gdb: add declaration for _initialize_gdbarch in gdbarch.sh
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
0fd88904 2
b811d2c2 3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
c906108c
SS
22
23#include "defs.h"
24#include "frame.h"
1c0159e0
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
c906108c 28#include "symtab.h"
c906108c
SS
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
73c1f219 34#include "inferior.h"
b4a20239 35#include "arch-utils.h"
4e052eda 36#include "regcache.h"
3b2ca824 37#include "target-float.h"
4be87837 38#include "osabi.h"
dda63807 39#include "reggroups.h"
c9ac0a72 40#include "regset.h"
cb2cf4ce 41#include "objfiles.h"
c906108c 42
ab3b8126
JT
43#include "sh-tdep.h"
44
d658f924 45#include "elf-bfd.h"
1a8629c7
MS
46#include "solib-svr4.h"
47
55ff77ac 48/* sh flags */
283150cd 49#include "elf/sh.h"
fa8f86ff 50#include "dwarf2.h"
c378eb4e 51/* registers numbers shared with the simulator. */
1c922164 52#include "gdb/sim-sh.h"
325fac50 53#include <algorithm>
283150cd 54
c055b101
CV
55/* List of "set sh ..." and "show sh ..." commands. */
56static struct cmd_list_element *setshcmdlist = NULL;
57static struct cmd_list_element *showshcmdlist = NULL;
58
59static const char sh_cc_gcc[] = "gcc";
60static const char sh_cc_renesas[] = "renesas";
40478521 61static const char *const sh_cc_enum[] = {
c055b101
CV
62 sh_cc_gcc,
63 sh_cc_renesas,
64 NULL
65};
66
67static const char *sh_active_calling_convention = sh_cc_gcc;
68
da962468 69#define SH_NUM_REGS 67
88e04cc1 70
1c0159e0 71struct sh_frame_cache
cc17453a 72{
1c0159e0
CV
73 /* Base address. */
74 CORE_ADDR base;
75 LONGEST sp_offset;
76 CORE_ADDR pc;
77
c378eb4e 78 /* Flag showing that a frame has been created in the prologue code. */
1c0159e0
CV
79 int uses_fp;
80
81 /* Saved registers. */
82 CORE_ADDR saved_regs[SH_NUM_REGS];
83 CORE_ADDR saved_sp;
63978407 84};
c906108c 85
c055b101
CV
86static int
87sh_is_renesas_calling_convention (struct type *func_type)
88{
ca193e27
TS
89 int val = 0;
90
91 if (func_type)
92 {
93 func_type = check_typedef (func_type);
94
95 if (TYPE_CODE (func_type) == TYPE_CODE_PTR)
96 func_type = check_typedef (TYPE_TARGET_TYPE (func_type));
97
98 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC
99 && TYPE_CALLING_CONVENTION (func_type) == DW_CC_GNU_renesas_sh)
100 val = 1;
101 }
102
103 if (sh_active_calling_convention == sh_cc_renesas)
104 val = 1;
105
106 return val;
c055b101
CV
107}
108
fa88f677 109static const char *
d93859e2 110sh_sh_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 111{
a121b7c1 112 static const char *register_names[] = {
617daa0e
CV
113 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
114 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
115 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
116 "", "",
117 "", "", "", "", "", "", "", "",
118 "", "", "", "", "", "", "", "",
119 "", "",
120 "", "", "", "", "", "", "", "",
121 "", "", "", "", "", "", "", "",
da962468 122 "", "", "", "", "", "", "", "",
cc17453a
EZ
123 };
124 if (reg_nr < 0)
125 return NULL;
126 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
127 return NULL;
128 return register_names[reg_nr];
129}
130
fa88f677 131static const char *
d93859e2 132sh_sh3_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 133{
a121b7c1 134 static const char *register_names[] = {
617daa0e
CV
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
138 "", "",
139 "", "", "", "", "", "", "", "",
140 "", "", "", "", "", "", "", "",
141 "ssr", "spc",
cc17453a
EZ
142 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
143 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 144 "", "", "", "", "", "", "", "",
cc17453a
EZ
145 };
146 if (reg_nr < 0)
147 return NULL;
148 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
149 return NULL;
150 return register_names[reg_nr];
151}
152
fa88f677 153static const char *
d93859e2 154sh_sh3e_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 155{
a121b7c1 156 static const char *register_names[] = {
617daa0e
CV
157 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
158 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
159 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 160 "fpul", "fpscr",
617daa0e
CV
161 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
162 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
163 "ssr", "spc",
cc17453a
EZ
164 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
165 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 166 "", "", "", "", "", "", "", "",
cc17453a
EZ
167 };
168 if (reg_nr < 0)
169 return NULL;
170 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
171 return NULL;
172 return register_names[reg_nr];
173}
174
2d188dd3 175static const char *
d93859e2 176sh_sh2e_register_name (struct gdbarch *gdbarch, int reg_nr)
2d188dd3 177{
a121b7c1 178 static const char *register_names[] = {
617daa0e
CV
179 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
180 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
181 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 182 "fpul", "fpscr",
617daa0e
CV
183 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
184 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
185 "", "",
2d188dd3
NC
186 "", "", "", "", "", "", "", "",
187 "", "", "", "", "", "", "", "",
da962468
CV
188 "", "", "", "", "", "", "", "",
189 };
190 if (reg_nr < 0)
191 return NULL;
192 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
193 return NULL;
194 return register_names[reg_nr];
195}
196
197static const char *
d93859e2 198sh_sh2a_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468 199{
a121b7c1 200 static const char *register_names[] = {
da962468
CV
201 /* general registers 0-15 */
202 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
203 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
204 /* 16 - 22 */
205 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
206 /* 23, 24 */
207 "fpul", "fpscr",
208 /* floating point registers 25 - 40 */
209 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
210 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
211 /* 41, 42 */
212 "", "",
213 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 214 the bank register (63). */
da962468
CV
215 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
216 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
217 "machb", "ivnb", "prb", "gbrb", "maclb",
218 /* 63: register bank number, not a real register but used to
219 communicate the register bank currently get/set. This register
220 is hidden to the user, who manipulates it using the pseudo
221 register called "bank" (67). See below. */
222 "",
223 /* 64 - 66 */
224 "ibcr", "ibnr", "tbr",
225 /* 67: register bank number, the user visible pseudo register. */
226 "bank",
227 /* double precision (pseudo) 68 - 75 */
228 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
229 };
230 if (reg_nr < 0)
231 return NULL;
232 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
233 return NULL;
234 return register_names[reg_nr];
235}
236
237static const char *
d93859e2 238sh_sh2a_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
da962468 239{
a121b7c1 240 static const char *register_names[] = {
da962468
CV
241 /* general registers 0-15 */
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
244 /* 16 - 22 */
245 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
246 /* 23, 24 */
247 "", "",
248 /* floating point registers 25 - 40 */
249 "", "", "", "", "", "", "", "",
250 "", "", "", "", "", "", "", "",
251 /* 41, 42 */
252 "", "",
253 /* 43 - 62. Banked registers. The bank number used is determined by
c378eb4e 254 the bank register (63). */
da962468
CV
255 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
256 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
257 "machb", "ivnb", "prb", "gbrb", "maclb",
258 /* 63: register bank number, not a real register but used to
259 communicate the register bank currently get/set. This register
260 is hidden to the user, who manipulates it using the pseudo
261 register called "bank" (67). See below. */
262 "",
263 /* 64 - 66 */
264 "ibcr", "ibnr", "tbr",
265 /* 67: register bank number, the user visible pseudo register. */
266 "bank",
267 /* double precision (pseudo) 68 - 75 */
268 "", "", "", "", "", "", "", "",
2d188dd3
NC
269 };
270 if (reg_nr < 0)
271 return NULL;
272 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
273 return NULL;
274 return register_names[reg_nr];
275}
276
fa88f677 277static const char *
d93859e2 278sh_sh_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 279{
a121b7c1 280 static const char *register_names[] = {
617daa0e
CV
281 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
282 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
283 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
284 "", "dsr",
285 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
286 "y0", "y1", "", "", "", "", "", "mod",
287 "", "",
288 "rs", "re", "", "", "", "", "", "",
289 "", "", "", "", "", "", "", "",
da962468 290 "", "", "", "", "", "", "", "",
cc17453a
EZ
291 };
292 if (reg_nr < 0)
293 return NULL;
294 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
295 return NULL;
296 return register_names[reg_nr];
297}
298
fa88f677 299static const char *
d93859e2 300sh_sh3_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
cc17453a 301{
a121b7c1 302 static const char *register_names[] = {
617daa0e
CV
303 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
304 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
305 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
306 "", "dsr",
307 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
308 "y0", "y1", "", "", "", "", "", "mod",
309 "ssr", "spc",
310 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
311 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
312 "", "", "", "", "", "", "", "",
da962468 313 "", "", "", "", "", "", "", "",
cc17453a
EZ
314 };
315 if (reg_nr < 0)
316 return NULL;
317 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
318 return NULL;
319 return register_names[reg_nr];
320}
321
fa88f677 322static const char *
d93859e2 323sh_sh4_register_name (struct gdbarch *gdbarch, int reg_nr)
53116e27 324{
a121b7c1 325 static const char *register_names[] = {
a38d2a54 326 /* general registers 0-15 */
617daa0e
CV
327 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
328 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 329 /* 16 - 22 */
617daa0e 330 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 331 /* 23, 24 */
53116e27 332 "fpul", "fpscr",
a38d2a54 333 /* floating point registers 25 - 40 */
617daa0e
CV
334 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
335 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 336 /* 41, 42 */
617daa0e 337 "ssr", "spc",
a38d2a54 338 /* bank 0 43 - 50 */
53116e27 339 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 340 /* bank 1 51 - 58 */
53116e27 341 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 342 /* 59 - 66 */
da962468 343 "", "", "", "", "", "", "", "",
c378eb4e 344 /* pseudo bank register. */
da962468 345 "",
a6521d9a 346 /* double precision (pseudo) 68 - 75 */
617daa0e 347 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a6521d9a 348 /* vectors (pseudo) 76 - 79 */
617daa0e 349 "fv0", "fv4", "fv8", "fv12",
a6521d9a
TS
350 /* FIXME: missing XF */
351 /* FIXME: missing XD */
53116e27
EZ
352 };
353 if (reg_nr < 0)
354 return NULL;
355 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
356 return NULL;
357 return register_names[reg_nr];
358}
359
474e5826 360static const char *
d93859e2 361sh_sh4_nofpu_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826 362{
a121b7c1 363 static const char *register_names[] = {
474e5826
CV
364 /* general registers 0-15 */
365 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
366 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
367 /* 16 - 22 */
368 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
369 /* 23, 24 */
370 "", "",
371 /* floating point registers 25 - 40 -- not for nofpu target */
372 "", "", "", "", "", "", "", "",
373 "", "", "", "", "", "", "", "",
374 /* 41, 42 */
375 "ssr", "spc",
376 /* bank 0 43 - 50 */
377 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
378 /* bank 1 51 - 58 */
379 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a6521d9a 380 /* 59 - 66 */
da962468 381 "", "", "", "", "", "", "", "",
c378eb4e 382 /* pseudo bank register. */
da962468 383 "",
a6521d9a 384 /* double precision (pseudo) 68 - 75 -- not for nofpu target */
474e5826 385 "", "", "", "", "", "", "", "",
a6521d9a 386 /* vectors (pseudo) 76 - 79 -- not for nofpu target */
474e5826
CV
387 "", "", "", "",
388 };
389 if (reg_nr < 0)
390 return NULL;
391 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
392 return NULL;
393 return register_names[reg_nr];
394}
395
396static const char *
d93859e2 397sh_sh4al_dsp_register_name (struct gdbarch *gdbarch, int reg_nr)
474e5826 398{
a121b7c1 399 static const char *register_names[] = {
474e5826
CV
400 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
401 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
402 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
403 "", "dsr",
404 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
405 "y0", "y1", "", "", "", "", "", "mod",
406 "ssr", "spc",
407 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
408 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
409 "", "", "", "", "", "", "", "",
da962468 410 "", "", "", "", "", "", "", "",
474e5826
CV
411 };
412 if (reg_nr < 0)
413 return NULL;
414 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
415 return NULL;
416 return register_names[reg_nr];
417}
418
cd6c3b4f
YQ
419/* Implement the breakpoint_kind_from_pc gdbarch method. */
420
d19280ad
YQ
421static int
422sh_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
cc17453a 423{
d19280ad
YQ
424 return 2;
425}
426
cd6c3b4f
YQ
427/* Implement the sw_breakpoint_from_kind gdbarch method. */
428
d19280ad
YQ
429static const gdb_byte *
430sh_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
431{
432 *size = kind;
617daa0e 433
bac718a6
UW
434 /* For remote stub targets, trapa #20 is used. */
435 if (strcmp (target_shortname, "remote") == 0)
436 {
437 static unsigned char big_remote_breakpoint[] = { 0xc3, 0x20 };
438 static unsigned char little_remote_breakpoint[] = { 0x20, 0xc3 };
439
67d57894 440 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
d19280ad 441 return big_remote_breakpoint;
bac718a6 442 else
d19280ad 443 return little_remote_breakpoint;
bac718a6 444 }
d19280ad
YQ
445 else
446 {
447 /* 0xc3c3 is trapa #c3, and it works in big and little endian
448 modes. */
449 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
bac718a6 450
d19280ad
YQ
451 return breakpoint;
452 }
cc17453a 453}
c906108c
SS
454
455/* Prologue looks like
1c0159e0
CV
456 mov.l r14,@-r15
457 sts.l pr,@-r15
458 mov.l <regs>,@-r15
459 sub <room_for_loca_vars>,r15
460 mov r15,r14
8db62801 461
c378eb4e 462 Actually it can be more complicated than this but that's it, basically. */
c906108c 463
1c0159e0
CV
464#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
465#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
466
5f883edd
FF
467/* JSR @Rm 0100mmmm00001011 */
468#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
469
8db62801
EZ
470/* STS.L PR,@-r15 0100111100100010
471 r15-4-->r15, PR-->(r15) */
c906108c 472#define IS_STS(x) ((x) == 0x4f22)
8db62801 473
03131d99
CV
474/* STS.L MACL,@-r15 0100111100010010
475 r15-4-->r15, MACL-->(r15) */
476#define IS_MACL_STS(x) ((x) == 0x4f12)
477
8db62801
EZ
478/* MOV.L Rm,@-r15 00101111mmmm0110
479 r15-4-->r15, Rm-->(R15) */
c906108c 480#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 481
8db62801
EZ
482/* MOV r15,r14 0110111011110011
483 r15-->r14 */
c906108c 484#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
485
486/* ADD #imm,r15 01111111iiiiiiii
487 r15+imm-->r15 */
1c0159e0 488#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 489
c906108c
SS
490#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
491#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
492
493/* ADD r3,r15 0011111100111100
494 r15+r3-->r15 */
c906108c 495#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
496
497/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 498 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 499 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907 500/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
c378eb4e 501 make this entirely clear. */
1c0159e0
CV
502/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
503#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
504
505/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
506#define IS_MOV_ARG_TO_REG(x) \
507 (((x) & 0xf00f) == 0x6003 && \
508 ((x) & 0x00f0) >= 0x0040 && \
509 ((x) & 0x00f0) <= 0x0070)
510/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
511#define IS_MOV_ARG_TO_IND_R14(x) \
512 (((x) & 0xff0f) == 0x2e02 && \
513 ((x) & 0x00f0) >= 0x0040 && \
514 ((x) & 0x00f0) <= 0x0070)
515/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
516#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
517 (((x) & 0xff00) == 0x1e00 && \
518 ((x) & 0x00f0) >= 0x0040 && \
519 ((x) & 0x00f0) <= 0x0070)
520
521/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
522#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
523/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
524#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
525/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
526#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
527/* SUB Rn,R15 00111111nnnn1000 */
528#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 529
1c0159e0 530#define FPSCR_SZ (1 << 20)
cc17453a 531
c378eb4e 532/* The following instructions are used for epilogue testing. */
1c0159e0
CV
533#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
534#define IS_RTS(x) ((x) == 0x000b)
535#define IS_LDS(x) ((x) == 0x4f26)
03131d99 536#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
537#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
538#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
539#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 540
cc17453a 541static CORE_ADDR
e17a4113 542sh_analyze_prologue (struct gdbarch *gdbarch,
5cbb9812 543 CORE_ADDR pc, CORE_ADDR limit_pc,
d2ca4222 544 struct sh_frame_cache *cache, ULONGEST fpscr)
617daa0e 545{
e17a4113 546 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0 547 ULONGEST inst;
1c0159e0
CV
548 int offset;
549 int sav_offset = 0;
c906108c 550 int r3_val = 0;
1c0159e0 551 int reg, sav_reg = -1;
cc17453a 552
1c0159e0 553 cache->uses_fp = 0;
5cbb9812 554 for (; pc < limit_pc; pc += 2)
cc17453a 555 {
e17a4113 556 inst = read_memory_unsigned_integer (pc, 2, byte_order);
c378eb4e 557 /* See where the registers will be saved to. */
f2ea0907 558 if (IS_PUSH (inst))
cc17453a 559 {
1c0159e0
CV
560 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
561 cache->sp_offset += 4;
cc17453a 562 }
f2ea0907 563 else if (IS_STS (inst))
cc17453a 564 {
1c0159e0
CV
565 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
566 cache->sp_offset += 4;
cc17453a 567 }
03131d99
CV
568 else if (IS_MACL_STS (inst))
569 {
570 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
571 cache->sp_offset += 4;
572 }
f2ea0907 573 else if (IS_MOV_R3 (inst))
cc17453a 574 {
f2ea0907 575 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 576 }
f2ea0907 577 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
578 {
579 r3_val <<= 1;
580 }
f2ea0907 581 else if (IS_ADD_R3SP (inst))
cc17453a 582 {
1c0159e0 583 cache->sp_offset += -r3_val;
cc17453a 584 }
f2ea0907 585 else if (IS_ADD_IMM_SP (inst))
cc17453a 586 {
1c0159e0
CV
587 offset = ((inst & 0xff) ^ 0x80) - 0x80;
588 cache->sp_offset -= offset;
c906108c 589 }
1c0159e0 590 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 591 {
1c0159e0
CV
592 if (sav_reg < 0)
593 {
594 reg = GET_TARGET_REG (inst);
595 if (reg < 14)
596 {
597 sav_reg = reg;
a2b4a96c 598 offset = (inst & 0xff) << 1;
1c0159e0 599 sav_offset =
e17a4113 600 read_memory_integer ((pc + 4) + offset, 2, byte_order);
1c0159e0
CV
601 }
602 }
c906108c 603 }
1c0159e0 604 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 605 {
1c0159e0
CV
606 if (sav_reg < 0)
607 {
a2b4a96c 608 reg = GET_TARGET_REG (inst);
1c0159e0
CV
609 if (reg < 14)
610 {
611 sav_reg = reg;
a2b4a96c 612 offset = (inst & 0xff) << 2;
1c0159e0 613 sav_offset =
e17a4113
UW
614 read_memory_integer (((pc & 0xfffffffc) + 4) + offset,
615 4, byte_order);
1c0159e0
CV
616 }
617 }
c906108c 618 }
5cbb9812
TS
619 else if (IS_MOVI20 (inst)
620 && (pc + 2 < limit_pc))
03131d99
CV
621 {
622 if (sav_reg < 0)
623 {
624 reg = GET_TARGET_REG (inst);
625 if (reg < 14)
626 {
627 sav_reg = reg;
628 sav_offset = GET_SOURCE_REG (inst) << 16;
c378eb4e 629 /* MOVI20 is a 32 bit instruction! */
03131d99 630 pc += 2;
e17a4113
UW
631 sav_offset
632 |= read_memory_unsigned_integer (pc, 2, byte_order);
03131d99
CV
633 /* Now sav_offset contains an unsigned 20 bit value.
634 It must still get sign extended. */
635 if (sav_offset & 0x00080000)
636 sav_offset |= 0xfff00000;
637 }
638 }
639 }
1c0159e0 640 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 641 {
1c0159e0
CV
642 reg = GET_SOURCE_REG (inst);
643 if (sav_reg > 0 && reg == sav_reg)
644 {
645 sav_reg = -1;
646 }
647 cache->sp_offset += sav_offset;
c906108c 648 }
f2ea0907 649 else if (IS_FPUSH (inst))
c906108c 650 {
d2ca4222 651 if (fpscr & FPSCR_SZ)
c906108c 652 {
1c0159e0 653 cache->sp_offset += 8;
c906108c
SS
654 }
655 else
656 {
1c0159e0 657 cache->sp_offset += 4;
c906108c
SS
658 }
659 }
f2ea0907 660 else if (IS_MOV_SP_FP (inst))
617daa0e 661 {
5cbb9812
TS
662 pc += 2;
663 /* Don't go any further than six more instructions. */
325fac50 664 limit_pc = std::min (limit_pc, pc + (2 * 6));
5cbb9812 665
960ccd7d 666 cache->uses_fp = 1;
1c0159e0
CV
667 /* At this point, only allow argument register moves to other
668 registers or argument register moves to @(X,fp) which are
669 moving the register arguments onto the stack area allocated
670 by a former add somenumber to SP call. Don't allow moving
c378eb4e 671 to an fp indirect address above fp + cache->sp_offset. */
5cbb9812 672 for (; pc < limit_pc; pc += 2)
1c0159e0 673 {
e17a4113 674 inst = read_memory_integer (pc, 2, byte_order);
1c0159e0 675 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 676 {
1c0159e0
CV
677 reg = GET_SOURCE_REG (inst);
678 if (cache->sp_offset > 0)
617daa0e 679 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
680 }
681 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 682 {
1c0159e0
CV
683 reg = GET_SOURCE_REG (inst);
684 offset = (inst & 0xf) * 4;
685 if (cache->sp_offset > offset)
686 cache->saved_regs[reg] = cache->sp_offset - offset;
687 }
688 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 689 continue;
1c0159e0
CV
690 else
691 break;
692 }
693 break;
694 }
5f883edd
FF
695 else if (IS_JSR (inst))
696 {
697 /* We have found a jsr that has been scheduled into the prologue.
698 If we continue the scan and return a pc someplace after this,
699 then setting a breakpoint on this function will cause it to
700 appear to be called after the function it is calling via the
701 jsr, which will be very confusing. Most likely the next
702 instruction is going to be IS_MOV_SP_FP in the delay slot. If
c378eb4e 703 so, note that before returning the current pc. */
5cbb9812
TS
704 if (pc + 2 < limit_pc)
705 {
706 inst = read_memory_integer (pc + 2, 2, byte_order);
707 if (IS_MOV_SP_FP (inst))
708 cache->uses_fp = 1;
709 }
5f883edd
FF
710 break;
711 }
c378eb4e
MS
712#if 0 /* This used to just stop when it found an instruction
713 that was not considered part of the prologue. Now,
714 we just keep going looking for likely
715 instructions. */
c906108c
SS
716 else
717 break;
2bfa91ee 718#endif
c906108c
SS
719 }
720
1c0159e0
CV
721 return pc;
722}
c906108c 723
c378eb4e 724/* Skip any prologue before the guts of a function. */
1c0159e0 725static CORE_ADDR
8a8bc27f 726sh_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
c906108c 727{
5cbb9812 728 CORE_ADDR post_prologue_pc, func_addr, func_end_addr, limit_pc;
1c0159e0
CV
729 struct sh_frame_cache cache;
730
731 /* See if we can determine the end of the prologue via the symbol table.
732 If so, then return either PC, or the PC after the prologue, whichever
733 is greater. */
5cbb9812 734 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end_addr))
8a8bc27f
TS
735 {
736 post_prologue_pc = skip_prologue_using_sal (gdbarch, func_addr);
737 if (post_prologue_pc != 0)
325fac50 738 return std::max (pc, post_prologue_pc);
8a8bc27f 739 }
cc17453a 740
8a8bc27f
TS
741 /* Can't determine prologue from the symbol table, need to examine
742 instructions. */
c906108c 743
5cbb9812
TS
744 /* Find an upper limit on the function prologue using the debug
745 information. If the debug information could not be used to provide
746 that bound, then use an arbitrary large number as the upper bound. */
747 limit_pc = skip_prologue_using_sal (gdbarch, pc);
748 if (limit_pc == 0)
749 /* Don't go any further than 28 instructions. */
750 limit_pc = pc + (2 * 28);
751
752 /* Do not allow limit_pc to be past the function end, if we know
753 where that end is... */
754 if (func_end_addr != 0)
325fac50 755 limit_pc = std::min (limit_pc, func_end_addr);
5cbb9812 756
1c0159e0 757 cache.sp_offset = -4;
5cbb9812 758 post_prologue_pc = sh_analyze_prologue (gdbarch, pc, limit_pc, &cache, 0);
8a8bc27f
TS
759 if (cache.uses_fp)
760 pc = post_prologue_pc;
c906108c 761
1c0159e0
CV
762 return pc;
763}
764
2e952408 765/* The ABI says:
9a5cef92
EZ
766
767 Aggregate types not bigger than 8 bytes that have the same size and
768 alignment as one of the integer scalar types are returned in the
769 same registers as the integer type they match.
770
771 For example, a 2-byte aligned structure with size 2 bytes has the
772 same size and alignment as a short int, and will be returned in R0.
773 A 4-byte aligned structure with size 8 bytes has the same size and
774 alignment as a long long int, and will be returned in R0 and R1.
775
776 When an aggregate type is returned in R0 and R1, R0 contains the
777 first four bytes of the aggregate, and R1 contains the
c378eb4e 778 remainder. If the size of the aggregate type is not a multiple of 4
9a5cef92 779 bytes, the aggregate is tail-padded up to a multiple of 4
c378eb4e 780 bytes. The value of the padding is undefined. For little-endian
9a5cef92
EZ
781 targets the padding will appear at the most significant end of the
782 last element, for big-endian targets the padding appears at the
783 least significant end of the last element.
784
c378eb4e 785 All other aggregate types are returned by address. The caller
9a5cef92 786 function passes the address of an area large enough to hold the
c378eb4e 787 aggregate value in R2. The called function stores the result in
7fe958be 788 this location.
9a5cef92
EZ
789
790 To reiterate, structs smaller than 8 bytes could also be returned
791 in memory, if they don't pass the "same size and alignment as an
792 integer type" rule.
793
794 For example, in
795
796 struct s { char c[3]; } wibble;
797 struct s foo(void) { return wibble; }
798
799 the return value from foo() will be in memory, not
800 in R0, because there is no 3-byte integer type.
801
7fe958be
EZ
802 Similarly, in
803
804 struct s { char c[2]; } wibble;
805 struct s foo(void) { return wibble; }
806
807 because a struct containing two chars has alignment 1, that matches
808 type char, but size 2, that matches type short. There's no integer
809 type that has alignment 1 and size 2, so the struct is returned in
c378eb4e 810 memory. */
9a5cef92 811
1c0159e0 812static int
c055b101 813sh_use_struct_convention (int renesas_abi, struct type *type)
1c0159e0
CV
814{
815 int len = TYPE_LENGTH (type);
816 int nelem = TYPE_NFIELDS (type);
3f997a97 817
c055b101
CV
818 /* The Renesas ABI returns aggregate types always on stack. */
819 if (renesas_abi && (TYPE_CODE (type) == TYPE_CODE_STRUCT
820 || TYPE_CODE (type) == TYPE_CODE_UNION))
821 return 1;
822
3f997a97
CV
823 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
824 fit in two registers anyway) use struct convention. */
825 if (len != 1 && len != 2 && len != 4 && len != 8)
826 return 1;
827
828 /* Scalar types and aggregate types with exactly one field are aligned
829 by definition. They are returned in registers. */
830 if (nelem <= 1)
831 return 0;
832
833 /* If the first field in the aggregate has the same length as the entire
834 aggregate type, the type is returned in registers. */
835 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
836 return 0;
837
838 /* If the size of the aggregate is 8 bytes and the first field is
839 of size 4 bytes its alignment is equal to long long's alignment,
840 so it's returned in registers. */
841 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
842 return 0;
843
844 /* Otherwise use struct convention. */
845 return 1;
283150cd
EZ
846}
847
c055b101
CV
848static int
849sh_use_struct_convention_nofpu (int renesas_abi, struct type *type)
850{
851 /* The Renesas ABI returns long longs/doubles etc. always on stack. */
852 if (renesas_abi && TYPE_NFIELDS (type) == 0 && TYPE_LENGTH (type) >= 8)
853 return 1;
854 return sh_use_struct_convention (renesas_abi, type);
855}
856
19f59343
MS
857static CORE_ADDR
858sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
859{
860 return sp & ~3;
861}
862
55ff77ac 863/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
864 Setup the function arguments for calling a function in the inferior.
865
85a453d5 866 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
867 which are dedicated for passing function arguments. Up to the first
868 four arguments (depending on size) may go into these registers.
869 The rest go on the stack.
870
6df2bf50
MS
871 MVS: Except on SH variants that have floating point registers.
872 In that case, float and double arguments are passed in the same
873 manner, but using FP registers instead of GP registers.
874
c906108c
SS
875 Arguments that are smaller than 4 bytes will still take up a whole
876 register or a whole 32-bit word on the stack, and will be
877 right-justified in the register or the stack word. This includes
878 chars, shorts, and small aggregate types.
879
880 Arguments that are larger than 4 bytes may be split between two or
881 more registers. If there are not enough registers free, an argument
882 may be passed partly in a register (or registers), and partly on the
c378eb4e 883 stack. This includes doubles, long longs, and larger aggregates.
c906108c
SS
884 As far as I know, there is no upper limit to the size of aggregates
885 that will be passed in this way; in other words, the convention of
886 passing a pointer to a large aggregate instead of a copy is not used.
887
6df2bf50 888 MVS: The above appears to be true for the SH variants that do not
55ff77ac 889 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
890 aggregate argument onto the stack (and not place it in registers)
891 if it is larger than 16 bytes (four GP registers).
892
c906108c
SS
893 An exceptional case exists for struct arguments (and possibly other
894 aggregates such as arrays) if the size is larger than 4 bytes but
895 not a multiple of 4 bytes. In this case the argument is never split
896 between the registers and the stack, but instead is copied in its
897 entirety onto the stack, AND also copied into as many registers as
898 there is room for. In other words, space in registers permitting,
899 two copies of the same argument are passed in. As far as I can tell,
900 only the one on the stack is used, although that may be a function
901 of the level of compiler optimization. I suspect this is a compiler
902 bug. Arguments of these odd sizes are left-justified within the
903 word (as opposed to arguments smaller than 4 bytes, which are
904 right-justified).
c5aa993b 905
c906108c
SS
906 If the function is to return an aggregate type such as a struct, it
907 is either returned in the normal return value register R0 (if its
908 size is no greater than one byte), or else the caller must allocate
909 space into which the callee will copy the return value (if the size
910 is greater than one byte). In this case, a pointer to the return
911 value location is passed into the callee in register R2, which does
912 not displace any of the other arguments passed in via registers R4
c378eb4e 913 to R7. */
c906108c 914
405feb71 915/* Helper function to justify value in register according to endianness. */
948f8e3d 916static const gdb_byte *
d93859e2 917sh_justify_value_in_reg (struct gdbarch *gdbarch, struct value *val, int len)
e5e33cd9 918{
948f8e3d 919 static gdb_byte valbuf[4];
e5e33cd9 920
617daa0e 921 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
922 if (len < 4)
923 {
c378eb4e 924 /* value gets right-justified in the register or stack word. */
d93859e2 925 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
948f8e3d 926 memcpy (valbuf + (4 - len), value_contents (val), len);
e5e33cd9 927 else
948f8e3d 928 memcpy (valbuf, value_contents (val), len);
e5e33cd9
CV
929 return valbuf;
930 }
948f8e3d 931 return value_contents (val);
617daa0e 932}
e5e33cd9 933
c378eb4e 934/* Helper function to eval number of bytes to allocate on stack. */
e5e33cd9
CV
935static CORE_ADDR
936sh_stack_allocsize (int nargs, struct value **args)
937{
938 int stack_alloc = 0;
939 while (nargs-- > 0)
4991999e 940 stack_alloc += ((TYPE_LENGTH (value_type (args[nargs])) + 3) & ~3);
e5e33cd9
CV
941 return stack_alloc;
942}
943
944/* Helper functions for getting the float arguments right. Registers usage
405feb71 945 depends on the ABI and the endianness. The comments should enlighten how
c378eb4e 946 it's intended to work. */
e5e33cd9 947
c378eb4e 948/* This array stores which of the float arg registers are already in use. */
e5e33cd9
CV
949static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
950
c378eb4e 951/* This function just resets the above array to "no reg used so far". */
e5e33cd9
CV
952static void
953sh_init_flt_argreg (void)
954{
955 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
956}
957
958/* This function returns the next register to use for float arg passing.
959 It returns either a valid value between FLOAT_ARG0_REGNUM and
960 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
961 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
962
963 Note that register number 0 in flt_argreg_array corresponds with the
964 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
965 29) the parity of the register number is preserved, which is important
c378eb4e 966 for the double register passing test (see the "argreg & 1" test below). */
e5e33cd9 967static int
c055b101 968sh_next_flt_argreg (struct gdbarch *gdbarch, int len, struct type *func_type)
e5e33cd9
CV
969{
970 int argreg;
971
c378eb4e 972 /* First search for the next free register. */
617daa0e
CV
973 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
974 ++argreg)
e5e33cd9
CV
975 if (!flt_argreg_array[argreg])
976 break;
977
c378eb4e 978 /* No register left? */
e5e33cd9
CV
979 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
980 return FLOAT_ARGLAST_REGNUM + 1;
981
982 if (len == 8)
983 {
c378eb4e 984 /* Doubles are always starting in a even register number. */
e5e33cd9 985 if (argreg & 1)
617daa0e 986 {
c055b101
CV
987 /* In gcc ABI, the skipped register is lost for further argument
988 passing now. Not so in Renesas ABI. */
989 if (!sh_is_renesas_calling_convention (func_type))
990 flt_argreg_array[argreg] = 1;
e5e33cd9
CV
991
992 ++argreg;
993
c378eb4e 994 /* No register left? */
e5e33cd9
CV
995 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
996 return FLOAT_ARGLAST_REGNUM + 1;
997 }
c378eb4e 998 /* Also mark the next register as used. */
e5e33cd9
CV
999 flt_argreg_array[argreg + 1] = 1;
1000 }
c055b101
CV
1001 else if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
1002 && !sh_is_renesas_calling_convention (func_type))
e5e33cd9 1003 {
c378eb4e 1004 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
e5e33cd9
CV
1005 if (!flt_argreg_array[argreg + 1])
1006 ++argreg;
1007 }
1008 flt_argreg_array[argreg] = 1;
1009 return FLOAT_ARG0_REGNUM + argreg;
1010}
1011
afce3d2a
CV
1012/* Helper function which figures out, if a type is treated like a float type.
1013
2e952408 1014 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
1015 Structures with exactly one member, which is of type float or double, are
1016 treated exactly as the base types float or double:
1017
1018 struct sf {
1019 float f;
1020 };
1021
1022 struct sd {
1023 double d;
1024 };
1025
1026 are handled the same way as just
1027
1028 float f;
1029
1030 double d;
1031
1032 As a result, arguments of these struct types are pushed into floating point
1033 registers exactly as floats or doubles, using the same decision algorithm.
1034
1035 The same is valid if these types are used as function return types. The
1036 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
1037 or even using struct convention as it is for other structs. */
1038
1039static int
1040sh_treat_as_flt_p (struct type *type)
1041{
afce3d2a
CV
1042 /* Ordinary float types are obviously treated as float. */
1043 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1044 return 1;
1045 /* Otherwise non-struct types are not treated as float. */
1046 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
1047 return 0;
405feb71 1048 /* Otherwise structs with more than one member are not treated as float. */
afce3d2a
CV
1049 if (TYPE_NFIELDS (type) != 1)
1050 return 0;
1051 /* Otherwise if the type of that member is float, the whole type is
1052 treated as float. */
1053 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1054 return 1;
1055 /* Otherwise it's not treated as float. */
1056 return 0;
1057}
1058
cc17453a 1059static CORE_ADDR
617daa0e 1060sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1061 struct value *function,
617daa0e 1062 struct regcache *regcache,
6df2bf50 1063 CORE_ADDR bp_addr, int nargs,
617daa0e 1064 struct value **args,
cf84fa6b 1065 CORE_ADDR sp, function_call_return_method return_method,
6df2bf50
MS
1066 CORE_ADDR struct_addr)
1067{
e17a4113 1068 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1069 int stack_offset = 0;
1070 int argreg = ARG0_REGNUM;
8748518b 1071 int flt_argreg = 0;
6df2bf50 1072 int argnum;
c055b101 1073 struct type *func_type = value_type (function);
6df2bf50
MS
1074 struct type *type;
1075 CORE_ADDR regval;
948f8e3d 1076 const gdb_byte *val;
8748518b 1077 int len, reg_size = 0;
afce3d2a
CV
1078 int pass_on_stack = 0;
1079 int treat_as_flt;
c055b101
CV
1080 int last_reg_arg = INT_MAX;
1081
1082 /* The Renesas ABI expects all varargs arguments, plus the last
1083 non-vararg argument to be on the stack, no matter how many
1084 registers have been used so far. */
1085 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1086 && TYPE_VARARGS (func_type))
c055b101 1087 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
6df2bf50 1088
c378eb4e 1089 /* First force sp to a 4-byte alignment. */
6df2bf50
MS
1090 sp = sh_frame_align (gdbarch, sp);
1091
c378eb4e 1092 /* Make room on stack for args. */
e5e33cd9
CV
1093 sp -= sh_stack_allocsize (nargs, args);
1094
c378eb4e 1095 /* Initialize float argument mechanism. */
e5e33cd9 1096 sh_init_flt_argreg ();
6df2bf50
MS
1097
1098 /* Now load as many as possible of the first arguments into
1099 registers, and push the rest onto the stack. There are 16 bytes
1100 in four registers available. Loop thru args from first to last. */
e5e33cd9 1101 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50 1102 {
4991999e 1103 type = value_type (args[argnum]);
6df2bf50 1104 len = TYPE_LENGTH (type);
d93859e2 1105 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
e5e33cd9
CV
1106
1107 /* Some decisions have to be made how various types are handled.
c378eb4e 1108 This also differs in different ABIs. */
e5e33cd9 1109 pass_on_stack = 0;
e5e33cd9 1110
c378eb4e 1111 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1112 treat_as_flt = sh_treat_as_flt_p (type);
1113 if (treat_as_flt)
c055b101
CV
1114 flt_argreg = sh_next_flt_argreg (gdbarch, len, func_type);
1115 /* In Renesas ABI, long longs and aggregate types are always passed
1116 on stack. */
1117 else if (sh_is_renesas_calling_convention (func_type)
1118 && ((TYPE_CODE (type) == TYPE_CODE_INT && len == 8)
1119 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1120 || TYPE_CODE (type) == TYPE_CODE_UNION))
1121 pass_on_stack = 1;
afce3d2a
CV
1122 /* In contrast to non-FPU CPUs, arguments are never split between
1123 registers and stack. If an argument doesn't fit in the remaining
1124 registers it's always pushed entirely on the stack. */
1125 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1126 pass_on_stack = 1;
48db5a3c 1127
6df2bf50
MS
1128 while (len > 0)
1129 {
afce3d2a
CV
1130 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1131 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
c055b101
CV
1132 || pass_on_stack))
1133 || argnum > last_reg_arg)
617daa0e 1134 {
c378eb4e 1135 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1136 reg_size = (len + 3) & ~3;
1137 write_memory (sp + stack_offset, val, reg_size);
1138 stack_offset += reg_size;
6df2bf50 1139 }
afce3d2a 1140 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1141 {
e5e33cd9
CV
1142 /* Argument goes in a float argument register. */
1143 reg_size = register_size (gdbarch, flt_argreg);
e17a4113 1144 regval = extract_unsigned_integer (val, reg_size, byte_order);
2e952408
CV
1145 /* In little endian mode, float types taking two registers
1146 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1147 be stored swapped in the argument registers. The below
1148 code first writes the first 32 bits in the next but one
1149 register, increments the val and len values accordingly
1150 and then proceeds as normal by writing the second 32 bits
c378eb4e 1151 into the next register. */
b47193f7 1152 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE
2e952408
CV
1153 && TYPE_LENGTH (type) == 2 * reg_size)
1154 {
1155 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1156 regval);
1157 val += reg_size;
1158 len -= reg_size;
c378eb4e
MS
1159 regval = extract_unsigned_integer (val, reg_size,
1160 byte_order);
2e952408 1161 }
6df2bf50
MS
1162 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1163 }
afce3d2a 1164 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1165 {
6df2bf50 1166 /* there's room in a register */
e5e33cd9 1167 reg_size = register_size (gdbarch, argreg);
e17a4113 1168 regval = extract_unsigned_integer (val, reg_size, byte_order);
6df2bf50
MS
1169 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1170 }
c378eb4e
MS
1171 /* Store the value one register at a time or in one step on
1172 stack. */
e5e33cd9
CV
1173 len -= reg_size;
1174 val += reg_size;
6df2bf50
MS
1175 }
1176 }
1177
cf84fa6b 1178 if (return_method == return_method_struct)
c055b101
CV
1179 {
1180 if (sh_is_renesas_calling_convention (func_type))
1181 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1182 the stack and store the struct return address there. */
e17a4113 1183 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1184 else
1185 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1186 its own dedicated register. */
1187 regcache_cooked_write_unsigned (regcache,
1188 STRUCT_RETURN_REGNUM, struct_addr);
1189 }
1190
c378eb4e 1191 /* Store return address. */
55ff77ac 1192 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1193
1194 /* Update stack pointer. */
3e8c568d 1195 regcache_cooked_write_unsigned (regcache,
b47193f7 1196 gdbarch_sp_regnum (gdbarch), sp);
6df2bf50
MS
1197
1198 return sp;
1199}
1200
1201static CORE_ADDR
617daa0e 1202sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1203 struct value *function,
617daa0e
CV
1204 struct regcache *regcache,
1205 CORE_ADDR bp_addr,
1206 int nargs, struct value **args,
cf84fa6b
AH
1207 CORE_ADDR sp,
1208 function_call_return_method return_method,
6df2bf50 1209 CORE_ADDR struct_addr)
c906108c 1210{
e17a4113 1211 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
e5e33cd9
CV
1212 int stack_offset = 0;
1213 int argreg = ARG0_REGNUM;
c906108c 1214 int argnum;
c055b101 1215 struct type *func_type = value_type (function);
c906108c
SS
1216 struct type *type;
1217 CORE_ADDR regval;
948f8e3d 1218 const gdb_byte *val;
c055b101
CV
1219 int len, reg_size = 0;
1220 int pass_on_stack = 0;
1221 int last_reg_arg = INT_MAX;
1222
1223 /* The Renesas ABI expects all varargs arguments, plus the last
1224 non-vararg argument to be on the stack, no matter how many
1225 registers have been used so far. */
1226 if (sh_is_renesas_calling_convention (func_type)
876cecd0 1227 && TYPE_VARARGS (func_type))
c055b101 1228 last_reg_arg = TYPE_NFIELDS (func_type) - 2;
c906108c 1229
c378eb4e 1230 /* First force sp to a 4-byte alignment. */
19f59343 1231 sp = sh_frame_align (gdbarch, sp);
c906108c 1232
c378eb4e 1233 /* Make room on stack for args. */
e5e33cd9 1234 sp -= sh_stack_allocsize (nargs, args);
c906108c 1235
c906108c
SS
1236 /* Now load as many as possible of the first arguments into
1237 registers, and push the rest onto the stack. There are 16 bytes
1238 in four registers available. Loop thru args from first to last. */
e5e33cd9 1239 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1240 {
4991999e 1241 type = value_type (args[argnum]);
c5aa993b 1242 len = TYPE_LENGTH (type);
d93859e2 1243 val = sh_justify_value_in_reg (gdbarch, args[argnum], len);
c906108c 1244
c055b101 1245 /* Some decisions have to be made how various types are handled.
c378eb4e 1246 This also differs in different ABIs. */
c055b101
CV
1247 pass_on_stack = 0;
1248 /* Renesas ABI pushes doubles and long longs entirely on stack.
1249 Same goes for aggregate types. */
1250 if (sh_is_renesas_calling_convention (func_type)
1251 && ((TYPE_CODE (type) == TYPE_CODE_INT && len >= 8)
1252 || (TYPE_CODE (type) == TYPE_CODE_FLT && len >= 8)
1253 || TYPE_CODE (type) == TYPE_CODE_STRUCT
1254 || TYPE_CODE (type) == TYPE_CODE_UNION))
1255 pass_on_stack = 1;
c906108c
SS
1256 while (len > 0)
1257 {
c055b101
CV
1258 if (argreg > ARGLAST_REGNUM || pass_on_stack
1259 || argnum > last_reg_arg)
617daa0e 1260 {
e5e33cd9 1261 /* The remainder of the data goes entirely on the stack,
c378eb4e 1262 4-byte aligned. */
e5e33cd9
CV
1263 reg_size = (len + 3) & ~3;
1264 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1265 stack_offset += reg_size;
c906108c 1266 }
e5e33cd9 1267 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1268 {
c378eb4e 1269 /* There's room in a register. */
e5e33cd9 1270 reg_size = register_size (gdbarch, argreg);
e17a4113 1271 regval = extract_unsigned_integer (val, reg_size, byte_order);
48db5a3c 1272 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1273 }
e5e33cd9
CV
1274 /* Store the value reg_size bytes at a time. This means that things
1275 larger than reg_size bytes may go partly in registers and partly
c906108c 1276 on the stack. */
e5e33cd9
CV
1277 len -= reg_size;
1278 val += reg_size;
c906108c
SS
1279 }
1280 }
48db5a3c 1281
cf84fa6b 1282 if (return_method == return_method_struct)
c055b101
CV
1283 {
1284 if (sh_is_renesas_calling_convention (func_type))
1285 /* If the function uses the Renesas ABI, subtract another 4 bytes from
1286 the stack and store the struct return address there. */
e17a4113 1287 write_memory_unsigned_integer (sp -= 4, 4, byte_order, struct_addr);
c055b101
CV
1288 else
1289 /* Using the gcc ABI, the "struct return pointer" pseudo-argument has
1290 its own dedicated register. */
1291 regcache_cooked_write_unsigned (regcache,
1292 STRUCT_RETURN_REGNUM, struct_addr);
1293 }
1294
c378eb4e 1295 /* Store return address. */
55ff77ac 1296 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1297
1298 /* Update stack pointer. */
3e8c568d 1299 regcache_cooked_write_unsigned (regcache,
b47193f7 1300 gdbarch_sp_regnum (gdbarch), sp);
48db5a3c 1301
c906108c
SS
1302 return sp;
1303}
1304
cc17453a
EZ
1305/* Find a function's return value in the appropriate registers (in
1306 regbuf), and copy it into valbuf. Extract from an array REGBUF
1307 containing the (raw) register state a function return value of type
1308 TYPE, and copy that, in virtual format, into VALBUF. */
1309static void
3ffc5b9b 1310sh_extract_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1311 gdb_byte *valbuf)
c906108c 1312{
ac7936df 1313 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1314 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
cc17453a 1315 int len = TYPE_LENGTH (type);
617daa0e 1316
cc17453a 1317 if (len <= 4)
3116c80a 1318 {
48db5a3c
CV
1319 ULONGEST c;
1320
1321 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
e17a4113 1322 store_unsigned_integer (valbuf, len, byte_order, c);
3116c80a 1323 }
48db5a3c 1324 else if (len == 8)
3116c80a 1325 {
48db5a3c
CV
1326 int i, regnum = R0_REGNUM;
1327 for (i = 0; i < len; i += 4)
0b883586 1328 regcache->raw_read (regnum++, valbuf + i);
3116c80a
EZ
1329 }
1330 else
8a3fe4f8 1331 error (_("bad size for return value"));
3116c80a
EZ
1332}
1333
1334static void
3ffc5b9b 1335sh_extract_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1336 gdb_byte *valbuf)
3116c80a 1337{
ac7936df 1338 struct gdbarch *gdbarch = regcache->arch ();
afce3d2a 1339 if (sh_treat_as_flt_p (type))
3116c80a 1340 {
48db5a3c 1341 int len = TYPE_LENGTH (type);
d93859e2 1342 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1343 for (i = 0; i < len; i += 4)
d93859e2 1344 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
0b883586 1345 regcache->raw_read (regnum++,
948f8e3d 1346 valbuf + len - 4 - i);
2e952408 1347 else
0b883586 1348 regcache->raw_read (regnum++, valbuf + i);
3116c80a 1349 }
cc17453a 1350 else
3ffc5b9b 1351 sh_extract_return_value_nofpu (type, regcache, valbuf);
cc17453a 1352}
c906108c 1353
cc17453a
EZ
1354/* Write into appropriate registers a function return value
1355 of type TYPE, given in virtual format.
1356 If the architecture is sh4 or sh3e, store a function's return value
1357 in the R0 general register or in the FP0 floating point register,
c378eb4e
MS
1358 depending on the type of the return value. In all the other cases
1359 the result is stored in r0, left-justified. */
cc17453a 1360static void
3ffc5b9b 1361sh_store_return_value_nofpu (struct type *type, struct regcache *regcache,
948f8e3d 1362 const gdb_byte *valbuf)
cc17453a 1363{
ac7936df 1364 struct gdbarch *gdbarch = regcache->arch ();
e17a4113 1365 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
48db5a3c
CV
1366 ULONGEST val;
1367 int len = TYPE_LENGTH (type);
d19b71be 1368
48db5a3c 1369 if (len <= 4)
d19b71be 1370 {
e17a4113 1371 val = extract_unsigned_integer (valbuf, len, byte_order);
48db5a3c 1372 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1373 }
1374 else
48db5a3c
CV
1375 {
1376 int i, regnum = R0_REGNUM;
1377 for (i = 0; i < len; i += 4)
10eaee5f 1378 regcache->raw_write (regnum++, valbuf + i);
48db5a3c 1379 }
cc17453a 1380}
c906108c 1381
cc17453a 1382static void
3ffc5b9b 1383sh_store_return_value_fpu (struct type *type, struct regcache *regcache,
948f8e3d 1384 const gdb_byte *valbuf)
cc17453a 1385{
ac7936df 1386 struct gdbarch *gdbarch = regcache->arch ();
afce3d2a 1387 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1388 {
1389 int len = TYPE_LENGTH (type);
d93859e2 1390 int i, regnum = gdbarch_fp0_regnum (gdbarch);
48db5a3c 1391 for (i = 0; i < len; i += 4)
d93859e2 1392 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
10eaee5f 1393 regcache->raw_write (regnum++,
948f8e3d 1394 valbuf + len - 4 - i);
c8a3b559 1395 else
10eaee5f 1396 regcache->raw_write (regnum++, valbuf + i);
48db5a3c 1397 }
cc17453a 1398 else
3ffc5b9b 1399 sh_store_return_value_nofpu (type, regcache, valbuf);
c906108c
SS
1400}
1401
c0409442 1402static enum return_value_convention
6a3a010b 1403sh_return_value_nofpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1404 struct type *type, struct regcache *regcache,
18cf8b5b 1405 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1406{
6a3a010b
MR
1407 struct type *func_type = function ? value_type (function) : NULL;
1408
c055b101
CV
1409 if (sh_use_struct_convention_nofpu (
1410 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1411 return RETURN_VALUE_STRUCT_CONVENTION;
1412 if (writebuf)
3ffc5b9b 1413 sh_store_return_value_nofpu (type, regcache, writebuf);
c0409442 1414 else if (readbuf)
3ffc5b9b 1415 sh_extract_return_value_nofpu (type, regcache, readbuf);
c0409442
CV
1416 return RETURN_VALUE_REGISTER_CONVENTION;
1417}
1418
1419static enum return_value_convention
6a3a010b 1420sh_return_value_fpu (struct gdbarch *gdbarch, struct value *function,
c055b101 1421 struct type *type, struct regcache *regcache,
18cf8b5b 1422 gdb_byte *readbuf, const gdb_byte *writebuf)
c0409442 1423{
6a3a010b
MR
1424 struct type *func_type = function ? value_type (function) : NULL;
1425
c055b101
CV
1426 if (sh_use_struct_convention (
1427 sh_is_renesas_calling_convention (func_type), type))
c0409442
CV
1428 return RETURN_VALUE_STRUCT_CONVENTION;
1429 if (writebuf)
3ffc5b9b 1430 sh_store_return_value_fpu (type, regcache, writebuf);
c0409442 1431 else if (readbuf)
3ffc5b9b 1432 sh_extract_return_value_fpu (type, regcache, readbuf);
c0409442
CV
1433 return RETURN_VALUE_REGISTER_CONVENTION;
1434}
1435
da962468
CV
1436static struct type *
1437sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1438{
b47193f7 1439 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
da962468 1440 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1441 return builtin_type (gdbarch)->builtin_float;
da962468 1442 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1443 return builtin_type (gdbarch)->builtin_double;
da962468 1444 else
0dfff4cb 1445 return builtin_type (gdbarch)->builtin_int;
da962468
CV
1446}
1447
cc17453a
EZ
1448/* Return the GDB type object for the "standard" data type
1449 of data in register N. */
cc17453a 1450static struct type *
48db5a3c 1451sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1452{
b47193f7 1453 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1454 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1455 return builtin_type (gdbarch)->builtin_float;
8db62801 1456 else
0dfff4cb 1457 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1458}
1459
7f4dbe94 1460static struct type *
0dfff4cb 1461sh_sh4_build_float_register_type (struct gdbarch *gdbarch, int high)
7f4dbe94 1462{
e3506a9f
UW
1463 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1464 0, high);
7f4dbe94
EZ
1465}
1466
53116e27 1467static struct type *
48db5a3c 1468sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27 1469{
b47193f7 1470 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
617daa0e 1471 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
0dfff4cb 1472 return builtin_type (gdbarch)->builtin_float;
617daa0e 1473 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
0dfff4cb 1474 return builtin_type (gdbarch)->builtin_double;
617daa0e 1475 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
0dfff4cb 1476 return sh_sh4_build_float_register_type (gdbarch, 3);
53116e27 1477 else
0dfff4cb 1478 return builtin_type (gdbarch)->builtin_int;
53116e27
EZ
1479}
1480
cc17453a 1481static struct type *
48db5a3c 1482sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a 1483{
0dfff4cb 1484 return builtin_type (gdbarch)->builtin_int;
cc17453a
EZ
1485}
1486
dda63807
AS
1487/* Is a register in a reggroup?
1488 The default code in reggroup.c doesn't identify system registers, some
1489 float registers or any of the vector registers.
1490 TODO: sh2a and dsp registers. */
63807e1d 1491static int
dda63807
AS
1492sh_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1493 struct reggroup *reggroup)
1494{
b47193f7
UW
1495 if (gdbarch_register_name (gdbarch, regnum) == NULL
1496 || *gdbarch_register_name (gdbarch, regnum) == '\0')
dda63807
AS
1497 return 0;
1498
1499 if (reggroup == float_reggroup
1500 && (regnum == FPUL_REGNUM
1501 || regnum == FPSCR_REGNUM))
1502 return 1;
1503
1504 if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
1505 {
1506 if (reggroup == vector_reggroup || reggroup == float_reggroup)
1507 return 1;
1508 if (reggroup == general_reggroup)
1509 return 0;
1510 }
1511
1512 if (regnum == VBR_REGNUM
1513 || regnum == SR_REGNUM
1514 || regnum == FPSCR_REGNUM
1515 || regnum == SSR_REGNUM
1516 || regnum == SPC_REGNUM)
1517 {
1518 if (reggroup == system_reggroup)
1519 return 1;
1520 if (reggroup == general_reggroup)
1521 return 0;
1522 }
1523
1524 /* The default code can cope with any other registers. */
1525 return default_register_reggroup_p (gdbarch, regnum, reggroup);
1526}
1527
fb409745 1528/* On the sh4, the DRi pseudo registers are problematic if the target
c378eb4e 1529 is little endian. When the user writes one of those registers, for
a6521d9a 1530 instance with 'set var $dr0=1', we want the double to be stored
fb409745 1531 like this:
a6521d9a
TS
1532 fr0 = 0x00 0x00 0xf0 0x3f
1533 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1534
1535 This corresponds to little endian byte order & big endian word
1536 order. However if we let gdb write the register w/o conversion, it
1537 will write fr0 and fr1 this way:
a6521d9a
TS
1538 fr0 = 0x00 0x00 0x00 0x00
1539 fr1 = 0x00 0x00 0xf0 0x3f
fb409745
EZ
1540 because it will consider fr0 and fr1 as a single LE stretch of memory.
1541
1542 To achieve what we want we must force gdb to store things in
1543 floatformat_ieee_double_littlebyte_bigword (which is defined in
1544 include/floatformat.h and libiberty/floatformat.c.
1545
1546 In case the target is big endian, there is no problem, the
1547 raw bytes will look like:
a6521d9a
TS
1548 fr0 = 0x3f 0xf0 0x00 0x00
1549 fr1 = 0x00 0x00 0x00 0x00
fb409745
EZ
1550
1551 The other pseudo registers (the FVs) also don't pose a problem
c378eb4e 1552 because they are stored as 4 individual FP elements. */
fb409745 1553
96a5a1d3
UW
1554static struct type *
1555sh_littlebyte_bigword_type (struct gdbarch *gdbarch)
1556{
1557 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1558
1559 if (tdep->sh_littlebyte_bigword_type == NULL)
1560 tdep->sh_littlebyte_bigword_type
1561 = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
1562 floatformats_ieee_double_littlebyte_bigword);
1563
1564 return tdep->sh_littlebyte_bigword_type;
1565}
1566
7bd872fe 1567static void
a6521d9a 1568sh_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1569 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1570{
a6521d9a
TS
1571 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1572 {
1573 /* It is a no-op. */
1574 memcpy (to, from, register_size (gdbarch, regnum));
1575 return;
1576 }
1577
617daa0e 1578 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
3b2ca824
UW
1579 target_float_convert (from, sh_littlebyte_bigword_type (gdbarch),
1580 to, type);
283150cd 1581 else
617daa0e
CV
1582 error
1583 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1584}
1585
1586static void
a6521d9a 1587sh_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
948f8e3d 1588 int regnum, const gdb_byte *from, gdb_byte *to)
283150cd 1589{
a6521d9a
TS
1590 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
1591 {
1592 /* It is a no-op. */
1593 memcpy (to, from, register_size (gdbarch, regnum));
1594 return;
1595 }
1596
617daa0e 1597 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
3b2ca824
UW
1598 target_float_convert (from, type,
1599 to, sh_littlebyte_bigword_type (gdbarch));
283150cd 1600 else
8a3fe4f8 1601 error (_("sh_register_convert_to_raw called with non DR register number"));
283150cd
EZ
1602}
1603
c378eb4e 1604/* For vectors of 4 floating point registers. */
1c0159e0 1605static int
d93859e2 1606fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
1c0159e0
CV
1607{
1608 int fp_regnum;
1609
d93859e2 1610 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1611 + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1612 return fp_regnum;
1613}
1614
c378eb4e 1615/* For double precision floating point registers, i.e 2 fp regs. */
1c0159e0 1616static int
d93859e2 1617dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
1c0159e0
CV
1618{
1619 int fp_regnum;
1620
d93859e2 1621 fp_regnum = gdbarch_fp0_regnum (gdbarch)
3e8c568d 1622 + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1623 return fp_regnum;
1624}
1625
05d1431c
PA
1626/* Concatenate PORTIONS contiguous raw registers starting at
1627 BASE_REGNUM into BUFFER. */
1628
1629static enum register_status
1630pseudo_register_read_portions (struct gdbarch *gdbarch,
849d0ba8 1631 readable_regcache *regcache,
05d1431c
PA
1632 int portions,
1633 int base_regnum, gdb_byte *buffer)
1634{
1635 int portion;
1636
1637 for (portion = 0; portion < portions; portion++)
1638 {
1639 enum register_status status;
1640 gdb_byte *b;
1641
1642 b = buffer + register_size (gdbarch, base_regnum) * portion;
03f50fc8 1643 status = regcache->raw_read (base_regnum + portion, b);
05d1431c
PA
1644 if (status != REG_VALID)
1645 return status;
1646 }
1647
1648 return REG_VALID;
1649}
1650
1651static enum register_status
849d0ba8 1652sh_pseudo_register_read (struct gdbarch *gdbarch, readable_regcache *regcache,
18cf8b5b 1653 int reg_nr, gdb_byte *buffer)
53116e27 1654{
05d1431c 1655 int base_regnum;
05d1431c 1656 enum register_status status;
53116e27 1657
9bed62d7 1658 if (reg_nr == PSEUDO_BANK_REGNUM)
03f50fc8 1659 return regcache->raw_read (BANK_REGNUM, buffer);
05d1431c 1660 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe 1661 {
4a8a33c8
AH
1662 /* Enough space for two float registers. */
1663 gdb_byte temp_buffer[4 * 2];
d93859e2 1664 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
7bd872fe 1665
c378eb4e 1666 /* Build the value in the provided buffer. */
7bd872fe 1667 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1668 status = pseudo_register_read_portions (gdbarch, regcache,
1669 2, base_regnum, temp_buffer);
1670 if (status == REG_VALID)
1671 {
405feb71 1672 /* We must pay attention to the endianness. */
a6521d9a 1673 sh_register_convert_to_virtual (gdbarch, reg_nr,
05d1431c
PA
1674 register_type (gdbarch, reg_nr),
1675 temp_buffer, buffer);
1676 }
1677 return status;
7bd872fe 1678 }
617daa0e 1679 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1680 {
d93859e2 1681 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
7bd872fe
EZ
1682
1683 /* Read the real regs for which this one is an alias. */
05d1431c
PA
1684 return pseudo_register_read_portions (gdbarch, regcache,
1685 4, base_regnum, buffer);
53116e27 1686 }
05d1431c
PA
1687 else
1688 gdb_assert_not_reached ("invalid pseudo register number");
53116e27
EZ
1689}
1690
a78f21af 1691static void
d8124050 1692sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1693 int reg_nr, const gdb_byte *buffer)
53116e27
EZ
1694{
1695 int base_regnum, portion;
1696
9bed62d7
CV
1697 if (reg_nr == PSEUDO_BANK_REGNUM)
1698 {
1699 /* When the bank register is written to, the whole register bank
1700 is switched and all values in the bank registers must be read
c378eb4e 1701 from the target/sim again. We're just invalidating the regcache
9bed62d7
CV
1702 so that a re-read happens next time it's necessary. */
1703 int bregnum;
1704
10eaee5f 1705 regcache->raw_write (BANK_REGNUM, buffer);
9bed62d7 1706 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
6aa7d724 1707 regcache->invalidate (bregnum);
9bed62d7
CV
1708 }
1709 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1710 {
4a8a33c8
AH
1711 /* Enough space for two float registers. */
1712 gdb_byte temp_buffer[4 * 2];
d93859e2 1713 base_regnum = dr_reg_base_num (gdbarch, reg_nr);
53116e27 1714
405feb71 1715 /* We must pay attention to the endianness. */
a6521d9a 1716 sh_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
b66ba949 1717 reg_nr, buffer, temp_buffer);
7bd872fe 1718
53116e27
EZ
1719 /* Write the real regs for which this one is an alias. */
1720 for (portion = 0; portion < 2; portion++)
10eaee5f 1721 regcache->raw_write (base_regnum + portion,
0818c12a 1722 (temp_buffer
617daa0e
CV
1723 + register_size (gdbarch,
1724 base_regnum) * portion));
53116e27 1725 }
617daa0e 1726 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1727 {
d93859e2 1728 base_regnum = fv_reg_base_num (gdbarch, reg_nr);
53116e27
EZ
1729
1730 /* Write the real regs for which this one is an alias. */
1731 for (portion = 0; portion < 4; portion++)
10eaee5f 1732 regcache->raw_write (base_regnum + portion,
948f8e3d 1733 (buffer
617daa0e
CV
1734 + register_size (gdbarch,
1735 base_regnum) * portion));
53116e27
EZ
1736 }
1737}
1738
2f14585c 1739static int
e7faf938 1740sh_dsp_register_sim_regno (struct gdbarch *gdbarch, int nr)
2f14585c 1741{
e7faf938
MD
1742 if (legacy_register_sim_regno (gdbarch, nr) < 0)
1743 return legacy_register_sim_regno (gdbarch, nr);
f2ea0907
CV
1744 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1745 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1746 if (nr == MOD_REGNUM)
2f14585c 1747 return SIM_SH_MOD_REGNUM;
f2ea0907 1748 if (nr == RS_REGNUM)
2f14585c 1749 return SIM_SH_RS_REGNUM;
f2ea0907 1750 if (nr == RE_REGNUM)
2f14585c 1751 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1752 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1753 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1754 return nr;
1755}
1c0159e0 1756
da962468 1757static int
e7faf938 1758sh_sh2a_register_sim_regno (struct gdbarch *gdbarch, int nr)
da962468
CV
1759{
1760 switch (nr)
1761 {
1762 case TBR_REGNUM:
1763 return SIM_SH_TBR_REGNUM;
1764 case IBNR_REGNUM:
1765 return SIM_SH_IBNR_REGNUM;
1766 case IBCR_REGNUM:
1767 return SIM_SH_IBCR_REGNUM;
1768 case BANK_REGNUM:
1769 return SIM_SH_BANK_REGNUM;
1770 case MACLB_REGNUM:
1771 return SIM_SH_BANK_MACL_REGNUM;
1772 case GBRB_REGNUM:
1773 return SIM_SH_BANK_GBR_REGNUM;
1774 case PRB_REGNUM:
1775 return SIM_SH_BANK_PR_REGNUM;
1776 case IVNB_REGNUM:
1777 return SIM_SH_BANK_IVN_REGNUM;
1778 case MACHB_REGNUM:
1779 return SIM_SH_BANK_MACH_REGNUM;
1780 default:
1781 break;
1782 }
e7faf938 1783 return legacy_register_sim_regno (gdbarch, nr);
da962468
CV
1784}
1785
357d3800
AS
1786/* Set up the register unwinding such that call-clobbered registers are
1787 not displayed in frames >0 because the true value is not certain.
1788 The 'undefined' registers will show up as 'not available' unless the
1789 CFI says otherwise.
1790
1791 This function is currently set up for SH4 and compatible only. */
1792
1793static void
1794sh_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
aff37fc1 1795 struct dwarf2_frame_state_reg *reg,
4a4e5149 1796 struct frame_info *this_frame)
357d3800
AS
1797{
1798 /* Mark the PC as the destination for the return address. */
b47193f7 1799 if (regnum == gdbarch_pc_regnum (gdbarch))
357d3800
AS
1800 reg->how = DWARF2_FRAME_REG_RA;
1801
1802 /* Mark the stack pointer as the call frame address. */
b47193f7 1803 else if (regnum == gdbarch_sp_regnum (gdbarch))
357d3800
AS
1804 reg->how = DWARF2_FRAME_REG_CFA;
1805
1806 /* The above was taken from the default init_reg in dwarf2-frame.c
1807 while the below is SH specific. */
1808
1809 /* Caller save registers. */
1810 else if ((regnum >= R0_REGNUM && regnum <= R0_REGNUM+7)
1811 || (regnum >= FR0_REGNUM && regnum <= FR0_REGNUM+11)
1812 || (regnum >= DR0_REGNUM && regnum <= DR0_REGNUM+5)
1813 || (regnum >= FV0_REGNUM && regnum <= FV0_REGNUM+2)
1814 || (regnum == MACH_REGNUM)
1815 || (regnum == MACL_REGNUM)
1816 || (regnum == FPUL_REGNUM)
1817 || (regnum == SR_REGNUM))
1818 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1819
1820 /* Callee save registers. */
1821 else if ((regnum >= R0_REGNUM+8 && regnum <= R0_REGNUM+15)
1822 || (regnum >= FR0_REGNUM+12 && regnum <= FR0_REGNUM+15)
1823 || (regnum >= DR0_REGNUM+6 && regnum <= DR0_REGNUM+8)
1824 || (regnum == FV0_REGNUM+3))
1825 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1826
1827 /* Other registers. These are not in the ABI and may or may not
1828 mean anything in frames >0 so don't show them. */
1829 else if ((regnum >= R0_BANK0_REGNUM && regnum <= R0_BANK0_REGNUM+15)
1830 || (regnum == GBR_REGNUM)
1831 || (regnum == VBR_REGNUM)
1832 || (regnum == FPSCR_REGNUM)
1833 || (regnum == SSR_REGNUM)
1834 || (regnum == SPC_REGNUM))
1835 reg->how = DWARF2_FRAME_REG_UNDEFINED;
1836}
1837
1c0159e0
CV
1838static struct sh_frame_cache *
1839sh_alloc_frame_cache (void)
1840{
1841 struct sh_frame_cache *cache;
1842 int i;
1843
1844 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1845
1846 /* Base address. */
1847 cache->base = 0;
1848 cache->saved_sp = 0;
1849 cache->sp_offset = 0;
1850 cache->pc = 0;
1851
1852 /* Frameless until proven otherwise. */
1853 cache->uses_fp = 0;
617daa0e 1854
1c0159e0
CV
1855 /* Saved registers. We initialize these to -1 since zero is a valid
1856 offset (that's where fp is supposed to be stored). */
1857 for (i = 0; i < SH_NUM_REGS; i++)
1858 {
1859 cache->saved_regs[i] = -1;
1860 }
617daa0e 1861
1c0159e0 1862 return cache;
617daa0e 1863}
1c0159e0
CV
1864
1865static struct sh_frame_cache *
94afd7a6 1866sh_frame_cache (struct frame_info *this_frame, void **this_cache)
1c0159e0 1867{
e17a4113 1868 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1c0159e0
CV
1869 struct sh_frame_cache *cache;
1870 CORE_ADDR current_pc;
1871 int i;
1872
1873 if (*this_cache)
19ba03f4 1874 return (struct sh_frame_cache *) *this_cache;
1c0159e0
CV
1875
1876 cache = sh_alloc_frame_cache ();
1877 *this_cache = cache;
1878
1879 /* In principle, for normal frames, fp holds the frame pointer,
1880 which holds the base address for the current stack frame.
1881 However, for functions that don't need it, the frame pointer is
1882 optional. For these "frameless" functions the frame pointer is
c378eb4e 1883 actually the frame pointer of the calling frame. */
94afd7a6 1884 cache->base = get_frame_register_unsigned (this_frame, FP_REGNUM);
1c0159e0
CV
1885 if (cache->base == 0)
1886 return cache;
1887
94afd7a6
UW
1888 cache->pc = get_frame_func (this_frame);
1889 current_pc = get_frame_pc (this_frame);
1c0159e0 1890 if (cache->pc != 0)
d2ca4222
UW
1891 {
1892 ULONGEST fpscr;
9fc05685
KB
1893
1894 /* Check for the existence of the FPSCR register. If it exists,
1895 fetch its value for use in prologue analysis. Passing a zero
1896 value is the best choice for architecture variants upon which
1897 there's no FPSCR register. */
1898 if (gdbarch_register_reggroup_p (gdbarch, FPSCR_REGNUM, all_reggroup))
1899 fpscr = get_frame_register_unsigned (this_frame, FPSCR_REGNUM);
1900 else
1901 fpscr = 0;
1902
e17a4113 1903 sh_analyze_prologue (gdbarch, cache->pc, current_pc, cache, fpscr);
d2ca4222 1904 }
617daa0e 1905
1c0159e0
CV
1906 if (!cache->uses_fp)
1907 {
1908 /* We didn't find a valid frame, which means that CACHE->base
1909 currently holds the frame pointer for our calling frame. If
1910 we're at the start of a function, or somewhere half-way its
1911 prologue, the function's frame probably hasn't been fully
1912 setup yet. Try to reconstruct the base address for the stack
1913 frame by looking at the stack pointer. For truly "frameless"
1914 functions this might work too. */
94afd7a6 1915 cache->base = get_frame_register_unsigned
e17a4113 1916 (this_frame, gdbarch_sp_regnum (gdbarch));
1c0159e0
CV
1917 }
1918
1919 /* Now that we have the base address for the stack frame we can
1920 calculate the value of sp in the calling frame. */
1921 cache->saved_sp = cache->base + cache->sp_offset;
1922
1923 /* Adjust all the saved registers such that they contain addresses
1924 instead of offsets. */
1925 for (i = 0; i < SH_NUM_REGS; i++)
1926 if (cache->saved_regs[i] != -1)
1927 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1928
1929 return cache;
1930}
1931
94afd7a6
UW
1932static struct value *
1933sh_frame_prev_register (struct frame_info *this_frame,
1934 void **this_cache, int regnum)
1c0159e0 1935{
94afd7a6
UW
1936 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1937 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1938
1939 gdb_assert (regnum >= 0);
1940
b47193f7 1941 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 1942 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
1c0159e0
CV
1943
1944 /* The PC of the previous frame is stored in the PR register of
1945 the current frame. Frob regnum so that we pull the value from
1946 the correct place. */
b47193f7 1947 if (regnum == gdbarch_pc_regnum (gdbarch))
1c0159e0
CV
1948 regnum = PR_REGNUM;
1949
1950 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
94afd7a6
UW
1951 return frame_unwind_got_memory (this_frame, regnum,
1952 cache->saved_regs[regnum]);
1c0159e0 1953
94afd7a6 1954 return frame_unwind_got_register (this_frame, regnum, regnum);
1c0159e0
CV
1955}
1956
1957static void
94afd7a6 1958sh_frame_this_id (struct frame_info *this_frame, void **this_cache,
617daa0e
CV
1959 struct frame_id *this_id)
1960{
94afd7a6 1961 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
1c0159e0
CV
1962
1963 /* This marks the outermost frame. */
1964 if (cache->base == 0)
1965 return;
1966
1967 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 1968}
1c0159e0 1969
617daa0e 1970static const struct frame_unwind sh_frame_unwind = {
1c0159e0 1971 NORMAL_FRAME,
8fbca658 1972 default_frame_unwind_stop_reason,
1c0159e0 1973 sh_frame_this_id,
94afd7a6
UW
1974 sh_frame_prev_register,
1975 NULL,
1976 default_frame_sniffer
1c0159e0
CV
1977};
1978
1c0159e0 1979static CORE_ADDR
94afd7a6 1980sh_frame_base_address (struct frame_info *this_frame, void **this_cache)
617daa0e 1981{
94afd7a6 1982 struct sh_frame_cache *cache = sh_frame_cache (this_frame, this_cache);
617daa0e 1983
1c0159e0
CV
1984 return cache->base;
1985}
617daa0e
CV
1986
1987static const struct frame_base sh_frame_base = {
1c0159e0
CV
1988 &sh_frame_unwind,
1989 sh_frame_base_address,
1990 sh_frame_base_address,
1991 sh_frame_base_address
617daa0e 1992};
1c0159e0 1993
cb2cf4ce
TS
1994static struct sh_frame_cache *
1995sh_make_stub_cache (struct frame_info *this_frame)
1996{
1997 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1998 struct sh_frame_cache *cache;
1999
2000 cache = sh_alloc_frame_cache ();
2001
2002 cache->saved_sp
2003 = get_frame_register_unsigned (this_frame, gdbarch_sp_regnum (gdbarch));
2004
2005 return cache;
2006}
2007
2008static void
2009sh_stub_this_id (struct frame_info *this_frame, void **this_cache,
2010 struct frame_id *this_id)
2011{
2012 struct sh_frame_cache *cache;
2013
2014 if (*this_cache == NULL)
2015 *this_cache = sh_make_stub_cache (this_frame);
19ba03f4 2016 cache = (struct sh_frame_cache *) *this_cache;
cb2cf4ce
TS
2017
2018 *this_id = frame_id_build (cache->saved_sp, get_frame_pc (this_frame));
2019}
2020
2021static int
2022sh_stub_unwind_sniffer (const struct frame_unwind *self,
2023 struct frame_info *this_frame,
2024 void **this_prologue_cache)
2025{
2026 CORE_ADDR addr_in_block;
2027
2028 addr_in_block = get_frame_address_in_block (this_frame);
3e5d3a5a 2029 if (in_plt_section (addr_in_block))
cb2cf4ce
TS
2030 return 1;
2031
2032 return 0;
2033}
2034
2035static const struct frame_unwind sh_stub_unwind =
2036{
2037 NORMAL_FRAME,
2038 default_frame_unwind_stop_reason,
2039 sh_stub_this_id,
2040 sh_frame_prev_register,
2041 NULL,
2042 sh_stub_unwind_sniffer
2043};
2044
c9cf6e20
MG
2045/* Implement the stack_frame_destroyed_p gdbarch method.
2046
2047 The epilogue is defined here as the area at the end of a function,
1c0159e0 2048 either on the `ret' instruction itself or after an instruction which
c378eb4e 2049 destroys the function's stack frame. */
c9cf6e20 2050
1c0159e0 2051static int
c9cf6e20 2052sh_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
1c0159e0 2053{
e17a4113 2054 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1c0159e0
CV
2055 CORE_ADDR func_addr = 0, func_end = 0;
2056
2057 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2058 {
2059 ULONGEST inst;
2060 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2061 for a nop and some fixed data (e.g. big offsets) which are
617daa0e 2062 unfortunately also treated as part of the function (which
c378eb4e 2063 means, they are below func_end. */
1c0159e0
CV
2064 CORE_ADDR addr = func_end - 28;
2065 if (addr < func_addr + 4)
617daa0e 2066 addr = func_addr + 4;
1c0159e0
CV
2067 if (pc < addr)
2068 return 0;
2069
c378eb4e 2070 /* First search forward until hitting an rts. */
1c0159e0 2071 while (addr < func_end
e17a4113 2072 && !IS_RTS (read_memory_unsigned_integer (addr, 2, byte_order)))
1c0159e0
CV
2073 addr += 2;
2074 if (addr >= func_end)
617daa0e 2075 return 0;
1c0159e0
CV
2076
2077 /* At this point we should find a mov.l @r15+,r14 instruction,
2078 either before or after the rts. If not, then the function has
c378eb4e 2079 probably no "normal" epilogue and we bail out here. */
e17a4113
UW
2080 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
2081 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2,
2082 byte_order)))
617daa0e 2083 addr -= 2;
e17a4113
UW
2084 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2,
2085 byte_order)))
1c0159e0
CV
2086 return 0;
2087
e17a4113 2088 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99 2089
c378eb4e 2090 /* Step over possible lds.l @r15+,macl. */
03131d99
CV
2091 if (IS_MACL_LDS (inst))
2092 {
2093 addr -= 2;
e17a4113 2094 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
03131d99
CV
2095 }
2096
c378eb4e 2097 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2098 if (IS_LDS (inst))
617daa0e 2099 {
1c0159e0 2100 addr -= 2;
e17a4113 2101 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2102 }
2103
c378eb4e 2104 /* Step over possible mov r14,r15. */
1c0159e0 2105 if (IS_MOV_FP_SP (inst))
617daa0e 2106 {
1c0159e0 2107 addr -= 2;
e17a4113 2108 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2109 }
2110
2111 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
c378eb4e 2112 instructions. */
1c0159e0 2113 while (addr > func_addr + 4
617daa0e 2114 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2115 {
2116 addr -= 2;
e17a4113 2117 inst = read_memory_unsigned_integer (addr - 2, 2, byte_order);
1c0159e0
CV
2118 }
2119
03131d99
CV
2120 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2121 That's allowed for the epilogue. */
2122 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2123 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2124 && addr > func_addr + 6
e17a4113
UW
2125 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2,
2126 byte_order)))
03131d99
CV
2127 addr -= 4;
2128
1c0159e0
CV
2129 if (pc >= addr)
2130 return 1;
2131 }
2132 return 0;
2133}
c9ac0a72
AS
2134
2135
2136/* Supply register REGNUM from the buffer specified by REGS and LEN
2137 in the register set REGSET to register cache REGCACHE.
2138 REGTABLE specifies where each register can be found in REGS.
2139 If REGNUM is -1, do this for all registers in REGSET. */
2140
2141void
2142sh_corefile_supply_regset (const struct regset *regset,
2143 struct regcache *regcache,
2144 int regnum, const void *regs, size_t len)
2145{
ac7936df 2146 struct gdbarch *gdbarch = regcache->arch ();
c9ac0a72
AS
2147 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2148 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2149 ? tdep->core_gregmap
2150 : tdep->core_fpregmap);
2151 int i;
2152
2153 for (i = 0; regmap[i].regnum != -1; i++)
2154 {
2155 if ((regnum == -1 || regnum == regmap[i].regnum)
2156 && regmap[i].offset + 4 <= len)
73e1c03f
SM
2157 regcache->raw_supply
2158 (regmap[i].regnum, (char *) regs + regmap[i].offset);
c9ac0a72
AS
2159 }
2160}
2161
2162/* Collect register REGNUM in the register set REGSET from register cache
2163 REGCACHE into the buffer specified by REGS and LEN.
2164 REGTABLE specifies where each register can be found in REGS.
2165 If REGNUM is -1, do this for all registers in REGSET. */
2166
2167void
2168sh_corefile_collect_regset (const struct regset *regset,
2169 const struct regcache *regcache,
2170 int regnum, void *regs, size_t len)
2171{
ac7936df 2172 struct gdbarch *gdbarch = regcache->arch ();
c9ac0a72
AS
2173 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2174 const struct sh_corefile_regmap *regmap = (regset == &sh_corefile_gregset
2175 ? tdep->core_gregmap
2176 : tdep->core_fpregmap);
2177 int i;
2178
2179 for (i = 0; regmap[i].regnum != -1; i++)
2180 {
2181 if ((regnum == -1 || regnum == regmap[i].regnum)
2182 && regmap[i].offset + 4 <= len)
34a79281 2183 regcache->raw_collect (regmap[i].regnum,
c9ac0a72
AS
2184 (char *)regs + regmap[i].offset);
2185 }
2186}
2187
2188/* The following two regsets have the same contents, so it is tempting to
2189 unify them, but they are distiguished by their address, so don't. */
2190
3ca7dae4 2191const struct regset sh_corefile_gregset =
c9ac0a72
AS
2192{
2193 NULL,
2194 sh_corefile_supply_regset,
2195 sh_corefile_collect_regset
2196};
2197
3ca7dae4 2198static const struct regset sh_corefile_fpregset =
c9ac0a72
AS
2199{
2200 NULL,
2201 sh_corefile_supply_regset,
2202 sh_corefile_collect_regset
2203};
2204
c6d41a6f
AA
2205static void
2206sh_iterate_over_regset_sections (struct gdbarch *gdbarch,
2207 iterate_over_regset_sections_cb *cb,
2208 void *cb_data,
2209 const struct regcache *regcache)
c9ac0a72
AS
2210{
2211 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2212
c6d41a6f 2213 if (tdep->core_gregmap != NULL)
a616bb94
AH
2214 cb (".reg", tdep->sizeof_gregset, tdep->sizeof_gregset,
2215 &sh_corefile_gregset, NULL, cb_data);
c9ac0a72 2216
c6d41a6f 2217 if (tdep->core_fpregmap != NULL)
a616bb94
AH
2218 cb (".reg2", tdep->sizeof_fpregset, tdep->sizeof_fpregset,
2219 &sh_corefile_fpregset, NULL, cb_data);
c9ac0a72 2220}
18648a37
YQ
2221
2222/* This is the implementation of gdbarch method
2223 return_in_first_hidden_param_p. */
2224
2225static int
2226sh_return_in_first_hidden_param_p (struct gdbarch *gdbarch,
2227 struct type *type)
2228{
2229 return 0;
2230}
2231
ccf00f21 2232\f
cc17453a
EZ
2233
2234static struct gdbarch *
fba45db2 2235sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2236{
cc17453a 2237 struct gdbarch *gdbarch;
c9ac0a72 2238 struct gdbarch_tdep *tdep;
d658f924 2239
4be87837
DJ
2240 /* If there is already a candidate, use it. */
2241 arches = gdbarch_list_lookup_by_info (arches, &info);
2242 if (arches != NULL)
2243 return arches->gdbarch;
cc17453a
EZ
2244
2245 /* None found, create a new architecture from the information
c378eb4e 2246 provided. */
41bf6aca 2247 tdep = XCNEW (struct gdbarch_tdep);
c9ac0a72 2248 gdbarch = gdbarch_alloc (&info, tdep);
cc17453a 2249
48db5a3c
CV
2250 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2251 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2252 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2253 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
53375380
PA
2254
2255 set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2256 set_gdbarch_wchar_signed (gdbarch, 0);
2257
48db5a3c
CV
2258 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2259 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2260 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2261 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2262
f2ea0907 2263 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2264 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2265 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2266 set_gdbarch_fp0_regnum (gdbarch, -1);
2267 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2268
1c0159e0 2269 set_gdbarch_register_type (gdbarch, sh_default_register_type);
dda63807 2270 set_gdbarch_register_reggroup_p (gdbarch, sh_register_reggroup_p);
1c0159e0 2271
04180708
YQ
2272 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh_breakpoint_kind_from_pc);
2273 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh_sw_breakpoint_from_kind);
48db5a3c 2274
2f14585c 2275 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c 2276
c0409442 2277 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
1c0159e0 2278
48db5a3c
CV
2279 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2280 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2281
1c0159e0 2282 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
18648a37
YQ
2283 set_gdbarch_return_in_first_hidden_param_p (gdbarch,
2284 sh_return_in_first_hidden_param_p);
1c0159e0 2285
48db5a3c
CV
2286 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2287
19f59343 2288 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2289 frame_base_set_default (gdbarch, &sh_frame_base);
2290
c9cf6e20 2291 set_gdbarch_stack_frame_destroyed_p (gdbarch, sh_stack_frame_destroyed_p);
cc17453a 2292
357d3800
AS
2293 dwarf2_frame_set_init_reg (gdbarch, sh_dwarf2_frame_init_reg);
2294
c6d41a6f
AA
2295 set_gdbarch_iterate_over_regset_sections
2296 (gdbarch, sh_iterate_over_regset_sections);
c9ac0a72 2297
cc17453a 2298 switch (info.bfd_arch_info->mach)
8db62801 2299 {
cc17453a 2300 case bfd_mach_sh:
48db5a3c 2301 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2302 break;
1c0159e0 2303
cc17453a 2304 case bfd_mach_sh2:
48db5a3c 2305 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2306 break;
1c0159e0 2307
2d188dd3 2308 case bfd_mach_sh2e:
c378eb4e 2309 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2310 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2311 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2312
2313 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2314 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2315 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2316 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2317 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2318 break;
1c0159e0 2319
da962468
CV
2320 case bfd_mach_sh2a:
2321 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2322 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2323 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2324
2325 set_gdbarch_fp0_regnum (gdbarch, 25);
2326 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2327 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2328 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2329 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2330 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2331 break;
2332
2333 case bfd_mach_sh2a_nofpu:
2334 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2335 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2336
2337 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2338 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2339 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2340 break;
2341
cc17453a 2342 case bfd_mach_sh_dsp:
48db5a3c 2343 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2344 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2345 break;
1c0159e0 2346
cc17453a 2347 case bfd_mach_sh3:
4e6cbc38
AS
2348 case bfd_mach_sh3_nommu:
2349 case bfd_mach_sh2a_nofpu_or_sh3_nommu:
48db5a3c 2350 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2351 break;
1c0159e0 2352
cc17453a 2353 case bfd_mach_sh3e:
4e6cbc38 2354 case bfd_mach_sh2a_or_sh3e:
c378eb4e 2355 /* doubles on sh2e and sh3e are actually 4 byte. */
48db5a3c 2356 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
f92589cb 2357 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
48db5a3c
CV
2358
2359 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2360 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2361 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2362 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2363 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2364 break;
1c0159e0 2365
cc17453a 2366 case bfd_mach_sh3_dsp:
48db5a3c 2367 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2368 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2369 break;
1c0159e0 2370
cc17453a 2371 case bfd_mach_sh4:
474e5826 2372 case bfd_mach_sh4a:
46e8a76b 2373 case bfd_mach_sh2a_or_sh4:
48db5a3c 2374 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2375 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2376 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2377 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2378 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2379 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2380 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2381 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2382 break;
1c0159e0 2383
474e5826
CV
2384 case bfd_mach_sh4_nofpu:
2385 case bfd_mach_sh4a_nofpu:
4e6cbc38
AS
2386 case bfd_mach_sh4_nommu_nofpu:
2387 case bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu:
474e5826
CV
2388 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2389 break;
2390
2391 case bfd_mach_sh4al_dsp:
2392 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2393 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2394 break;
2395
cc17453a 2396 default:
b58cbbf2 2397 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2398 break;
8db62801 2399 }
cc17453a 2400
4be87837
DJ
2401 /* Hook in ABI-specific overrides, if they have been registered. */
2402 gdbarch_init_osabi (info, gdbarch);
d658f924 2403
94afd7a6 2404 dwarf2_append_unwinders (gdbarch);
cb2cf4ce 2405 frame_unwind_append_unwinder (gdbarch, &sh_stub_unwind);
94afd7a6 2406 frame_unwind_append_unwinder (gdbarch, &sh_frame_unwind);
1c0159e0 2407
cc17453a 2408 return gdbarch;
8db62801
EZ
2409}
2410
c055b101 2411static void
981a3fb3 2412show_sh_command (const char *args, int from_tty)
c055b101
CV
2413{
2414 help_list (showshcmdlist, "show sh ", all_commands, gdb_stdout);
2415}
2416
2417static void
981a3fb3 2418set_sh_command (const char *args, int from_tty)
c055b101
CV
2419{
2420 printf_unfiltered
2421 ("\"set sh\" must be followed by an appropriate subcommand.\n");
2422 help_list (setshcmdlist, "set sh ", all_commands, gdb_stdout);
2423}
2424
6c265988 2425void _initialize_sh_tdep ();
c906108c 2426void
6c265988 2427_initialize_sh_tdep ()
c906108c 2428{
f2ea0907 2429 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2430
c055b101
CV
2431 add_prefix_cmd ("sh", no_class, set_sh_command, "SH specific commands.",
2432 &setshcmdlist, "set sh ", 0, &setlist);
2433 add_prefix_cmd ("sh", no_class, show_sh_command, "SH specific commands.",
2434 &showshcmdlist, "show sh ", 0, &showlist);
2435
2436 add_setshow_enum_cmd ("calling-convention", class_vars, sh_cc_enum,
2437 &sh_active_calling_convention,
2438 _("Set calling convention used when calling target "
2439 "functions from GDB."),
2440 _("Show calling convention used when calling target "
2441 "functions from GDB."),
2442 _("gcc - Use GCC calling convention (default).\n"
2443 "renesas - Enforce Renesas calling convention."),
2444 NULL, NULL,
2445 &setshcmdlist, &showshcmdlist);
c906108c 2446}
This page took 2.194335 seconds and 4 git commands to generate.