2004-06-06 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
9ab9195f
EZ
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22/*
c5aa993b
JM
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
c906108c
SS
25 */
26
27#include "defs.h"
28#include "frame.h"
1c0159e0
CV
29#include "frame-base.h"
30#include "frame-unwind.h"
31#include "dwarf2-frame.h"
c906108c 32#include "symtab.h"
c906108c
SS
33#include "gdbtypes.h"
34#include "gdbcmd.h"
35#include "gdbcore.h"
36#include "value.h"
37#include "dis-asm.h"
73c1f219 38#include "inferior.h"
c906108c 39#include "gdb_string.h"
1c0159e0 40#include "gdb_assert.h"
b4a20239 41#include "arch-utils.h"
fb409745 42#include "floatformat.h"
4e052eda 43#include "regcache.h"
d16aafd8 44#include "doublest.h"
4be87837 45#include "osabi.h"
c906108c 46
ab3b8126
JT
47#include "sh-tdep.h"
48
d658f924 49#include "elf-bfd.h"
1a8629c7
MS
50#include "solib-svr4.h"
51
55ff77ac 52/* sh flags */
283150cd
EZ
53#include "elf/sh.h"
54/* registers numbers shared with the simulator */
1c922164 55#include "gdb/sim-sh.h"
283150cd 56
55ff77ac 57static void (*sh_show_regs) (void);
cc17453a 58
f2ea0907 59#define SH_NUM_REGS 59
88e04cc1 60
1c0159e0 61struct sh_frame_cache
cc17453a 62{
1c0159e0
CV
63 /* Base address. */
64 CORE_ADDR base;
65 LONGEST sp_offset;
66 CORE_ADDR pc;
67
68 /* Flag showing that a frame has been created in the prologue code. */
69 int uses_fp;
70
71 /* Saved registers. */
72 CORE_ADDR saved_regs[SH_NUM_REGS];
73 CORE_ADDR saved_sp;
63978407 74};
c906108c 75
fa88f677 76static const char *
cc17453a
EZ
77sh_sh_register_name (int reg_nr)
78{
617daa0e
CV
79 static char *register_names[] = {
80 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
81 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
82 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
83 "", "",
84 "", "", "", "", "", "", "", "",
85 "", "", "", "", "", "", "", "",
86 "", "",
87 "", "", "", "", "", "", "", "",
88 "", "", "", "", "", "", "", "",
cc17453a
EZ
89 };
90 if (reg_nr < 0)
91 return NULL;
92 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
93 return NULL;
94 return register_names[reg_nr];
95}
96
fa88f677 97static const char *
cc17453a
EZ
98sh_sh3_register_name (int reg_nr)
99{
617daa0e
CV
100 static char *register_names[] = {
101 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
102 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
103 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
104 "", "",
105 "", "", "", "", "", "", "", "",
106 "", "", "", "", "", "", "", "",
107 "ssr", "spc",
cc17453a
EZ
108 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
109 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
110 };
111 if (reg_nr < 0)
112 return NULL;
113 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
114 return NULL;
115 return register_names[reg_nr];
116}
117
fa88f677 118static const char *
cc17453a
EZ
119sh_sh3e_register_name (int reg_nr)
120{
617daa0e
CV
121 static char *register_names[] = {
122 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
123 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
124 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 125 "fpul", "fpscr",
617daa0e
CV
126 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
127 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
128 "ssr", "spc",
cc17453a
EZ
129 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
130 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
131 };
132 if (reg_nr < 0)
133 return NULL;
134 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
135 return NULL;
136 return register_names[reg_nr];
137}
138
2d188dd3
NC
139static const char *
140sh_sh2e_register_name (int reg_nr)
141{
617daa0e
CV
142 static char *register_names[] = {
143 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
144 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
145 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 146 "fpul", "fpscr",
617daa0e
CV
147 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
148 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
149 "", "",
2d188dd3
NC
150 "", "", "", "", "", "", "", "",
151 "", "", "", "", "", "", "", "",
152 };
153 if (reg_nr < 0)
154 return NULL;
155 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
156 return NULL;
157 return register_names[reg_nr];
158}
159
fa88f677 160static const char *
cc17453a
EZ
161sh_sh_dsp_register_name (int reg_nr)
162{
617daa0e
CV
163 static char *register_names[] = {
164 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
165 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
166 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
167 "", "dsr",
168 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
169 "y0", "y1", "", "", "", "", "", "mod",
170 "", "",
171 "rs", "re", "", "", "", "", "", "",
172 "", "", "", "", "", "", "", "",
cc17453a
EZ
173 };
174 if (reg_nr < 0)
175 return NULL;
176 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
177 return NULL;
178 return register_names[reg_nr];
179}
180
fa88f677 181static const char *
cc17453a
EZ
182sh_sh3_dsp_register_name (int reg_nr)
183{
617daa0e
CV
184 static char *register_names[] = {
185 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
186 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
187 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
188 "", "dsr",
189 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
190 "y0", "y1", "", "", "", "", "", "mod",
191 "ssr", "spc",
192 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
193 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
194 "", "", "", "", "", "", "", "",
cc17453a
EZ
195 };
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201}
202
fa88f677 203static const char *
53116e27
EZ
204sh_sh4_register_name (int reg_nr)
205{
617daa0e 206 static char *register_names[] = {
a38d2a54 207 /* general registers 0-15 */
617daa0e
CV
208 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
209 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 210 /* 16 - 22 */
617daa0e 211 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 212 /* 23, 24 */
53116e27 213 "fpul", "fpscr",
a38d2a54 214 /* floating point registers 25 - 40 */
617daa0e
CV
215 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
216 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 217 /* 41, 42 */
617daa0e 218 "ssr", "spc",
a38d2a54 219 /* bank 0 43 - 50 */
53116e27 220 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 221 /* bank 1 51 - 58 */
53116e27 222 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
a38d2a54 223 /* double precision (pseudo) 59 - 66 */
617daa0e 224 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a38d2a54 225 /* vectors (pseudo) 67 - 70 */
617daa0e 226 "fv0", "fv4", "fv8", "fv12",
a38d2a54
EZ
227 /* FIXME: missing XF 71 - 86 */
228 /* FIXME: missing XD 87 - 94 */
53116e27
EZ
229 };
230 if (reg_nr < 0)
231 return NULL;
232 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
233 return NULL;
234 return register_names[reg_nr];
235}
236
474e5826
CV
237static const char *
238sh_sh4_nofpu_register_name (int reg_nr)
239{
240 static char *register_names[] = {
241 /* general registers 0-15 */
242 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
243 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
244 /* 16 - 22 */
245 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
246 /* 23, 24 */
247 "", "",
248 /* floating point registers 25 - 40 -- not for nofpu target */
249 "", "", "", "", "", "", "", "",
250 "", "", "", "", "", "", "", "",
251 /* 41, 42 */
252 "ssr", "spc",
253 /* bank 0 43 - 50 */
254 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
255 /* bank 1 51 - 58 */
256 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
257 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
258 "", "", "", "", "", "", "", "",
259 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
260 "", "", "", "",
261 };
262 if (reg_nr < 0)
263 return NULL;
264 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
265 return NULL;
266 return register_names[reg_nr];
267}
268
269static const char *
270sh_sh4al_dsp_register_name (int reg_nr)
271{
272 static char *register_names[] = {
273 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
274 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
275 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
276 "", "dsr",
277 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
278 "y0", "y1", "", "", "", "", "", "mod",
279 "ssr", "spc",
280 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
281 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
282 "", "", "", "", "", "", "", "",
474e5826
CV
283 };
284 if (reg_nr < 0)
285 return NULL;
286 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
287 return NULL;
288 return register_names[reg_nr];
289}
290
3117ed25 291static const unsigned char *
fba45db2 292sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
cc17453a
EZ
293{
294 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
617daa0e
CV
295 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
296
cc17453a
EZ
297 *lenptr = sizeof (breakpoint);
298 return breakpoint;
299}
c906108c
SS
300
301/* Prologue looks like
1c0159e0
CV
302 mov.l r14,@-r15
303 sts.l pr,@-r15
304 mov.l <regs>,@-r15
305 sub <room_for_loca_vars>,r15
306 mov r15,r14
8db62801 307
1c0159e0 308 Actually it can be more complicated than this but that's it, basically.
c5aa993b 309 */
c906108c 310
1c0159e0
CV
311#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
312#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
313
5f883edd
FF
314/* JSR @Rm 0100mmmm00001011 */
315#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
316
8db62801
EZ
317/* STS.L PR,@-r15 0100111100100010
318 r15-4-->r15, PR-->(r15) */
c906108c 319#define IS_STS(x) ((x) == 0x4f22)
8db62801
EZ
320
321/* MOV.L Rm,@-r15 00101111mmmm0110
322 r15-4-->r15, Rm-->(R15) */
c906108c 323#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 324
8db62801
EZ
325/* MOV r15,r14 0110111011110011
326 r15-->r14 */
c906108c 327#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
328
329/* ADD #imm,r15 01111111iiiiiiii
330 r15+imm-->r15 */
1c0159e0 331#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 332
c906108c
SS
333#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
334#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
335
336/* ADD r3,r15 0011111100111100
337 r15+r3-->r15 */
c906108c 338#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
339
340/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 341 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 342 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907
CV
343/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
344 make this entirely clear. */
1c0159e0
CV
345/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
346#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
347
348/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
349#define IS_MOV_ARG_TO_REG(x) \
350 (((x) & 0xf00f) == 0x6003 && \
351 ((x) & 0x00f0) >= 0x0040 && \
352 ((x) & 0x00f0) <= 0x0070)
353/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
354#define IS_MOV_ARG_TO_IND_R14(x) \
355 (((x) & 0xff0f) == 0x2e02 && \
356 ((x) & 0x00f0) >= 0x0040 && \
357 ((x) & 0x00f0) <= 0x0070)
358/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
359#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
360 (((x) & 0xff00) == 0x1e00 && \
361 ((x) & 0x00f0) >= 0x0040 && \
362 ((x) & 0x00f0) <= 0x0070)
363
364/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
365#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
366/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
367#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
368/* SUB Rn,R15 00111111nnnn1000 */
369#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 370
1c0159e0 371#define FPSCR_SZ (1 << 20)
cc17453a 372
1c0159e0
CV
373/* The following instructions are used for epilogue testing. */
374#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
375#define IS_RTS(x) ((x) == 0x000b)
376#define IS_LDS(x) ((x) == 0x4f26)
377#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
378#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
379#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 380
cc17453a
EZ
381/* Disassemble an instruction. */
382static int
617daa0e 383gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
c906108c 384{
1c509ca8
JR
385 info->endian = TARGET_BYTE_ORDER;
386 return print_insn_sh (memaddr, info);
283150cd
EZ
387}
388
cc17453a 389static CORE_ADDR
1c0159e0
CV
390sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
391 struct sh_frame_cache *cache)
617daa0e 392{
1c0159e0
CV
393 ULONGEST inst;
394 CORE_ADDR opc;
395 int offset;
396 int sav_offset = 0;
c906108c 397 int r3_val = 0;
1c0159e0 398 int reg, sav_reg = -1;
cc17453a 399
1c0159e0
CV
400 if (pc >= current_pc)
401 return current_pc;
cc17453a 402
1c0159e0 403 cache->uses_fp = 0;
cc17453a
EZ
404 for (opc = pc + (2 * 28); pc < opc; pc += 2)
405 {
1c0159e0 406 inst = read_memory_unsigned_integer (pc, 2);
cc17453a 407 /* See where the registers will be saved to */
f2ea0907 408 if (IS_PUSH (inst))
cc17453a 409 {
1c0159e0
CV
410 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
411 cache->sp_offset += 4;
cc17453a 412 }
f2ea0907 413 else if (IS_STS (inst))
cc17453a 414 {
1c0159e0
CV
415 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
416 cache->sp_offset += 4;
cc17453a 417 }
f2ea0907 418 else if (IS_MOV_R3 (inst))
cc17453a 419 {
f2ea0907 420 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 421 }
f2ea0907 422 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
423 {
424 r3_val <<= 1;
425 }
f2ea0907 426 else if (IS_ADD_R3SP (inst))
cc17453a 427 {
1c0159e0 428 cache->sp_offset += -r3_val;
cc17453a 429 }
f2ea0907 430 else if (IS_ADD_IMM_SP (inst))
cc17453a 431 {
1c0159e0
CV
432 offset = ((inst & 0xff) ^ 0x80) - 0x80;
433 cache->sp_offset -= offset;
c906108c 434 }
1c0159e0 435 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 436 {
1c0159e0
CV
437 if (sav_reg < 0)
438 {
439 reg = GET_TARGET_REG (inst);
440 if (reg < 14)
441 {
442 sav_reg = reg;
a2b4a96c 443 offset = (inst & 0xff) << 1;
1c0159e0 444 sav_offset =
a2b4a96c 445 read_memory_integer ((pc + 4) + offset, 2);
1c0159e0
CV
446 }
447 }
c906108c 448 }
1c0159e0 449 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 450 {
1c0159e0
CV
451 if (sav_reg < 0)
452 {
a2b4a96c 453 reg = GET_TARGET_REG (inst);
1c0159e0
CV
454 if (reg < 14)
455 {
456 sav_reg = reg;
a2b4a96c 457 offset = (inst & 0xff) << 2;
1c0159e0 458 sav_offset =
a2b4a96c 459 read_memory_integer (((pc & 0xfffffffc) + 4) + offset, 4);
1c0159e0
CV
460 }
461 }
c906108c 462 }
1c0159e0 463 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 464 {
1c0159e0
CV
465 reg = GET_SOURCE_REG (inst);
466 if (sav_reg > 0 && reg == sav_reg)
467 {
468 sav_reg = -1;
469 }
470 cache->sp_offset += sav_offset;
c906108c 471 }
f2ea0907 472 else if (IS_FPUSH (inst))
c906108c 473 {
f2ea0907 474 if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
c906108c 475 {
1c0159e0 476 cache->sp_offset += 8;
c906108c
SS
477 }
478 else
479 {
1c0159e0 480 cache->sp_offset += 4;
c906108c
SS
481 }
482 }
f2ea0907 483 else if (IS_MOV_SP_FP (inst))
617daa0e 484 {
960ccd7d 485 cache->uses_fp = 1;
1c0159e0
CV
486 /* At this point, only allow argument register moves to other
487 registers or argument register moves to @(X,fp) which are
488 moving the register arguments onto the stack area allocated
489 by a former add somenumber to SP call. Don't allow moving
490 to an fp indirect address above fp + cache->sp_offset. */
491 pc += 2;
492 for (opc = pc + 12; pc < opc; pc += 2)
493 {
494 inst = read_memory_integer (pc, 2);
495 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 496 {
1c0159e0
CV
497 reg = GET_SOURCE_REG (inst);
498 if (cache->sp_offset > 0)
617daa0e 499 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
500 }
501 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 502 {
1c0159e0
CV
503 reg = GET_SOURCE_REG (inst);
504 offset = (inst & 0xf) * 4;
505 if (cache->sp_offset > offset)
506 cache->saved_regs[reg] = cache->sp_offset - offset;
507 }
508 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 509 continue;
1c0159e0
CV
510 else
511 break;
512 }
513 break;
514 }
5f883edd
FF
515 else if (IS_JSR (inst))
516 {
517 /* We have found a jsr that has been scheduled into the prologue.
518 If we continue the scan and return a pc someplace after this,
519 then setting a breakpoint on this function will cause it to
520 appear to be called after the function it is calling via the
521 jsr, which will be very confusing. Most likely the next
522 instruction is going to be IS_MOV_SP_FP in the delay slot. If
523 so, note that before returning the current pc. */
524 inst = read_memory_integer (pc + 2, 2);
525 if (IS_MOV_SP_FP (inst))
526 cache->uses_fp = 1;
527 break;
528 }
617daa0e
CV
529#if 0 /* This used to just stop when it found an instruction that
530 was not considered part of the prologue. Now, we just
531 keep going looking for likely instructions. */
c906108c
SS
532 else
533 break;
2bfa91ee 534#endif
c906108c
SS
535 }
536
1c0159e0
CV
537 return pc;
538}
c906108c 539
1c0159e0 540/* Skip any prologue before the guts of a function */
c906108c 541
1c0159e0
CV
542/* Skip the prologue using the debug information. If this fails we'll
543 fall back on the 'guess' method below. */
544static CORE_ADDR
545after_prologue (CORE_ADDR pc)
546{
547 struct symtab_and_line sal;
548 CORE_ADDR func_addr, func_end;
c906108c 549
1c0159e0
CV
550 /* If we can not find the symbol in the partial symbol table, then
551 there is no hope we can determine the function's start address
552 with this code. */
553 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
554 return 0;
c906108c 555
1c0159e0
CV
556 /* Get the line associated with FUNC_ADDR. */
557 sal = find_pc_line (func_addr, 0);
558
559 /* There are only two cases to consider. First, the end of the source line
560 is within the function bounds. In that case we return the end of the
561 source line. Second is the end of the source line extends beyond the
562 bounds of the current function. We need to use the slow code to
563 examine instructions in that case. */
564 if (sal.end < func_end)
565 return sal.end;
566 else
567 return 0;
c906108c
SS
568}
569
1c0159e0
CV
570static CORE_ADDR
571sh_skip_prologue (CORE_ADDR start_pc)
c906108c 572{
1c0159e0
CV
573 CORE_ADDR pc;
574 struct sh_frame_cache cache;
575
576 /* See if we can determine the end of the prologue via the symbol table.
577 If so, then return either PC, or the PC after the prologue, whichever
578 is greater. */
579 pc = after_prologue (start_pc);
cc17453a 580
1c0159e0
CV
581 /* If after_prologue returned a useful address, then use it. Else
582 fall back on the instruction skipping code. */
583 if (pc)
584 return max (pc, start_pc);
c906108c 585
1c0159e0
CV
586 cache.sp_offset = -4;
587 pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
588 if (!cache.uses_fp)
589 return start_pc;
c906108c 590
1c0159e0
CV
591 return pc;
592}
593
2e952408 594/* The ABI says:
9a5cef92
EZ
595
596 Aggregate types not bigger than 8 bytes that have the same size and
597 alignment as one of the integer scalar types are returned in the
598 same registers as the integer type they match.
599
600 For example, a 2-byte aligned structure with size 2 bytes has the
601 same size and alignment as a short int, and will be returned in R0.
602 A 4-byte aligned structure with size 8 bytes has the same size and
603 alignment as a long long int, and will be returned in R0 and R1.
604
605 When an aggregate type is returned in R0 and R1, R0 contains the
606 first four bytes of the aggregate, and R1 contains the
607 remainder. If the size of the aggregate type is not a multiple of 4
608 bytes, the aggregate is tail-padded up to a multiple of 4
609 bytes. The value of the padding is undefined. For little-endian
610 targets the padding will appear at the most significant end of the
611 last element, for big-endian targets the padding appears at the
612 least significant end of the last element.
613
614 All other aggregate types are returned by address. The caller
615 function passes the address of an area large enough to hold the
616 aggregate value in R2. The called function stores the result in
7fe958be 617 this location.
9a5cef92
EZ
618
619 To reiterate, structs smaller than 8 bytes could also be returned
620 in memory, if they don't pass the "same size and alignment as an
621 integer type" rule.
622
623 For example, in
624
625 struct s { char c[3]; } wibble;
626 struct s foo(void) { return wibble; }
627
628 the return value from foo() will be in memory, not
629 in R0, because there is no 3-byte integer type.
630
7fe958be
EZ
631 Similarly, in
632
633 struct s { char c[2]; } wibble;
634 struct s foo(void) { return wibble; }
635
636 because a struct containing two chars has alignment 1, that matches
637 type char, but size 2, that matches type short. There's no integer
638 type that has alignment 1 and size 2, so the struct is returned in
639 memory.
640
9a5cef92
EZ
641*/
642
1c0159e0
CV
643static int
644sh_use_struct_convention (int gcc_p, struct type *type)
645{
646 int len = TYPE_LENGTH (type);
647 int nelem = TYPE_NFIELDS (type);
3f997a97
CV
648
649 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
650 fit in two registers anyway) use struct convention. */
651 if (len != 1 && len != 2 && len != 4 && len != 8)
652 return 1;
653
654 /* Scalar types and aggregate types with exactly one field are aligned
655 by definition. They are returned in registers. */
656 if (nelem <= 1)
657 return 0;
658
659 /* If the first field in the aggregate has the same length as the entire
660 aggregate type, the type is returned in registers. */
661 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
662 return 0;
663
664 /* If the size of the aggregate is 8 bytes and the first field is
665 of size 4 bytes its alignment is equal to long long's alignment,
666 so it's returned in registers. */
667 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
668 return 0;
669
670 /* Otherwise use struct convention. */
671 return 1;
283150cd
EZ
672}
673
cc17453a
EZ
674/* Extract from an array REGBUF containing the (raw) register state
675 the address in which a function should return its structure value,
676 as a CORE_ADDR (or an expression that can be used as one). */
b3df3fff 677static CORE_ADDR
48db5a3c 678sh_extract_struct_value_address (struct regcache *regcache)
cc17453a 679{
48db5a3c 680 ULONGEST addr;
1c0159e0 681
48db5a3c
CV
682 regcache_cooked_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &addr);
683 return addr;
cc17453a
EZ
684}
685
19f59343
MS
686static CORE_ADDR
687sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
688{
689 return sp & ~3;
690}
691
55ff77ac 692/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
693 Setup the function arguments for calling a function in the inferior.
694
85a453d5 695 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
696 which are dedicated for passing function arguments. Up to the first
697 four arguments (depending on size) may go into these registers.
698 The rest go on the stack.
699
6df2bf50
MS
700 MVS: Except on SH variants that have floating point registers.
701 In that case, float and double arguments are passed in the same
702 manner, but using FP registers instead of GP registers.
703
c906108c
SS
704 Arguments that are smaller than 4 bytes will still take up a whole
705 register or a whole 32-bit word on the stack, and will be
706 right-justified in the register or the stack word. This includes
707 chars, shorts, and small aggregate types.
708
709 Arguments that are larger than 4 bytes may be split between two or
710 more registers. If there are not enough registers free, an argument
711 may be passed partly in a register (or registers), and partly on the
712 stack. This includes doubles, long longs, and larger aggregates.
713 As far as I know, there is no upper limit to the size of aggregates
714 that will be passed in this way; in other words, the convention of
715 passing a pointer to a large aggregate instead of a copy is not used.
716
6df2bf50 717 MVS: The above appears to be true for the SH variants that do not
55ff77ac 718 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
719 aggregate argument onto the stack (and not place it in registers)
720 if it is larger than 16 bytes (four GP registers).
721
c906108c
SS
722 An exceptional case exists for struct arguments (and possibly other
723 aggregates such as arrays) if the size is larger than 4 bytes but
724 not a multiple of 4 bytes. In this case the argument is never split
725 between the registers and the stack, but instead is copied in its
726 entirety onto the stack, AND also copied into as many registers as
727 there is room for. In other words, space in registers permitting,
728 two copies of the same argument are passed in. As far as I can tell,
729 only the one on the stack is used, although that may be a function
730 of the level of compiler optimization. I suspect this is a compiler
731 bug. Arguments of these odd sizes are left-justified within the
732 word (as opposed to arguments smaller than 4 bytes, which are
733 right-justified).
c5aa993b 734
c906108c
SS
735 If the function is to return an aggregate type such as a struct, it
736 is either returned in the normal return value register R0 (if its
737 size is no greater than one byte), or else the caller must allocate
738 space into which the callee will copy the return value (if the size
739 is greater than one byte). In this case, a pointer to the return
740 value location is passed into the callee in register R2, which does
741 not displace any of the other arguments passed in via registers R4
742 to R7. */
743
e5e33cd9
CV
744/* Helper function to justify value in register according to endianess. */
745static char *
746sh_justify_value_in_reg (struct value *val, int len)
747{
748 static char valbuf[4];
749
617daa0e 750 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
751 if (len < 4)
752 {
753 /* value gets right-justified in the register or stack word */
754 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
755 memcpy (valbuf + (4 - len), (char *) VALUE_CONTENTS (val), len);
756 else
757 memcpy (valbuf, (char *) VALUE_CONTENTS (val), len);
758 return valbuf;
759 }
760 return (char *) VALUE_CONTENTS (val);
617daa0e 761}
e5e33cd9
CV
762
763/* Helper function to eval number of bytes to allocate on stack. */
764static CORE_ADDR
765sh_stack_allocsize (int nargs, struct value **args)
766{
767 int stack_alloc = 0;
768 while (nargs-- > 0)
769 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[nargs])) + 3) & ~3);
770 return stack_alloc;
771}
772
773/* Helper functions for getting the float arguments right. Registers usage
774 depends on the ABI and the endianess. The comments should enlighten how
775 it's intended to work. */
776
777/* This array stores which of the float arg registers are already in use. */
778static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
779
780/* This function just resets the above array to "no reg used so far". */
781static void
782sh_init_flt_argreg (void)
783{
784 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
785}
786
787/* This function returns the next register to use for float arg passing.
788 It returns either a valid value between FLOAT_ARG0_REGNUM and
789 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
790 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
791
792 Note that register number 0 in flt_argreg_array corresponds with the
793 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
794 29) the parity of the register number is preserved, which is important
795 for the double register passing test (see the "argreg & 1" test below). */
796static int
797sh_next_flt_argreg (int len)
798{
799 int argreg;
800
801 /* First search for the next free register. */
617daa0e
CV
802 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
803 ++argreg)
e5e33cd9
CV
804 if (!flt_argreg_array[argreg])
805 break;
806
807 /* No register left? */
808 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
809 return FLOAT_ARGLAST_REGNUM + 1;
810
811 if (len == 8)
812 {
813 /* Doubles are always starting in a even register number. */
814 if (argreg & 1)
617daa0e 815 {
e5e33cd9
CV
816 flt_argreg_array[argreg] = 1;
817
818 ++argreg;
819
617daa0e 820 /* No register left? */
e5e33cd9
CV
821 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
822 return FLOAT_ARGLAST_REGNUM + 1;
823 }
824 /* Also mark the next register as used. */
825 flt_argreg_array[argreg + 1] = 1;
826 }
827 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
828 {
829 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
830 if (!flt_argreg_array[argreg + 1])
831 ++argreg;
832 }
833 flt_argreg_array[argreg] = 1;
834 return FLOAT_ARG0_REGNUM + argreg;
835}
836
afce3d2a
CV
837/* Helper function which figures out, if a type is treated like a float type.
838
2e952408 839 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
840 Structures with exactly one member, which is of type float or double, are
841 treated exactly as the base types float or double:
842
843 struct sf {
844 float f;
845 };
846
847 struct sd {
848 double d;
849 };
850
851 are handled the same way as just
852
853 float f;
854
855 double d;
856
857 As a result, arguments of these struct types are pushed into floating point
858 registers exactly as floats or doubles, using the same decision algorithm.
859
860 The same is valid if these types are used as function return types. The
861 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
862 or even using struct convention as it is for other structs. */
863
864static int
865sh_treat_as_flt_p (struct type *type)
866{
867 int len = TYPE_LENGTH (type);
868
869 /* Ordinary float types are obviously treated as float. */
870 if (TYPE_CODE (type) == TYPE_CODE_FLT)
871 return 1;
872 /* Otherwise non-struct types are not treated as float. */
873 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
874 return 0;
875 /* Otherwise structs with more than one memeber are not treated as float. */
876 if (TYPE_NFIELDS (type) != 1)
877 return 0;
878 /* Otherwise if the type of that member is float, the whole type is
879 treated as float. */
880 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
881 return 1;
882 /* Otherwise it's not treated as float. */
883 return 0;
884}
885
cc17453a 886static CORE_ADDR
617daa0e 887sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 888 struct value *function,
617daa0e 889 struct regcache *regcache,
6df2bf50 890 CORE_ADDR bp_addr, int nargs,
617daa0e 891 struct value **args,
6df2bf50
MS
892 CORE_ADDR sp, int struct_return,
893 CORE_ADDR struct_addr)
894{
e5e33cd9
CV
895 int stack_offset = 0;
896 int argreg = ARG0_REGNUM;
8748518b 897 int flt_argreg = 0;
6df2bf50
MS
898 int argnum;
899 struct type *type;
900 CORE_ADDR regval;
901 char *val;
8748518b 902 int len, reg_size = 0;
afce3d2a
CV
903 int pass_on_stack = 0;
904 int treat_as_flt;
6df2bf50
MS
905
906 /* first force sp to a 4-byte alignment */
907 sp = sh_frame_align (gdbarch, sp);
908
6df2bf50 909 if (struct_return)
1c0159e0 910 regcache_cooked_write_unsigned (regcache,
617daa0e 911 STRUCT_RETURN_REGNUM, struct_addr);
6df2bf50 912
e5e33cd9
CV
913 /* make room on stack for args */
914 sp -= sh_stack_allocsize (nargs, args);
915
916 /* Initialize float argument mechanism. */
917 sh_init_flt_argreg ();
6df2bf50
MS
918
919 /* Now load as many as possible of the first arguments into
920 registers, and push the rest onto the stack. There are 16 bytes
921 in four registers available. Loop thru args from first to last. */
e5e33cd9 922 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50
MS
923 {
924 type = VALUE_TYPE (args[argnum]);
925 len = TYPE_LENGTH (type);
e5e33cd9
CV
926 val = sh_justify_value_in_reg (args[argnum], len);
927
928 /* Some decisions have to be made how various types are handled.
929 This also differs in different ABIs. */
930 pass_on_stack = 0;
e5e33cd9
CV
931
932 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
933 treat_as_flt = sh_treat_as_flt_p (type);
934 if (treat_as_flt)
617daa0e 935 flt_argreg = sh_next_flt_argreg (len);
afce3d2a
CV
936 /* In contrast to non-FPU CPUs, arguments are never split between
937 registers and stack. If an argument doesn't fit in the remaining
938 registers it's always pushed entirely on the stack. */
939 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
940 pass_on_stack = 1;
48db5a3c 941
6df2bf50
MS
942 while (len > 0)
943 {
afce3d2a
CV
944 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
945 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
946 || pass_on_stack)))
617daa0e 947 {
afce3d2a 948 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
949 reg_size = (len + 3) & ~3;
950 write_memory (sp + stack_offset, val, reg_size);
951 stack_offset += reg_size;
6df2bf50 952 }
afce3d2a 953 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 954 {
e5e33cd9
CV
955 /* Argument goes in a float argument register. */
956 reg_size = register_size (gdbarch, flt_argreg);
957 regval = extract_unsigned_integer (val, reg_size);
2e952408
CV
958 /* In little endian mode, float types taking two registers
959 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
960 be stored swapped in the argument registers. The below
961 code first writes the first 32 bits in the next but one
962 register, increments the val and len values accordingly
963 and then proceeds as normal by writing the second 32 bits
964 into the next register. */
965 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE
966 && TYPE_LENGTH (type) == 2 * reg_size)
967 {
968 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
969 regval);
970 val += reg_size;
971 len -= reg_size;
972 regval = extract_unsigned_integer (val, reg_size);
973 }
6df2bf50
MS
974 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
975 }
afce3d2a 976 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 977 {
6df2bf50 978 /* there's room in a register */
e5e33cd9
CV
979 reg_size = register_size (gdbarch, argreg);
980 regval = extract_unsigned_integer (val, reg_size);
6df2bf50
MS
981 regcache_cooked_write_unsigned (regcache, argreg++, regval);
982 }
afce3d2a 983 /* Store the value one register at a time or in one step on stack. */
e5e33cd9
CV
984 len -= reg_size;
985 val += reg_size;
6df2bf50
MS
986 }
987 }
988
989 /* Store return address. */
55ff77ac 990 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
991
992 /* Update stack pointer. */
993 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
994
995 return sp;
996}
997
998static CORE_ADDR
617daa0e 999sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1000 struct value *function,
617daa0e
CV
1001 struct regcache *regcache,
1002 CORE_ADDR bp_addr,
1003 int nargs, struct value **args,
1004 CORE_ADDR sp, int struct_return,
6df2bf50 1005 CORE_ADDR struct_addr)
c906108c 1006{
e5e33cd9
CV
1007 int stack_offset = 0;
1008 int argreg = ARG0_REGNUM;
c906108c
SS
1009 int argnum;
1010 struct type *type;
1011 CORE_ADDR regval;
1012 char *val;
e5e33cd9 1013 int len, reg_size;
c906108c
SS
1014
1015 /* first force sp to a 4-byte alignment */
19f59343 1016 sp = sh_frame_align (gdbarch, sp);
c906108c 1017
c906108c 1018 if (struct_return)
55ff77ac 1019 regcache_cooked_write_unsigned (regcache,
617daa0e 1020 STRUCT_RETURN_REGNUM, struct_addr);
c906108c 1021
e5e33cd9
CV
1022 /* make room on stack for args */
1023 sp -= sh_stack_allocsize (nargs, args);
c906108c 1024
c906108c
SS
1025 /* Now load as many as possible of the first arguments into
1026 registers, and push the rest onto the stack. There are 16 bytes
1027 in four registers available. Loop thru args from first to last. */
e5e33cd9 1028 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1029 {
c906108c 1030 type = VALUE_TYPE (args[argnum]);
c5aa993b 1031 len = TYPE_LENGTH (type);
e5e33cd9 1032 val = sh_justify_value_in_reg (args[argnum], len);
c906108c 1033
c906108c
SS
1034 while (len > 0)
1035 {
e5e33cd9 1036 if (argreg > ARGLAST_REGNUM)
617daa0e 1037 {
e5e33cd9
CV
1038 /* The remainder of the data goes entirely on the stack,
1039 4-byte aligned. */
1040 reg_size = (len + 3) & ~3;
1041 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1042 stack_offset += reg_size;
c906108c 1043 }
e5e33cd9 1044 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1045 {
3bbfbb92 1046 /* there's room in a register */
e5e33cd9
CV
1047 reg_size = register_size (gdbarch, argreg);
1048 regval = extract_unsigned_integer (val, reg_size);
48db5a3c 1049 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1050 }
e5e33cd9
CV
1051 /* Store the value reg_size bytes at a time. This means that things
1052 larger than reg_size bytes may go partly in registers and partly
c906108c 1053 on the stack. */
e5e33cd9
CV
1054 len -= reg_size;
1055 val += reg_size;
c906108c
SS
1056 }
1057 }
48db5a3c
CV
1058
1059 /* Store return address. */
55ff77ac 1060 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1061
1062 /* Update stack pointer. */
1063 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1064
c906108c
SS
1065 return sp;
1066}
1067
cc17453a
EZ
1068/* Find a function's return value in the appropriate registers (in
1069 regbuf), and copy it into valbuf. Extract from an array REGBUF
1070 containing the (raw) register state a function return value of type
1071 TYPE, and copy that, in virtual format, into VALBUF. */
1072static void
48db5a3c
CV
1073sh_default_extract_return_value (struct type *type, struct regcache *regcache,
1074 void *valbuf)
c906108c 1075{
cc17453a 1076 int len = TYPE_LENGTH (type);
3116c80a
EZ
1077 int return_register = R0_REGNUM;
1078 int offset;
617daa0e 1079
cc17453a 1080 if (len <= 4)
3116c80a 1081 {
48db5a3c
CV
1082 ULONGEST c;
1083
1084 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1085 store_unsigned_integer (valbuf, len, c);
3116c80a 1086 }
48db5a3c 1087 else if (len == 8)
3116c80a 1088 {
48db5a3c
CV
1089 int i, regnum = R0_REGNUM;
1090 for (i = 0; i < len; i += 4)
617daa0e 1091 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a
EZ
1092 }
1093 else
1094 error ("bad size for return value");
1095}
1096
1097static void
48db5a3c
CV
1098sh3e_sh4_extract_return_value (struct type *type, struct regcache *regcache,
1099 void *valbuf)
3116c80a 1100{
afce3d2a 1101 if (sh_treat_as_flt_p (type))
3116c80a 1102 {
48db5a3c
CV
1103 int len = TYPE_LENGTH (type);
1104 int i, regnum = FP0_REGNUM;
1105 for (i = 0; i < len; i += 4)
2e952408
CV
1106 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1107 regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
1108 else
1109 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a 1110 }
cc17453a 1111 else
48db5a3c 1112 sh_default_extract_return_value (type, regcache, valbuf);
cc17453a 1113}
c906108c 1114
cc17453a
EZ
1115/* Write into appropriate registers a function return value
1116 of type TYPE, given in virtual format.
1117 If the architecture is sh4 or sh3e, store a function's return value
1118 in the R0 general register or in the FP0 floating point register,
1119 depending on the type of the return value. In all the other cases
3bbfbb92 1120 the result is stored in r0, left-justified. */
cc17453a 1121static void
48db5a3c
CV
1122sh_default_store_return_value (struct type *type, struct regcache *regcache,
1123 const void *valbuf)
cc17453a 1124{
48db5a3c
CV
1125 ULONGEST val;
1126 int len = TYPE_LENGTH (type);
d19b71be 1127
48db5a3c 1128 if (len <= 4)
d19b71be 1129 {
48db5a3c
CV
1130 val = extract_unsigned_integer (valbuf, len);
1131 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1132 }
1133 else
48db5a3c
CV
1134 {
1135 int i, regnum = R0_REGNUM;
1136 for (i = 0; i < len; i += 4)
617daa0e 1137 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1138 }
cc17453a 1139}
c906108c 1140
cc17453a 1141static void
48db5a3c
CV
1142sh3e_sh4_store_return_value (struct type *type, struct regcache *regcache,
1143 const void *valbuf)
cc17453a 1144{
afce3d2a 1145 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1146 {
1147 int len = TYPE_LENGTH (type);
1148 int i, regnum = FP0_REGNUM;
1149 for (i = 0; i < len; i += 4)
c8a3b559
CV
1150 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1151 regcache_raw_write (regcache, regnum++,
1152 (char *) valbuf + len - 4 - i);
1153 else
1154 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1155 }
cc17453a 1156 else
48db5a3c 1157 sh_default_store_return_value (type, regcache, valbuf);
c906108c
SS
1158}
1159
1160/* Print the registers in a form similar to the E7000 */
1161
1162static void
fba45db2 1163sh_generic_show_regs (void)
c906108c 1164{
cc17453a
EZ
1165 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1166 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1167 (long) read_register (SR_REGNUM),
1168 (long) read_register (PR_REGNUM),
cc17453a
EZ
1169 (long) read_register (MACH_REGNUM),
1170 (long) read_register (MACL_REGNUM));
1171
1172 printf_filtered ("GBR=%08lx VBR=%08lx",
1173 (long) read_register (GBR_REGNUM),
1174 (long) read_register (VBR_REGNUM));
1175
617daa0e
CV
1176 printf_filtered
1177 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1178 (long) read_register (0), (long) read_register (1),
1179 (long) read_register (2), (long) read_register (3),
1180 (long) read_register (4), (long) read_register (5),
1181 (long) read_register (6), (long) read_register (7));
cc17453a 1182 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1183 (long) read_register (8), (long) read_register (9),
1184 (long) read_register (10), (long) read_register (11),
1185 (long) read_register (12), (long) read_register (13),
1186 (long) read_register (14), (long) read_register (15));
cc17453a 1187}
c906108c 1188
cc17453a 1189static void
fba45db2 1190sh3_show_regs (void)
cc17453a 1191{
d4f3574e
SS
1192 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1193 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1194 (long) read_register (SR_REGNUM),
1195 (long) read_register (PR_REGNUM),
d4f3574e
SS
1196 (long) read_register (MACH_REGNUM),
1197 (long) read_register (MACL_REGNUM));
1198
1199 printf_filtered ("GBR=%08lx VBR=%08lx",
1200 (long) read_register (GBR_REGNUM),
1201 (long) read_register (VBR_REGNUM));
cc17453a 1202 printf_filtered (" SSR=%08lx SPC=%08lx",
617daa0e 1203 (long) read_register (SSR_REGNUM),
f2ea0907 1204 (long) read_register (SPC_REGNUM));
c906108c 1205
617daa0e
CV
1206 printf_filtered
1207 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1208 (long) read_register (0), (long) read_register (1),
1209 (long) read_register (2), (long) read_register (3),
1210 (long) read_register (4), (long) read_register (5),
1211 (long) read_register (6), (long) read_register (7));
d4f3574e 1212 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1213 (long) read_register (8), (long) read_register (9),
1214 (long) read_register (10), (long) read_register (11),
1215 (long) read_register (12), (long) read_register (13),
1216 (long) read_register (14), (long) read_register (15));
c906108c
SS
1217}
1218
53116e27 1219
2d188dd3
NC
1220static void
1221sh2e_show_regs (void)
1222{
1223 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1224 paddr (read_register (PC_REGNUM)),
1225 (long) read_register (SR_REGNUM),
1226 (long) read_register (PR_REGNUM),
1227 (long) read_register (MACH_REGNUM),
1228 (long) read_register (MACL_REGNUM));
1229
1230 printf_filtered ("GBR=%08lx VBR=%08lx",
1231 (long) read_register (GBR_REGNUM),
1232 (long) read_register (VBR_REGNUM));
1233 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
617daa0e
CV
1234 (long) read_register (FPUL_REGNUM),
1235 (long) read_register (FPSCR_REGNUM));
1236
1237 printf_filtered
1238 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1239 (long) read_register (0), (long) read_register (1),
1240 (long) read_register (2), (long) read_register (3),
1241 (long) read_register (4), (long) read_register (5),
1242 (long) read_register (6), (long) read_register (7));
2d188dd3 1243 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1244 (long) read_register (8), (long) read_register (9),
1245 (long) read_register (10), (long) read_register (11),
1246 (long) read_register (12), (long) read_register (13),
1247 (long) read_register (14), (long) read_register (15));
1248
1249 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
1250 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
2d188dd3
NC
1251}
1252
cc17453a 1253static void
fba45db2 1254sh3e_show_regs (void)
cc17453a
EZ
1255{
1256 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1257 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1258 (long) read_register (SR_REGNUM),
1259 (long) read_register (PR_REGNUM),
cc17453a
EZ
1260 (long) read_register (MACH_REGNUM),
1261 (long) read_register (MACL_REGNUM));
1262
1263 printf_filtered ("GBR=%08lx VBR=%08lx",
1264 (long) read_register (GBR_REGNUM),
1265 (long) read_register (VBR_REGNUM));
1266 printf_filtered (" SSR=%08lx SPC=%08lx",
f2ea0907
CV
1267 (long) read_register (SSR_REGNUM),
1268 (long) read_register (SPC_REGNUM));
cc17453a 1269 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
f2ea0907
CV
1270 (long) read_register (FPUL_REGNUM),
1271 (long) read_register (FPSCR_REGNUM));
c906108c 1272
617daa0e
CV
1273 printf_filtered
1274 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1275 (long) read_register (0), (long) read_register (1),
1276 (long) read_register (2), (long) read_register (3),
1277 (long) read_register (4), (long) read_register (5),
1278 (long) read_register (6), (long) read_register (7));
cc17453a 1279 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1280 (long) read_register (8), (long) read_register (9),
1281 (long) read_register (10), (long) read_register (11),
1282 (long) read_register (12), (long) read_register (13),
1283 (long) read_register (14), (long) read_register (15));
1284
1285 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
1286 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
cc17453a
EZ
1287}
1288
1289static void
fba45db2 1290sh3_dsp_show_regs (void)
c906108c 1291{
cc17453a
EZ
1292 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1293 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1294 (long) read_register (SR_REGNUM),
1295 (long) read_register (PR_REGNUM),
cc17453a
EZ
1296 (long) read_register (MACH_REGNUM),
1297 (long) read_register (MACL_REGNUM));
c906108c 1298
cc17453a
EZ
1299 printf_filtered ("GBR=%08lx VBR=%08lx",
1300 (long) read_register (GBR_REGNUM),
1301 (long) read_register (VBR_REGNUM));
1302
1303 printf_filtered (" SSR=%08lx SPC=%08lx",
f2ea0907
CV
1304 (long) read_register (SSR_REGNUM),
1305 (long) read_register (SPC_REGNUM));
cc17453a 1306
617daa0e
CV
1307 printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
1308
1309 printf_filtered
1310 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1311 (long) read_register (0), (long) read_register (1),
1312 (long) read_register (2), (long) read_register (3),
1313 (long) read_register (4), (long) read_register (5),
1314 (long) read_register (6), (long) read_register (7));
cc17453a 1315 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1316 (long) read_register (8), (long) read_register (9),
1317 (long) read_register (10), (long) read_register (11),
1318 (long) read_register (12), (long) read_register (13),
1319 (long) read_register (14), (long) read_register (15));
1320
1321 printf_filtered
1322 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1323 (long) read_register (A0G_REGNUM) & 0xff,
1324 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1325 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1326 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
cc17453a 1327 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
f2ea0907
CV
1328 (long) read_register (A1G_REGNUM) & 0xff,
1329 (long) read_register (A1_REGNUM),
1330 (long) read_register (M1_REGNUM),
1331 (long) read_register (X1_REGNUM),
1332 (long) read_register (Y1_REGNUM),
1333 (long) read_register (RE_REGNUM));
c906108c
SS
1334}
1335
cc17453a 1336static void
fba45db2 1337sh4_show_regs (void)
cc17453a 1338{
f2ea0907 1339 int pr = read_register (FPSCR_REGNUM) & 0x80000;
cc17453a
EZ
1340 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1341 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1342 (long) read_register (SR_REGNUM),
1343 (long) read_register (PR_REGNUM),
cc17453a
EZ
1344 (long) read_register (MACH_REGNUM),
1345 (long) read_register (MACL_REGNUM));
1346
1347 printf_filtered ("GBR=%08lx VBR=%08lx",
1348 (long) read_register (GBR_REGNUM),
1349 (long) read_register (VBR_REGNUM));
1350 printf_filtered (" SSR=%08lx SPC=%08lx",
f2ea0907
CV
1351 (long) read_register (SSR_REGNUM),
1352 (long) read_register (SPC_REGNUM));
cc17453a 1353 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
f2ea0907
CV
1354 (long) read_register (FPUL_REGNUM),
1355 (long) read_register (FPSCR_REGNUM));
cc17453a 1356
617daa0e
CV
1357 printf_filtered
1358 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1359 (long) read_register (0), (long) read_register (1),
1360 (long) read_register (2), (long) read_register (3),
1361 (long) read_register (4), (long) read_register (5),
1362 (long) read_register (6), (long) read_register (7));
cc17453a 1363 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1364 (long) read_register (8), (long) read_register (9),
1365 (long) read_register (10), (long) read_register (11),
1366 (long) read_register (12), (long) read_register (13),
1367 (long) read_register (14), (long) read_register (15));
cc17453a
EZ
1368
1369 printf_filtered ((pr
1370 ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
617daa0e
CV
1371 :
1372 "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
cc17453a
EZ
1373 (long) read_register (FP0_REGNUM + 0),
1374 (long) read_register (FP0_REGNUM + 1),
1375 (long) read_register (FP0_REGNUM + 2),
1376 (long) read_register (FP0_REGNUM + 3),
1377 (long) read_register (FP0_REGNUM + 4),
1378 (long) read_register (FP0_REGNUM + 5),
1379 (long) read_register (FP0_REGNUM + 6),
1380 (long) read_register (FP0_REGNUM + 7));
617daa0e
CV
1381 printf_filtered ((pr ?
1382 "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n" :
1383 "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
cc17453a
EZ
1384 (long) read_register (FP0_REGNUM + 8),
1385 (long) read_register (FP0_REGNUM + 9),
1386 (long) read_register (FP0_REGNUM + 10),
1387 (long) read_register (FP0_REGNUM + 11),
1388 (long) read_register (FP0_REGNUM + 12),
1389 (long) read_register (FP0_REGNUM + 13),
1390 (long) read_register (FP0_REGNUM + 14),
1391 (long) read_register (FP0_REGNUM + 15));
1392}
1393
474e5826
CV
1394static void
1395sh4_nofpu_show_regs (void)
1396{
1397 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1398 paddr (read_register (PC_REGNUM)),
1399 (long) read_register (SR_REGNUM),
1400 (long) read_register (PR_REGNUM),
1401 (long) read_register (MACH_REGNUM),
1402 (long) read_register (MACL_REGNUM));
1403
1404 printf_filtered ("GBR=%08lx VBR=%08lx",
1405 (long) read_register (GBR_REGNUM),
1406 (long) read_register (VBR_REGNUM));
1407 printf_filtered (" SSR=%08lx SPC=%08lx",
1408 (long) read_register (SSR_REGNUM),
1409 (long) read_register (SPC_REGNUM));
1410
1411 printf_filtered
1412 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1413 (long) read_register (0), (long) read_register (1),
1414 (long) read_register (2), (long) read_register (3),
1415 (long) read_register (4), (long) read_register (5),
1416 (long) read_register (6), (long) read_register (7));
1417 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1418 (long) read_register (8), (long) read_register (9),
1419 (long) read_register (10), (long) read_register (11),
1420 (long) read_register (12), (long) read_register (13),
1421 (long) read_register (14), (long) read_register (15));
1422}
1423
cc17453a 1424static void
fba45db2 1425sh_dsp_show_regs (void)
cc17453a
EZ
1426{
1427 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1428 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1429 (long) read_register (SR_REGNUM),
1430 (long) read_register (PR_REGNUM),
cc17453a
EZ
1431 (long) read_register (MACH_REGNUM),
1432 (long) read_register (MACL_REGNUM));
1433
1434 printf_filtered ("GBR=%08lx VBR=%08lx",
1435 (long) read_register (GBR_REGNUM),
1436 (long) read_register (VBR_REGNUM));
1437
617daa0e
CV
1438 printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
1439
1440 printf_filtered
1441 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1442 (long) read_register (0), (long) read_register (1),
1443 (long) read_register (2), (long) read_register (3),
1444 (long) read_register (4), (long) read_register (5),
1445 (long) read_register (6), (long) read_register (7));
cc17453a 1446 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1447 (long) read_register (8), (long) read_register (9),
1448 (long) read_register (10), (long) read_register (11),
1449 (long) read_register (12), (long) read_register (13),
1450 (long) read_register (14), (long) read_register (15));
1451
1452 printf_filtered
1453 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1454 (long) read_register (A0G_REGNUM) & 0xff,
1455 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1456 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1457 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
cc17453a 1458 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
f2ea0907
CV
1459 (long) read_register (A1G_REGNUM) & 0xff,
1460 (long) read_register (A1_REGNUM),
1461 (long) read_register (M1_REGNUM),
1462 (long) read_register (X1_REGNUM),
1463 (long) read_register (Y1_REGNUM),
1464 (long) read_register (RE_REGNUM));
cc17453a
EZ
1465}
1466
a78f21af
AC
1467static void
1468sh_show_regs_command (char *args, int from_tty)
53116e27
EZ
1469{
1470 if (sh_show_regs)
617daa0e 1471 (*sh_show_regs) ();
53116e27
EZ
1472}
1473
cc17453a
EZ
1474/* Return the GDB type object for the "standard" data type
1475 of data in register N. */
cc17453a 1476static struct type *
48db5a3c 1477sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a
EZ
1478{
1479 if ((reg_nr >= FP0_REGNUM
617daa0e 1480 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
cc17453a 1481 return builtin_type_float;
8db62801 1482 else
cc17453a
EZ
1483 return builtin_type_int;
1484}
1485
7f4dbe94
EZ
1486static struct type *
1487sh_sh4_build_float_register_type (int high)
1488{
1489 struct type *temp;
1490
1491 temp = create_range_type (NULL, builtin_type_int, 0, high);
1492 return create_array_type (NULL, builtin_type_float, temp);
1493}
1494
53116e27 1495static struct type *
48db5a3c 1496sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27
EZ
1497{
1498 if ((reg_nr >= FP0_REGNUM
617daa0e 1499 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
53116e27 1500 return builtin_type_float;
617daa0e 1501 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1502 return builtin_type_double;
617daa0e 1503 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27
EZ
1504 return sh_sh4_build_float_register_type (3);
1505 else
1506 return builtin_type_int;
1507}
1508
cc17453a 1509static struct type *
48db5a3c 1510sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a
EZ
1511{
1512 return builtin_type_int;
1513}
1514
fb409745
EZ
1515/* On the sh4, the DRi pseudo registers are problematic if the target
1516 is little endian. When the user writes one of those registers, for
1517 instance with 'ser var $dr0=1', we want the double to be stored
1518 like this:
1519 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1520 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1521
1522 This corresponds to little endian byte order & big endian word
1523 order. However if we let gdb write the register w/o conversion, it
1524 will write fr0 and fr1 this way:
1525 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1526 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1527 because it will consider fr0 and fr1 as a single LE stretch of memory.
1528
1529 To achieve what we want we must force gdb to store things in
1530 floatformat_ieee_double_littlebyte_bigword (which is defined in
1531 include/floatformat.h and libiberty/floatformat.c.
1532
1533 In case the target is big endian, there is no problem, the
1534 raw bytes will look like:
1535 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1536 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1537
1538 The other pseudo registers (the FVs) also don't pose a problem
1539 because they are stored as 4 individual FP elements. */
1540
7bd872fe 1541static void
b66ba949
CV
1542sh_register_convert_to_virtual (int regnum, struct type *type,
1543 char *from, char *to)
55ff77ac 1544{
617daa0e 1545 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1546 {
1547 DOUBLEST val;
617daa0e
CV
1548 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1549 from, &val);
55ff77ac 1550 store_typed_floating (to, type, val);
283150cd
EZ
1551 }
1552 else
617daa0e
CV
1553 error
1554 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1555}
1556
1557static void
b66ba949
CV
1558sh_register_convert_to_raw (struct type *type, int regnum,
1559 const void *from, void *to)
283150cd 1560{
617daa0e 1561 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1562 {
48db5a3c 1563 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1564 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1565 &val, to);
283150cd
EZ
1566 }
1567 else
617daa0e 1568 error ("sh_register_convert_to_raw called with non DR register number");
283150cd
EZ
1569}
1570
1c0159e0
CV
1571/* For vectors of 4 floating point registers. */
1572static int
1573fv_reg_base_num (int fv_regnum)
1574{
1575 int fp_regnum;
1576
617daa0e 1577 fp_regnum = FP0_REGNUM + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1578 return fp_regnum;
1579}
1580
1581/* For double precision floating point registers, i.e 2 fp regs.*/
1582static int
1583dr_reg_base_num (int dr_regnum)
1584{
1585 int fp_regnum;
1586
617daa0e 1587 fp_regnum = FP0_REGNUM + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1588 return fp_regnum;
1589}
1590
a78f21af 1591static void
d8124050
AC
1592sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1593 int reg_nr, void *buffer)
53116e27
EZ
1594{
1595 int base_regnum, portion;
d9d9c31f 1596 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 1597
617daa0e 1598 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe
EZ
1599 {
1600 base_regnum = dr_reg_base_num (reg_nr);
1601
617daa0e 1602 /* Build the value in the provided buffer. */
7bd872fe
EZ
1603 /* Read the real regs for which this one is an alias. */
1604 for (portion = 0; portion < 2; portion++)
617daa0e 1605 regcache_raw_read (regcache, base_regnum + portion,
0818c12a 1606 (temp_buffer
617daa0e
CV
1607 + register_size (gdbarch,
1608 base_regnum) * portion));
7bd872fe 1609 /* We must pay attention to the endiannes. */
b66ba949
CV
1610 sh_register_convert_to_virtual (reg_nr,
1611 gdbarch_register_type (gdbarch, reg_nr),
1612 temp_buffer, buffer);
7bd872fe 1613 }
617daa0e 1614 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1615 {
7bd872fe
EZ
1616 base_regnum = fv_reg_base_num (reg_nr);
1617
1618 /* Read the real regs for which this one is an alias. */
1619 for (portion = 0; portion < 4; portion++)
617daa0e 1620 regcache_raw_read (regcache, base_regnum + portion,
d8124050 1621 ((char *) buffer
617daa0e
CV
1622 + register_size (gdbarch,
1623 base_regnum) * portion));
53116e27
EZ
1624 }
1625}
1626
a78f21af 1627static void
d8124050
AC
1628sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1629 int reg_nr, const void *buffer)
53116e27
EZ
1630{
1631 int base_regnum, portion;
d9d9c31f 1632 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 1633
617daa0e 1634 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27
EZ
1635 {
1636 base_regnum = dr_reg_base_num (reg_nr);
1637
7bd872fe 1638 /* We must pay attention to the endiannes. */
b66ba949
CV
1639 sh_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
1640 reg_nr, buffer, temp_buffer);
7bd872fe 1641
53116e27
EZ
1642 /* Write the real regs for which this one is an alias. */
1643 for (portion = 0; portion < 2; portion++)
617daa0e 1644 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 1645 (temp_buffer
617daa0e
CV
1646 + register_size (gdbarch,
1647 base_regnum) * portion));
53116e27 1648 }
617daa0e 1649 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27
EZ
1650 {
1651 base_regnum = fv_reg_base_num (reg_nr);
1652
1653 /* Write the real regs for which this one is an alias. */
1654 for (portion = 0; portion < 4; portion++)
d8124050
AC
1655 regcache_raw_write (regcache, base_regnum + portion,
1656 ((char *) buffer
617daa0e
CV
1657 + register_size (gdbarch,
1658 base_regnum) * portion));
53116e27
EZ
1659 }
1660}
1661
3bbfbb92 1662/* Floating point vector of 4 float registers. */
53116e27 1663static void
48db5a3c
CV
1664do_fv_register_info (struct gdbarch *gdbarch, struct ui_file *file,
1665 int fv_regnum)
53116e27
EZ
1666{
1667 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
617daa0e
CV
1668 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1669 fv_regnum - FV0_REGNUM,
1670 (int) read_register (first_fp_reg_num),
1671 (int) read_register (first_fp_reg_num + 1),
1672 (int) read_register (first_fp_reg_num + 2),
1673 (int) read_register (first_fp_reg_num + 3));
53116e27
EZ
1674}
1675
3bbfbb92 1676/* Double precision registers. */
53116e27 1677static void
48db5a3c
CV
1678do_dr_register_info (struct gdbarch *gdbarch, struct ui_file *file,
1679 int dr_regnum)
53116e27
EZ
1680{
1681 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
1682
617daa0e
CV
1683 fprintf_filtered (file, "dr%d\t0x%08x%08x\n",
1684 dr_regnum - DR0_REGNUM,
53116e27
EZ
1685 (int) read_register (first_fp_reg_num),
1686 (int) read_register (first_fp_reg_num + 1));
1687}
1688
1689static void
48db5a3c
CV
1690sh_print_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1691 int regnum)
53116e27
EZ
1692{
1693 if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
8e65ff28
AC
1694 internal_error (__FILE__, __LINE__,
1695 "Invalid pseudo register number %d\n", regnum);
617daa0e 1696 else if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
48db5a3c 1697 do_dr_register_info (gdbarch, file, regnum);
617daa0e 1698 else if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
48db5a3c 1699 do_fv_register_info (gdbarch, file, regnum);
53116e27
EZ
1700}
1701
53116e27 1702static void
48db5a3c 1703sh_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
53116e27
EZ
1704{ /* do values for FP (float) regs */
1705 char *raw_buffer;
617daa0e 1706 double flt; /* double extracted from raw hex data */
53116e27
EZ
1707 int inv;
1708 int j;
1709
1710 /* Allocate space for the float. */
48db5a3c 1711 raw_buffer = (char *) alloca (register_size (gdbarch, FP0_REGNUM));
53116e27
EZ
1712
1713 /* Get the data in raw format. */
48db5a3c 1714 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
53116e27
EZ
1715 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
1716
617daa0e 1717 /* Get the register as a number */
53116e27
EZ
1718 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
1719
1720 /* Print the name and some spaces. */
48db5a3c
CV
1721 fputs_filtered (REGISTER_NAME (regnum), file);
1722 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
53116e27
EZ
1723
1724 /* Print the value. */
93d56215 1725 if (inv)
48db5a3c 1726 fprintf_filtered (file, "<invalid float>");
93d56215 1727 else
48db5a3c 1728 fprintf_filtered (file, "%-10.9g", flt);
53116e27
EZ
1729
1730 /* Print the fp register as hex. */
48db5a3c
CV
1731 fprintf_filtered (file, "\t(raw 0x");
1732 for (j = 0; j < register_size (gdbarch, regnum); j++)
53116e27 1733 {
221c12ff
AC
1734 int idx = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
1735 ? j
1736 : register_size (gdbarch, regnum) - 1 - j);
48db5a3c 1737 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
53116e27 1738 }
48db5a3c
CV
1739 fprintf_filtered (file, ")");
1740 fprintf_filtered (file, "\n");
53116e27
EZ
1741}
1742
1743static void
48db5a3c 1744sh_do_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
53116e27 1745{
123a958e 1746 char raw_buffer[MAX_REGISTER_SIZE];
53116e27 1747
48db5a3c
CV
1748 fputs_filtered (REGISTER_NAME (regnum), file);
1749 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
53116e27
EZ
1750
1751 /* Get the data in raw format. */
48db5a3c
CV
1752 if (!frame_register_read (get_selected_frame (), regnum, raw_buffer))
1753 fprintf_filtered (file, "*value not available*\n");
617daa0e 1754
48db5a3c
CV
1755 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
1756 file, 'x', 1, 0, Val_pretty_default);
1757 fprintf_filtered (file, "\t");
1758 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
1759 file, 0, 1, 0, Val_pretty_default);
1760 fprintf_filtered (file, "\n");
53116e27
EZ
1761}
1762
1763static void
48db5a3c 1764sh_print_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
53116e27
EZ
1765{
1766 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
8e65ff28
AC
1767 internal_error (__FILE__, __LINE__,
1768 "Invalid register number %d\n", regnum);
53116e27 1769
e30839fe 1770 else if (regnum >= 0 && regnum < NUM_REGS)
53116e27 1771 {
617daa0e
CV
1772 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
1773 TYPE_CODE_FLT)
48db5a3c 1774 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
53116e27 1775 else
48db5a3c 1776 sh_do_register (gdbarch, file, regnum); /* All other regs */
53116e27
EZ
1777 }
1778
1779 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
48db5a3c 1780 {
55ff77ac 1781 sh_print_pseudo_register (gdbarch, file, regnum);
48db5a3c 1782 }
53116e27
EZ
1783}
1784
a78f21af 1785static void
48db5a3c
CV
1786sh_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1787 struct frame_info *frame, int regnum, int fpregs)
53116e27
EZ
1788{
1789 if (regnum != -1) /* do one specified register */
1790 {
1791 if (*(REGISTER_NAME (regnum)) == '\0')
1792 error ("Not a valid register for the current processor type");
1793
48db5a3c 1794 sh_print_register (gdbarch, file, regnum);
53116e27
EZ
1795 }
1796 else
1797 /* do all (or most) registers */
1798 {
3930f270 1799 for (regnum = 0; regnum < NUM_REGS; ++regnum)
53116e27
EZ
1800 {
1801 /* If the register name is empty, it is undefined for this
1802 processor, so don't display anything. */
1803 if (REGISTER_NAME (regnum) == NULL
1804 || *(REGISTER_NAME (regnum)) == '\0')
3930f270 1805 continue;
53116e27 1806
617daa0e
CV
1807 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
1808 TYPE_CODE_FLT)
53116e27 1809 {
3930f270 1810 /* true for "INFO ALL-REGISTERS" command */
53116e27 1811 if (fpregs)
3930f270 1812 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
53116e27
EZ
1813 }
1814 else
3930f270 1815 sh_do_register (gdbarch, file, regnum); /* All other regs */
53116e27
EZ
1816 }
1817
1818 if (fpregs)
1819 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
1820 {
55ff77ac 1821 sh_print_pseudo_register (gdbarch, file, regnum);
53116e27
EZ
1822 regnum++;
1823 }
1824 }
1825}
1826
1a8629c7
MS
1827#ifdef SVR4_SHARED_LIBS
1828
1829/* Fetch (and possibly build) an appropriate link_map_offsets structure
1830 for native i386 linux targets using the struct offsets defined in
1831 link.h (but without actual reference to that file).
1832
1833 This makes it possible to access i386-linux shared libraries from
1834 a gdb that was not built on an i386-linux host (for cross debugging).
1835 */
1836
1837struct link_map_offsets *
1838sh_linux_svr4_fetch_link_map_offsets (void)
1839{
1840 static struct link_map_offsets lmo;
1841 static struct link_map_offsets *lmp = 0;
1842
1843 if (lmp == 0)
1844 {
1845 lmp = &lmo;
1846
1847 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
1848
1849 lmo.r_map_offset = 4;
617daa0e 1850 lmo.r_map_size = 4;
1a8629c7
MS
1851
1852 lmo.link_map_size = 20; /* 552 not actual size but all we need */
1853
1854 lmo.l_addr_offset = 0;
617daa0e 1855 lmo.l_addr_size = 4;
1a8629c7
MS
1856
1857 lmo.l_name_offset = 4;
617daa0e 1858 lmo.l_name_size = 4;
1a8629c7
MS
1859
1860 lmo.l_next_offset = 12;
617daa0e 1861 lmo.l_next_size = 4;
1a8629c7
MS
1862
1863 lmo.l_prev_offset = 16;
617daa0e 1864 lmo.l_prev_size = 4;
1a8629c7
MS
1865 }
1866
617daa0e 1867 return lmp;
1a8629c7
MS
1868}
1869#endif /* SVR4_SHARED_LIBS */
1870
2f14585c
JR
1871static int
1872sh_dsp_register_sim_regno (int nr)
1873{
1874 if (legacy_register_sim_regno (nr) < 0)
1875 return legacy_register_sim_regno (nr);
f2ea0907
CV
1876 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
1877 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
1878 if (nr == MOD_REGNUM)
2f14585c 1879 return SIM_SH_MOD_REGNUM;
f2ea0907 1880 if (nr == RS_REGNUM)
2f14585c 1881 return SIM_SH_RS_REGNUM;
f2ea0907 1882 if (nr == RE_REGNUM)
2f14585c 1883 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
1884 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
1885 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
1886 return nr;
1887}
1c0159e0
CV
1888
1889static struct sh_frame_cache *
1890sh_alloc_frame_cache (void)
1891{
1892 struct sh_frame_cache *cache;
1893 int i;
1894
1895 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
1896
1897 /* Base address. */
1898 cache->base = 0;
1899 cache->saved_sp = 0;
1900 cache->sp_offset = 0;
1901 cache->pc = 0;
1902
1903 /* Frameless until proven otherwise. */
1904 cache->uses_fp = 0;
617daa0e 1905
1c0159e0
CV
1906 /* Saved registers. We initialize these to -1 since zero is a valid
1907 offset (that's where fp is supposed to be stored). */
1908 for (i = 0; i < SH_NUM_REGS; i++)
1909 {
1910 cache->saved_regs[i] = -1;
1911 }
617daa0e 1912
1c0159e0 1913 return cache;
617daa0e 1914}
1c0159e0
CV
1915
1916static struct sh_frame_cache *
1917sh_frame_cache (struct frame_info *next_frame, void **this_cache)
1918{
1919 struct sh_frame_cache *cache;
1920 CORE_ADDR current_pc;
1921 int i;
1922
1923 if (*this_cache)
1924 return *this_cache;
1925
1926 cache = sh_alloc_frame_cache ();
1927 *this_cache = cache;
1928
1929 /* In principle, for normal frames, fp holds the frame pointer,
1930 which holds the base address for the current stack frame.
1931 However, for functions that don't need it, the frame pointer is
1932 optional. For these "frameless" functions the frame pointer is
1933 actually the frame pointer of the calling frame. */
1934 cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
1935 if (cache->base == 0)
1936 return cache;
1937
1938 cache->pc = frame_func_unwind (next_frame);
1939 current_pc = frame_pc_unwind (next_frame);
1940 if (cache->pc != 0)
1941 sh_analyze_prologue (cache->pc, current_pc, cache);
617daa0e 1942
1c0159e0
CV
1943 if (!cache->uses_fp)
1944 {
1945 /* We didn't find a valid frame, which means that CACHE->base
1946 currently holds the frame pointer for our calling frame. If
1947 we're at the start of a function, or somewhere half-way its
1948 prologue, the function's frame probably hasn't been fully
1949 setup yet. Try to reconstruct the base address for the stack
1950 frame by looking at the stack pointer. For truly "frameless"
1951 functions this might work too. */
1952 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
1953 }
1954
1955 /* Now that we have the base address for the stack frame we can
1956 calculate the value of sp in the calling frame. */
1957 cache->saved_sp = cache->base + cache->sp_offset;
1958
1959 /* Adjust all the saved registers such that they contain addresses
1960 instead of offsets. */
1961 for (i = 0; i < SH_NUM_REGS; i++)
1962 if (cache->saved_regs[i] != -1)
1963 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
1964
1965 return cache;
1966}
1967
1968static void
1969sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
1970 int regnum, int *optimizedp,
1971 enum lval_type *lvalp, CORE_ADDR *addrp,
1972 int *realnump, void *valuep)
1973{
1974 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
1975
1976 gdb_assert (regnum >= 0);
1977
1978 if (regnum == SP_REGNUM && cache->saved_sp)
1979 {
1980 *optimizedp = 0;
1981 *lvalp = not_lval;
1982 *addrp = 0;
1983 *realnump = -1;
1984 if (valuep)
617daa0e
CV
1985 {
1986 /* Store the value. */
1987 store_unsigned_integer (valuep, 4, cache->saved_sp);
1988 }
1c0159e0
CV
1989 return;
1990 }
1991
1992 /* The PC of the previous frame is stored in the PR register of
1993 the current frame. Frob regnum so that we pull the value from
1994 the correct place. */
1995 if (regnum == PC_REGNUM)
1996 regnum = PR_REGNUM;
1997
1998 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
1999 {
2000 *optimizedp = 0;
2001 *lvalp = lval_memory;
2002 *addrp = cache->saved_regs[regnum];
2003 *realnump = -1;
2004 if (valuep)
617daa0e
CV
2005 {
2006 /* Read the value in from memory. */
2007 read_memory (*addrp, valuep,
2008 register_size (current_gdbarch, regnum));
2009 }
1c0159e0
CV
2010 return;
2011 }
2012
2013 frame_register_unwind (next_frame, regnum,
617daa0e 2014 optimizedp, lvalp, addrp, realnump, valuep);
1c0159e0
CV
2015}
2016
2017static void
2018sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
617daa0e
CV
2019 struct frame_id *this_id)
2020{
1c0159e0
CV
2021 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2022
2023 /* This marks the outermost frame. */
2024 if (cache->base == 0)
2025 return;
2026
2027 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 2028}
1c0159e0 2029
617daa0e 2030static const struct frame_unwind sh_frame_unwind = {
1c0159e0
CV
2031 NORMAL_FRAME,
2032 sh_frame_this_id,
2033 sh_frame_prev_register
2034};
2035
2036static const struct frame_unwind *
2037sh_frame_sniffer (struct frame_info *next_frame)
2038{
2039 return &sh_frame_unwind;
2040}
2041
2042static CORE_ADDR
2043sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2044{
2045 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2046}
2047
2048static CORE_ADDR
2049sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2050{
2051 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2052}
2053
2054static struct frame_id
2055sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2056{
2057 return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
2058 frame_pc_unwind (next_frame));
2059}
2060
2061static CORE_ADDR
2062sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
617daa0e 2063{
1c0159e0 2064 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
617daa0e 2065
1c0159e0
CV
2066 return cache->base;
2067}
617daa0e
CV
2068
2069static const struct frame_base sh_frame_base = {
1c0159e0
CV
2070 &sh_frame_unwind,
2071 sh_frame_base_address,
2072 sh_frame_base_address,
2073 sh_frame_base_address
617daa0e 2074};
1c0159e0
CV
2075
2076/* The epilogue is defined here as the area at the end of a function,
2077 either on the `ret' instruction itself or after an instruction which
2078 destroys the function's stack frame. */
2079static int
2080sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2081{
2082 CORE_ADDR func_addr = 0, func_end = 0;
2083
2084 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2085 {
2086 ULONGEST inst;
2087 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2088 for a nop and some fixed data (e.g. big offsets) which are
617daa0e
CV
2089 unfortunately also treated as part of the function (which
2090 means, they are below func_end. */
1c0159e0
CV
2091 CORE_ADDR addr = func_end - 28;
2092 if (addr < func_addr + 4)
617daa0e 2093 addr = func_addr + 4;
1c0159e0
CV
2094 if (pc < addr)
2095 return 0;
2096
2097 /* First search forward until hitting an rts. */
2098 while (addr < func_end
617daa0e 2099 && !IS_RTS (read_memory_unsigned_integer (addr, 2)))
1c0159e0
CV
2100 addr += 2;
2101 if (addr >= func_end)
617daa0e 2102 return 0;
1c0159e0
CV
2103
2104 /* At this point we should find a mov.l @r15+,r14 instruction,
2105 either before or after the rts. If not, then the function has
617daa0e 2106 probably no "normal" epilogue and we bail out here. */
1c0159e0
CV
2107 inst = read_memory_unsigned_integer (addr - 2, 2);
2108 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
617daa0e 2109 addr -= 2;
1c0159e0
CV
2110 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
2111 return 0;
2112
2113 /* Step over possible lds.l @r15+,pr. */
2114 inst = read_memory_unsigned_integer (addr - 2, 2);
2115 if (IS_LDS (inst))
617daa0e 2116 {
1c0159e0
CV
2117 addr -= 2;
2118 inst = read_memory_unsigned_integer (addr - 2, 2);
2119 }
2120
2121 /* Step over possible mov r14,r15. */
2122 if (IS_MOV_FP_SP (inst))
617daa0e 2123 {
1c0159e0
CV
2124 addr -= 2;
2125 inst = read_memory_unsigned_integer (addr - 2, 2);
2126 }
2127
2128 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2129 instructions. */
2130 while (addr > func_addr + 4
617daa0e 2131 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2132 {
2133 addr -= 2;
2134 inst = read_memory_unsigned_integer (addr - 2, 2);
2135 }
2136
2137 if (pc >= addr)
2138 return 1;
2139 }
2140 return 0;
2141}
2142
cc17453a
EZ
2143static gdbarch_init_ftype sh_gdbarch_init;
2144
2145static struct gdbarch *
fba45db2 2146sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2147{
cc17453a 2148 struct gdbarch *gdbarch;
d658f924 2149
55ff77ac
CV
2150 sh_show_regs = sh_generic_show_regs;
2151 switch (info.bfd_arch_info->mach)
2152 {
617daa0e
CV
2153 case bfd_mach_sh2e:
2154 sh_show_regs = sh2e_show_regs;
2155 break;
2156 case bfd_mach_sh_dsp:
2157 sh_show_regs = sh_dsp_show_regs;
2158 break;
55ff77ac 2159
617daa0e
CV
2160 case bfd_mach_sh3:
2161 sh_show_regs = sh3_show_regs;
2162 break;
55ff77ac 2163
617daa0e
CV
2164 case bfd_mach_sh3e:
2165 sh_show_regs = sh3e_show_regs;
2166 break;
55ff77ac 2167
617daa0e 2168 case bfd_mach_sh3_dsp:
474e5826 2169 case bfd_mach_sh4al_dsp:
617daa0e
CV
2170 sh_show_regs = sh3_dsp_show_regs;
2171 break;
55ff77ac 2172
617daa0e 2173 case bfd_mach_sh4:
474e5826 2174 case bfd_mach_sh4a:
617daa0e
CV
2175 sh_show_regs = sh4_show_regs;
2176 break;
55ff77ac 2177
474e5826
CV
2178 case bfd_mach_sh4_nofpu:
2179 case bfd_mach_sh4a_nofpu:
2180 sh_show_regs = sh4_nofpu_show_regs;
2181 break;
2182
617daa0e
CV
2183 case bfd_mach_sh5:
2184 sh_show_regs = sh64_show_regs;
2185 /* SH5 is handled entirely in sh64-tdep.c */
2186 return sh64_gdbarch_init (info, arches);
55ff77ac
CV
2187 }
2188
4be87837
DJ
2189 /* If there is already a candidate, use it. */
2190 arches = gdbarch_list_lookup_by_info (arches, &info);
2191 if (arches != NULL)
2192 return arches->gdbarch;
cc17453a
EZ
2193
2194 /* None found, create a new architecture from the information
2195 provided. */
f2ea0907 2196 gdbarch = gdbarch_alloc (&info, NULL);
cc17453a 2197
48db5a3c
CV
2198 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2199 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2200 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c
CV
2201 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2202 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2203 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2204 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2205 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2206
f2ea0907 2207 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2208 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2209 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2210 set_gdbarch_fp0_regnum (gdbarch, -1);
2211 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2212
1c0159e0
CV
2213 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2214
2215 set_gdbarch_print_registers_info (gdbarch, sh_print_registers_info);
2216
eaf90c5d 2217 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
3bbfbb92 2218 set_gdbarch_use_struct_convention (gdbarch, sh_use_struct_convention);
48db5a3c 2219
2bf0cb65 2220 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2f14585c 2221 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c
CV
2222
2223 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2224
1c0159e0
CV
2225 set_gdbarch_store_return_value (gdbarch, sh_default_store_return_value);
2226 set_gdbarch_extract_return_value (gdbarch, sh_default_extract_return_value);
74055713 2227 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sh_extract_struct_value_address);
1c0159e0 2228
48db5a3c
CV
2229 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2230 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2231
1c0159e0
CV
2232 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2233
19772a2c 2234 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, legacy_frameless_look_for_prologue);
48db5a3c
CV
2235 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2236
19f59343 2237 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2238 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2239 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2240 set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
2241 frame_base_set_default (gdbarch, &sh_frame_base);
2242
617daa0e 2243 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
cc17453a
EZ
2244
2245 switch (info.bfd_arch_info->mach)
8db62801 2246 {
cc17453a 2247 case bfd_mach_sh:
48db5a3c 2248 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2249 break;
1c0159e0 2250
cc17453a 2251 case bfd_mach_sh2:
48db5a3c 2252 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2253 break;
1c0159e0 2254
2d188dd3 2255 case bfd_mach_sh2e:
48db5a3c
CV
2256 /* doubles on sh2e and sh3e are actually 4 byte. */
2257 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2258
2259 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2260 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2261 set_gdbarch_fp0_regnum (gdbarch, 25);
48db5a3c 2262 set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
617daa0e
CV
2263 set_gdbarch_extract_return_value (gdbarch,
2264 sh3e_sh4_extract_return_value);
6df2bf50 2265 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2266 break;
1c0159e0 2267
cc17453a 2268 case bfd_mach_sh_dsp:
48db5a3c 2269 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2270 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2271 break;
1c0159e0 2272
cc17453a 2273 case bfd_mach_sh3:
48db5a3c 2274 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2275 break;
1c0159e0 2276
cc17453a 2277 case bfd_mach_sh3e:
48db5a3c
CV
2278 /* doubles on sh2e and sh3e are actually 4 byte. */
2279 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2280
2281 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2282 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2283 set_gdbarch_fp0_regnum (gdbarch, 25);
48db5a3c 2284 set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
617daa0e
CV
2285 set_gdbarch_extract_return_value (gdbarch,
2286 sh3e_sh4_extract_return_value);
6df2bf50 2287 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2288 break;
1c0159e0 2289
cc17453a 2290 case bfd_mach_sh3_dsp:
48db5a3c 2291 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2292 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2293 break;
1c0159e0 2294
cc17453a 2295 case bfd_mach_sh4:
474e5826 2296 case bfd_mach_sh4a:
48db5a3c 2297 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2298 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2299 set_gdbarch_fp0_regnum (gdbarch, 25);
53116e27 2300 set_gdbarch_num_pseudo_regs (gdbarch, 12);
d8124050
AC
2301 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2302 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
48db5a3c 2303 set_gdbarch_store_return_value (gdbarch, sh3e_sh4_store_return_value);
617daa0e
CV
2304 set_gdbarch_extract_return_value (gdbarch,
2305 sh3e_sh4_extract_return_value);
6df2bf50 2306 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2307 break;
1c0159e0 2308
474e5826
CV
2309 case bfd_mach_sh4_nofpu:
2310 case bfd_mach_sh4a_nofpu:
2311 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2312 break;
2313
2314 case bfd_mach_sh4al_dsp:
2315 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2316 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2317 break;
2318
cc17453a 2319 default:
b58cbbf2 2320 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2321 break;
8db62801 2322 }
cc17453a 2323
4be87837
DJ
2324 /* Hook in ABI-specific overrides, if they have been registered. */
2325 gdbarch_init_osabi (info, gdbarch);
d658f924 2326
1c0159e0
CV
2327 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2328 frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
2329
cc17453a 2330 return gdbarch;
8db62801
EZ
2331}
2332
617daa0e 2333extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2334
c906108c 2335void
fba45db2 2336_initialize_sh_tdep (void)
c906108c
SS
2337{
2338 struct cmd_list_element *c;
617daa0e 2339
f2ea0907 2340 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2341
53116e27 2342 add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
c906108c 2343}
This page took 0.614018 seconds and 4 git commands to generate.