | struct trad_frame_saved_reg *saved_regs; | |
1596 | }; | |
5769d3cd | 1597 | |
a8c99f38 JB |
1598 | static struct s390_sigtramp_unwind_cache * |
1599 | s390_sigtramp_frame_unwind_cache (struct frame_info *next_frame, | |
1600 | void **this_prologue_cache) | |
5769d3cd | 1601 | { |
a8c99f38 JB |
1602 | struct gdbarch *gdbarch = get_frame_arch (next_frame); |
1603 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
1604 | struct s390_sigtramp_unwind_cache *info; | |
1605 | ULONGEST this_sp, prev_sp; | |
1606 | CORE_ADDR next_ra, next_cfa, sigreg_ptr; | |
1607 | int i; | |
1608 | ||
1609 | if (*this_prologue_cache) | |
1610 | return *this_prologue_cache; | |
5769d3cd | 1611 | |
a8c99f38 JB |
1612 | info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache); |
1613 | *this_prologue_cache = info; | |
1614 | info->saved_regs = trad_frame_alloc_saved_regs (next_frame); | |
1615 | ||
1616 | this_sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); | |
1617 | next_ra = frame_pc_unwind (next_frame); | |
1618 | next_cfa = this_sp + 16*word_size + 32; | |
1619 | ||
1620 | /* New-style RT frame: | |
1621 | retcode + alignment (8 bytes) | |
1622 | siginfo (128 bytes) | |
1623 | ucontext (contains sigregs at offset 5 words) */ | |
1624 | if (next_ra == next_cfa) | |
1625 | { | |
f0f63663 | 1626 | sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8); |
a8c99f38 JB |
1627 | } |
1628 | ||
1629 | /* Old-style RT frame and all non-RT frames: | |
1630 | old signal mask (8 bytes) | |
1631 | pointer to sigregs */ | |
5769d3cd AC |
1632 | else |
1633 | { | |
a8c99f38 JB |
1634 | sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8, word_size); |
1635 | } | |
5769d3cd | 1636 | |
a8c99f38 JB |
1637 | /* The sigregs structure looks like this: |
1638 | long psw_mask; | |
1639 | long psw_addr; | |
1640 | long gprs[16]; | |
1641 | int acrs[16]; | |
1642 | int fpc; | |
1643 | int __pad; | |
1644 | double fprs[16]; */ | |
5769d3cd | 1645 | |
a8c99f38 JB |
1646 | /* Let's ignore the PSW mask, it will not be restored anyway. */ |
1647 | sigreg_ptr += word_size; | |
1648 | ||
1649 | /* Next comes the PSW address. */ | |
1650 | info->saved_regs[S390_PC_REGNUM].addr = sigreg_ptr; | |
1651 | sigreg_ptr += word_size; | |
1652 | ||
1653 | /* Then the GPRs. */ | |
1654 | for (i = 0; i < 16; i++) | |
1655 | { | |
1656 | info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr; | |
1657 | sigreg_ptr += word_size; | |
1658 | } | |
1659 | ||
1660 | /* Then the ACRs. */ | |
1661 | for (i = 0; i < 16; i++) | |
1662 | { | |
1663 | info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr; | |
1664 | sigreg_ptr += 4; | |
5769d3cd | 1665 | } |
5769d3cd | 1666 | |
a8c99f38 JB |
1667 | /* The floating-point control word. */ |
1668 | info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr; | |
1669 | sigreg_ptr += 8; | |
5769d3cd | 1670 | |
a8c99f38 JB |
1671 | /* And finally the FPRs. */ |
1672 | for (i = 0; i < 16; i++) | |
1673 | { | |
1674 | info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr; | |
1675 | sigreg_ptr += 8; | |
1676 | } | |
1677 | ||
1678 | /* Restore the previous frame's SP. */ | |
1679 | prev_sp = read_memory_unsigned_integer ( | |
1680 | info->saved_regs[S390_SP_REGNUM].addr, | |
1681 | word_size); | |
5769d3cd | 1682 | |
a8c99f38 JB |
1683 | /* Determine our frame base. */ |
1684 | info->frame_base = prev_sp + 16*word_size + 32; | |
5769d3cd | 1685 | |
a8c99f38 | 1686 | return info; |
5769d3cd AC |
1687 | } |
1688 | ||
a8c99f38 JB |
1689 | static void |
1690 | s390_sigtramp_frame_this_id (struct frame_info *next_frame, | |
1691 | void **this_prologue_cache, | |
1692 | struct frame_id *this_id) | |
5769d3cd | 1693 | { |
a8c99f38 JB |
1694 | struct s390_sigtramp_unwind_cache *info |
1695 | = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
1696 | *this_id = frame_id_build (info->frame_base, frame_pc_unwind (next_frame)); | |
5769d3cd AC |
1697 | } |
1698 | ||
4c8287ac | 1699 | static void |
a8c99f38 JB |
1700 | s390_sigtramp_frame_prev_register (struct frame_info *next_frame, |
1701 | void **this_prologue_cache, | |
1702 | int regnum, int *optimizedp, | |
1703 | enum lval_type *lvalp, CORE_ADDR *addrp, | |
f127898a | 1704 | int *realnump, gdb_byte *bufferp) |
a8c99f38 JB |
1705 | { |
1706 | struct s390_sigtramp_unwind_cache *info | |
1707 | = s390_sigtramp_frame_unwind_cache (next_frame, this_prologue_cache); | |
1f67027d AC |
1708 | trad_frame_get_prev_register (next_frame, info->saved_regs, regnum, |
1709 | optimizedp, lvalp, addrp, realnump, bufferp); | |
a8c99f38 JB |
1710 | } |
1711 | ||
1712 | static const struct frame_unwind s390_sigtramp_frame_unwind = { | |
1713 | SIGTRAMP_FRAME, | |
1714 | s390_sigtramp_frame_this_id, | |
1715 | s390_sigtramp_frame_prev_register | |
1716 | }; | |
1717 | ||
1718 | static const struct frame_unwind * | |
1719 | s390_sigtramp_frame_sniffer (struct frame_info *next_frame) | |
5769d3cd | 1720 | { |
a8c99f38 JB |
1721 | CORE_ADDR pc = frame_pc_unwind (next_frame); |
1722 | bfd_byte sigreturn[2]; | |
4c8287ac | 1723 | |
1f602b35 | 1724 | if (deprecated_read_memory_nobpt (pc, sigreturn, 2)) |
a8c99f38 | 1725 | return NULL; |
4c8287ac | 1726 | |
a8c99f38 JB |
1727 | if (sigreturn[0] != 0x0a /* svc */) |
1728 | return NULL; | |
5769d3cd | 1729 | |
a8c99f38 JB |
1730 | if (sigreturn[1] != 119 /* sigreturn */ |
1731 | && sigreturn[1] != 173 /* rt_sigreturn */) | |
1732 | return NULL; | |
1733 | ||
1734 | return &s390_sigtramp_frame_unwind; | |
5769d3cd AC |
1735 | } |
1736 | ||
4c8287ac | 1737 | |
a8c99f38 JB |
1738 | /* Frame base handling. */ |
1739 | ||
1740 | static CORE_ADDR | |
1741 | s390_frame_base_address (struct frame_info *next_frame, void **this_cache) | |
4c8287ac | 1742 | { |
a8c99f38 JB |
1743 | struct s390_unwind_cache *info |
1744 | = s390_frame_unwind_cache (next_frame, this_cache); | |
1745 | return info->frame_base; | |
1746 | } | |
1747 | ||
1748 | static CORE_ADDR | |
1749 | s390_local_base_address (struct frame_info *next_frame, void **this_cache) | |
1750 | { | |
1751 | struct s390_unwind_cache *info | |
1752 | = s390_frame_unwind_cache (next_frame, this_cache); | |
1753 | return info->local_base; | |
1754 | } | |
1755 | ||
1756 | static const struct frame_base s390_frame_base = { | |
1757 | &s390_frame_unwind, | |
1758 | s390_frame_base_address, | |
1759 | s390_local_base_address, | |
1760 | s390_local_base_address | |
1761 | }; | |
1762 | ||
1763 | static CORE_ADDR | |
1764 | s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1765 | { | |
1766 | ULONGEST pc; | |
1767 | pc = frame_unwind_register_unsigned (next_frame, S390_PC_REGNUM); | |
1768 | return gdbarch_addr_bits_remove (gdbarch, pc); | |
1769 | } | |
1770 | ||
1771 | static CORE_ADDR | |
1772 | s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
1773 | { | |
1774 | ULONGEST sp; | |
1775 | sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM); | |
1776 | return gdbarch_addr_bits_remove (gdbarch, sp); | |
4c8287ac JB |
1777 | } |
1778 | ||
1779 | ||
a431654a AC |
1780 | /* DWARF-2 frame support. */ |
1781 | ||
1782 | static void | |
1783 | s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum, | |
aff37fc1 DM |
1784 | struct dwarf2_frame_state_reg *reg, |
1785 | struct frame_info *next_frame) | |
a431654a AC |
1786 | { |
1787 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); | |
1788 | ||
1789 | switch (tdep->abi) | |
1790 | { | |
1791 | case ABI_LINUX_S390: | |
1792 | /* Call-saved registers. */ | |
1793 | if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) | |
1794 | || regnum == S390_F4_REGNUM | |
1795 | || regnum == S390_F6_REGNUM) | |
1796 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
1797 | ||
1798 | /* Call-clobbered registers. */ | |
1799 | else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM) | |
1800 | || (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM | |
1801 | && regnum != S390_F4_REGNUM && regnum != S390_F6_REGNUM)) | |
1802 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
1803 | ||
1804 | /* The return address column. */ | |
1805 | else if (regnum == S390_PC_REGNUM) | |
1806 | reg->how = DWARF2_FRAME_REG_RA; | |
1807 | break; | |
1808 | ||
1809 | case ABI_LINUX_ZSERIES: | |
1810 | /* Call-saved registers. */ | |
1811 | if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM) | |
1812 | || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)) | |
1813 | reg->how = DWARF2_FRAME_REG_SAME_VALUE; | |
1814 | ||
1815 | /* Call-clobbered registers. */ | |
1816 | else if ((regnum >= S390_R0_REGNUM && regnum <= S390_R5_REGNUM) | |
1817 | || (regnum >= S390_F0_REGNUM && regnum <= S390_F7_REGNUM)) | |
1818 | reg->how = DWARF2_FRAME_REG_UNDEFINED; | |
1819 | ||
1820 | /* The return address column. */ | |
1821 | else if (regnum == S390_PC_REGNUM) | |
1822 | reg->how = DWARF2_FRAME_REG_RA; | |
1823 | break; | |
1824 | } | |
1825 | } | |
1826 | ||
1827 | ||
b0cf273e JB |
1828 | /* Dummy function calls. */ |
1829 | ||
78f8b424 JB |
1830 | /* Return non-zero if TYPE is an integer-like type, zero otherwise. |
1831 | "Integer-like" types are those that should be passed the way | |
1832 | integers are: integers, enums, ranges, characters, and booleans. */ | |
1833 | static int | |
1834 | is_integer_like (struct type *type) | |
1835 | { | |
1836 | enum type_code code = TYPE_CODE (type); | |
1837 | ||
1838 | return (code == TYPE_CODE_INT | |
1839 | || code == TYPE_CODE_ENUM | |
1840 | || code == TYPE_CODE_RANGE | |
1841 | || code == TYPE_CODE_CHAR | |
1842 | || code == TYPE_CODE_BOOL); | |
1843 | } | |
1844 | ||
78f8b424 JB |
1845 | /* Return non-zero if TYPE is a pointer-like type, zero otherwise. |
1846 | "Pointer-like" types are those that should be passed the way | |
1847 | pointers are: pointers and references. */ | |
1848 | static int | |
1849 | is_pointer_like (struct type *type) | |
1850 | { | |
1851 | enum type_code code = TYPE_CODE (type); | |
1852 | ||
1853 | return (code == TYPE_CODE_PTR | |
1854 | || code == TYPE_CODE_REF); | |
1855 | } | |
1856 | ||
1857 | ||
20a940cc JB |
1858 | /* Return non-zero if TYPE is a `float singleton' or `double |
1859 | singleton', zero otherwise. | |
1860 | ||
1861 | A `T singleton' is a struct type with one member, whose type is | |
1862 | either T or a `T singleton'. So, the following are all float | |
1863 | singletons: | |
1864 | ||
1865 | struct { float x }; | |
1866 | struct { struct { float x; } x; }; | |
1867 | struct { struct { struct { float x; } x; } x; }; | |
1868 | ||
1869 | ... and so on. | |
1870 | ||
b0cf273e JB |
1871 | All such structures are passed as if they were floats or doubles, |
1872 | as the (revised) ABI says. */ | |
20a940cc JB |
1873 | static int |
1874 | is_float_singleton (struct type *type) | |
1875 | { | |
b0cf273e JB |
1876 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1) |
1877 | { | |
1878 | struct type *singleton_type = TYPE_FIELD_TYPE (type, 0); | |
1879 | CHECK_TYPEDEF (singleton_type); | |
1880 | ||
1881 | return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT | |
1882 | || is_float_singleton (singleton_type)); | |
1883 | } | |
1884 | ||
1885 | return 0; | |
20a940cc JB |
1886 | } |
1887 | ||
1888 | ||
1889 | /* Return non-zero if TYPE is a struct-like type, zero otherwise. | |
1890 | "Struct-like" types are those that should be passed as structs are: | |
1891 | structs and unions. | |
1892 | ||
1893 | As an odd quirk, not mentioned in the ABI, GCC passes float and | |
1894 | double singletons as if they were a plain float, double, etc. (The | |
1895 | corresponding union types are handled normally.) So we exclude | |
1896 | those types here. *shrug* */ | |
1897 | static int | |
1898 | is_struct_like (struct type *type) | |
1899 | { | |
1900 | enum type_code code = TYPE_CODE (type); | |
1901 | ||
1902 | return (code == TYPE_CODE_UNION | |
1903 | || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type))); | |
1904 | } | |
1905 | ||
1906 | ||
1907 | /* Return non-zero if TYPE is a float-like type, zero otherwise. | |
1908 | "Float-like" types are those that should be passed as | |
1909 | floating-point values are. | |
1910 | ||
1911 | You'd think this would just be floats, doubles, long doubles, etc. | |
1912 | But as an odd quirk, not mentioned in the ABI, GCC passes float and | |
1913 | double singletons as if they were a plain float, double, etc. (The | |
4d819d0e | 1914 | corresponding union types are handled normally.) So we include |
20a940cc JB |
1915 | those types here. *shrug* */ |
1916 | static int | |
1917 | is_float_like (struct type *type) | |
1918 | { | |
1919 | return (TYPE_CODE (type) == TYPE_CODE_FLT | |
1920 | || is_float_singleton (type)); | |
1921 | } | |
1922 | ||
1923 | ||
78f8b424 | 1924 | static int |
b0cf273e | 1925 | is_power_of_two (unsigned int n) |
78f8b424 | 1926 | { |
b0cf273e | 1927 | return ((n & (n - 1)) == 0); |
78f8b424 JB |
1928 | } |
1929 | ||
b0cf273e JB |
1930 | /* Return non-zero if TYPE should be passed as a pointer to a copy, |
1931 | zero otherwise. */ | |
4d819d0e | 1932 | static int |
b0cf273e | 1933 | s390_function_arg_pass_by_reference (struct type *type) |
4d819d0e JB |
1934 | { |
1935 | unsigned length = TYPE_LENGTH (type); | |
b0cf273e JB |
1936 | if (length > 8) |
1937 | return 1; | |
4d819d0e | 1938 | |
b0cf273e JB |
1939 | /* FIXME: All complex and vector types are also returned by reference. */ |
1940 | return is_struct_like (type) && !is_power_of_two (length); | |
4d819d0e JB |
1941 | } |
1942 | ||
b0cf273e JB |
1943 | /* Return non-zero if TYPE should be passed in a float register |
1944 | if possible. */ | |
78f8b424 | 1945 | static int |
b0cf273e | 1946 | s390_function_arg_float (struct type *type) |
78f8b424 | 1947 | { |
78f8b424 | 1948 | unsigned length = TYPE_LENGTH (type); |
b0cf273e JB |
1949 | if (length > 8) |
1950 | return 0; | |
78f8b424 | 1951 | |
b0cf273e | 1952 | return is_float_like (type); |
4d819d0e JB |
1953 | } |
1954 | ||
b0cf273e JB |
1955 | /* Return non-zero if TYPE should be passed in an integer register |
1956 | (or a pair of integer registers) if possible. */ | |
78f8b424 | 1957 | static int |
b0cf273e | 1958 | s390_function_arg_integer (struct type *type) |
78f8b424 | 1959 | { |
78f8b424 | 1960 | unsigned length = TYPE_LENGTH (type); |
b0cf273e JB |
1961 | if (length > 8) |
1962 | return 0; | |
78f8b424 | 1963 | |
b0cf273e JB |
1964 | return is_integer_like (type) |
1965 | || is_pointer_like (type) | |
1966 | || (is_struct_like (type) && is_power_of_two (length)); | |
78f8b424 JB |
1967 | } |
1968 | ||
78f8b424 JB |
1969 | /* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full |
1970 | word as required for the ABI. */ | |
1971 | static LONGEST | |
1972 | extend_simple_arg (struct value *arg) | |
1973 | { | |
4991999e | 1974 | struct type *type = value_type (arg); |
78f8b424 JB |
1975 | |
1976 | /* Even structs get passed in the least significant bits of the | |
1977 | register / memory word. It's not really right to extract them as | |
1978 | an integer, but it does take care of the extension. */ | |
1979 | if (TYPE_UNSIGNED (type)) | |
0fd88904 | 1980 | return extract_unsigned_integer (value_contents (arg), |
78f8b424 JB |
1981 | TYPE_LENGTH (type)); |
1982 | else | |
0fd88904 | 1983 | return extract_signed_integer (value_contents (arg), |
78f8b424 JB |
1984 | TYPE_LENGTH (type)); |
1985 | } | |
1986 | ||
1987 | ||
78f8b424 JB |
1988 | /* Return the alignment required by TYPE. */ |
1989 | static int | |
1990 | alignment_of (struct type *type) | |
1991 | { | |
1992 | int alignment; | |
1993 | ||
1994 | if (is_integer_like (type) | |
1995 | || is_pointer_like (type) | |
1996 | || TYPE_CODE (type) == TYPE_CODE_FLT) | |
1997 | alignment = TYPE_LENGTH (type); | |
1998 | else if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
1999 | || TYPE_CODE (type) == TYPE_CODE_UNION) | |
2000 | { | |
2001 | int i; | |
2002 | ||
2003 | alignment = 1; | |
2004 | for (i = 0; i < TYPE_NFIELDS (type); i++) | |
2005 | { | |
2006 | int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i)); | |
2007 | ||
2008 | if (field_alignment > alignment) | |
2009 | alignment = field_alignment; | |
2010 | } | |
2011 | } | |
2012 | else | |
2013 | alignment = 1; | |
2014 | ||
2015 | /* Check that everything we ever return is a power of two. Lots of | |
2016 | code doesn't want to deal with aligning things to arbitrary | |
2017 | boundaries. */ | |
2018 | gdb_assert ((alignment & (alignment - 1)) == 0); | |
2019 | ||
2020 | return alignment; | |
2021 | } | |
2022 | ||
2023 | ||
2024 | /* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in | |
ca557f44 AC |
2025 | place to be passed to a function, as specified by the "GNU/Linux |
2026 | for S/390 ELF Application Binary Interface Supplement". | |
78f8b424 JB |
2027 | |
2028 | SP is the current stack pointer. We must put arguments, links, | |
2029 | padding, etc. whereever they belong, and return the new stack | |
2030 | pointer value. | |
2031 | ||
2032 | If STRUCT_RETURN is non-zero, then the function we're calling is | |
2033 | going to return a structure by value; STRUCT_ADDR is the address of | |
2034 | a block we've allocated for it on the stack. | |
2035 | ||
2036 | Our caller has taken care of any type promotions needed to satisfy | |
2037 | prototypes or the old K&R argument-passing rules. */ | |
a78f21af | 2038 | static CORE_ADDR |
7d9b040b | 2039 | s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function, |
b0cf273e JB |
2040 | struct regcache *regcache, CORE_ADDR bp_addr, |
2041 | int nargs, struct value **args, CORE_ADDR sp, | |
2042 | int struct_return, CORE_ADDR struct_addr) | |
5769d3cd | 2043 | { |
b0cf273e JB |
2044 | struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch); |
2045 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; | |
2046 | ULONGEST orig_sp; | |
78f8b424 | 2047 | int i; |
5769d3cd | 2048 | |
78f8b424 JB |
2049 | /* If the i'th argument is passed as a reference to a copy, then |
2050 | copy_addr[i] is the address of the copy we made. */ | |
2051 | CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR)); | |
5769d3cd | 2052 | |
78f8b424 | 2053 | /* Build the reference-to-copy area. */ |
78f8b424 JB |
2054 | for (i = 0; i < nargs; i++) |
2055 | { | |
2056 | struct value *arg = args[i]; | |
4991999e | 2057 | struct type *type = value_type (arg); |
78f8b424 | 2058 | unsigned length = TYPE_LENGTH (type); |
5769d3cd | 2059 | |
b0cf273e | 2060 | if (s390_function_arg_pass_by_reference (type)) |
01c464e9 | 2061 | { |
78f8b424 | 2062 | sp -= length; |
5b03f266 | 2063 | sp = align_down (sp, alignment_of (type)); |
0fd88904 | 2064 | write_memory (sp, value_contents (arg), length); |
78f8b424 | 2065 | copy_addr[i] = sp; |
01c464e9 | 2066 | } |
5769d3cd | 2067 | } |
5769d3cd | 2068 | |
78f8b424 JB |
2069 | /* Reserve space for the parameter area. As a conservative |
2070 | simplification, we assume that everything will be passed on the | |
b0cf273e JB |
2071 | stack. Since every argument larger than 8 bytes will be |
2072 | passed by reference, we use this simple upper bound. */ | |
2073 | sp -= nargs * 8; | |
78f8b424 | 2074 | |
78f8b424 JB |
2075 | /* After all that, make sure it's still aligned on an eight-byte |
2076 | boundary. */ | |
5b03f266 | 2077 | sp = align_down (sp, 8); |
78f8b424 JB |
2078 | |
2079 | /* Finally, place the actual parameters, working from SP towards | |
2080 | higher addresses. The code above is supposed to reserve enough | |
2081 | space for this. */ | |
2082 | { | |
2083 | int fr = 0; | |
2084 | int gr = 2; | |
2085 | CORE_ADDR starg = sp; | |
2086 | ||
b0cf273e | 2087 | /* A struct is returned using general register 2. */ |
4d819d0e | 2088 | if (struct_return) |
b0cf273e JB |
2089 | { |
2090 | regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, | |
2091 | struct_addr); | |
2092 | gr++; | |
2093 | } | |
4d819d0e | 2094 | |
78f8b424 JB |
2095 | for (i = 0; i < nargs; i++) |
2096 | { | |
2097 | struct value *arg = args[i]; | |
4991999e | 2098 | struct type *type = value_type (arg); |
b0cf273e JB |
2099 | unsigned length = TYPE_LENGTH (type); |
2100 | ||
2101 | if (s390_function_arg_pass_by_reference (type)) | |
2102 | { | |
2103 | if (gr <= 6) | |
2104 | { | |
2105 | regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr, | |
2106 | copy_addr[i]); | |
2107 | gr++; | |
2108 | } | |
2109 | else | |
2110 | { | |
2111 | write_memory_unsigned_integer (starg, word_size, copy_addr[i]); | |
2112 | starg += word_size; | |
2113 | } | |
2114 | } | |
2115 | else if (s390_function_arg_float (type)) | |
2116 | { | |
2117 | /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments, | |
2118 | the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */ | |
2119 | if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6)) | |
2120 | { | |
2121 | /* When we store a single-precision value in an FP register, | |
2122 | it occupies the leftmost bits. */ | |
2123 | regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr, | |
0fd88904 | 2124 | 0, length, value_contents (arg)); |
b0cf273e JB |
2125 | fr += 2; |
2126 | } | |
2127 | else | |
2128 | { | |
2129 | /* When we store a single-precision value in a stack slot, | |
2130 | it occupies the rightmost bits. */ | |
2131 | starg = align_up (starg + length, word_size); | |
0fd88904 | 2132 | write_memory (starg - length, value_contents (arg), length); |
b0cf273e JB |
2133 | } |
2134 | } | |
2135 | else if (s390_function_arg_integer (type) && length <= word_size) | |
2136 | { | |
2137 | if (gr <= 6) | |
2138 | { | |
2139 | /* Integer arguments are always extended to word size. */ | |
2140 | regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr, | |
2141 | extend_simple_arg (arg)); | |
2142 | gr++; | |
2143 | } | |
2144 | else | |
2145 | { | |
2146 | /* Integer arguments are always extended to word size. */ | |
2147 | write_memory_signed_integer (starg, word_size, | |
2148 | extend_simple_arg (arg)); | |
2149 | starg += word_size; | |
2150 | } | |
2151 | } | |
2152 | else if (s390_function_arg_integer (type) && length == 2*word_size) | |
2153 | { | |
2154 | if (gr <= 5) | |
2155 | { | |
2156 | regcache_cooked_write (regcache, S390_R0_REGNUM + gr, | |
0fd88904 | 2157 | value_contents (arg)); |
b0cf273e | 2158 | regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1, |
0fd88904 | 2159 | value_contents (arg) + word_size); |
b0cf273e JB |
2160 | gr += 2; |
2161 | } | |
2162 | else | |
2163 | { | |
2164 | /* If we skipped r6 because we couldn't fit a DOUBLE_ARG | |
2165 | in it, then don't go back and use it again later. */ | |
2166 | gr = 7; | |
2167 | ||
0fd88904 | 2168 | write_memory (starg, value_contents (arg), length); |
b0cf273e JB |
2169 | starg += length; |
2170 | } | |
2171 | } | |
2172 | else | |
e2e0b3e5 | 2173 | internal_error (__FILE__, __LINE__, _("unknown argument type")); |
78f8b424 JB |
2174 | } |
2175 | } | |
2176 | ||
2177 | /* Allocate the standard frame areas: the register save area, the | |
2178 | word reserved for the compiler (which seems kind of meaningless), | |
2179 | and the back chain pointer. */ | |
b0cf273e | 2180 | sp -= 16*word_size + 32; |
78f8b424 | 2181 | |
b0cf273e JB |
2182 | /* Store return address. */ |
2183 | regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr); | |
2184 | ||
2185 | /* Store updated stack pointer. */ | |
2186 | regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp); | |
78f8b424 | 2187 | |
a8c99f38 | 2188 | /* We need to return the 'stack part' of the frame ID, |
121d8485 UW |
2189 | which is actually the top of the register save area. */ |
2190 | return sp + 16*word_size + 32; | |
5769d3cd AC |
2191 | } |
2192 | ||
b0cf273e JB |
2193 | /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that |
2194 | dummy frame. The frame ID's base needs to match the TOS value | |
2195 | returned by push_dummy_call, and the PC match the dummy frame's | |
2196 | breakpoint. */ | |
2197 | static struct frame_id | |
2198 | s390_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame) | |
2199 | { | |
a8c99f38 | 2200 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
121d8485 | 2201 | CORE_ADDR sp = s390_unwind_sp (gdbarch, next_frame); |
a8c99f38 | 2202 | |
121d8485 | 2203 | return frame_id_build (sp + 16*word_size + 32, |
a8c99f38 | 2204 | frame_pc_unwind (next_frame)); |
b0cf273e | 2205 | } |
c8f9d51c | 2206 | |
4074e13c JB |
2207 | static CORE_ADDR |
2208 | s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr) | |
2209 | { | |
2210 | /* Both the 32- and 64-bit ABI's say that the stack pointer should | |
2211 | always be aligned on an eight-byte boundary. */ | |
2212 | return (addr & -8); | |
2213 | } | |
2214 | ||
2215 | ||
b0cf273e JB |
2216 | /* Function return value access. */ |
2217 | ||
2218 | static enum return_value_convention | |
2219 | s390_return_value_convention (struct gdbarch *gdbarch, struct type *type) | |
c8f9d51c | 2220 | { |
b0cf273e JB |
2221 | int length = TYPE_LENGTH (type); |
2222 | if (length > 8) | |
2223 | return RETURN_VALUE_STRUCT_CONVENTION; | |
2224 | ||
2225 | switch (TYPE_CODE (type)) | |
2226 | { | |
2227 | case TYPE_CODE_STRUCT: | |
2228 | case TYPE_CODE_UNION: | |
2229 | case TYPE_CODE_ARRAY: | |
2230 | return RETURN_VALUE_STRUCT_CONVENTION; | |
c8f9d51c | 2231 | |
b0cf273e JB |
2232 | default: |
2233 | return RETURN_VALUE_REGISTER_CONVENTION; | |
2234 | } | |
c8f9d51c JB |
2235 | } |
2236 | ||
b0cf273e JB |
2237 | static enum return_value_convention |
2238 | s390_return_value (struct gdbarch *gdbarch, struct type *type, | |
2e82d168 UW |
2239 | struct regcache *regcache, gdb_byte *out, |
2240 | const gdb_byte *in) | |
5769d3cd | 2241 | { |
b0cf273e JB |
2242 | int word_size = gdbarch_ptr_bit (gdbarch) / 8; |
2243 | int length = TYPE_LENGTH (type); | |
2244 | enum return_value_convention rvc = | |
2245 | s390_return_value_convention (gdbarch, type); | |
2246 | if (in) | |
2247 | { | |
2248 | switch (rvc) | |
2249 | { | |
2250 | case RETURN_VALUE_REGISTER_CONVENTION: | |
2251 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
2252 | { | |
2253 | /* When we store a single-precision value in an FP register, | |
2254 | it occupies the leftmost bits. */ | |
2255 | regcache_cooked_write_part (regcache, S390_F0_REGNUM, | |
2256 | 0, length, in); | |
2257 | } | |
2258 | else if (length <= word_size) | |
2259 | { | |
2260 | /* Integer arguments are always extended to word size. */ | |
2261 | if (TYPE_UNSIGNED (type)) | |
2262 | regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM, | |
2263 | extract_unsigned_integer (in, length)); | |
2264 | else | |
2265 | regcache_cooked_write_signed (regcache, S390_R2_REGNUM, | |
2266 | extract_signed_integer (in, length)); | |
2267 | } | |
2268 | else if (length == 2*word_size) | |
2269 | { | |
2270 | regcache_cooked_write (regcache, S390_R2_REGNUM, in); | |
43af2100 | 2271 | regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size); |
b0cf273e JB |
2272 | } |
2273 | else | |
e2e0b3e5 | 2274 | internal_error (__FILE__, __LINE__, _("invalid return type")); |
b0cf273e JB |
2275 | break; |
2276 | ||
2277 | case RETURN_VALUE_STRUCT_CONVENTION: | |
8a3fe4f8 | 2278 | error (_("Cannot set function return value.")); |
b0cf273e JB |
2279 | break; |
2280 | } | |
2281 | } | |
2282 | else if (out) | |
2283 | { | |
2284 | switch (rvc) | |
2285 | { | |
2286 | case RETURN_VALUE_REGISTER_CONVENTION: | |
2287 | if (TYPE_CODE (type) == TYPE_CODE_FLT) | |
2288 | { | |
2289 | /* When we store a single-precision value in an FP register, | |
2290 | it occupies the leftmost bits. */ | |
2291 | regcache_cooked_read_part (regcache, S390_F0_REGNUM, | |
2292 | 0, length, out); | |
2293 | } | |
2294 | else if (length <= word_size) | |
2295 | { | |
2296 | /* Integer arguments occupy the rightmost bits. */ | |
2297 | regcache_cooked_read_part (regcache, S390_R2_REGNUM, | |
2298 | word_size - length, length, out); | |
2299 | } | |
2300 | else if (length == 2*word_size) | |
2301 | { | |
2302 | regcache_cooked_read (regcache, S390_R2_REGNUM, out); | |
43af2100 | 2303 | regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size); |
b0cf273e JB |
2304 | } |
2305 | else | |
e2e0b3e5 | 2306 | internal_error (__FILE__, __LINE__, _("invalid return type")); |
b0cf273e | 2307 | break; |
5769d3cd | 2308 | |
b0cf273e | 2309 | case RETURN_VALUE_STRUCT_CONVENTION: |
8a3fe4f8 | 2310 | error (_("Function return value unknown.")); |
b0cf273e JB |
2311 | break; |
2312 | } | |
2313 | } | |
2314 | ||
2315 | return rvc; | |
2316 | } | |
5769d3cd AC |
2317 | |
2318 | ||
a8c99f38 JB |
2319 | /* Breakpoints. */ |
2320 | ||
43af2100 | 2321 | static const gdb_byte * |
5769d3cd AC |
2322 | s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr) |
2323 | { | |
43af2100 | 2324 | static const gdb_byte breakpoint[] = { 0x0, 0x1 }; |
5769d3cd AC |
2325 | |
2326 | *lenptr = sizeof (breakpoint); | |
2327 | return breakpoint; | |
2328 | } | |
2329 | ||
5769d3cd | 2330 | |
a8c99f38 | 2331 | /* Address handling. */ |
5769d3cd AC |
2332 | |
2333 | static CORE_ADDR | |
2334 | s390_addr_bits_remove (CORE_ADDR addr) | |
2335 | { | |
a8c99f38 | 2336 | return addr & 0x7fffffff; |
5769d3cd AC |
2337 | } |
2338 | ||
ffc65945 KB |
2339 | static int |
2340 | s390_address_class_type_flags (int byte_size, int dwarf2_addr_class) | |
2341 | { | |
2342 | if (byte_size == 4) | |
2343 | return TYPE_FLAG_ADDRESS_CLASS_1; | |
2344 | else | |
2345 | return 0; | |
2346 | } | |
2347 | ||
2348 | static const char * | |
2349 | s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags) | |
2350 | { | |
2351 | if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1) | |
2352 | return "mode32"; | |
2353 | else | |
2354 | return NULL; | |
2355 | } | |
2356 | ||
a78f21af | 2357 | static int |
ffc65945 KB |
2358 | s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name, |
2359 | int *type_flags_ptr) | |
2360 | { | |
2361 | if (strcmp (name, "mode32") == 0) | |
2362 | { | |
2363 | *type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1; | |
2364 | return 1; | |
2365 | } | |
2366 | else | |
2367 | return 0; | |
2368 | } | |
2369 | ||
a8c99f38 JB |
2370 | /* Set up gdbarch struct. */ |
2371 | ||
a78f21af | 2372 | static struct gdbarch * |
5769d3cd AC |
2373 | s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches) |
2374 | { | |
5769d3cd AC |
2375 | struct gdbarch *gdbarch; |
2376 | struct gdbarch_tdep *tdep; | |
5769d3cd AC |
2377 | |
2378 | /* First see if there is already a gdbarch that can satisfy the request. */ | |
2379 | arches = gdbarch_list_lookup_by_info (arches, &info); | |
2380 | if (arches != NULL) | |
2381 | return arches->gdbarch; | |
2382 | ||
2383 | /* None found: is the request for a s390 architecture? */ | |
2384 | if (info.bfd_arch_info->arch != bfd_arch_s390) | |
2385 | return NULL; /* No; then it's not for us. */ | |
2386 | ||
2387 | /* Yes: create a new gdbarch for the specified machine type. */ | |
d0f54f9d JB |
2388 | tdep = XCALLOC (1, struct gdbarch_tdep); |
2389 | gdbarch = gdbarch_alloc (&info, tdep); | |
5769d3cd AC |
2390 | |
2391 | set_gdbarch_believe_pcc_promotion (gdbarch, 0); | |
4e409299 | 2392 | set_gdbarch_char_signed (gdbarch, 0); |
5769d3cd | 2393 | |
aaab4dba AC |
2394 | /* Amount PC must be decremented by after a breakpoint. This is |
2395 | often the number of bytes returned by BREAKPOINT_FROM_PC but not | |
2396 | always. */ | |
5769d3cd | 2397 | set_gdbarch_decr_pc_after_break (gdbarch, 2); |
5769d3cd AC |
2398 | /* Stack grows downward. */ |
2399 | set_gdbarch_inner_than (gdbarch, core_addr_lessthan); | |
5769d3cd AC |
2400 | set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc); |
2401 | set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue); | |
d0f54f9d | 2402 | set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p); |
a8c99f38 | 2403 | |
5769d3cd AC |
2404 | set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM); |
2405 | set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM); | |
d0f54f9d | 2406 | set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM); |
5769d3cd | 2407 | set_gdbarch_num_regs (gdbarch, S390_NUM_REGS); |
d0f54f9d | 2408 | set_gdbarch_num_pseudo_regs (gdbarch, S390_NUM_PSEUDO_REGS); |
5769d3cd | 2409 | set_gdbarch_register_name (gdbarch, s390_register_name); |
d0f54f9d JB |
2410 | set_gdbarch_register_type (gdbarch, s390_register_type); |
2411 | set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); | |
2412 | set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); | |
2413 | set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum); | |
2414 | set_gdbarch_convert_register_p (gdbarch, s390_convert_register_p); | |
2415 | set_gdbarch_register_to_value (gdbarch, s390_register_to_value); | |
2416 | set_gdbarch_value_to_register (gdbarch, s390_value_to_register); | |
2417 | set_gdbarch_register_reggroup_p (gdbarch, s390_register_reggroup_p); | |
2418 | set_gdbarch_regset_from_core_section (gdbarch, | |
2419 | s390_regset_from_core_section); | |
5769d3cd | 2420 | |
b0cf273e JB |
2421 | /* Inferior function calls. */ |
2422 | set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call); | |
2423 | set_gdbarch_unwind_dummy_id (gdbarch, s390_unwind_dummy_id); | |
4074e13c | 2424 | set_gdbarch_frame_align (gdbarch, s390_frame_align); |
b0cf273e | 2425 | set_gdbarch_return_value (gdbarch, s390_return_value); |
5769d3cd | 2426 | |
a8c99f38 | 2427 | /* Frame handling. */ |
a431654a AC |
2428 | dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg); |
2429 | frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer); | |
2430 | frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer); | |
8e645ae7 | 2431 | frame_unwind_append_sniffer (gdbarch, s390_stub_frame_sniffer); |
a8c99f38 JB |
2432 | frame_unwind_append_sniffer (gdbarch, s390_sigtramp_frame_sniffer); |
2433 | frame_unwind_append_sniffer (gdbarch, s390_frame_sniffer); | |
2434 | frame_base_set_default (gdbarch, &s390_frame_base); | |
2435 | set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc); | |
2436 | set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp); | |
2437 | ||
5769d3cd AC |
2438 | switch (info.bfd_arch_info->mach) |
2439 | { | |
b8b8b047 | 2440 | case bfd_mach_s390_31: |
b0cf273e JB |
2441 | tdep->abi = ABI_LINUX_S390; |
2442 | ||
d0f54f9d JB |
2443 | tdep->gregset = &s390_gregset; |
2444 | tdep->sizeof_gregset = s390_sizeof_gregset; | |
2445 | tdep->fpregset = &s390_fpregset; | |
2446 | tdep->sizeof_fpregset = s390_sizeof_fpregset; | |
5769d3cd AC |
2447 | |
2448 | set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove); | |
d0f54f9d JB |
2449 | set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read); |
2450 | set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write); | |
76a9d10f MK |
2451 | set_solib_svr4_fetch_link_map_offsets |
2452 | (gdbarch, svr4_ilp32_fetch_link_map_offsets); | |
9cbd5950 | 2453 | |
5769d3cd | 2454 | break; |
b8b8b047 | 2455 | case bfd_mach_s390_64: |
b0cf273e JB |
2456 | tdep->abi = ABI_LINUX_ZSERIES; |
2457 | ||
d0f54f9d JB |
2458 | tdep->gregset = &s390x_gregset; |
2459 | tdep->sizeof_gregset = s390x_sizeof_gregset; | |
2460 | tdep->fpregset = &s390_fpregset; | |
2461 | tdep->sizeof_fpregset = s390_sizeof_fpregset; | |
5769d3cd AC |
2462 | |
2463 | set_gdbarch_long_bit (gdbarch, 64); | |
2464 | set_gdbarch_long_long_bit (gdbarch, 64); | |
2465 | set_gdbarch_ptr_bit (gdbarch, 64); | |
d0f54f9d JB |
2466 | set_gdbarch_pseudo_register_read (gdbarch, s390x_pseudo_register_read); |
2467 | set_gdbarch_pseudo_register_write (gdbarch, s390x_pseudo_register_write); | |
76a9d10f MK |
2468 | set_solib_svr4_fetch_link_map_offsets |
2469 | (gdbarch, svr4_lp64_fetch_link_map_offsets); | |
ffc65945 KB |
2470 | set_gdbarch_address_class_type_flags (gdbarch, |
2471 | s390_address_class_type_flags); | |
2472 | set_gdbarch_address_class_type_flags_to_name (gdbarch, | |
2473 | s390_address_class_type_flags_to_name); | |
2474 | set_gdbarch_address_class_name_to_type_flags (gdbarch, | |
2475 | s390_address_class_name_to_type_flags); | |
5769d3cd AC |
2476 | break; |
2477 | } | |
2478 | ||
36482093 AC |
2479 | set_gdbarch_print_insn (gdbarch, print_insn_s390); |
2480 | ||
b2756930 KB |
2481 | /* Enable TLS support. */ |
2482 | set_gdbarch_fetch_tls_load_module_address (gdbarch, | |
2483 | svr4_fetch_objfile_link_map); | |
2484 | ||
5769d3cd AC |
2485 | return gdbarch; |
2486 | } | |
2487 | ||
2488 | ||
2489 | ||
a78f21af AC |
2490 | extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */ |
2491 | ||
5769d3cd | 2492 | void |
5ae5f592 | 2493 | _initialize_s390_tdep (void) |
5769d3cd AC |
2494 | { |
2495 | ||
2496 | /* Hook us into the gdbarch mechanism. */ | |
2497 | register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init); | |
5769d3cd | 2498 | } |