2003-03-01 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
CommitLineData
5769d3cd 1/* Target-dependent code for GDB, the GNU debugger.
ca557f44 2
1e698235 3 Copyright 2001, 2002, 2003 Free Software Foundation, Inc.
ca557f44 4
5769d3cd
AC
5 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
6 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 02111-1307, USA. */
24
25#define S390_TDEP /* for special macros in tm-s390.h */
26#include <defs.h>
27#include "arch-utils.h"
28#include "frame.h"
29#include "inferior.h"
30#include "symtab.h"
31#include "target.h"
32#include "gdbcore.h"
33#include "gdbcmd.h"
34#include "symfile.h"
35#include "objfiles.h"
36#include "tm.h"
37#include "../bfd/bfd.h"
38#include "floatformat.h"
39#include "regcache.h"
fd0407d6 40#include "value.h"
78f8b424 41#include "gdb_assert.h"
5769d3cd
AC
42
43
44
60e6cc42 45
5769d3cd 46/* Number of bytes of storage in the actual machine representation
23b7362f 47 for register N. */
5769d3cd
AC
48int
49s390_register_raw_size (int reg_nr)
50{
23b7362f
JB
51 if (S390_FP0_REGNUM <= reg_nr
52 && reg_nr < S390_FP0_REGNUM + S390_NUM_FPRS)
53 return S390_FPR_SIZE;
54 else
55 return 4;
5769d3cd
AC
56}
57
58int
59s390x_register_raw_size (int reg_nr)
60{
61 return (reg_nr == S390_FPC_REGNUM)
62 || (reg_nr >= S390_FIRST_ACR && reg_nr <= S390_LAST_ACR) ? 4 : 8;
63}
64
65int
66s390_cannot_fetch_register (int regno)
67{
68 return (regno >= S390_FIRST_CR && regno < (S390_FIRST_CR + 9)) ||
69 (regno >= (S390_FIRST_CR + 12) && regno <= S390_LAST_CR);
70}
71
72int
73s390_register_byte (int reg_nr)
74{
75 if (reg_nr <= S390_GP_LAST_REGNUM)
76 return reg_nr * S390_GPR_SIZE;
77 if (reg_nr <= S390_LAST_ACR)
78 return S390_ACR0_OFFSET + (((reg_nr) - S390_FIRST_ACR) * S390_ACR_SIZE);
79 if (reg_nr <= S390_LAST_CR)
80 return S390_CR0_OFFSET + (((reg_nr) - S390_FIRST_CR) * S390_CR_SIZE);
81 if (reg_nr == S390_FPC_REGNUM)
82 return S390_FPC_OFFSET;
83 else
84 return S390_FP0_OFFSET + (((reg_nr) - S390_FP0_REGNUM) * S390_FPR_SIZE);
85}
86
87#ifndef GDBSERVER
88#define S390_MAX_INSTR_SIZE (6)
89#define S390_SYSCALL_OPCODE (0x0a)
90#define S390_SYSCALL_SIZE (2)
91#define S390_SIGCONTEXT_SREGS_OFFSET (8)
92#define S390X_SIGCONTEXT_SREGS_OFFSET (8)
93#define S390_SIGREGS_FP0_OFFSET (144)
94#define S390X_SIGREGS_FP0_OFFSET (216)
95#define S390_UC_MCONTEXT_OFFSET (256)
96#define S390X_UC_MCONTEXT_OFFSET (344)
97#define S390_STACK_FRAME_OVERHEAD (GDB_TARGET_IS_ESAME ? 160:96)
98#define S390_SIGNAL_FRAMESIZE (GDB_TARGET_IS_ESAME ? 160:96)
99#define s390_NR_sigreturn 119
100#define s390_NR_rt_sigreturn 173
101
102
103
104struct frame_extra_info
105{
106 int initialised;
107 int good_prologue;
108 CORE_ADDR function_start;
109 CORE_ADDR skip_prologue_function_start;
110 CORE_ADDR saved_pc_valid;
111 CORE_ADDR saved_pc;
112 CORE_ADDR sig_fixed_saved_pc_valid;
113 CORE_ADDR sig_fixed_saved_pc;
114 CORE_ADDR frame_pointer_saved_pc; /* frame pointer needed for alloca */
115 CORE_ADDR stack_bought; /* amount we decrement the stack pointer by */
116 CORE_ADDR sigcontext;
117};
118
119
120static CORE_ADDR s390_frame_saved_pc_nofix (struct frame_info *fi);
121
122int
123s390_readinstruction (bfd_byte instr[], CORE_ADDR at,
124 struct disassemble_info *info)
125{
126 int instrlen;
127
128 static int s390_instrlen[] = {
129 2,
130 4,
131 4,
132 6
133 };
134 if ((*info->read_memory_func) (at, &instr[0], 2, info))
135 return -1;
136 instrlen = s390_instrlen[instr[0] >> 6];
c5e243bb
JB
137 if (instrlen > 2)
138 {
139 if ((*info->read_memory_func) (at + 2, &instr[2], instrlen - 2, info))
140 return -1;
141 }
5769d3cd
AC
142 return instrlen;
143}
144
145static void
146s390_memset_extra_info (struct frame_extra_info *fextra_info)
147{
148 memset (fextra_info, 0, sizeof (struct frame_extra_info));
149}
150
151
152
fa88f677 153const char *
5769d3cd
AC
154s390_register_name (int reg_nr)
155{
156 static char *register_names[] = {
157 "pswm", "pswa",
4ed90530
JB
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
5769d3cd
AC
160 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
161 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15",
162 "cr0", "cr1", "cr2", "cr3", "cr4", "cr5", "cr6", "cr7",
163 "cr8", "cr9", "cr10", "cr11", "cr12", "cr13", "cr14", "cr15",
164 "fpc",
4ed90530
JB
165 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
166 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
5769d3cd
AC
167 };
168
b09677dc
JB
169 if (reg_nr <= S390_LAST_REGNUM)
170 return register_names[reg_nr];
171 else
5769d3cd 172 return NULL;
5769d3cd
AC
173}
174
175
176
177
178int
179s390_stab_reg_to_regnum (int regno)
180{
181 return regno >= 64 ? S390_PSWM_REGNUM - 64 :
182 regno >= 48 ? S390_FIRST_ACR - 48 :
183 regno >= 32 ? S390_FIRST_CR - 32 :
184 regno <= 15 ? (regno + 2) :
185 S390_FP0_REGNUM + ((regno - 16) & 8) + (((regno - 16) & 3) << 1) +
186 (((regno - 16) & 4) >> 2);
187}
188
189
12bffad7
JB
190/* Return true if REGIDX is the number of a register used to pass
191 arguments, false otherwise. */
192static int
193is_arg_reg (int regidx)
194{
195 return 2 <= regidx && regidx <= 6;
196}
197
5769d3cd
AC
198
199/* s390_get_frame_info based on Hartmuts
200 prologue definition in
201 gcc-2.8.1/config/l390/linux.c
202
203 It reads one instruction at a time & based on whether
204 it looks like prologue code or not it makes a decision on
205 whether the prologue is over, there are various state machines
206 in the code to determine if the prologue code is possilby valid.
207
208 This is done to hopefully allow the code survive minor revs of
209 calling conventions.
210
211 */
212
213int
214s390_get_frame_info (CORE_ADDR pc, struct frame_extra_info *fextra_info,
215 struct frame_info *fi, int init_extra_info)
216{
217#define CONST_POOL_REGIDX 13
218#define GOT_REGIDX 12
219 bfd_byte instr[S390_MAX_INSTR_SIZE];
220 CORE_ADDR test_pc = pc, test_pc2;
221 CORE_ADDR orig_sp = 0, save_reg_addr = 0, *saved_regs = NULL;
222 int valid_prologue, good_prologue = 0;
223 int gprs_saved[S390_NUM_GPRS];
224 int fprs_saved[S390_NUM_FPRS];
225 int regidx, instrlen;
6df29de2 226 int const_pool_state;
7286245e 227 int varargs_state;
5769d3cd 228 int loop_cnt, gdb_gpr_store, gdb_fpr_store;
5769d3cd
AC
229 int offset, expected_offset;
230 int err = 0;
231 disassemble_info info;
8ac0e65a 232
7286245e
JB
233 /* Have we seen an instruction initializing the frame pointer yet?
234 If we've seen an `lr %r11, %r15', then frame_pointer_found is
235 non-zero, and frame_pointer_regidx == 11. Otherwise,
236 frame_pointer_found is zero and frame_pointer_regidx is 15,
237 indicating that we're using the stack pointer as our frame
238 pointer. */
239 int frame_pointer_found = 0;
240 int frame_pointer_regidx = 0xf;
241
6df29de2
JB
242 /* What we've seen so far regarding saving the back chain link:
243 0 -- nothing yet; sp still has the same value it had at the entry
244 point. Since not all functions allocate frames, this is a
245 valid state for the prologue to finish in.
246 1 -- We've saved the original sp in some register other than the
247 frame pointer (hard-coded to be %r11, yuck).
248 save_link_regidx is the register we saved it in.
249 2 -- We've seen the initial `bras' instruction of the sequence for
250 reserving more than 32k of stack:
251 bras %rX, .+8
252 .long N
253 s %r15, 0(%rX)
254 where %rX is not the constant pool register.
255 subtract_sp_regidx is %rX, and fextra_info->stack_bought is N.
256 3 -- We've reserved space for a new stack frame. This means we
257 either saw a simple `ahi %r15,-N' in state 1, or the final
258 `s %r15, ...' in state 2.
259 4 -- The frame and link are now fully initialized. We've
260 reserved space for the new stack frame, and stored the old
261 stack pointer captured in the back chain pointer field. */
7286245e 262 int save_link_state = 0;
6df29de2
JB
263 int save_link_regidx, subtract_sp_regidx;
264
8ac0e65a
JB
265 /* What we've seen so far regarding r12 --- the GOT (Global Offset
266 Table) pointer. We expect to see `l %r12, N(%r13)', which loads
267 r12 with the offset from the constant pool to the GOT, and then
268 an `ar %r12, %r13', which adds the constant pool address,
269 yielding the GOT's address. Here's what got_state means:
270 0 -- seen nothing
271 1 -- seen `l %r12, N(%r13)', but no `ar'
272 2 -- seen load and add, so GOT pointer is totally initialized
273 When got_state is 1, then got_load_addr is the address of the
274 load instruction, and got_load_len is the length of that
275 instruction. */
7286245e 276 int got_state= 0;
64f9bb98 277 CORE_ADDR got_load_addr = 0, got_load_len = 0;
8ac0e65a 278
7286245e
JB
279 const_pool_state = varargs_state = 0;
280
5769d3cd
AC
281 memset (gprs_saved, 0, sizeof (gprs_saved));
282 memset (fprs_saved, 0, sizeof (fprs_saved));
283 info.read_memory_func = dis_asm_read_memory;
284
285 save_link_regidx = subtract_sp_regidx = 0;
286 if (fextra_info)
287 {
1e2330ba 288 if (fi && get_frame_base (fi))
5769d3cd 289 {
1e2330ba 290 orig_sp = get_frame_base (fi);
386e4208 291 if (! init_extra_info && fextra_info->initialised)
76cc2cf0 292 orig_sp += fextra_info->stack_bought;
b2fb4676 293 saved_regs = get_frame_saved_regs (fi);
5769d3cd
AC
294 }
295 if (init_extra_info || !fextra_info->initialised)
296 {
297 s390_memset_extra_info (fextra_info);
298 fextra_info->function_start = pc;
299 fextra_info->initialised = 1;
300 }
301 }
302 instrlen = 0;
303 do
304 {
305 valid_prologue = 0;
306 test_pc += instrlen;
307 /* add the previous instruction len */
308 instrlen = s390_readinstruction (instr, test_pc, &info);
309 if (instrlen < 0)
310 {
311 good_prologue = 0;
312 err = -1;
313 break;
314 }
315 /* We probably are in a glibc syscall */
316 if (instr[0] == S390_SYSCALL_OPCODE && test_pc == pc)
317 {
318 good_prologue = 1;
11c02a10 319 if (saved_regs && fextra_info && get_next_frame (fi)
da50a4b7
AC
320 && get_frame_extra_info (get_next_frame (fi))
321 && get_frame_extra_info (get_next_frame (fi))->sigcontext)
5769d3cd
AC
322 {
323 /* We are backtracing from a signal handler */
da50a4b7 324 save_reg_addr = get_frame_extra_info (get_next_frame (fi))->sigcontext +
5769d3cd
AC
325 REGISTER_BYTE (S390_GP0_REGNUM);
326 for (regidx = 0; regidx < S390_NUM_GPRS; regidx++)
327 {
328 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
329 save_reg_addr += S390_GPR_SIZE;
330 }
da50a4b7 331 save_reg_addr = get_frame_extra_info (get_next_frame (fi))->sigcontext +
5769d3cd
AC
332 (GDB_TARGET_IS_ESAME ? S390X_SIGREGS_FP0_OFFSET :
333 S390_SIGREGS_FP0_OFFSET);
334 for (regidx = 0; regidx < S390_NUM_FPRS; regidx++)
335 {
336 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
337 save_reg_addr += S390_FPR_SIZE;
338 }
339 }
340 break;
341 }
342 if (save_link_state == 0)
343 {
344 /* check for a stack relative STMG or STM */
345 if (((GDB_TARGET_IS_ESAME &&
346 ((instr[0] == 0xeb) && (instr[5] == 0x24))) ||
347 (instr[0] == 0x90)) && ((instr[2] >> 4) == 0xf))
348 {
349 regidx = (instr[1] >> 4);
350 if (regidx < 6)
351 varargs_state = 1;
352 offset = ((instr[2] & 0xf) << 8) + instr[3];
353 expected_offset =
354 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
355 if (offset != expected_offset)
356 {
357 good_prologue = 0;
358 break;
359 }
360 if (saved_regs)
361 save_reg_addr = orig_sp + offset;
362 for (; regidx <= (instr[1] & 0xf); regidx++)
363 {
364 if (gprs_saved[regidx])
365 {
366 good_prologue = 0;
367 break;
368 }
369 good_prologue = 1;
370 gprs_saved[regidx] = 1;
371 if (saved_regs)
372 {
373 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
374 save_reg_addr += S390_GPR_SIZE;
375 }
376 }
377 valid_prologue = 1;
378 continue;
379 }
380 }
381 /* check for a stack relative STG or ST */
382 if ((save_link_state == 0 || save_link_state == 3) &&
383 ((GDB_TARGET_IS_ESAME &&
384 ((instr[0] == 0xe3) && (instr[5] == 0x24))) ||
385 (instr[0] == 0x50)) && ((instr[2] >> 4) == 0xf))
386 {
387 regidx = instr[1] >> 4;
388 offset = ((instr[2] & 0xf) << 8) + instr[3];
389 if (offset == 0)
390 {
391 if (save_link_state == 3 && regidx == save_link_regidx)
392 {
393 save_link_state = 4;
394 valid_prologue = 1;
395 continue;
396 }
397 else
398 break;
399 }
400 if (regidx < 6)
401 varargs_state = 1;
402 expected_offset =
403 S390_GPR6_STACK_OFFSET + (S390_GPR_SIZE * (regidx - 6));
404 if (offset != expected_offset)
405 {
406 good_prologue = 0;
407 break;
408 }
409 if (gprs_saved[regidx])
410 {
411 good_prologue = 0;
412 break;
413 }
414 good_prologue = 1;
415 gprs_saved[regidx] = 1;
416 if (saved_regs)
417 {
418 save_reg_addr = orig_sp + offset;
419 saved_regs[S390_GP0_REGNUM + regidx] = save_reg_addr;
420 }
421 valid_prologue = 1;
422 continue;
423 }
424
12bffad7 425 /* Check for an fp-relative STG, ST, or STM. This is probably
7666f43c
JB
426 spilling an argument from a register out into a stack slot.
427 This could be a user instruction, but if we haven't included
428 any other suspicious instructions in the prologue, this
429 could only be an initializing store, which isn't too bad to
430 skip. The consequences of not including arg-to-stack spills
431 are more serious, though --- you don't see the proper values
432 of the arguments. */
433 if ((save_link_state == 3 || save_link_state == 4)
12bffad7
JB
434 && ((instr[0] == 0x50 /* st %rA, D(%rX,%rB) */
435 && (instr[1] & 0xf) == 0 /* %rX is zero, no index reg */
436 && is_arg_reg ((instr[1] >> 4) & 0xf)
437 && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)
438 || (instr[0] == 0x90 /* stm %rA, %rB, D(%rC) */
439 && is_arg_reg ((instr[1] >> 4) & 0xf)
440 && is_arg_reg (instr[1] & 0xf)
441 && ((instr[2] >> 4) & 0xf) == frame_pointer_regidx)))
7666f43c
JB
442 {
443 valid_prologue = 1;
444 continue;
445 }
446
5769d3cd
AC
447 /* check for STD */
448 if (instr[0] == 0x60 && (instr[2] >> 4) == 0xf)
449 {
450 regidx = instr[1] >> 4;
451 if (regidx == 0 || regidx == 2)
452 varargs_state = 1;
453 if (fprs_saved[regidx])
454 {
455 good_prologue = 0;
456 break;
457 }
458 fprs_saved[regidx] = 1;
459 if (saved_regs)
460 {
461 save_reg_addr = orig_sp + (((instr[2] & 0xf) << 8) + instr[3]);
462 saved_regs[S390_FP0_REGNUM + regidx] = save_reg_addr;
463 }
464 valid_prologue = 1;
465 continue;
466 }
467
468
469 if (const_pool_state == 0)
470 {
471
472 if (GDB_TARGET_IS_ESAME)
473 {
474 /* Check for larl CONST_POOL_REGIDX,offset on ESAME */
475 if ((instr[0] == 0xc0)
476 && (instr[1] == (CONST_POOL_REGIDX << 4)))
477 {
478 const_pool_state = 2;
479 valid_prologue = 1;
480 continue;
481 }
482 }
483 else
484 {
485 /* Check for BASR gpr13,gpr0 used to load constant pool pointer to r13 in old compiler */
486 if (instr[0] == 0xd && (instr[1] & 0xf) == 0
487 && ((instr[1] >> 4) == CONST_POOL_REGIDX))
488 {
489 const_pool_state = 1;
490 valid_prologue = 1;
491 continue;
492 }
493 }
494 /* Check for new fangled bras %r13,newpc to load new constant pool */
495 /* embedded in code, older pre abi compilers also emitted this stuff. */
496 if ((instr[0] == 0xa7) && ((instr[1] & 0xf) == 0x5) &&
497 ((instr[1] >> 4) == CONST_POOL_REGIDX)
498 && ((instr[2] & 0x80) == 0))
499 {
500 const_pool_state = 2;
501 test_pc +=
502 (((((instr[2] & 0xf) << 8) + instr[3]) << 1) - instrlen);
503 valid_prologue = 1;
504 continue;
505 }
506 }
507 /* Check for AGHI or AHI CONST_POOL_REGIDX,val */
508 if (const_pool_state == 1 && (instr[0] == 0xa7) &&
509 ((GDB_TARGET_IS_ESAME &&
510 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xb))) ||
511 (instr[1] == ((CONST_POOL_REGIDX << 4) | 0xa))))
512 {
513 const_pool_state = 2;
514 valid_prologue = 1;
515 continue;
516 }
517 /* Check for LGR or LR gprx,15 */
518 if ((GDB_TARGET_IS_ESAME &&
519 instr[0] == 0xb9 && instr[1] == 0x04 && (instr[3] & 0xf) == 0xf) ||
520 (instr[0] == 0x18 && (instr[1] & 0xf) == 0xf))
521 {
522 if (GDB_TARGET_IS_ESAME)
523 regidx = instr[3] >> 4;
524 else
525 regidx = instr[1] >> 4;
526 if (save_link_state == 0 && regidx != 0xb)
527 {
528 /* Almost defintely code for
529 decrementing the stack pointer
530 ( i.e. a non leaf function
531 or else leaf with locals ) */
532 save_link_regidx = regidx;
533 save_link_state = 1;
534 valid_prologue = 1;
535 continue;
536 }
537 /* We use this frame pointer for alloca
538 unfortunately we need to assume its gpr11
539 otherwise we would need a smarter prologue
540 walker. */
541 if (!frame_pointer_found && regidx == 0xb)
542 {
543 frame_pointer_regidx = 0xb;
544 frame_pointer_found = 1;
545 if (fextra_info)
546 fextra_info->frame_pointer_saved_pc = test_pc;
547 valid_prologue = 1;
548 continue;
549 }
550 }
551 /* Check for AHI or AGHI gpr15,val */
552 if (save_link_state == 1 && (instr[0] == 0xa7) &&
553 ((GDB_TARGET_IS_ESAME && (instr[1] == 0xfb)) || (instr[1] == 0xfa)))
554 {
555 if (fextra_info)
556 fextra_info->stack_bought =
557 -extract_signed_integer (&instr[2], 2);
558 save_link_state = 3;
559 valid_prologue = 1;
560 continue;
561 }
562 /* Alternatively check for the complex construction for
563 buying more than 32k of stack
564 BRAS gprx,.+8
6df29de2
JB
565 long val
566 s %r15,0(%gprx) gprx currently r1 */
5769d3cd
AC
567 if ((save_link_state == 1) && (instr[0] == 0xa7)
568 && ((instr[1] & 0xf) == 0x5) && (instr[2] == 0)
569 && (instr[3] == 0x4) && ((instr[1] >> 4) != CONST_POOL_REGIDX))
570 {
571 subtract_sp_regidx = instr[1] >> 4;
572 save_link_state = 2;
573 if (fextra_info)
574 target_read_memory (test_pc + instrlen,
575 (char *) &fextra_info->stack_bought,
576 sizeof (fextra_info->stack_bought));
577 test_pc += 4;
578 valid_prologue = 1;
579 continue;
580 }
581 if (save_link_state == 2 && instr[0] == 0x5b
582 && instr[1] == 0xf0 &&
583 instr[2] == (subtract_sp_regidx << 4) && instr[3] == 0)
584 {
585 save_link_state = 3;
586 valid_prologue = 1;
587 continue;
588 }
589 /* check for LA gprx,offset(15) used for varargs */
590 if ((instr[0] == 0x41) && ((instr[2] >> 4) == 0xf) &&
591 ((instr[1] & 0xf) == 0))
592 {
593 /* some code uses gpr7 to point to outgoing args */
594 if (((instr[1] >> 4) == 7) && (save_link_state == 0) &&
595 ((instr[2] & 0xf) == 0)
596 && (instr[3] == S390_STACK_FRAME_OVERHEAD))
597 {
598 valid_prologue = 1;
599 continue;
600 }
601 if (varargs_state == 1)
602 {
603 varargs_state = 2;
604 valid_prologue = 1;
605 continue;
606 }
607 }
608 /* Check for a GOT load */
609
610 if (GDB_TARGET_IS_ESAME)
611 {
612 /* Check for larl GOT_REGIDX, on ESAME */
613 if ((got_state == 0) && (instr[0] == 0xc0)
614 && (instr[1] == (GOT_REGIDX << 4)))
615 {
616 got_state = 2;
617 valid_prologue = 1;
618 continue;
619 }
620 }
621 else
622 {
623 /* check for l GOT_REGIDX,x(CONST_POOL_REGIDX) */
624 if (got_state == 0 && const_pool_state == 2 && instr[0] == 0x58
625 && (instr[2] == (CONST_POOL_REGIDX << 4))
626 && ((instr[1] >> 4) == GOT_REGIDX))
627 {
8ac0e65a
JB
628 got_state = 1;
629 got_load_addr = test_pc;
630 got_load_len = instrlen;
5769d3cd
AC
631 valid_prologue = 1;
632 continue;
633 }
634 /* Check for subsequent ar got_regidx,basr_regidx */
635 if (got_state == 1 && instr[0] == 0x1a &&
636 instr[1] == ((GOT_REGIDX << 4) | CONST_POOL_REGIDX))
637 {
638 got_state = 2;
639 valid_prologue = 1;
640 continue;
641 }
642 }
643 }
644 while (valid_prologue && good_prologue);
645 if (good_prologue)
646 {
8ac0e65a
JB
647 /* If this function doesn't reference the global offset table,
648 then the compiler may use r12 for other things. If the last
649 instruction we saw was a load of r12 from the constant pool,
650 with no subsequent add to make the address PC-relative, then
651 the load was probably a genuine body instruction; don't treat
652 it as part of the prologue. */
653 if (got_state == 1
654 && got_load_addr + got_load_len == test_pc)
655 {
656 test_pc = got_load_addr;
657 instrlen = got_load_len;
658 }
659
660 good_prologue = (((const_pool_state == 0) || (const_pool_state == 2)) &&
5769d3cd
AC
661 ((save_link_state == 0) || (save_link_state == 4)) &&
662 ((varargs_state == 0) || (varargs_state == 2)));
663 }
664 if (fextra_info)
665 {
666 fextra_info->good_prologue = good_prologue;
667 fextra_info->skip_prologue_function_start =
668 (good_prologue ? test_pc : pc);
669 }
09025237
JB
670 if (saved_regs)
671 /* The SP's element of the saved_regs array holds the old SP,
672 not the address at which it is saved. */
673 saved_regs[S390_SP_REGNUM] = orig_sp;
5769d3cd
AC
674 return err;
675}
676
677
678int
679s390_check_function_end (CORE_ADDR pc)
680{
681 bfd_byte instr[S390_MAX_INSTR_SIZE];
682 disassemble_info info;
683 int regidx, instrlen;
684
685 info.read_memory_func = dis_asm_read_memory;
686 instrlen = s390_readinstruction (instr, pc, &info);
687 if (instrlen < 0)
688 return -1;
689 /* check for BR */
690 if (instrlen != 2 || instr[0] != 07 || (instr[1] >> 4) != 0xf)
691 return 0;
692 regidx = instr[1] & 0xf;
693 /* Check for LMG or LG */
694 instrlen =
695 s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 6 : 4), &info);
696 if (instrlen < 0)
697 return -1;
698 if (GDB_TARGET_IS_ESAME)
699 {
700
701 if (instrlen != 6 || instr[0] != 0xeb || instr[5] != 0x4)
702 return 0;
703 }
704 else if (instrlen != 4 || instr[0] != 0x98)
705 {
706 return 0;
707 }
708 if ((instr[2] >> 4) != 0xf)
709 return 0;
710 if (regidx == 14)
711 return 1;
712 instrlen = s390_readinstruction (instr, pc - (GDB_TARGET_IS_ESAME ? 12 : 8),
713 &info);
714 if (instrlen < 0)
715 return -1;
716 if (GDB_TARGET_IS_ESAME)
717 {
718 /* Check for LG */
719 if (instrlen != 6 || instr[0] != 0xe3 || instr[5] != 0x4)
720 return 0;
721 }
722 else
723 {
724 /* Check for L */
725 if (instrlen != 4 || instr[0] != 0x58)
726 return 0;
727 }
728 if (instr[2] >> 4 != 0xf)
729 return 0;
730 if (instr[1] >> 4 != regidx)
731 return 0;
732 return 1;
733}
734
735static CORE_ADDR
736s390_sniff_pc_function_start (CORE_ADDR pc, struct frame_info *fi)
737{
738 CORE_ADDR function_start, test_function_start;
739 int loop_cnt, err, function_end;
740 struct frame_extra_info fextra_info;
741 function_start = get_pc_function_start (pc);
742
743 if (function_start == 0)
744 {
745 test_function_start = pc;
746 if (test_function_start & 1)
747 return 0; /* This has to be bogus */
748 loop_cnt = 0;
749 do
750 {
751
752 err =
753 s390_get_frame_info (test_function_start, &fextra_info, fi, 1);
754 loop_cnt++;
755 test_function_start -= 2;
756 function_end = s390_check_function_end (test_function_start);
757 }
758 while (!(function_end == 1 || err || loop_cnt >= 4096 ||
759 (fextra_info.good_prologue)));
760 if (fextra_info.good_prologue)
761 function_start = fextra_info.function_start;
762 else if (function_end == 1)
763 function_start = test_function_start;
764 }
765 return function_start;
766}
767
768
769
770CORE_ADDR
771s390_function_start (struct frame_info *fi)
772{
773 CORE_ADDR function_start = 0;
774
da50a4b7
AC
775 if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->initialised)
776 function_start = get_frame_extra_info (fi)->function_start;
50abf9e5
AC
777 else if (get_frame_pc (fi))
778 function_start = get_pc_function_start (get_frame_pc (fi));
5769d3cd
AC
779 return function_start;
780}
781
782
783
784
785int
786s390_frameless_function_invocation (struct frame_info *fi)
787{
788 struct frame_extra_info fextra_info, *fextra_info_ptr;
789 int frameless = 0;
790
11c02a10 791 if (get_next_frame (fi) == NULL) /* no may be frameless */
5769d3cd 792 {
da50a4b7
AC
793 if (get_frame_extra_info (fi))
794 fextra_info_ptr = get_frame_extra_info (fi);
5769d3cd
AC
795 else
796 {
797 fextra_info_ptr = &fextra_info;
50abf9e5 798 s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
5769d3cd
AC
799 fextra_info_ptr, fi, 1);
800 }
801 frameless = ((fextra_info_ptr->stack_bought == 0));
802 }
803 return frameless;
804
805}
806
807
808static int
809s390_is_sigreturn (CORE_ADDR pc, struct frame_info *sighandler_fi,
810 CORE_ADDR *sregs, CORE_ADDR *sigcaller_pc)
811{
812 bfd_byte instr[S390_MAX_INSTR_SIZE];
813 disassemble_info info;
814 int instrlen;
815 CORE_ADDR scontext;
816 int retval = 0;
817 CORE_ADDR orig_sp;
818 CORE_ADDR temp_sregs;
819
820 scontext = temp_sregs = 0;
821
822 info.read_memory_func = dis_asm_read_memory;
823 instrlen = s390_readinstruction (instr, pc, &info);
824 if (sigcaller_pc)
825 *sigcaller_pc = 0;
826 if (((instrlen == S390_SYSCALL_SIZE) &&
827 (instr[0] == S390_SYSCALL_OPCODE)) &&
828 ((instr[1] == s390_NR_sigreturn) || (instr[1] == s390_NR_rt_sigreturn)))
829 {
830 if (sighandler_fi)
831 {
832 if (s390_frameless_function_invocation (sighandler_fi))
1e2330ba 833 orig_sp = get_frame_base (sighandler_fi);
5769d3cd
AC
834 else
835 orig_sp = ADDR_BITS_REMOVE ((CORE_ADDR)
1e2330ba 836 read_memory_integer (get_frame_base (sighandler_fi),
5769d3cd
AC
837 S390_GPR_SIZE));
838 if (orig_sp && sigcaller_pc)
839 {
840 scontext = orig_sp + S390_SIGNAL_FRAMESIZE;
841 if (pc == scontext && instr[1] == s390_NR_rt_sigreturn)
842 {
843 /* We got a new style rt_signal */
844 /* get address of read ucontext->uc_mcontext */
845 temp_sregs = orig_sp + (GDB_TARGET_IS_ESAME ?
846 S390X_UC_MCONTEXT_OFFSET :
847 S390_UC_MCONTEXT_OFFSET);
848 }
849 else
850 {
851 /* read sigcontext->sregs */
852 temp_sregs = ADDR_BITS_REMOVE ((CORE_ADDR)
853 read_memory_integer (scontext
854 +
855 (GDB_TARGET_IS_ESAME
856 ?
857 S390X_SIGCONTEXT_SREGS_OFFSET
858 :
859 S390_SIGCONTEXT_SREGS_OFFSET),
860 S390_GPR_SIZE));
861
862 }
863 /* read sigregs->psw.addr */
864 *sigcaller_pc =
865 ADDR_BITS_REMOVE ((CORE_ADDR)
866 read_memory_integer (temp_sregs +
867 REGISTER_BYTE
868 (S390_PC_REGNUM),
869 S390_PSW_ADDR_SIZE));
870 }
871 }
872 retval = 1;
873 }
874 if (sregs)
875 *sregs = temp_sregs;
876 return retval;
877}
878
879/*
880 We need to do something better here but this will keep us out of trouble
881 for the moment.
882 For some reason the blockframe.c calls us with fi->next->fromleaf
883 so this seems of little use to us. */
97f46953 884CORE_ADDR
5769d3cd
AC
885s390_init_frame_pc_first (int next_fromleaf, struct frame_info *fi)
886{
887 CORE_ADDR sigcaller_pc;
97f46953 888 CORE_ADDR pc = 0;
5769d3cd
AC
889 if (next_fromleaf)
890 {
97f46953 891 pc = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
5769d3cd
AC
892 /* fix signal handlers */
893 }
97f46953
AC
894 else if (get_next_frame (fi) && get_frame_pc (get_next_frame (fi)))
895 pc = s390_frame_saved_pc_nofix (get_next_frame (fi));
896 if (pc && get_next_frame (fi) && get_frame_base (get_next_frame (fi))
897 && s390_is_sigreturn (pc, get_next_frame (fi), NULL, &sigcaller_pc))
5769d3cd 898 {
97f46953 899 pc = sigcaller_pc;
5769d3cd 900 }
97f46953 901 return pc;
5769d3cd
AC
902}
903
904void
905s390_init_extra_frame_info (int fromleaf, struct frame_info *fi)
906{
a00a19e9 907 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
50abf9e5
AC
908 if (get_frame_pc (fi))
909 s390_get_frame_info (s390_sniff_pc_function_start (get_frame_pc (fi), fi),
da50a4b7 910 get_frame_extra_info (fi), fi, 1);
5769d3cd 911 else
da50a4b7 912 s390_memset_extra_info (get_frame_extra_info (fi));
5769d3cd
AC
913}
914
915/* If saved registers of frame FI are not known yet, read and cache them.
916 &FEXTRA_INFOP contains struct frame_extra_info; TDATAP can be NULL,
917 in which case the framedata are read. */
918
919void
920s390_frame_init_saved_regs (struct frame_info *fi)
921{
922
923 int quick;
924
b2fb4676 925 if (get_frame_saved_regs (fi) == NULL)
5769d3cd
AC
926 {
927 /* zalloc memsets the saved regs */
928 frame_saved_regs_zalloc (fi);
50abf9e5 929 if (get_frame_pc (fi))
5769d3cd 930 {
da50a4b7
AC
931 quick = (get_frame_extra_info (fi)
932 && get_frame_extra_info (fi)->initialised
933 && get_frame_extra_info (fi)->good_prologue);
934 s390_get_frame_info (quick
935 ? get_frame_extra_info (fi)->function_start
936 : s390_sniff_pc_function_start (get_frame_pc (fi), fi),
937 get_frame_extra_info (fi), fi, !quick);
5769d3cd
AC
938 }
939 }
940}
941
942
943
944CORE_ADDR
945s390_frame_args_address (struct frame_info *fi)
946{
947
948 /* Apparently gdb already knows gdb_args_offset itself */
1e2330ba 949 return get_frame_base (fi);
5769d3cd
AC
950}
951
952
953static CORE_ADDR
954s390_frame_saved_pc_nofix (struct frame_info *fi)
955{
da50a4b7
AC
956 if (get_frame_extra_info (fi) && get_frame_extra_info (fi)->saved_pc_valid)
957 return get_frame_extra_info (fi)->saved_pc;
5c3cf190 958
1e2330ba
AC
959 if (deprecated_generic_find_dummy_frame (get_frame_pc (fi),
960 get_frame_base (fi)))
961 return deprecated_read_register_dummy (get_frame_pc (fi),
962 get_frame_base (fi), S390_PC_REGNUM);
5c3cf190 963
5769d3cd 964 s390_frame_init_saved_regs (fi);
da50a4b7 965 if (get_frame_extra_info (fi))
5769d3cd 966 {
da50a4b7
AC
967 get_frame_extra_info (fi)->saved_pc_valid = 1;
968 if (get_frame_extra_info (fi)->good_prologue
b2fb4676 969 && get_frame_saved_regs (fi)[S390_RETADDR_REGNUM])
da50a4b7 970 get_frame_extra_info (fi)->saved_pc
529765f4 971 = ADDR_BITS_REMOVE (read_memory_integer
b2fb4676 972 (get_frame_saved_regs (fi)[S390_RETADDR_REGNUM],
529765f4
JB
973 S390_GPR_SIZE));
974 else
da50a4b7 975 get_frame_extra_info (fi)->saved_pc
529765f4 976 = ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
da50a4b7 977 return get_frame_extra_info (fi)->saved_pc;
5769d3cd
AC
978 }
979 return 0;
980}
981
982CORE_ADDR
983s390_frame_saved_pc (struct frame_info *fi)
984{
985 CORE_ADDR saved_pc = 0, sig_pc;
986
da50a4b7
AC
987 if (get_frame_extra_info (fi)
988 && get_frame_extra_info (fi)->sig_fixed_saved_pc_valid)
989 return get_frame_extra_info (fi)->sig_fixed_saved_pc;
5769d3cd
AC
990 saved_pc = s390_frame_saved_pc_nofix (fi);
991
da50a4b7 992 if (get_frame_extra_info (fi))
5769d3cd 993 {
da50a4b7 994 get_frame_extra_info (fi)->sig_fixed_saved_pc_valid = 1;
5769d3cd
AC
995 if (saved_pc)
996 {
997 if (s390_is_sigreturn (saved_pc, fi, NULL, &sig_pc))
998 saved_pc = sig_pc;
999 }
da50a4b7 1000 get_frame_extra_info (fi)->sig_fixed_saved_pc = saved_pc;
5769d3cd
AC
1001 }
1002 return saved_pc;
1003}
1004
1005
1006
1007
5a203e44
AC
1008/* We want backtraces out of signal handlers so we don't set
1009 (get_frame_type (thisframe) == SIGTRAMP_FRAME) to 1 */
5769d3cd
AC
1010
1011CORE_ADDR
1012s390_frame_chain (struct frame_info *thisframe)
1013{
1014 CORE_ADDR prev_fp = 0;
1015
1e2330ba
AC
1016 if (deprecated_generic_find_dummy_frame (get_frame_pc (thisframe),
1017 get_frame_base (thisframe)))
1018 return deprecated_read_register_dummy (get_frame_pc (thisframe),
1019 get_frame_base (thisframe),
135c175f 1020 S390_SP_REGNUM);
5769d3cd
AC
1021 else
1022 {
1023 int sigreturn = 0;
1024 CORE_ADDR sregs = 0;
1025 struct frame_extra_info prev_fextra_info;
1026
1027 memset (&prev_fextra_info, 0, sizeof (prev_fextra_info));
50abf9e5 1028 if (get_frame_pc (thisframe))
5769d3cd
AC
1029 {
1030 CORE_ADDR saved_pc, sig_pc;
1031
1032 saved_pc = s390_frame_saved_pc_nofix (thisframe);
1033 if (saved_pc)
1034 {
1035 if ((sigreturn =
1036 s390_is_sigreturn (saved_pc, thisframe, &sregs, &sig_pc)))
1037 saved_pc = sig_pc;
1038 s390_get_frame_info (s390_sniff_pc_function_start
1039 (saved_pc, NULL), &prev_fextra_info, NULL,
1040 1);
1041 }
1042 }
1043 if (sigreturn)
1044 {
1045 /* read sigregs,regs.gprs[11 or 15] */
1046 prev_fp = read_memory_integer (sregs +
1047 REGISTER_BYTE (S390_GP0_REGNUM +
1048 (prev_fextra_info.
1049 frame_pointer_saved_pc
1050 ? 11 : 15)),
1051 S390_GPR_SIZE);
da50a4b7 1052 get_frame_extra_info (thisframe)->sigcontext = sregs;
5769d3cd
AC
1053 }
1054 else
1055 {
b2fb4676 1056 if (get_frame_saved_regs (thisframe))
5769d3cd 1057 {
5769d3cd
AC
1058 int regno;
1059
31c4d430 1060 if (prev_fextra_info.frame_pointer_saved_pc
b2fb4676 1061 && get_frame_saved_regs (thisframe)[S390_FRAME_REGNUM])
31c4d430
JB
1062 regno = S390_FRAME_REGNUM;
1063 else
1064 regno = S390_SP_REGNUM;
1065
b2fb4676 1066 if (get_frame_saved_regs (thisframe)[regno])
31c4d430
JB
1067 {
1068 /* The SP's entry of `saved_regs' is special. */
1069 if (regno == S390_SP_REGNUM)
b2fb4676 1070 prev_fp = get_frame_saved_regs (thisframe)[regno];
31c4d430
JB
1071 else
1072 prev_fp =
b2fb4676 1073 read_memory_integer (get_frame_saved_regs (thisframe)[regno],
31c4d430
JB
1074 S390_GPR_SIZE);
1075 }
5769d3cd
AC
1076 }
1077 }
1078 }
1079 return ADDR_BITS_REMOVE (prev_fp);
1080}
1081
1082/*
1083 Whether struct frame_extra_info is actually needed I'll have to figure
1084 out as our frames are similar to rs6000 there is a possibility
1085 i386 dosen't need it. */
1086
1087
1088
1089/* a given return value in `regbuf' with a type `valtype', extract and copy its
1090 value into `valbuf' */
1091void
1092s390_extract_return_value (struct type *valtype, char *regbuf, char *valbuf)
1093{
1094 /* floats and doubles are returned in fpr0. fpr's have a size of 8 bytes.
1095 We need to truncate the return value into float size (4 byte) if
1096 necessary. */
1097 int len = TYPE_LENGTH (valtype);
1098
1099 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
f2c6cfba 1100 memcpy (valbuf, &regbuf[REGISTER_BYTE (S390_FP0_REGNUM)], len);
5769d3cd
AC
1101 else
1102 {
1103 int offset = 0;
1104 /* return value is copied starting from r2. */
1105 if (TYPE_LENGTH (valtype) < S390_GPR_SIZE)
1106 offset = S390_GPR_SIZE - TYPE_LENGTH (valtype);
1107 memcpy (valbuf,
1108 regbuf + REGISTER_BYTE (S390_GP0_REGNUM + 2) + offset,
1109 TYPE_LENGTH (valtype));
1110 }
1111}
1112
1113
1114static char *
1115s390_promote_integer_argument (struct type *valtype, char *valbuf,
1116 char *reg_buff, int *arglen)
1117{
1118 char *value = valbuf;
1119 int len = TYPE_LENGTH (valtype);
1120
1121 if (len < S390_GPR_SIZE)
1122 {
1123 /* We need to upgrade this value to a register to pass it correctly */
1124 int idx, diff = S390_GPR_SIZE - len, negative =
1125 (!TYPE_UNSIGNED (valtype) && value[0] & 0x80);
1126 for (idx = 0; idx < S390_GPR_SIZE; idx++)
1127 {
1128 reg_buff[idx] = (idx < diff ? (negative ? 0xff : 0x0) :
1129 value[idx - diff]);
1130 }
1131 value = reg_buff;
1132 *arglen = S390_GPR_SIZE;
1133 }
1134 else
1135 {
1136 if (len & (S390_GPR_SIZE - 1))
1137 {
1138 fprintf_unfiltered (gdb_stderr,
1139 "s390_promote_integer_argument detected an argument not "
1140 "a multiple of S390_GPR_SIZE & greater than S390_GPR_SIZE "
1141 "we might not deal with this correctly.\n");
1142 }
1143 *arglen = len;
1144 }
1145
1146 return (value);
1147}
1148
1149void
1150s390_store_return_value (struct type *valtype, char *valbuf)
1151{
1152 int arglen;
1153 char *reg_buff = alloca (max (S390_FPR_SIZE, REGISTER_SIZE)), *value;
1154
1155 if (TYPE_CODE (valtype) == TYPE_CODE_FLT)
1156 {
03a013f4
JB
1157 if (TYPE_LENGTH (valtype) == 4
1158 || TYPE_LENGTH (valtype) == 8)
73937e03
AC
1159 deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM),
1160 valbuf, TYPE_LENGTH (valtype));
03a013f4
JB
1161 else
1162 error ("GDB is unable to return `long double' values "
1163 "on this architecture.");
5769d3cd
AC
1164 }
1165 else
1166 {
1167 value =
1168 s390_promote_integer_argument (valtype, valbuf, reg_buff, &arglen);
1169 /* Everything else is returned in GPR2 and up. */
73937e03
AC
1170 deprecated_write_register_bytes (REGISTER_BYTE (S390_GP0_REGNUM + 2),
1171 value, arglen);
5769d3cd
AC
1172 }
1173}
1174static int
1175gdb_print_insn_s390 (bfd_vma memaddr, disassemble_info * info)
1176{
1177 bfd_byte instrbuff[S390_MAX_INSTR_SIZE];
1178 int instrlen, cnt;
1179
1180 instrlen = s390_readinstruction (instrbuff, (CORE_ADDR) memaddr, info);
1181 if (instrlen < 0)
1182 {
1183 (*info->memory_error_func) (instrlen, memaddr, info);
1184 return -1;
1185 }
1186 for (cnt = 0; cnt < instrlen; cnt++)
1187 info->fprintf_func (info->stream, "%02X ", instrbuff[cnt]);
1188 for (cnt = instrlen; cnt < S390_MAX_INSTR_SIZE; cnt++)
1189 info->fprintf_func (info->stream, " ");
1190 instrlen = print_insn_s390 (memaddr, info);
1191 return instrlen;
1192}
1193
1194
1195
1196/* Not the most efficent code in the world */
1197int
5ae5f592 1198s390_fp_regnum (void)
5769d3cd
AC
1199{
1200 int regno = S390_SP_REGNUM;
1201 struct frame_extra_info fextra_info;
1202
1203 CORE_ADDR pc = ADDR_BITS_REMOVE (read_register (S390_PC_REGNUM));
1204
1205 s390_get_frame_info (s390_sniff_pc_function_start (pc, NULL), &fextra_info,
1206 NULL, 1);
1207 if (fextra_info.frame_pointer_saved_pc)
1208 regno = S390_FRAME_REGNUM;
1209 return regno;
1210}
1211
1212CORE_ADDR
5ae5f592 1213s390_read_fp (void)
5769d3cd
AC
1214{
1215 return read_register (s390_fp_regnum ());
1216}
1217
1218
4c8287ac
JB
1219static void
1220s390_pop_frame_regular (struct frame_info *frame)
5769d3cd 1221{
4c8287ac
JB
1222 int regnum;
1223
1224 write_register (S390_PC_REGNUM, FRAME_SAVED_PC (frame));
1225
1226 /* Restore any saved registers. */
b2fb4676 1227 if (get_frame_saved_regs (frame))
1a889ea5
JB
1228 {
1229 for (regnum = 0; regnum < NUM_REGS; regnum++)
b2fb4676 1230 if (get_frame_saved_regs (frame)[regnum] != 0)
1a889ea5
JB
1231 {
1232 ULONGEST value;
1233
b2fb4676 1234 value = read_memory_unsigned_integer (get_frame_saved_regs (frame)[regnum],
1a889ea5
JB
1235 REGISTER_RAW_SIZE (regnum));
1236 write_register (regnum, value);
1237 }
1238
1239 /* Actually cut back the stack. Remember that the SP's element of
1240 saved_regs is the old SP itself, not the address at which it is
1241 saved. */
b2fb4676 1242 write_register (S390_SP_REGNUM, get_frame_saved_regs (frame)[S390_SP_REGNUM]);
1a889ea5 1243 }
5769d3cd 1244
4c8287ac
JB
1245 /* Throw away any cached frame information. */
1246 flush_cached_frames ();
5769d3cd
AC
1247}
1248
4c8287ac
JB
1249
1250/* Destroy the innermost (Top-Of-Stack) stack frame, restoring the
1251 machine state that was in effect before the frame was created.
1252 Used in the contexts of the "return" command, and of
1253 target function calls from the debugger. */
1254void
5ae5f592 1255s390_pop_frame (void)
4c8287ac
JB
1256{
1257 /* This function checks for and handles generic dummy frames, and
1258 calls back to our function for ordinary frames. */
1259 generic_pop_current_frame (s390_pop_frame_regular);
1260}
1261
1262
78f8b424
JB
1263/* Return non-zero if TYPE is an integer-like type, zero otherwise.
1264 "Integer-like" types are those that should be passed the way
1265 integers are: integers, enums, ranges, characters, and booleans. */
1266static int
1267is_integer_like (struct type *type)
1268{
1269 enum type_code code = TYPE_CODE (type);
1270
1271 return (code == TYPE_CODE_INT
1272 || code == TYPE_CODE_ENUM
1273 || code == TYPE_CODE_RANGE
1274 || code == TYPE_CODE_CHAR
1275 || code == TYPE_CODE_BOOL);
1276}
1277
1278
1279/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
1280 "Pointer-like" types are those that should be passed the way
1281 pointers are: pointers and references. */
1282static int
1283is_pointer_like (struct type *type)
1284{
1285 enum type_code code = TYPE_CODE (type);
1286
1287 return (code == TYPE_CODE_PTR
1288 || code == TYPE_CODE_REF);
1289}
1290
1291
20a940cc
JB
1292/* Return non-zero if TYPE is a `float singleton' or `double
1293 singleton', zero otherwise.
1294
1295 A `T singleton' is a struct type with one member, whose type is
1296 either T or a `T singleton'. So, the following are all float
1297 singletons:
1298
1299 struct { float x };
1300 struct { struct { float x; } x; };
1301 struct { struct { struct { float x; } x; } x; };
1302
1303 ... and so on.
1304
1305 WHY THE HECK DO WE CARE ABOUT THIS??? Well, it turns out that GCC
1306 passes all float singletons and double singletons as if they were
1307 simply floats or doubles. This is *not* what the ABI says it
1308 should do. */
1309static int
1310is_float_singleton (struct type *type)
1311{
1312 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
1313 && TYPE_NFIELDS (type) == 1
1314 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT
1315 || is_float_singleton (TYPE_FIELD_TYPE (type, 0))));
1316}
1317
1318
1319/* Return non-zero if TYPE is a struct-like type, zero otherwise.
1320 "Struct-like" types are those that should be passed as structs are:
1321 structs and unions.
1322
1323 As an odd quirk, not mentioned in the ABI, GCC passes float and
1324 double singletons as if they were a plain float, double, etc. (The
1325 corresponding union types are handled normally.) So we exclude
1326 those types here. *shrug* */
1327static int
1328is_struct_like (struct type *type)
1329{
1330 enum type_code code = TYPE_CODE (type);
1331
1332 return (code == TYPE_CODE_UNION
1333 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
1334}
1335
1336
1337/* Return non-zero if TYPE is a float-like type, zero otherwise.
1338 "Float-like" types are those that should be passed as
1339 floating-point values are.
1340
1341 You'd think this would just be floats, doubles, long doubles, etc.
1342 But as an odd quirk, not mentioned in the ABI, GCC passes float and
1343 double singletons as if they were a plain float, double, etc. (The
1344 corresponding union types are handled normally.) So we exclude
1345 those types here. *shrug* */
1346static int
1347is_float_like (struct type *type)
1348{
1349 return (TYPE_CODE (type) == TYPE_CODE_FLT
1350 || is_float_singleton (type));
1351}
1352
1353
78f8b424
JB
1354/* Return non-zero if TYPE is considered a `DOUBLE_OR_FLOAT', as
1355 defined by the parameter passing conventions described in the
ca557f44 1356 "GNU/Linux for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
1357 Otherwise, return zero. */
1358static int
1359is_double_or_float (struct type *type)
1360{
20a940cc 1361 return (is_float_like (type)
78f8b424
JB
1362 && (TYPE_LENGTH (type) == 4
1363 || TYPE_LENGTH (type) == 8));
1364}
1365
5769d3cd 1366
78f8b424 1367/* Return non-zero if TYPE is considered a `SIMPLE_ARG', as defined by
ca557f44
AC
1368 the parameter passing conventions described in the "GNU/Linux for
1369 S/390 ELF Application Binary Interface Supplement". Return zero
1370 otherwise. */
78f8b424
JB
1371static int
1372is_simple_arg (struct type *type)
1373{
78f8b424
JB
1374 unsigned length = TYPE_LENGTH (type);
1375
a1677dfb
JB
1376 /* This is almost a direct translation of the ABI's language, except
1377 that we have to exclude 8-byte structs; those are DOUBLE_ARGs. */
78f8b424
JB
1378 return ((is_integer_like (type) && length <= 4)
1379 || is_pointer_like (type)
20a940cc
JB
1380 || (is_struct_like (type) && length != 8)
1381 || (is_float_like (type) && length == 16));
78f8b424
JB
1382}
1383
1384
1385/* Return non-zero if TYPE should be passed as a pointer to a copy,
1386 zero otherwise. TYPE must be a SIMPLE_ARG, as recognized by
1387 `is_simple_arg'. */
1388static int
1389pass_by_copy_ref (struct type *type)
1390{
78f8b424
JB
1391 unsigned length = TYPE_LENGTH (type);
1392
20a940cc
JB
1393 return ((is_struct_like (type) && length != 1 && length != 2 && length != 4)
1394 || (is_float_like (type) && length == 16));
78f8b424
JB
1395}
1396
1397
1398/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
1399 word as required for the ABI. */
1400static LONGEST
1401extend_simple_arg (struct value *arg)
1402{
1403 struct type *type = VALUE_TYPE (arg);
1404
1405 /* Even structs get passed in the least significant bits of the
1406 register / memory word. It's not really right to extract them as
1407 an integer, but it does take care of the extension. */
1408 if (TYPE_UNSIGNED (type))
1409 return extract_unsigned_integer (VALUE_CONTENTS (arg),
1410 TYPE_LENGTH (type));
1411 else
1412 return extract_signed_integer (VALUE_CONTENTS (arg),
1413 TYPE_LENGTH (type));
1414}
1415
1416
1417/* Return non-zero if TYPE is a `DOUBLE_ARG', as defined by the
ca557f44
AC
1418 parameter passing conventions described in the "GNU/Linux for S/390
1419 ELF Application Binary Interface Supplement". Return zero
1420 otherwise. */
78f8b424
JB
1421static int
1422is_double_arg (struct type *type)
1423{
78f8b424
JB
1424 unsigned length = TYPE_LENGTH (type);
1425
1426 return ((is_integer_like (type)
20a940cc 1427 || is_struct_like (type))
78f8b424
JB
1428 && length == 8);
1429}
1430
1431
1432/* Round ADDR up to the next N-byte boundary. N must be a power of
1433 two. */
1434static CORE_ADDR
1435round_up (CORE_ADDR addr, int n)
1436{
1437 /* Check that N is really a power of two. */
1438 gdb_assert (n && (n & (n-1)) == 0);
1439 return ((addr + n - 1) & -n);
1440}
1441
1442
1443/* Round ADDR down to the next N-byte boundary. N must be a power of
1444 two. */
1445static CORE_ADDR
1446round_down (CORE_ADDR addr, int n)
1447{
1448 /* Check that N is really a power of two. */
1449 gdb_assert (n && (n & (n-1)) == 0);
1450 return (addr & -n);
1451}
1452
1453
1454/* Return the alignment required by TYPE. */
1455static int
1456alignment_of (struct type *type)
1457{
1458 int alignment;
1459
1460 if (is_integer_like (type)
1461 || is_pointer_like (type)
1462 || TYPE_CODE (type) == TYPE_CODE_FLT)
1463 alignment = TYPE_LENGTH (type);
1464 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
1465 || TYPE_CODE (type) == TYPE_CODE_UNION)
1466 {
1467 int i;
1468
1469 alignment = 1;
1470 for (i = 0; i < TYPE_NFIELDS (type); i++)
1471 {
1472 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
1473
1474 if (field_alignment > alignment)
1475 alignment = field_alignment;
1476 }
1477 }
1478 else
1479 alignment = 1;
1480
1481 /* Check that everything we ever return is a power of two. Lots of
1482 code doesn't want to deal with aligning things to arbitrary
1483 boundaries. */
1484 gdb_assert ((alignment & (alignment - 1)) == 0);
1485
1486 return alignment;
1487}
1488
1489
1490/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
ca557f44
AC
1491 place to be passed to a function, as specified by the "GNU/Linux
1492 for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
1493
1494 SP is the current stack pointer. We must put arguments, links,
1495 padding, etc. whereever they belong, and return the new stack
1496 pointer value.
1497
1498 If STRUCT_RETURN is non-zero, then the function we're calling is
1499 going to return a structure by value; STRUCT_ADDR is the address of
1500 a block we've allocated for it on the stack.
1501
1502 Our caller has taken care of any type promotions needed to satisfy
1503 prototypes or the old K&R argument-passing rules. */
5769d3cd 1504CORE_ADDR
d45fc520 1505s390_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
5769d3cd
AC
1506 int struct_return, CORE_ADDR struct_addr)
1507{
78f8b424
JB
1508 int i;
1509 int pointer_size = (TARGET_PTR_BIT / TARGET_CHAR_BIT);
5769d3cd 1510
78f8b424
JB
1511 /* The number of arguments passed by reference-to-copy. */
1512 int num_copies;
5769d3cd 1513
78f8b424
JB
1514 /* If the i'th argument is passed as a reference to a copy, then
1515 copy_addr[i] is the address of the copy we made. */
1516 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
5769d3cd 1517
78f8b424
JB
1518 /* Build the reference-to-copy area. */
1519 num_copies = 0;
1520 for (i = 0; i < nargs; i++)
1521 {
1522 struct value *arg = args[i];
1523 struct type *type = VALUE_TYPE (arg);
1524 unsigned length = TYPE_LENGTH (type);
5769d3cd 1525
78f8b424
JB
1526 if (is_simple_arg (type)
1527 && pass_by_copy_ref (type))
01c464e9 1528 {
78f8b424
JB
1529 sp -= length;
1530 sp = round_down (sp, alignment_of (type));
1531 write_memory (sp, VALUE_CONTENTS (arg), length);
1532 copy_addr[i] = sp;
1533 num_copies++;
01c464e9 1534 }
5769d3cd 1535 }
5769d3cd 1536
78f8b424
JB
1537 /* Reserve space for the parameter area. As a conservative
1538 simplification, we assume that everything will be passed on the
1539 stack. */
1540 {
1541 int i;
1542
1543 for (i = 0; i < nargs; i++)
1544 {
1545 struct value *arg = args[i];
1546 struct type *type = VALUE_TYPE (arg);
1547 int length = TYPE_LENGTH (type);
1548
1549 sp = round_down (sp, alignment_of (type));
1550
1551 /* SIMPLE_ARG values get extended to 32 bits. Assume every
1552 argument is. */
1553 if (length < 4) length = 4;
1554 sp -= length;
1555 }
1556 }
1557
1558 /* Include space for any reference-to-copy pointers. */
1559 sp = round_down (sp, pointer_size);
1560 sp -= num_copies * pointer_size;
1561
1562 /* After all that, make sure it's still aligned on an eight-byte
1563 boundary. */
1564 sp = round_down (sp, 8);
1565
1566 /* Finally, place the actual parameters, working from SP towards
1567 higher addresses. The code above is supposed to reserve enough
1568 space for this. */
1569 {
1570 int fr = 0;
1571 int gr = 2;
1572 CORE_ADDR starg = sp;
1573
1574 for (i = 0; i < nargs; i++)
1575 {
1576 struct value *arg = args[i];
1577 struct type *type = VALUE_TYPE (arg);
1578
1579 if (is_double_or_float (type)
1580 && fr <= 2)
1581 {
1582 /* When we store a single-precision value in an FP register,
1583 it occupies the leftmost bits. */
73937e03
AC
1584 deprecated_write_register_bytes (REGISTER_BYTE (S390_FP0_REGNUM + fr),
1585 VALUE_CONTENTS (arg),
1586 TYPE_LENGTH (type));
78f8b424
JB
1587 fr += 2;
1588 }
1589 else if (is_simple_arg (type)
1590 && gr <= 6)
1591 {
1592 /* Do we need to pass a pointer to our copy of this
1593 argument? */
1594 if (pass_by_copy_ref (type))
1595 write_register (S390_GP0_REGNUM + gr, copy_addr[i]);
1596 else
1597 write_register (S390_GP0_REGNUM + gr, extend_simple_arg (arg));
1598
1599 gr++;
1600 }
1601 else if (is_double_arg (type)
1602 && gr <= 5)
1603 {
4caf0990
AC
1604 deprecated_write_register_gen (S390_GP0_REGNUM + gr,
1605 VALUE_CONTENTS (arg));
1606 deprecated_write_register_gen (S390_GP0_REGNUM + gr + 1,
1607 VALUE_CONTENTS (arg) + 4);
78f8b424
JB
1608 gr += 2;
1609 }
1610 else
1611 {
1612 /* The `OTHER' case. */
1613 enum type_code code = TYPE_CODE (type);
1614 unsigned length = TYPE_LENGTH (type);
1615
1616 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
1617 in it, then don't go back and use it again later. */
1618 if (is_double_arg (type) && gr == 6)
1619 gr = 7;
1620
1621 if (is_simple_arg (type))
1622 {
1623 /* Simple args are always either extended to 32 bits,
1624 or pointers. */
1625 starg = round_up (starg, 4);
1626
1627 /* Do we need to pass a pointer to our copy of this
1628 argument? */
1629 if (pass_by_copy_ref (type))
1630 write_memory_signed_integer (starg, pointer_size,
1631 copy_addr[i]);
1632 else
1633 /* Simple args are always extended to 32 bits. */
1634 write_memory_signed_integer (starg, 4,
1635 extend_simple_arg (arg));
1636 starg += 4;
1637 }
1638 else
1639 {
20a940cc
JB
1640 /* You'd think we should say:
1641 starg = round_up (starg, alignment_of (type));
1642 Unfortunately, GCC seems to simply align the stack on
1643 a four-byte boundary, even when passing doubles. */
1644 starg = round_up (starg, 4);
78f8b424
JB
1645 write_memory (starg, VALUE_CONTENTS (arg), length);
1646 starg += length;
1647 }
1648 }
1649 }
1650 }
1651
1652 /* Allocate the standard frame areas: the register save area, the
1653 word reserved for the compiler (which seems kind of meaningless),
1654 and the back chain pointer. */
1655 sp -= 96;
1656
1657 /* Write the back chain pointer into the first word of the stack
1658 frame. This will help us get backtraces from within functions
1659 called from GDB. */
1660 write_memory_unsigned_integer (sp, (TARGET_PTR_BIT / TARGET_CHAR_BIT),
1661 read_fp ());
1662
1663 return sp;
5769d3cd
AC
1664}
1665
c8f9d51c
JB
1666
1667static int
1668s390_use_struct_convention (int gcc_p, struct type *value_type)
1669{
1670 enum type_code code = TYPE_CODE (value_type);
1671
1672 return (code == TYPE_CODE_STRUCT
1673 || code == TYPE_CODE_UNION);
1674}
1675
1676
5769d3cd
AC
1677/* Return the GDB type object for the "standard" data type
1678 of data in register N. */
1679struct type *
1680s390_register_virtual_type (int regno)
1681{
b09677dc
JB
1682 if (S390_FP0_REGNUM <= regno && regno < S390_FP0_REGNUM + S390_NUM_FPRS)
1683 return builtin_type_double;
1684 else
1685 return builtin_type_int;
5769d3cd
AC
1686}
1687
1688
1689struct type *
1690s390x_register_virtual_type (int regno)
1691{
1692 return (regno == S390_FPC_REGNUM) ||
1693 (regno >= S390_FIRST_ACR && regno <= S390_LAST_ACR) ? builtin_type_int :
1694 (regno >= S390_FP0_REGNUM) ? builtin_type_double : builtin_type_long;
1695}
1696
1697
1698
1699void
1700s390_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
1701{
1702 write_register (S390_GP0_REGNUM + 2, addr);
1703}
1704
1705
1706
f4f9705a 1707const static unsigned char *
5769d3cd
AC
1708s390_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1709{
1710 static unsigned char breakpoint[] = { 0x0, 0x1 };
1711
1712 *lenptr = sizeof (breakpoint);
1713 return breakpoint;
1714}
1715
1716/* Advance PC across any function entry prologue instructions to reach some
1717 "real" code. */
1718CORE_ADDR
1719s390_skip_prologue (CORE_ADDR pc)
1720{
1721 struct frame_extra_info fextra_info;
1722
1723 s390_get_frame_info (pc, &fextra_info, NULL, 1);
1724 return fextra_info.skip_prologue_function_start;
1725}
1726
5769d3cd
AC
1727/* Immediately after a function call, return the saved pc.
1728 Can't go through the frames for this because on some machines
1729 the new frame is not set up until the new function executes
1730 some instructions. */
1731CORE_ADDR
1732s390_saved_pc_after_call (struct frame_info *frame)
1733{
1734 return ADDR_BITS_REMOVE (read_register (S390_RETADDR_REGNUM));
1735}
1736
1737static CORE_ADDR
1738s390_addr_bits_remove (CORE_ADDR addr)
1739{
1740 return (addr) & 0x7fffffff;
1741}
1742
1743
1744static CORE_ADDR
1745s390_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
1746{
d4d0c21e 1747 write_register (S390_RETADDR_REGNUM, CALL_DUMMY_ADDRESS ());
5769d3cd
AC
1748 return sp;
1749}
1750
ffc65945
KB
1751static int
1752s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
1753{
1754 if (byte_size == 4)
1755 return TYPE_FLAG_ADDRESS_CLASS_1;
1756 else
1757 return 0;
1758}
1759
1760static const char *
1761s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
1762{
1763 if (type_flags & TYPE_FLAG_ADDRESS_CLASS_1)
1764 return "mode32";
1765 else
1766 return NULL;
1767}
1768
1769int
1770s390_address_class_name_to_type_flags (struct gdbarch *gdbarch, const char *name,
1771 int *type_flags_ptr)
1772{
1773 if (strcmp (name, "mode32") == 0)
1774 {
1775 *type_flags_ptr = TYPE_FLAG_ADDRESS_CLASS_1;
1776 return 1;
1777 }
1778 else
1779 return 0;
1780}
1781
5769d3cd
AC
1782struct gdbarch *
1783s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1784{
d4d0c21e 1785 static LONGEST s390_call_dummy_words[] = { 0 };
5769d3cd
AC
1786 struct gdbarch *gdbarch;
1787 struct gdbarch_tdep *tdep;
1788 int elf_flags;
1789
1790 /* First see if there is already a gdbarch that can satisfy the request. */
1791 arches = gdbarch_list_lookup_by_info (arches, &info);
1792 if (arches != NULL)
1793 return arches->gdbarch;
1794
1795 /* None found: is the request for a s390 architecture? */
1796 if (info.bfd_arch_info->arch != bfd_arch_s390)
1797 return NULL; /* No; then it's not for us. */
1798
1799 /* Yes: create a new gdbarch for the specified machine type. */
1800 gdbarch = gdbarch_alloc (&info, NULL);
1801
a5afb99f
AC
1802 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1803 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1804 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1805
5769d3cd 1806 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
4e409299 1807 set_gdbarch_char_signed (gdbarch, 0);
5769d3cd 1808
5769d3cd
AC
1809 set_gdbarch_frame_args_skip (gdbarch, 0);
1810 set_gdbarch_frame_args_address (gdbarch, s390_frame_args_address);
1811 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1812 set_gdbarch_frame_init_saved_regs (gdbarch, s390_frame_init_saved_regs);
1813 set_gdbarch_frame_locals_address (gdbarch, s390_frame_args_address);
1814 /* We can't do this */
1815 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1816 set_gdbarch_store_struct_return (gdbarch, s390_store_struct_return);
26e9b323 1817 set_gdbarch_deprecated_extract_return_value (gdbarch, s390_extract_return_value);
ebba8386 1818 set_gdbarch_deprecated_store_return_value (gdbarch, s390_store_return_value);
5769d3cd
AC
1819 /* Amount PC must be decremented by after a breakpoint.
1820 This is often the number of bytes in BREAKPOINT
1821 but not always. */
1822 set_gdbarch_decr_pc_after_break (gdbarch, 2);
1823 set_gdbarch_pop_frame (gdbarch, s390_pop_frame);
5769d3cd
AC
1824 /* Stack grows downward. */
1825 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1826 /* Offset from address of function to start of its code.
1827 Zero on most machines. */
1828 set_gdbarch_function_start_offset (gdbarch, 0);
1829 set_gdbarch_max_register_raw_size (gdbarch, 8);
1830 set_gdbarch_max_register_virtual_size (gdbarch, 8);
1831 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
1832 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
e9582e71 1833 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, s390_init_extra_frame_info);
2ca6c561 1834 set_gdbarch_deprecated_init_frame_pc_first (gdbarch, s390_init_frame_pc_first);
5769d3cd 1835 set_gdbarch_read_fp (gdbarch, s390_read_fp);
5769d3cd
AC
1836 /* This function that tells us whether the function invocation represented
1837 by FI does not have a frame on the stack associated with it. If it
1838 does not, FRAMELESS is set to 1, else 0. */
1839 set_gdbarch_frameless_function_invocation (gdbarch,
1840 s390_frameless_function_invocation);
1841 /* Return saved PC from a frame */
1842 set_gdbarch_frame_saved_pc (gdbarch, s390_frame_saved_pc);
1843 /* FRAME_CHAIN takes a frame's nominal address
1844 and produces the frame's chain-pointer. */
1845 set_gdbarch_frame_chain (gdbarch, s390_frame_chain);
1846 set_gdbarch_saved_pc_after_call (gdbarch, s390_saved_pc_after_call);
1847 set_gdbarch_register_byte (gdbarch, s390_register_byte);
1848 set_gdbarch_pc_regnum (gdbarch, S390_PC_REGNUM);
1849 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
1850 set_gdbarch_fp_regnum (gdbarch, S390_FP_REGNUM);
1851 set_gdbarch_fp0_regnum (gdbarch, S390_FP0_REGNUM);
1852 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
1853 set_gdbarch_cannot_fetch_register (gdbarch, s390_cannot_fetch_register);
1854 set_gdbarch_cannot_store_register (gdbarch, s390_cannot_fetch_register);
c8f9d51c 1855 set_gdbarch_use_struct_convention (gdbarch, s390_use_struct_convention);
5769d3cd
AC
1856 set_gdbarch_register_name (gdbarch, s390_register_name);
1857 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1858 set_gdbarch_dwarf_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
1859 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_stab_reg_to_regnum);
26e9b323 1860 set_gdbarch_deprecated_extract_struct_value_address
c8f9d51c 1861 (gdbarch, generic_cannot_extract_struct_value_address);
5769d3cd 1862
d4d0c21e 1863 /* Parameters for inferior function calls. */
5769d3cd 1864 set_gdbarch_call_dummy_p (gdbarch, 1);
d4d0c21e 1865 set_gdbarch_call_dummy_length (gdbarch, 0);
d4d0c21e
JB
1866 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
1867 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
ae45cd16 1868 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
d4d0c21e 1869 set_gdbarch_push_arguments (gdbarch, s390_push_arguments);
5c3cf190 1870 set_gdbarch_save_dummy_frame_tos (gdbarch, generic_save_dummy_frame_tos);
d4d0c21e
JB
1871 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
1872 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
5769d3cd 1873 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
d4d0c21e 1874 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
5769d3cd 1875 set_gdbarch_push_return_address (gdbarch, s390_push_return_address);
d4d0c21e
JB
1876 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1877 sizeof (s390_call_dummy_words));
1878 set_gdbarch_call_dummy_words (gdbarch, s390_call_dummy_words);
5769d3cd
AC
1879
1880 switch (info.bfd_arch_info->mach)
1881 {
b8b8b047 1882 case bfd_mach_s390_31:
5769d3cd 1883 set_gdbarch_register_size (gdbarch, 4);
5769d3cd
AC
1884 set_gdbarch_register_raw_size (gdbarch, s390_register_raw_size);
1885 set_gdbarch_register_virtual_size (gdbarch, s390_register_raw_size);
1886 set_gdbarch_register_virtual_type (gdbarch, s390_register_virtual_type);
1887
1888 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
5769d3cd
AC
1889 set_gdbarch_register_bytes (gdbarch, S390_REGISTER_BYTES);
1890 break;
b8b8b047 1891 case bfd_mach_s390_64:
5769d3cd 1892 set_gdbarch_register_size (gdbarch, 8);
5769d3cd
AC
1893 set_gdbarch_register_raw_size (gdbarch, s390x_register_raw_size);
1894 set_gdbarch_register_virtual_size (gdbarch, s390x_register_raw_size);
1895 set_gdbarch_register_virtual_type (gdbarch,
1896 s390x_register_virtual_type);
1897
1898 set_gdbarch_long_bit (gdbarch, 64);
1899 set_gdbarch_long_long_bit (gdbarch, 64);
1900 set_gdbarch_ptr_bit (gdbarch, 64);
5769d3cd 1901 set_gdbarch_register_bytes (gdbarch, S390X_REGISTER_BYTES);
ffc65945
KB
1902 set_gdbarch_address_class_type_flags (gdbarch,
1903 s390_address_class_type_flags);
1904 set_gdbarch_address_class_type_flags_to_name (gdbarch,
1905 s390_address_class_type_flags_to_name);
1906 set_gdbarch_address_class_name_to_type_flags (gdbarch,
1907 s390_address_class_name_to_type_flags);
5769d3cd
AC
1908 break;
1909 }
1910
1911 return gdbarch;
1912}
1913
1914
1915
1916void
5ae5f592 1917_initialize_s390_tdep (void)
5769d3cd
AC
1918{
1919
1920 /* Hook us into the gdbarch mechanism. */
1921 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
1922 if (!tm_print_insn) /* Someone may have already set it */
1923 tm_print_insn = gdb_print_insn_s390;
1924}
1925
1926#endif /* GDBSERVER */
This page took 0.311786 seconds and 4 git commands to generate.