gdb/testsuite/
[deliverable/binutils-gdb.git] / gdb / s390-tdep.c
CommitLineData
5769d3cd 1/* Target-dependent code for GDB, the GNU debugger.
ca557f44 2
7b6bb8da
JB
3 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
ca557f44 5
5769d3cd
AC
6 Contributed by D.J. Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
7 for IBM Deutschland Entwicklung GmbH, IBM Corporation.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
a9762ec7 13 the Free Software Foundation; either version 3 of the License, or
5769d3cd
AC
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
a9762ec7 22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
5769d3cd 23
d0f54f9d 24#include "defs.h"
5769d3cd
AC
25#include "arch-utils.h"
26#include "frame.h"
27#include "inferior.h"
28#include "symtab.h"
29#include "target.h"
30#include "gdbcore.h"
31#include "gdbcmd.h"
5769d3cd 32#include "objfiles.h"
5769d3cd
AC
33#include "floatformat.h"
34#include "regcache.h"
a8c99f38
JB
35#include "trad-frame.h"
36#include "frame-base.h"
37#include "frame-unwind.h"
a431654a 38#include "dwarf2-frame.h"
d0f54f9d
JB
39#include "reggroups.h"
40#include "regset.h"
fd0407d6 41#include "value.h"
78f8b424 42#include "gdb_assert.h"
a89aa300 43#include "dis-asm.h"
76a9d10f 44#include "solib-svr4.h"
3fc46200 45#include "prologue-value.h"
70728992 46#include "linux-tdep.h"
d0f54f9d 47#include "s390-tdep.h"
5769d3cd 48
7803799a
UW
49#include "features/s390-linux32.c"
50#include "features/s390-linux64.c"
51#include "features/s390x-linux64.c"
52
60e6cc42 53
d0f54f9d
JB
54/* The tdep structure. */
55
56struct gdbarch_tdep
5769d3cd 57{
b0cf273e
JB
58 /* ABI version. */
59 enum { ABI_LINUX_S390, ABI_LINUX_ZSERIES } abi;
60
7803799a
UW
61 /* Pseudo register numbers. */
62 int gpr_full_regnum;
63 int pc_regnum;
64 int cc_regnum;
65
d0f54f9d
JB
66 /* Core file register sets. */
67 const struct regset *gregset;
68 int sizeof_gregset;
69
70 const struct regset *fpregset;
71 int sizeof_fpregset;
72};
73
74
7803799a
UW
75/* ABI call-saved register information. */
76
77static int
78s390_register_call_saved (struct gdbarch *gdbarch, int regnum)
d0f54f9d 79{
7803799a
UW
80 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
81
82 switch (tdep->abi)
6707b003 83 {
7803799a
UW
84 case ABI_LINUX_S390:
85 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
86 || regnum == S390_F4_REGNUM || regnum == S390_F6_REGNUM
87 || regnum == S390_A0_REGNUM)
88 return 1;
6707b003 89
7803799a
UW
90 break;
91
92 case ABI_LINUX_ZSERIES:
93 if ((regnum >= S390_R6_REGNUM && regnum <= S390_R15_REGNUM)
94 || (regnum >= S390_F8_REGNUM && regnum <= S390_F15_REGNUM)
95 || (regnum >= S390_A0_REGNUM && regnum <= S390_A1_REGNUM))
96 return 1;
97
98 break;
99 }
100
101 return 0;
5769d3cd
AC
102}
103
7803799a 104
d0f54f9d
JB
105/* DWARF Register Mapping. */
106
107static int s390_dwarf_regmap[] =
108{
109 /* General Purpose Registers. */
110 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
111 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
112 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
113 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
114
115 /* Floating Point Registers. */
116 S390_F0_REGNUM, S390_F2_REGNUM, S390_F4_REGNUM, S390_F6_REGNUM,
117 S390_F1_REGNUM, S390_F3_REGNUM, S390_F5_REGNUM, S390_F7_REGNUM,
118 S390_F8_REGNUM, S390_F10_REGNUM, S390_F12_REGNUM, S390_F14_REGNUM,
119 S390_F9_REGNUM, S390_F11_REGNUM, S390_F13_REGNUM, S390_F15_REGNUM,
120
121 /* Control Registers (not mapped). */
122 -1, -1, -1, -1, -1, -1, -1, -1,
123 -1, -1, -1, -1, -1, -1, -1, -1,
124
125 /* Access Registers. */
126 S390_A0_REGNUM, S390_A1_REGNUM, S390_A2_REGNUM, S390_A3_REGNUM,
127 S390_A4_REGNUM, S390_A5_REGNUM, S390_A6_REGNUM, S390_A7_REGNUM,
128 S390_A8_REGNUM, S390_A9_REGNUM, S390_A10_REGNUM, S390_A11_REGNUM,
129 S390_A12_REGNUM, S390_A13_REGNUM, S390_A14_REGNUM, S390_A15_REGNUM,
130
131 /* Program Status Word. */
132 S390_PSWM_REGNUM,
7803799a
UW
133 S390_PSWA_REGNUM,
134
135 /* GPR Lower Half Access. */
136 S390_R0_REGNUM, S390_R1_REGNUM, S390_R2_REGNUM, S390_R3_REGNUM,
137 S390_R4_REGNUM, S390_R5_REGNUM, S390_R6_REGNUM, S390_R7_REGNUM,
138 S390_R8_REGNUM, S390_R9_REGNUM, S390_R10_REGNUM, S390_R11_REGNUM,
139 S390_R12_REGNUM, S390_R13_REGNUM, S390_R14_REGNUM, S390_R15_REGNUM,
d0f54f9d
JB
140};
141
142/* Convert DWARF register number REG to the appropriate register
143 number used by GDB. */
a78f21af 144static int
d3f73121 145s390_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
d0f54f9d 146{
7803799a
UW
147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
148
149 /* In a 32-on-64 debug scenario, debug info refers to the full 64-bit
150 GPRs. Note that call frame information still refers to the 32-bit
151 lower halves, because s390_adjust_frame_regnum uses register numbers
152 66 .. 81 to access GPRs. */
153 if (tdep->gpr_full_regnum != -1 && reg >= 0 && reg < 16)
154 return tdep->gpr_full_regnum + reg;
d0f54f9d 155
16aff9a6 156 if (reg >= 0 && reg < ARRAY_SIZE (s390_dwarf_regmap))
7803799a 157 return s390_dwarf_regmap[reg];
d0f54f9d 158
7803799a
UW
159 warning (_("Unmapped DWARF Register #%d encountered."), reg);
160 return -1;
161}
d0f54f9d 162
7803799a
UW
163/* Translate a .eh_frame register to DWARF register, or adjust a
164 .debug_frame register. */
165static int
166s390_adjust_frame_regnum (struct gdbarch *gdbarch, int num, int eh_frame_p)
167{
168 /* See s390_dwarf_reg_to_regnum for comments. */
169 return (num >= 0 && num < 16)? num + 66 : num;
d0f54f9d
JB
170}
171
d0f54f9d 172
7803799a
UW
173/* Pseudo registers. */
174
175static const char *
176s390_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
d0f54f9d 177{
7803799a 178 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d0f54f9d 179
7803799a
UW
180 if (regnum == tdep->pc_regnum)
181 return "pc";
d0f54f9d 182
7803799a
UW
183 if (regnum == tdep->cc_regnum)
184 return "cc";
d0f54f9d 185
7803799a
UW
186 if (tdep->gpr_full_regnum != -1
187 && regnum >= tdep->gpr_full_regnum
188 && regnum < tdep->gpr_full_regnum + 16)
189 {
190 static const char *full_name[] = {
191 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
192 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
193 };
194 return full_name[regnum - tdep->gpr_full_regnum];
d0f54f9d 195 }
7803799a
UW
196
197 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d0f54f9d
JB
198}
199
7803799a
UW
200static struct type *
201s390_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
5769d3cd 202{
7803799a 203 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
d0f54f9d 204
7803799a
UW
205 if (regnum == tdep->pc_regnum)
206 return builtin_type (gdbarch)->builtin_func_ptr;
d0f54f9d 207
7803799a
UW
208 if (regnum == tdep->cc_regnum)
209 return builtin_type (gdbarch)->builtin_int;
d0f54f9d 210
7803799a
UW
211 if (tdep->gpr_full_regnum != -1
212 && regnum >= tdep->gpr_full_regnum
213 && regnum < tdep->gpr_full_regnum + 16)
214 return builtin_type (gdbarch)->builtin_uint64;
215
216 internal_error (__FILE__, __LINE__, _("invalid regnum"));
5769d3cd
AC
217}
218
05d1431c 219static enum register_status
7803799a
UW
220s390_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
221 int regnum, gdb_byte *buf)
d0f54f9d 222{
7803799a 223 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 224 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7803799a 225 int regsize = register_size (gdbarch, regnum);
d0f54f9d
JB
226 ULONGEST val;
227
7803799a 228 if (regnum == tdep->pc_regnum)
d0f54f9d 229 {
05d1431c
PA
230 enum register_status status;
231
232 status = regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &val);
233 if (status == REG_VALID)
234 {
235 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
236 val &= 0x7fffffff;
237 store_unsigned_integer (buf, regsize, byte_order, val);
238 }
239 return status;
7803799a 240 }
d0f54f9d 241
7803799a
UW
242 if (regnum == tdep->cc_regnum)
243 {
05d1431c
PA
244 enum register_status status;
245
246 status = regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &val);
247 if (status == REG_VALID)
248 {
249 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
250 val = (val >> 12) & 3;
251 else
252 val = (val >> 44) & 3;
253 store_unsigned_integer (buf, regsize, byte_order, val);
254 }
255 return status;
7803799a 256 }
d0f54f9d 257
7803799a
UW
258 if (tdep->gpr_full_regnum != -1
259 && regnum >= tdep->gpr_full_regnum
260 && regnum < tdep->gpr_full_regnum + 16)
261 {
05d1431c 262 enum register_status status;
7803799a 263 ULONGEST val_upper;
05d1431c 264
7803799a
UW
265 regnum -= tdep->gpr_full_regnum;
266
05d1431c
PA
267 status = regcache_raw_read_unsigned (regcache, S390_R0_REGNUM + regnum, &val);
268 if (status == REG_VALID)
269 status = regcache_raw_read_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
270 &val_upper);
271 if (status == REG_VALID)
272 {
273 val |= val_upper << 32;
274 store_unsigned_integer (buf, regsize, byte_order, val);
275 }
276 return status;
d0f54f9d 277 }
7803799a
UW
278
279 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d0f54f9d
JB
280}
281
282static void
7803799a
UW
283s390_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
284 int regnum, const gdb_byte *buf)
d0f54f9d 285{
7803799a 286 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 287 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
7803799a 288 int regsize = register_size (gdbarch, regnum);
d0f54f9d
JB
289 ULONGEST val, psw;
290
7803799a 291 if (regnum == tdep->pc_regnum)
d0f54f9d 292 {
7803799a
UW
293 val = extract_unsigned_integer (buf, regsize, byte_order);
294 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
295 {
296 regcache_raw_read_unsigned (regcache, S390_PSWA_REGNUM, &psw);
297 val = (psw & 0x80000000) | (val & 0x7fffffff);
298 }
299 regcache_raw_write_unsigned (regcache, S390_PSWA_REGNUM, val);
300 return;
301 }
d0f54f9d 302
7803799a
UW
303 if (regnum == tdep->cc_regnum)
304 {
305 val = extract_unsigned_integer (buf, regsize, byte_order);
d0f54f9d 306 regcache_raw_read_unsigned (regcache, S390_PSWM_REGNUM, &psw);
7803799a
UW
307 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
308 val = (psw & ~((ULONGEST)3 << 12)) | ((val & 3) << 12);
309 else
310 val = (psw & ~((ULONGEST)3 << 44)) | ((val & 3) << 44);
311 regcache_raw_write_unsigned (regcache, S390_PSWM_REGNUM, val);
312 return;
313 }
d0f54f9d 314
7803799a
UW
315 if (tdep->gpr_full_regnum != -1
316 && regnum >= tdep->gpr_full_regnum
317 && regnum < tdep->gpr_full_regnum + 16)
318 {
319 regnum -= tdep->gpr_full_regnum;
320 val = extract_unsigned_integer (buf, regsize, byte_order);
321 regcache_raw_write_unsigned (regcache, S390_R0_REGNUM + regnum,
322 val & 0xffffffff);
323 regcache_raw_write_unsigned (regcache, S390_R0_UPPER_REGNUM + regnum,
324 val >> 32);
325 return;
d0f54f9d 326 }
7803799a
UW
327
328 internal_error (__FILE__, __LINE__, _("invalid regnum"));
d0f54f9d
JB
329}
330
331/* 'float' values are stored in the upper half of floating-point
332 registers, even though we are otherwise a big-endian platform. */
333
9acbedc0
UW
334static struct value *
335s390_value_from_register (struct type *type, int regnum,
336 struct frame_info *frame)
d0f54f9d 337{
9acbedc0
UW
338 struct value *value = default_value_from_register (type, regnum, frame);
339 int len = TYPE_LENGTH (type);
d0f54f9d 340
9acbedc0
UW
341 if (regnum >= S390_F0_REGNUM && regnum <= S390_F15_REGNUM && len < 8)
342 set_value_offset (value, 0);
d0f54f9d 343
9acbedc0 344 return value;
d0f54f9d
JB
345}
346
347/* Register groups. */
348
a78f21af 349static int
7803799a
UW
350s390_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
351 struct reggroup *group)
d0f54f9d
JB
352{
353 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
354
7803799a 355 /* PC and CC pseudo registers need to be saved/restored in order to
d0f54f9d
JB
356 push or pop frames. */
357 if (group == save_reggroup || group == restore_reggroup)
7803799a 358 return regnum == tdep->pc_regnum || regnum == tdep->cc_regnum;
d0f54f9d
JB
359
360 return default_register_reggroup_p (gdbarch, regnum, group);
361}
362
363
364/* Core file register sets. */
365
366int s390_regmap_gregset[S390_NUM_REGS] =
367{
368 /* Program Status Word. */
369 0x00, 0x04,
370 /* General Purpose Registers. */
371 0x08, 0x0c, 0x10, 0x14,
372 0x18, 0x1c, 0x20, 0x24,
373 0x28, 0x2c, 0x30, 0x34,
374 0x38, 0x3c, 0x40, 0x44,
375 /* Access Registers. */
376 0x48, 0x4c, 0x50, 0x54,
377 0x58, 0x5c, 0x60, 0x64,
378 0x68, 0x6c, 0x70, 0x74,
379 0x78, 0x7c, 0x80, 0x84,
380 /* Floating Point Control Word. */
381 -1,
382 /* Floating Point Registers. */
383 -1, -1, -1, -1, -1, -1, -1, -1,
384 -1, -1, -1, -1, -1, -1, -1, -1,
7803799a
UW
385 /* GPR Uppper Halves. */
386 -1, -1, -1, -1, -1, -1, -1, -1,
387 -1, -1, -1, -1, -1, -1, -1, -1,
d0f54f9d
JB
388};
389
390int s390x_regmap_gregset[S390_NUM_REGS] =
391{
7803799a 392 /* Program Status Word. */
d0f54f9d
JB
393 0x00, 0x08,
394 /* General Purpose Registers. */
395 0x10, 0x18, 0x20, 0x28,
396 0x30, 0x38, 0x40, 0x48,
397 0x50, 0x58, 0x60, 0x68,
398 0x70, 0x78, 0x80, 0x88,
399 /* Access Registers. */
400 0x90, 0x94, 0x98, 0x9c,
401 0xa0, 0xa4, 0xa8, 0xac,
402 0xb0, 0xb4, 0xb8, 0xbc,
403 0xc0, 0xc4, 0xc8, 0xcc,
404 /* Floating Point Control Word. */
405 -1,
406 /* Floating Point Registers. */
407 -1, -1, -1, -1, -1, -1, -1, -1,
408 -1, -1, -1, -1, -1, -1, -1, -1,
7803799a
UW
409 /* GPR Uppper Halves. */
410 0x10, 0x18, 0x20, 0x28,
411 0x30, 0x38, 0x40, 0x48,
412 0x50, 0x58, 0x60, 0x68,
413 0x70, 0x78, 0x80, 0x88,
d0f54f9d
JB
414};
415
416int s390_regmap_fpregset[S390_NUM_REGS] =
417{
418 /* Program Status Word. */
419 -1, -1,
420 /* General Purpose Registers. */
421 -1, -1, -1, -1, -1, -1, -1, -1,
422 -1, -1, -1, -1, -1, -1, -1, -1,
423 /* Access Registers. */
424 -1, -1, -1, -1, -1, -1, -1, -1,
425 -1, -1, -1, -1, -1, -1, -1, -1,
426 /* Floating Point Control Word. */
427 0x00,
428 /* Floating Point Registers. */
429 0x08, 0x10, 0x18, 0x20,
430 0x28, 0x30, 0x38, 0x40,
431 0x48, 0x50, 0x58, 0x60,
432 0x68, 0x70, 0x78, 0x80,
7803799a
UW
433 /* GPR Uppper Halves. */
434 -1, -1, -1, -1, -1, -1, -1, -1,
435 -1, -1, -1, -1, -1, -1, -1, -1,
436};
437
438int s390_regmap_upper[S390_NUM_REGS] =
439{
440 /* Program Status Word. */
441 -1, -1,
442 /* General Purpose Registers. */
443 -1, -1, -1, -1, -1, -1, -1, -1,
444 -1, -1, -1, -1, -1, -1, -1, -1,
445 /* Access Registers. */
446 -1, -1, -1, -1, -1, -1, -1, -1,
447 -1, -1, -1, -1, -1, -1, -1, -1,
448 /* Floating Point Control Word. */
449 -1,
450 /* Floating Point Registers. */
451 -1, -1, -1, -1, -1, -1, -1, -1,
452 -1, -1, -1, -1, -1, -1, -1, -1,
453 /* GPR Uppper Halves. */
454 0x00, 0x04, 0x08, 0x0c,
455 0x10, 0x14, 0x18, 0x1c,
456 0x20, 0x24, 0x28, 0x2c,
457 0x30, 0x34, 0x38, 0x3c,
d0f54f9d
JB
458};
459
460/* Supply register REGNUM from the register set REGSET to register cache
461 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
462static void
463s390_supply_regset (const struct regset *regset, struct regcache *regcache,
464 int regnum, const void *regs, size_t len)
465{
466 const int *offset = regset->descr;
467 int i;
468
469 for (i = 0; i < S390_NUM_REGS; i++)
470 {
471 if ((regnum == i || regnum == -1) && offset[i] != -1)
472 regcache_raw_supply (regcache, i, (const char *)regs + offset[i]);
473 }
474}
475
92f38ec2
UW
476/* Collect register REGNUM from the register cache REGCACHE and store
477 it in the buffer specified by REGS and LEN as described by the
478 general-purpose register set REGSET. If REGNUM is -1, do this for
479 all registers in REGSET. */
480static void
481s390_collect_regset (const struct regset *regset,
482 const struct regcache *regcache,
483 int regnum, void *regs, size_t len)
484{
485 const int *offset = regset->descr;
486 int i;
487
488 for (i = 0; i < S390_NUM_REGS; i++)
489 {
490 if ((regnum == i || regnum == -1) && offset[i] != -1)
491 regcache_raw_collect (regcache, i, (char *)regs + offset[i]);
492 }
493}
494
d0f54f9d
JB
495static const struct regset s390_gregset = {
496 s390_regmap_gregset,
92f38ec2
UW
497 s390_supply_regset,
498 s390_collect_regset
d0f54f9d
JB
499};
500
501static const struct regset s390x_gregset = {
502 s390x_regmap_gregset,
92f38ec2
UW
503 s390_supply_regset,
504 s390_collect_regset
d0f54f9d
JB
505};
506
507static const struct regset s390_fpregset = {
508 s390_regmap_fpregset,
92f38ec2
UW
509 s390_supply_regset,
510 s390_collect_regset
d0f54f9d
JB
511};
512
7803799a
UW
513static const struct regset s390_upper_regset = {
514 s390_regmap_upper,
515 s390_supply_regset,
516 s390_collect_regset
517};
518
519static struct core_regset_section s390_upper_regset_sections[] =
520{
521 { ".reg", s390_sizeof_gregset, "general-purpose" },
522 { ".reg2", s390_sizeof_fpregset, "floating-point" },
523 { ".reg-s390-high-gprs", 16*4, "s390 GPR upper halves" },
524 { NULL, 0}
525};
526
d0f54f9d
JB
527/* Return the appropriate register set for the core section identified
528 by SECT_NAME and SECT_SIZE. */
63807e1d 529static const struct regset *
d0f54f9d
JB
530s390_regset_from_core_section (struct gdbarch *gdbarch,
531 const char *sect_name, size_t sect_size)
532{
533 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
534
e31dcd20 535 if (strcmp (sect_name, ".reg") == 0 && sect_size >= tdep->sizeof_gregset)
d0f54f9d
JB
536 return tdep->gregset;
537
e31dcd20 538 if (strcmp (sect_name, ".reg2") == 0 && sect_size >= tdep->sizeof_fpregset)
d0f54f9d
JB
539 return tdep->fpregset;
540
7803799a
UW
541 if (strcmp (sect_name, ".reg-s390-high-gprs") == 0 && sect_size >= 16*4)
542 return &s390_upper_regset;
543
d0f54f9d 544 return NULL;
5769d3cd
AC
545}
546
7803799a
UW
547static const struct target_desc *
548s390_core_read_description (struct gdbarch *gdbarch,
549 struct target_ops *target, bfd *abfd)
550{
551 asection *high_gprs = bfd_get_section_by_name (abfd, ".reg-s390-high-gprs");
552 asection *section = bfd_get_section_by_name (abfd, ".reg");
553 if (!section)
554 return NULL;
555
556 switch (bfd_section_size (abfd, section))
557 {
558 case s390_sizeof_gregset:
559 return high_gprs? tdesc_s390_linux64 : tdesc_s390_linux32;
560
561 case s390x_sizeof_gregset:
562 return tdesc_s390x_linux64;
563
564 default:
565 return NULL;
566 }
567}
568
d0f54f9d 569
4bc8c588
JB
570/* Decoding S/390 instructions. */
571
572/* Named opcode values for the S/390 instructions we recognize. Some
573 instructions have their opcode split across two fields; those are the
574 op1_* and op2_* enums. */
575enum
576 {
a8c99f38
JB
577 op1_lhi = 0xa7, op2_lhi = 0x08,
578 op1_lghi = 0xa7, op2_lghi = 0x09,
00ce08ef 579 op1_lgfi = 0xc0, op2_lgfi = 0x01,
4bc8c588 580 op_lr = 0x18,
a8c99f38
JB
581 op_lgr = 0xb904,
582 op_l = 0x58,
583 op1_ly = 0xe3, op2_ly = 0x58,
584 op1_lg = 0xe3, op2_lg = 0x04,
585 op_lm = 0x98,
586 op1_lmy = 0xeb, op2_lmy = 0x98,
587 op1_lmg = 0xeb, op2_lmg = 0x04,
4bc8c588 588 op_st = 0x50,
a8c99f38 589 op1_sty = 0xe3, op2_sty = 0x50,
4bc8c588 590 op1_stg = 0xe3, op2_stg = 0x24,
a8c99f38 591 op_std = 0x60,
4bc8c588 592 op_stm = 0x90,
a8c99f38 593 op1_stmy = 0xeb, op2_stmy = 0x90,
4bc8c588 594 op1_stmg = 0xeb, op2_stmg = 0x24,
a8c99f38
JB
595 op1_aghi = 0xa7, op2_aghi = 0x0b,
596 op1_ahi = 0xa7, op2_ahi = 0x0a,
00ce08ef
UW
597 op1_agfi = 0xc2, op2_agfi = 0x08,
598 op1_afi = 0xc2, op2_afi = 0x09,
599 op1_algfi= 0xc2, op2_algfi= 0x0a,
600 op1_alfi = 0xc2, op2_alfi = 0x0b,
a8c99f38
JB
601 op_ar = 0x1a,
602 op_agr = 0xb908,
603 op_a = 0x5a,
604 op1_ay = 0xe3, op2_ay = 0x5a,
605 op1_ag = 0xe3, op2_ag = 0x08,
00ce08ef
UW
606 op1_slgfi= 0xc2, op2_slgfi= 0x04,
607 op1_slfi = 0xc2, op2_slfi = 0x05,
a8c99f38
JB
608 op_sr = 0x1b,
609 op_sgr = 0xb909,
610 op_s = 0x5b,
611 op1_sy = 0xe3, op2_sy = 0x5b,
612 op1_sg = 0xe3, op2_sg = 0x09,
613 op_nr = 0x14,
614 op_ngr = 0xb980,
615 op_la = 0x41,
616 op1_lay = 0xe3, op2_lay = 0x71,
617 op1_larl = 0xc0, op2_larl = 0x00,
618 op_basr = 0x0d,
619 op_bas = 0x4d,
620 op_bcr = 0x07,
621 op_bc = 0x0d,
1db4e8a0
UW
622 op_bctr = 0x06,
623 op_bctgr = 0xb946,
624 op_bct = 0x46,
625 op1_bctg = 0xe3, op2_bctg = 0x46,
626 op_bxh = 0x86,
627 op1_bxhg = 0xeb, op2_bxhg = 0x44,
628 op_bxle = 0x87,
629 op1_bxleg= 0xeb, op2_bxleg= 0x45,
a8c99f38
JB
630 op1_bras = 0xa7, op2_bras = 0x05,
631 op1_brasl= 0xc0, op2_brasl= 0x05,
632 op1_brc = 0xa7, op2_brc = 0x04,
633 op1_brcl = 0xc0, op2_brcl = 0x04,
1db4e8a0
UW
634 op1_brct = 0xa7, op2_brct = 0x06,
635 op1_brctg= 0xa7, op2_brctg= 0x07,
636 op_brxh = 0x84,
637 op1_brxhg= 0xec, op2_brxhg= 0x44,
638 op_brxle = 0x85,
639 op1_brxlg= 0xec, op2_brxlg= 0x45,
4bc8c588
JB
640 };
641
642
a8c99f38
JB
643/* Read a single instruction from address AT. */
644
645#define S390_MAX_INSTR_SIZE 6
646static int
647s390_readinstruction (bfd_byte instr[], CORE_ADDR at)
648{
649 static int s390_instrlen[] = { 2, 4, 4, 6 };
650 int instrlen;
651
8defab1a 652 if (target_read_memory (at, &instr[0], 2))
a8c99f38
JB
653 return -1;
654 instrlen = s390_instrlen[instr[0] >> 6];
655 if (instrlen > 2)
656 {
8defab1a 657 if (target_read_memory (at + 2, &instr[2], instrlen - 2))
a8c99f38
JB
658 return -1;
659 }
660 return instrlen;
661}
662
663
4bc8c588
JB
664/* The functions below are for recognizing and decoding S/390
665 instructions of various formats. Each of them checks whether INSN
666 is an instruction of the given format, with the specified opcodes.
667 If it is, it sets the remaining arguments to the values of the
668 instruction's fields, and returns a non-zero value; otherwise, it
669 returns zero.
670
671 These functions' arguments appear in the order they appear in the
672 instruction, not in the machine-language form. So, opcodes always
673 come first, even though they're sometimes scattered around the
674 instructions. And displacements appear before base and extension
675 registers, as they do in the assembly syntax, not at the end, as
676 they do in the machine language. */
a78f21af 677static int
4bc8c588
JB
678is_ri (bfd_byte *insn, int op1, int op2, unsigned int *r1, int *i2)
679{
680 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
681 {
682 *r1 = (insn[1] >> 4) & 0xf;
683 /* i2 is a 16-bit signed quantity. */
684 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
685 return 1;
686 }
687 else
688 return 0;
689}
8ac0e65a 690
5769d3cd 691
4bc8c588
JB
692static int
693is_ril (bfd_byte *insn, int op1, int op2,
694 unsigned int *r1, int *i2)
695{
696 if (insn[0] == op1 && (insn[1] & 0xf) == op2)
697 {
698 *r1 = (insn[1] >> 4) & 0xf;
699 /* i2 is a signed quantity. If the host 'int' is 32 bits long,
700 no sign extension is necessary, but we don't want to assume
701 that. */
702 *i2 = (((insn[2] << 24)
703 | (insn[3] << 16)
704 | (insn[4] << 8)
705 | (insn[5])) ^ 0x80000000) - 0x80000000;
706 return 1;
707 }
708 else
709 return 0;
710}
711
712
713static int
714is_rr (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
715{
716 if (insn[0] == op)
717 {
718 *r1 = (insn[1] >> 4) & 0xf;
719 *r2 = insn[1] & 0xf;
720 return 1;
721 }
722 else
723 return 0;
724}
725
726
727static int
728is_rre (bfd_byte *insn, int op, unsigned int *r1, unsigned int *r2)
729{
730 if (((insn[0] << 8) | insn[1]) == op)
731 {
732 /* Yes, insn[3]. insn[2] is unused in RRE format. */
733 *r1 = (insn[3] >> 4) & 0xf;
734 *r2 = insn[3] & 0xf;
735 return 1;
736 }
737 else
738 return 0;
739}
740
741
742static int
743is_rs (bfd_byte *insn, int op,
744 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
745{
746 if (insn[0] == op)
747 {
748 *r1 = (insn[1] >> 4) & 0xf;
749 *r3 = insn[1] & 0xf;
750 *b2 = (insn[2] >> 4) & 0xf;
751 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
752 return 1;
753 }
754 else
755 return 0;
756}
757
758
759static int
a8c99f38 760is_rsy (bfd_byte *insn, int op1, int op2,
4bc8c588
JB
761 unsigned int *r1, unsigned int *r3, unsigned int *d2, unsigned int *b2)
762{
763 if (insn[0] == op1
4bc8c588
JB
764 && insn[5] == op2)
765 {
766 *r1 = (insn[1] >> 4) & 0xf;
767 *r3 = insn[1] & 0xf;
768 *b2 = (insn[2] >> 4) & 0xf;
a8c99f38
JB
769 /* The 'long displacement' is a 20-bit signed integer. */
770 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
771 ^ 0x80000) - 0x80000;
4bc8c588
JB
772 return 1;
773 }
774 else
775 return 0;
776}
777
778
1db4e8a0
UW
779static int
780is_rsi (bfd_byte *insn, int op,
781 unsigned int *r1, unsigned int *r3, int *i2)
782{
783 if (insn[0] == op)
784 {
785 *r1 = (insn[1] >> 4) & 0xf;
786 *r3 = insn[1] & 0xf;
787 /* i2 is a 16-bit signed quantity. */
788 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
789 return 1;
790 }
791 else
792 return 0;
793}
794
795
796static int
797is_rie (bfd_byte *insn, int op1, int op2,
798 unsigned int *r1, unsigned int *r3, int *i2)
799{
800 if (insn[0] == op1
801 && insn[5] == op2)
802 {
803 *r1 = (insn[1] >> 4) & 0xf;
804 *r3 = insn[1] & 0xf;
805 /* i2 is a 16-bit signed quantity. */
806 *i2 = (((insn[2] << 8) | insn[3]) ^ 0x8000) - 0x8000;
807 return 1;
808 }
809 else
810 return 0;
811}
812
813
4bc8c588
JB
814static int
815is_rx (bfd_byte *insn, int op,
816 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
817{
818 if (insn[0] == op)
819 {
820 *r1 = (insn[1] >> 4) & 0xf;
821 *x2 = insn[1] & 0xf;
822 *b2 = (insn[2] >> 4) & 0xf;
823 *d2 = ((insn[2] & 0xf) << 8) | insn[3];
824 return 1;
825 }
826 else
827 return 0;
828}
829
830
831static int
a8c99f38 832is_rxy (bfd_byte *insn, int op1, int op2,
4bc8c588
JB
833 unsigned int *r1, unsigned int *d2, unsigned int *x2, unsigned int *b2)
834{
835 if (insn[0] == op1
4bc8c588
JB
836 && insn[5] == op2)
837 {
838 *r1 = (insn[1] >> 4) & 0xf;
839 *x2 = insn[1] & 0xf;
840 *b2 = (insn[2] >> 4) & 0xf;
a8c99f38
JB
841 /* The 'long displacement' is a 20-bit signed integer. */
842 *d2 = ((((insn[2] & 0xf) << 8) | insn[3] | (insn[4] << 12))
843 ^ 0x80000) - 0x80000;
4bc8c588
JB
844 return 1;
845 }
846 else
847 return 0;
848}
849
850
3fc46200 851/* Prologue analysis. */
4bc8c588 852
d0f54f9d
JB
853#define S390_NUM_GPRS 16
854#define S390_NUM_FPRS 16
4bc8c588 855
a8c99f38
JB
856struct s390_prologue_data {
857
ee1b3323
UW
858 /* The stack. */
859 struct pv_area *stack;
860
e17a4113 861 /* The size and byte-order of a GPR or FPR. */
a8c99f38
JB
862 int gpr_size;
863 int fpr_size;
e17a4113 864 enum bfd_endian byte_order;
a8c99f38
JB
865
866 /* The general-purpose registers. */
3fc46200 867 pv_t gpr[S390_NUM_GPRS];
a8c99f38
JB
868
869 /* The floating-point registers. */
3fc46200 870 pv_t fpr[S390_NUM_FPRS];
a8c99f38 871
121d8485
UW
872 /* The offset relative to the CFA where the incoming GPR N was saved
873 by the function prologue. 0 if not saved or unknown. */
874 int gpr_slot[S390_NUM_GPRS];
4bc8c588 875
121d8485
UW
876 /* Likewise for FPRs. */
877 int fpr_slot[S390_NUM_FPRS];
4bc8c588 878
121d8485
UW
879 /* Nonzero if the backchain was saved. This is assumed to be the
880 case when the incoming SP is saved at the current SP location. */
881 int back_chain_saved_p;
882};
4bc8c588 883
3fc46200
UW
884/* Return the effective address for an X-style instruction, like:
885
886 L R1, D2(X2, B2)
887
888 Here, X2 and B2 are registers, and D2 is a signed 20-bit
889 constant; the effective address is the sum of all three. If either
890 X2 or B2 are zero, then it doesn't contribute to the sum --- this
891 means that r0 can't be used as either X2 or B2. */
892static pv_t
893s390_addr (struct s390_prologue_data *data,
894 int d2, unsigned int x2, unsigned int b2)
895{
896 pv_t result;
897
898 result = pv_constant (d2);
899 if (x2)
900 result = pv_add (result, data->gpr[x2]);
901 if (b2)
902 result = pv_add (result, data->gpr[b2]);
903
904 return result;
905}
906
907/* Do a SIZE-byte store of VALUE to D2(X2,B2). */
a8c99f38 908static void
3fc46200
UW
909s390_store (struct s390_prologue_data *data,
910 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size,
911 pv_t value)
4bc8c588 912{
3fc46200 913 pv_t addr = s390_addr (data, d2, x2, b2);
ee1b3323 914 pv_t offset;
121d8485
UW
915
916 /* Check whether we are storing the backchain. */
3fc46200 917 offset = pv_subtract (data->gpr[S390_SP_REGNUM - S390_R0_REGNUM], addr);
121d8485 918
3fc46200 919 if (pv_is_constant (offset) && offset.k == 0)
121d8485 920 if (size == data->gpr_size
3fc46200 921 && pv_is_register_k (value, S390_SP_REGNUM, 0))
121d8485
UW
922 {
923 data->back_chain_saved_p = 1;
924 return;
925 }
926
927
928 /* Check whether we are storing a register into the stack. */
ee1b3323
UW
929 if (!pv_area_store_would_trash (data->stack, addr))
930 pv_area_store (data->stack, addr, size, value);
4bc8c588 931
a8c99f38 932
121d8485
UW
933 /* Note: If this is some store we cannot identify, you might think we
934 should forget our cached values, as any of those might have been hit.
935
936 However, we make the assumption that the register save areas are only
937 ever stored to once in any given function, and we do recognize these
938 stores. Thus every store we cannot recognize does not hit our data. */
4bc8c588 939}
4bc8c588 940
3fc46200
UW
941/* Do a SIZE-byte load from D2(X2,B2). */
942static pv_t
943s390_load (struct s390_prologue_data *data,
944 int d2, unsigned int x2, unsigned int b2, CORE_ADDR size)
945
4bc8c588 946{
3fc46200 947 pv_t addr = s390_addr (data, d2, x2, b2);
ee1b3323 948 pv_t offset;
4bc8c588 949
a8c99f38
JB
950 /* If it's a load from an in-line constant pool, then we can
951 simulate that, under the assumption that the code isn't
952 going to change between the time the processor actually
953 executed it creating the current frame, and the time when
954 we're analyzing the code to unwind past that frame. */
3fc46200 955 if (pv_is_constant (addr))
4bc8c588 956 {
0542c86d 957 struct target_section *secp;
3fc46200 958 secp = target_section_by_addr (&current_target, addr.k);
a8c99f38
JB
959 if (secp != NULL
960 && (bfd_get_section_flags (secp->bfd, secp->the_bfd_section)
961 & SEC_READONLY))
e17a4113
UW
962 return pv_constant (read_memory_integer (addr.k, size,
963 data->byte_order));
a8c99f38 964 }
7666f43c 965
121d8485 966 /* Check whether we are accessing one of our save slots. */
ee1b3323
UW
967 return pv_area_fetch (data->stack, addr, size);
968}
121d8485 969
ee1b3323
UW
970/* Function for finding saved registers in a 'struct pv_area'; we pass
971 this to pv_area_scan.
121d8485 972
ee1b3323
UW
973 If VALUE is a saved register, ADDR says it was saved at a constant
974 offset from the frame base, and SIZE indicates that the whole
975 register was saved, record its offset in the reg_offset table in
976 PROLOGUE_UNTYPED. */
977static void
c378eb4e
MS
978s390_check_for_saved (void *data_untyped, pv_t addr,
979 CORE_ADDR size, pv_t value)
ee1b3323
UW
980{
981 struct s390_prologue_data *data = data_untyped;
982 int i, offset;
983
984 if (!pv_is_register (addr, S390_SP_REGNUM))
985 return;
986
987 offset = 16 * data->gpr_size + 32 - addr.k;
4bc8c588 988
ee1b3323
UW
989 /* If we are storing the original value of a register, we want to
990 record the CFA offset. If the same register is stored multiple
991 times, the stack slot with the highest address counts. */
992
993 for (i = 0; i < S390_NUM_GPRS; i++)
994 if (size == data->gpr_size
995 && pv_is_register_k (value, S390_R0_REGNUM + i, 0))
996 if (data->gpr_slot[i] == 0
997 || data->gpr_slot[i] > offset)
998 {
999 data->gpr_slot[i] = offset;
1000 return;
1001 }
1002
1003 for (i = 0; i < S390_NUM_FPRS; i++)
1004 if (size == data->fpr_size
1005 && pv_is_register_k (value, S390_F0_REGNUM + i, 0))
1006 if (data->fpr_slot[i] == 0
1007 || data->fpr_slot[i] > offset)
1008 {
1009 data->fpr_slot[i] = offset;
1010 return;
1011 }
a8c99f38 1012}
4bc8c588 1013
a8c99f38
JB
1014/* Analyze the prologue of the function starting at START_PC,
1015 continuing at most until CURRENT_PC. Initialize DATA to
1016 hold all information we find out about the state of the registers
1017 and stack slots. Return the address of the instruction after
1018 the last one that changed the SP, FP, or back chain; or zero
1019 on error. */
1020static CORE_ADDR
1021s390_analyze_prologue (struct gdbarch *gdbarch,
1022 CORE_ADDR start_pc,
1023 CORE_ADDR current_pc,
1024 struct s390_prologue_data *data)
4bc8c588 1025{
a8c99f38
JB
1026 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1027
4bc8c588 1028 /* Our return value:
a8c99f38
JB
1029 The address of the instruction after the last one that changed
1030 the SP, FP, or back chain; zero if we got an error trying to
1031 read memory. */
1032 CORE_ADDR result = start_pc;
4bc8c588 1033
4bc8c588
JB
1034 /* The current PC for our abstract interpretation. */
1035 CORE_ADDR pc;
1036
1037 /* The address of the next instruction after that. */
1038 CORE_ADDR next_pc;
1039
4bc8c588
JB
1040 /* Set up everything's initial value. */
1041 {
1042 int i;
1043
55f960e1 1044 data->stack = make_pv_area (S390_SP_REGNUM, gdbarch_addr_bit (gdbarch));
ee1b3323 1045
a8c99f38
JB
1046 /* For the purpose of prologue tracking, we consider the GPR size to
1047 be equal to the ABI word size, even if it is actually larger
1048 (i.e. when running a 32-bit binary under a 64-bit kernel). */
1049 data->gpr_size = word_size;
1050 data->fpr_size = 8;
e17a4113 1051 data->byte_order = gdbarch_byte_order (gdbarch);
a8c99f38 1052
4bc8c588 1053 for (i = 0; i < S390_NUM_GPRS; i++)
3fc46200 1054 data->gpr[i] = pv_register (S390_R0_REGNUM + i, 0);
4bc8c588
JB
1055
1056 for (i = 0; i < S390_NUM_FPRS; i++)
3fc46200 1057 data->fpr[i] = pv_register (S390_F0_REGNUM + i, 0);
4bc8c588 1058
121d8485
UW
1059 for (i = 0; i < S390_NUM_GPRS; i++)
1060 data->gpr_slot[i] = 0;
1061
1062 for (i = 0; i < S390_NUM_FPRS; i++)
1063 data->fpr_slot[i] = 0;
4bc8c588 1064
121d8485 1065 data->back_chain_saved_p = 0;
4bc8c588
JB
1066 }
1067
a8c99f38
JB
1068 /* Start interpreting instructions, until we hit the frame's
1069 current PC or the first branch instruction. */
1070 for (pc = start_pc; pc > 0 && pc < current_pc; pc = next_pc)
5769d3cd 1071 {
4bc8c588 1072 bfd_byte insn[S390_MAX_INSTR_SIZE];
a788de9b 1073 int insn_len = s390_readinstruction (insn, pc);
4bc8c588 1074
3fc46200
UW
1075 bfd_byte dummy[S390_MAX_INSTR_SIZE] = { 0 };
1076 bfd_byte *insn32 = word_size == 4 ? insn : dummy;
1077 bfd_byte *insn64 = word_size == 8 ? insn : dummy;
1078
4bc8c588 1079 /* Fields for various kinds of instructions. */
a8c99f38
JB
1080 unsigned int b2, r1, r2, x2, r3;
1081 int i2, d2;
4bc8c588 1082
121d8485 1083 /* The values of SP and FP before this instruction,
4bc8c588 1084 for detecting instructions that change them. */
3fc46200 1085 pv_t pre_insn_sp, pre_insn_fp;
121d8485
UW
1086 /* Likewise for the flag whether the back chain was saved. */
1087 int pre_insn_back_chain_saved_p;
4bc8c588
JB
1088
1089 /* If we got an error trying to read the instruction, report it. */
1090 if (insn_len < 0)
8ac0e65a 1091 {
a8c99f38 1092 result = 0;
4bc8c588
JB
1093 break;
1094 }
1095
1096 next_pc = pc + insn_len;
1097
a8c99f38
JB
1098 pre_insn_sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1099 pre_insn_fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
121d8485 1100 pre_insn_back_chain_saved_p = data->back_chain_saved_p;
4bc8c588 1101
4bc8c588 1102
3fc46200
UW
1103 /* LHI r1, i2 --- load halfword immediate. */
1104 /* LGHI r1, i2 --- load halfword immediate (64-bit version). */
1105 /* LGFI r1, i2 --- load fullword immediate. */
1106 if (is_ri (insn32, op1_lhi, op2_lhi, &r1, &i2)
1107 || is_ri (insn64, op1_lghi, op2_lghi, &r1, &i2)
1108 || is_ril (insn, op1_lgfi, op2_lgfi, &r1, &i2))
1109 data->gpr[r1] = pv_constant (i2);
1110
1111 /* LR r1, r2 --- load from register. */
1112 /* LGR r1, r2 --- load from register (64-bit version). */
1113 else if (is_rr (insn32, op_lr, &r1, &r2)
1114 || is_rre (insn64, op_lgr, &r1, &r2))
1115 data->gpr[r1] = data->gpr[r2];
1116
1117 /* L r1, d2(x2, b2) --- load. */
1118 /* LY r1, d2(x2, b2) --- load (long-displacement version). */
1119 /* LG r1, d2(x2, b2) --- load (64-bit version). */
1120 else if (is_rx (insn32, op_l, &r1, &d2, &x2, &b2)
1121 || is_rxy (insn32, op1_ly, op2_ly, &r1, &d2, &x2, &b2)
1122 || is_rxy (insn64, op1_lg, op2_lg, &r1, &d2, &x2, &b2))
1123 data->gpr[r1] = s390_load (data, d2, x2, b2, data->gpr_size);
1124
1125 /* ST r1, d2(x2, b2) --- store. */
1126 /* STY r1, d2(x2, b2) --- store (long-displacement version). */
1127 /* STG r1, d2(x2, b2) --- store (64-bit version). */
1128 else if (is_rx (insn32, op_st, &r1, &d2, &x2, &b2)
1129 || is_rxy (insn32, op1_sty, op2_sty, &r1, &d2, &x2, &b2)
1130 || is_rxy (insn64, op1_stg, op2_stg, &r1, &d2, &x2, &b2))
1131 s390_store (data, d2, x2, b2, data->gpr_size, data->gpr[r1]);
1132
1133 /* STD r1, d2(x2,b2) --- store floating-point register. */
4bc8c588 1134 else if (is_rx (insn, op_std, &r1, &d2, &x2, &b2))
3fc46200
UW
1135 s390_store (data, d2, x2, b2, data->fpr_size, data->fpr[r1]);
1136
1137 /* STM r1, r3, d2(b2) --- store multiple. */
c378eb4e
MS
1138 /* STMY r1, r3, d2(b2) --- store multiple (long-displacement
1139 version). */
3fc46200
UW
1140 /* STMG r1, r3, d2(b2) --- store multiple (64-bit version). */
1141 else if (is_rs (insn32, op_stm, &r1, &r3, &d2, &b2)
1142 || is_rsy (insn32, op1_stmy, op2_stmy, &r1, &r3, &d2, &b2)
1143 || is_rsy (insn64, op1_stmg, op2_stmg, &r1, &r3, &d2, &b2))
4bc8c588 1144 {
3fc46200
UW
1145 for (; r1 <= r3; r1++, d2 += data->gpr_size)
1146 s390_store (data, d2, 0, b2, data->gpr_size, data->gpr[r1]);
4bc8c588
JB
1147 }
1148
3fc46200
UW
1149 /* AHI r1, i2 --- add halfword immediate. */
1150 /* AGHI r1, i2 --- add halfword immediate (64-bit version). */
1151 /* AFI r1, i2 --- add fullword immediate. */
1152 /* AGFI r1, i2 --- add fullword immediate (64-bit version). */
1153 else if (is_ri (insn32, op1_ahi, op2_ahi, &r1, &i2)
1154 || is_ri (insn64, op1_aghi, op2_aghi, &r1, &i2)
1155 || is_ril (insn32, op1_afi, op2_afi, &r1, &i2)
1156 || is_ril (insn64, op1_agfi, op2_agfi, &r1, &i2))
1157 data->gpr[r1] = pv_add_constant (data->gpr[r1], i2);
1158
1159 /* ALFI r1, i2 --- add logical immediate. */
1160 /* ALGFI r1, i2 --- add logical immediate (64-bit version). */
1161 else if (is_ril (insn32, op1_alfi, op2_alfi, &r1, &i2)
1162 || is_ril (insn64, op1_algfi, op2_algfi, &r1, &i2))
1163 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1164 (CORE_ADDR)i2 & 0xffffffff);
1165
1166 /* AR r1, r2 -- add register. */
1167 /* AGR r1, r2 -- add register (64-bit version). */
1168 else if (is_rr (insn32, op_ar, &r1, &r2)
1169 || is_rre (insn64, op_agr, &r1, &r2))
1170 data->gpr[r1] = pv_add (data->gpr[r1], data->gpr[r2]);
1171
1172 /* A r1, d2(x2, b2) -- add. */
1173 /* AY r1, d2(x2, b2) -- add (long-displacement version). */
1174 /* AG r1, d2(x2, b2) -- add (64-bit version). */
1175 else if (is_rx (insn32, op_a, &r1, &d2, &x2, &b2)
1176 || is_rxy (insn32, op1_ay, op2_ay, &r1, &d2, &x2, &b2)
1177 || is_rxy (insn64, op1_ag, op2_ag, &r1, &d2, &x2, &b2))
1178 data->gpr[r1] = pv_add (data->gpr[r1],
1179 s390_load (data, d2, x2, b2, data->gpr_size));
1180
1181 /* SLFI r1, i2 --- subtract logical immediate. */
1182 /* SLGFI r1, i2 --- subtract logical immediate (64-bit version). */
1183 else if (is_ril (insn32, op1_slfi, op2_slfi, &r1, &i2)
1184 || is_ril (insn64, op1_slgfi, op2_slgfi, &r1, &i2))
1185 data->gpr[r1] = pv_add_constant (data->gpr[r1],
1186 -((CORE_ADDR)i2 & 0xffffffff));
1187
1188 /* SR r1, r2 -- subtract register. */
1189 /* SGR r1, r2 -- subtract register (64-bit version). */
1190 else if (is_rr (insn32, op_sr, &r1, &r2)
1191 || is_rre (insn64, op_sgr, &r1, &r2))
1192 data->gpr[r1] = pv_subtract (data->gpr[r1], data->gpr[r2]);
1193
1194 /* S r1, d2(x2, b2) -- subtract. */
1195 /* SY r1, d2(x2, b2) -- subtract (long-displacement version). */
1196 /* SG r1, d2(x2, b2) -- subtract (64-bit version). */
1197 else if (is_rx (insn32, op_s, &r1, &d2, &x2, &b2)
1198 || is_rxy (insn32, op1_sy, op2_sy, &r1, &d2, &x2, &b2)
1199 || is_rxy (insn64, op1_sg, op2_sg, &r1, &d2, &x2, &b2))
1200 data->gpr[r1] = pv_subtract (data->gpr[r1],
1201 s390_load (data, d2, x2, b2, data->gpr_size));
1202
1203 /* LA r1, d2(x2, b2) --- load address. */
1204 /* LAY r1, d2(x2, b2) --- load address (long-displacement version). */
1205 else if (is_rx (insn, op_la, &r1, &d2, &x2, &b2)
1206 || is_rxy (insn, op1_lay, op2_lay, &r1, &d2, &x2, &b2))
1207 data->gpr[r1] = s390_addr (data, d2, x2, b2);
1208
1209 /* LARL r1, i2 --- load address relative long. */
a8c99f38 1210 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
3fc46200 1211 data->gpr[r1] = pv_constant (pc + i2 * 2);
a8c99f38 1212
3fc46200 1213 /* BASR r1, 0 --- branch and save.
a8c99f38
JB
1214 Since r2 is zero, this saves the PC in r1, but doesn't branch. */
1215 else if (is_rr (insn, op_basr, &r1, &r2)
1216 && r2 == 0)
3fc46200 1217 data->gpr[r1] = pv_constant (next_pc);
a8c99f38 1218
3fc46200 1219 /* BRAS r1, i2 --- branch relative and save. */
a8c99f38
JB
1220 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2))
1221 {
3fc46200 1222 data->gpr[r1] = pv_constant (next_pc);
a8c99f38 1223 next_pc = pc + i2 * 2;
4bc8c588 1224
a8c99f38
JB
1225 /* We'd better not interpret any backward branches. We'll
1226 never terminate. */
1227 if (next_pc <= pc)
4bc8c588
JB
1228 break;
1229 }
1230
a8c99f38
JB
1231 /* Terminate search when hitting any other branch instruction. */
1232 else if (is_rr (insn, op_basr, &r1, &r2)
1233 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2)
1234 || is_rr (insn, op_bcr, &r1, &r2)
1235 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1236 || is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1237 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1238 || is_ril (insn, op1_brasl, op2_brasl, &r2, &i2))
1239 break;
1240
4bc8c588
JB
1241 else
1242 /* An instruction we don't know how to simulate. The only
1243 safe thing to do would be to set every value we're tracking
a8c99f38
JB
1244 to 'unknown'. Instead, we'll be optimistic: we assume that
1245 we *can* interpret every instruction that the compiler uses
1246 to manipulate any of the data we're interested in here --
1247 then we can just ignore anything else. */
1248 ;
4bc8c588
JB
1249
1250 /* Record the address after the last instruction that changed
1251 the FP, SP, or backlink. Ignore instructions that changed
1252 them back to their original values --- those are probably
1253 restore instructions. (The back chain is never restored,
1254 just popped.) */
1255 {
3fc46200
UW
1256 pv_t sp = data->gpr[S390_SP_REGNUM - S390_R0_REGNUM];
1257 pv_t fp = data->gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
4bc8c588 1258
3fc46200
UW
1259 if ((! pv_is_identical (pre_insn_sp, sp)
1260 && ! pv_is_register_k (sp, S390_SP_REGNUM, 0)
1261 && sp.kind != pvk_unknown)
1262 || (! pv_is_identical (pre_insn_fp, fp)
1263 && ! pv_is_register_k (fp, S390_FRAME_REGNUM, 0)
1264 && fp.kind != pvk_unknown)
121d8485 1265 || pre_insn_back_chain_saved_p != data->back_chain_saved_p)
a8c99f38 1266 result = next_pc;
4bc8c588 1267 }
5769d3cd 1268 }
4bc8c588 1269
ee1b3323
UW
1270 /* Record where all the registers were saved. */
1271 pv_area_scan (data->stack, s390_check_for_saved, data);
1272
1273 free_pv_area (data->stack);
1274 data->stack = NULL;
1275
4bc8c588 1276 return result;
5769d3cd
AC
1277}
1278
a8c99f38
JB
1279/* Advance PC across any function entry prologue instructions to reach
1280 some "real" code. */
1281static CORE_ADDR
6093d2eb 1282s390_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
a8c99f38
JB
1283{
1284 struct s390_prologue_data data;
1285 CORE_ADDR skip_pc;
6093d2eb 1286 skip_pc = s390_analyze_prologue (gdbarch, pc, (CORE_ADDR)-1, &data);
a8c99f38
JB
1287 return skip_pc ? skip_pc : pc;
1288}
1289
d0f54f9d
JB
1290/* Return true if we are in the functin's epilogue, i.e. after the
1291 instruction that destroyed the function's stack frame. */
1292static int
1293s390_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1294{
1295 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1296
1297 /* In frameless functions, there's not frame to destroy and thus
1298 we don't care about the epilogue.
1299
1300 In functions with frame, the epilogue sequence is a pair of
1301 a LM-type instruction that restores (amongst others) the
1302 return register %r14 and the stack pointer %r15, followed
1303 by a branch 'br %r14' --or equivalent-- that effects the
1304 actual return.
1305
1306 In that situation, this function needs to return 'true' in
1307 exactly one case: when pc points to that branch instruction.
1308
1309 Thus we try to disassemble the one instructions immediately
1310 preceeding pc and check whether it is an LM-type instruction
1311 modifying the stack pointer.
1312
1313 Note that disassembling backwards is not reliable, so there
1314 is a slight chance of false positives here ... */
1315
1316 bfd_byte insn[6];
1317 unsigned int r1, r3, b2;
1318 int d2;
1319
1320 if (word_size == 4
8defab1a 1321 && !target_read_memory (pc - 4, insn, 4)
d0f54f9d
JB
1322 && is_rs (insn, op_lm, &r1, &r3, &d2, &b2)
1323 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1324 return 1;
1325
a8c99f38 1326 if (word_size == 4
8defab1a 1327 && !target_read_memory (pc - 6, insn, 6)
a8c99f38
JB
1328 && is_rsy (insn, op1_lmy, op2_lmy, &r1, &r3, &d2, &b2)
1329 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1330 return 1;
1331
d0f54f9d 1332 if (word_size == 8
8defab1a 1333 && !target_read_memory (pc - 6, insn, 6)
a8c99f38 1334 && is_rsy (insn, op1_lmg, op2_lmg, &r1, &r3, &d2, &b2)
d0f54f9d
JB
1335 && r3 == S390_SP_REGNUM - S390_R0_REGNUM)
1336 return 1;
1337
1338 return 0;
1339}
5769d3cd 1340
1db4e8a0
UW
1341/* Displaced stepping. */
1342
1343/* Fix up the state of registers and memory after having single-stepped
1344 a displaced instruction. */
1345static void
1346s390_displaced_step_fixup (struct gdbarch *gdbarch,
1347 struct displaced_step_closure *closure,
1348 CORE_ADDR from, CORE_ADDR to,
1349 struct regcache *regs)
1350{
1351 /* Since we use simple_displaced_step_copy_insn, our closure is a
1352 copy of the instruction. */
1353 gdb_byte *insn = (gdb_byte *) closure;
1354 static int s390_instrlen[] = { 2, 4, 4, 6 };
1355 int insnlen = s390_instrlen[insn[0] >> 6];
1356
1357 /* Fields for various kinds of instructions. */
1358 unsigned int b2, r1, r2, x2, r3;
1359 int i2, d2;
1360
1361 /* Get current PC and addressing mode bit. */
1362 CORE_ADDR pc = regcache_read_pc (regs);
beaabab2 1363 ULONGEST amode = 0;
1db4e8a0
UW
1364
1365 if (register_size (gdbarch, S390_PSWA_REGNUM) == 4)
1366 {
1367 regcache_cooked_read_unsigned (regs, S390_PSWA_REGNUM, &amode);
1368 amode &= 0x80000000;
1369 }
1370
1371 if (debug_displaced)
1372 fprintf_unfiltered (gdb_stdlog,
1373 "displaced: (s390) fixup (%s, %s) pc %s amode 0x%x\n",
1374 paddress (gdbarch, from), paddress (gdbarch, to),
1375 paddress (gdbarch, pc), (int) amode);
1376
1377 /* Handle absolute branch and save instructions. */
1378 if (is_rr (insn, op_basr, &r1, &r2)
1379 || is_rx (insn, op_bas, &r1, &d2, &x2, &b2))
1380 {
1381 /* Recompute saved return address in R1. */
1382 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1383 amode | (from + insnlen));
1384 }
1385
1386 /* Handle absolute branch instructions. */
1387 else if (is_rr (insn, op_bcr, &r1, &r2)
1388 || is_rx (insn, op_bc, &r1, &d2, &x2, &b2)
1389 || is_rr (insn, op_bctr, &r1, &r2)
1390 || is_rre (insn, op_bctgr, &r1, &r2)
1391 || is_rx (insn, op_bct, &r1, &d2, &x2, &b2)
1392 || is_rxy (insn, op1_bctg, op2_brctg, &r1, &d2, &x2, &b2)
1393 || is_rs (insn, op_bxh, &r1, &r3, &d2, &b2)
1394 || is_rsy (insn, op1_bxhg, op2_bxhg, &r1, &r3, &d2, &b2)
1395 || is_rs (insn, op_bxle, &r1, &r3, &d2, &b2)
1396 || is_rsy (insn, op1_bxleg, op2_bxleg, &r1, &r3, &d2, &b2))
1397 {
1398 /* Update PC iff branch was *not* taken. */
1399 if (pc == to + insnlen)
1400 regcache_write_pc (regs, from + insnlen);
1401 }
1402
1403 /* Handle PC-relative branch and save instructions. */
1404 else if (is_ri (insn, op1_bras, op2_bras, &r1, &i2)
1405 || is_ril (insn, op1_brasl, op2_brasl, &r1, &i2))
1406 {
1407 /* Update PC. */
1408 regcache_write_pc (regs, pc - to + from);
1409 /* Recompute saved return address in R1. */
1410 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1411 amode | (from + insnlen));
1412 }
1413
1414 /* Handle PC-relative branch instructions. */
1415 else if (is_ri (insn, op1_brc, op2_brc, &r1, &i2)
1416 || is_ril (insn, op1_brcl, op2_brcl, &r1, &i2)
1417 || is_ri (insn, op1_brct, op2_brct, &r1, &i2)
1418 || is_ri (insn, op1_brctg, op2_brctg, &r1, &i2)
1419 || is_rsi (insn, op_brxh, &r1, &r3, &i2)
1420 || is_rie (insn, op1_brxhg, op2_brxhg, &r1, &r3, &i2)
1421 || is_rsi (insn, op_brxle, &r1, &r3, &i2)
1422 || is_rie (insn, op1_brxlg, op2_brxlg, &r1, &r3, &i2))
1423 {
1424 /* Update PC. */
1425 regcache_write_pc (regs, pc - to + from);
1426 }
1427
1428 /* Handle LOAD ADDRESS RELATIVE LONG. */
1429 else if (is_ril (insn, op1_larl, op2_larl, &r1, &i2))
1430 {
1431 /* Recompute output address in R1. */
1432 regcache_cooked_write_unsigned (regs, S390_R0_REGNUM + r1,
1433 amode | (from + insnlen + i2*2));
1434 }
1435
1436 /* If we executed a breakpoint instruction, point PC right back at it. */
1437 else if (insn[0] == 0x0 && insn[1] == 0x1)
1438 regcache_write_pc (regs, from);
1439
1440 /* For any other insn, PC points right after the original instruction. */
1441 else
1442 regcache_write_pc (regs, from + insnlen);
1443}
a8c99f38
JB
1444
1445/* Normal stack frames. */
1446
1447struct s390_unwind_cache {
1448
1449 CORE_ADDR func;
1450 CORE_ADDR frame_base;
1451 CORE_ADDR local_base;
1452
1453 struct trad_frame_saved_reg *saved_regs;
1454};
1455
a78f21af 1456static int
f089c433 1457s390_prologue_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38 1458 struct s390_unwind_cache *info)
5769d3cd 1459{
f089c433 1460 struct gdbarch *gdbarch = get_frame_arch (this_frame);
121d8485 1461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38
JB
1462 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
1463 struct s390_prologue_data data;
3fc46200
UW
1464 pv_t *fp = &data.gpr[S390_FRAME_REGNUM - S390_R0_REGNUM];
1465 pv_t *sp = &data.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
121d8485
UW
1466 int i;
1467 CORE_ADDR cfa;
a8c99f38
JB
1468 CORE_ADDR func;
1469 CORE_ADDR result;
1470 ULONGEST reg;
1471 CORE_ADDR prev_sp;
1472 int frame_pointer;
1473 int size;
edb3359d 1474 struct frame_info *next_frame;
a8c99f38
JB
1475
1476 /* Try to find the function start address. If we can't find it, we don't
1477 bother searching for it -- with modern compilers this would be mostly
1478 pointless anyway. Trust that we'll either have valid DWARF-2 CFI data
1479 or else a valid backchain ... */
f089c433 1480 func = get_frame_func (this_frame);
a8c99f38
JB
1481 if (!func)
1482 return 0;
5769d3cd 1483
a8c99f38
JB
1484 /* Try to analyze the prologue. */
1485 result = s390_analyze_prologue (gdbarch, func,
f089c433 1486 get_frame_pc (this_frame), &data);
a8c99f38 1487 if (!result)
5769d3cd 1488 return 0;
5769d3cd 1489
a8c99f38
JB
1490 /* If this was successful, we should have found the instruction that
1491 sets the stack pointer register to the previous value of the stack
1492 pointer minus the frame size. */
3fc46200 1493 if (!pv_is_register (*sp, S390_SP_REGNUM))
5769d3cd 1494 return 0;
a8c99f38
JB
1495
1496 /* A frame size of zero at this point can mean either a real
1497 frameless function, or else a failure to find the prologue.
1498 Perform some sanity checks to verify we really have a
1499 frameless function. */
1500 if (sp->k == 0)
5769d3cd 1501 {
a8c99f38
JB
1502 /* If the next frame is a NORMAL_FRAME, this frame *cannot* have frame
1503 size zero. This is only possible if the next frame is a sentinel
1504 frame, a dummy frame, or a signal trampoline frame. */
0e100dab
AC
1505 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be
1506 needed, instead the code should simpliy rely on its
1507 analysis. */
edb3359d
DJ
1508 next_frame = get_next_frame (this_frame);
1509 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1510 next_frame = get_next_frame (next_frame);
1511 if (next_frame
f089c433 1512 && get_frame_type (get_next_frame (this_frame)) == NORMAL_FRAME)
5769d3cd 1513 return 0;
5769d3cd 1514
a8c99f38
JB
1515 /* If we really have a frameless function, %r14 must be valid
1516 -- in particular, it must point to a different function. */
f089c433 1517 reg = get_frame_register_unsigned (this_frame, S390_RETADDR_REGNUM);
a8c99f38
JB
1518 reg = gdbarch_addr_bits_remove (gdbarch, reg) - 1;
1519 if (get_pc_function_start (reg) == func)
5769d3cd 1520 {
a8c99f38
JB
1521 /* However, there is one case where it *is* valid for %r14
1522 to point to the same function -- if this is a recursive
1523 call, and we have stopped in the prologue *before* the
1524 stack frame was allocated.
1525
1526 Recognize this case by looking ahead a bit ... */
5769d3cd 1527
a8c99f38 1528 struct s390_prologue_data data2;
3fc46200 1529 pv_t *sp = &data2.gpr[S390_SP_REGNUM - S390_R0_REGNUM];
a8c99f38
JB
1530
1531 if (!(s390_analyze_prologue (gdbarch, func, (CORE_ADDR)-1, &data2)
3fc46200 1532 && pv_is_register (*sp, S390_SP_REGNUM)
a8c99f38
JB
1533 && sp->k != 0))
1534 return 0;
5769d3cd 1535 }
5769d3cd 1536 }
5769d3cd
AC
1537
1538
a8c99f38
JB
1539 /* OK, we've found valid prologue data. */
1540 size = -sp->k;
5769d3cd 1541
a8c99f38
JB
1542 /* If the frame pointer originally also holds the same value
1543 as the stack pointer, we're probably using it. If it holds
1544 some other value -- even a constant offset -- it is most
1545 likely used as temp register. */
3fc46200 1546 if (pv_is_identical (*sp, *fp))
a8c99f38
JB
1547 frame_pointer = S390_FRAME_REGNUM;
1548 else
1549 frame_pointer = S390_SP_REGNUM;
1550
1551 /* If we've detected a function with stack frame, we'll still have to
1552 treat it as frameless if we're currently within the function epilog
c378eb4e 1553 code at a point where the frame pointer has already been restored.
a8c99f38 1554 This can only happen in an innermost frame. */
0e100dab
AC
1555 /* FIXME: cagney/2004-05-01: This sanity check shouldn't be needed,
1556 instead the code should simpliy rely on its analysis. */
edb3359d
DJ
1557 next_frame = get_next_frame (this_frame);
1558 while (next_frame && get_frame_type (next_frame) == INLINE_FRAME)
1559 next_frame = get_next_frame (next_frame);
f089c433 1560 if (size > 0
edb3359d 1561 && (next_frame == NULL
f089c433 1562 || get_frame_type (get_next_frame (this_frame)) != NORMAL_FRAME))
5769d3cd 1563 {
a8c99f38
JB
1564 /* See the comment in s390_in_function_epilogue_p on why this is
1565 not completely reliable ... */
f089c433 1566 if (s390_in_function_epilogue_p (gdbarch, get_frame_pc (this_frame)))
5769d3cd 1567 {
a8c99f38
JB
1568 memset (&data, 0, sizeof (data));
1569 size = 0;
1570 frame_pointer = S390_SP_REGNUM;
5769d3cd 1571 }
5769d3cd 1572 }
5769d3cd 1573
a8c99f38
JB
1574 /* Once we know the frame register and the frame size, we can unwind
1575 the current value of the frame register from the next frame, and
1576 add back the frame size to arrive that the previous frame's
1577 stack pointer value. */
f089c433 1578 prev_sp = get_frame_register_unsigned (this_frame, frame_pointer) + size;
121d8485 1579 cfa = prev_sp + 16*word_size + 32;
5769d3cd 1580
7803799a
UW
1581 /* Set up ABI call-saved/call-clobbered registers. */
1582 for (i = 0; i < S390_NUM_REGS; i++)
1583 if (!s390_register_call_saved (gdbarch, i))
1584 trad_frame_set_unknown (info->saved_regs, i);
1585
1586 /* CC is always call-clobbered. */
1587 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
1588
121d8485
UW
1589 /* Record the addresses of all register spill slots the prologue parser
1590 has recognized. Consider only registers defined as call-saved by the
1591 ABI; for call-clobbered registers the parser may have recognized
1592 spurious stores. */
5769d3cd 1593
7803799a
UW
1594 for (i = 0; i < 16; i++)
1595 if (s390_register_call_saved (gdbarch, S390_R0_REGNUM + i)
1596 && data.gpr_slot[i] != 0)
121d8485 1597 info->saved_regs[S390_R0_REGNUM + i].addr = cfa - data.gpr_slot[i];
a8c99f38 1598
7803799a
UW
1599 for (i = 0; i < 16; i++)
1600 if (s390_register_call_saved (gdbarch, S390_F0_REGNUM + i)
1601 && data.fpr_slot[i] != 0)
1602 info->saved_regs[S390_F0_REGNUM + i].addr = cfa - data.fpr_slot[i];
a8c99f38
JB
1603
1604 /* Function return will set PC to %r14. */
7803799a 1605 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_RETADDR_REGNUM];
a8c99f38
JB
1606
1607 /* In frameless functions, we unwind simply by moving the return
1608 address to the PC. However, if we actually stored to the
1609 save area, use that -- we might only think the function frameless
1610 because we're in the middle of the prologue ... */
1611 if (size == 0
7803799a 1612 && !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
a8c99f38 1613 {
7803799a 1614 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
5769d3cd 1615 }
a8c99f38
JB
1616
1617 /* Another sanity check: unless this is a frameless function,
1618 we should have found spill slots for SP and PC.
1619 If not, we cannot unwind further -- this happens e.g. in
1620 libc's thread_start routine. */
1621 if (size > 0)
5769d3cd 1622 {
a8c99f38 1623 if (!trad_frame_addr_p (info->saved_regs, S390_SP_REGNUM)
7803799a 1624 || !trad_frame_addr_p (info->saved_regs, tdep->pc_regnum))
a8c99f38 1625 prev_sp = -1;
5769d3cd 1626 }
a8c99f38
JB
1627
1628 /* We use the current value of the frame register as local_base,
1629 and the top of the register save area as frame_base. */
1630 if (prev_sp != -1)
1631 {
1632 info->frame_base = prev_sp + 16*word_size + 32;
1633 info->local_base = prev_sp - size;
1634 }
1635
1636 info->func = func;
1637 return 1;
5769d3cd
AC
1638}
1639
a78f21af 1640static void
f089c433 1641s390_backchain_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38 1642 struct s390_unwind_cache *info)
5769d3cd 1643{
f089c433 1644 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7803799a 1645 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1646 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
e17a4113 1647 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a8c99f38
JB
1648 CORE_ADDR backchain;
1649 ULONGEST reg;
1650 LONGEST sp;
7803799a
UW
1651 int i;
1652
1653 /* Set up ABI call-saved/call-clobbered registers. */
1654 for (i = 0; i < S390_NUM_REGS; i++)
1655 if (!s390_register_call_saved (gdbarch, i))
1656 trad_frame_set_unknown (info->saved_regs, i);
1657
1658 /* CC is always call-clobbered. */
1659 trad_frame_set_unknown (info->saved_regs, tdep->cc_regnum);
a8c99f38
JB
1660
1661 /* Get the backchain. */
f089c433 1662 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
e17a4113 1663 backchain = read_memory_unsigned_integer (reg, word_size, byte_order);
a8c99f38
JB
1664
1665 /* A zero backchain terminates the frame chain. As additional
1666 sanity check, let's verify that the spill slot for SP in the
1667 save area pointed to by the backchain in fact links back to
1668 the save area. */
1669 if (backchain != 0
e17a4113
UW
1670 && safe_read_memory_integer (backchain + 15*word_size,
1671 word_size, byte_order, &sp)
a8c99f38
JB
1672 && (CORE_ADDR)sp == backchain)
1673 {
1674 /* We don't know which registers were saved, but it will have
1675 to be at least %r14 and %r15. This will allow us to continue
1676 unwinding, but other prev-frame registers may be incorrect ... */
1677 info->saved_regs[S390_SP_REGNUM].addr = backchain + 15*word_size;
1678 info->saved_regs[S390_RETADDR_REGNUM].addr = backchain + 14*word_size;
1679
1680 /* Function return will set PC to %r14. */
7803799a
UW
1681 info->saved_regs[tdep->pc_regnum]
1682 = info->saved_regs[S390_RETADDR_REGNUM];
a8c99f38
JB
1683
1684 /* We use the current value of the frame register as local_base,
1685 and the top of the register save area as frame_base. */
1686 info->frame_base = backchain + 16*word_size + 32;
1687 info->local_base = reg;
1688 }
1689
f089c433 1690 info->func = get_frame_pc (this_frame);
5769d3cd
AC
1691}
1692
a8c99f38 1693static struct s390_unwind_cache *
f089c433 1694s390_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38
JB
1695 void **this_prologue_cache)
1696{
1697 struct s390_unwind_cache *info;
1698 if (*this_prologue_cache)
1699 return *this_prologue_cache;
1700
1701 info = FRAME_OBSTACK_ZALLOC (struct s390_unwind_cache);
1702 *this_prologue_cache = info;
f089c433 1703 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a8c99f38
JB
1704 info->func = -1;
1705 info->frame_base = -1;
1706 info->local_base = -1;
1707
1708 /* Try to use prologue analysis to fill the unwind cache.
1709 If this fails, fall back to reading the stack backchain. */
f089c433
UW
1710 if (!s390_prologue_frame_unwind_cache (this_frame, info))
1711 s390_backchain_frame_unwind_cache (this_frame, info);
a8c99f38
JB
1712
1713 return info;
1714}
5769d3cd 1715
a78f21af 1716static void
f089c433 1717s390_frame_this_id (struct frame_info *this_frame,
a8c99f38
JB
1718 void **this_prologue_cache,
1719 struct frame_id *this_id)
5769d3cd 1720{
a8c99f38 1721 struct s390_unwind_cache *info
f089c433 1722 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
5769d3cd 1723
a8c99f38
JB
1724 if (info->frame_base == -1)
1725 return;
5769d3cd 1726
a8c99f38 1727 *this_id = frame_id_build (info->frame_base, info->func);
5769d3cd
AC
1728}
1729
f089c433
UW
1730static struct value *
1731s390_frame_prev_register (struct frame_info *this_frame,
1732 void **this_prologue_cache, int regnum)
a8c99f38 1733{
7803799a
UW
1734 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1735 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1736 struct s390_unwind_cache *info
f089c433 1737 = s390_frame_unwind_cache (this_frame, this_prologue_cache);
7803799a
UW
1738
1739 /* Unwind full GPRs to show at least the lower halves (as the
1740 upper halves are undefined). */
1741 if (tdep->gpr_full_regnum != -1
1742 && regnum >= tdep->gpr_full_regnum
1743 && regnum < tdep->gpr_full_regnum + 16)
1744 {
1745 int reg = regnum - tdep->gpr_full_regnum + S390_R0_REGNUM;
1746 struct value *val, *newval;
1747
1748 val = trad_frame_get_prev_register (this_frame, info->saved_regs, reg);
1749 newval = value_cast (register_type (gdbarch, regnum), val);
1750 if (value_optimized_out (val))
1751 set_value_optimized_out (newval, 1);
1752
1753 return newval;
1754 }
1755
f089c433 1756 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
a8c99f38
JB
1757}
1758
1759static const struct frame_unwind s390_frame_unwind = {
1760 NORMAL_FRAME,
1761 s390_frame_this_id,
f089c433
UW
1762 s390_frame_prev_register,
1763 NULL,
1764 default_frame_sniffer
a8c99f38
JB
1765};
1766
5769d3cd 1767
8e645ae7
AC
1768/* Code stubs and their stack frames. For things like PLTs and NULL
1769 function calls (where there is no true frame and the return address
1770 is in the RETADDR register). */
a8c99f38 1771
8e645ae7
AC
1772struct s390_stub_unwind_cache
1773{
a8c99f38
JB
1774 CORE_ADDR frame_base;
1775 struct trad_frame_saved_reg *saved_regs;
1776};
1777
8e645ae7 1778static struct s390_stub_unwind_cache *
f089c433 1779s390_stub_frame_unwind_cache (struct frame_info *this_frame,
8e645ae7 1780 void **this_prologue_cache)
5769d3cd 1781{
f089c433 1782 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7803799a 1783 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1784 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
8e645ae7 1785 struct s390_stub_unwind_cache *info;
a8c99f38 1786 ULONGEST reg;
5c3cf190 1787
a8c99f38
JB
1788 if (*this_prologue_cache)
1789 return *this_prologue_cache;
5c3cf190 1790
8e645ae7 1791 info = FRAME_OBSTACK_ZALLOC (struct s390_stub_unwind_cache);
a8c99f38 1792 *this_prologue_cache = info;
f089c433 1793 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a8c99f38
JB
1794
1795 /* The return address is in register %r14. */
7803799a 1796 info->saved_regs[tdep->pc_regnum].realreg = S390_RETADDR_REGNUM;
a8c99f38
JB
1797
1798 /* Retrieve stack pointer and determine our frame base. */
f089c433 1799 reg = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
a8c99f38
JB
1800 info->frame_base = reg + 16*word_size + 32;
1801
1802 return info;
5769d3cd
AC
1803}
1804
a8c99f38 1805static void
f089c433 1806s390_stub_frame_this_id (struct frame_info *this_frame,
8e645ae7
AC
1807 void **this_prologue_cache,
1808 struct frame_id *this_id)
5769d3cd 1809{
8e645ae7 1810 struct s390_stub_unwind_cache *info
f089c433
UW
1811 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1812 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
a8c99f38 1813}
5769d3cd 1814
f089c433
UW
1815static struct value *
1816s390_stub_frame_prev_register (struct frame_info *this_frame,
1817 void **this_prologue_cache, int regnum)
8e645ae7
AC
1818{
1819 struct s390_stub_unwind_cache *info
f089c433
UW
1820 = s390_stub_frame_unwind_cache (this_frame, this_prologue_cache);
1821 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
a8c99f38
JB
1822}
1823
f089c433
UW
1824static int
1825s390_stub_frame_sniffer (const struct frame_unwind *self,
1826 struct frame_info *this_frame,
1827 void **this_prologue_cache)
a8c99f38 1828{
93d42b30 1829 CORE_ADDR addr_in_block;
8e645ae7
AC
1830 bfd_byte insn[S390_MAX_INSTR_SIZE];
1831
1832 /* If the current PC points to non-readable memory, we assume we
1833 have trapped due to an invalid function pointer call. We handle
1834 the non-existing current function like a PLT stub. */
f089c433 1835 addr_in_block = get_frame_address_in_block (this_frame);
93d42b30 1836 if (in_plt_section (addr_in_block, NULL)
f089c433
UW
1837 || s390_readinstruction (insn, get_frame_pc (this_frame)) < 0)
1838 return 1;
1839 return 0;
a8c99f38 1840}
5769d3cd 1841
f089c433
UW
1842static const struct frame_unwind s390_stub_frame_unwind = {
1843 NORMAL_FRAME,
1844 s390_stub_frame_this_id,
1845 s390_stub_frame_prev_register,
1846 NULL,
1847 s390_stub_frame_sniffer
1848};
1849
5769d3cd 1850
a8c99f38 1851/* Signal trampoline stack frames. */
5769d3cd 1852
a8c99f38
JB
1853struct s390_sigtramp_unwind_cache {
1854 CORE_ADDR frame_base;
1855 struct trad_frame_saved_reg *saved_regs;
1856};
5769d3cd 1857
a8c99f38 1858static struct s390_sigtramp_unwind_cache *
f089c433 1859s390_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
a8c99f38 1860 void **this_prologue_cache)
5769d3cd 1861{
f089c433 1862 struct gdbarch *gdbarch = get_frame_arch (this_frame);
7803799a 1863 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 1864 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
e17a4113 1865 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
a8c99f38
JB
1866 struct s390_sigtramp_unwind_cache *info;
1867 ULONGEST this_sp, prev_sp;
7803799a
UW
1868 CORE_ADDR next_ra, next_cfa, sigreg_ptr, sigreg_high_off;
1869 ULONGEST pswm;
a8c99f38
JB
1870 int i;
1871
1872 if (*this_prologue_cache)
1873 return *this_prologue_cache;
5769d3cd 1874
a8c99f38
JB
1875 info = FRAME_OBSTACK_ZALLOC (struct s390_sigtramp_unwind_cache);
1876 *this_prologue_cache = info;
f089c433 1877 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
a8c99f38 1878
f089c433
UW
1879 this_sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
1880 next_ra = get_frame_pc (this_frame);
a8c99f38
JB
1881 next_cfa = this_sp + 16*word_size + 32;
1882
1883 /* New-style RT frame:
1884 retcode + alignment (8 bytes)
1885 siginfo (128 bytes)
c378eb4e 1886 ucontext (contains sigregs at offset 5 words). */
a8c99f38
JB
1887 if (next_ra == next_cfa)
1888 {
f0f63663 1889 sigreg_ptr = next_cfa + 8 + 128 + align_up (5*word_size, 8);
7803799a
UW
1890 /* sigregs are followed by uc_sigmask (8 bytes), then by the
1891 upper GPR halves if present. */
1892 sigreg_high_off = 8;
a8c99f38
JB
1893 }
1894
1895 /* Old-style RT frame and all non-RT frames:
1896 old signal mask (8 bytes)
c378eb4e 1897 pointer to sigregs. */
5769d3cd
AC
1898 else
1899 {
e17a4113
UW
1900 sigreg_ptr = read_memory_unsigned_integer (next_cfa + 8,
1901 word_size, byte_order);
7803799a
UW
1902 /* sigregs are followed by signo (4 bytes), then by the
1903 upper GPR halves if present. */
1904 sigreg_high_off = 4;
a8c99f38 1905 }
5769d3cd 1906
a8c99f38
JB
1907 /* The sigregs structure looks like this:
1908 long psw_mask;
1909 long psw_addr;
1910 long gprs[16];
1911 int acrs[16];
1912 int fpc;
1913 int __pad;
1914 double fprs[16]; */
5769d3cd 1915
7803799a
UW
1916 /* PSW mask and address. */
1917 info->saved_regs[S390_PSWM_REGNUM].addr = sigreg_ptr;
a8c99f38 1918 sigreg_ptr += word_size;
7803799a 1919 info->saved_regs[S390_PSWA_REGNUM].addr = sigreg_ptr;
a8c99f38
JB
1920 sigreg_ptr += word_size;
1921
7803799a
UW
1922 /* Point PC to PSWA as well. */
1923 info->saved_regs[tdep->pc_regnum] = info->saved_regs[S390_PSWA_REGNUM];
1924
1925 /* Extract CC from PSWM. */
1926 pswm = read_memory_unsigned_integer (
1927 info->saved_regs[S390_PSWM_REGNUM].addr,
1928 word_size, byte_order);
1929 trad_frame_set_value (info->saved_regs, tdep->cc_regnum,
1930 (pswm >> (8 * word_size - 20)) & 3);
1931
a8c99f38
JB
1932 /* Then the GPRs. */
1933 for (i = 0; i < 16; i++)
1934 {
1935 info->saved_regs[S390_R0_REGNUM + i].addr = sigreg_ptr;
1936 sigreg_ptr += word_size;
1937 }
1938
1939 /* Then the ACRs. */
1940 for (i = 0; i < 16; i++)
1941 {
1942 info->saved_regs[S390_A0_REGNUM + i].addr = sigreg_ptr;
1943 sigreg_ptr += 4;
5769d3cd 1944 }
5769d3cd 1945
a8c99f38
JB
1946 /* The floating-point control word. */
1947 info->saved_regs[S390_FPC_REGNUM].addr = sigreg_ptr;
1948 sigreg_ptr += 8;
5769d3cd 1949
a8c99f38
JB
1950 /* And finally the FPRs. */
1951 for (i = 0; i < 16; i++)
1952 {
1953 info->saved_regs[S390_F0_REGNUM + i].addr = sigreg_ptr;
1954 sigreg_ptr += 8;
1955 }
1956
7803799a
UW
1957 /* If we have them, the GPR upper halves are appended at the end. */
1958 sigreg_ptr += sigreg_high_off;
1959 if (tdep->gpr_full_regnum != -1)
1960 for (i = 0; i < 16; i++)
1961 {
1962 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr = sigreg_ptr;
1963 sigreg_ptr += 4;
1964 }
1965
1966 /* Provide read-only copies of the full registers. */
1967 if (tdep->gpr_full_regnum != -1)
1968 for (i = 0; i < 16; i++)
1969 {
1970 ULONGEST low, high;
1971 low = read_memory_unsigned_integer (
1972 info->saved_regs[S390_R0_REGNUM + i].addr,
1973 4, byte_order);
1974 high = read_memory_unsigned_integer (
1975 info->saved_regs[S390_R0_UPPER_REGNUM + i].addr,
1976 4, byte_order);
1977
1978 trad_frame_set_value (info->saved_regs, tdep->gpr_full_regnum + i,
1979 (high << 32) | low);
1980 }
1981
a8c99f38
JB
1982 /* Restore the previous frame's SP. */
1983 prev_sp = read_memory_unsigned_integer (
1984 info->saved_regs[S390_SP_REGNUM].addr,
e17a4113 1985 word_size, byte_order);
5769d3cd 1986
a8c99f38
JB
1987 /* Determine our frame base. */
1988 info->frame_base = prev_sp + 16*word_size + 32;
5769d3cd 1989
a8c99f38 1990 return info;
5769d3cd
AC
1991}
1992
a8c99f38 1993static void
f089c433 1994s390_sigtramp_frame_this_id (struct frame_info *this_frame,
a8c99f38
JB
1995 void **this_prologue_cache,
1996 struct frame_id *this_id)
5769d3cd 1997{
a8c99f38 1998 struct s390_sigtramp_unwind_cache *info
f089c433
UW
1999 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2000 *this_id = frame_id_build (info->frame_base, get_frame_pc (this_frame));
5769d3cd
AC
2001}
2002
f089c433
UW
2003static struct value *
2004s390_sigtramp_frame_prev_register (struct frame_info *this_frame,
2005 void **this_prologue_cache, int regnum)
a8c99f38
JB
2006{
2007 struct s390_sigtramp_unwind_cache *info
f089c433
UW
2008 = s390_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
2009 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
a8c99f38
JB
2010}
2011
f089c433
UW
2012static int
2013s390_sigtramp_frame_sniffer (const struct frame_unwind *self,
2014 struct frame_info *this_frame,
2015 void **this_prologue_cache)
5769d3cd 2016{
f089c433 2017 CORE_ADDR pc = get_frame_pc (this_frame);
a8c99f38 2018 bfd_byte sigreturn[2];
4c8287ac 2019
8defab1a 2020 if (target_read_memory (pc, sigreturn, 2))
f089c433 2021 return 0;
4c8287ac 2022
a8c99f38 2023 if (sigreturn[0] != 0x0a /* svc */)
f089c433 2024 return 0;
5769d3cd 2025
a8c99f38
JB
2026 if (sigreturn[1] != 119 /* sigreturn */
2027 && sigreturn[1] != 173 /* rt_sigreturn */)
f089c433 2028 return 0;
a8c99f38 2029
f089c433 2030 return 1;
5769d3cd
AC
2031}
2032
f089c433
UW
2033static const struct frame_unwind s390_sigtramp_frame_unwind = {
2034 SIGTRAMP_FRAME,
2035 s390_sigtramp_frame_this_id,
2036 s390_sigtramp_frame_prev_register,
2037 NULL,
2038 s390_sigtramp_frame_sniffer
2039};
2040
4c8287ac 2041
a8c99f38
JB
2042/* Frame base handling. */
2043
2044static CORE_ADDR
f089c433 2045s390_frame_base_address (struct frame_info *this_frame, void **this_cache)
4c8287ac 2046{
a8c99f38 2047 struct s390_unwind_cache *info
f089c433 2048 = s390_frame_unwind_cache (this_frame, this_cache);
a8c99f38
JB
2049 return info->frame_base;
2050}
2051
2052static CORE_ADDR
f089c433 2053s390_local_base_address (struct frame_info *this_frame, void **this_cache)
a8c99f38
JB
2054{
2055 struct s390_unwind_cache *info
f089c433 2056 = s390_frame_unwind_cache (this_frame, this_cache);
a8c99f38
JB
2057 return info->local_base;
2058}
2059
2060static const struct frame_base s390_frame_base = {
2061 &s390_frame_unwind,
2062 s390_frame_base_address,
2063 s390_local_base_address,
2064 s390_local_base_address
2065};
2066
2067static CORE_ADDR
2068s390_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2069{
7803799a 2070 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
a8c99f38 2071 ULONGEST pc;
7803799a 2072 pc = frame_unwind_register_unsigned (next_frame, tdep->pc_regnum);
a8c99f38
JB
2073 return gdbarch_addr_bits_remove (gdbarch, pc);
2074}
2075
2076static CORE_ADDR
2077s390_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2078{
2079 ULONGEST sp;
2080 sp = frame_unwind_register_unsigned (next_frame, S390_SP_REGNUM);
2081 return gdbarch_addr_bits_remove (gdbarch, sp);
4c8287ac
JB
2082}
2083
2084
a431654a
AC
2085/* DWARF-2 frame support. */
2086
7803799a
UW
2087static struct value *
2088s390_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
2089 int regnum)
2090{
2091 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2092 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2093 int reg = regnum - tdep->gpr_full_regnum;
2094 struct value *val, *newval;
2095
2096 val = frame_unwind_register_value (this_frame, S390_R0_REGNUM + reg);
2097 newval = value_cast (register_type (gdbarch, regnum), val);
2098 if (value_optimized_out (val))
2099 set_value_optimized_out (newval, 1);
2100
2101 return newval;
2102}
2103
a431654a
AC
2104static void
2105s390_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 2106 struct dwarf2_frame_state_reg *reg,
4a4e5149 2107 struct frame_info *this_frame)
a431654a
AC
2108{
2109 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2110
7803799a
UW
2111 /* Fixed registers are call-saved or call-clobbered
2112 depending on the ABI in use. */
2113 if (regnum >= 0 && regnum < S390_NUM_REGS)
a431654a 2114 {
7803799a 2115 if (s390_register_call_saved (gdbarch, regnum))
a431654a 2116 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
7803799a 2117 else
a431654a 2118 reg->how = DWARF2_FRAME_REG_UNDEFINED;
7803799a 2119 }
a431654a 2120
7803799a
UW
2121 /* The CC pseudo register is call-clobbered. */
2122 else if (regnum == tdep->cc_regnum)
2123 reg->how = DWARF2_FRAME_REG_UNDEFINED;
a431654a 2124
7803799a
UW
2125 /* The PC register unwinds to the return address. */
2126 else if (regnum == tdep->pc_regnum)
2127 reg->how = DWARF2_FRAME_REG_RA;
a431654a 2128
7803799a
UW
2129 /* We install a special function to unwind full GPRs to show at
2130 least the lower halves (as the upper halves are undefined). */
2131 else if (tdep->gpr_full_regnum != -1
2132 && regnum >= tdep->gpr_full_regnum
2133 && regnum < tdep->gpr_full_regnum + 16)
2134 {
2135 reg->how = DWARF2_FRAME_REG_FN;
2136 reg->loc.fn = s390_dwarf2_prev_register;
a431654a
AC
2137 }
2138}
2139
2140
b0cf273e
JB
2141/* Dummy function calls. */
2142
78f8b424
JB
2143/* Return non-zero if TYPE is an integer-like type, zero otherwise.
2144 "Integer-like" types are those that should be passed the way
2145 integers are: integers, enums, ranges, characters, and booleans. */
2146static int
2147is_integer_like (struct type *type)
2148{
2149 enum type_code code = TYPE_CODE (type);
2150
2151 return (code == TYPE_CODE_INT
2152 || code == TYPE_CODE_ENUM
2153 || code == TYPE_CODE_RANGE
2154 || code == TYPE_CODE_CHAR
2155 || code == TYPE_CODE_BOOL);
2156}
2157
78f8b424
JB
2158/* Return non-zero if TYPE is a pointer-like type, zero otherwise.
2159 "Pointer-like" types are those that should be passed the way
2160 pointers are: pointers and references. */
2161static int
2162is_pointer_like (struct type *type)
2163{
2164 enum type_code code = TYPE_CODE (type);
2165
2166 return (code == TYPE_CODE_PTR
2167 || code == TYPE_CODE_REF);
2168}
2169
2170
20a940cc
JB
2171/* Return non-zero if TYPE is a `float singleton' or `double
2172 singleton', zero otherwise.
2173
2174 A `T singleton' is a struct type with one member, whose type is
2175 either T or a `T singleton'. So, the following are all float
2176 singletons:
2177
2178 struct { float x };
2179 struct { struct { float x; } x; };
2180 struct { struct { struct { float x; } x; } x; };
2181
2182 ... and so on.
2183
b0cf273e
JB
2184 All such structures are passed as if they were floats or doubles,
2185 as the (revised) ABI says. */
20a940cc
JB
2186static int
2187is_float_singleton (struct type *type)
2188{
b0cf273e
JB
2189 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_NFIELDS (type) == 1)
2190 {
2191 struct type *singleton_type = TYPE_FIELD_TYPE (type, 0);
2192 CHECK_TYPEDEF (singleton_type);
2193
2194 return (TYPE_CODE (singleton_type) == TYPE_CODE_FLT
a16b8bcd 2195 || TYPE_CODE (singleton_type) == TYPE_CODE_DECFLOAT
b0cf273e
JB
2196 || is_float_singleton (singleton_type));
2197 }
2198
2199 return 0;
20a940cc
JB
2200}
2201
2202
2203/* Return non-zero if TYPE is a struct-like type, zero otherwise.
2204 "Struct-like" types are those that should be passed as structs are:
2205 structs and unions.
2206
2207 As an odd quirk, not mentioned in the ABI, GCC passes float and
2208 double singletons as if they were a plain float, double, etc. (The
2209 corresponding union types are handled normally.) So we exclude
2210 those types here. *shrug* */
2211static int
2212is_struct_like (struct type *type)
2213{
2214 enum type_code code = TYPE_CODE (type);
2215
2216 return (code == TYPE_CODE_UNION
2217 || (code == TYPE_CODE_STRUCT && ! is_float_singleton (type)));
2218}
2219
2220
2221/* Return non-zero if TYPE is a float-like type, zero otherwise.
2222 "Float-like" types are those that should be passed as
2223 floating-point values are.
2224
2225 You'd think this would just be floats, doubles, long doubles, etc.
2226 But as an odd quirk, not mentioned in the ABI, GCC passes float and
2227 double singletons as if they were a plain float, double, etc. (The
4d819d0e 2228 corresponding union types are handled normally.) So we include
20a940cc
JB
2229 those types here. *shrug* */
2230static int
2231is_float_like (struct type *type)
2232{
2233 return (TYPE_CODE (type) == TYPE_CODE_FLT
a16b8bcd 2234 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT
20a940cc
JB
2235 || is_float_singleton (type));
2236}
2237
2238
78f8b424 2239static int
b0cf273e 2240is_power_of_two (unsigned int n)
78f8b424 2241{
b0cf273e 2242 return ((n & (n - 1)) == 0);
78f8b424
JB
2243}
2244
b0cf273e
JB
2245/* Return non-zero if TYPE should be passed as a pointer to a copy,
2246 zero otherwise. */
4d819d0e 2247static int
b0cf273e 2248s390_function_arg_pass_by_reference (struct type *type)
4d819d0e
JB
2249{
2250 unsigned length = TYPE_LENGTH (type);
b0cf273e
JB
2251 if (length > 8)
2252 return 1;
4d819d0e 2253
b0cf273e
JB
2254 /* FIXME: All complex and vector types are also returned by reference. */
2255 return is_struct_like (type) && !is_power_of_two (length);
4d819d0e
JB
2256}
2257
b0cf273e
JB
2258/* Return non-zero if TYPE should be passed in a float register
2259 if possible. */
78f8b424 2260static int
b0cf273e 2261s390_function_arg_float (struct type *type)
78f8b424 2262{
78f8b424 2263 unsigned length = TYPE_LENGTH (type);
b0cf273e
JB
2264 if (length > 8)
2265 return 0;
78f8b424 2266
b0cf273e 2267 return is_float_like (type);
4d819d0e
JB
2268}
2269
b0cf273e
JB
2270/* Return non-zero if TYPE should be passed in an integer register
2271 (or a pair of integer registers) if possible. */
78f8b424 2272static int
b0cf273e 2273s390_function_arg_integer (struct type *type)
78f8b424 2274{
78f8b424 2275 unsigned length = TYPE_LENGTH (type);
b0cf273e
JB
2276 if (length > 8)
2277 return 0;
78f8b424 2278
b0cf273e
JB
2279 return is_integer_like (type)
2280 || is_pointer_like (type)
2281 || (is_struct_like (type) && is_power_of_two (length));
78f8b424
JB
2282}
2283
78f8b424
JB
2284/* Return ARG, a `SIMPLE_ARG', sign-extended or zero-extended to a full
2285 word as required for the ABI. */
2286static LONGEST
e17a4113 2287extend_simple_arg (struct gdbarch *gdbarch, struct value *arg)
78f8b424 2288{
e17a4113 2289 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
4991999e 2290 struct type *type = value_type (arg);
78f8b424
JB
2291
2292 /* Even structs get passed in the least significant bits of the
2293 register / memory word. It's not really right to extract them as
2294 an integer, but it does take care of the extension. */
2295 if (TYPE_UNSIGNED (type))
0fd88904 2296 return extract_unsigned_integer (value_contents (arg),
e17a4113 2297 TYPE_LENGTH (type), byte_order);
78f8b424 2298 else
0fd88904 2299 return extract_signed_integer (value_contents (arg),
e17a4113 2300 TYPE_LENGTH (type), byte_order);
78f8b424
JB
2301}
2302
2303
78f8b424
JB
2304/* Return the alignment required by TYPE. */
2305static int
2306alignment_of (struct type *type)
2307{
2308 int alignment;
2309
2310 if (is_integer_like (type)
2311 || is_pointer_like (type)
a16b8bcd
UW
2312 || TYPE_CODE (type) == TYPE_CODE_FLT
2313 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
78f8b424
JB
2314 alignment = TYPE_LENGTH (type);
2315 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2316 || TYPE_CODE (type) == TYPE_CODE_UNION)
2317 {
2318 int i;
2319
2320 alignment = 1;
2321 for (i = 0; i < TYPE_NFIELDS (type); i++)
2322 {
2323 int field_alignment = alignment_of (TYPE_FIELD_TYPE (type, i));
2324
2325 if (field_alignment > alignment)
2326 alignment = field_alignment;
2327 }
2328 }
2329 else
2330 alignment = 1;
2331
2332 /* Check that everything we ever return is a power of two. Lots of
2333 code doesn't want to deal with aligning things to arbitrary
2334 boundaries. */
2335 gdb_assert ((alignment & (alignment - 1)) == 0);
2336
2337 return alignment;
2338}
2339
2340
2341/* Put the actual parameter values pointed to by ARGS[0..NARGS-1] in
ca557f44
AC
2342 place to be passed to a function, as specified by the "GNU/Linux
2343 for S/390 ELF Application Binary Interface Supplement".
78f8b424
JB
2344
2345 SP is the current stack pointer. We must put arguments, links,
2346 padding, etc. whereever they belong, and return the new stack
2347 pointer value.
2348
2349 If STRUCT_RETURN is non-zero, then the function we're calling is
2350 going to return a structure by value; STRUCT_ADDR is the address of
2351 a block we've allocated for it on the stack.
2352
2353 Our caller has taken care of any type promotions needed to satisfy
2354 prototypes or the old K&R argument-passing rules. */
a78f21af 2355static CORE_ADDR
7d9b040b 2356s390_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
b0cf273e
JB
2357 struct regcache *regcache, CORE_ADDR bp_addr,
2358 int nargs, struct value **args, CORE_ADDR sp,
2359 int struct_return, CORE_ADDR struct_addr)
5769d3cd 2360{
b0cf273e
JB
2361 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2362 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
e17a4113 2363 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
78f8b424 2364 int i;
5769d3cd 2365
78f8b424
JB
2366 /* If the i'th argument is passed as a reference to a copy, then
2367 copy_addr[i] is the address of the copy we made. */
2368 CORE_ADDR *copy_addr = alloca (nargs * sizeof (CORE_ADDR));
5769d3cd 2369
c0cc4c83 2370 /* Reserve space for the reference-to-copy area. */
78f8b424
JB
2371 for (i = 0; i < nargs; i++)
2372 {
2373 struct value *arg = args[i];
4991999e 2374 struct type *type = value_type (arg);
78f8b424 2375 unsigned length = TYPE_LENGTH (type);
5769d3cd 2376
b0cf273e 2377 if (s390_function_arg_pass_by_reference (type))
01c464e9 2378 {
78f8b424 2379 sp -= length;
5b03f266 2380 sp = align_down (sp, alignment_of (type));
78f8b424 2381 copy_addr[i] = sp;
01c464e9 2382 }
5769d3cd 2383 }
5769d3cd 2384
78f8b424
JB
2385 /* Reserve space for the parameter area. As a conservative
2386 simplification, we assume that everything will be passed on the
b0cf273e
JB
2387 stack. Since every argument larger than 8 bytes will be
2388 passed by reference, we use this simple upper bound. */
2389 sp -= nargs * 8;
78f8b424 2390
78f8b424
JB
2391 /* After all that, make sure it's still aligned on an eight-byte
2392 boundary. */
5b03f266 2393 sp = align_down (sp, 8);
78f8b424 2394
c0cc4c83
UW
2395 /* Allocate the standard frame areas: the register save area, the
2396 word reserved for the compiler (which seems kind of meaningless),
2397 and the back chain pointer. */
2398 sp -= 16*word_size + 32;
2399
2400 /* Now we have the final SP value. Make sure we didn't underflow;
2401 on 31-bit, this would result in addresses with the high bit set,
2402 which causes confusion elsewhere. Note that if we error out
2403 here, stack and registers remain untouched. */
2404 if (gdbarch_addr_bits_remove (gdbarch, sp) != sp)
2405 error (_("Stack overflow"));
2406
2407
78f8b424
JB
2408 /* Finally, place the actual parameters, working from SP towards
2409 higher addresses. The code above is supposed to reserve enough
2410 space for this. */
2411 {
2412 int fr = 0;
2413 int gr = 2;
c0cc4c83 2414 CORE_ADDR starg = sp + 16*word_size + 32;
78f8b424 2415
b0cf273e 2416 /* A struct is returned using general register 2. */
4d819d0e 2417 if (struct_return)
b0cf273e
JB
2418 {
2419 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2420 struct_addr);
2421 gr++;
2422 }
4d819d0e 2423
78f8b424
JB
2424 for (i = 0; i < nargs; i++)
2425 {
2426 struct value *arg = args[i];
4991999e 2427 struct type *type = value_type (arg);
b0cf273e
JB
2428 unsigned length = TYPE_LENGTH (type);
2429
2430 if (s390_function_arg_pass_by_reference (type))
2431 {
c0cc4c83
UW
2432 /* Actually copy the argument contents to the stack slot
2433 that was reserved above. */
2434 write_memory (copy_addr[i], value_contents (arg), length);
2435
b0cf273e
JB
2436 if (gr <= 6)
2437 {
2438 regcache_cooked_write_unsigned (regcache, S390_R0_REGNUM + gr,
2439 copy_addr[i]);
2440 gr++;
2441 }
2442 else
2443 {
e17a4113
UW
2444 write_memory_unsigned_integer (starg, word_size, byte_order,
2445 copy_addr[i]);
b0cf273e
JB
2446 starg += word_size;
2447 }
2448 }
2449 else if (s390_function_arg_float (type))
2450 {
2451 /* The GNU/Linux for S/390 ABI uses FPRs 0 and 2 to pass arguments,
2452 the GNU/Linux for zSeries ABI uses 0, 2, 4, and 6. */
2453 if (fr <= (tdep->abi == ABI_LINUX_S390 ? 2 : 6))
2454 {
2455 /* When we store a single-precision value in an FP register,
2456 it occupies the leftmost bits. */
2457 regcache_cooked_write_part (regcache, S390_F0_REGNUM + fr,
0fd88904 2458 0, length, value_contents (arg));
b0cf273e
JB
2459 fr += 2;
2460 }
2461 else
2462 {
2463 /* When we store a single-precision value in a stack slot,
2464 it occupies the rightmost bits. */
2465 starg = align_up (starg + length, word_size);
0fd88904 2466 write_memory (starg - length, value_contents (arg), length);
b0cf273e
JB
2467 }
2468 }
2469 else if (s390_function_arg_integer (type) && length <= word_size)
2470 {
2471 if (gr <= 6)
2472 {
2473 /* Integer arguments are always extended to word size. */
2474 regcache_cooked_write_signed (regcache, S390_R0_REGNUM + gr,
c378eb4e
MS
2475 extend_simple_arg (gdbarch,
2476 arg));
b0cf273e
JB
2477 gr++;
2478 }
2479 else
2480 {
2481 /* Integer arguments are always extended to word size. */
e17a4113
UW
2482 write_memory_signed_integer (starg, word_size, byte_order,
2483 extend_simple_arg (gdbarch, arg));
b0cf273e
JB
2484 starg += word_size;
2485 }
2486 }
2487 else if (s390_function_arg_integer (type) && length == 2*word_size)
2488 {
2489 if (gr <= 5)
2490 {
2491 regcache_cooked_write (regcache, S390_R0_REGNUM + gr,
0fd88904 2492 value_contents (arg));
b0cf273e 2493 regcache_cooked_write (regcache, S390_R0_REGNUM + gr + 1,
0fd88904 2494 value_contents (arg) + word_size);
b0cf273e
JB
2495 gr += 2;
2496 }
2497 else
2498 {
2499 /* If we skipped r6 because we couldn't fit a DOUBLE_ARG
2500 in it, then don't go back and use it again later. */
2501 gr = 7;
2502
0fd88904 2503 write_memory (starg, value_contents (arg), length);
b0cf273e
JB
2504 starg += length;
2505 }
2506 }
2507 else
e2e0b3e5 2508 internal_error (__FILE__, __LINE__, _("unknown argument type"));
78f8b424
JB
2509 }
2510 }
2511
b0cf273e
JB
2512 /* Store return address. */
2513 regcache_cooked_write_unsigned (regcache, S390_RETADDR_REGNUM, bp_addr);
2514
2515 /* Store updated stack pointer. */
2516 regcache_cooked_write_unsigned (regcache, S390_SP_REGNUM, sp);
78f8b424 2517
a8c99f38 2518 /* We need to return the 'stack part' of the frame ID,
121d8485
UW
2519 which is actually the top of the register save area. */
2520 return sp + 16*word_size + 32;
5769d3cd
AC
2521}
2522
f089c433 2523/* Assuming THIS_FRAME is a dummy, return the frame ID of that
b0cf273e
JB
2524 dummy frame. The frame ID's base needs to match the TOS value
2525 returned by push_dummy_call, and the PC match the dummy frame's
2526 breakpoint. */
2527static struct frame_id
f089c433 2528s390_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
b0cf273e 2529{
a8c99f38 2530 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
f089c433
UW
2531 CORE_ADDR sp = get_frame_register_unsigned (this_frame, S390_SP_REGNUM);
2532 sp = gdbarch_addr_bits_remove (gdbarch, sp);
a8c99f38 2533
121d8485 2534 return frame_id_build (sp + 16*word_size + 32,
f089c433 2535 get_frame_pc (this_frame));
b0cf273e 2536}
c8f9d51c 2537
4074e13c
JB
2538static CORE_ADDR
2539s390_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2540{
2541 /* Both the 32- and 64-bit ABI's say that the stack pointer should
2542 always be aligned on an eight-byte boundary. */
2543 return (addr & -8);
2544}
2545
2546
b0cf273e
JB
2547/* Function return value access. */
2548
2549static enum return_value_convention
2550s390_return_value_convention (struct gdbarch *gdbarch, struct type *type)
c8f9d51c 2551{
b0cf273e
JB
2552 int length = TYPE_LENGTH (type);
2553 if (length > 8)
2554 return RETURN_VALUE_STRUCT_CONVENTION;
2555
2556 switch (TYPE_CODE (type))
2557 {
2558 case TYPE_CODE_STRUCT:
2559 case TYPE_CODE_UNION:
2560 case TYPE_CODE_ARRAY:
2561 return RETURN_VALUE_STRUCT_CONVENTION;
c8f9d51c 2562
b0cf273e
JB
2563 default:
2564 return RETURN_VALUE_REGISTER_CONVENTION;
2565 }
c8f9d51c
JB
2566}
2567
b0cf273e 2568static enum return_value_convention
c055b101
CV
2569s390_return_value (struct gdbarch *gdbarch, struct type *func_type,
2570 struct type *type, struct regcache *regcache,
2571 gdb_byte *out, const gdb_byte *in)
5769d3cd 2572{
e17a4113 2573 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
b0cf273e
JB
2574 int word_size = gdbarch_ptr_bit (gdbarch) / 8;
2575 int length = TYPE_LENGTH (type);
2576 enum return_value_convention rvc =
2577 s390_return_value_convention (gdbarch, type);
2578 if (in)
2579 {
2580 switch (rvc)
2581 {
2582 case RETURN_VALUE_REGISTER_CONVENTION:
a16b8bcd
UW
2583 if (TYPE_CODE (type) == TYPE_CODE_FLT
2584 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
b0cf273e
JB
2585 {
2586 /* When we store a single-precision value in an FP register,
2587 it occupies the leftmost bits. */
2588 regcache_cooked_write_part (regcache, S390_F0_REGNUM,
2589 0, length, in);
2590 }
2591 else if (length <= word_size)
2592 {
2593 /* Integer arguments are always extended to word size. */
2594 if (TYPE_UNSIGNED (type))
2595 regcache_cooked_write_unsigned (regcache, S390_R2_REGNUM,
e17a4113 2596 extract_unsigned_integer (in, length, byte_order));
b0cf273e
JB
2597 else
2598 regcache_cooked_write_signed (regcache, S390_R2_REGNUM,
e17a4113 2599 extract_signed_integer (in, length, byte_order));
b0cf273e
JB
2600 }
2601 else if (length == 2*word_size)
2602 {
2603 regcache_cooked_write (regcache, S390_R2_REGNUM, in);
43af2100 2604 regcache_cooked_write (regcache, S390_R3_REGNUM, in + word_size);
b0cf273e
JB
2605 }
2606 else
e2e0b3e5 2607 internal_error (__FILE__, __LINE__, _("invalid return type"));
b0cf273e
JB
2608 break;
2609
2610 case RETURN_VALUE_STRUCT_CONVENTION:
8a3fe4f8 2611 error (_("Cannot set function return value."));
b0cf273e
JB
2612 break;
2613 }
2614 }
2615 else if (out)
2616 {
2617 switch (rvc)
2618 {
2619 case RETURN_VALUE_REGISTER_CONVENTION:
a16b8bcd
UW
2620 if (TYPE_CODE (type) == TYPE_CODE_FLT
2621 || TYPE_CODE (type) == TYPE_CODE_DECFLOAT)
b0cf273e
JB
2622 {
2623 /* When we store a single-precision value in an FP register,
2624 it occupies the leftmost bits. */
2625 regcache_cooked_read_part (regcache, S390_F0_REGNUM,
2626 0, length, out);
2627 }
2628 else if (length <= word_size)
2629 {
2630 /* Integer arguments occupy the rightmost bits. */
2631 regcache_cooked_read_part (regcache, S390_R2_REGNUM,
2632 word_size - length, length, out);
2633 }
2634 else if (length == 2*word_size)
2635 {
2636 regcache_cooked_read (regcache, S390_R2_REGNUM, out);
43af2100 2637 regcache_cooked_read (regcache, S390_R3_REGNUM, out + word_size);
b0cf273e
JB
2638 }
2639 else
e2e0b3e5 2640 internal_error (__FILE__, __LINE__, _("invalid return type"));
b0cf273e 2641 break;
5769d3cd 2642
b0cf273e 2643 case RETURN_VALUE_STRUCT_CONVENTION:
8a3fe4f8 2644 error (_("Function return value unknown."));
b0cf273e
JB
2645 break;
2646 }
2647 }
2648
2649 return rvc;
2650}
5769d3cd
AC
2651
2652
a8c99f38
JB
2653/* Breakpoints. */
2654
43af2100 2655static const gdb_byte *
c378eb4e
MS
2656s390_breakpoint_from_pc (struct gdbarch *gdbarch,
2657 CORE_ADDR *pcptr, int *lenptr)
5769d3cd 2658{
43af2100 2659 static const gdb_byte breakpoint[] = { 0x0, 0x1 };
5769d3cd
AC
2660
2661 *lenptr = sizeof (breakpoint);
2662 return breakpoint;
2663}
2664
5769d3cd 2665
a8c99f38 2666/* Address handling. */
5769d3cd
AC
2667
2668static CORE_ADDR
24568a2c 2669s390_addr_bits_remove (struct gdbarch *gdbarch, CORE_ADDR addr)
5769d3cd 2670{
a8c99f38 2671 return addr & 0x7fffffff;
5769d3cd
AC
2672}
2673
ffc65945
KB
2674static int
2675s390_address_class_type_flags (int byte_size, int dwarf2_addr_class)
2676{
2677 if (byte_size == 4)
119ac181 2678 return TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
ffc65945
KB
2679 else
2680 return 0;
2681}
2682
2683static const char *
2684s390_address_class_type_flags_to_name (struct gdbarch *gdbarch, int type_flags)
2685{
119ac181 2686 if (type_flags & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
ffc65945
KB
2687 return "mode32";
2688 else
2689 return NULL;
2690}
2691
a78f21af 2692static int
c378eb4e
MS
2693s390_address_class_name_to_type_flags (struct gdbarch *gdbarch,
2694 const char *name,
ffc65945
KB
2695 int *type_flags_ptr)
2696{
2697 if (strcmp (name, "mode32") == 0)
2698 {
119ac181 2699 *type_flags_ptr = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1;
ffc65945
KB
2700 return 1;
2701 }
2702 else
2703 return 0;
2704}
2705
a8c99f38
JB
2706/* Set up gdbarch struct. */
2707
a78f21af 2708static struct gdbarch *
5769d3cd
AC
2709s390_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2710{
7803799a
UW
2711 const struct target_desc *tdesc = info.target_desc;
2712 struct tdesc_arch_data *tdesc_data = NULL;
5769d3cd
AC
2713 struct gdbarch *gdbarch;
2714 struct gdbarch_tdep *tdep;
7803799a
UW
2715 int tdep_abi;
2716 int have_upper = 0;
2717 int first_pseudo_reg, last_pseudo_reg;
2718
2719 /* Default ABI and register size. */
2720 switch (info.bfd_arch_info->mach)
2721 {
2722 case bfd_mach_s390_31:
2723 tdep_abi = ABI_LINUX_S390;
2724 break;
2725
2726 case bfd_mach_s390_64:
2727 tdep_abi = ABI_LINUX_ZSERIES;
2728 break;
2729
2730 default:
2731 return NULL;
2732 }
2733
2734 /* Use default target description if none provided by the target. */
2735 if (!tdesc_has_registers (tdesc))
2736 {
2737 if (tdep_abi == ABI_LINUX_S390)
2738 tdesc = tdesc_s390_linux32;
2739 else
2740 tdesc = tdesc_s390x_linux64;
2741 }
2742
2743 /* Check any target description for validity. */
2744 if (tdesc_has_registers (tdesc))
2745 {
2746 static const char *const gprs[] = {
2747 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2748 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
2749 };
2750 static const char *const fprs[] = {
2751 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2752 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15"
2753 };
2754 static const char *const acrs[] = {
2755 "acr0", "acr1", "acr2", "acr3", "acr4", "acr5", "acr6", "acr7",
2756 "acr8", "acr9", "acr10", "acr11", "acr12", "acr13", "acr14", "acr15"
2757 };
2758 static const char *const gprs_lower[] = {
2759 "r0l", "r1l", "r2l", "r3l", "r4l", "r5l", "r6l", "r7l",
2760 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
2761 };
2762 static const char *const gprs_upper[] = {
2763 "r0h", "r1h", "r2h", "r3h", "r4h", "r5h", "r6h", "r7h",
2764 "r8h", "r9h", "r10h", "r11h", "r12h", "r13h", "r14h", "r15h"
2765 };
2766 const struct tdesc_feature *feature;
2767 int i, valid_p = 1;
2768
2769 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.core");
2770 if (feature == NULL)
2771 return NULL;
2772
2773 tdesc_data = tdesc_data_alloc ();
2774
2775 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2776 S390_PSWM_REGNUM, "pswm");
2777 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2778 S390_PSWA_REGNUM, "pswa");
2779
2780 if (tdesc_unnumbered_register (feature, "r0"))
2781 {
2782 for (i = 0; i < 16; i++)
2783 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2784 S390_R0_REGNUM + i, gprs[i]);
2785 }
2786 else
2787 {
2788 have_upper = 1;
2789
2790 for (i = 0; i < 16; i++)
2791 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2792 S390_R0_REGNUM + i,
2793 gprs_lower[i]);
2794 for (i = 0; i < 16; i++)
2795 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2796 S390_R0_UPPER_REGNUM + i,
2797 gprs_upper[i]);
2798 }
2799
2800 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.fpr");
2801 if (feature == NULL)
2802 {
2803 tdesc_data_cleanup (tdesc_data);
2804 return NULL;
2805 }
2806
2807 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2808 S390_FPC_REGNUM, "fpc");
2809 for (i = 0; i < 16; i++)
2810 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2811 S390_F0_REGNUM + i, fprs[i]);
5769d3cd 2812
7803799a
UW
2813 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.s390.acr");
2814 if (feature == NULL)
2815 {
2816 tdesc_data_cleanup (tdesc_data);
2817 return NULL;
2818 }
2819
2820 for (i = 0; i < 16; i++)
2821 valid_p &= tdesc_numbered_register (feature, tdesc_data,
2822 S390_A0_REGNUM + i, acrs[i]);
2823
2824 if (!valid_p)
2825 {
2826 tdesc_data_cleanup (tdesc_data);
2827 return NULL;
2828 }
2829 }
5769d3cd 2830
7803799a
UW
2831 /* Find a candidate among extant architectures. */
2832 for (arches = gdbarch_list_lookup_by_info (arches, &info);
2833 arches != NULL;
2834 arches = gdbarch_list_lookup_by_info (arches->next, &info))
2835 {
2836 tdep = gdbarch_tdep (arches->gdbarch);
2837 if (!tdep)
2838 continue;
2839 if (tdep->abi != tdep_abi)
2840 continue;
2841 if ((tdep->gpr_full_regnum != -1) != have_upper)
2842 continue;
2843 if (tdesc_data != NULL)
2844 tdesc_data_cleanup (tdesc_data);
2845 return arches->gdbarch;
2846 }
5769d3cd 2847
7803799a 2848 /* Otherwise create a new gdbarch for the specified machine type. */
d0f54f9d 2849 tdep = XCALLOC (1, struct gdbarch_tdep);
7803799a 2850 tdep->abi = tdep_abi;
d0f54f9d 2851 gdbarch = gdbarch_alloc (&info, tdep);
5769d3cd
AC
2852
2853 set_gdbarch_believe_pcc_promotion (gdbarch, 0);
4e409299 2854 set_gdbarch_char_signed (gdbarch, 0);
5769d3cd 2855
1de90795
UW
2856 /* S/390 GNU/Linux uses either 64-bit or 128-bit long doubles.
2857 We can safely let them default to 128-bit, since the debug info
2858 will give the size of type actually used in each case. */
2859 set_gdbarch_long_double_bit (gdbarch, 128);
2860 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
2861
aaab4dba 2862 /* Amount PC must be decremented by after a breakpoint. This is
3b3b875c 2863 often the number of bytes returned by gdbarch_breakpoint_from_pc but not
aaab4dba 2864 always. */
5769d3cd 2865 set_gdbarch_decr_pc_after_break (gdbarch, 2);
5769d3cd
AC
2866 /* Stack grows downward. */
2867 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5769d3cd
AC
2868 set_gdbarch_breakpoint_from_pc (gdbarch, s390_breakpoint_from_pc);
2869 set_gdbarch_skip_prologue (gdbarch, s390_skip_prologue);
d0f54f9d 2870 set_gdbarch_in_function_epilogue_p (gdbarch, s390_in_function_epilogue_p);
a8c99f38 2871
7803799a 2872 set_gdbarch_num_regs (gdbarch, S390_NUM_REGS);
5769d3cd 2873 set_gdbarch_sp_regnum (gdbarch, S390_SP_REGNUM);
d0f54f9d 2874 set_gdbarch_fp0_regnum (gdbarch, S390_F0_REGNUM);
d0f54f9d 2875 set_gdbarch_stab_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
d0f54f9d 2876 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, s390_dwarf_reg_to_regnum);
9acbedc0 2877 set_gdbarch_value_from_register (gdbarch, s390_value_from_register);
d0f54f9d
JB
2878 set_gdbarch_regset_from_core_section (gdbarch,
2879 s390_regset_from_core_section);
7803799a
UW
2880 set_gdbarch_core_read_description (gdbarch, s390_core_read_description);
2881 if (have_upper)
2882 set_gdbarch_core_regset_sections (gdbarch, s390_upper_regset_sections);
2883 set_gdbarch_pseudo_register_read (gdbarch, s390_pseudo_register_read);
2884 set_gdbarch_pseudo_register_write (gdbarch, s390_pseudo_register_write);
2885 set_tdesc_pseudo_register_name (gdbarch, s390_pseudo_register_name);
2886 set_tdesc_pseudo_register_type (gdbarch, s390_pseudo_register_type);
2887 set_tdesc_pseudo_register_reggroup_p (gdbarch,
2888 s390_pseudo_register_reggroup_p);
2889 tdesc_use_registers (gdbarch, tdesc, tdesc_data);
2890
2891 /* Assign pseudo register numbers. */
2892 first_pseudo_reg = gdbarch_num_regs (gdbarch);
2893 last_pseudo_reg = first_pseudo_reg;
2894 tdep->gpr_full_regnum = -1;
2895 if (have_upper)
2896 {
2897 tdep->gpr_full_regnum = last_pseudo_reg;
2898 last_pseudo_reg += 16;
2899 }
2900 tdep->pc_regnum = last_pseudo_reg++;
2901 tdep->cc_regnum = last_pseudo_reg++;
2902 set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
2903 set_gdbarch_num_pseudo_regs (gdbarch, last_pseudo_reg - first_pseudo_reg);
5769d3cd 2904
b0cf273e
JB
2905 /* Inferior function calls. */
2906 set_gdbarch_push_dummy_call (gdbarch, s390_push_dummy_call);
f089c433 2907 set_gdbarch_dummy_id (gdbarch, s390_dummy_id);
4074e13c 2908 set_gdbarch_frame_align (gdbarch, s390_frame_align);
b0cf273e 2909 set_gdbarch_return_value (gdbarch, s390_return_value);
5769d3cd 2910
a8c99f38 2911 /* Frame handling. */
a431654a 2912 dwarf2_frame_set_init_reg (gdbarch, s390_dwarf2_frame_init_reg);
7803799a 2913 dwarf2_frame_set_adjust_regnum (gdbarch, s390_adjust_frame_regnum);
f089c433 2914 dwarf2_append_unwinders (gdbarch);
a431654a 2915 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
f089c433
UW
2916 frame_unwind_append_unwinder (gdbarch, &s390_stub_frame_unwind);
2917 frame_unwind_append_unwinder (gdbarch, &s390_sigtramp_frame_unwind);
2918 frame_unwind_append_unwinder (gdbarch, &s390_frame_unwind);
a8c99f38
JB
2919 frame_base_set_default (gdbarch, &s390_frame_base);
2920 set_gdbarch_unwind_pc (gdbarch, s390_unwind_pc);
2921 set_gdbarch_unwind_sp (gdbarch, s390_unwind_sp);
2922
1db4e8a0
UW
2923 /* Displaced stepping. */
2924 set_gdbarch_displaced_step_copy_insn (gdbarch,
2925 simple_displaced_step_copy_insn);
2926 set_gdbarch_displaced_step_fixup (gdbarch, s390_displaced_step_fixup);
2927 set_gdbarch_displaced_step_free_closure (gdbarch,
2928 simple_displaced_step_free_closure);
2929 set_gdbarch_displaced_step_location (gdbarch,
2930 displaced_step_at_entry_point);
2931 set_gdbarch_max_insn_length (gdbarch, S390_MAX_INSTR_SIZE);
2932
70728992
PA
2933 /* Note that GNU/Linux is the only OS supported on this
2934 platform. */
2935 linux_init_abi (info, gdbarch);
2936
7803799a 2937 switch (tdep->abi)
5769d3cd 2938 {
7803799a 2939 case ABI_LINUX_S390:
d0f54f9d
JB
2940 tdep->gregset = &s390_gregset;
2941 tdep->sizeof_gregset = s390_sizeof_gregset;
2942 tdep->fpregset = &s390_fpregset;
2943 tdep->sizeof_fpregset = s390_sizeof_fpregset;
5769d3cd
AC
2944
2945 set_gdbarch_addr_bits_remove (gdbarch, s390_addr_bits_remove);
76a9d10f
MK
2946 set_solib_svr4_fetch_link_map_offsets
2947 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
5769d3cd 2948 break;
b0cf273e 2949
7803799a 2950 case ABI_LINUX_ZSERIES:
d0f54f9d
JB
2951 tdep->gregset = &s390x_gregset;
2952 tdep->sizeof_gregset = s390x_sizeof_gregset;
2953 tdep->fpregset = &s390_fpregset;
2954 tdep->sizeof_fpregset = s390_sizeof_fpregset;
5769d3cd
AC
2955
2956 set_gdbarch_long_bit (gdbarch, 64);
2957 set_gdbarch_long_long_bit (gdbarch, 64);
2958 set_gdbarch_ptr_bit (gdbarch, 64);
76a9d10f
MK
2959 set_solib_svr4_fetch_link_map_offsets
2960 (gdbarch, svr4_lp64_fetch_link_map_offsets);
ffc65945
KB
2961 set_gdbarch_address_class_type_flags (gdbarch,
2962 s390_address_class_type_flags);
2963 set_gdbarch_address_class_type_flags_to_name (gdbarch,
2964 s390_address_class_type_flags_to_name);
2965 set_gdbarch_address_class_name_to_type_flags (gdbarch,
2966 s390_address_class_name_to_type_flags);
5769d3cd
AC
2967 break;
2968 }
2969
36482093
AC
2970 set_gdbarch_print_insn (gdbarch, print_insn_s390);
2971
982e9687
UW
2972 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
2973
b2756930
KB
2974 /* Enable TLS support. */
2975 set_gdbarch_fetch_tls_load_module_address (gdbarch,
2976 svr4_fetch_objfile_link_map);
2977
5769d3cd
AC
2978 return gdbarch;
2979}
2980
2981
a78f21af
AC
2982extern initialize_file_ftype _initialize_s390_tdep; /* -Wmissing-prototypes */
2983
5769d3cd 2984void
5ae5f592 2985_initialize_s390_tdep (void)
5769d3cd 2986{
5769d3cd
AC
2987 /* Hook us into the gdbarch mechanism. */
2988 register_gdbarch_init (bfd_arch_s390, s390_gdbarch_init);
7803799a
UW
2989
2990 /* Initialize the Linux target descriptions. */
2991 initialize_tdesc_s390_linux32 ();
2992 initialize_tdesc_s390_linux64 ();
2993 initialize_tdesc_s390x_linux64 ();
5769d3cd 2994}
This page took 1.094805 seconds and 4 git commands to generate.