PR cli/21688: Fix multi-line/inline command differentiation
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
61baf725 3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
1c0159e0
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
c906108c 28#include "symtab.h"
c906108c
SS
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
73c1f219 34#include "inferior.h"
b4a20239 35#include "arch-utils.h"
fb409745 36#include "floatformat.h"
4e052eda 37#include "regcache.h"
d16aafd8 38#include "doublest.h"
4be87837 39#include "osabi.h"
dda63807 40#include "reggroups.h"
c9ac0a72 41#include "regset.h"
cb2cf4ce 42#include "objfiles.h"
c906108c 43
ab3b8126 44#include "sh-tdep.h"
04dcf5fa 45#include "sh64-tdep.h"
ab3b8126 46
d658f924 47#include "elf-bfd.h"
1a8629c7
MS
48#include "solib-svr4.h"
49
55ff77ac 50/* sh flags */
283150cd 51#include "elf/sh.h"
fa8f86ff 52#include "dwarf2.h"
c378eb4e 53/* registers numbers shared with the simulator. */
1c922164 54#include "gdb/sim-sh.h"
325fac50 55#include <algorithm>
283150cd 56
c055b101
CV
57/* List of "set sh ..." and "show sh ..." commands. */
58static struct cmd_list_element *setshcmdlist = NULL;
59static struct cmd_list_element *showshcmdlist = NULL;
60
61static const char sh_cc_gcc[] = "gcc";
62static const char sh_cc_renesas[] = "renesas";
40478521 63static const char *const sh_cc_enum[] = {
c055b101
CV
64 sh_cc_gcc,
65 sh_cc_renesas,
66 NULL
67};
68
69static const char *sh_active_calling_convention = sh_cc_gcc;
70
da962468 71#define SH_NUM_REGS 67
88e04cc1 72
1c0159e0 73struct sh_frame_cache
cc17453a 74{
1c0159e0
CV
75 /* Base address. */
76 CORE_ADDR base;
77 LONGEST sp_offset;
78 CORE_ADDR pc;
79
c378eb4e 80 /* Flag showing that a frame has been created in the prologue code. */
1c0159e0
CV
81 int uses_fp;
82
83 /* Saved registers. */
84 CORE_ADDR saved_regs[SH_NUM_REGS];
85 CORE_ADDR saved_sp;
63978407 86};
c906108c 87
c055b101
CV
88static int
89sh_is_renesas_calling_convention (struct type *func_type)
90{
ca193e27
TS
91 int val = 0;
92
93 if (func_type)
94 {
95 func_type = check_typedef (func_type);
96
97 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
98 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
99
100 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
101 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
102 val = 1;
103 }
104
105 if (sh_active_calling_convention == sh_cc_renesas)
106 val = 1;
107
108 return val;
c055b101
CV
109}
110
fa88f677 111static const char *
d93859e2 112sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 113{
a121b7c1 114 static const char *register_names[] = {
617daa0e
CV
115 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
116 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
117 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
118 "", "",
119 "", "", "", "", "", "", "", "",
120 "", "", "", "", "", "", "", "",
121 "", "",
122 "", "", "", "", "", "", "", "",
123 "", "", "", "", "", "", "", "",
da962468 124 "", "", "", "", "", "", "", "",
cc17453a
EZ
125 };
126 if (reg_nr < 0)
127 return NULL;
128 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
129 return NULL;
130 return register_names[reg_nr];
131}
132
fa88f677 133static const char *
d93859e2 134sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 135{
a121b7c1 136 static const char *register_names[] = {
617daa0e
CV
137 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
138 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
139 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
140 "", "",
141 "", "", "", "", "", "", "", "",
142 "", "", "", "", "", "", "", "",
143 "ssr", "spc",
cc17453a
EZ
144 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
145 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 146 "", "", "", "", "", "", "", "",
cc17453a
EZ
147 };
148 if (reg_nr < 0)
149 return NULL;
150 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
151 return NULL;
152 return register_names[reg_nr];
153}
154
fa88f677 155static const char *
d93859e2 156sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 157{
a121b7c1 158 static const char *register_names[] = {
617daa0e
CV
159 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
160 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
161 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 162 "fpul", "fpscr",
617daa0e
CV
163 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
164 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
165 "ssr", "spc",
cc17453a
EZ
166 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
167 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 168 "", "", "", "", "", "", "", "",
cc17453a
EZ
169 };
170 if (reg_nr < 0)
171 return NULL;
172 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
173 return NULL;
174 return register_names[reg_nr];
175}
176
2d188dd3 177static const char *
d93859e2 178sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
2d188dd3 179{
a121b7c1 180 static const char *register_names[] = {
617daa0e
CV
181 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
182 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
183 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 184 "fpul", "fpscr",
617daa0e
CV
185 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
186 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
187 "", "",
2d188dd3
NC
188 "", "", "", "", "", "", "", "",
189 "", "", "", "", "", "", "", "",
da962468
CV
190 "", "", "", "", "", "", "", "",
191 };
192 if (reg_nr < 0)
193 return NULL;
194 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
195 return NULL;
196 return register_names[reg_nr];
197}
198
199static const char *
d93859e2 200sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468 201{
a121b7c1 202 static const char *register_names[] = {
da962468
CV
203 /* general registers 0-15 */
204 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
205 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
206 /* 16 - 22 */
207 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
208 /* 23, 24 */
209 "fpul", "fpscr",
210 /* floating point registers 25 - 40 */
211 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
212 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
213 /* 41, 42 */
214 "", "",
215 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 216 the bank register (63). */
da962468
CV
217 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
218 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
219 "machb", "ivnb", "prb", "gbrb", "maclb",
220 /* 63: register bank number, not a real register but used to
221 communicate the register bank currently get/set. This register
222 is hidden to the user, who manipulates it using the pseudo
223 register called "bank" (67). See below. */
224 "",
225 /* 64 - 66 */
226 "ibcr", "ibnr", "tbr",
227 /* 67: register bank number, the user visible pseudo register. */
228 "bank",
229 /* double precision (pseudo) 68 - 75 */
230 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
231 };
232 if (reg_nr < 0)
233 return NULL;
234 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
235 return NULL;
236 return register_names[reg_nr];
237}
238
239static const char *
d93859e2 240sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468 241{
a121b7c1 242 static const char *register_names[] = {
da962468
CV
243 /* general registers 0-15 */
244 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
245 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
246 /* 16 - 22 */
247 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
248 /* 23, 24 */
249 "", "",
250 /* floating point registers 25 - 40 */
251 "", "", "", "", "", "", "", "",
252 "", "", "", "", "", "", "", "",
253 /* 41, 42 */
254 "", "",
255 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 256 the bank register (63). */
da962468
CV
257 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
258 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
259 "machb", "ivnb", "prb", "gbrb", "maclb",
260 /* 63: register bank number, not a real register but used to
261 communicate the register bank currently get/set. This register
262 is hidden to the user, who manipulates it using the pseudo
263 register called "bank" (67). See below. */
264 "",
265 /* 64 - 66 */
266 "ibcr", "ibnr", "tbr",
267 /* 67: register bank number, the user visible pseudo register. */
268 "bank",
269 /* double precision (pseudo) 68 - 75 */
270 "", "", "", "", "", "", "", "",
2d188dd3
NC
271 };
272 if (reg_nr < 0)
273 return NULL;
274 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
275 return NULL;
276 return register_names[reg_nr];
277}
278
fa88f677 279static const char *
d93859e2 280sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 281{
a121b7c1 282 static const char *register_names[] = {
617daa0e
CV
283 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
284 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
285 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
286 "", "dsr",
287 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
288 "y0", "y1", "", "", "", "", "", "mod",
289 "", "",
290 "rs", "re", "", "", "", "", "", "",
291 "", "", "", "", "", "", "", "",
da962468 292 "", "", "", "", "", "", "", "",
cc17453a
EZ
293 };
294 if (reg_nr < 0)
295 return NULL;
296 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
297 return NULL;
298 return register_names[reg_nr];
299}
300
fa88f677 301static const char *
d93859e2 302sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 303{
a121b7c1 304 static const char *register_names[] = {
617daa0e
CV
305 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
306 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
307 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
308 "", "dsr",
309 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
310 "y0", "y1", "", "", "", "", "", "mod",
311 "ssr", "spc",
312 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
313 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
314 "", "", "", "", "", "", "", "",
da962468 315 "", "", "", "", "", "", "", "",
cc17453a
EZ
316 };
317 if (reg_nr < 0)
318 return NULL;
319 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
320 return NULL;
321 return register_names[reg_nr];
322}
323
fa88f677 324static const char *
d93859e2 325sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
53116e27 326{
a121b7c1 327 static const char *register_names[] = {
a38d2a54 328 /* general registers 0-15 */
617daa0e
CV
329 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
330 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 331 /* 16 - 22 */
617daa0e 332 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 333 /* 23, 24 */
53116e27 334 "fpul", "fpscr",
a38d2a54 335 /* floating point registers 25 - 40 */
617daa0e
CV
336 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
337 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 338 /* 41, 42 */
617daa0e 339 "ssr", "spc",
a38d2a54 340 /* bank 0 43 - 50 */
53116e27 341 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 342 /* bank 1 51 - 58 */
53116e27 343 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 344 /* 59 - 66 */
da962468 345 "", "", "", "", "", "", "", "",
c378eb4e 346 /* pseudo bank register. */
da962468 347 "",
a6521d9a 348 /* double precision (pseudo) 68 - 75 */
617daa0e 349 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a6521d9a 350 /* vectors (pseudo) 76 - 79 */
617daa0e 351 "fv0", "fv4", "fv8", "fv12",
a6521d9a
TS
352 /* FIXME: missing XF */
353 /* FIXME: missing XD */
53116e27
EZ
354 };
355 if (reg_nr < 0)
356 return NULL;
357 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
358 return NULL;
359 return register_names[reg_nr];
360}
361
474e5826 362static const char *
d93859e2 363sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826 364{
a121b7c1 365 static const char *register_names[] = {
474e5826
CV
366 /* general registers 0-15 */
367 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
368 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
369 /* 16 - 22 */
370 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
371 /* 23, 24 */
372 "", "",
373 /* floating point registers 25 - 40 -- not for nofpu target */
374 "", "", "", "", "", "", "", "",
375 "", "", "", "", "", "", "", "",
376 /* 41, 42 */
377 "ssr", "spc",
378 /* bank 0 43 - 50 */
379 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
380 /* bank 1 51 - 58 */
381 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 382 /* 59 - 66 */
da962468 383 "", "", "", "", "", "", "", "",
c378eb4e 384 /* pseudo bank register. */
da962468 385 "",
a6521d9a 386 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
474e5826 387 "", "", "", "", "", "", "", "",
a6521d9a 388 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
474e5826
CV
389 "", "", "", "",
390 };
391 if (reg_nr < 0)
392 return NULL;
393 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
394 return NULL;
395 return register_names[reg_nr];
396}
397
398static const char *
d93859e2 399sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826 400{
a121b7c1 401 static const char *register_names[] = {
474e5826
CV
402 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
403 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
404 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
405 "", "dsr",
406 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
407 "y0", "y1", "", "", "", "", "", "mod",
408 "ssr", "spc",
409 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
410 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
411 "", "", "", "", "", "", "", "",
da962468 412 "", "", "", "", "", "", "", "",
474e5826
CV
413 };
414 if (reg_nr < 0)
415 return NULL;
416 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
417 return NULL;
418 return register_names[reg_nr];
419}
420
cd6c3b4f
YQ
421/* Implement the breakpoint_kind_from_pc gdbarch method. */
422
d19280ad
YQ
423static int
424sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
cc17453a 425{
d19280ad
YQ
426 return 2;
427}
428
cd6c3b4f
YQ
429/* Implement the sw_breakpoint_from_kind gdbarch method. */
430
d19280ad
YQ
431static const gdb_byte *
432sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
433{
434 *size = kind;
617daa0e 435
bac718a6
UW
436 /* For remote stub targets, trapa #20 is used. */
437 if (strcmp (target_shortname, "remote") == 0)
438 {
439 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
440 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
441
67d57894 442 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 443 return big_remote_breakpoint;
bac718a6 444 else
d19280ad 445 return little_remote_breakpoint;
bac718a6 446 }
d19280ad
YQ
447 else
448 {
449 /* 0xc3c3 is trapa #c3, and it works in big and little endian
450 modes. */
451 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
bac718a6 452
d19280ad
YQ
453 return breakpoint;
454 }
cc17453a 455}
c906108c
SS
456
457/* Prologue looks like
1c0159e0
CV
458 mov.l r14,@-r15
459 sts.l pr,@-r15
460 mov.l <regs>,@-r15
461 sub <room_for_loca_vars>,r15
462 mov r15,r14
8db62801 463
c378eb4e 464 Actually it can be more complicated than this but that's it, basically. */
c906108c 465
1c0159e0
CV
466#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
467#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
468
5f883edd
FF
469/* JSR @Rm 0100mmmm00001011 */
470#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
471
8db62801
EZ
472/* STS.L PR,@-r15 0100111100100010
473 r15-4-->r15, PR-->(r15) */
c906108c 474#define IS_STS(x) ((x) == 0x4f22)
8db62801 475
03131d99
CV
476/* STS.L MACL,@-r15 0100111100010010
477 r15-4-->r15, MACL-->(r15) */
478#define IS_MACL_STS(x) ((x) == 0x4f12)
479
8db62801
EZ
480/* MOV.L Rm,@-r15 00101111mmmm0110
481 r15-4-->r15, Rm-->(R15) */
c906108c 482#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 483
8db62801
EZ
484/* MOV r15,r14 0110111011110011
485 r15-->r14 */
c906108c 486#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
487
488/* ADD #imm,r15 01111111iiiiiiii
489 r15+imm-->r15 */
1c0159e0 490#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 491
c906108c
SS
492#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
493#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
494
495/* ADD r3,r15 0011111100111100
496 r15+r3-->r15 */
c906108c 497#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
498
499/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 500 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 501 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907 502/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
c378eb4e 503 make this entirely clear. */
1c0159e0
CV
504/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
505#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
506
507/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
508#define IS_MOV_ARG_TO_REG(x) \
509 (((x) & 0xf00f) == 0x6003 && \
510 ((x) & 0x00f0) >= 0x0040 && \
511 ((x) & 0x00f0) <= 0x0070)
512/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
513#define IS_MOV_ARG_TO_IND_R14(x) \
514 (((x) & 0xff0f) == 0x2e02 && \
515 ((x) & 0x00f0) >= 0x0040 && \
516 ((x) & 0x00f0) <= 0x0070)
517/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
518#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
519 (((x) & 0xff00) == 0x1e00 && \
520 ((x) & 0x00f0) >= 0x0040 && \
521 ((x) & 0x00f0) <= 0x0070)
522
523/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
524#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
525/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
526#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
527/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
528#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
529/* SUB Rn,R15 00111111nnnn1000 */
530#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 531
1c0159e0 532#define FPSCR_SZ (1 << 20)
cc17453a 533
c378eb4e 534/* The following instructions are used for epilogue testing. */
1c0159e0
CV
535#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
536#define IS_RTS(x) ((x) == 0x000b)
537#define IS_LDS(x) ((x) == 0x4f26)
03131d99 538#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
539#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
540#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
541#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 542
cc17453a 543static CORE_ADDR
e17a4113 544sh_analyze_prologue (struct gdbarch *gdbarch,
5cbb9812 545 CORE_ADDR pc, CORE_ADDR limit_pc,
d2ca4222 546 struct sh_frame_cache *cache, ULONGEST fpscr)
617daa0e 547{
e17a4113 548 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0 549 ULONGEST inst;
1c0159e0
CV
550 int offset;
551 int sav_offset = 0;
c906108c 552 int r3_val = 0;
1c0159e0 553 int reg, sav_reg = -1;
cc17453a 554
1c0159e0 555 cache->uses_fp = 0;
5cbb9812 556 for (; pc < limit_pc; pc += 2)
cc17453a 557 {
e17a4113 558 inst = read_memory_unsigned_integer (pc, 2, byte_order);
c378eb4e 559 /* See where the registers will be saved to. */
f2ea0907 560 if (IS_PUSH (inst))
cc17453a 561 {
1c0159e0
CV
562 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
563 cache->sp_offset += 4;
cc17453a 564 }
f2ea0907 565 else if (IS_STS (inst))
cc17453a 566 {
1c0159e0
CV
567 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
568 cache->sp_offset += 4;
cc17453a 569 }
03131d99
CV
570 else if (IS_MACL_STS (inst))
571 {
572 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
573 cache->sp_offset += 4;
574 }
f2ea0907 575 else if (IS_MOV_R3 (inst))
cc17453a 576 {
f2ea0907 577 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 578 }
f2ea0907 579 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
580 {
581 r3_val <<= 1;
582 }
f2ea0907 583 else if (IS_ADD_R3SP (inst))
cc17453a 584 {
1c0159e0 585 cache->sp_offset += -r3_val;
cc17453a 586 }
f2ea0907 587 else if (IS_ADD_IMM_SP (inst))
cc17453a 588 {
1c0159e0
CV
589 offset = ((inst & 0xff) ^ 0x80) - 0x80;
590 cache->sp_offset -= offset;
c906108c 591 }
1c0159e0 592 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 593 {
1c0159e0
CV
594 if (sav_reg < 0)
595 {
596 reg = GET_TARGET_REG (inst);
597 if (reg < 14)
598 {
599 sav_reg = reg;
a2b4a96c 600 offset = (inst & 0xff) << 1;
1c0159e0 601 sav_offset =
e17a4113 602 read_memory_integer ((pc + 4) + offset, 2, byte_order);
1c0159e0
CV
603 }
604 }
c906108c 605 }
1c0159e0 606 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 607 {
1c0159e0
CV
608 if (sav_reg < 0)
609 {
a2b4a96c 610 reg = GET_TARGET_REG (inst);
1c0159e0
CV
611 if (reg < 14)
612 {
613 sav_reg = reg;
a2b4a96c 614 offset = (inst & 0xff) << 2;
1c0159e0 615 sav_offset =
e17a4113
UW
616 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
617 4, byte_order);
1c0159e0
CV
618 }
619 }
c906108c 620 }
5cbb9812
TS
621 else if (IS_MOVI20 (inst)
622 && (pc + 2 < limit_pc))
03131d99
CV
623 {
624 if (sav_reg < 0)
625 {
626 reg = GET_TARGET_REG (inst);
627 if (reg < 14)
628 {
629 sav_reg = reg;
630 sav_offset = GET_SOURCE_REG (inst) << 16;
c378eb4e 631 /* MOVI20 is a 32 bit instruction! */
03131d99 632 pc += 2;
e17a4113
UW
633 sav_offset
634 |= read_memory_unsigned_integer (pc, 2, byte_order);
03131d99
CV
635 /* Now sav_offset contains an unsigned 20 bit value.
636 It must still get sign extended. */
637 if (sav_offset & 0x00080000)
638 sav_offset |= 0xfff00000;
639 }
640 }
641 }
1c0159e0 642 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 643 {
1c0159e0
CV
644 reg = GET_SOURCE_REG (inst);
645 if (sav_reg > 0 && reg == sav_reg)
646 {
647 sav_reg = -1;
648 }
649 cache->sp_offset += sav_offset;
c906108c 650 }
f2ea0907 651 else if (IS_FPUSH (inst))
c906108c 652 {
d2ca4222 653 if (fpscr & FPSCR_SZ)
c906108c 654 {
1c0159e0 655 cache->sp_offset += 8;
c906108c
SS
656 }
657 else
658 {
1c0159e0 659 cache->sp_offset += 4;
c906108c
SS
660 }
661 }
f2ea0907 662 else if (IS_MOV_SP_FP (inst))
617daa0e 663 {
5cbb9812
TS
664 pc += 2;
665 /* Don't go any further than six more instructions. */
325fac50 666 limit_pc = std::min (limit_pc, pc + (2 * 6));
5cbb9812 667
960ccd7d 668 cache->uses_fp = 1;
1c0159e0
CV
669 /* At this point, only allow argument register moves to other
670 registers or argument register moves to @(X,fp) which are
671 moving the register arguments onto the stack area allocated
672 by a former add somenumber to SP call. Don't allow moving
c378eb4e 673 to an fp indirect address above fp + cache->sp_offset. */
5cbb9812 674 for (; pc < limit_pc; pc += 2)
1c0159e0 675 {
e17a4113 676 inst = read_memory_integer (pc, 2, byte_order);
1c0159e0 677 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 678 {
1c0159e0
CV
679 reg = GET_SOURCE_REG (inst);
680 if (cache->sp_offset > 0)
617daa0e 681 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
682 }
683 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 684 {
1c0159e0
CV
685 reg = GET_SOURCE_REG (inst);
686 offset = (inst & 0xf) * 4;
687 if (cache->sp_offset > offset)
688 cache->saved_regs[reg] = cache->sp_offset - offset;
689 }
690 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 691 continue;
1c0159e0
CV
692 else
693 break;
694 }
695 break;
696 }
5f883edd
FF
697 else if (IS_JSR (inst))
698 {
699 /* We have found a jsr that has been scheduled into the prologue.
700 If we continue the scan and return a pc someplace after this,
701 then setting a breakpoint on this function will cause it to
702 appear to be called after the function it is calling via the
703 jsr, which will be very confusing. Most likely the next
704 instruction is going to be IS_MOV_SP_FP in the delay slot. If
c378eb4e 705 so, note that before returning the current pc. */
5cbb9812
TS
706 if (pc + 2 < limit_pc)
707 {
708 inst = read_memory_integer (pc + 2, 2, byte_order);
709 if (IS_MOV_SP_FP (inst))
710 cache->uses_fp = 1;
711 }
5f883edd
FF
712 break;
713 }
c378eb4e
MS
714#if 0 /* This used to just stop when it found an instruction
715 that was not considered part of the prologue. Now,
716 we just keep going looking for likely
717 instructions. */
c906108c
SS
718 else
719 break;
2bfa91ee 720#endif
c906108c
SS
721 }
722
1c0159e0
CV
723 return pc;
724}
c906108c 725
c378eb4e 726/* Skip any prologue before the guts of a function. */
1c0159e0 727static CORE_ADDR
8a8bc27f 728sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 729{
5cbb9812 730 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
1c0159e0
CV
731 struct sh_frame_cache cache;
732
733 /* See if we can determine the end of the prologue via the symbol table.
734 If so, then return either PC, or the PC after the prologue, whichever
735 is greater. */
5cbb9812 736 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
8a8bc27f
TS
737 {
738 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
739 if (post_prologue_pc != 0)
325fac50 740 return std::max (pc, post_prologue_pc);
8a8bc27f 741 }
cc17453a 742
8a8bc27f
TS
743 /* Can't determine prologue from the symbol table, need to examine
744 instructions. */
c906108c 745
5cbb9812
TS
746 /* Find an upper limit on the function prologue using the debug
747 information. If the debug information could not be used to provide
748 that bound, then use an arbitrary large number as the upper bound. */
749 limit_pc = skip_prologue_using_sal (gdbarch, pc);
750 if (limit_pc == 0)
751 /* Don't go any further than 28 instructions. */
752 limit_pc = pc + (2 * 28);
753
754 /* Do not allow limit_pc to be past the function end, if we know
755 where that end is... */
756 if (func_end_addr != 0)
325fac50 757 limit_pc = std::min (limit_pc, func_end_addr);
5cbb9812 758
1c0159e0 759 cache.sp_offset = -4;
5cbb9812 760 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
8a8bc27f
TS
761 if (cache.uses_fp)
762 pc = post_prologue_pc;
c906108c 763
1c0159e0
CV
764 return pc;
765}
766
2e952408 767/* The ABI says:
9a5cef92
EZ
768
769 Aggregate types not bigger than 8 bytes that have the same size and
770 alignment as one of the integer scalar types are returned in the
771 same registers as the integer type they match.
772
773 For example, a 2-byte aligned structure with size 2 bytes has the
774 same size and alignment as a short int, and will be returned in R0.
775 A 4-byte aligned structure with size 8 bytes has the same size and
776 alignment as a long long int, and will be returned in R0 and R1.
777
778 When an aggregate type is returned in R0 and R1, R0 contains the
779 first four bytes of the aggregate, and R1 contains the
c378eb4e 780 remainder. If the size of the aggregate type is not a multiple of 4
9a5cef92 781 bytes, the aggregate is tail-padded up to a multiple of 4
c378eb4e 782 bytes. The value of the padding is undefined. For little-endian
9a5cef92
EZ
783 targets the padding will appear at the most significant end of the
784 last element, for big-endian targets the padding appears at the
785 least significant end of the last element.
786
c378eb4e 787 All other aggregate types are returned by address. The caller
9a5cef92 788 function passes the address of an area large enough to hold the
c378eb4e 789 aggregate value in R2. The called function stores the result in
7fe958be 790 this location.
9a5cef92
EZ
791
792 To reiterate, structs smaller than 8 bytes could also be returned
793 in memory, if they don't pass the "same size and alignment as an
794 integer type" rule.
795
796 For example, in
797
798 struct s { char c[3]; } wibble;
799 struct s foo(void) { return wibble; }
800
801 the return value from foo() will be in memory, not
802 in R0, because there is no 3-byte integer type.
803
7fe958be
EZ
804 Similarly, in
805
806 struct s { char c[2]; } wibble;
807 struct s foo(void) { return wibble; }
808
809 because a struct containing two chars has alignment 1, that matches
810 type char, but size 2, that matches type short. There's no integer
811 type that has alignment 1 and size 2, so the struct is returned in
c378eb4e 812 memory. */
9a5cef92 813
1c0159e0 814static int
c055b101 815sh_use_struct_convention (int renesas_abi, struct type *type)
1c0159e0
CV
816{
817 int len = TYPE_LENGTH (type);
818 int nelem = TYPE_NFIELDS (type);
3f997a97 819
c055b101
CV
820 /* The Renesas ABI returns aggregate types always on stack. */
821 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
822 || TYPE_CODE (type) == TYPE_CODE_UNION))
823 return 1;
824
3f997a97
CV
825 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
826 fit in two registers anyway) use struct convention. */
827 if (len != 1 && len != 2 && len != 4 && len != 8)
828 return 1;
829
830 /* Scalar types and aggregate types with exactly one field are aligned
831 by definition. They are returned in registers. */
832 if (nelem <= 1)
833 return 0;
834
835 /* If the first field in the aggregate has the same length as the entire
836 aggregate type, the type is returned in registers. */
837 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
838 return 0;
839
840 /* If the size of the aggregate is 8 bytes and the first field is
841 of size 4 bytes its alignment is equal to long long's alignment,
842 so it's returned in registers. */
843 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
844 return 0;
845
846 /* Otherwise use struct convention. */
847 return 1;
283150cd
EZ
848}
849
c055b101
CV
850static int
851sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
852{
853 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
854 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
855 return 1;
856 return sh_use_struct_convention (renesas_abi, type);
857}
858
19f59343
MS
859static CORE_ADDR
860sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
861{
862 return sp & ~3;
863}
864
55ff77ac 865/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
866 Setup the function arguments for calling a function in the inferior.
867
85a453d5 868 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
869 which are dedicated for passing function arguments. Up to the first
870 four arguments (depending on size) may go into these registers.
871 The rest go on the stack.
872
6df2bf50
MS
873 MVS: Except on SH variants that have floating point registers.
874 In that case, float and double arguments are passed in the same
875 manner, but using FP registers instead of GP registers.
876
c906108c
SS
877 Arguments that are smaller than 4 bytes will still take up a whole
878 register or a whole 32-bit word on the stack, and will be
879 right-justified in the register or the stack word. This includes
880 chars, shorts, and small aggregate types.
881
882 Arguments that are larger than 4 bytes may be split between two or
883 more registers. If there are not enough registers free, an argument
884 may be passed partly in a register (or registers), and partly on the
c378eb4e 885 stack. This includes doubles, long longs, and larger aggregates.
c906108c
SS
886 As far as I know, there is no upper limit to the size of aggregates
887 that will be passed in this way; in other words, the convention of
888 passing a pointer to a large aggregate instead of a copy is not used.
889
6df2bf50 890 MVS: The above appears to be true for the SH variants that do not
55ff77ac 891 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
892 aggregate argument onto the stack (and not place it in registers)
893 if it is larger than 16 bytes (four GP registers).
894
c906108c
SS
895 An exceptional case exists for struct arguments (and possibly other
896 aggregates such as arrays) if the size is larger than 4 bytes but
897 not a multiple of 4 bytes. In this case the argument is never split
898 between the registers and the stack, but instead is copied in its
899 entirety onto the stack, AND also copied into as many registers as
900 there is room for. In other words, space in registers permitting,
901 two copies of the same argument are passed in. As far as I can tell,
902 only the one on the stack is used, although that may be a function
903 of the level of compiler optimization. I suspect this is a compiler
904 bug. Arguments of these odd sizes are left-justified within the
905 word (as opposed to arguments smaller than 4 bytes, which are
906 right-justified).
c5aa993b 907
c906108c
SS
908 If the function is to return an aggregate type such as a struct, it
909 is either returned in the normal return value register R0 (if its
910 size is no greater than one byte), or else the caller must allocate
911 space into which the callee will copy the return value (if the size
912 is greater than one byte). In this case, a pointer to the return
913 value location is passed into the callee in register R2, which does
914 not displace any of the other arguments passed in via registers R4
c378eb4e 915 to R7. */
c906108c 916
c378eb4e 917/* Helper function to justify value in register according to endianess. */
948f8e3d 918static const gdb_byte *
d93859e2 919sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
e5e33cd9 920{
948f8e3d 921 static gdb_byte valbuf[4];
e5e33cd9 922
617daa0e 923 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
924 if (len < 4)
925 {
c378eb4e 926 /* value gets right-justified in the register or stack word. */
d93859e2 927 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
948f8e3d 928 memcpy (valbuf + (4 - len), value_contents (val), len);
e5e33cd9 929 else
948f8e3d 930 memcpy (valbuf, value_contents (val), len);
e5e33cd9
CV
931 return valbuf;
932 }
948f8e3d 933 return value_contents (val);
617daa0e 934}
e5e33cd9 935
c378eb4e 936/* Helper function to eval number of bytes to allocate on stack. */
e5e33cd9
CV
937static CORE_ADDR
938sh_stack_allocsize (int nargs, struct value **args)
939{
940 int stack_alloc = 0;
941 while (nargs-- > 0)
4991999e 942 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
943 return stack_alloc;
944}
945
946/* Helper functions for getting the float arguments right. Registers usage
947 depends on the ABI and the endianess. The comments should enlighten how
c378eb4e 948 it's intended to work. */
e5e33cd9 949
c378eb4e 950/* This array stores which of the float arg registers are already in use. */
e5e33cd9
CV
951static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
952
c378eb4e 953/* This function just resets the above array to "no reg used so far". */
e5e33cd9
CV
954static void
955sh_init_flt_argreg (void)
956{
957 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
958}
959
960/* This function returns the next register to use for float arg passing.
961 It returns either a valid value between FLOAT_ARG0_REGNUM and
962 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
963 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
964
965 Note that register number 0 in flt_argreg_array corresponds with the
966 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
967 29) the parity of the register number is preserved, which is important
c378eb4e 968 for the double register passing test (see the "argreg & 1" test below). */
e5e33cd9 969static int
c055b101 970sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
e5e33cd9
CV
971{
972 int argreg;
973
c378eb4e 974 /* First search for the next free register. */
617daa0e
CV
975 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
976 ++argreg)
e5e33cd9
CV
977 if (!flt_argreg_array[argreg])
978 break;
979
c378eb4e 980 /* No register left? */
e5e33cd9
CV
981 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
982 return FLOAT_ARGLAST_REGNUM + 1;
983
984 if (len == 8)
985 {
c378eb4e 986 /* Doubles are always starting in a even register number. */
e5e33cd9 987 if (argreg & 1)
617daa0e 988 {
c055b101
CV
989 /* In gcc ABI, the skipped register is lost for further argument
990 passing now. Not so in Renesas ABI. */
991 if (!sh_is_renesas_calling_convention (func_type))
992 flt_argreg_array[argreg] = 1;
e5e33cd9
CV
993
994 ++argreg;
995
c378eb4e 996 /* No register left? */
e5e33cd9
CV
997 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
998 return FLOAT_ARGLAST_REGNUM + 1;
999 }
c378eb4e 1000 /* Also mark the next register as used. */
e5e33cd9
CV
1001 flt_argreg_array[argreg + 1] = 1;
1002 }
c055b101
CV
1003 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1004 && !sh_is_renesas_calling_convention (func_type))
e5e33cd9 1005 {
c378eb4e 1006 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
e5e33cd9
CV
1007 if (!flt_argreg_array[argreg + 1])
1008 ++argreg;
1009 }
1010 flt_argreg_array[argreg] = 1;
1011 return FLOAT_ARG0_REGNUM + argreg;
1012}
1013
afce3d2a
CV
1014/* Helper function which figures out, if a type is treated like a float type.
1015
2e952408 1016 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
1017 Structures with exactly one member, which is of type float or double, are
1018 treated exactly as the base types float or double:
1019
1020 struct sf {
1021 float f;
1022 };
1023
1024 struct sd {
1025 double d;
1026 };
1027
1028 are handled the same way as just
1029
1030 float f;
1031
1032 double d;
1033
1034 As a result, arguments of these struct types are pushed into floating point
1035 registers exactly as floats or doubles, using the same decision algorithm.
1036
1037 The same is valid if these types are used as function return types. The
1038 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1039 or even using struct convention as it is for other structs. */
1040
1041static int
1042sh_treat_as_flt_p (struct type *type)
1043{
afce3d2a
CV
1044 /* Ordinary float types are obviously treated as float. */
1045 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1046 return 1;
1047 /* Otherwise non-struct types are not treated as float. */
1048 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1049 return 0;
1050 /* Otherwise structs with more than one memeber are not treated as float. */
1051 if (TYPE_NFIELDS (type) != 1)
1052 return 0;
1053 /* Otherwise if the type of that member is float, the whole type is
1054 treated as float. */
1055 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1056 return 1;
1057 /* Otherwise it's not treated as float. */
1058 return 0;
1059}
1060
cc17453a 1061static CORE_ADDR
617daa0e 1062sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1063 struct value *function,
617daa0e 1064 struct regcache *regcache,
6df2bf50 1065 CORE_ADDR bp_addr, int nargs,
617daa0e 1066 struct value **args,
6df2bf50
MS
1067 CORE_ADDR sp, int struct_return,
1068 CORE_ADDR struct_addr)
1069{
e17a4113 1070 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1071 int stack_offset = 0;
1072 int argreg = ARG0_REGNUM;
8748518b 1073 int flt_argreg = 0;
6df2bf50 1074 int argnum;
c055b101 1075 struct type *func_type = value_type (function);
6df2bf50
MS
1076 struct type *type;
1077 CORE_ADDR regval;
948f8e3d 1078 const gdb_byte *val;
8748518b 1079 int len, reg_size = 0;
afce3d2a
CV
1080 int pass_on_stack = 0;
1081 int treat_as_flt;
c055b101
CV
1082 int last_reg_arg = INT_MAX;
1083
1084 /* The Renesas ABI expects all varargs arguments, plus the last
1085 non-vararg argument to be on the stack, no matter how many
1086 registers have been used so far. */
1087 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1088 && TYPE_VARARGS (func_type))
c055b101 1089 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
6df2bf50 1090
c378eb4e 1091 /* First force sp to a 4-byte alignment. */
6df2bf50
MS
1092 sp = sh_frame_align (gdbarch, sp);
1093
c378eb4e 1094 /* Make room on stack for args. */
e5e33cd9
CV
1095 sp -= sh_stack_allocsize (nargs, args);
1096
c378eb4e 1097 /* Initialize float argument mechanism. */
e5e33cd9 1098 sh_init_flt_argreg ();
6df2bf50
MS
1099
1100 /* Now load as many as possible of the first arguments into
1101 registers, and push the rest onto the stack. There are 16 bytes
1102 in four registers available. Loop thru args from first to last. */
e5e33cd9 1103 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1104 {
4991999e 1105 type = value_type (args[argnum]);
6df2bf50 1106 len = TYPE_LENGTH (type);
d93859e2 1107 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
e5e33cd9
CV
1108
1109 /* Some decisions have to be made how various types are handled.
c378eb4e 1110 This also differs in different ABIs. */
e5e33cd9 1111 pass_on_stack = 0;
e5e33cd9 1112
c378eb4e 1113 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1114 treat_as_flt = sh_treat_as_flt_p (type);
1115 if (treat_as_flt)
c055b101
CV
1116 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1117 /* In Renesas ABI, long longs and aggregate types are always passed
1118 on stack. */
1119 else if (sh_is_renesas_calling_convention (func_type)
1120 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1121 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1122 || TYPE_CODE (type) == TYPE_CODE_UNION))
1123 pass_on_stack = 1;
afce3d2a
CV
1124 /* In contrast to non-FPU CPUs, arguments are never split between
1125 registers and stack. If an argument doesn't fit in the remaining
1126 registers it's always pushed entirely on the stack. */
1127 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1128 pass_on_stack = 1;
48db5a3c 1129
6df2bf50
MS
1130 while (len > 0)
1131 {
afce3d2a
CV
1132 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1133 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
c055b101
CV
1134 || pass_on_stack))
1135 || argnum > last_reg_arg)
617daa0e 1136 {
c378eb4e 1137 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1138 reg_size = (len + 3) & ~3;
1139 write_memory (sp + stack_offset, val, reg_size);
1140 stack_offset += reg_size;
6df2bf50 1141 }
afce3d2a 1142 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1143 {
e5e33cd9
CV
1144 /* Argument goes in a float argument register. */
1145 reg_size = register_size (gdbarch, flt_argreg);
e17a4113 1146 regval = extract_unsigned_integer (val, reg_size, byte_order);
2e952408
CV
1147 /* In little endian mode, float types taking two registers
1148 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1149 be stored swapped in the argument registers. The below
1150 code first writes the first 32 bits in the next but one
1151 register, increments the val and len values accordingly
1152 and then proceeds as normal by writing the second 32 bits
c378eb4e 1153 into the next register. */
b47193f7 1154 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2e952408
CV
1155 && TYPE_LENGTH (type) == 2 * reg_size)
1156 {
1157 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1158 regval);
1159 val += reg_size;
1160 len -= reg_size;
c378eb4e
MS
1161 regval = extract_unsigned_integer (val, reg_size,
1162 byte_order);
2e952408 1163 }
6df2bf50
MS
1164 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1165 }
afce3d2a 1166 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1167 {
6df2bf50 1168 /* there's room in a register */
e5e33cd9 1169 reg_size = register_size (gdbarch, argreg);
e17a4113 1170 regval = extract_unsigned_integer (val, reg_size, byte_order);
6df2bf50
MS
1171 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1172 }
c378eb4e
MS
1173 /* Store the value one register at a time or in one step on
1174 stack. */
e5e33cd9
CV
1175 len -= reg_size;
1176 val += reg_size;
6df2bf50
MS
1177 }
1178 }
1179
c055b101
CV
1180 if (struct_return)
1181 {
1182 if (sh_is_renesas_calling_convention (func_type))
1183 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1184 the stack and store the struct return address there. */
e17a4113 1185 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1186 else
1187 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1188 its own dedicated register. */
1189 regcache_cooked_write_unsigned (regcache,
1190 STRUCT_RETURN_REGNUM, struct_addr);
1191 }
1192
c378eb4e 1193 /* Store return address. */
55ff77ac 1194 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1195
1196 /* Update stack pointer. */
3e8c568d 1197 regcache_cooked_write_unsigned (regcache,
b47193f7 1198 gdbarch_sp_regnum (gdbarch), sp);
6df2bf50
MS
1199
1200 return sp;
1201}
1202
1203static CORE_ADDR
617daa0e 1204sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1205 struct value *function,
617daa0e
CV
1206 struct regcache *regcache,
1207 CORE_ADDR bp_addr,
1208 int nargs, struct value **args,
1209 CORE_ADDR sp, int struct_return,
6df2bf50 1210 CORE_ADDR struct_addr)
c906108c 1211{
e17a4113 1212 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1213 int stack_offset = 0;
1214 int argreg = ARG0_REGNUM;
c906108c 1215 int argnum;
c055b101 1216 struct type *func_type = value_type (function);
c906108c
SS
1217 struct type *type;
1218 CORE_ADDR regval;
948f8e3d 1219 const gdb_byte *val;
c055b101
CV
1220 int len, reg_size = 0;
1221 int pass_on_stack = 0;
1222 int last_reg_arg = INT_MAX;
1223
1224 /* The Renesas ABI expects all varargs arguments, plus the last
1225 non-vararg argument to be on the stack, no matter how many
1226 registers have been used so far. */
1227 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1228 && TYPE_VARARGS (func_type))
c055b101 1229 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
c906108c 1230
c378eb4e 1231 /* First force sp to a 4-byte alignment. */
19f59343 1232 sp = sh_frame_align (gdbarch, sp);
c906108c 1233
c378eb4e 1234 /* Make room on stack for args. */
e5e33cd9 1235 sp -= sh_stack_allocsize (nargs, args);
c906108c 1236
c906108c
SS
1237 /* Now load as many as possible of the first arguments into
1238 registers, and push the rest onto the stack. There are 16 bytes
1239 in four registers available. Loop thru args from first to last. */
e5e33cd9 1240 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1241 {
4991999e 1242 type = value_type (args[argnum]);
c5aa993b 1243 len = TYPE_LENGTH (type);
d93859e2 1244 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
c906108c 1245
c055b101 1246 /* Some decisions have to be made how various types are handled.
c378eb4e 1247 This also differs in different ABIs. */
c055b101
CV
1248 pass_on_stack = 0;
1249 /* Renesas ABI pushes doubles and long longs entirely on stack.
1250 Same goes for aggregate types. */
1251 if (sh_is_renesas_calling_convention (func_type)
1252 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1253 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1254 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1255 || TYPE_CODE (type) == TYPE_CODE_UNION))
1256 pass_on_stack = 1;
c906108c
SS
1257 while (len > 0)
1258 {
c055b101
CV
1259 if (argreg > ARGLAST_REGNUM || pass_on_stack
1260 || argnum > last_reg_arg)
617daa0e 1261 {
e5e33cd9 1262 /* The remainder of the data goes entirely on the stack,
c378eb4e 1263 4-byte aligned. */
e5e33cd9
CV
1264 reg_size = (len + 3) & ~3;
1265 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1266 stack_offset += reg_size;
c906108c 1267 }
e5e33cd9 1268 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1269 {
c378eb4e 1270 /* There's room in a register. */
e5e33cd9 1271 reg_size = register_size (gdbarch, argreg);
e17a4113 1272 regval = extract_unsigned_integer (val, reg_size, byte_order);
48db5a3c 1273 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1274 }
e5e33cd9
CV
1275 /* Store the value reg_size bytes at a time. This means that things
1276 larger than reg_size bytes may go partly in registers and partly
c906108c 1277 on the stack. */
e5e33cd9
CV
1278 len -= reg_size;
1279 val += reg_size;
c906108c
SS
1280 }
1281 }
48db5a3c 1282
c055b101
CV
1283 if (struct_return)
1284 {
1285 if (sh_is_renesas_calling_convention (func_type))
1286 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1287 the stack and store the struct return address there. */
e17a4113 1288 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1289 else
1290 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1291 its own dedicated register. */
1292 regcache_cooked_write_unsigned (regcache,
1293 STRUCT_RETURN_REGNUM, struct_addr);
1294 }
1295
c378eb4e 1296 /* Store return address. */
55ff77ac 1297 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1298
1299 /* Update stack pointer. */
3e8c568d 1300 regcache_cooked_write_unsigned (regcache,
b47193f7 1301 gdbarch_sp_regnum (gdbarch), sp);
48db5a3c 1302
c906108c
SS
1303 return sp;
1304}
1305
cc17453a
EZ
1306/* Find a function's return value in the appropriate registers (in
1307 regbuf), and copy it into valbuf. Extract from an array REGBUF
1308 containing the (raw) register state a function return value of type
1309 TYPE, and copy that, in virtual format, into VALBUF. */
1310static void
3ffc5b9b 1311sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1312 gdb_byte *valbuf)
c906108c 1313{
e17a4113
UW
1314 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1315 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cc17453a 1316 int len = TYPE_LENGTH (type);
617daa0e 1317
cc17453a 1318 if (len <= 4)
3116c80a 1319 {
48db5a3c
CV
1320 ULONGEST c;
1321
1322 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
e17a4113 1323 store_unsigned_integer (valbuf, len, byte_order, c);
3116c80a 1324 }
48db5a3c 1325 else if (len == 8)
3116c80a 1326 {
48db5a3c
CV
1327 int i, regnum = R0_REGNUM;
1328 for (i = 0; i < len; i += 4)
948f8e3d 1329 regcache_raw_read (regcache, regnum++, valbuf + i);
3116c80a
EZ
1330 }
1331 else
8a3fe4f8 1332 error (_("bad size for return value"));
3116c80a
EZ
1333}
1334
1335static void
3ffc5b9b 1336sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1337 gdb_byte *valbuf)
3116c80a 1338{
d93859e2 1339 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1340 if (sh_treat_as_flt_p (type))
3116c80a 1341 {
48db5a3c 1342 int len = TYPE_LENGTH (type);
d93859e2 1343 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1344 for (i = 0; i < len; i += 4)
d93859e2 1345 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c378eb4e 1346 regcache_raw_read (regcache, regnum++,
948f8e3d 1347 valbuf + len - 4 - i);
2e952408 1348 else
948f8e3d 1349 regcache_raw_read (regcache, regnum++, valbuf + i);
3116c80a 1350 }
cc17453a 1351 else
3ffc5b9b 1352 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1353}
c906108c 1354
cc17453a
EZ
1355/* Write into appropriate registers a function return value
1356 of type TYPE, given in virtual format.
1357 If the architecture is sh4 or sh3e, store a function's return value
1358 in the R0 general register or in the FP0 floating point register,
c378eb4e
MS
1359 depending on the type of the return value. In all the other cases
1360 the result is stored in r0, left-justified. */
cc17453a 1361static void
3ffc5b9b 1362sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1363 const gdb_byte *valbuf)
cc17453a 1364{
e17a4113
UW
1365 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1366 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48db5a3c
CV
1367 ULONGEST val;
1368 int len = TYPE_LENGTH (type);
d19b71be 1369
48db5a3c 1370 if (len <= 4)
d19b71be 1371 {
e17a4113 1372 val = extract_unsigned_integer (valbuf, len, byte_order);
48db5a3c 1373 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1374 }
1375 else
48db5a3c
CV
1376 {
1377 int i, regnum = R0_REGNUM;
1378 for (i = 0; i < len; i += 4)
948f8e3d 1379 regcache_raw_write (regcache, regnum++, valbuf + i);
48db5a3c 1380 }
cc17453a 1381}
c906108c 1382
cc17453a 1383static void
3ffc5b9b 1384sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1385 const gdb_byte *valbuf)
cc17453a 1386{
d93859e2 1387 struct gdbarch *gdbarch = get_regcache_arch (regcache);
afce3d2a 1388 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1389 {
1390 int len = TYPE_LENGTH (type);
d93859e2 1391 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1392 for (i = 0; i < len; i += 4)
d93859e2 1393 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c8a3b559 1394 regcache_raw_write (regcache, regnum++,
948f8e3d 1395 valbuf + len - 4 - i);
c8a3b559 1396 else
948f8e3d 1397 regcache_raw_write (regcache, regnum++, valbuf + i);
48db5a3c 1398 }
cc17453a 1399 else
3ffc5b9b 1400 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1401}
1402
c0409442 1403static enum return_value_convention
6a3a010b 1404sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1405 struct type *type, struct regcache *regcache,
18cf8b5b 1406 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1407{
6a3a010b
MR
1408 struct type *func_type = function ? value_type (function) : NULL;
1409
c055b101
CV
1410 if (sh_use_struct_convention_nofpu (
1411 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1412 return RETURN_VALUE_STRUCT_CONVENTION;
1413 if (writebuf)
3ffc5b9b 1414 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1415 else if (readbuf)
3ffc5b9b 1416 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1417 return RETURN_VALUE_REGISTER_CONVENTION;
1418}
1419
1420static enum return_value_convention
6a3a010b 1421sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1422 struct type *type, struct regcache *regcache,
18cf8b5b 1423 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1424{
6a3a010b
MR
1425 struct type *func_type = function ? value_type (function) : NULL;
1426
c055b101
CV
1427 if (sh_use_struct_convention (
1428 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1429 return RETURN_VALUE_STRUCT_CONVENTION;
1430 if (writebuf)
3ffc5b9b 1431 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1432 else if (readbuf)
3ffc5b9b 1433 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1434 return RETURN_VALUE_REGISTER_CONVENTION;
1435}
1436
da962468
CV
1437static struct type *
1438sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1439{
b47193f7 1440 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
da962468 1441 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1442 return builtin_type (gdbarch)->builtin_float;
da962468 1443 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1444 return builtin_type (gdbarch)->builtin_double;
da962468 1445 else
0dfff4cb 1446 return builtin_type (gdbarch)->builtin_int;
da962468
CV
1447}
1448
cc17453a
EZ
1449/* Return the GDB type object for the "standard" data type
1450 of data in register N. */
cc17453a 1451static struct type *
48db5a3c 1452sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1453{
b47193f7 1454 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1455 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1456 return builtin_type (gdbarch)->builtin_float;
8db62801 1457 else
0dfff4cb 1458 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1459}
1460
7f4dbe94 1461static struct type *
0dfff4cb 1462sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
7f4dbe94 1463{
e3506a9f
UW
1464 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1465 0, high);
7f4dbe94
EZ
1466}
1467
53116e27 1468static struct type *
48db5a3c 1469sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27 1470{
b47193f7 1471 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1472 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1473 return builtin_type (gdbarch)->builtin_float;
617daa0e 1474 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1475 return builtin_type (gdbarch)->builtin_double;
617daa0e 1476 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
0dfff4cb 1477 return sh_sh4_build_float_register_type (gdbarch, 3);
53116e27 1478 else
0dfff4cb 1479 return builtin_type (gdbarch)->builtin_int;
53116e27
EZ
1480}
1481
cc17453a 1482static struct type *
48db5a3c 1483sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1484{
0dfff4cb 1485 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1486}
1487
dda63807
AS
1488/* Is a register in a reggroup?
1489 The default code in reggroup.c doesn't identify system registers, some
1490 float registers or any of the vector registers.
1491 TODO: sh2a and dsp registers. */
63807e1d 1492static int
dda63807
AS
1493sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1494 struct reggroup *reggroup)
1495{
b47193f7
UW
1496 if (gdbarch_register_name (gdbarch, regnum) == NULL
1497 || *gdbarch_register_name (gdbarch, regnum) == '\0')
dda63807
AS
1498 return 0;
1499
1500 if (reggroup == float_reggroup
1501 && (regnum == FPUL_REGNUM
1502 || regnum == FPSCR_REGNUM))
1503 return 1;
1504
1505 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1506 {
1507 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1508 return 1;
1509 if (reggroup == general_reggroup)
1510 return 0;
1511 }
1512
1513 if (regnum == VBR_REGNUM
1514 || regnum == SR_REGNUM
1515 || regnum == FPSCR_REGNUM
1516 || regnum == SSR_REGNUM
1517 || regnum == SPC_REGNUM)
1518 {
1519 if (reggroup == system_reggroup)
1520 return 1;
1521 if (reggroup == general_reggroup)
1522 return 0;
1523 }
1524
1525 /* The default code can cope with any other registers. */
1526 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1527}
1528
fb409745 1529/* On the sh4, the DRi pseudo registers are problematic if the target
c378eb4e 1530 is little endian. When the user writes one of those registers, for
a6521d9a 1531 instance with 'set var $dr0=1', we want the double to be stored
fb409745 1532 like this:
a6521d9a
TS
1533 fr0 = 0x00 0x00 0xf0 0x3f
1534 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1535
1536 This corresponds to little endian byte order & big endian word
1537 order. However if we let gdb write the register w/o conversion, it
1538 will write fr0 and fr1 this way:
a6521d9a
TS
1539 fr0 = 0x00 0x00 0x00 0x00
1540 fr1 = 0x00 0x00 0xf0 0x3f
fb409745
EZ
1541 because it will consider fr0 and fr1 as a single LE stretch of memory.
1542
1543 To achieve what we want we must force gdb to store things in
1544 floatformat_ieee_double_littlebyte_bigword (which is defined in
1545 include/floatformat.h and libiberty/floatformat.c.
1546
1547 In case the target is big endian, there is no problem, the
1548 raw bytes will look like:
a6521d9a
TS
1549 fr0 = 0x3f 0xf0 0x00 0x00
1550 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1551
1552 The other pseudo registers (the FVs) also don't pose a problem
c378eb4e 1553 because they are stored as 4 individual FP elements. */
fb409745 1554
7bd872fe 1555static void
a6521d9a 1556sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1557 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1558{
a6521d9a
TS
1559 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1560 {
1561 /* It is a no-op. */
1562 memcpy (to, from, register_size (gdbarch, regnum));
1563 return;
1564 }
1565
617daa0e 1566 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1567 {
1568 DOUBLEST val;
617daa0e
CV
1569 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1570 from, &val);
55ff77ac 1571 store_typed_floating (to, type, val);
283150cd
EZ
1572 }
1573 else
617daa0e
CV
1574 error
1575 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1576}
1577
1578static void
a6521d9a 1579sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
948f8e3d 1580 int regnum, const gdb_byte *from, gdb_byte *to)
283150cd 1581{
a6521d9a
TS
1582 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1583 {
1584 /* It is a no-op. */
1585 memcpy (to, from, register_size (gdbarch, regnum));
1586 return;
1587 }
1588
617daa0e 1589 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1590 {
48db5a3c 1591 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1592 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1593 &val, to);
283150cd
EZ
1594 }
1595 else
8a3fe4f8 1596 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1597}
1598
c378eb4e 1599/* For vectors of 4 floating point registers. */
1c0159e0 1600static int
d93859e2 1601fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1c0159e0
CV
1602{
1603 int fp_regnum;
1604
d93859e2 1605 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1606 + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1607 return fp_regnum;
1608}
1609
c378eb4e 1610/* For double precision floating point registers, i.e 2 fp regs. */
1c0159e0 1611static int
d93859e2 1612dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1c0159e0
CV
1613{
1614 int fp_regnum;
1615
d93859e2 1616 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1617 + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1618 return fp_regnum;
1619}
1620
05d1431c
PA
1621/* Concatenate PORTIONS contiguous raw registers starting at
1622 BASE_REGNUM into BUFFER. */
1623
1624static enum register_status
1625pseudo_register_read_portions (struct gdbarch *gdbarch,
1626 struct regcache *regcache,
1627 int portions,
1628 int base_regnum, gdb_byte *buffer)
1629{
1630 int portion;
1631
1632 for (portion = 0; portion < portions; portion++)
1633 {
1634 enum register_status status;
1635 gdb_byte *b;
1636
1637 b = buffer + register_size (gdbarch, base_regnum) * portion;
1638 status = regcache_raw_read (regcache, base_regnum + portion, b);
1639 if (status != REG_VALID)
1640 return status;
1641 }
1642
1643 return REG_VALID;
1644}
1645
1646static enum register_status
d8124050 1647sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1648 int reg_nr, gdb_byte *buffer)
53116e27 1649{
05d1431c 1650 int base_regnum;
05d1431c 1651 enum register_status status;
53116e27 1652
9bed62d7 1653 if (reg_nr == PSEUDO_BANK_REGNUM)
05d1431c
PA
1654 return regcache_raw_read (regcache, BANK_REGNUM, buffer);
1655 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe 1656 {
4a8a33c8
AH
1657 /* Enough space for two float registers. */
1658 gdb_byte temp_buffer[4 * 2];
d93859e2 1659 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
7bd872fe 1660
c378eb4e 1661 /* Build the value in the provided buffer. */
7bd872fe 1662 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1663 status = pseudo_register_read_portions (gdbarch, regcache,
1664 2, base_regnum, temp_buffer);
1665 if (status == REG_VALID)
1666 {
1667 /* We must pay attention to the endiannes. */
a6521d9a 1668 sh_register_convert_to_virtual (gdbarch, reg_nr,
05d1431c
PA
1669 register_type (gdbarch, reg_nr),
1670 temp_buffer, buffer);
1671 }
1672 return status;
7bd872fe 1673 }
617daa0e 1674 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1675 {
d93859e2 1676 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
7bd872fe
EZ
1677
1678 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1679 return pseudo_register_read_portions (gdbarch, regcache,
1680 4, base_regnum, buffer);
53116e27 1681 }
05d1431c
PA
1682 else
1683 gdb_assert_not_reached ("invalid pseudo register number");
53116e27
EZ
1684}
1685
a78f21af 1686static void
d8124050 1687sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1688 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
1689{
1690 int base_regnum, portion;
1691
9bed62d7
CV
1692 if (reg_nr == PSEUDO_BANK_REGNUM)
1693 {
1694 /* When the bank register is written to, the whole register bank
1695 is switched and all values in the bank registers must be read
c378eb4e 1696 from the target/sim again. We're just invalidating the regcache
9bed62d7
CV
1697 so that a re-read happens next time it's necessary. */
1698 int bregnum;
1699
1700 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1701 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
9c5ea4d9 1702 regcache_invalidate (regcache, bregnum);
9bed62d7
CV
1703 }
1704 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1705 {
4a8a33c8
AH
1706 /* Enough space for two float registers. */
1707 gdb_byte temp_buffer[4 * 2];
d93859e2 1708 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
53116e27 1709
c378eb4e 1710 /* We must pay attention to the endiannes. */
a6521d9a 1711 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
b66ba949 1712 reg_nr, buffer, temp_buffer);
7bd872fe 1713
53116e27
EZ
1714 /* Write the real regs for which this one is an alias. */
1715 for (portion = 0; portion < 2; portion++)
617daa0e 1716 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 1717 (temp_buffer
617daa0e
CV
1718 + register_size (gdbarch,
1719 base_regnum) * portion));
53116e27 1720 }
617daa0e 1721 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1722 {
d93859e2 1723 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
53116e27
EZ
1724
1725 /* Write the real regs for which this one is an alias. */
1726 for (portion = 0; portion < 4; portion++)
d8124050 1727 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1728 (buffer
617daa0e
CV
1729 + register_size (gdbarch,
1730 base_regnum) * portion));
53116e27
EZ
1731 }
1732}
1733
2f14585c 1734static int
e7faf938 1735sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2f14585c 1736{
e7faf938
MD
1737 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1738 return legacy_register_sim_regno (gdbarch, nr);
f2ea0907
CV
1739 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1740 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1741 if (nr == MOD_REGNUM)
2f14585c 1742 return SIM_SH_MOD_REGNUM;
f2ea0907 1743 if (nr == RS_REGNUM)
2f14585c 1744 return SIM_SH_RS_REGNUM;
f2ea0907 1745 if (nr == RE_REGNUM)
2f14585c 1746 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1747 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1748 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1749 return nr;
1750}
1c0159e0 1751
da962468 1752static int
e7faf938 1753sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
da962468
CV
1754{
1755 switch (nr)
1756 {
1757 case TBR_REGNUM:
1758 return SIM_SH_TBR_REGNUM;
1759 case IBNR_REGNUM:
1760 return SIM_SH_IBNR_REGNUM;
1761 case IBCR_REGNUM:
1762 return SIM_SH_IBCR_REGNUM;
1763 case BANK_REGNUM:
1764 return SIM_SH_BANK_REGNUM;
1765 case MACLB_REGNUM:
1766 return SIM_SH_BANK_MACL_REGNUM;
1767 case GBRB_REGNUM:
1768 return SIM_SH_BANK_GBR_REGNUM;
1769 case PRB_REGNUM:
1770 return SIM_SH_BANK_PR_REGNUM;
1771 case IVNB_REGNUM:
1772 return SIM_SH_BANK_IVN_REGNUM;
1773 case MACHB_REGNUM:
1774 return SIM_SH_BANK_MACH_REGNUM;
1775 default:
1776 break;
1777 }
e7faf938 1778 return legacy_register_sim_regno (gdbarch, nr);
da962468
CV
1779}
1780
357d3800
AS
1781/* Set up the register unwinding such that call-clobbered registers are
1782 not displayed in frames >0 because the true value is not certain.
1783 The 'undefined' registers will show up as 'not available' unless the
1784 CFI says otherwise.
1785
1786 This function is currently set up for SH4 and compatible only. */
1787
1788static void
1789sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1790 struct dwarf2_frame_state_reg *reg,
4a4e5149 1791 struct frame_info *this_frame)
357d3800
AS
1792{
1793 /* Mark the PC as the destination for the return address. */
b47193f7 1794 if (regnum == gdbarch_pc_regnum (gdbarch))
357d3800
AS
1795 reg->how = DWARF2_FRAME_REG_RA;
1796
1797 /* Mark the stack pointer as the call frame address. */
b47193f7 1798 else if (regnum == gdbarch_sp_regnum (gdbarch))
357d3800
AS
1799 reg->how = DWARF2_FRAME_REG_CFA;
1800
1801 /* The above was taken from the default init_reg in dwarf2-frame.c
1802 while the below is SH specific. */
1803
1804 /* Caller save registers. */
1805 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1806 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1807 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1808 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1809 || (regnum == MACH_REGNUM)
1810 || (regnum == MACL_REGNUM)
1811 || (regnum == FPUL_REGNUM)
1812 || (regnum == SR_REGNUM))
1813 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1814
1815 /* Callee save registers. */
1816 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1817 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1818 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1819 || (regnum == FV0_REGNUM+3))
1820 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1821
1822 /* Other registers. These are not in the ABI and may or may not
1823 mean anything in frames >0 so don't show them. */
1824 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1825 || (regnum == GBR_REGNUM)
1826 || (regnum == VBR_REGNUM)
1827 || (regnum == FPSCR_REGNUM)
1828 || (regnum == SSR_REGNUM)
1829 || (regnum == SPC_REGNUM))
1830 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1831}
1832
1c0159e0
CV
1833static struct sh_frame_cache *
1834sh_alloc_frame_cache (void)
1835{
1836 struct sh_frame_cache *cache;
1837 int i;
1838
1839 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1840
1841 /* Base address. */
1842 cache->base = 0;
1843 cache->saved_sp = 0;
1844 cache->sp_offset = 0;
1845 cache->pc = 0;
1846
1847 /* Frameless until proven otherwise. */
1848 cache->uses_fp = 0;
617daa0e 1849
1c0159e0
CV
1850 /* Saved registers. We initialize these to -1 since zero is a valid
1851 offset (that's where fp is supposed to be stored). */
1852 for (i = 0; i < SH_NUM_REGS; i++)
1853 {
1854 cache->saved_regs[i] = -1;
1855 }
617daa0e 1856
1c0159e0 1857 return cache;
617daa0e 1858}
1c0159e0
CV
1859
1860static struct sh_frame_cache *
94afd7a6 1861sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1c0159e0 1862{
e17a4113 1863 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c0159e0
CV
1864 struct sh_frame_cache *cache;
1865 CORE_ADDR current_pc;
1866 int i;
1867
1868 if (*this_cache)
19ba03f4 1869 return (struct sh_frame_cache *) *this_cache;
1c0159e0
CV
1870
1871 cache = sh_alloc_frame_cache ();
1872 *this_cache = cache;
1873
1874 /* In principle, for normal frames, fp holds the frame pointer,
1875 which holds the base address for the current stack frame.
1876 However, for functions that don't need it, the frame pointer is
1877 optional. For these "frameless" functions the frame pointer is
c378eb4e 1878 actually the frame pointer of the calling frame. */
94afd7a6 1879 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1c0159e0
CV
1880 if (cache->base == 0)
1881 return cache;
1882
94afd7a6
UW
1883 cache->pc = get_frame_func (this_frame);
1884 current_pc = get_frame_pc (this_frame);
1c0159e0 1885 if (cache->pc != 0)
d2ca4222
UW
1886 {
1887 ULONGEST fpscr;
9fc05685
KB
1888
1889 /* Check for the existence of the FPSCR register. If it exists,
1890 fetch its value for use in prologue analysis. Passing a zero
1891 value is the best choice for architecture variants upon which
1892 there's no FPSCR register. */
1893 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1894 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1895 else
1896 fpscr = 0;
1897
e17a4113 1898 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
d2ca4222 1899 }
617daa0e 1900
1c0159e0
CV
1901 if (!cache->uses_fp)
1902 {
1903 /* We didn't find a valid frame, which means that CACHE->base
1904 currently holds the frame pointer for our calling frame. If
1905 we're at the start of a function, or somewhere half-way its
1906 prologue, the function's frame probably hasn't been fully
1907 setup yet. Try to reconstruct the base address for the stack
1908 frame by looking at the stack pointer. For truly "frameless"
1909 functions this might work too. */
94afd7a6 1910 cache->base = get_frame_register_unsigned
e17a4113 1911 (this_frame, gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1912 }
1913
1914 /* Now that we have the base address for the stack frame we can
1915 calculate the value of sp in the calling frame. */
1916 cache->saved_sp = cache->base + cache->sp_offset;
1917
1918 /* Adjust all the saved registers such that they contain addresses
1919 instead of offsets. */
1920 for (i = 0; i < SH_NUM_REGS; i++)
1921 if (cache->saved_regs[i] != -1)
1922 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1923
1924 return cache;
1925}
1926
94afd7a6
UW
1927static struct value *
1928sh_frame_prev_register (struct frame_info *this_frame,
1929 void **this_cache, int regnum)
1c0159e0 1930{
94afd7a6
UW
1931 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1932 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1933
1934 gdb_assert (regnum >= 0);
1935
b47193f7 1936 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 1937 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1c0159e0
CV
1938
1939 /* The PC of the previous frame is stored in the PR register of
1940 the current frame. Frob regnum so that we pull the value from
1941 the correct place. */
b47193f7 1942 if (regnum == gdbarch_pc_regnum (gdbarch))
1c0159e0
CV
1943 regnum = PR_REGNUM;
1944
1945 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
94afd7a6
UW
1946 return frame_unwind_got_memory (this_frame, regnum,
1947 cache->saved_regs[regnum]);
1c0159e0 1948
94afd7a6 1949 return frame_unwind_got_register (this_frame, regnum, regnum);
1c0159e0
CV
1950}
1951
1952static void
94afd7a6 1953sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
617daa0e
CV
1954 struct frame_id *this_id)
1955{
94afd7a6 1956 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1957
1958 /* This marks the outermost frame. */
1959 if (cache->base == 0)
1960 return;
1961
1962 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 1963}
1c0159e0 1964
617daa0e 1965static const struct frame_unwind sh_frame_unwind = {
1c0159e0 1966 NORMAL_FRAME,
8fbca658 1967 default_frame_unwind_stop_reason,
1c0159e0 1968 sh_frame_this_id,
94afd7a6
UW
1969 sh_frame_prev_register,
1970 NULL,
1971 default_frame_sniffer
1c0159e0
CV
1972};
1973
1c0159e0
CV
1974static CORE_ADDR
1975sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
1976{
3e8c568d 1977 return frame_unwind_register_unsigned (next_frame,
b47193f7 1978 gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1979}
1980
1981static CORE_ADDR
1982sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
1983{
3e8c568d 1984 return frame_unwind_register_unsigned (next_frame,
b47193f7 1985 gdbarch_pc_regnum (gdbarch));
1c0159e0
CV
1986}
1987
1988static struct frame_id
94afd7a6 1989sh_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1c0159e0 1990{
94afd7a6
UW
1991 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
1992 gdbarch_sp_regnum (gdbarch));
1993 return frame_id_build (sp, get_frame_pc (this_frame));
1c0159e0
CV
1994}
1995
1996static CORE_ADDR
94afd7a6 1997sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
617daa0e 1998{
94afd7a6 1999 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
617daa0e 2000
1c0159e0
CV
2001 return cache->base;
2002}
617daa0e
CV
2003
2004static const struct frame_base sh_frame_base = {
1c0159e0
CV
2005 &sh_frame_unwind,
2006 sh_frame_base_address,
2007 sh_frame_base_address,
2008 sh_frame_base_address
617daa0e 2009};
1c0159e0 2010
cb2cf4ce
TS
2011static struct sh_frame_cache *
2012sh_make_stub_cache (struct frame_info *this_frame)
2013{
2014 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2015 struct sh_frame_cache *cache;
2016
2017 cache = sh_alloc_frame_cache ();
2018
2019 cache->saved_sp
2020 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2021
2022 return cache;
2023}
2024
2025static void
2026sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2027 struct frame_id *this_id)
2028{
2029 struct sh_frame_cache *cache;
2030
2031 if (*this_cache == NULL)
2032 *this_cache = sh_make_stub_cache (this_frame);
19ba03f4 2033 cache = (struct sh_frame_cache *) *this_cache;
cb2cf4ce
TS
2034
2035 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2036}
2037
2038static int
2039sh_stub_unwind_sniffer (const struct frame_unwind *self,
2040 struct frame_info *this_frame,
2041 void **this_prologue_cache)
2042{
2043 CORE_ADDR addr_in_block;
2044
2045 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 2046 if (in_plt_section (addr_in_block))
cb2cf4ce
TS
2047 return 1;
2048
2049 return 0;
2050}
2051
2052static const struct frame_unwind sh_stub_unwind =
2053{
2054 NORMAL_FRAME,
2055 default_frame_unwind_stop_reason,
2056 sh_stub_this_id,
2057 sh_frame_prev_register,
2058 NULL,
2059 sh_stub_unwind_sniffer
2060};
2061
c9cf6e20
MG
2062/* Implement the stack_frame_destroyed_p gdbarch method.
2063
2064 The epilogue is defined here as the area at the end of a function,
1c0159e0 2065 either on the `ret' instruction itself or after an instruction which
c378eb4e 2066 destroys the function's stack frame. */
c9cf6e20 2067
1c0159e0 2068static int
c9cf6e20 2069sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1c0159e0 2070{
e17a4113 2071 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0
CV
2072 CORE_ADDR func_addr = 0, func_end = 0;
2073
2074 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2075 {
2076 ULONGEST inst;
2077 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2078 for a nop and some fixed data (e.g. big offsets) which are
617daa0e 2079 unfortunately also treated as part of the function (which
c378eb4e 2080 means, they are below func_end. */
1c0159e0
CV
2081 CORE_ADDR addr = func_end - 28;
2082 if (addr < func_addr + 4)
617daa0e 2083 addr = func_addr + 4;
1c0159e0
CV
2084 if (pc < addr)
2085 return 0;
2086
c378eb4e 2087 /* First search forward until hitting an rts. */
1c0159e0 2088 while (addr < func_end
e17a4113 2089 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
1c0159e0
CV
2090 addr += 2;
2091 if (addr >= func_end)
617daa0e 2092 return 0;
1c0159e0
CV
2093
2094 /* At this point we should find a mov.l @r15+,r14 instruction,
2095 either before or after the rts. If not, then the function has
c378eb4e 2096 probably no "normal" epilogue and we bail out here. */
e17a4113
UW
2097 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2098 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2099 byte_order)))
617daa0e 2100 addr -= 2;
e17a4113
UW
2101 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2102 byte_order)))
1c0159e0
CV
2103 return 0;
2104
e17a4113 2105 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99 2106
c378eb4e 2107 /* Step over possible lds.l @r15+,macl. */
03131d99
CV
2108 if (IS_MACL_LDS (inst))
2109 {
2110 addr -= 2;
e17a4113 2111 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99
CV
2112 }
2113
c378eb4e 2114 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2115 if (IS_LDS (inst))
617daa0e 2116 {
1c0159e0 2117 addr -= 2;
e17a4113 2118 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2119 }
2120
c378eb4e 2121 /* Step over possible mov r14,r15. */
1c0159e0 2122 if (IS_MOV_FP_SP (inst))
617daa0e 2123 {
1c0159e0 2124 addr -= 2;
e17a4113 2125 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2126 }
2127
2128 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
c378eb4e 2129 instructions. */
1c0159e0 2130 while (addr > func_addr + 4
617daa0e 2131 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2132 {
2133 addr -= 2;
e17a4113 2134 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2135 }
2136
03131d99
CV
2137 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2138 That's allowed for the epilogue. */
2139 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2140 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2141 && addr > func_addr + 6
e17a4113
UW
2142 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2143 byte_order)))
03131d99
CV
2144 addr -= 4;
2145
1c0159e0
CV
2146 if (pc >= addr)
2147 return 1;
2148 }
2149 return 0;
2150}
c9ac0a72
AS
2151
2152
2153/* Supply register REGNUM from the buffer specified by REGS and LEN
2154 in the register set REGSET to register cache REGCACHE.
2155 REGTABLE specifies where each register can be found in REGS.
2156 If REGNUM is -1, do this for all registers in REGSET. */
2157
2158void
2159sh_corefile_supply_regset (const struct regset *regset,
2160 struct regcache *regcache,
2161 int regnum, const void *regs, size_t len)
2162{
2163 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2164 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2165 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2166 ? tdep->core_gregmap
2167 : tdep->core_fpregmap);
2168 int i;
2169
2170 for (i = 0; regmap[i].regnum != -1; i++)
2171 {
2172 if ((regnum == -1 || regnum == regmap[i].regnum)
2173 && regmap[i].offset + 4 <= len)
2174 regcache_raw_supply (regcache, regmap[i].regnum,
2175 (char *)regs + regmap[i].offset);
2176 }
2177}
2178
2179/* Collect register REGNUM in the register set REGSET from register cache
2180 REGCACHE into the buffer specified by REGS and LEN.
2181 REGTABLE specifies where each register can be found in REGS.
2182 If REGNUM is -1, do this for all registers in REGSET. */
2183
2184void
2185sh_corefile_collect_regset (const struct regset *regset,
2186 const struct regcache *regcache,
2187 int regnum, void *regs, size_t len)
2188{
2189 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2190 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2191 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2192 ? tdep->core_gregmap
2193 : tdep->core_fpregmap);
2194 int i;
2195
2196 for (i = 0; regmap[i].regnum != -1; i++)
2197 {
2198 if ((regnum == -1 || regnum == regmap[i].regnum)
2199 && regmap[i].offset + 4 <= len)
2200 regcache_raw_collect (regcache, regmap[i].regnum,
2201 (char *)regs + regmap[i].offset);
2202 }
2203}
2204
2205/* The following two regsets have the same contents, so it is tempting to
2206 unify them, but they are distiguished by their address, so don't. */
2207
3ca7dae4 2208const struct regset sh_corefile_gregset =
c9ac0a72
AS
2209{
2210 NULL,
2211 sh_corefile_supply_regset,
2212 sh_corefile_collect_regset
2213};
2214
3ca7dae4 2215static const struct regset sh_corefile_fpregset =
c9ac0a72
AS
2216{
2217 NULL,
2218 sh_corefile_supply_regset,
2219 sh_corefile_collect_regset
2220};
2221
c6d41a6f
AA
2222static void
2223sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2224 iterate_over_regset_sections_cb *cb,
2225 void *cb_data,
2226 const struct regcache *regcache)
c9ac0a72
AS
2227{
2228 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2229
c6d41a6f
AA
2230 if (tdep->core_gregmap != NULL)
2231 cb (".reg", tdep->sizeof_gregset, &sh_corefile_gregset, NULL, cb_data);
c9ac0a72 2232
c6d41a6f
AA
2233 if (tdep->core_fpregmap != NULL)
2234 cb (".reg2", tdep->sizeof_fpregset, &sh_corefile_fpregset, NULL, cb_data);
c9ac0a72 2235}
18648a37
YQ
2236
2237/* This is the implementation of gdbarch method
2238 return_in_first_hidden_param_p. */
2239
2240static int
2241sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2242 struct type *type)
2243{
2244 return 0;
2245}
2246
ccf00f21 2247\f
cc17453a
EZ
2248
2249static struct gdbarch *
fba45db2 2250sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2251{
cc17453a 2252 struct gdbarch *gdbarch;
c9ac0a72 2253 struct gdbarch_tdep *tdep;
d658f924 2254
2d4c29c5
TS
2255 /* SH5 is handled entirely in sh64-tdep.c. */
2256 if (info.bfd_arch_info->mach == bfd_mach_sh5)
2257 return sh64_gdbarch_init (info, arches);
55ff77ac 2258
4be87837
DJ
2259 /* If there is already a candidate, use it. */
2260 arches = gdbarch_list_lookup_by_info (arches, &info);
2261 if (arches != NULL)
2262 return arches->gdbarch;
cc17453a
EZ
2263
2264 /* None found, create a new architecture from the information
c378eb4e 2265 provided. */
41bf6aca 2266 tdep = XCNEW (struct gdbarch_tdep);
c9ac0a72 2267 gdbarch = gdbarch_alloc (&info, tdep);
cc17453a 2268
48db5a3c
CV
2269 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2270 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2271 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2272 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
53375380
PA
2273
2274 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2275 set_gdbarch_wchar_signed (gdbarch, 0);
2276
48db5a3c
CV
2277 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2278 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2279 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2280 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2281
f2ea0907 2282 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2283 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2284 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2285 set_gdbarch_fp0_regnum (gdbarch, -1);
2286 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2287
1c0159e0 2288 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2289 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2290
04180708
YQ
2291 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2292 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
48db5a3c 2293
2f14585c 2294 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c 2295
c0409442 2296 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
1c0159e0 2297
48db5a3c
CV
2298 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2299 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2300
1c0159e0 2301 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
18648a37
YQ
2302 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2303 sh_return_in_first_hidden_param_p);
1c0159e0 2304
48db5a3c
CV
2305 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2306
19f59343 2307 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2308 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2309 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
94afd7a6 2310 set_gdbarch_dummy_id (gdbarch, sh_dummy_id);
1c0159e0
CV
2311 frame_base_set_default (gdbarch, &sh_frame_base);
2312
c9cf6e20 2313 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
cc17453a 2314
357d3800
AS
2315 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2316
c6d41a6f
AA
2317 set_gdbarch_iterate_over_regset_sections
2318 (gdbarch, sh_iterate_over_regset_sections);
c9ac0a72 2319
cc17453a 2320 switch (info.bfd_arch_info->mach)
8db62801 2321 {
cc17453a 2322 case bfd_mach_sh:
48db5a3c 2323 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2324 break;
1c0159e0 2325
cc17453a 2326 case bfd_mach_sh2:
48db5a3c 2327 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2328 break;
1c0159e0 2329
2d188dd3 2330 case bfd_mach_sh2e:
c378eb4e 2331 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2332 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2333 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2334
2335 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2336 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2337 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2338 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2339 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2340 break;
1c0159e0 2341
da962468
CV
2342 case bfd_mach_sh2a:
2343 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2344 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2345 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2346
2347 set_gdbarch_fp0_regnum (gdbarch, 25);
2348 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2349 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2350 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2351 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2352 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2353 break;
2354
2355 case bfd_mach_sh2a_nofpu:
2356 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2357 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2358
2359 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2360 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2361 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2362 break;
2363
cc17453a 2364 case bfd_mach_sh_dsp:
48db5a3c 2365 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2366 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2367 break;
1c0159e0 2368
cc17453a 2369 case bfd_mach_sh3:
4e6cbc38
AS
2370 case bfd_mach_sh3_nommu:
2371 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2372 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2373 break;
1c0159e0 2374
cc17453a 2375 case bfd_mach_sh3e:
4e6cbc38 2376 case bfd_mach_sh2a_or_sh3e:
c378eb4e 2377 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2378 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2379 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2380
2381 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2382 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2383 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2384 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2385 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2386 break;
1c0159e0 2387
cc17453a 2388 case bfd_mach_sh3_dsp:
48db5a3c 2389 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2390 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2391 break;
1c0159e0 2392
cc17453a 2393 case bfd_mach_sh4:
474e5826 2394 case bfd_mach_sh4a:
46e8a76b 2395 case bfd_mach_sh2a_or_sh4:
48db5a3c 2396 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2397 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2398 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2399 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2400 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2401 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2402 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2403 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2404 break;
1c0159e0 2405
474e5826
CV
2406 case bfd_mach_sh4_nofpu:
2407 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2408 case bfd_mach_sh4_nommu_nofpu:
2409 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
474e5826
CV
2410 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2411 break;
2412
2413 case bfd_mach_sh4al_dsp:
2414 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2415 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2416 break;
2417
cc17453a 2418 default:
b58cbbf2 2419 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2420 break;
8db62801 2421 }
cc17453a 2422
4be87837
DJ
2423 /* Hook in ABI-specific overrides, if they have been registered. */
2424 gdbarch_init_osabi (info, gdbarch);
d658f924 2425
94afd7a6 2426 dwarf2_append_unwinders (gdbarch);
cb2cf4ce 2427 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
94afd7a6 2428 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
1c0159e0 2429
cc17453a 2430 return gdbarch;
8db62801
EZ
2431}
2432
c055b101
CV
2433static void
2434show_sh_command (char *args, int from_tty)
2435{
2436 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2437}
2438
2439static void
2440set_sh_command (char *args, int from_tty)
2441{
2442 printf_unfiltered
2443 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2444 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2445}
2446
c378eb4e 2447extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2448
c906108c 2449void
fba45db2 2450_initialize_sh_tdep (void)
c906108c 2451{
f2ea0907 2452 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2453
c055b101
CV
2454 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2455 &setshcmdlist, "set sh ", 0, &setlist);
2456 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2457 &showshcmdlist, "show sh ", 0, &showlist);
2458
2459 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2460 &sh_active_calling_convention,
2461 _("Set calling convention used when calling target "
2462 "functions from GDB."),
2463 _("Show calling convention used when calling target "
2464 "functions from GDB."),
2465 _("gcc - Use GCC calling convention (default).\n"
2466 "renesas - Enforce Renesas calling convention."),
2467 NULL, NULL,
2468 &setshcmdlist, &showshcmdlist);
c906108c 2469}
This page took 1.868245 seconds and 4 git commands to generate.