Fix PR cli/18053
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
618f726f 3 Copyright (C) 1993-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
1c0159e0
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
c906108c 28#include "symtab.h"
c906108c
SS
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
73c1f219 34#include "inferior.h"
b4a20239 35#include "arch-utils.h"
fb409745 36#include "floatformat.h"
4e052eda 37#include "regcache.h"
d16aafd8 38#include "doublest.h"
4be87837 39#include "osabi.h"
dda63807 40#include "reggroups.h"
c9ac0a72 41#include "regset.h"
cb2cf4ce 42#include "objfiles.h"
c906108c 43
ab3b8126 44#include "sh-tdep.h"
04dcf5fa 45#include "sh64-tdep.h"
ab3b8126 46
d658f924 47#include "elf-bfd.h"
1a8629c7
MS
48#include "solib-svr4.h"
49
55ff77ac 50/* sh flags */
283150cd 51#include "elf/sh.h"
fa8f86ff 52#include "dwarf2.h"
c378eb4e 53/* registers numbers shared with the simulator. */
1c922164 54#include "gdb/sim-sh.h"
283150cd 55
c055b101
CV
56/* List of "set sh ..." and "show sh ..." commands. */
57static struct cmd_list_element *setshcmdlist = NULL;
58static struct cmd_list_element *showshcmdlist = NULL;
59
60static const char sh_cc_gcc[] = "gcc";
61static const char sh_cc_renesas[] = "renesas";
40478521 62static const char *const sh_cc_enum[] = {
c055b101
CV
63 sh_cc_gcc,
64 sh_cc_renesas,
65 NULL
66};
67
68static const char *sh_active_calling_convention = sh_cc_gcc;
69
da962468 70#define SH_NUM_REGS 67
88e04cc1 71
1c0159e0 72struct sh_frame_cache
cc17453a 73{
1c0159e0
CV
74 /* Base address. */
75 CORE_ADDR base;
76 LONGEST sp_offset;
77 CORE_ADDR pc;
78
c378eb4e 79 /* Flag showing that a frame has been created in the prologue code. */
1c0159e0
CV
80 int uses_fp;
81
82 /* Saved registers. */
83 CORE_ADDR saved_regs[SH_NUM_REGS];
84 CORE_ADDR saved_sp;
63978407 85};
c906108c 86
c055b101
CV
87static int
88sh_is_renesas_calling_convention (struct type *func_type)
89{
ca193e27
TS
90 int val = 0;
91
92 if (func_type)
93 {
94 func_type = check_typedef (func_type);
95
96 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
97 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
98
99 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
100 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
101 val = 1;
102 }
103
104 if (sh_active_calling_convention == sh_cc_renesas)
105 val = 1;
106
107 return val;
c055b101
CV
108}
109
fa88f677 110static const char *
d93859e2 111sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 112{
617daa0e
CV
113 static char *register_names[] = {
114 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
115 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
116 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
117 "", "",
118 "", "", "", "", "", "", "", "",
119 "", "", "", "", "", "", "", "",
120 "", "",
121 "", "", "", "", "", "", "", "",
122 "", "", "", "", "", "", "", "",
da962468 123 "", "", "", "", "", "", "", "",
cc17453a
EZ
124 };
125 if (reg_nr < 0)
126 return NULL;
127 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
128 return NULL;
129 return register_names[reg_nr];
130}
131
fa88f677 132static const char *
d93859e2 133sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 134{
617daa0e
CV
135 static char *register_names[] = {
136 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
137 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
138 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
139 "", "",
140 "", "", "", "", "", "", "", "",
141 "", "", "", "", "", "", "", "",
142 "ssr", "spc",
cc17453a
EZ
143 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
144 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 145 "", "", "", "", "", "", "", "",
cc17453a
EZ
146 };
147 if (reg_nr < 0)
148 return NULL;
149 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
150 return NULL;
151 return register_names[reg_nr];
152}
153
fa88f677 154static const char *
d93859e2 155sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 156{
617daa0e
CV
157 static char *register_names[] = {
158 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
159 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
160 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 161 "fpul", "fpscr",
617daa0e
CV
162 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
163 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
164 "ssr", "spc",
cc17453a
EZ
165 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
166 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 167 "", "", "", "", "", "", "", "",
cc17453a
EZ
168 };
169 if (reg_nr < 0)
170 return NULL;
171 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
172 return NULL;
173 return register_names[reg_nr];
174}
175
2d188dd3 176static const char *
d93859e2 177sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
2d188dd3 178{
617daa0e
CV
179 static char *register_names[] = {
180 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
181 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
182 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 183 "fpul", "fpscr",
617daa0e
CV
184 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
185 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
186 "", "",
2d188dd3
NC
187 "", "", "", "", "", "", "", "",
188 "", "", "", "", "", "", "", "",
da962468
CV
189 "", "", "", "", "", "", "", "",
190 };
191 if (reg_nr < 0)
192 return NULL;
193 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
194 return NULL;
195 return register_names[reg_nr];
196}
197
198static const char *
d93859e2 199sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
200{
201 static char *register_names[] = {
202 /* general registers 0-15 */
203 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
204 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
205 /* 16 - 22 */
206 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
207 /* 23, 24 */
208 "fpul", "fpscr",
209 /* floating point registers 25 - 40 */
210 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
211 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
212 /* 41, 42 */
213 "", "",
214 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 215 the bank register (63). */
da962468
CV
216 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
217 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
218 "machb", "ivnb", "prb", "gbrb", "maclb",
219 /* 63: register bank number, not a real register but used to
220 communicate the register bank currently get/set. This register
221 is hidden to the user, who manipulates it using the pseudo
222 register called "bank" (67). See below. */
223 "",
224 /* 64 - 66 */
225 "ibcr", "ibnr", "tbr",
226 /* 67: register bank number, the user visible pseudo register. */
227 "bank",
228 /* double precision (pseudo) 68 - 75 */
229 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
230 };
231 if (reg_nr < 0)
232 return NULL;
233 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
234 return NULL;
235 return register_names[reg_nr];
236}
237
238static const char *
d93859e2 239sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468
CV
240{
241 static char *register_names[] = {
242 /* general registers 0-15 */
243 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
244 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
245 /* 16 - 22 */
246 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
247 /* 23, 24 */
248 "", "",
249 /* floating point registers 25 - 40 */
250 "", "", "", "", "", "", "", "",
251 "", "", "", "", "", "", "", "",
252 /* 41, 42 */
253 "", "",
254 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 255 the bank register (63). */
da962468
CV
256 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
257 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
258 "machb", "ivnb", "prb", "gbrb", "maclb",
259 /* 63: register bank number, not a real register but used to
260 communicate the register bank currently get/set. This register
261 is hidden to the user, who manipulates it using the pseudo
262 register called "bank" (67). See below. */
263 "",
264 /* 64 - 66 */
265 "ibcr", "ibnr", "tbr",
266 /* 67: register bank number, the user visible pseudo register. */
267 "bank",
268 /* double precision (pseudo) 68 - 75 */
269 "", "", "", "", "", "", "", "",
2d188dd3
NC
270 };
271 if (reg_nr < 0)
272 return NULL;
273 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
274 return NULL;
275 return register_names[reg_nr];
276}
277
fa88f677 278static const char *
d93859e2 279sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 280{
617daa0e
CV
281 static char *register_names[] = {
282 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
283 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
284 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
285 "", "dsr",
286 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
287 "y0", "y1", "", "", "", "", "", "mod",
288 "", "",
289 "rs", "re", "", "", "", "", "", "",
290 "", "", "", "", "", "", "", "",
da962468 291 "", "", "", "", "", "", "", "",
cc17453a
EZ
292 };
293 if (reg_nr < 0)
294 return NULL;
295 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
296 return NULL;
297 return register_names[reg_nr];
298}
299
fa88f677 300static const char *
d93859e2 301sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 302{
617daa0e
CV
303 static char *register_names[] = {
304 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
305 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
306 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
307 "", "dsr",
308 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
309 "y0", "y1", "", "", "", "", "", "mod",
310 "ssr", "spc",
311 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
312 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
313 "", "", "", "", "", "", "", "",
da962468 314 "", "", "", "", "", "", "", "",
cc17453a
EZ
315 };
316 if (reg_nr < 0)
317 return NULL;
318 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
319 return NULL;
320 return register_names[reg_nr];
321}
322
fa88f677 323static const char *
d93859e2 324sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
53116e27 325{
617daa0e 326 static char *register_names[] = {
a38d2a54 327 /* general registers 0-15 */
617daa0e
CV
328 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
329 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 330 /* 16 - 22 */
617daa0e 331 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 332 /* 23, 24 */
53116e27 333 "fpul", "fpscr",
a38d2a54 334 /* floating point registers 25 - 40 */
617daa0e
CV
335 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
336 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 337 /* 41, 42 */
617daa0e 338 "ssr", "spc",
a38d2a54 339 /* bank 0 43 - 50 */
53116e27 340 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 341 /* bank 1 51 - 58 */
53116e27 342 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 343 /* 59 - 66 */
da962468 344 "", "", "", "", "", "", "", "",
c378eb4e 345 /* pseudo bank register. */
da962468 346 "",
a6521d9a 347 /* double precision (pseudo) 68 - 75 */
617daa0e 348 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a6521d9a 349 /* vectors (pseudo) 76 - 79 */
617daa0e 350 "fv0", "fv4", "fv8", "fv12",
a6521d9a
TS
351 /* FIXME: missing XF */
352 /* FIXME: missing XD */
53116e27
EZ
353 };
354 if (reg_nr < 0)
355 return NULL;
356 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
357 return NULL;
358 return register_names[reg_nr];
359}
360
474e5826 361static const char *
d93859e2 362sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
363{
364 static char *register_names[] = {
365 /* general registers 0-15 */
366 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
367 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
368 /* 16 - 22 */
369 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
370 /* 23, 24 */
371 "", "",
372 /* floating point registers 25 - 40 -- not for nofpu target */
373 "", "", "", "", "", "", "", "",
374 "", "", "", "", "", "", "", "",
375 /* 41, 42 */
376 "ssr", "spc",
377 /* bank 0 43 - 50 */
378 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
379 /* bank 1 51 - 58 */
380 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 381 /* 59 - 66 */
da962468 382 "", "", "", "", "", "", "", "",
c378eb4e 383 /* pseudo bank register. */
da962468 384 "",
a6521d9a 385 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
474e5826 386 "", "", "", "", "", "", "", "",
a6521d9a 387 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
474e5826
CV
388 "", "", "", "",
389 };
390 if (reg_nr < 0)
391 return NULL;
392 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
393 return NULL;
394 return register_names[reg_nr];
395}
396
397static const char *
d93859e2 398sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826
CV
399{
400 static char *register_names[] = {
401 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
402 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
403 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
404 "", "dsr",
405 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
406 "y0", "y1", "", "", "", "", "", "mod",
407 "ssr", "spc",
408 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
409 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
410 "", "", "", "", "", "", "", "",
da962468 411 "", "", "", "", "", "", "", "",
474e5826
CV
412 };
413 if (reg_nr < 0)
414 return NULL;
415 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
416 return NULL;
417 return register_names[reg_nr];
418}
419
3117ed25 420static const unsigned char *
67d57894 421sh_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
cc17453a 422{
c378eb4e 423 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes. */
617daa0e
CV
424 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
425
bac718a6
UW
426 /* For remote stub targets, trapa #20 is used. */
427 if (strcmp (target_shortname, "remote") == 0)
428 {
429 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
430 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
431
67d57894 432 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
bac718a6
UW
433 {
434 *lenptr = sizeof (big_remote_breakpoint);
435 return big_remote_breakpoint;
436 }
437 else
438 {
439 *lenptr = sizeof (little_remote_breakpoint);
440 return little_remote_breakpoint;
441 }
442 }
443
cc17453a
EZ
444 *lenptr = sizeof (breakpoint);
445 return breakpoint;
446}
c906108c
SS
447
448/* Prologue looks like
1c0159e0
CV
449 mov.l r14,@-r15
450 sts.l pr,@-r15
451 mov.l <regs>,@-r15
452 sub <room_for_loca_vars>,r15
453 mov r15,r14
8db62801 454
c378eb4e 455 Actually it can be more complicated than this but that's it, basically. */
c906108c 456
1c0159e0
CV
457#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
458#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
459
5f883edd
FF
460/* JSR @Rm 0100mmmm00001011 */
461#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
462
8db62801
EZ
463/* STS.L PR,@-r15 0100111100100010
464 r15-4-->r15, PR-->(r15) */
c906108c 465#define IS_STS(x) ((x) == 0x4f22)
8db62801 466
03131d99
CV
467/* STS.L MACL,@-r15 0100111100010010
468 r15-4-->r15, MACL-->(r15) */
469#define IS_MACL_STS(x) ((x) == 0x4f12)
470
8db62801
EZ
471/* MOV.L Rm,@-r15 00101111mmmm0110
472 r15-4-->r15, Rm-->(R15) */
c906108c 473#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 474
8db62801
EZ
475/* MOV r15,r14 0110111011110011
476 r15-->r14 */
c906108c 477#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
478
479/* ADD #imm,r15 01111111iiiiiiii
480 r15+imm-->r15 */
1c0159e0 481#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 482
c906108c
SS
483#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
484#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
485
486/* ADD r3,r15 0011111100111100
487 r15+r3-->r15 */
c906108c 488#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
489
490/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 491 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 492 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907 493/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
c378eb4e 494 make this entirely clear. */
1c0159e0
CV
495/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
496#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
497
498/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
499#define IS_MOV_ARG_TO_REG(x) \
500 (((x) & 0xf00f) == 0x6003 && \
501 ((x) & 0x00f0) >= 0x0040 && \
502 ((x) & 0x00f0) <= 0x0070)
503/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
504#define IS_MOV_ARG_TO_IND_R14(x) \
505 (((x) & 0xff0f) == 0x2e02 && \
506 ((x) & 0x00f0) >= 0x0040 && \
507 ((x) & 0x00f0) <= 0x0070)
508/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
509#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
510 (((x) & 0xff00) == 0x1e00 && \
511 ((x) & 0x00f0) >= 0x0040 && \
512 ((x) & 0x00f0) <= 0x0070)
513
514/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
515#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
516/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
517#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
518/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
519#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
520/* SUB Rn,R15 00111111nnnn1000 */
521#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 522
1c0159e0 523#define FPSCR_SZ (1 << 20)
cc17453a 524
c378eb4e 525/* The following instructions are used for epilogue testing. */
1c0159e0
CV
526#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
527#define IS_RTS(x) ((x) == 0x000b)
528#define IS_LDS(x) ((x) == 0x4f26)
03131d99 529#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
530#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
531#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
532#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 533
cc17453a 534static CORE_ADDR
e17a4113 535sh_analyze_prologue (struct gdbarch *gdbarch,
5cbb9812 536 CORE_ADDR pc, CORE_ADDR limit_pc,
d2ca4222 537 struct sh_frame_cache *cache, ULONGEST fpscr)
617daa0e 538{
e17a4113 539 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0 540 ULONGEST inst;
1c0159e0
CV
541 int offset;
542 int sav_offset = 0;
c906108c 543 int r3_val = 0;
1c0159e0 544 int reg, sav_reg = -1;
cc17453a 545
1c0159e0 546 cache->uses_fp = 0;
5cbb9812 547 for (; pc < limit_pc; pc += 2)
cc17453a 548 {
e17a4113 549 inst = read_memory_unsigned_integer (pc, 2, byte_order);
c378eb4e 550 /* See where the registers will be saved to. */
f2ea0907 551 if (IS_PUSH (inst))
cc17453a 552 {
1c0159e0
CV
553 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
554 cache->sp_offset += 4;
cc17453a 555 }
f2ea0907 556 else if (IS_STS (inst))
cc17453a 557 {
1c0159e0
CV
558 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
559 cache->sp_offset += 4;
cc17453a 560 }
03131d99
CV
561 else if (IS_MACL_STS (inst))
562 {
563 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
564 cache->sp_offset += 4;
565 }
f2ea0907 566 else if (IS_MOV_R3 (inst))
cc17453a 567 {
f2ea0907 568 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 569 }
f2ea0907 570 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
571 {
572 r3_val <<= 1;
573 }
f2ea0907 574 else if (IS_ADD_R3SP (inst))
cc17453a 575 {
1c0159e0 576 cache->sp_offset += -r3_val;
cc17453a 577 }
f2ea0907 578 else if (IS_ADD_IMM_SP (inst))
cc17453a 579 {
1c0159e0
CV
580 offset = ((inst & 0xff) ^ 0x80) - 0x80;
581 cache->sp_offset -= offset;
c906108c 582 }
1c0159e0 583 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 584 {
1c0159e0
CV
585 if (sav_reg < 0)
586 {
587 reg = GET_TARGET_REG (inst);
588 if (reg < 14)
589 {
590 sav_reg = reg;
a2b4a96c 591 offset = (inst & 0xff) << 1;
1c0159e0 592 sav_offset =
e17a4113 593 read_memory_integer ((pc + 4) + offset, 2, byte_order);
1c0159e0
CV
594 }
595 }
c906108c 596 }
1c0159e0 597 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 598 {
1c0159e0
CV
599 if (sav_reg < 0)
600 {
a2b4a96c 601 reg = GET_TARGET_REG (inst);
1c0159e0
CV
602 if (reg < 14)
603 {
604 sav_reg = reg;
a2b4a96c 605 offset = (inst & 0xff) << 2;
1c0159e0 606 sav_offset =
e17a4113
UW
607 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
608 4, byte_order);
1c0159e0
CV
609 }
610 }
c906108c 611 }
5cbb9812
TS
612 else if (IS_MOVI20 (inst)
613 && (pc + 2 < limit_pc))
03131d99
CV
614 {
615 if (sav_reg < 0)
616 {
617 reg = GET_TARGET_REG (inst);
618 if (reg < 14)
619 {
620 sav_reg = reg;
621 sav_offset = GET_SOURCE_REG (inst) << 16;
c378eb4e 622 /* MOVI20 is a 32 bit instruction! */
03131d99 623 pc += 2;
e17a4113
UW
624 sav_offset
625 |= read_memory_unsigned_integer (pc, 2, byte_order);
03131d99
CV
626 /* Now sav_offset contains an unsigned 20 bit value.
627 It must still get sign extended. */
628 if (sav_offset & 0x00080000)
629 sav_offset |= 0xfff00000;
630 }
631 }
632 }
1c0159e0 633 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 634 {
1c0159e0
CV
635 reg = GET_SOURCE_REG (inst);
636 if (sav_reg > 0 && reg == sav_reg)
637 {
638 sav_reg = -1;
639 }
640 cache->sp_offset += sav_offset;
c906108c 641 }
f2ea0907 642 else if (IS_FPUSH (inst))
c906108c 643 {
d2ca4222 644 if (fpscr & FPSCR_SZ)
c906108c 645 {
1c0159e0 646 cache->sp_offset += 8;
c906108c
SS
647 }
648 else
649 {
1c0159e0 650 cache->sp_offset += 4;
c906108c
SS
651 }
652 }
f2ea0907 653 else if (IS_MOV_SP_FP (inst))
617daa0e 654 {
5cbb9812
TS
655 pc += 2;
656 /* Don't go any further than six more instructions. */
657 limit_pc = min (limit_pc, pc + (2 * 6));
658
960ccd7d 659 cache->uses_fp = 1;
1c0159e0
CV
660 /* At this point, only allow argument register moves to other
661 registers or argument register moves to @(X,fp) which are
662 moving the register arguments onto the stack area allocated
663 by a former add somenumber to SP call. Don't allow moving
c378eb4e 664 to an fp indirect address above fp + cache->sp_offset. */
5cbb9812 665 for (; pc < limit_pc; pc += 2)
1c0159e0 666 {
e17a4113 667 inst = read_memory_integer (pc, 2, byte_order);
1c0159e0 668 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 669 {
1c0159e0
CV
670 reg = GET_SOURCE_REG (inst);
671 if (cache->sp_offset > 0)
617daa0e 672 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
673 }
674 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 675 {
1c0159e0
CV
676 reg = GET_SOURCE_REG (inst);
677 offset = (inst & 0xf) * 4;
678 if (cache->sp_offset > offset)
679 cache->saved_regs[reg] = cache->sp_offset - offset;
680 }
681 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 682 continue;
1c0159e0
CV
683 else
684 break;
685 }
686 break;
687 }
5f883edd
FF
688 else if (IS_JSR (inst))
689 {
690 /* We have found a jsr that has been scheduled into the prologue.
691 If we continue the scan and return a pc someplace after this,
692 then setting a breakpoint on this function will cause it to
693 appear to be called after the function it is calling via the
694 jsr, which will be very confusing. Most likely the next
695 instruction is going to be IS_MOV_SP_FP in the delay slot. If
c378eb4e 696 so, note that before returning the current pc. */
5cbb9812
TS
697 if (pc + 2 < limit_pc)
698 {
699 inst = read_memory_integer (pc + 2, 2, byte_order);
700 if (IS_MOV_SP_FP (inst))
701 cache->uses_fp = 1;
702 }
5f883edd
FF
703 break;
704 }
c378eb4e
MS
705#if 0 /* This used to just stop when it found an instruction
706 that was not considered part of the prologue. Now,
707 we just keep going looking for likely
708 instructions. */
c906108c
SS
709 else
710 break;
2bfa91ee 711#endif
c906108c
SS
712 }
713
1c0159e0
CV
714 return pc;
715}
c906108c 716
c378eb4e 717/* Skip any prologue before the guts of a function. */
1c0159e0 718static CORE_ADDR
8a8bc27f 719sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 720{
5cbb9812 721 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
1c0159e0
CV
722 struct sh_frame_cache cache;
723
724 /* See if we can determine the end of the prologue via the symbol table.
725 If so, then return either PC, or the PC after the prologue, whichever
726 is greater. */
5cbb9812 727 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
8a8bc27f
TS
728 {
729 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
730 if (post_prologue_pc != 0)
731 return max (pc, post_prologue_pc);
732 }
cc17453a 733
8a8bc27f
TS
734 /* Can't determine prologue from the symbol table, need to examine
735 instructions. */
c906108c 736
5cbb9812
TS
737 /* Find an upper limit on the function prologue using the debug
738 information. If the debug information could not be used to provide
739 that bound, then use an arbitrary large number as the upper bound. */
740 limit_pc = skip_prologue_using_sal (gdbarch, pc);
741 if (limit_pc == 0)
742 /* Don't go any further than 28 instructions. */
743 limit_pc = pc + (2 * 28);
744
745 /* Do not allow limit_pc to be past the function end, if we know
746 where that end is... */
747 if (func_end_addr != 0)
748 limit_pc = min (limit_pc, func_end_addr);
749
1c0159e0 750 cache.sp_offset = -4;
5cbb9812 751 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
8a8bc27f
TS
752 if (cache.uses_fp)
753 pc = post_prologue_pc;
c906108c 754
1c0159e0
CV
755 return pc;
756}
757
2e952408 758/* The ABI says:
9a5cef92
EZ
759
760 Aggregate types not bigger than 8 bytes that have the same size and
761 alignment as one of the integer scalar types are returned in the
762 same registers as the integer type they match.
763
764 For example, a 2-byte aligned structure with size 2 bytes has the
765 same size and alignment as a short int, and will be returned in R0.
766 A 4-byte aligned structure with size 8 bytes has the same size and
767 alignment as a long long int, and will be returned in R0 and R1.
768
769 When an aggregate type is returned in R0 and R1, R0 contains the
770 first four bytes of the aggregate, and R1 contains the
c378eb4e 771 remainder. If the size of the aggregate type is not a multiple of 4
9a5cef92 772 bytes, the aggregate is tail-padded up to a multiple of 4
c378eb4e 773 bytes. The value of the padding is undefined. For little-endian
9a5cef92
EZ
774 targets the padding will appear at the most significant end of the
775 last element, for big-endian targets the padding appears at the
776 least significant end of the last element.
777
c378eb4e 778 All other aggregate types are returned by address. The caller
9a5cef92 779 function passes the address of an area large enough to hold the
c378eb4e 780 aggregate value in R2. The called function stores the result in
7fe958be 781 this location.
9a5cef92
EZ
782
783 To reiterate, structs smaller than 8 bytes could also be returned
784 in memory, if they don't pass the "same size and alignment as an
785 integer type" rule.
786
787 For example, in
788
789 struct s { char c[3]; } wibble;
790 struct s foo(void) { return wibble; }
791
792 the return value from foo() will be in memory, not
793 in R0, because there is no 3-byte integer type.
794
7fe958be
EZ
795 Similarly, in
796
797 struct s { char c[2]; } wibble;
798 struct s foo(void) { return wibble; }
799
800 because a struct containing two chars has alignment 1, that matches
801 type char, but size 2, that matches type short. There's no integer
802 type that has alignment 1 and size 2, so the struct is returned in
c378eb4e 803 memory. */
9a5cef92 804
1c0159e0 805static int
c055b101 806sh_use_struct_convention (int renesas_abi, struct type *type)
1c0159e0
CV
807{
808 int len = TYPE_LENGTH (type);
809 int nelem = TYPE_NFIELDS (type);
3f997a97 810
c055b101
CV
811 /* The Renesas ABI returns aggregate types always on stack. */
812 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
813 || TYPE_CODE (type) == TYPE_CODE_UNION))
814 return 1;
815
3f997a97
CV
816 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
817 fit in two registers anyway) use struct convention. */
818 if (len != 1 && len != 2 && len != 4 && len != 8)
819 return 1;
820
821 /* Scalar types and aggregate types with exactly one field are aligned
822 by definition. They are returned in registers. */
823 if (nelem <= 1)
824 return 0;
825
826 /* If the first field in the aggregate has the same length as the entire
827 aggregate type, the type is returned in registers. */
828 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
829 return 0;
830
831 /* If the size of the aggregate is 8 bytes and the first field is
832 of size 4 bytes its alignment is equal to long long's alignment,
833 so it's returned in registers. */
834 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
835 return 0;
836
837 /* Otherwise use struct convention. */
838 return 1;
283150cd
EZ
839}
840
c055b101
CV
841static int
842sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
843{
844 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
845 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
846 return 1;
847 return sh_use_struct_convention (renesas_abi, type);
848}
849
19f59343
MS
850static CORE_ADDR
851sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
852{
853 return sp & ~3;
854}
855
55ff77ac 856/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
857 Setup the function arguments for calling a function in the inferior.
858
85a453d5 859 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
860 which are dedicated for passing function arguments. Up to the first
861 four arguments (depending on size) may go into these registers.
862 The rest go on the stack.
863
6df2bf50
MS
864 MVS: Except on SH variants that have floating point registers.
865 In that case, float and double arguments are passed in the same
866 manner, but using FP registers instead of GP registers.
867
c906108c
SS
868 Arguments that are smaller than 4 bytes will still take up a whole
869 register or a whole 32-bit word on the stack, and will be
870 right-justified in the register or the stack word. This includes
871 chars, shorts, and small aggregate types.
872
873 Arguments that are larger than 4 bytes may be split between two or
874 more registers. If there are not enough registers free, an argument
875 may be passed partly in a register (or registers), and partly on the
c378eb4e 876 stack. This includes doubles, long longs, and larger aggregates.
c906108c
SS
877 As far as I know, there is no upper limit to the size of aggregates
878 that will be passed in this way; in other words, the convention of
879 passing a pointer to a large aggregate instead of a copy is not used.
880
6df2bf50 881 MVS: The above appears to be true for the SH variants that do not
55ff77ac 882 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
883 aggregate argument onto the stack (and not place it in registers)
884 if it is larger than 16 bytes (four GP registers).
885
c906108c
SS
886 An exceptional case exists for struct arguments (and possibly other
887 aggregates such as arrays) if the size is larger than 4 bytes but
888 not a multiple of 4 bytes. In this case the argument is never split
889 between the registers and the stack, but instead is copied in its
890 entirety onto the stack, AND also copied into as many registers as
891 there is room for. In other words, space in registers permitting,
892 two copies of the same argument are passed in. As far as I can tell,
893 only the one on the stack is used, although that may be a function
894 of the level of compiler optimization. I suspect this is a compiler
895 bug. Arguments of these odd sizes are left-justified within the
896 word (as opposed to arguments smaller than 4 bytes, which are
897 right-justified).
c5aa993b 898
c906108c
SS
899 If the function is to return an aggregate type such as a struct, it
900 is either returned in the normal return value register R0 (if its
901 size is no greater than one byte), or else the caller must allocate
902 space into which the callee will copy the return value (if the size
903 is greater than one byte). In this case, a pointer to the return
904 value location is passed into the callee in register R2, which does
905 not displace any of the other arguments passed in via registers R4
c378eb4e 906 to R7. */
c906108c 907
c378eb4e 908/* Helper function to justify value in register according to endianess. */
948f8e3d 909static const gdb_byte *
d93859e2 910sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
e5e33cd9 911{
948f8e3d 912 static gdb_byte valbuf[4];
e5e33cd9 913
617daa0e 914 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
915 if (len < 4)
916 {
c378eb4e 917 /* value gets right-justified in the register or stack word. */
d93859e2 918 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
948f8e3d 919 memcpy (valbuf + (4 - len), value_contents (val), len);
e5e33cd9 920 else
948f8e3d 921 memcpy (valbuf, value_contents (val), len);
e5e33cd9
CV
922 return valbuf;
923 }
948f8e3d 924 return value_contents (val);
617daa0e 925}
e5e33cd9 926
c378eb4e 927/* Helper function to eval number of bytes to allocate on stack. */
e5e33cd9
CV
928static CORE_ADDR
929sh_stack_allocsize (int nargs, struct value **args)
930{
931 int stack_alloc = 0;
932 while (nargs-- > 0)
4991999e 933 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
934 return stack_alloc;
935}
936
937/* Helper functions for getting the float arguments right. Registers usage
938 depends on the ABI and the endianess. The comments should enlighten how
c378eb4e 939 it's intended to work. */
e5e33cd9 940
c378eb4e 941/* This array stores which of the float arg registers are already in use. */
e5e33cd9
CV
942static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
943
c378eb4e 944/* This function just resets the above array to "no reg used so far". */
e5e33cd9
CV
945static void
946sh_init_flt_argreg (void)
947{
948 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
949}
950
951/* This function returns the next register to use for float arg passing.
952 It returns either a valid value between FLOAT_ARG0_REGNUM and
953 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
954 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
955
956 Note that register number 0 in flt_argreg_array corresponds with the
957 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
958 29) the parity of the register number is preserved, which is important
c378eb4e 959 for the double register passing test (see the "argreg & 1" test below). */
e5e33cd9 960static int
c055b101 961sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
e5e33cd9
CV
962{
963 int argreg;
964
c378eb4e 965 /* First search for the next free register. */
617daa0e
CV
966 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
967 ++argreg)
e5e33cd9
CV
968 if (!flt_argreg_array[argreg])
969 break;
970
c378eb4e 971 /* No register left? */
e5e33cd9
CV
972 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
973 return FLOAT_ARGLAST_REGNUM + 1;
974
975 if (len == 8)
976 {
c378eb4e 977 /* Doubles are always starting in a even register number. */
e5e33cd9 978 if (argreg & 1)
617daa0e 979 {
c055b101
CV
980 /* In gcc ABI, the skipped register is lost for further argument
981 passing now. Not so in Renesas ABI. */
982 if (!sh_is_renesas_calling_convention (func_type))
983 flt_argreg_array[argreg] = 1;
e5e33cd9
CV
984
985 ++argreg;
986
c378eb4e 987 /* No register left? */
e5e33cd9
CV
988 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
989 return FLOAT_ARGLAST_REGNUM + 1;
990 }
c378eb4e 991 /* Also mark the next register as used. */
e5e33cd9
CV
992 flt_argreg_array[argreg + 1] = 1;
993 }
c055b101
CV
994 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
995 && !sh_is_renesas_calling_convention (func_type))
e5e33cd9 996 {
c378eb4e 997 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
e5e33cd9
CV
998 if (!flt_argreg_array[argreg + 1])
999 ++argreg;
1000 }
1001 flt_argreg_array[argreg] = 1;
1002 return FLOAT_ARG0_REGNUM + argreg;
1003}
1004
afce3d2a
CV
1005/* Helper function which figures out, if a type is treated like a float type.
1006
2e952408 1007 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
1008 Structures with exactly one member, which is of type float or double, are
1009 treated exactly as the base types float or double:
1010
1011 struct sf {
1012 float f;
1013 };
1014
1015 struct sd {
1016 double d;
1017 };
1018
1019 are handled the same way as just
1020
1021 float f;
1022
1023 double d;
1024
1025 As a result, arguments of these struct types are pushed into floating point
1026 registers exactly as floats or doubles, using the same decision algorithm.
1027
1028 The same is valid if these types are used as function return types. The
1029 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1030 or even using struct convention as it is for other structs. */
1031
1032static int
1033sh_treat_as_flt_p (struct type *type)
1034{
afce3d2a
CV
1035 /* Ordinary float types are obviously treated as float. */
1036 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1037 return 1;
1038 /* Otherwise non-struct types are not treated as float. */
1039 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1040 return 0;
1041 /* Otherwise structs with more than one memeber are not treated as float. */
1042 if (TYPE_NFIELDS (type) != 1)
1043 return 0;
1044 /* Otherwise if the type of that member is float, the whole type is
1045 treated as float. */
1046 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1047 return 1;
1048 /* Otherwise it's not treated as float. */
1049 return 0;
1050}
1051
cc17453a 1052static CORE_ADDR
617daa0e 1053sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1054 struct value *function,
617daa0e 1055 struct regcache *regcache,
6df2bf50 1056 CORE_ADDR bp_addr, int nargs,
617daa0e 1057 struct value **args,
6df2bf50
MS
1058 CORE_ADDR sp, int struct_return,
1059 CORE_ADDR struct_addr)
1060{
e17a4113 1061 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1062 int stack_offset = 0;
1063 int argreg = ARG0_REGNUM;
8748518b 1064 int flt_argreg = 0;
6df2bf50 1065 int argnum;
c055b101 1066 struct type *func_type = value_type (function);
6df2bf50
MS
1067 struct type *type;
1068 CORE_ADDR regval;
948f8e3d 1069 const gdb_byte *val;
8748518b 1070 int len, reg_size = 0;
afce3d2a
CV
1071 int pass_on_stack = 0;
1072 int treat_as_flt;
c055b101
CV
1073 int last_reg_arg = INT_MAX;
1074
1075 /* The Renesas ABI expects all varargs arguments, plus the last
1076 non-vararg argument to be on the stack, no matter how many
1077 registers have been used so far. */
1078 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1079 && TYPE_VARARGS (func_type))
c055b101 1080 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
6df2bf50 1081
c378eb4e 1082 /* First force sp to a 4-byte alignment. */
6df2bf50
MS
1083 sp = sh_frame_align (gdbarch, sp);
1084
c378eb4e 1085 /* Make room on stack for args. */
e5e33cd9
CV
1086 sp -= sh_stack_allocsize (nargs, args);
1087
c378eb4e 1088 /* Initialize float argument mechanism. */
e5e33cd9 1089 sh_init_flt_argreg ();
6df2bf50
MS
1090
1091 /* Now load as many as possible of the first arguments into
1092 registers, and push the rest onto the stack. There are 16 bytes
1093 in four registers available. Loop thru args from first to last. */
e5e33cd9 1094 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1095 {
4991999e 1096 type = value_type (args[argnum]);
6df2bf50 1097 len = TYPE_LENGTH (type);
d93859e2 1098 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
e5e33cd9
CV
1099
1100 /* Some decisions have to be made how various types are handled.
c378eb4e 1101 This also differs in different ABIs. */
e5e33cd9 1102 pass_on_stack = 0;
e5e33cd9 1103
c378eb4e 1104 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1105 treat_as_flt = sh_treat_as_flt_p (type);
1106 if (treat_as_flt)
c055b101
CV
1107 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1108 /* In Renesas ABI, long longs and aggregate types are always passed
1109 on stack. */
1110 else if (sh_is_renesas_calling_convention (func_type)
1111 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1112 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1113 || TYPE_CODE (type) == TYPE_CODE_UNION))
1114 pass_on_stack = 1;
afce3d2a
CV
1115 /* In contrast to non-FPU CPUs, arguments are never split between
1116 registers and stack. If an argument doesn't fit in the remaining
1117 registers it's always pushed entirely on the stack. */
1118 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1119 pass_on_stack = 1;
48db5a3c 1120
6df2bf50
MS
1121 while (len > 0)
1122 {
afce3d2a
CV
1123 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1124 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
c055b101
CV
1125 || pass_on_stack))
1126 || argnum > last_reg_arg)
617daa0e 1127 {
c378eb4e 1128 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1129 reg_size = (len + 3) & ~3;
1130 write_memory (sp + stack_offset, val, reg_size);
1131 stack_offset += reg_size;
6df2bf50 1132 }
afce3d2a 1133 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1134 {
e5e33cd9
CV
1135 /* Argument goes in a float argument register. */
1136 reg_size = register_size (gdbarch, flt_argreg);
e17a4113 1137 regval = extract_unsigned_integer (val, reg_size, byte_order);
2e952408
CV
1138 /* In little endian mode, float types taking two registers
1139 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1140 be stored swapped in the argument registers. The below
1141 code first writes the first 32 bits in the next but one
1142 register, increments the val and len values accordingly
1143 and then proceeds as normal by writing the second 32 bits
c378eb4e 1144 into the next register. */
b47193f7 1145 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2e952408
CV
1146 && TYPE_LENGTH (type) == 2 * reg_size)
1147 {
1148 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1149 regval);
1150 val += reg_size;
1151 len -= reg_size;
c378eb4e
MS
1152 regval = extract_unsigned_integer (val, reg_size,
1153 byte_order);
2e952408 1154 }
6df2bf50
MS
1155 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1156 }
afce3d2a 1157 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1158 {
6df2bf50 1159 /* there's room in a register */
e5e33cd9 1160 reg_size = register_size (gdbarch, argreg);
e17a4113 1161 regval = extract_unsigned_integer (val, reg_size, byte_order);
6df2bf50
MS
1162 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1163 }
c378eb4e
MS
1164 /* Store the value one register at a time or in one step on
1165 stack. */
e5e33cd9
CV
1166 len -= reg_size;
1167 val += reg_size;
6df2bf50
MS
1168 }
1169 }
1170
c055b101
CV
1171 if (struct_return)
1172 {
1173 if (sh_is_renesas_calling_convention (func_type))
1174 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1175 the stack and store the struct return address there. */
e17a4113 1176 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1177 else
1178 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1179 its own dedicated register. */
1180 regcache_cooked_write_unsigned (regcache,
1181 STRUCT_RETURN_REGNUM, struct_addr);
1182 }
1183
c378eb4e 1184 /* Store return address. */
55ff77ac 1185 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1186
1187 /* Update stack pointer. */
3e8c568d 1188 regcache_cooked_write_unsigned (regcache,
b47193f7 1189 gdbarch_sp_regnum (gdbarch), sp);
6df2bf50
MS
1190
1191 return sp;
1192}
1193
1194static CORE_ADDR
617daa0e 1195sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1196 struct value *function,
617daa0e
CV
1197 struct regcache *regcache,
1198 CORE_ADDR bp_addr,
1199 int nargs, struct value **args,
1200 CORE_ADDR sp, int struct_return,
6df2bf50 1201 CORE_ADDR struct_addr)
c906108c 1202{
e17a4113 1203 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1204 int stack_offset = 0;
1205 int argreg = ARG0_REGNUM;
c906108c 1206 int argnum;
c055b101 1207 struct type *func_type = value_type (function);
c906108c
SS
1208 struct type *type;
1209 CORE_ADDR regval;
948f8e3d 1210 const gdb_byte *val;
c055b101
CV
1211 int len, reg_size = 0;
1212 int pass_on_stack = 0;
1213 int last_reg_arg = INT_MAX;
1214
1215 /* The Renesas ABI expects all varargs arguments, plus the last
1216 non-vararg argument to be on the stack, no matter how many
1217 registers have been used so far. */
1218 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1219 && TYPE_VARARGS (func_type))
c055b101 1220 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
c906108c 1221
c378eb4e 1222 /* First force sp to a 4-byte alignment. */
19f59343 1223 sp = sh_frame_align (gdbarch, sp);
c906108c 1224
c378eb4e 1225 /* Make room on stack for args. */
e5e33cd9 1226 sp -= sh_stack_allocsize (nargs, args);
c906108c 1227
c906108c
SS
1228 /* Now load as many as possible of the first arguments into
1229 registers, and push the rest onto the stack. There are 16 bytes
1230 in four registers available. Loop thru args from first to last. */
e5e33cd9 1231 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1232 {
4991999e 1233 type = value_type (args[argnum]);
c5aa993b 1234 len = TYPE_LENGTH (type);
d93859e2 1235 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
c906108c 1236
c055b101 1237 /* Some decisions have to be made how various types are handled.
c378eb4e 1238 This also differs in different ABIs. */
c055b101
CV
1239 pass_on_stack = 0;
1240 /* Renesas ABI pushes doubles and long longs entirely on stack.
1241 Same goes for aggregate types. */
1242 if (sh_is_renesas_calling_convention (func_type)
1243 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1244 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1245 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1246 || TYPE_CODE (type) == TYPE_CODE_UNION))
1247 pass_on_stack = 1;
c906108c
SS
1248 while (len > 0)
1249 {
c055b101
CV
1250 if (argreg > ARGLAST_REGNUM || pass_on_stack
1251 || argnum > last_reg_arg)
617daa0e 1252 {
e5e33cd9 1253 /* The remainder of the data goes entirely on the stack,
c378eb4e 1254 4-byte aligned. */
e5e33cd9
CV
1255 reg_size = (len + 3) & ~3;
1256 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1257 stack_offset += reg_size;
c906108c 1258 }
e5e33cd9 1259 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1260 {
c378eb4e 1261 /* There's room in a register. */
e5e33cd9 1262 reg_size = register_size (gdbarch, argreg);
e17a4113 1263 regval = extract_unsigned_integer (val, reg_size, byte_order);
48db5a3c 1264 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1265 }
e5e33cd9
CV
1266 /* Store the value reg_size bytes at a time. This means that things
1267 larger than reg_size bytes may go partly in registers and partly
c906108c 1268 on the stack. */
e5e33cd9
CV
1269 len -= reg_size;
1270 val += reg_size;
c906108c
SS
1271 }
1272 }
48db5a3c 1273
c055b101
CV
1274 if (struct_return)
1275 {
1276 if (sh_is_renesas_calling_convention (func_type))
1277 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1278 the stack and store the struct return address there. */
e17a4113 1279 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1280 else
1281 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1282 its own dedicated register. */
1283 regcache_cooked_write_unsigned (regcache,
1284 STRUCT_RETURN_REGNUM, struct_addr);
1285 }
1286
c378eb4e 1287 /* Store return address. */
55ff77ac 1288 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1289
1290 /* Update stack pointer. */
3e8c568d 1291 regcache_cooked_write_unsigned (regcache,
b47193f7 1292 gdbarch_sp_regnum (gdbarch), sp);
48db5a3c 1293
c906108c
SS
1294 return sp;
1295}
1296
cc17453a
EZ
1297/* Find a function's return value in the appropriate registers (in
1298 regbuf), and copy it into valbuf. Extract from an array REGBUF
1299 containing the (raw) register state a function return value of type
1300 TYPE, and copy that, in virtual format, into VALBUF. */
1301static void
3ffc5b9b 1302sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1303 gdb_byte *valbuf)
c906108c 1304{
e17a4113
UW
1305 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1306 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cc17453a 1307 int len = TYPE_LENGTH (type);
617daa0e 1308
cc17453a 1309 if (len <= 4)
3116c80a 1310 {
48db5a3c
CV
1311 ULONGEST c;
1312
1313 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
e17a4113 1314 store_unsigned_integer (valbuf, len, byte_order, c);
3116c80a 1315 }
48db5a3c 1316 else if (len == 8)
3116c80a 1317 {
48db5a3c
CV
1318 int i, regnum = R0_REGNUM;
1319 for (i = 0; i < len; i += 4)
948f8e3d 1320 regcache_raw_read (regcache, regnum++, valbuf + i);
3116c80a
EZ
1321 }
1322 else
8a3fe4f8 1323 error (_("bad size for return value"));
3116c80a
EZ
1324}
1325
1326static void
3ffc5b9b 1327sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1328 gdb_byte *valbuf)
3116c80a 1329{
d93859e2 1330 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1331 if (sh_treat_as_flt_p (type))
3116c80a 1332 {
48db5a3c 1333 int len = TYPE_LENGTH (type);
d93859e2 1334 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1335 for (i = 0; i < len; i += 4)
d93859e2 1336 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c378eb4e 1337 regcache_raw_read (regcache, regnum++,
948f8e3d 1338 valbuf + len - 4 - i);
2e952408 1339 else
948f8e3d 1340 regcache_raw_read (regcache, regnum++, valbuf + i);
3116c80a 1341 }
cc17453a 1342 else
3ffc5b9b 1343 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1344}
c906108c 1345
cc17453a
EZ
1346/* Write into appropriate registers a function return value
1347 of type TYPE, given in virtual format.
1348 If the architecture is sh4 or sh3e, store a function's return value
1349 in the R0 general register or in the FP0 floating point register,
c378eb4e
MS
1350 depending on the type of the return value. In all the other cases
1351 the result is stored in r0, left-justified. */
cc17453a 1352static void
3ffc5b9b 1353sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1354 const gdb_byte *valbuf)
cc17453a 1355{
e17a4113
UW
1356 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1357 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48db5a3c
CV
1358 ULONGEST val;
1359 int len = TYPE_LENGTH (type);
d19b71be 1360
48db5a3c 1361 if (len <= 4)
d19b71be 1362 {
e17a4113 1363 val = extract_unsigned_integer (valbuf, len, byte_order);
48db5a3c 1364 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1365 }
1366 else
48db5a3c
CV
1367 {
1368 int i, regnum = R0_REGNUM;
1369 for (i = 0; i < len; i += 4)
948f8e3d 1370 regcache_raw_write (regcache, regnum++, valbuf + i);
48db5a3c 1371 }
cc17453a 1372}
c906108c 1373
cc17453a 1374static void
3ffc5b9b 1375sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1376 const gdb_byte *valbuf)
cc17453a 1377{
d93859e2 1378 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1379 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1380 {
1381 int len = TYPE_LENGTH (type);
d93859e2 1382 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1383 for (i = 0; i < len; i += 4)
d93859e2 1384 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c8a3b559 1385 regcache_raw_write (regcache, regnum++,
948f8e3d 1386 valbuf + len - 4 - i);
c8a3b559 1387 else
948f8e3d 1388 regcache_raw_write (regcache, regnum++, valbuf + i);
48db5a3c 1389 }
cc17453a 1390 else
3ffc5b9b 1391 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1392}
1393
c0409442 1394static enum return_value_convention
6a3a010b 1395sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1396 struct type *type, struct regcache *regcache,
18cf8b5b 1397 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1398{
6a3a010b
MR
1399 struct type *func_type = function ? value_type (function) : NULL;
1400
c055b101
CV
1401 if (sh_use_struct_convention_nofpu (
1402 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1403 return RETURN_VALUE_STRUCT_CONVENTION;
1404 if (writebuf)
3ffc5b9b 1405 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1406 else if (readbuf)
3ffc5b9b 1407 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1408 return RETURN_VALUE_REGISTER_CONVENTION;
1409}
1410
1411static enum return_value_convention
6a3a010b 1412sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1413 struct type *type, struct regcache *regcache,
18cf8b5b 1414 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1415{
6a3a010b
MR
1416 struct type *func_type = function ? value_type (function) : NULL;
1417
c055b101
CV
1418 if (sh_use_struct_convention (
1419 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1420 return RETURN_VALUE_STRUCT_CONVENTION;
1421 if (writebuf)
3ffc5b9b 1422 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1423 else if (readbuf)
3ffc5b9b 1424 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1425 return RETURN_VALUE_REGISTER_CONVENTION;
1426}
1427
da962468
CV
1428static struct type *
1429sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1430{
b47193f7 1431 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
da962468 1432 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1433 return builtin_type (gdbarch)->builtin_float;
da962468 1434 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1435 return builtin_type (gdbarch)->builtin_double;
da962468 1436 else
0dfff4cb 1437 return builtin_type (gdbarch)->builtin_int;
da962468
CV
1438}
1439
cc17453a
EZ
1440/* Return the GDB type object for the "standard" data type
1441 of data in register N. */
cc17453a 1442static struct type *
48db5a3c 1443sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1444{
b47193f7 1445 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1446 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1447 return builtin_type (gdbarch)->builtin_float;
8db62801 1448 else
0dfff4cb 1449 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1450}
1451
7f4dbe94 1452static struct type *
0dfff4cb 1453sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
7f4dbe94 1454{
e3506a9f
UW
1455 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1456 0, high);
7f4dbe94
EZ
1457}
1458
53116e27 1459static struct type *
48db5a3c 1460sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27 1461{
b47193f7 1462 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1463 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1464 return builtin_type (gdbarch)->builtin_float;
617daa0e 1465 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1466 return builtin_type (gdbarch)->builtin_double;
617daa0e 1467 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
0dfff4cb 1468 return sh_sh4_build_float_register_type (gdbarch, 3);
53116e27 1469 else
0dfff4cb 1470 return builtin_type (gdbarch)->builtin_int;
53116e27
EZ
1471}
1472
cc17453a 1473static struct type *
48db5a3c 1474sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1475{
0dfff4cb 1476 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1477}
1478
dda63807
AS
1479/* Is a register in a reggroup?
1480 The default code in reggroup.c doesn't identify system registers, some
1481 float registers or any of the vector registers.
1482 TODO: sh2a and dsp registers. */
63807e1d 1483static int
dda63807
AS
1484sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1485 struct reggroup *reggroup)
1486{
b47193f7
UW
1487 if (gdbarch_register_name (gdbarch, regnum) == NULL
1488 || *gdbarch_register_name (gdbarch, regnum) == '\0')
dda63807
AS
1489 return 0;
1490
1491 if (reggroup == float_reggroup
1492 && (regnum == FPUL_REGNUM
1493 || regnum == FPSCR_REGNUM))
1494 return 1;
1495
1496 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1497 {
1498 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1499 return 1;
1500 if (reggroup == general_reggroup)
1501 return 0;
1502 }
1503
1504 if (regnum == VBR_REGNUM
1505 || regnum == SR_REGNUM
1506 || regnum == FPSCR_REGNUM
1507 || regnum == SSR_REGNUM
1508 || regnum == SPC_REGNUM)
1509 {
1510 if (reggroup == system_reggroup)
1511 return 1;
1512 if (reggroup == general_reggroup)
1513 return 0;
1514 }
1515
1516 /* The default code can cope with any other registers. */
1517 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1518}
1519
fb409745 1520/* On the sh4, the DRi pseudo registers are problematic if the target
c378eb4e 1521 is little endian. When the user writes one of those registers, for
a6521d9a 1522 instance with 'set var $dr0=1', we want the double to be stored
fb409745 1523 like this:
a6521d9a
TS
1524 fr0 = 0x00 0x00 0xf0 0x3f
1525 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1526
1527 This corresponds to little endian byte order & big endian word
1528 order. However if we let gdb write the register w/o conversion, it
1529 will write fr0 and fr1 this way:
a6521d9a
TS
1530 fr0 = 0x00 0x00 0x00 0x00
1531 fr1 = 0x00 0x00 0xf0 0x3f
fb409745
EZ
1532 because it will consider fr0 and fr1 as a single LE stretch of memory.
1533
1534 To achieve what we want we must force gdb to store things in
1535 floatformat_ieee_double_littlebyte_bigword (which is defined in
1536 include/floatformat.h and libiberty/floatformat.c.
1537
1538 In case the target is big endian, there is no problem, the
1539 raw bytes will look like:
a6521d9a
TS
1540 fr0 = 0x3f 0xf0 0x00 0x00
1541 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1542
1543 The other pseudo registers (the FVs) also don't pose a problem
c378eb4e 1544 because they are stored as 4 individual FP elements. */
fb409745 1545
7bd872fe 1546static void
a6521d9a 1547sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1548 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1549{
a6521d9a
TS
1550 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1551 {
1552 /* It is a no-op. */
1553 memcpy (to, from, register_size (gdbarch, regnum));
1554 return;
1555 }
1556
617daa0e 1557 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1558 {
1559 DOUBLEST val;
617daa0e
CV
1560 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1561 from, &val);
55ff77ac 1562 store_typed_floating (to, type, val);
283150cd
EZ
1563 }
1564 else
617daa0e
CV
1565 error
1566 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1567}
1568
1569static void
a6521d9a 1570sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
948f8e3d 1571 int regnum, const gdb_byte *from, gdb_byte *to)
283150cd 1572{
a6521d9a
TS
1573 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1574 {
1575 /* It is a no-op. */
1576 memcpy (to, from, register_size (gdbarch, regnum));
1577 return;
1578 }
1579
617daa0e 1580 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1581 {
48db5a3c 1582 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1583 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1584 &val, to);
283150cd
EZ
1585 }
1586 else
8a3fe4f8 1587 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1588}
1589
c378eb4e 1590/* For vectors of 4 floating point registers. */
1c0159e0 1591static int
d93859e2 1592fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1c0159e0
CV
1593{
1594 int fp_regnum;
1595
d93859e2 1596 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1597 + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1598 return fp_regnum;
1599}
1600
c378eb4e 1601/* For double precision floating point registers, i.e 2 fp regs. */
1c0159e0 1602static int
d93859e2 1603dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1c0159e0
CV
1604{
1605 int fp_regnum;
1606
d93859e2 1607 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1608 + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1609 return fp_regnum;
1610}
1611
05d1431c
PA
1612/* Concatenate PORTIONS contiguous raw registers starting at
1613 BASE_REGNUM into BUFFER. */
1614
1615static enum register_status
1616pseudo_register_read_portions (struct gdbarch *gdbarch,
1617 struct regcache *regcache,
1618 int portions,
1619 int base_regnum, gdb_byte *buffer)
1620{
1621 int portion;
1622
1623 for (portion = 0; portion < portions; portion++)
1624 {
1625 enum register_status status;
1626 gdb_byte *b;
1627
1628 b = buffer + register_size (gdbarch, base_regnum) * portion;
1629 status = regcache_raw_read (regcache, base_regnum + portion, b);
1630 if (status != REG_VALID)
1631 return status;
1632 }
1633
1634 return REG_VALID;
1635}
1636
1637static enum register_status
d8124050 1638sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1639 int reg_nr, gdb_byte *buffer)
53116e27 1640{
05d1431c 1641 int base_regnum;
948f8e3d 1642 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1643 enum register_status status;
53116e27 1644
9bed62d7 1645 if (reg_nr == PSEUDO_BANK_REGNUM)
05d1431c
PA
1646 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1647 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe 1648 {
d93859e2 1649 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
7bd872fe 1650
c378eb4e 1651 /* Build the value in the provided buffer. */
7bd872fe 1652 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1653 status = pseudo_register_read_portions (gdbarch, regcache,
1654 2, base_regnum, temp_buffer);
1655 if (status == REG_VALID)
1656 {
1657 /* We must pay attention to the endiannes. */
a6521d9a 1658 sh_register_convert_to_virtual (gdbarch, reg_nr,
05d1431c
PA
1659 register_type (gdbarch, reg_nr),
1660 temp_buffer, buffer);
1661 }
1662 return status;
7bd872fe 1663 }
617daa0e 1664 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1665 {
d93859e2 1666 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
7bd872fe
EZ
1667
1668 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1669 return pseudo_register_read_portions (gdbarch, regcache,
1670 4, base_regnum, buffer);
53116e27 1671 }
05d1431c
PA
1672 else
1673 gdb_assert_not_reached ("invalid pseudo register number");
53116e27
EZ
1674}
1675
a78f21af 1676static void
d8124050 1677sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1678 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
1679{
1680 int base_regnum, portion;
948f8e3d 1681 gdb_byte temp_buffer[MAX_REGISTER_SIZE];
53116e27 1682
9bed62d7
CV
1683 if (reg_nr == PSEUDO_BANK_REGNUM)
1684 {
1685 /* When the bank register is written to, the whole register bank
1686 is switched and all values in the bank registers must be read
c378eb4e 1687 from the target/sim again. We're just invalidating the regcache
9bed62d7
CV
1688 so that a re-read happens next time it's necessary. */
1689 int bregnum;
1690
1691 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1692 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
9c5ea4d9 1693 regcache_invalidate (regcache, bregnum);
9bed62d7
CV
1694 }
1695 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1696 {
d93859e2 1697 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
53116e27 1698
c378eb4e 1699 /* We must pay attention to the endiannes. */
a6521d9a 1700 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
b66ba949 1701 reg_nr, buffer, temp_buffer);
7bd872fe 1702
53116e27
EZ
1703 /* Write the real regs for which this one is an alias. */
1704 for (portion = 0; portion < 2; portion++)
617daa0e 1705 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 1706 (temp_buffer
617daa0e
CV
1707 + register_size (gdbarch,
1708 base_regnum) * portion));
53116e27 1709 }
617daa0e 1710 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1711 {
d93859e2 1712 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
53116e27
EZ
1713
1714 /* Write the real regs for which this one is an alias. */
1715 for (portion = 0; portion < 4; portion++)
d8124050 1716 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1717 (buffer
617daa0e
CV
1718 + register_size (gdbarch,
1719 base_regnum) * portion));
53116e27
EZ
1720 }
1721}
1722
2f14585c 1723static int
e7faf938 1724sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2f14585c 1725{
e7faf938
MD
1726 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1727 return legacy_register_sim_regno (gdbarch, nr);
f2ea0907
CV
1728 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1729 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1730 if (nr == MOD_REGNUM)
2f14585c 1731 return SIM_SH_MOD_REGNUM;
f2ea0907 1732 if (nr == RS_REGNUM)
2f14585c 1733 return SIM_SH_RS_REGNUM;
f2ea0907 1734 if (nr == RE_REGNUM)
2f14585c 1735 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1736 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1737 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1738 return nr;
1739}
1c0159e0 1740
da962468 1741static int
e7faf938 1742sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
da962468
CV
1743{
1744 switch (nr)
1745 {
1746 case TBR_REGNUM:
1747 return SIM_SH_TBR_REGNUM;
1748 case IBNR_REGNUM:
1749 return SIM_SH_IBNR_REGNUM;
1750 case IBCR_REGNUM:
1751 return SIM_SH_IBCR_REGNUM;
1752 case BANK_REGNUM:
1753 return SIM_SH_BANK_REGNUM;
1754 case MACLB_REGNUM:
1755 return SIM_SH_BANK_MACL_REGNUM;
1756 case GBRB_REGNUM:
1757 return SIM_SH_BANK_GBR_REGNUM;
1758 case PRB_REGNUM:
1759 return SIM_SH_BANK_PR_REGNUM;
1760 case IVNB_REGNUM:
1761 return SIM_SH_BANK_IVN_REGNUM;
1762 case MACHB_REGNUM:
1763 return SIM_SH_BANK_MACH_REGNUM;
1764 default:
1765 break;
1766 }
e7faf938 1767 return legacy_register_sim_regno (gdbarch, nr);
da962468
CV
1768}
1769
357d3800
AS
1770/* Set up the register unwinding such that call-clobbered registers are
1771 not displayed in frames >0 because the true value is not certain.
1772 The 'undefined' registers will show up as 'not available' unless the
1773 CFI says otherwise.
1774
1775 This function is currently set up for SH4 and compatible only. */
1776
1777static void
1778sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1779 struct dwarf2_frame_state_reg *reg,
4a4e5149 1780 struct frame_info *this_frame)
357d3800
AS
1781{
1782 /* Mark the PC as the destination for the return address. */
b47193f7 1783 if (regnum == gdbarch_pc_regnum (gdbarch))
357d3800
AS
1784 reg->how = DWARF2_FRAME_REG_RA;
1785
1786 /* Mark the stack pointer as the call frame address. */
b47193f7 1787 else if (regnum == gdbarch_sp_regnum (gdbarch))
357d3800
AS
1788 reg->how = DWARF2_FRAME_REG_CFA;
1789
1790 /* The above was taken from the default init_reg in dwarf2-frame.c
1791 while the below is SH specific. */
1792
1793 /* Caller save registers. */
1794 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1795 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1796 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1797 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1798 || (regnum == MACH_REGNUM)
1799 || (regnum == MACL_REGNUM)
1800 || (regnum == FPUL_REGNUM)
1801 || (regnum == SR_REGNUM))
1802 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1803
1804 /* Callee save registers. */
1805 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1806 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1807 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1808 || (regnum == FV0_REGNUM+3))
1809 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1810
1811 /* Other registers. These are not in the ABI and may or may not
1812 mean anything in frames >0 so don't show them. */
1813 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1814 || (regnum == GBR_REGNUM)
1815 || (regnum == VBR_REGNUM)
1816 || (regnum == FPSCR_REGNUM)
1817 || (regnum == SSR_REGNUM)
1818 || (regnum == SPC_REGNUM))
1819 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1820}
1821
1c0159e0
CV
1822static struct sh_frame_cache *
1823sh_alloc_frame_cache (void)
1824{
1825 struct sh_frame_cache *cache;
1826 int i;
1827
1828 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1829
1830 /* Base address. */
1831 cache->base = 0;
1832 cache->saved_sp = 0;
1833 cache->sp_offset = 0;
1834 cache->pc = 0;
1835
1836 /* Frameless until proven otherwise. */
1837 cache->uses_fp = 0;
617daa0e 1838
1c0159e0
CV
1839 /* Saved registers. We initialize these to -1 since zero is a valid
1840 offset (that's where fp is supposed to be stored). */
1841 for (i = 0; i < SH_NUM_REGS; i++)
1842 {
1843 cache->saved_regs[i] = -1;
1844 }
617daa0e 1845
1c0159e0 1846 return cache;
617daa0e 1847}
1c0159e0
CV
1848
1849static struct sh_frame_cache *
94afd7a6 1850sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1c0159e0 1851{
e17a4113 1852 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c0159e0
CV
1853 struct sh_frame_cache *cache;
1854 CORE_ADDR current_pc;
1855 int i;
1856
1857 if (*this_cache)
19ba03f4 1858 return (struct sh_frame_cache *) *this_cache;
1c0159e0
CV
1859
1860 cache = sh_alloc_frame_cache ();
1861 *this_cache = cache;
1862
1863 /* In principle, for normal frames, fp holds the frame pointer,
1864 which holds the base address for the current stack frame.
1865 However, for functions that don't need it, the frame pointer is
1866 optional. For these "frameless" functions the frame pointer is
c378eb4e 1867 actually the frame pointer of the calling frame. */
94afd7a6 1868 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1c0159e0
CV
1869 if (cache->base == 0)
1870 return cache;
1871
94afd7a6
UW
1872 cache->pc = get_frame_func (this_frame);
1873 current_pc = get_frame_pc (this_frame);
1c0159e0 1874 if (cache->pc != 0)
d2ca4222
UW
1875 {
1876 ULONGEST fpscr;
9fc05685
KB
1877
1878 /* Check for the existence of the FPSCR register. If it exists,
1879 fetch its value for use in prologue analysis. Passing a zero
1880 value is the best choice for architecture variants upon which
1881 there's no FPSCR register. */
1882 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1883 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1884 else
1885 fpscr = 0;
1886
e17a4113 1887 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
d2ca4222 1888 }
617daa0e 1889
1c0159e0
CV
1890 if (!cache->uses_fp)
1891 {
1892 /* We didn't find a valid frame, which means that CACHE->base
1893 currently holds the frame pointer for our calling frame. If
1894 we're at the start of a function, or somewhere half-way its
1895 prologue, the function's frame probably hasn't been fully
1896 setup yet. Try to reconstruct the base address for the stack
1897 frame by looking at the stack pointer. For truly "frameless"
1898 functions this might work too. */
94afd7a6 1899 cache->base = get_frame_register_unsigned
e17a4113 1900 (this_frame, gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1901 }
1902
1903 /* Now that we have the base address for the stack frame we can
1904 calculate the value of sp in the calling frame. */
1905 cache->saved_sp = cache->base + cache->sp_offset;
1906
1907 /* Adjust all the saved registers such that they contain addresses
1908 instead of offsets. */
1909 for (i = 0; i < SH_NUM_REGS; i++)
1910 if (cache->saved_regs[i] != -1)
1911 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1912
1913 return cache;
1914}
1915
94afd7a6
UW
1916static struct value *
1917sh_frame_prev_register (struct frame_info *this_frame,
1918 void **this_cache, int regnum)
1c0159e0 1919{
94afd7a6
UW
1920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1921 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1922
1923 gdb_assert (regnum >= 0);
1924
b47193f7 1925 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 1926 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1c0159e0
CV
1927
1928 /* The PC of the previous frame is stored in the PR register of
1929 the current frame. Frob regnum so that we pull the value from
1930 the correct place. */
b47193f7 1931 if (regnum == gdbarch_pc_regnum (gdbarch))
1c0159e0
CV
1932 regnum = PR_REGNUM;
1933
1934 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
94afd7a6
UW
1935 return frame_unwind_got_memory (this_frame, regnum,
1936 cache->saved_regs[regnum]);
1c0159e0 1937
94afd7a6 1938 return frame_unwind_got_register (this_frame, regnum, regnum);
1c0159e0
CV
1939}
1940
1941static void
94afd7a6 1942sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
617daa0e
CV
1943 struct frame_id *this_id)
1944{
94afd7a6 1945 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1946
1947 /* This marks the outermost frame. */
1948 if (cache->base == 0)
1949 return;
1950
1951 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 1952}
1c0159e0 1953
617daa0e 1954static const struct frame_unwind sh_frame_unwind = {
1c0159e0 1955 NORMAL_FRAME,
8fbca658 1956 default_frame_unwind_stop_reason,
1c0159e0 1957 sh_frame_this_id,
94afd7a6
UW
1958 sh_frame_prev_register,
1959 NULL,
1960 default_frame_sniffer
1c0159e0
CV
1961};
1962
1c0159e0
CV
1963static CORE_ADDR
1964sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1965{
3e8c568d 1966 return frame_unwind_register_unsigned (next_frame,
b47193f7 1967 gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1968}
1969
1970static CORE_ADDR
1971sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1972{
3e8c568d 1973 return frame_unwind_register_unsigned (next_frame,
b47193f7 1974 gdbarch_pc_regnum (gdbarch));
1c0159e0
CV
1975}
1976
1977static struct frame_id
94afd7a6 1978sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1c0159e0 1979{
94afd7a6
UW
1980 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1981 gdbarch_sp_regnum (gdbarch));
1982 return frame_id_build (sp, get_frame_pc (this_frame));
1c0159e0
CV
1983}
1984
1985static CORE_ADDR
94afd7a6 1986sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
617daa0e 1987{
94afd7a6 1988 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
617daa0e 1989
1c0159e0
CV
1990 return cache->base;
1991}
617daa0e
CV
1992
1993static const struct frame_base sh_frame_base = {
1c0159e0
CV
1994 &sh_frame_unwind,
1995 sh_frame_base_address,
1996 sh_frame_base_address,
1997 sh_frame_base_address
617daa0e 1998};
1c0159e0 1999
cb2cf4ce
TS
2000static struct sh_frame_cache *
2001sh_make_stub_cache (struct frame_info *this_frame)
2002{
2003 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2004 struct sh_frame_cache *cache;
2005
2006 cache = sh_alloc_frame_cache ();
2007
2008 cache->saved_sp
2009 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2010
2011 return cache;
2012}
2013
2014static void
2015sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2016 struct frame_id *this_id)
2017{
2018 struct sh_frame_cache *cache;
2019
2020 if (*this_cache == NULL)
2021 *this_cache = sh_make_stub_cache (this_frame);
19ba03f4 2022 cache = (struct sh_frame_cache *) *this_cache;
cb2cf4ce
TS
2023
2024 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2025}
2026
2027static int
2028sh_stub_unwind_sniffer (const struct frame_unwind *self,
2029 struct frame_info *this_frame,
2030 void **this_prologue_cache)
2031{
2032 CORE_ADDR addr_in_block;
2033
2034 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 2035 if (in_plt_section (addr_in_block))
cb2cf4ce
TS
2036 return 1;
2037
2038 return 0;
2039}
2040
2041static const struct frame_unwind sh_stub_unwind =
2042{
2043 NORMAL_FRAME,
2044 default_frame_unwind_stop_reason,
2045 sh_stub_this_id,
2046 sh_frame_prev_register,
2047 NULL,
2048 sh_stub_unwind_sniffer
2049};
2050
c9cf6e20
MG
2051/* Implement the stack_frame_destroyed_p gdbarch method.
2052
2053 The epilogue is defined here as the area at the end of a function,
1c0159e0 2054 either on the `ret' instruction itself or after an instruction which
c378eb4e 2055 destroys the function's stack frame. */
c9cf6e20 2056
1c0159e0 2057static int
c9cf6e20 2058sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1c0159e0 2059{
e17a4113 2060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0
CV
2061 CORE_ADDR func_addr = 0, func_end = 0;
2062
2063 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2064 {
2065 ULONGEST inst;
2066 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2067 for a nop and some fixed data (e.g. big offsets) which are
617daa0e 2068 unfortunately also treated as part of the function (which
c378eb4e 2069 means, they are below func_end. */
1c0159e0
CV
2070 CORE_ADDR addr = func_end - 28;
2071 if (addr < func_addr + 4)
617daa0e 2072 addr = func_addr + 4;
1c0159e0
CV
2073 if (pc < addr)
2074 return 0;
2075
c378eb4e 2076 /* First search forward until hitting an rts. */
1c0159e0 2077 while (addr < func_end
e17a4113 2078 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
1c0159e0
CV
2079 addr += 2;
2080 if (addr >= func_end)
617daa0e 2081 return 0;
1c0159e0
CV
2082
2083 /* At this point we should find a mov.l @r15+,r14 instruction,
2084 either before or after the rts. If not, then the function has
c378eb4e 2085 probably no "normal" epilogue and we bail out here. */
e17a4113
UW
2086 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2087 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2088 byte_order)))
617daa0e 2089 addr -= 2;
e17a4113
UW
2090 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2091 byte_order)))
1c0159e0
CV
2092 return 0;
2093
e17a4113 2094 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99 2095
c378eb4e 2096 /* Step over possible lds.l @r15+,macl. */
03131d99
CV
2097 if (IS_MACL_LDS (inst))
2098 {
2099 addr -= 2;
e17a4113 2100 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99
CV
2101 }
2102
c378eb4e 2103 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2104 if (IS_LDS (inst))
617daa0e 2105 {
1c0159e0 2106 addr -= 2;
e17a4113 2107 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2108 }
2109
c378eb4e 2110 /* Step over possible mov r14,r15. */
1c0159e0 2111 if (IS_MOV_FP_SP (inst))
617daa0e 2112 {
1c0159e0 2113 addr -= 2;
e17a4113 2114 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2115 }
2116
2117 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
c378eb4e 2118 instructions. */
1c0159e0 2119 while (addr > func_addr + 4
617daa0e 2120 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2121 {
2122 addr -= 2;
e17a4113 2123 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2124 }
2125
03131d99
CV
2126 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2127 That's allowed for the epilogue. */
2128 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2129 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2130 && addr > func_addr + 6
e17a4113
UW
2131 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2132 byte_order)))
03131d99
CV
2133 addr -= 4;
2134
1c0159e0
CV
2135 if (pc >= addr)
2136 return 1;
2137 }
2138 return 0;
2139}
c9ac0a72
AS
2140
2141
2142/* Supply register REGNUM from the buffer specified by REGS and LEN
2143 in the register set REGSET to register cache REGCACHE.
2144 REGTABLE specifies where each register can be found in REGS.
2145 If REGNUM is -1, do this for all registers in REGSET. */
2146
2147void
2148sh_corefile_supply_regset (const struct regset *regset,
2149 struct regcache *regcache,
2150 int regnum, const void *regs, size_t len)
2151{
2152 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2153 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2154 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2155 ? tdep->core_gregmap
2156 : tdep->core_fpregmap);
2157 int i;
2158
2159 for (i = 0; regmap[i].regnum != -1; i++)
2160 {
2161 if ((regnum == -1 || regnum == regmap[i].regnum)
2162 && regmap[i].offset + 4 <= len)
2163 regcache_raw_supply (regcache, regmap[i].regnum,
2164 (char *)regs + regmap[i].offset);
2165 }
2166}
2167
2168/* Collect register REGNUM in the register set REGSET from register cache
2169 REGCACHE into the buffer specified by REGS and LEN.
2170 REGTABLE specifies where each register can be found in REGS.
2171 If REGNUM is -1, do this for all registers in REGSET. */
2172
2173void
2174sh_corefile_collect_regset (const struct regset *regset,
2175 const struct regcache *regcache,
2176 int regnum, void *regs, size_t len)
2177{
2178 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2179 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2180 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2181 ? tdep->core_gregmap
2182 : tdep->core_fpregmap);
2183 int i;
2184
2185 for (i = 0; regmap[i].regnum != -1; i++)
2186 {
2187 if ((regnum == -1 || regnum == regmap[i].regnum)
2188 && regmap[i].offset + 4 <= len)
2189 regcache_raw_collect (regcache, regmap[i].regnum,
2190 (char *)regs + regmap[i].offset);
2191 }
2192}
2193
2194/* The following two regsets have the same contents, so it is tempting to
2195 unify them, but they are distiguished by their address, so don't. */
2196
3ca7dae4 2197const struct regset sh_corefile_gregset =
c9ac0a72
AS
2198{
2199 NULL,
2200 sh_corefile_supply_regset,
2201 sh_corefile_collect_regset
2202};
2203
3ca7dae4 2204static const struct regset sh_corefile_fpregset =
c9ac0a72
AS
2205{
2206 NULL,
2207 sh_corefile_supply_regset,
2208 sh_corefile_collect_regset
2209};
2210
c6d41a6f
AA
2211static void
2212sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2213 iterate_over_regset_sections_cb *cb,
2214 void *cb_data,
2215 const struct regcache *regcache)
c9ac0a72
AS
2216{
2217 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2218
c6d41a6f
AA
2219 if (tdep->core_gregmap != NULL)
2220 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
c9ac0a72 2221
c6d41a6f
AA
2222 if (tdep->core_fpregmap != NULL)
2223 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
c9ac0a72 2224}
18648a37
YQ
2225
2226/* This is the implementation of gdbarch method
2227 return_in_first_hidden_param_p. */
2228
2229static int
2230sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2231 struct type *type)
2232{
2233 return 0;
2234}
2235
ccf00f21 2236\f
cc17453a
EZ
2237
2238static struct gdbarch *
fba45db2 2239sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2240{
cc17453a 2241 struct gdbarch *gdbarch;
c9ac0a72 2242 struct gdbarch_tdep *tdep;
d658f924 2243
2d4c29c5
TS
2244 /* SH5 is handled entirely in sh64-tdep.c. */
2245 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2246 return sh64_gdbarch_init (info, arches);
55ff77ac 2247
4be87837
DJ
2248 /* If there is already a candidate, use it. */
2249 arches = gdbarch_list_lookup_by_info (arches, &info);
2250 if (arches != NULL)
2251 return arches->gdbarch;
cc17453a
EZ
2252
2253 /* None found, create a new architecture from the information
c378eb4e 2254 provided. */
41bf6aca 2255 tdep = XCNEW (struct gdbarch_tdep);
c9ac0a72 2256 gdbarch = gdbarch_alloc (&info, tdep);
cc17453a 2257
48db5a3c
CV
2258 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2259 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2260 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c
CV
2261 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2262 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2263 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2264 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2265 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2266
f2ea0907 2267 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2268 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2269 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2270 set_gdbarch_fp0_regnum (gdbarch, -1);
2271 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2272
1c0159e0 2273 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2274 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2275
eaf90c5d 2276 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
48db5a3c 2277
9dae60cc 2278 set_gdbarch_print_insn (gdbarch, print_insn_sh);
2f14585c 2279 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c 2280
c0409442 2281 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
1c0159e0 2282
48db5a3c
CV
2283 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2284 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2285
1c0159e0 2286 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
18648a37
YQ
2287 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2288 sh_return_in_first_hidden_param_p);
1c0159e0 2289
48db5a3c
CV
2290 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2291
19f59343 2292 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2293 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2294 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
94afd7a6 2295 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
1c0159e0
CV
2296 frame_base_set_default (gdbarch, &sh_frame_base);
2297
c9cf6e20 2298 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
cc17453a 2299
357d3800
AS
2300 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2301
c6d41a6f
AA
2302 set_gdbarch_iterate_over_regset_sections
2303 (gdbarch, sh_iterate_over_regset_sections);
c9ac0a72 2304
cc17453a 2305 switch (info.bfd_arch_info->mach)
8db62801 2306 {
cc17453a 2307 case bfd_mach_sh:
48db5a3c 2308 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2309 break;
1c0159e0 2310
cc17453a 2311 case bfd_mach_sh2:
48db5a3c 2312 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2313 break;
1c0159e0 2314
2d188dd3 2315 case bfd_mach_sh2e:
c378eb4e 2316 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2317 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2318 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2319
2320 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2321 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2322 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2323 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2324 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2325 break;
1c0159e0 2326
da962468
CV
2327 case bfd_mach_sh2a:
2328 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2329 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2330 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2331
2332 set_gdbarch_fp0_regnum (gdbarch, 25);
2333 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2334 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2335 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2336 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2337 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2338 break;
2339
2340 case bfd_mach_sh2a_nofpu:
2341 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2342 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2343
2344 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2345 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2346 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2347 break;
2348
cc17453a 2349 case bfd_mach_sh_dsp:
48db5a3c 2350 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2351 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2352 break;
1c0159e0 2353
cc17453a 2354 case bfd_mach_sh3:
4e6cbc38
AS
2355 case bfd_mach_sh3_nommu:
2356 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2357 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2358 break;
1c0159e0 2359
cc17453a 2360 case bfd_mach_sh3e:
4e6cbc38 2361 case bfd_mach_sh2a_or_sh3e:
c378eb4e 2362 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2363 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2364 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2365
2366 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2367 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2368 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2369 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2370 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2371 break;
1c0159e0 2372
cc17453a 2373 case bfd_mach_sh3_dsp:
48db5a3c 2374 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2375 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2376 break;
1c0159e0 2377
cc17453a 2378 case bfd_mach_sh4:
474e5826 2379 case bfd_mach_sh4a:
46e8a76b 2380 case bfd_mach_sh2a_or_sh4:
48db5a3c 2381 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2382 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2383 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2384 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2385 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2386 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2387 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2388 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2389 break;
1c0159e0 2390
474e5826
CV
2391 case bfd_mach_sh4_nofpu:
2392 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2393 case bfd_mach_sh4_nommu_nofpu:
2394 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
474e5826
CV
2395 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2396 break;
2397
2398 case bfd_mach_sh4al_dsp:
2399 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2400 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2401 break;
2402
cc17453a 2403 default:
b58cbbf2 2404 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2405 break;
8db62801 2406 }
cc17453a 2407
4be87837
DJ
2408 /* Hook in ABI-specific overrides, if they have been registered. */
2409 gdbarch_init_osabi (info, gdbarch);
d658f924 2410
94afd7a6 2411 dwarf2_append_unwinders (gdbarch);
cb2cf4ce 2412 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
94afd7a6 2413 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
1c0159e0 2414
cc17453a 2415 return gdbarch;
8db62801
EZ
2416}
2417
c055b101
CV
2418static void
2419show_sh_command (char *args, int from_tty)
2420{
2421 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2422}
2423
2424static void
2425set_sh_command (char *args, int from_tty)
2426{
2427 printf_unfiltered
2428 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2429 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2430}
2431
c378eb4e 2432extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2433
c906108c 2434void
fba45db2 2435_initialize_sh_tdep (void)
c906108c 2436{
f2ea0907 2437 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2438
c055b101
CV
2439 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2440 &setshcmdlist, "set sh ", 0, &setlist);
2441 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2442 &showshcmdlist, "show sh ", 0, &showlist);
2443
2444 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2445 &sh_active_calling_convention,
2446 _("Set calling convention used when calling target "
2447 "functions from GDB."),
2448 _("Show calling convention used when calling target "
2449 "functions from GDB."),
2450 _("gcc - Use GCC calling convention (default).\n"
2451 "renesas - Enforce Renesas calling convention."),
2452 NULL, NULL,
2453 &setshcmdlist, &showshcmdlist);
c906108c 2454}
This page took 2.175992 seconds and 4 git commands to generate.