2004-10-29 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / sh-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
9ab9195f
EZ
2 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
3 2003, 2004 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22/*
c5aa993b
JM
23 Contributed by Steve Chamberlain
24 sac@cygnus.com
c906108c
SS
25 */
26
27#include "defs.h"
28#include "frame.h"
1c0159e0
CV
29#include "frame-base.h"
30#include "frame-unwind.h"
31#include "dwarf2-frame.h"
c906108c 32#include "symtab.h"
c906108c
SS
33#include "gdbtypes.h"
34#include "gdbcmd.h"
35#include "gdbcore.h"
36#include "value.h"
37#include "dis-asm.h"
73c1f219 38#include "inferior.h"
c906108c 39#include "gdb_string.h"
1c0159e0 40#include "gdb_assert.h"
b4a20239 41#include "arch-utils.h"
fb409745 42#include "floatformat.h"
4e052eda 43#include "regcache.h"
d16aafd8 44#include "doublest.h"
4be87837 45#include "osabi.h"
c906108c 46
ab3b8126
JT
47#include "sh-tdep.h"
48
d658f924 49#include "elf-bfd.h"
1a8629c7
MS
50#include "solib-svr4.h"
51
55ff77ac 52/* sh flags */
283150cd
EZ
53#include "elf/sh.h"
54/* registers numbers shared with the simulator */
1c922164 55#include "gdb/sim-sh.h"
283150cd 56
55ff77ac 57static void (*sh_show_regs) (void);
cc17453a 58
da962468 59#define SH_NUM_REGS 67
88e04cc1 60
1c0159e0 61struct sh_frame_cache
cc17453a 62{
1c0159e0
CV
63 /* Base address. */
64 CORE_ADDR base;
65 LONGEST sp_offset;
66 CORE_ADDR pc;
67
68 /* Flag showing that a frame has been created in the prologue code. */
69 int uses_fp;
70
71 /* Saved registers. */
72 CORE_ADDR saved_regs[SH_NUM_REGS];
73 CORE_ADDR saved_sp;
63978407 74};
c906108c 75
fa88f677 76static const char *
cc17453a
EZ
77sh_sh_register_name (int reg_nr)
78{
617daa0e
CV
79 static char *register_names[] = {
80 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
81 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
82 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
83 "", "",
84 "", "", "", "", "", "", "", "",
85 "", "", "", "", "", "", "", "",
86 "", "",
87 "", "", "", "", "", "", "", "",
88 "", "", "", "", "", "", "", "",
da962468 89 "", "", "", "", "", "", "", "",
cc17453a
EZ
90 };
91 if (reg_nr < 0)
92 return NULL;
93 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
94 return NULL;
95 return register_names[reg_nr];
96}
97
fa88f677 98static const char *
cc17453a
EZ
99sh_sh3_register_name (int reg_nr)
100{
617daa0e
CV
101 static char *register_names[] = {
102 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
103 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
104 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
105 "", "",
106 "", "", "", "", "", "", "", "",
107 "", "", "", "", "", "", "", "",
108 "ssr", "spc",
cc17453a
EZ
109 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
110 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1"
da962468 111 "", "", "", "", "", "", "", "",
cc17453a
EZ
112 };
113 if (reg_nr < 0)
114 return NULL;
115 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
116 return NULL;
117 return register_names[reg_nr];
118}
119
fa88f677 120static const char *
cc17453a
EZ
121sh_sh3e_register_name (int reg_nr)
122{
617daa0e
CV
123 static char *register_names[] = {
124 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
125 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
126 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
cc17453a 127 "fpul", "fpscr",
617daa0e
CV
128 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
129 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
130 "ssr", "spc",
cc17453a
EZ
131 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
132 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468 133 "", "", "", "", "", "", "", "",
cc17453a
EZ
134 };
135 if (reg_nr < 0)
136 return NULL;
137 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
138 return NULL;
139 return register_names[reg_nr];
140}
141
2d188dd3
NC
142static const char *
143sh_sh2e_register_name (int reg_nr)
144{
617daa0e
CV
145 static char *register_names[] = {
146 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
147 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
148 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
2d188dd3 149 "fpul", "fpscr",
617daa0e
CV
150 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
151 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
152 "", "",
2d188dd3
NC
153 "", "", "", "", "", "", "", "",
154 "", "", "", "", "", "", "", "",
da962468
CV
155 "", "", "", "", "", "", "", "",
156 };
157 if (reg_nr < 0)
158 return NULL;
159 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
160 return NULL;
161 return register_names[reg_nr];
162}
163
164static const char *
165sh_sh2a_register_name (int reg_nr)
166{
167 static char *register_names[] = {
168 /* general registers 0-15 */
169 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
170 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
171 /* 16 - 22 */
172 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
173 /* 23, 24 */
174 "fpul", "fpscr",
175 /* floating point registers 25 - 40 */
176 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
177 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
178 /* 41, 42 */
179 "", "",
180 /* 43 - 62. Banked registers. The bank number used is determined by
181 the bank register (63). */
182 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
183 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
184 "machb", "ivnb", "prb", "gbrb", "maclb",
185 /* 63: register bank number, not a real register but used to
186 communicate the register bank currently get/set. This register
187 is hidden to the user, who manipulates it using the pseudo
188 register called "bank" (67). See below. */
189 "",
190 /* 64 - 66 */
191 "ibcr", "ibnr", "tbr",
192 /* 67: register bank number, the user visible pseudo register. */
193 "bank",
194 /* double precision (pseudo) 68 - 75 */
195 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
196 };
197 if (reg_nr < 0)
198 return NULL;
199 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
200 return NULL;
201 return register_names[reg_nr];
202}
203
204static const char *
205sh_sh2a_nofpu_register_name (int reg_nr)
206{
207 static char *register_names[] = {
208 /* general registers 0-15 */
209 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
210 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
211 /* 16 - 22 */
212 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
213 /* 23, 24 */
214 "", "",
215 /* floating point registers 25 - 40 */
216 "", "", "", "", "", "", "", "",
217 "", "", "", "", "", "", "", "",
218 /* 41, 42 */
219 "", "",
220 /* 43 - 62. Banked registers. The bank number used is determined by
221 the bank register (63). */
222 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
223 "r8b", "r9b", "r10b", "r11b", "r12b", "r13b", "r14b",
224 "machb", "ivnb", "prb", "gbrb", "maclb",
225 /* 63: register bank number, not a real register but used to
226 communicate the register bank currently get/set. This register
227 is hidden to the user, who manipulates it using the pseudo
228 register called "bank" (67). See below. */
229 "",
230 /* 64 - 66 */
231 "ibcr", "ibnr", "tbr",
232 /* 67: register bank number, the user visible pseudo register. */
233 "bank",
234 /* double precision (pseudo) 68 - 75 */
235 "", "", "", "", "", "", "", "",
2d188dd3
NC
236 };
237 if (reg_nr < 0)
238 return NULL;
239 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
240 return NULL;
241 return register_names[reg_nr];
242}
243
fa88f677 244static const char *
cc17453a
EZ
245sh_sh_dsp_register_name (int reg_nr)
246{
617daa0e
CV
247 static char *register_names[] = {
248 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
249 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
250 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
251 "", "dsr",
252 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
253 "y0", "y1", "", "", "", "", "", "mod",
254 "", "",
255 "rs", "re", "", "", "", "", "", "",
256 "", "", "", "", "", "", "", "",
da962468 257 "", "", "", "", "", "", "", "",
cc17453a
EZ
258 };
259 if (reg_nr < 0)
260 return NULL;
261 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
262 return NULL;
263 return register_names[reg_nr];
264}
265
fa88f677 266static const char *
cc17453a
EZ
267sh_sh3_dsp_register_name (int reg_nr)
268{
617daa0e
CV
269 static char *register_names[] = {
270 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
271 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
272 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
273 "", "dsr",
274 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
275 "y0", "y1", "", "", "", "", "", "mod",
276 "ssr", "spc",
277 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
278 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
279 "", "", "", "", "", "", "", "",
da962468 280 "", "", "", "", "", "", "", "",
cc17453a
EZ
281 };
282 if (reg_nr < 0)
283 return NULL;
284 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
285 return NULL;
286 return register_names[reg_nr];
287}
288
fa88f677 289static const char *
53116e27
EZ
290sh_sh4_register_name (int reg_nr)
291{
617daa0e 292 static char *register_names[] = {
a38d2a54 293 /* general registers 0-15 */
617daa0e
CV
294 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
295 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
a38d2a54 296 /* 16 - 22 */
617daa0e 297 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
a38d2a54 298 /* 23, 24 */
53116e27 299 "fpul", "fpscr",
a38d2a54 300 /* floating point registers 25 - 40 */
617daa0e
CV
301 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
302 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
a38d2a54 303 /* 41, 42 */
617daa0e 304 "ssr", "spc",
a38d2a54 305 /* bank 0 43 - 50 */
53116e27 306 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
a38d2a54 307 /* bank 1 51 - 58 */
53116e27 308 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468
CV
309 "", "", "", "", "", "", "", "",
310 /* pseudo bank register. */
311 "",
a38d2a54 312 /* double precision (pseudo) 59 - 66 */
617daa0e 313 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
a38d2a54 314 /* vectors (pseudo) 67 - 70 */
617daa0e 315 "fv0", "fv4", "fv8", "fv12",
a38d2a54
EZ
316 /* FIXME: missing XF 71 - 86 */
317 /* FIXME: missing XD 87 - 94 */
53116e27
EZ
318 };
319 if (reg_nr < 0)
320 return NULL;
321 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
322 return NULL;
323 return register_names[reg_nr];
324}
325
474e5826
CV
326static const char *
327sh_sh4_nofpu_register_name (int reg_nr)
328{
329 static char *register_names[] = {
330 /* general registers 0-15 */
331 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
332 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
333 /* 16 - 22 */
334 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
335 /* 23, 24 */
336 "", "",
337 /* floating point registers 25 - 40 -- not for nofpu target */
338 "", "", "", "", "", "", "", "",
339 "", "", "", "", "", "", "", "",
340 /* 41, 42 */
341 "ssr", "spc",
342 /* bank 0 43 - 50 */
343 "r0b0", "r1b0", "r2b0", "r3b0", "r4b0", "r5b0", "r6b0", "r7b0",
344 /* bank 1 51 - 58 */
345 "r0b1", "r1b1", "r2b1", "r3b1", "r4b1", "r5b1", "r6b1", "r7b1",
da962468
CV
346 "", "", "", "", "", "", "", "",
347 /* pseudo bank register. */
348 "",
474e5826
CV
349 /* double precision (pseudo) 59 - 66 -- not for nofpu target */
350 "", "", "", "", "", "", "", "",
351 /* vectors (pseudo) 67 - 70 -- not for nofpu target */
352 "", "", "", "",
353 };
354 if (reg_nr < 0)
355 return NULL;
356 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
357 return NULL;
358 return register_names[reg_nr];
359}
360
361static const char *
362sh_sh4al_dsp_register_name (int reg_nr)
363{
364 static char *register_names[] = {
365 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
366 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
367 "pc", "pr", "gbr", "vbr", "mach", "macl", "sr",
368 "", "dsr",
369 "a0g", "a0", "a1g", "a1", "m0", "m1", "x0", "x1",
370 "y0", "y1", "", "", "", "", "", "mod",
371 "ssr", "spc",
372 "rs", "re", "", "", "", "", "", "",
026a72f8
CV
373 "r0b", "r1b", "r2b", "r3b", "r4b", "r5b", "r6b", "r7b",
374 "", "", "", "", "", "", "", "",
da962468 375 "", "", "", "", "", "", "", "",
474e5826
CV
376 };
377 if (reg_nr < 0)
378 return NULL;
379 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
380 return NULL;
381 return register_names[reg_nr];
382}
383
3117ed25 384static const unsigned char *
fba45db2 385sh_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
cc17453a
EZ
386{
387 /* 0xc3c3 is trapa #c3, and it works in big and little endian modes */
617daa0e
CV
388 static unsigned char breakpoint[] = { 0xc3, 0xc3 };
389
cc17453a
EZ
390 *lenptr = sizeof (breakpoint);
391 return breakpoint;
392}
c906108c
SS
393
394/* Prologue looks like
1c0159e0
CV
395 mov.l r14,@-r15
396 sts.l pr,@-r15
397 mov.l <regs>,@-r15
398 sub <room_for_loca_vars>,r15
399 mov r15,r14
8db62801 400
1c0159e0 401 Actually it can be more complicated than this but that's it, basically.
c5aa993b 402 */
c906108c 403
1c0159e0
CV
404#define GET_SOURCE_REG(x) (((x) >> 4) & 0xf)
405#define GET_TARGET_REG(x) (((x) >> 8) & 0xf)
406
5f883edd
FF
407/* JSR @Rm 0100mmmm00001011 */
408#define IS_JSR(x) (((x) & 0xf0ff) == 0x400b)
409
8db62801
EZ
410/* STS.L PR,@-r15 0100111100100010
411 r15-4-->r15, PR-->(r15) */
c906108c 412#define IS_STS(x) ((x) == 0x4f22)
8db62801 413
03131d99
CV
414/* STS.L MACL,@-r15 0100111100010010
415 r15-4-->r15, MACL-->(r15) */
416#define IS_MACL_STS(x) ((x) == 0x4f12)
417
8db62801
EZ
418/* MOV.L Rm,@-r15 00101111mmmm0110
419 r15-4-->r15, Rm-->(R15) */
c906108c 420#define IS_PUSH(x) (((x) & 0xff0f) == 0x2f06)
8db62801 421
8db62801
EZ
422/* MOV r15,r14 0110111011110011
423 r15-->r14 */
c906108c 424#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
8db62801
EZ
425
426/* ADD #imm,r15 01111111iiiiiiii
427 r15+imm-->r15 */
1c0159e0 428#define IS_ADD_IMM_SP(x) (((x) & 0xff00) == 0x7f00)
8db62801 429
c906108c
SS
430#define IS_MOV_R3(x) (((x) & 0xff00) == 0x1a00)
431#define IS_SHLL_R3(x) ((x) == 0x4300)
8db62801
EZ
432
433/* ADD r3,r15 0011111100111100
434 r15+r3-->r15 */
c906108c 435#define IS_ADD_R3SP(x) ((x) == 0x3f3c)
8db62801
EZ
436
437/* FMOV.S FRm,@-Rn Rn-4-->Rn, FRm-->(Rn) 1111nnnnmmmm1011
8db62801 438 FMOV DRm,@-Rn Rn-8-->Rn, DRm-->(Rn) 1111nnnnmmm01011
8db62801 439 FMOV XDm,@-Rn Rn-8-->Rn, XDm-->(Rn) 1111nnnnmmm11011 */
f2ea0907
CV
440/* CV, 2003-08-28: Only suitable with Rn == SP, therefore name changed to
441 make this entirely clear. */
1c0159e0
CV
442/* #define IS_FMOV(x) (((x) & 0xf00f) == 0xf00b) */
443#define IS_FPUSH(x) (((x) & 0xff0f) == 0xff0b)
444
445/* MOV Rm,Rn Rm-->Rn 0110nnnnmmmm0011 4 <= m <= 7 */
446#define IS_MOV_ARG_TO_REG(x) \
447 (((x) & 0xf00f) == 0x6003 && \
448 ((x) & 0x00f0) >= 0x0040 && \
449 ((x) & 0x00f0) <= 0x0070)
450/* MOV.L Rm,@Rn 0010nnnnmmmm0010 n = 14, 4 <= m <= 7 */
451#define IS_MOV_ARG_TO_IND_R14(x) \
452 (((x) & 0xff0f) == 0x2e02 && \
453 ((x) & 0x00f0) >= 0x0040 && \
454 ((x) & 0x00f0) <= 0x0070)
455/* MOV.L Rm,@(disp*4,Rn) 00011110mmmmdddd n = 14, 4 <= m <= 7 */
456#define IS_MOV_ARG_TO_IND_R14_WITH_DISP(x) \
457 (((x) & 0xff00) == 0x1e00 && \
458 ((x) & 0x00f0) >= 0x0040 && \
459 ((x) & 0x00f0) <= 0x0070)
460
461/* MOV.W @(disp*2,PC),Rn 1001nnnndddddddd */
462#define IS_MOVW_PCREL_TO_REG(x) (((x) & 0xf000) == 0x9000)
463/* MOV.L @(disp*4,PC),Rn 1101nnnndddddddd */
464#define IS_MOVL_PCREL_TO_REG(x) (((x) & 0xf000) == 0xd000)
03131d99
CV
465/* MOVI20 #imm20,Rn 0000nnnniiii0000 */
466#define IS_MOVI20(x) (((x) & 0xf00f) == 0x0000)
1c0159e0
CV
467/* SUB Rn,R15 00111111nnnn1000 */
468#define IS_SUB_REG_FROM_SP(x) (((x) & 0xff0f) == 0x3f08)
8db62801 469
1c0159e0 470#define FPSCR_SZ (1 << 20)
cc17453a 471
1c0159e0
CV
472/* The following instructions are used for epilogue testing. */
473#define IS_RESTORE_FP(x) ((x) == 0x6ef6)
474#define IS_RTS(x) ((x) == 0x000b)
475#define IS_LDS(x) ((x) == 0x4f26)
03131d99 476#define IS_MACL_LDS(x) ((x) == 0x4f16)
1c0159e0
CV
477#define IS_MOV_FP_SP(x) ((x) == 0x6fe3)
478#define IS_ADD_REG_TO_FP(x) (((x) & 0xff0f) == 0x3e0c)
479#define IS_ADD_IMM_FP(x) (((x) & 0xff00) == 0x7e00)
cc17453a 480
cc17453a
EZ
481/* Disassemble an instruction. */
482static int
617daa0e 483gdb_print_insn_sh (bfd_vma memaddr, disassemble_info * info)
c906108c 484{
1c509ca8
JR
485 info->endian = TARGET_BYTE_ORDER;
486 return print_insn_sh (memaddr, info);
283150cd
EZ
487}
488
cc17453a 489static CORE_ADDR
1c0159e0
CV
490sh_analyze_prologue (CORE_ADDR pc, CORE_ADDR current_pc,
491 struct sh_frame_cache *cache)
617daa0e 492{
1c0159e0
CV
493 ULONGEST inst;
494 CORE_ADDR opc;
495 int offset;
496 int sav_offset = 0;
c906108c 497 int r3_val = 0;
1c0159e0 498 int reg, sav_reg = -1;
cc17453a 499
1c0159e0
CV
500 if (pc >= current_pc)
501 return current_pc;
cc17453a 502
1c0159e0 503 cache->uses_fp = 0;
cc17453a
EZ
504 for (opc = pc + (2 * 28); pc < opc; pc += 2)
505 {
1c0159e0 506 inst = read_memory_unsigned_integer (pc, 2);
cc17453a 507 /* See where the registers will be saved to */
f2ea0907 508 if (IS_PUSH (inst))
cc17453a 509 {
1c0159e0
CV
510 cache->saved_regs[GET_SOURCE_REG (inst)] = cache->sp_offset;
511 cache->sp_offset += 4;
cc17453a 512 }
f2ea0907 513 else if (IS_STS (inst))
cc17453a 514 {
1c0159e0
CV
515 cache->saved_regs[PR_REGNUM] = cache->sp_offset;
516 cache->sp_offset += 4;
cc17453a 517 }
03131d99
CV
518 else if (IS_MACL_STS (inst))
519 {
520 cache->saved_regs[MACL_REGNUM] = cache->sp_offset;
521 cache->sp_offset += 4;
522 }
f2ea0907 523 else if (IS_MOV_R3 (inst))
cc17453a 524 {
f2ea0907 525 r3_val = ((inst & 0xff) ^ 0x80) - 0x80;
cc17453a 526 }
f2ea0907 527 else if (IS_SHLL_R3 (inst))
cc17453a
EZ
528 {
529 r3_val <<= 1;
530 }
f2ea0907 531 else if (IS_ADD_R3SP (inst))
cc17453a 532 {
1c0159e0 533 cache->sp_offset += -r3_val;
cc17453a 534 }
f2ea0907 535 else if (IS_ADD_IMM_SP (inst))
cc17453a 536 {
1c0159e0
CV
537 offset = ((inst & 0xff) ^ 0x80) - 0x80;
538 cache->sp_offset -= offset;
c906108c 539 }
1c0159e0 540 else if (IS_MOVW_PCREL_TO_REG (inst))
617daa0e 541 {
1c0159e0
CV
542 if (sav_reg < 0)
543 {
544 reg = GET_TARGET_REG (inst);
545 if (reg < 14)
546 {
547 sav_reg = reg;
a2b4a96c 548 offset = (inst & 0xff) << 1;
1c0159e0 549 sav_offset =
a2b4a96c 550 read_memory_integer ((pc + 4) + offset, 2);
1c0159e0
CV
551 }
552 }
c906108c 553 }
1c0159e0 554 else if (IS_MOVL_PCREL_TO_REG (inst))
617daa0e 555 {
1c0159e0
CV
556 if (sav_reg < 0)
557 {
a2b4a96c 558 reg = GET_TARGET_REG (inst);
1c0159e0
CV
559 if (reg < 14)
560 {
561 sav_reg = reg;
a2b4a96c 562 offset = (inst & 0xff) << 2;
1c0159e0 563 sav_offset =
a2b4a96c 564 read_memory_integer (((pc & 0xfffffffc) + 4) + offset, 4);
1c0159e0
CV
565 }
566 }
c906108c 567 }
03131d99
CV
568 else if (IS_MOVI20 (inst))
569 {
570 if (sav_reg < 0)
571 {
572 reg = GET_TARGET_REG (inst);
573 if (reg < 14)
574 {
575 sav_reg = reg;
576 sav_offset = GET_SOURCE_REG (inst) << 16;
577 /* MOVI20 is a 32 bit instruction! */
578 pc += 2;
579 sav_offset |= read_memory_unsigned_integer (pc, 2);
580 /* Now sav_offset contains an unsigned 20 bit value.
581 It must still get sign extended. */
582 if (sav_offset & 0x00080000)
583 sav_offset |= 0xfff00000;
584 }
585 }
586 }
1c0159e0 587 else if (IS_SUB_REG_FROM_SP (inst))
617daa0e 588 {
1c0159e0
CV
589 reg = GET_SOURCE_REG (inst);
590 if (sav_reg > 0 && reg == sav_reg)
591 {
592 sav_reg = -1;
593 }
594 cache->sp_offset += sav_offset;
c906108c 595 }
f2ea0907 596 else if (IS_FPUSH (inst))
c906108c 597 {
f2ea0907 598 if (read_register (FPSCR_REGNUM) & FPSCR_SZ)
c906108c 599 {
1c0159e0 600 cache->sp_offset += 8;
c906108c
SS
601 }
602 else
603 {
1c0159e0 604 cache->sp_offset += 4;
c906108c
SS
605 }
606 }
f2ea0907 607 else if (IS_MOV_SP_FP (inst))
617daa0e 608 {
960ccd7d 609 cache->uses_fp = 1;
1c0159e0
CV
610 /* At this point, only allow argument register moves to other
611 registers or argument register moves to @(X,fp) which are
612 moving the register arguments onto the stack area allocated
613 by a former add somenumber to SP call. Don't allow moving
614 to an fp indirect address above fp + cache->sp_offset. */
615 pc += 2;
616 for (opc = pc + 12; pc < opc; pc += 2)
617 {
618 inst = read_memory_integer (pc, 2);
619 if (IS_MOV_ARG_TO_IND_R14 (inst))
617daa0e 620 {
1c0159e0
CV
621 reg = GET_SOURCE_REG (inst);
622 if (cache->sp_offset > 0)
617daa0e 623 cache->saved_regs[reg] = cache->sp_offset;
1c0159e0
CV
624 }
625 else if (IS_MOV_ARG_TO_IND_R14_WITH_DISP (inst))
617daa0e 626 {
1c0159e0
CV
627 reg = GET_SOURCE_REG (inst);
628 offset = (inst & 0xf) * 4;
629 if (cache->sp_offset > offset)
630 cache->saved_regs[reg] = cache->sp_offset - offset;
631 }
632 else if (IS_MOV_ARG_TO_REG (inst))
617daa0e 633 continue;
1c0159e0
CV
634 else
635 break;
636 }
637 break;
638 }
5f883edd
FF
639 else if (IS_JSR (inst))
640 {
641 /* We have found a jsr that has been scheduled into the prologue.
642 If we continue the scan and return a pc someplace after this,
643 then setting a breakpoint on this function will cause it to
644 appear to be called after the function it is calling via the
645 jsr, which will be very confusing. Most likely the next
646 instruction is going to be IS_MOV_SP_FP in the delay slot. If
647 so, note that before returning the current pc. */
648 inst = read_memory_integer (pc + 2, 2);
649 if (IS_MOV_SP_FP (inst))
650 cache->uses_fp = 1;
651 break;
652 }
617daa0e
CV
653#if 0 /* This used to just stop when it found an instruction that
654 was not considered part of the prologue. Now, we just
655 keep going looking for likely instructions. */
c906108c
SS
656 else
657 break;
2bfa91ee 658#endif
c906108c
SS
659 }
660
1c0159e0
CV
661 return pc;
662}
c906108c 663
1c0159e0 664/* Skip any prologue before the guts of a function */
c906108c 665
1c0159e0
CV
666/* Skip the prologue using the debug information. If this fails we'll
667 fall back on the 'guess' method below. */
668static CORE_ADDR
669after_prologue (CORE_ADDR pc)
670{
671 struct symtab_and_line sal;
672 CORE_ADDR func_addr, func_end;
c906108c 673
1c0159e0
CV
674 /* If we can not find the symbol in the partial symbol table, then
675 there is no hope we can determine the function's start address
676 with this code. */
677 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
678 return 0;
c906108c 679
1c0159e0
CV
680 /* Get the line associated with FUNC_ADDR. */
681 sal = find_pc_line (func_addr, 0);
682
683 /* There are only two cases to consider. First, the end of the source line
684 is within the function bounds. In that case we return the end of the
685 source line. Second is the end of the source line extends beyond the
686 bounds of the current function. We need to use the slow code to
687 examine instructions in that case. */
688 if (sal.end < func_end)
689 return sal.end;
690 else
691 return 0;
c906108c
SS
692}
693
1c0159e0
CV
694static CORE_ADDR
695sh_skip_prologue (CORE_ADDR start_pc)
c906108c 696{
1c0159e0
CV
697 CORE_ADDR pc;
698 struct sh_frame_cache cache;
699
700 /* See if we can determine the end of the prologue via the symbol table.
701 If so, then return either PC, or the PC after the prologue, whichever
702 is greater. */
703 pc = after_prologue (start_pc);
cc17453a 704
1c0159e0
CV
705 /* If after_prologue returned a useful address, then use it. Else
706 fall back on the instruction skipping code. */
707 if (pc)
708 return max (pc, start_pc);
c906108c 709
1c0159e0
CV
710 cache.sp_offset = -4;
711 pc = sh_analyze_prologue (start_pc, (CORE_ADDR) -1, &cache);
712 if (!cache.uses_fp)
713 return start_pc;
c906108c 714
1c0159e0
CV
715 return pc;
716}
717
2e952408 718/* The ABI says:
9a5cef92
EZ
719
720 Aggregate types not bigger than 8 bytes that have the same size and
721 alignment as one of the integer scalar types are returned in the
722 same registers as the integer type they match.
723
724 For example, a 2-byte aligned structure with size 2 bytes has the
725 same size and alignment as a short int, and will be returned in R0.
726 A 4-byte aligned structure with size 8 bytes has the same size and
727 alignment as a long long int, and will be returned in R0 and R1.
728
729 When an aggregate type is returned in R0 and R1, R0 contains the
730 first four bytes of the aggregate, and R1 contains the
731 remainder. If the size of the aggregate type is not a multiple of 4
732 bytes, the aggregate is tail-padded up to a multiple of 4
733 bytes. The value of the padding is undefined. For little-endian
734 targets the padding will appear at the most significant end of the
735 last element, for big-endian targets the padding appears at the
736 least significant end of the last element.
737
738 All other aggregate types are returned by address. The caller
739 function passes the address of an area large enough to hold the
740 aggregate value in R2. The called function stores the result in
7fe958be 741 this location.
9a5cef92
EZ
742
743 To reiterate, structs smaller than 8 bytes could also be returned
744 in memory, if they don't pass the "same size and alignment as an
745 integer type" rule.
746
747 For example, in
748
749 struct s { char c[3]; } wibble;
750 struct s foo(void) { return wibble; }
751
752 the return value from foo() will be in memory, not
753 in R0, because there is no 3-byte integer type.
754
7fe958be
EZ
755 Similarly, in
756
757 struct s { char c[2]; } wibble;
758 struct s foo(void) { return wibble; }
759
760 because a struct containing two chars has alignment 1, that matches
761 type char, but size 2, that matches type short. There's no integer
762 type that has alignment 1 and size 2, so the struct is returned in
763 memory.
764
9a5cef92
EZ
765*/
766
1c0159e0
CV
767static int
768sh_use_struct_convention (int gcc_p, struct type *type)
769{
770 int len = TYPE_LENGTH (type);
771 int nelem = TYPE_NFIELDS (type);
3f997a97
CV
772
773 /* Non-power of 2 length types and types bigger than 8 bytes (which don't
774 fit in two registers anyway) use struct convention. */
775 if (len != 1 && len != 2 && len != 4 && len != 8)
776 return 1;
777
778 /* Scalar types and aggregate types with exactly one field are aligned
779 by definition. They are returned in registers. */
780 if (nelem <= 1)
781 return 0;
782
783 /* If the first field in the aggregate has the same length as the entire
784 aggregate type, the type is returned in registers. */
785 if (TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == len)
786 return 0;
787
788 /* If the size of the aggregate is 8 bytes and the first field is
789 of size 4 bytes its alignment is equal to long long's alignment,
790 so it's returned in registers. */
791 if (len == 8 && TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0)) == 4)
792 return 0;
793
794 /* Otherwise use struct convention. */
795 return 1;
283150cd
EZ
796}
797
cc17453a
EZ
798/* Extract from an array REGBUF containing the (raw) register state
799 the address in which a function should return its structure value,
800 as a CORE_ADDR (or an expression that can be used as one). */
b3df3fff 801static CORE_ADDR
48db5a3c 802sh_extract_struct_value_address (struct regcache *regcache)
cc17453a 803{
48db5a3c 804 ULONGEST addr;
1c0159e0 805
48db5a3c
CV
806 regcache_cooked_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &addr);
807 return addr;
cc17453a
EZ
808}
809
19f59343
MS
810static CORE_ADDR
811sh_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
812{
813 return sp & ~3;
814}
815
55ff77ac 816/* Function: push_dummy_call (formerly push_arguments)
c906108c
SS
817 Setup the function arguments for calling a function in the inferior.
818
85a453d5 819 On the Renesas SH architecture, there are four registers (R4 to R7)
c906108c
SS
820 which are dedicated for passing function arguments. Up to the first
821 four arguments (depending on size) may go into these registers.
822 The rest go on the stack.
823
6df2bf50
MS
824 MVS: Except on SH variants that have floating point registers.
825 In that case, float and double arguments are passed in the same
826 manner, but using FP registers instead of GP registers.
827
c906108c
SS
828 Arguments that are smaller than 4 bytes will still take up a whole
829 register or a whole 32-bit word on the stack, and will be
830 right-justified in the register or the stack word. This includes
831 chars, shorts, and small aggregate types.
832
833 Arguments that are larger than 4 bytes may be split between two or
834 more registers. If there are not enough registers free, an argument
835 may be passed partly in a register (or registers), and partly on the
836 stack. This includes doubles, long longs, and larger aggregates.
837 As far as I know, there is no upper limit to the size of aggregates
838 that will be passed in this way; in other words, the convention of
839 passing a pointer to a large aggregate instead of a copy is not used.
840
6df2bf50 841 MVS: The above appears to be true for the SH variants that do not
55ff77ac 842 have an FPU, however those that have an FPU appear to copy the
6df2bf50
MS
843 aggregate argument onto the stack (and not place it in registers)
844 if it is larger than 16 bytes (four GP registers).
845
c906108c
SS
846 An exceptional case exists for struct arguments (and possibly other
847 aggregates such as arrays) if the size is larger than 4 bytes but
848 not a multiple of 4 bytes. In this case the argument is never split
849 between the registers and the stack, but instead is copied in its
850 entirety onto the stack, AND also copied into as many registers as
851 there is room for. In other words, space in registers permitting,
852 two copies of the same argument are passed in. As far as I can tell,
853 only the one on the stack is used, although that may be a function
854 of the level of compiler optimization. I suspect this is a compiler
855 bug. Arguments of these odd sizes are left-justified within the
856 word (as opposed to arguments smaller than 4 bytes, which are
857 right-justified).
c5aa993b 858
c906108c
SS
859 If the function is to return an aggregate type such as a struct, it
860 is either returned in the normal return value register R0 (if its
861 size is no greater than one byte), or else the caller must allocate
862 space into which the callee will copy the return value (if the size
863 is greater than one byte). In this case, a pointer to the return
864 value location is passed into the callee in register R2, which does
865 not displace any of the other arguments passed in via registers R4
866 to R7. */
867
e5e33cd9
CV
868/* Helper function to justify value in register according to endianess. */
869static char *
870sh_justify_value_in_reg (struct value *val, int len)
871{
872 static char valbuf[4];
873
617daa0e 874 memset (valbuf, 0, sizeof (valbuf));
e5e33cd9
CV
875 if (len < 4)
876 {
877 /* value gets right-justified in the register or stack word */
878 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
879 memcpy (valbuf + (4 - len), (char *) VALUE_CONTENTS (val), len);
880 else
881 memcpy (valbuf, (char *) VALUE_CONTENTS (val), len);
882 return valbuf;
883 }
884 return (char *) VALUE_CONTENTS (val);
617daa0e 885}
e5e33cd9
CV
886
887/* Helper function to eval number of bytes to allocate on stack. */
888static CORE_ADDR
889sh_stack_allocsize (int nargs, struct value **args)
890{
891 int stack_alloc = 0;
892 while (nargs-- > 0)
893 stack_alloc += ((TYPE_LENGTH (VALUE_TYPE (args[nargs])) + 3) & ~3);
894 return stack_alloc;
895}
896
897/* Helper functions for getting the float arguments right. Registers usage
898 depends on the ABI and the endianess. The comments should enlighten how
899 it's intended to work. */
900
901/* This array stores which of the float arg registers are already in use. */
902static int flt_argreg_array[FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM + 1];
903
904/* This function just resets the above array to "no reg used so far". */
905static void
906sh_init_flt_argreg (void)
907{
908 memset (flt_argreg_array, 0, sizeof flt_argreg_array);
909}
910
911/* This function returns the next register to use for float arg passing.
912 It returns either a valid value between FLOAT_ARG0_REGNUM and
913 FLOAT_ARGLAST_REGNUM if a register is available, otherwise it returns
914 FLOAT_ARGLAST_REGNUM + 1 to indicate that no register is available.
915
916 Note that register number 0 in flt_argreg_array corresponds with the
917 real float register fr4. In contrast to FLOAT_ARG0_REGNUM (value is
918 29) the parity of the register number is preserved, which is important
919 for the double register passing test (see the "argreg & 1" test below). */
920static int
921sh_next_flt_argreg (int len)
922{
923 int argreg;
924
925 /* First search for the next free register. */
617daa0e
CV
926 for (argreg = 0; argreg <= FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM;
927 ++argreg)
e5e33cd9
CV
928 if (!flt_argreg_array[argreg])
929 break;
930
931 /* No register left? */
932 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
933 return FLOAT_ARGLAST_REGNUM + 1;
934
935 if (len == 8)
936 {
937 /* Doubles are always starting in a even register number. */
938 if (argreg & 1)
617daa0e 939 {
e5e33cd9
CV
940 flt_argreg_array[argreg] = 1;
941
942 ++argreg;
943
617daa0e 944 /* No register left? */
e5e33cd9
CV
945 if (argreg > FLOAT_ARGLAST_REGNUM - FLOAT_ARG0_REGNUM)
946 return FLOAT_ARGLAST_REGNUM + 1;
947 }
948 /* Also mark the next register as used. */
949 flt_argreg_array[argreg + 1] = 1;
950 }
951 else if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
952 {
953 /* In little endian, gcc passes floats like this: f5, f4, f7, f6, ... */
954 if (!flt_argreg_array[argreg + 1])
955 ++argreg;
956 }
957 flt_argreg_array[argreg] = 1;
958 return FLOAT_ARG0_REGNUM + argreg;
959}
960
afce3d2a
CV
961/* Helper function which figures out, if a type is treated like a float type.
962
2e952408 963 The FPU ABIs have a special way how to treat types as float types.
afce3d2a
CV
964 Structures with exactly one member, which is of type float or double, are
965 treated exactly as the base types float or double:
966
967 struct sf {
968 float f;
969 };
970
971 struct sd {
972 double d;
973 };
974
975 are handled the same way as just
976
977 float f;
978
979 double d;
980
981 As a result, arguments of these struct types are pushed into floating point
982 registers exactly as floats or doubles, using the same decision algorithm.
983
984 The same is valid if these types are used as function return types. The
985 above structs are returned in fr0 resp. fr0,fr1 instead of in r0, r0,r1
986 or even using struct convention as it is for other structs. */
987
988static int
989sh_treat_as_flt_p (struct type *type)
990{
991 int len = TYPE_LENGTH (type);
992
993 /* Ordinary float types are obviously treated as float. */
994 if (TYPE_CODE (type) == TYPE_CODE_FLT)
995 return 1;
996 /* Otherwise non-struct types are not treated as float. */
997 if (TYPE_CODE (type) != TYPE_CODE_STRUCT)
998 return 0;
999 /* Otherwise structs with more than one memeber are not treated as float. */
1000 if (TYPE_NFIELDS (type) != 1)
1001 return 0;
1002 /* Otherwise if the type of that member is float, the whole type is
1003 treated as float. */
1004 if (TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_FLT)
1005 return 1;
1006 /* Otherwise it's not treated as float. */
1007 return 0;
1008}
1009
cc17453a 1010static CORE_ADDR
617daa0e 1011sh_push_dummy_call_fpu (struct gdbarch *gdbarch,
7d9b040b 1012 struct value *function,
617daa0e 1013 struct regcache *regcache,
6df2bf50 1014 CORE_ADDR bp_addr, int nargs,
617daa0e 1015 struct value **args,
6df2bf50
MS
1016 CORE_ADDR sp, int struct_return,
1017 CORE_ADDR struct_addr)
1018{
e5e33cd9
CV
1019 int stack_offset = 0;
1020 int argreg = ARG0_REGNUM;
8748518b 1021 int flt_argreg = 0;
6df2bf50
MS
1022 int argnum;
1023 struct type *type;
1024 CORE_ADDR regval;
1025 char *val;
8748518b 1026 int len, reg_size = 0;
afce3d2a
CV
1027 int pass_on_stack = 0;
1028 int treat_as_flt;
6df2bf50
MS
1029
1030 /* first force sp to a 4-byte alignment */
1031 sp = sh_frame_align (gdbarch, sp);
1032
6df2bf50 1033 if (struct_return)
1c0159e0 1034 regcache_cooked_write_unsigned (regcache,
617daa0e 1035 STRUCT_RETURN_REGNUM, struct_addr);
6df2bf50 1036
e5e33cd9
CV
1037 /* make room on stack for args */
1038 sp -= sh_stack_allocsize (nargs, args);
1039
1040 /* Initialize float argument mechanism. */
1041 sh_init_flt_argreg ();
6df2bf50
MS
1042
1043 /* Now load as many as possible of the first arguments into
1044 registers, and push the rest onto the stack. There are 16 bytes
1045 in four registers available. Loop thru args from first to last. */
e5e33cd9 1046 for (argnum = 0; argnum < nargs; argnum++)
6df2bf50
MS
1047 {
1048 type = VALUE_TYPE (args[argnum]);
1049 len = TYPE_LENGTH (type);
e5e33cd9
CV
1050 val = sh_justify_value_in_reg (args[argnum], len);
1051
1052 /* Some decisions have to be made how various types are handled.
1053 This also differs in different ABIs. */
1054 pass_on_stack = 0;
e5e33cd9
CV
1055
1056 /* Find out the next register to use for a floating point value. */
afce3d2a
CV
1057 treat_as_flt = sh_treat_as_flt_p (type);
1058 if (treat_as_flt)
617daa0e 1059 flt_argreg = sh_next_flt_argreg (len);
afce3d2a
CV
1060 /* In contrast to non-FPU CPUs, arguments are never split between
1061 registers and stack. If an argument doesn't fit in the remaining
1062 registers it's always pushed entirely on the stack. */
1063 else if (len > ((ARGLAST_REGNUM - argreg + 1) * 4))
1064 pass_on_stack = 1;
48db5a3c 1065
6df2bf50
MS
1066 while (len > 0)
1067 {
afce3d2a
CV
1068 if ((treat_as_flt && flt_argreg > FLOAT_ARGLAST_REGNUM)
1069 || (!treat_as_flt && (argreg > ARGLAST_REGNUM
1070 || pass_on_stack)))
617daa0e 1071 {
afce3d2a 1072 /* The data goes entirely on the stack, 4-byte aligned. */
e5e33cd9
CV
1073 reg_size = (len + 3) & ~3;
1074 write_memory (sp + stack_offset, val, reg_size);
1075 stack_offset += reg_size;
6df2bf50 1076 }
afce3d2a 1077 else if (treat_as_flt && flt_argreg <= FLOAT_ARGLAST_REGNUM)
6df2bf50 1078 {
e5e33cd9
CV
1079 /* Argument goes in a float argument register. */
1080 reg_size = register_size (gdbarch, flt_argreg);
1081 regval = extract_unsigned_integer (val, reg_size);
2e952408
CV
1082 /* In little endian mode, float types taking two registers
1083 (doubles on sh4, long doubles on sh2e, sh3e and sh4) must
1084 be stored swapped in the argument registers. The below
1085 code first writes the first 32 bits in the next but one
1086 register, increments the val and len values accordingly
1087 and then proceeds as normal by writing the second 32 bits
1088 into the next register. */
1089 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE
1090 && TYPE_LENGTH (type) == 2 * reg_size)
1091 {
1092 regcache_cooked_write_unsigned (regcache, flt_argreg + 1,
1093 regval);
1094 val += reg_size;
1095 len -= reg_size;
1096 regval = extract_unsigned_integer (val, reg_size);
1097 }
6df2bf50
MS
1098 regcache_cooked_write_unsigned (regcache, flt_argreg++, regval);
1099 }
afce3d2a 1100 else if (!treat_as_flt && argreg <= ARGLAST_REGNUM)
e5e33cd9 1101 {
6df2bf50 1102 /* there's room in a register */
e5e33cd9
CV
1103 reg_size = register_size (gdbarch, argreg);
1104 regval = extract_unsigned_integer (val, reg_size);
6df2bf50
MS
1105 regcache_cooked_write_unsigned (regcache, argreg++, regval);
1106 }
afce3d2a 1107 /* Store the value one register at a time or in one step on stack. */
e5e33cd9
CV
1108 len -= reg_size;
1109 val += reg_size;
6df2bf50
MS
1110 }
1111 }
1112
1113 /* Store return address. */
55ff77ac 1114 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
6df2bf50
MS
1115
1116 /* Update stack pointer. */
1117 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1118
1119 return sp;
1120}
1121
1122static CORE_ADDR
617daa0e 1123sh_push_dummy_call_nofpu (struct gdbarch *gdbarch,
7d9b040b 1124 struct value *function,
617daa0e
CV
1125 struct regcache *regcache,
1126 CORE_ADDR bp_addr,
1127 int nargs, struct value **args,
1128 CORE_ADDR sp, int struct_return,
6df2bf50 1129 CORE_ADDR struct_addr)
c906108c 1130{
e5e33cd9
CV
1131 int stack_offset = 0;
1132 int argreg = ARG0_REGNUM;
c906108c
SS
1133 int argnum;
1134 struct type *type;
1135 CORE_ADDR regval;
1136 char *val;
e5e33cd9 1137 int len, reg_size;
c906108c
SS
1138
1139 /* first force sp to a 4-byte alignment */
19f59343 1140 sp = sh_frame_align (gdbarch, sp);
c906108c 1141
c906108c 1142 if (struct_return)
55ff77ac 1143 regcache_cooked_write_unsigned (regcache,
617daa0e 1144 STRUCT_RETURN_REGNUM, struct_addr);
c906108c 1145
e5e33cd9
CV
1146 /* make room on stack for args */
1147 sp -= sh_stack_allocsize (nargs, args);
c906108c 1148
c906108c
SS
1149 /* Now load as many as possible of the first arguments into
1150 registers, and push the rest onto the stack. There are 16 bytes
1151 in four registers available. Loop thru args from first to last. */
e5e33cd9 1152 for (argnum = 0; argnum < nargs; argnum++)
617daa0e 1153 {
c906108c 1154 type = VALUE_TYPE (args[argnum]);
c5aa993b 1155 len = TYPE_LENGTH (type);
e5e33cd9 1156 val = sh_justify_value_in_reg (args[argnum], len);
c906108c 1157
c906108c
SS
1158 while (len > 0)
1159 {
e5e33cd9 1160 if (argreg > ARGLAST_REGNUM)
617daa0e 1161 {
e5e33cd9
CV
1162 /* The remainder of the data goes entirely on the stack,
1163 4-byte aligned. */
1164 reg_size = (len + 3) & ~3;
1165 write_memory (sp + stack_offset, val, reg_size);
617daa0e 1166 stack_offset += reg_size;
c906108c 1167 }
e5e33cd9 1168 else if (argreg <= ARGLAST_REGNUM)
617daa0e 1169 {
3bbfbb92 1170 /* there's room in a register */
e5e33cd9
CV
1171 reg_size = register_size (gdbarch, argreg);
1172 regval = extract_unsigned_integer (val, reg_size);
48db5a3c 1173 regcache_cooked_write_unsigned (regcache, argreg++, regval);
c906108c 1174 }
e5e33cd9
CV
1175 /* Store the value reg_size bytes at a time. This means that things
1176 larger than reg_size bytes may go partly in registers and partly
c906108c 1177 on the stack. */
e5e33cd9
CV
1178 len -= reg_size;
1179 val += reg_size;
c906108c
SS
1180 }
1181 }
48db5a3c
CV
1182
1183 /* Store return address. */
55ff77ac 1184 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
48db5a3c
CV
1185
1186 /* Update stack pointer. */
1187 regcache_cooked_write_unsigned (regcache, SP_REGNUM, sp);
1188
c906108c
SS
1189 return sp;
1190}
1191
cc17453a
EZ
1192/* Find a function's return value in the appropriate registers (in
1193 regbuf), and copy it into valbuf. Extract from an array REGBUF
1194 containing the (raw) register state a function return value of type
1195 TYPE, and copy that, in virtual format, into VALBUF. */
1196static void
48db5a3c
CV
1197sh_default_extract_return_value (struct type *type, struct regcache *regcache,
1198 void *valbuf)
c906108c 1199{
cc17453a 1200 int len = TYPE_LENGTH (type);
3116c80a
EZ
1201 int return_register = R0_REGNUM;
1202 int offset;
617daa0e 1203
cc17453a 1204 if (len <= 4)
3116c80a 1205 {
48db5a3c
CV
1206 ULONGEST c;
1207
1208 regcache_cooked_read_unsigned (regcache, R0_REGNUM, &c);
1209 store_unsigned_integer (valbuf, len, c);
3116c80a 1210 }
48db5a3c 1211 else if (len == 8)
3116c80a 1212 {
48db5a3c
CV
1213 int i, regnum = R0_REGNUM;
1214 for (i = 0; i < len; i += 4)
617daa0e 1215 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a
EZ
1216 }
1217 else
1218 error ("bad size for return value");
1219}
1220
1221static void
48db5a3c
CV
1222sh3e_sh4_extract_return_value (struct type *type, struct regcache *regcache,
1223 void *valbuf)
3116c80a 1224{
afce3d2a 1225 if (sh_treat_as_flt_p (type))
3116c80a 1226 {
48db5a3c
CV
1227 int len = TYPE_LENGTH (type);
1228 int i, regnum = FP0_REGNUM;
1229 for (i = 0; i < len; i += 4)
2e952408
CV
1230 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1231 regcache_raw_read (regcache, regnum++, (char *) valbuf + len - 4 - i);
1232 else
1233 regcache_raw_read (regcache, regnum++, (char *) valbuf + i);
3116c80a 1234 }
cc17453a 1235 else
48db5a3c 1236 sh_default_extract_return_value (type, regcache, valbuf);
cc17453a 1237}
c906108c 1238
cc17453a
EZ
1239/* Write into appropriate registers a function return value
1240 of type TYPE, given in virtual format.
1241 If the architecture is sh4 or sh3e, store a function's return value
1242 in the R0 general register or in the FP0 floating point register,
1243 depending on the type of the return value. In all the other cases
3bbfbb92 1244 the result is stored in r0, left-justified. */
cc17453a 1245static void
48db5a3c
CV
1246sh_default_store_return_value (struct type *type, struct regcache *regcache,
1247 const void *valbuf)
cc17453a 1248{
48db5a3c
CV
1249 ULONGEST val;
1250 int len = TYPE_LENGTH (type);
d19b71be 1251
48db5a3c 1252 if (len <= 4)
d19b71be 1253 {
48db5a3c
CV
1254 val = extract_unsigned_integer (valbuf, len);
1255 regcache_cooked_write_unsigned (regcache, R0_REGNUM, val);
d19b71be
MS
1256 }
1257 else
48db5a3c
CV
1258 {
1259 int i, regnum = R0_REGNUM;
1260 for (i = 0; i < len; i += 4)
617daa0e 1261 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1262 }
cc17453a 1263}
c906108c 1264
cc17453a 1265static void
48db5a3c
CV
1266sh3e_sh4_store_return_value (struct type *type, struct regcache *regcache,
1267 const void *valbuf)
cc17453a 1268{
afce3d2a 1269 if (sh_treat_as_flt_p (type))
48db5a3c
CV
1270 {
1271 int len = TYPE_LENGTH (type);
1272 int i, regnum = FP0_REGNUM;
1273 for (i = 0; i < len; i += 4)
c8a3b559
CV
1274 if (TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
1275 regcache_raw_write (regcache, regnum++,
1276 (char *) valbuf + len - 4 - i);
1277 else
1278 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
48db5a3c 1279 }
cc17453a 1280 else
48db5a3c 1281 sh_default_store_return_value (type, regcache, valbuf);
c906108c
SS
1282}
1283
c0409442
CV
1284static enum return_value_convention
1285sh_return_value_nofpu (struct gdbarch *gdbarch, struct type *type,
1286 struct regcache *regcache,
1287 void *readbuf, const void *writebuf)
1288{
1289 if (sh_use_struct_convention (0, type))
1290 return RETURN_VALUE_STRUCT_CONVENTION;
1291 if (writebuf)
1292 sh_default_store_return_value (type, regcache, writebuf);
1293 else if (readbuf)
1294 sh_default_extract_return_value (type, regcache, readbuf);
1295 return RETURN_VALUE_REGISTER_CONVENTION;
1296}
1297
1298static enum return_value_convention
1299sh_return_value_fpu (struct gdbarch *gdbarch, struct type *type,
1300 struct regcache *regcache,
1301 void *readbuf, const void *writebuf)
1302{
1303 if (sh_use_struct_convention (0, type))
1304 return RETURN_VALUE_STRUCT_CONVENTION;
1305 if (writebuf)
1306 sh3e_sh4_store_return_value (type, regcache, writebuf);
1307 else if (readbuf)
1308 sh3e_sh4_extract_return_value (type, regcache, readbuf);
1309 return RETURN_VALUE_REGISTER_CONVENTION;
1310}
1311
c906108c
SS
1312/* Print the registers in a form similar to the E7000 */
1313
1314static void
fba45db2 1315sh_generic_show_regs (void)
c906108c 1316{
cc17453a
EZ
1317 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1318 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1319 (long) read_register (SR_REGNUM),
1320 (long) read_register (PR_REGNUM),
cc17453a
EZ
1321 (long) read_register (MACH_REGNUM),
1322 (long) read_register (MACL_REGNUM));
1323
1324 printf_filtered ("GBR=%08lx VBR=%08lx",
1325 (long) read_register (GBR_REGNUM),
1326 (long) read_register (VBR_REGNUM));
1327
617daa0e
CV
1328 printf_filtered
1329 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1330 (long) read_register (0), (long) read_register (1),
1331 (long) read_register (2), (long) read_register (3),
1332 (long) read_register (4), (long) read_register (5),
1333 (long) read_register (6), (long) read_register (7));
cc17453a 1334 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1335 (long) read_register (8), (long) read_register (9),
1336 (long) read_register (10), (long) read_register (11),
1337 (long) read_register (12), (long) read_register (13),
1338 (long) read_register (14), (long) read_register (15));
cc17453a 1339}
c906108c 1340
cc17453a 1341static void
fba45db2 1342sh3_show_regs (void)
cc17453a 1343{
d4f3574e
SS
1344 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1345 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1346 (long) read_register (SR_REGNUM),
1347 (long) read_register (PR_REGNUM),
d4f3574e
SS
1348 (long) read_register (MACH_REGNUM),
1349 (long) read_register (MACL_REGNUM));
1350
1351 printf_filtered ("GBR=%08lx VBR=%08lx",
1352 (long) read_register (GBR_REGNUM),
1353 (long) read_register (VBR_REGNUM));
cc17453a 1354 printf_filtered (" SSR=%08lx SPC=%08lx",
617daa0e 1355 (long) read_register (SSR_REGNUM),
f2ea0907 1356 (long) read_register (SPC_REGNUM));
c906108c 1357
617daa0e
CV
1358 printf_filtered
1359 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1360 (long) read_register (0), (long) read_register (1),
1361 (long) read_register (2), (long) read_register (3),
1362 (long) read_register (4), (long) read_register (5),
1363 (long) read_register (6), (long) read_register (7));
d4f3574e 1364 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1365 (long) read_register (8), (long) read_register (9),
1366 (long) read_register (10), (long) read_register (11),
1367 (long) read_register (12), (long) read_register (13),
1368 (long) read_register (14), (long) read_register (15));
c906108c
SS
1369}
1370
53116e27 1371
2d188dd3
NC
1372static void
1373sh2e_show_regs (void)
1374{
1375 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1376 paddr (read_register (PC_REGNUM)),
1377 (long) read_register (SR_REGNUM),
1378 (long) read_register (PR_REGNUM),
1379 (long) read_register (MACH_REGNUM),
1380 (long) read_register (MACL_REGNUM));
1381
1382 printf_filtered ("GBR=%08lx VBR=%08lx",
1383 (long) read_register (GBR_REGNUM),
1384 (long) read_register (VBR_REGNUM));
1385 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
617daa0e
CV
1386 (long) read_register (FPUL_REGNUM),
1387 (long) read_register (FPSCR_REGNUM));
1388
1389 printf_filtered
1390 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1391 (long) read_register (0), (long) read_register (1),
1392 (long) read_register (2), (long) read_register (3),
1393 (long) read_register (4), (long) read_register (5),
1394 (long) read_register (6), (long) read_register (7));
2d188dd3 1395 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1396 (long) read_register (8), (long) read_register (9),
1397 (long) read_register (10), (long) read_register (11),
1398 (long) read_register (12), (long) read_register (13),
1399 (long) read_register (14), (long) read_register (15));
1400
1401 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
1402 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
2d188dd3
NC
1403}
1404
da962468
CV
1405static void
1406sh2a_show_regs (void)
1407{
1408 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1409 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1410 paddr (read_register (PC_REGNUM)),
1411 (long) read_register (SR_REGNUM),
1412 (long) read_register (PR_REGNUM),
1413 (long) read_register (MACH_REGNUM),
1414 (long) read_register (MACL_REGNUM));
1415
1416 printf_filtered ("GBR=%08lx VBR=%08lx TBR=%08lx",
1417 (long) read_register (GBR_REGNUM),
1418 (long) read_register (VBR_REGNUM),
1419 (long) read_register (TBR_REGNUM));
1420 printf_filtered (" FPUL=%08lx FPSCR=%08lx\n",
1421 (long) read_register (FPUL_REGNUM),
1422 (long) read_register (FPSCR_REGNUM));
1423
1424 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1425 (long) read_register (0), (long) read_register (1),
1426 (long) read_register (2), (long) read_register (3),
1427 (long) read_register (4), (long) read_register (5),
1428 (long) read_register (6), (long) read_register (7));
1429 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1430 (long) read_register (8), (long) read_register (9),
1431 (long) read_register (10), (long) read_register (11),
1432 (long) read_register (12), (long) read_register (13),
1433 (long) read_register (14), (long) read_register (15));
1434
1435 printf_filtered ((pr
1436 ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
1437 :
1438 "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1439 (long) read_register (FP0_REGNUM + 0),
1440 (long) read_register (FP0_REGNUM + 1),
1441 (long) read_register (FP0_REGNUM + 2),
1442 (long) read_register (FP0_REGNUM + 3),
1443 (long) read_register (FP0_REGNUM + 4),
1444 (long) read_register (FP0_REGNUM + 5),
1445 (long) read_register (FP0_REGNUM + 6),
1446 (long) read_register (FP0_REGNUM + 7));
1447 printf_filtered ((pr ?
1448 "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n" :
1449 "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
1450 (long) read_register (FP0_REGNUM + 8),
1451 (long) read_register (FP0_REGNUM + 9),
1452 (long) read_register (FP0_REGNUM + 10),
1453 (long) read_register (FP0_REGNUM + 11),
1454 (long) read_register (FP0_REGNUM + 12),
1455 (long) read_register (FP0_REGNUM + 13),
1456 (long) read_register (FP0_REGNUM + 14),
1457 (long) read_register (FP0_REGNUM + 15));
1458 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
1459 printf_filtered ("R0b - R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1460 (long) read_register (R0_BANK0_REGNUM + 0),
1461 (long) read_register (R0_BANK0_REGNUM + 1),
1462 (long) read_register (R0_BANK0_REGNUM + 2),
1463 (long) read_register (R0_BANK0_REGNUM + 3),
1464 (long) read_register (R0_BANK0_REGNUM + 4),
1465 (long) read_register (R0_BANK0_REGNUM + 5),
1466 (long) read_register (R0_BANK0_REGNUM + 6),
1467 (long) read_register (R0_BANK0_REGNUM + 7));
1468 printf_filtered ("R8b - R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1469 (long) read_register (R0_BANK0_REGNUM + 8),
1470 (long) read_register (R0_BANK0_REGNUM + 9),
1471 (long) read_register (R0_BANK0_REGNUM + 10),
1472 (long) read_register (R0_BANK0_REGNUM + 11),
1473 (long) read_register (R0_BANK0_REGNUM + 12),
1474 (long) read_register (R0_BANK0_REGNUM + 13),
1475 (long) read_register (R0_BANK0_REGNUM + 14));
1476 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1477 (long) read_register (R0_BANK0_REGNUM + 15),
1478 (long) read_register (R0_BANK0_REGNUM + 16),
1479 (long) read_register (R0_BANK0_REGNUM + 17),
1480 (long) read_register (R0_BANK0_REGNUM + 18),
1481 (long) read_register (R0_BANK0_REGNUM + 19));
1482}
1483
1484static void
1485sh2a_nofpu_show_regs (void)
1486{
1487 int pr = read_register (FPSCR_REGNUM) & 0x80000;
1488 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1489 paddr (read_register (PC_REGNUM)),
1490 (long) read_register (SR_REGNUM),
1491 (long) read_register (PR_REGNUM),
1492 (long) read_register (MACH_REGNUM),
1493 (long) read_register (MACL_REGNUM));
1494
1495 printf_filtered ("GBR=%08lx VBR=%08lx TBR=%08lx",
1496 (long) read_register (GBR_REGNUM),
1497 (long) read_register (VBR_REGNUM),
1498 (long) read_register (TBR_REGNUM));
1499 printf_filtered (" FPUL=%08lx FPSCR=%08lx\n",
1500 (long) read_register (FPUL_REGNUM),
1501 (long) read_register (FPSCR_REGNUM));
1502
1503 printf_filtered ("R0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1504 (long) read_register (0), (long) read_register (1),
1505 (long) read_register (2), (long) read_register (3),
1506 (long) read_register (4), (long) read_register (5),
1507 (long) read_register (6), (long) read_register (7));
1508 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1509 (long) read_register (8), (long) read_register (9),
1510 (long) read_register (10), (long) read_register (11),
1511 (long) read_register (12), (long) read_register (13),
1512 (long) read_register (14), (long) read_register (15));
1513
1514 printf_filtered ("BANK=%-3d\n", (int) read_register (BANK_REGNUM));
1515 printf_filtered ("R0b - R7b %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1516 (long) read_register (R0_BANK0_REGNUM + 0),
1517 (long) read_register (R0_BANK0_REGNUM + 1),
1518 (long) read_register (R0_BANK0_REGNUM + 2),
1519 (long) read_register (R0_BANK0_REGNUM + 3),
1520 (long) read_register (R0_BANK0_REGNUM + 4),
1521 (long) read_register (R0_BANK0_REGNUM + 5),
1522 (long) read_register (R0_BANK0_REGNUM + 6),
1523 (long) read_register (R0_BANK0_REGNUM + 7));
1524 printf_filtered ("R8b - R14b %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1525 (long) read_register (R0_BANK0_REGNUM + 8),
1526 (long) read_register (R0_BANK0_REGNUM + 9),
1527 (long) read_register (R0_BANK0_REGNUM + 10),
1528 (long) read_register (R0_BANK0_REGNUM + 11),
1529 (long) read_register (R0_BANK0_REGNUM + 12),
1530 (long) read_register (R0_BANK0_REGNUM + 13),
1531 (long) read_register (R0_BANK0_REGNUM + 14));
1532 printf_filtered ("MACHb=%08lx IVNb=%08lx PRb=%08lx GBRb=%08lx MACLb=%08lx\n",
1533 (long) read_register (R0_BANK0_REGNUM + 15),
1534 (long) read_register (R0_BANK0_REGNUM + 16),
1535 (long) read_register (R0_BANK0_REGNUM + 17),
1536 (long) read_register (R0_BANK0_REGNUM + 18),
1537 (long) read_register (R0_BANK0_REGNUM + 19));
1538}
1539
cc17453a 1540static void
fba45db2 1541sh3e_show_regs (void)
cc17453a
EZ
1542{
1543 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1544 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1545 (long) read_register (SR_REGNUM),
1546 (long) read_register (PR_REGNUM),
cc17453a
EZ
1547 (long) read_register (MACH_REGNUM),
1548 (long) read_register (MACL_REGNUM));
1549
1550 printf_filtered ("GBR=%08lx VBR=%08lx",
1551 (long) read_register (GBR_REGNUM),
1552 (long) read_register (VBR_REGNUM));
1553 printf_filtered (" SSR=%08lx SPC=%08lx",
f2ea0907
CV
1554 (long) read_register (SSR_REGNUM),
1555 (long) read_register (SPC_REGNUM));
cc17453a 1556 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
f2ea0907
CV
1557 (long) read_register (FPUL_REGNUM),
1558 (long) read_register (FPSCR_REGNUM));
c906108c 1559
617daa0e
CV
1560 printf_filtered
1561 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1562 (long) read_register (0), (long) read_register (1),
1563 (long) read_register (2), (long) read_register (3),
1564 (long) read_register (4), (long) read_register (5),
1565 (long) read_register (6), (long) read_register (7));
cc17453a 1566 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1567 (long) read_register (8), (long) read_register (9),
1568 (long) read_register (10), (long) read_register (11),
1569 (long) read_register (12), (long) read_register (13),
1570 (long) read_register (14), (long) read_register (15));
1571
1572 printf_filtered (("FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 0), (long) read_register (FP0_REGNUM + 1), (long) read_register (FP0_REGNUM + 2), (long) read_register (FP0_REGNUM + 3), (long) read_register (FP0_REGNUM + 4), (long) read_register (FP0_REGNUM + 5), (long) read_register (FP0_REGNUM + 6), (long) read_register (FP0_REGNUM + 7));
1573 printf_filtered (("FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"), (long) read_register (FP0_REGNUM + 8), (long) read_register (FP0_REGNUM + 9), (long) read_register (FP0_REGNUM + 10), (long) read_register (FP0_REGNUM + 11), (long) read_register (FP0_REGNUM + 12), (long) read_register (FP0_REGNUM + 13), (long) read_register (FP0_REGNUM + 14), (long) read_register (FP0_REGNUM + 15));
cc17453a
EZ
1574}
1575
1576static void
fba45db2 1577sh3_dsp_show_regs (void)
c906108c 1578{
cc17453a
EZ
1579 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1580 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1581 (long) read_register (SR_REGNUM),
1582 (long) read_register (PR_REGNUM),
cc17453a
EZ
1583 (long) read_register (MACH_REGNUM),
1584 (long) read_register (MACL_REGNUM));
c906108c 1585
cc17453a
EZ
1586 printf_filtered ("GBR=%08lx VBR=%08lx",
1587 (long) read_register (GBR_REGNUM),
1588 (long) read_register (VBR_REGNUM));
1589
1590 printf_filtered (" SSR=%08lx SPC=%08lx",
f2ea0907
CV
1591 (long) read_register (SSR_REGNUM),
1592 (long) read_register (SPC_REGNUM));
cc17453a 1593
617daa0e
CV
1594 printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
1595
1596 printf_filtered
1597 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1598 (long) read_register (0), (long) read_register (1),
1599 (long) read_register (2), (long) read_register (3),
1600 (long) read_register (4), (long) read_register (5),
1601 (long) read_register (6), (long) read_register (7));
cc17453a 1602 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1603 (long) read_register (8), (long) read_register (9),
1604 (long) read_register (10), (long) read_register (11),
1605 (long) read_register (12), (long) read_register (13),
1606 (long) read_register (14), (long) read_register (15));
1607
1608 printf_filtered
1609 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1610 (long) read_register (A0G_REGNUM) & 0xff,
1611 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1612 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1613 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
cc17453a 1614 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
f2ea0907
CV
1615 (long) read_register (A1G_REGNUM) & 0xff,
1616 (long) read_register (A1_REGNUM),
1617 (long) read_register (M1_REGNUM),
1618 (long) read_register (X1_REGNUM),
1619 (long) read_register (Y1_REGNUM),
1620 (long) read_register (RE_REGNUM));
c906108c
SS
1621}
1622
cc17453a 1623static void
fba45db2 1624sh4_show_regs (void)
cc17453a 1625{
f2ea0907 1626 int pr = read_register (FPSCR_REGNUM) & 0x80000;
cc17453a
EZ
1627 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1628 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1629 (long) read_register (SR_REGNUM),
1630 (long) read_register (PR_REGNUM),
cc17453a
EZ
1631 (long) read_register (MACH_REGNUM),
1632 (long) read_register (MACL_REGNUM));
1633
1634 printf_filtered ("GBR=%08lx VBR=%08lx",
1635 (long) read_register (GBR_REGNUM),
1636 (long) read_register (VBR_REGNUM));
1637 printf_filtered (" SSR=%08lx SPC=%08lx",
f2ea0907
CV
1638 (long) read_register (SSR_REGNUM),
1639 (long) read_register (SPC_REGNUM));
cc17453a 1640 printf_filtered (" FPUL=%08lx FPSCR=%08lx",
f2ea0907
CV
1641 (long) read_register (FPUL_REGNUM),
1642 (long) read_register (FPSCR_REGNUM));
cc17453a 1643
617daa0e
CV
1644 printf_filtered
1645 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1646 (long) read_register (0), (long) read_register (1),
1647 (long) read_register (2), (long) read_register (3),
1648 (long) read_register (4), (long) read_register (5),
1649 (long) read_register (6), (long) read_register (7));
cc17453a 1650 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1651 (long) read_register (8), (long) read_register (9),
1652 (long) read_register (10), (long) read_register (11),
1653 (long) read_register (12), (long) read_register (13),
1654 (long) read_register (14), (long) read_register (15));
cc17453a
EZ
1655
1656 printf_filtered ((pr
1657 ? "DR0-DR6 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n"
617daa0e
CV
1658 :
1659 "FP0-FP7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
cc17453a
EZ
1660 (long) read_register (FP0_REGNUM + 0),
1661 (long) read_register (FP0_REGNUM + 1),
1662 (long) read_register (FP0_REGNUM + 2),
1663 (long) read_register (FP0_REGNUM + 3),
1664 (long) read_register (FP0_REGNUM + 4),
1665 (long) read_register (FP0_REGNUM + 5),
1666 (long) read_register (FP0_REGNUM + 6),
1667 (long) read_register (FP0_REGNUM + 7));
617daa0e
CV
1668 printf_filtered ((pr ?
1669 "DR8-DR14 %08lx%08lx %08lx%08lx %08lx%08lx %08lx%08lx\n" :
1670 "FP8-FP15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n"),
cc17453a
EZ
1671 (long) read_register (FP0_REGNUM + 8),
1672 (long) read_register (FP0_REGNUM + 9),
1673 (long) read_register (FP0_REGNUM + 10),
1674 (long) read_register (FP0_REGNUM + 11),
1675 (long) read_register (FP0_REGNUM + 12),
1676 (long) read_register (FP0_REGNUM + 13),
1677 (long) read_register (FP0_REGNUM + 14),
1678 (long) read_register (FP0_REGNUM + 15));
1679}
1680
474e5826
CV
1681static void
1682sh4_nofpu_show_regs (void)
1683{
1684 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1685 paddr (read_register (PC_REGNUM)),
1686 (long) read_register (SR_REGNUM),
1687 (long) read_register (PR_REGNUM),
1688 (long) read_register (MACH_REGNUM),
1689 (long) read_register (MACL_REGNUM));
1690
1691 printf_filtered ("GBR=%08lx VBR=%08lx",
1692 (long) read_register (GBR_REGNUM),
1693 (long) read_register (VBR_REGNUM));
1694 printf_filtered (" SSR=%08lx SPC=%08lx",
1695 (long) read_register (SSR_REGNUM),
1696 (long) read_register (SPC_REGNUM));
1697
1698 printf_filtered
1699 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1700 (long) read_register (0), (long) read_register (1),
1701 (long) read_register (2), (long) read_register (3),
1702 (long) read_register (4), (long) read_register (5),
1703 (long) read_register (6), (long) read_register (7));
1704 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1705 (long) read_register (8), (long) read_register (9),
1706 (long) read_register (10), (long) read_register (11),
1707 (long) read_register (12), (long) read_register (13),
1708 (long) read_register (14), (long) read_register (15));
1709}
1710
cc17453a 1711static void
fba45db2 1712sh_dsp_show_regs (void)
cc17453a
EZ
1713{
1714 printf_filtered ("PC=%s SR=%08lx PR=%08lx MACH=%08lx MACHL=%08lx\n",
1715 paddr (read_register (PC_REGNUM)),
55ff77ac
CV
1716 (long) read_register (SR_REGNUM),
1717 (long) read_register (PR_REGNUM),
cc17453a
EZ
1718 (long) read_register (MACH_REGNUM),
1719 (long) read_register (MACL_REGNUM));
1720
1721 printf_filtered ("GBR=%08lx VBR=%08lx",
1722 (long) read_register (GBR_REGNUM),
1723 (long) read_register (VBR_REGNUM));
1724
617daa0e
CV
1725 printf_filtered (" DSR=%08lx", (long) read_register (DSR_REGNUM));
1726
1727 printf_filtered
1728 ("\nR0-R7 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1729 (long) read_register (0), (long) read_register (1),
1730 (long) read_register (2), (long) read_register (3),
1731 (long) read_register (4), (long) read_register (5),
1732 (long) read_register (6), (long) read_register (7));
cc17453a 1733 printf_filtered ("R8-R15 %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
617daa0e
CV
1734 (long) read_register (8), (long) read_register (9),
1735 (long) read_register (10), (long) read_register (11),
1736 (long) read_register (12), (long) read_register (13),
1737 (long) read_register (14), (long) read_register (15));
1738
1739 printf_filtered
1740 ("A0G=%02lx A0=%08lx M0=%08lx X0=%08lx Y0=%08lx RS=%08lx MOD=%08lx\n",
1741 (long) read_register (A0G_REGNUM) & 0xff,
1742 (long) read_register (A0_REGNUM), (long) read_register (M0_REGNUM),
1743 (long) read_register (X0_REGNUM), (long) read_register (Y0_REGNUM),
1744 (long) read_register (RS_REGNUM), (long) read_register (MOD_REGNUM));
cc17453a 1745 printf_filtered ("A1G=%02lx A1=%08lx M1=%08lx X1=%08lx Y1=%08lx RE=%08lx\n",
f2ea0907
CV
1746 (long) read_register (A1G_REGNUM) & 0xff,
1747 (long) read_register (A1_REGNUM),
1748 (long) read_register (M1_REGNUM),
1749 (long) read_register (X1_REGNUM),
1750 (long) read_register (Y1_REGNUM),
1751 (long) read_register (RE_REGNUM));
cc17453a
EZ
1752}
1753
a78f21af
AC
1754static void
1755sh_show_regs_command (char *args, int from_tty)
53116e27
EZ
1756{
1757 if (sh_show_regs)
617daa0e 1758 (*sh_show_regs) ();
53116e27
EZ
1759}
1760
da962468
CV
1761static struct type *
1762sh_sh2a_register_type (struct gdbarch *gdbarch, int reg_nr)
1763{
1764 if ((reg_nr >= FP0_REGNUM
1765 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
1766 return builtin_type_float;
1767 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
1768 return builtin_type_double;
1769 else
1770 return builtin_type_int;
1771}
1772
cc17453a
EZ
1773/* Return the GDB type object for the "standard" data type
1774 of data in register N. */
cc17453a 1775static struct type *
48db5a3c 1776sh_sh3e_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a
EZ
1777{
1778 if ((reg_nr >= FP0_REGNUM
617daa0e 1779 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
cc17453a 1780 return builtin_type_float;
8db62801 1781 else
cc17453a
EZ
1782 return builtin_type_int;
1783}
1784
7f4dbe94
EZ
1785static struct type *
1786sh_sh4_build_float_register_type (int high)
1787{
1788 struct type *temp;
1789
1790 temp = create_range_type (NULL, builtin_type_int, 0, high);
1791 return create_array_type (NULL, builtin_type_float, temp);
1792}
1793
53116e27 1794static struct type *
48db5a3c 1795sh_sh4_register_type (struct gdbarch *gdbarch, int reg_nr)
53116e27
EZ
1796{
1797 if ((reg_nr >= FP0_REGNUM
617daa0e 1798 && (reg_nr <= FP_LAST_REGNUM)) || (reg_nr == FPUL_REGNUM))
53116e27 1799 return builtin_type_float;
617daa0e 1800 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27 1801 return builtin_type_double;
617daa0e 1802 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27
EZ
1803 return sh_sh4_build_float_register_type (3);
1804 else
1805 return builtin_type_int;
1806}
1807
cc17453a 1808static struct type *
48db5a3c 1809sh_default_register_type (struct gdbarch *gdbarch, int reg_nr)
cc17453a
EZ
1810{
1811 return builtin_type_int;
1812}
1813
fb409745
EZ
1814/* On the sh4, the DRi pseudo registers are problematic if the target
1815 is little endian. When the user writes one of those registers, for
1816 instance with 'ser var $dr0=1', we want the double to be stored
1817 like this:
1818 fr0 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1819 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1820
1821 This corresponds to little endian byte order & big endian word
1822 order. However if we let gdb write the register w/o conversion, it
1823 will write fr0 and fr1 this way:
1824 fr0 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1825 fr1 = 0x00 0x00 0x00 0x00 0x00 0xf0 0x3f
1826 because it will consider fr0 and fr1 as a single LE stretch of memory.
1827
1828 To achieve what we want we must force gdb to store things in
1829 floatformat_ieee_double_littlebyte_bigword (which is defined in
1830 include/floatformat.h and libiberty/floatformat.c.
1831
1832 In case the target is big endian, there is no problem, the
1833 raw bytes will look like:
1834 fr0 = 0x3f 0xf0 0x00 0x00 0x00 0x00 0x00
1835 fr1 = 0x00 0x00 0x00 0x00 0x00 0x00 0x00
1836
1837 The other pseudo registers (the FVs) also don't pose a problem
1838 because they are stored as 4 individual FP elements. */
1839
7bd872fe 1840static void
b66ba949
CV
1841sh_register_convert_to_virtual (int regnum, struct type *type,
1842 char *from, char *to)
55ff77ac 1843{
617daa0e 1844 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd
EZ
1845 {
1846 DOUBLEST val;
617daa0e
CV
1847 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1848 from, &val);
55ff77ac 1849 store_typed_floating (to, type, val);
283150cd
EZ
1850 }
1851 else
617daa0e
CV
1852 error
1853 ("sh_register_convert_to_virtual called with non DR register number");
283150cd
EZ
1854}
1855
1856static void
b66ba949
CV
1857sh_register_convert_to_raw (struct type *type, int regnum,
1858 const void *from, void *to)
283150cd 1859{
617daa0e 1860 if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
283150cd 1861 {
48db5a3c 1862 DOUBLEST val = extract_typed_floating (from, type);
617daa0e
CV
1863 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1864 &val, to);
283150cd
EZ
1865 }
1866 else
617daa0e 1867 error ("sh_register_convert_to_raw called with non DR register number");
283150cd
EZ
1868}
1869
1c0159e0
CV
1870/* For vectors of 4 floating point registers. */
1871static int
1872fv_reg_base_num (int fv_regnum)
1873{
1874 int fp_regnum;
1875
617daa0e 1876 fp_regnum = FP0_REGNUM + (fv_regnum - FV0_REGNUM) * 4;
1c0159e0
CV
1877 return fp_regnum;
1878}
1879
1880/* For double precision floating point registers, i.e 2 fp regs.*/
1881static int
1882dr_reg_base_num (int dr_regnum)
1883{
1884 int fp_regnum;
1885
617daa0e 1886 fp_regnum = FP0_REGNUM + (dr_regnum - DR0_REGNUM) * 2;
1c0159e0
CV
1887 return fp_regnum;
1888}
1889
a78f21af 1890static void
d8124050
AC
1891sh_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1892 int reg_nr, void *buffer)
53116e27
EZ
1893{
1894 int base_regnum, portion;
d9d9c31f 1895 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 1896
9bed62d7
CV
1897 if (reg_nr == PSEUDO_BANK_REGNUM)
1898 regcache_raw_read (regcache, BANK_REGNUM, buffer);
1899 else
617daa0e 1900 if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
7bd872fe
EZ
1901 {
1902 base_regnum = dr_reg_base_num (reg_nr);
1903
617daa0e 1904 /* Build the value in the provided buffer. */
7bd872fe
EZ
1905 /* Read the real regs for which this one is an alias. */
1906 for (portion = 0; portion < 2; portion++)
617daa0e 1907 regcache_raw_read (regcache, base_regnum + portion,
0818c12a 1908 (temp_buffer
617daa0e
CV
1909 + register_size (gdbarch,
1910 base_regnum) * portion));
7bd872fe 1911 /* We must pay attention to the endiannes. */
b66ba949
CV
1912 sh_register_convert_to_virtual (reg_nr,
1913 gdbarch_register_type (gdbarch, reg_nr),
1914 temp_buffer, buffer);
7bd872fe 1915 }
617daa0e 1916 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27 1917 {
7bd872fe
EZ
1918 base_regnum = fv_reg_base_num (reg_nr);
1919
1920 /* Read the real regs for which this one is an alias. */
1921 for (portion = 0; portion < 4; portion++)
617daa0e 1922 regcache_raw_read (regcache, base_regnum + portion,
d8124050 1923 ((char *) buffer
617daa0e
CV
1924 + register_size (gdbarch,
1925 base_regnum) * portion));
53116e27
EZ
1926 }
1927}
1928
a78f21af 1929static void
d8124050
AC
1930sh_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1931 int reg_nr, const void *buffer)
53116e27
EZ
1932{
1933 int base_regnum, portion;
d9d9c31f 1934 char temp_buffer[MAX_REGISTER_SIZE];
53116e27 1935
9bed62d7
CV
1936 if (reg_nr == PSEUDO_BANK_REGNUM)
1937 {
1938 /* When the bank register is written to, the whole register bank
1939 is switched and all values in the bank registers must be read
1940 from the target/sim again. We're just invalidating the regcache
1941 so that a re-read happens next time it's necessary. */
1942 int bregnum;
1943
1944 regcache_raw_write (regcache, BANK_REGNUM, buffer);
1945 for (bregnum = R0_BANK0_REGNUM; bregnum < MACLB_REGNUM; ++bregnum)
1946 set_register_cached (bregnum, 0);
1947 }
1948 else if (reg_nr >= DR0_REGNUM && reg_nr <= DR_LAST_REGNUM)
53116e27
EZ
1949 {
1950 base_regnum = dr_reg_base_num (reg_nr);
1951
7bd872fe 1952 /* We must pay attention to the endiannes. */
b66ba949
CV
1953 sh_register_convert_to_raw (gdbarch_register_type (gdbarch, reg_nr),
1954 reg_nr, buffer, temp_buffer);
7bd872fe 1955
53116e27
EZ
1956 /* Write the real regs for which this one is an alias. */
1957 for (portion = 0; portion < 2; portion++)
617daa0e 1958 regcache_raw_write (regcache, base_regnum + portion,
0818c12a 1959 (temp_buffer
617daa0e
CV
1960 + register_size (gdbarch,
1961 base_regnum) * portion));
53116e27 1962 }
617daa0e 1963 else if (reg_nr >= FV0_REGNUM && reg_nr <= FV_LAST_REGNUM)
53116e27
EZ
1964 {
1965 base_regnum = fv_reg_base_num (reg_nr);
1966
1967 /* Write the real regs for which this one is an alias. */
1968 for (portion = 0; portion < 4; portion++)
d8124050
AC
1969 regcache_raw_write (regcache, base_regnum + portion,
1970 ((char *) buffer
617daa0e
CV
1971 + register_size (gdbarch,
1972 base_regnum) * portion));
53116e27
EZ
1973 }
1974}
1975
3bbfbb92 1976/* Floating point vector of 4 float registers. */
53116e27 1977static void
48db5a3c
CV
1978do_fv_register_info (struct gdbarch *gdbarch, struct ui_file *file,
1979 int fv_regnum)
53116e27
EZ
1980{
1981 int first_fp_reg_num = fv_reg_base_num (fv_regnum);
617daa0e
CV
1982 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1983 fv_regnum - FV0_REGNUM,
1984 (int) read_register (first_fp_reg_num),
1985 (int) read_register (first_fp_reg_num + 1),
1986 (int) read_register (first_fp_reg_num + 2),
1987 (int) read_register (first_fp_reg_num + 3));
53116e27
EZ
1988}
1989
3bbfbb92 1990/* Double precision registers. */
53116e27 1991static void
48db5a3c
CV
1992do_dr_register_info (struct gdbarch *gdbarch, struct ui_file *file,
1993 int dr_regnum)
53116e27
EZ
1994{
1995 int first_fp_reg_num = dr_reg_base_num (dr_regnum);
1996
617daa0e
CV
1997 fprintf_filtered (file, "dr%d\t0x%08x%08x\n",
1998 dr_regnum - DR0_REGNUM,
53116e27
EZ
1999 (int) read_register (first_fp_reg_num),
2000 (int) read_register (first_fp_reg_num + 1));
2001}
da962468
CV
2002static void
2003do_bank_register_info (struct gdbarch *gdbarch, struct ui_file *file)
2004{
2005 fprintf_filtered (file, "bank %d\n",
2006 (int) read_register (BANK_REGNUM));
2007}
53116e27
EZ
2008
2009static void
48db5a3c
CV
2010sh_print_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2011 int regnum)
53116e27
EZ
2012{
2013 if (regnum < NUM_REGS || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
8e65ff28
AC
2014 internal_error (__FILE__, __LINE__,
2015 "Invalid pseudo register number %d\n", regnum);
da962468
CV
2016 else if (regnum == PSEUDO_BANK_REGNUM)
2017 do_bank_register_info (gdbarch, file);
617daa0e 2018 else if (regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM)
48db5a3c 2019 do_dr_register_info (gdbarch, file, regnum);
617daa0e 2020 else if (regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM)
48db5a3c 2021 do_fv_register_info (gdbarch, file, regnum);
53116e27
EZ
2022}
2023
53116e27 2024static void
48db5a3c 2025sh_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
53116e27
EZ
2026{ /* do values for FP (float) regs */
2027 char *raw_buffer;
617daa0e 2028 double flt; /* double extracted from raw hex data */
53116e27
EZ
2029 int inv;
2030 int j;
2031
2032 /* Allocate space for the float. */
48db5a3c 2033 raw_buffer = (char *) alloca (register_size (gdbarch, FP0_REGNUM));
53116e27
EZ
2034
2035 /* Get the data in raw format. */
b04f3ab4 2036 if (!frame_register_read (get_selected_frame (NULL), regnum, raw_buffer))
53116e27
EZ
2037 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
2038
617daa0e 2039 /* Get the register as a number */
53116e27
EZ
2040 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2041
2042 /* Print the name and some spaces. */
48db5a3c
CV
2043 fputs_filtered (REGISTER_NAME (regnum), file);
2044 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
53116e27
EZ
2045
2046 /* Print the value. */
93d56215 2047 if (inv)
48db5a3c 2048 fprintf_filtered (file, "<invalid float>");
93d56215 2049 else
48db5a3c 2050 fprintf_filtered (file, "%-10.9g", flt);
53116e27
EZ
2051
2052 /* Print the fp register as hex. */
48db5a3c
CV
2053 fprintf_filtered (file, "\t(raw 0x");
2054 for (j = 0; j < register_size (gdbarch, regnum); j++)
53116e27 2055 {
221c12ff
AC
2056 int idx = (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2057 ? j
2058 : register_size (gdbarch, regnum) - 1 - j);
48db5a3c 2059 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
53116e27 2060 }
48db5a3c
CV
2061 fprintf_filtered (file, ")");
2062 fprintf_filtered (file, "\n");
53116e27
EZ
2063}
2064
2065static void
48db5a3c 2066sh_do_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
53116e27 2067{
123a958e 2068 char raw_buffer[MAX_REGISTER_SIZE];
53116e27 2069
48db5a3c
CV
2070 fputs_filtered (REGISTER_NAME (regnum), file);
2071 print_spaces_filtered (15 - strlen (REGISTER_NAME (regnum)), file);
53116e27
EZ
2072
2073 /* Get the data in raw format. */
b04f3ab4 2074 if (!frame_register_read (get_selected_frame (NULL), regnum, raw_buffer))
48db5a3c 2075 fprintf_filtered (file, "*value not available*\n");
617daa0e 2076
48db5a3c
CV
2077 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2078 file, 'x', 1, 0, Val_pretty_default);
2079 fprintf_filtered (file, "\t");
2080 val_print (gdbarch_register_type (gdbarch, regnum), raw_buffer, 0, 0,
2081 file, 0, 1, 0, Val_pretty_default);
2082 fprintf_filtered (file, "\n");
53116e27
EZ
2083}
2084
2085static void
48db5a3c 2086sh_print_register (struct gdbarch *gdbarch, struct ui_file *file, int regnum)
53116e27
EZ
2087{
2088 if (regnum < 0 || regnum >= NUM_REGS + NUM_PSEUDO_REGS)
8e65ff28
AC
2089 internal_error (__FILE__, __LINE__,
2090 "Invalid register number %d\n", regnum);
53116e27 2091
e30839fe 2092 else if (regnum >= 0 && regnum < NUM_REGS)
53116e27 2093 {
617daa0e
CV
2094 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
2095 TYPE_CODE_FLT)
48db5a3c 2096 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
53116e27 2097 else
48db5a3c 2098 sh_do_register (gdbarch, file, regnum); /* All other regs */
53116e27
EZ
2099 }
2100
2101 else if (regnum < NUM_REGS + NUM_PSEUDO_REGS)
48db5a3c 2102 {
55ff77ac 2103 sh_print_pseudo_register (gdbarch, file, regnum);
48db5a3c 2104 }
53116e27
EZ
2105}
2106
a78f21af 2107static void
48db5a3c
CV
2108sh_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2109 struct frame_info *frame, int regnum, int fpregs)
53116e27
EZ
2110{
2111 if (regnum != -1) /* do one specified register */
2112 {
2113 if (*(REGISTER_NAME (regnum)) == '\0')
2114 error ("Not a valid register for the current processor type");
2115
48db5a3c 2116 sh_print_register (gdbarch, file, regnum);
53116e27
EZ
2117 }
2118 else
2119 /* do all (or most) registers */
2120 {
3930f270 2121 for (regnum = 0; regnum < NUM_REGS; ++regnum)
53116e27
EZ
2122 {
2123 /* If the register name is empty, it is undefined for this
2124 processor, so don't display anything. */
2125 if (REGISTER_NAME (regnum) == NULL
2126 || *(REGISTER_NAME (regnum)) == '\0')
3930f270 2127 continue;
53116e27 2128
617daa0e
CV
2129 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
2130 TYPE_CODE_FLT)
53116e27 2131 {
3930f270 2132 /* true for "INFO ALL-REGISTERS" command */
53116e27 2133 if (fpregs)
3930f270 2134 sh_do_fp_register (gdbarch, file, regnum); /* FP regs */
53116e27
EZ
2135 }
2136 else
3930f270 2137 sh_do_register (gdbarch, file, regnum); /* All other regs */
53116e27
EZ
2138 }
2139
da962468
CV
2140 if (regnum == PSEUDO_BANK_REGNUM
2141 && REGISTER_NAME (regnum)
2142 && *REGISTER_NAME (regnum))
2143 sh_print_pseudo_register (gdbarch, file, regnum++);
2144
53116e27
EZ
2145 if (fpregs)
2146 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
2147 {
55ff77ac 2148 sh_print_pseudo_register (gdbarch, file, regnum);
53116e27
EZ
2149 regnum++;
2150 }
2151 }
2152}
2153
1a8629c7
MS
2154/* Fetch (and possibly build) an appropriate link_map_offsets structure
2155 for native i386 linux targets using the struct offsets defined in
2156 link.h (but without actual reference to that file).
2157
2158 This makes it possible to access i386-linux shared libraries from
2159 a gdb that was not built on an i386-linux host (for cross debugging).
2160 */
2161
2162struct link_map_offsets *
2163sh_linux_svr4_fetch_link_map_offsets (void)
2164{
2165 static struct link_map_offsets lmo;
2166 static struct link_map_offsets *lmp = 0;
2167
2168 if (lmp == 0)
2169 {
2170 lmp = &lmo;
2171
2172 lmo.r_debug_size = 8; /* 20 not actual size but all we need */
2173
2174 lmo.r_map_offset = 4;
617daa0e 2175 lmo.r_map_size = 4;
1a8629c7
MS
2176
2177 lmo.link_map_size = 20; /* 552 not actual size but all we need */
2178
2179 lmo.l_addr_offset = 0;
617daa0e 2180 lmo.l_addr_size = 4;
1a8629c7
MS
2181
2182 lmo.l_name_offset = 4;
617daa0e 2183 lmo.l_name_size = 4;
1a8629c7
MS
2184
2185 lmo.l_next_offset = 12;
617daa0e 2186 lmo.l_next_size = 4;
1a8629c7
MS
2187
2188 lmo.l_prev_offset = 16;
617daa0e 2189 lmo.l_prev_size = 4;
1a8629c7
MS
2190 }
2191
617daa0e 2192 return lmp;
1a8629c7 2193}
1a8629c7 2194
2f14585c
JR
2195static int
2196sh_dsp_register_sim_regno (int nr)
2197{
2198 if (legacy_register_sim_regno (nr) < 0)
2199 return legacy_register_sim_regno (nr);
f2ea0907
CV
2200 if (nr >= DSR_REGNUM && nr <= Y1_REGNUM)
2201 return nr - DSR_REGNUM + SIM_SH_DSR_REGNUM;
2202 if (nr == MOD_REGNUM)
2f14585c 2203 return SIM_SH_MOD_REGNUM;
f2ea0907 2204 if (nr == RS_REGNUM)
2f14585c 2205 return SIM_SH_RS_REGNUM;
f2ea0907 2206 if (nr == RE_REGNUM)
2f14585c 2207 return SIM_SH_RE_REGNUM;
76cd2bd9
CV
2208 if (nr >= DSP_R0_BANK_REGNUM && nr <= DSP_R7_BANK_REGNUM)
2209 return nr - DSP_R0_BANK_REGNUM + SIM_SH_R0_BANK_REGNUM;
2f14585c
JR
2210 return nr;
2211}
1c0159e0 2212
da962468
CV
2213static int
2214sh_sh2a_register_sim_regno (int nr)
2215{
2216 switch (nr)
2217 {
2218 case TBR_REGNUM:
2219 return SIM_SH_TBR_REGNUM;
2220 case IBNR_REGNUM:
2221 return SIM_SH_IBNR_REGNUM;
2222 case IBCR_REGNUM:
2223 return SIM_SH_IBCR_REGNUM;
2224 case BANK_REGNUM:
2225 return SIM_SH_BANK_REGNUM;
2226 case MACLB_REGNUM:
2227 return SIM_SH_BANK_MACL_REGNUM;
2228 case GBRB_REGNUM:
2229 return SIM_SH_BANK_GBR_REGNUM;
2230 case PRB_REGNUM:
2231 return SIM_SH_BANK_PR_REGNUM;
2232 case IVNB_REGNUM:
2233 return SIM_SH_BANK_IVN_REGNUM;
2234 case MACHB_REGNUM:
2235 return SIM_SH_BANK_MACH_REGNUM;
2236 default:
2237 break;
2238 }
2239 return legacy_register_sim_regno (nr);
2240}
2241
1c0159e0
CV
2242static struct sh_frame_cache *
2243sh_alloc_frame_cache (void)
2244{
2245 struct sh_frame_cache *cache;
2246 int i;
2247
2248 cache = FRAME_OBSTACK_ZALLOC (struct sh_frame_cache);
2249
2250 /* Base address. */
2251 cache->base = 0;
2252 cache->saved_sp = 0;
2253 cache->sp_offset = 0;
2254 cache->pc = 0;
2255
2256 /* Frameless until proven otherwise. */
2257 cache->uses_fp = 0;
617daa0e 2258
1c0159e0
CV
2259 /* Saved registers. We initialize these to -1 since zero is a valid
2260 offset (that's where fp is supposed to be stored). */
2261 for (i = 0; i < SH_NUM_REGS; i++)
2262 {
2263 cache->saved_regs[i] = -1;
2264 }
617daa0e 2265
1c0159e0 2266 return cache;
617daa0e 2267}
1c0159e0
CV
2268
2269static struct sh_frame_cache *
2270sh_frame_cache (struct frame_info *next_frame, void **this_cache)
2271{
2272 struct sh_frame_cache *cache;
2273 CORE_ADDR current_pc;
2274 int i;
2275
2276 if (*this_cache)
2277 return *this_cache;
2278
2279 cache = sh_alloc_frame_cache ();
2280 *this_cache = cache;
2281
2282 /* In principle, for normal frames, fp holds the frame pointer,
2283 which holds the base address for the current stack frame.
2284 However, for functions that don't need it, the frame pointer is
2285 optional. For these "frameless" functions the frame pointer is
2286 actually the frame pointer of the calling frame. */
2287 cache->base = frame_unwind_register_unsigned (next_frame, FP_REGNUM);
2288 if (cache->base == 0)
2289 return cache;
2290
2291 cache->pc = frame_func_unwind (next_frame);
2292 current_pc = frame_pc_unwind (next_frame);
2293 if (cache->pc != 0)
2294 sh_analyze_prologue (cache->pc, current_pc, cache);
617daa0e 2295
1c0159e0
CV
2296 if (!cache->uses_fp)
2297 {
2298 /* We didn't find a valid frame, which means that CACHE->base
2299 currently holds the frame pointer for our calling frame. If
2300 we're at the start of a function, or somewhere half-way its
2301 prologue, the function's frame probably hasn't been fully
2302 setup yet. Try to reconstruct the base address for the stack
2303 frame by looking at the stack pointer. For truly "frameless"
2304 functions this might work too. */
2305 cache->base = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2306 }
2307
2308 /* Now that we have the base address for the stack frame we can
2309 calculate the value of sp in the calling frame. */
2310 cache->saved_sp = cache->base + cache->sp_offset;
2311
2312 /* Adjust all the saved registers such that they contain addresses
2313 instead of offsets. */
2314 for (i = 0; i < SH_NUM_REGS; i++)
2315 if (cache->saved_regs[i] != -1)
2316 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i] - 4;
2317
2318 return cache;
2319}
2320
2321static void
2322sh_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2323 int regnum, int *optimizedp,
2324 enum lval_type *lvalp, CORE_ADDR *addrp,
2325 int *realnump, void *valuep)
2326{
2327 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2328
2329 gdb_assert (regnum >= 0);
2330
2331 if (regnum == SP_REGNUM && cache->saved_sp)
2332 {
2333 *optimizedp = 0;
2334 *lvalp = not_lval;
2335 *addrp = 0;
2336 *realnump = -1;
2337 if (valuep)
617daa0e
CV
2338 {
2339 /* Store the value. */
2340 store_unsigned_integer (valuep, 4, cache->saved_sp);
2341 }
1c0159e0
CV
2342 return;
2343 }
2344
2345 /* The PC of the previous frame is stored in the PR register of
2346 the current frame. Frob regnum so that we pull the value from
2347 the correct place. */
2348 if (regnum == PC_REGNUM)
2349 regnum = PR_REGNUM;
2350
2351 if (regnum < SH_NUM_REGS && cache->saved_regs[regnum] != -1)
2352 {
2353 *optimizedp = 0;
2354 *lvalp = lval_memory;
2355 *addrp = cache->saved_regs[regnum];
2356 *realnump = -1;
2357 if (valuep)
617daa0e
CV
2358 {
2359 /* Read the value in from memory. */
2360 read_memory (*addrp, valuep,
2361 register_size (current_gdbarch, regnum));
2362 }
1c0159e0
CV
2363 return;
2364 }
2365
00b25ff3
AC
2366 *optimizedp = 0;
2367 *lvalp = lval_register;
2368 *addrp = 0;
2369 *realnump = regnum;
2370 if (valuep)
2371 frame_unwind_register (next_frame, (*realnump), valuep);
1c0159e0
CV
2372}
2373
2374static void
2375sh_frame_this_id (struct frame_info *next_frame, void **this_cache,
617daa0e
CV
2376 struct frame_id *this_id)
2377{
1c0159e0
CV
2378 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
2379
2380 /* This marks the outermost frame. */
2381 if (cache->base == 0)
2382 return;
2383
2384 *this_id = frame_id_build (cache->saved_sp, cache->pc);
617daa0e 2385}
1c0159e0 2386
617daa0e 2387static const struct frame_unwind sh_frame_unwind = {
1c0159e0
CV
2388 NORMAL_FRAME,
2389 sh_frame_this_id,
2390 sh_frame_prev_register
2391};
2392
2393static const struct frame_unwind *
2394sh_frame_sniffer (struct frame_info *next_frame)
2395{
2396 return &sh_frame_unwind;
2397}
2398
2399static CORE_ADDR
2400sh_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2401{
2402 return frame_unwind_register_unsigned (next_frame, SP_REGNUM);
2403}
2404
2405static CORE_ADDR
2406sh_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2407{
2408 return frame_unwind_register_unsigned (next_frame, PC_REGNUM);
2409}
2410
2411static struct frame_id
2412sh_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2413{
2414 return frame_id_build (sh_unwind_sp (gdbarch, next_frame),
2415 frame_pc_unwind (next_frame));
2416}
2417
2418static CORE_ADDR
2419sh_frame_base_address (struct frame_info *next_frame, void **this_cache)
617daa0e 2420{
1c0159e0 2421 struct sh_frame_cache *cache = sh_frame_cache (next_frame, this_cache);
617daa0e 2422
1c0159e0
CV
2423 return cache->base;
2424}
617daa0e
CV
2425
2426static const struct frame_base sh_frame_base = {
1c0159e0
CV
2427 &sh_frame_unwind,
2428 sh_frame_base_address,
2429 sh_frame_base_address,
2430 sh_frame_base_address
617daa0e 2431};
1c0159e0
CV
2432
2433/* The epilogue is defined here as the area at the end of a function,
2434 either on the `ret' instruction itself or after an instruction which
2435 destroys the function's stack frame. */
2436static int
2437sh_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2438{
2439 CORE_ADDR func_addr = 0, func_end = 0;
2440
2441 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
2442 {
2443 ULONGEST inst;
2444 /* The sh epilogue is max. 14 bytes long. Give another 14 bytes
2445 for a nop and some fixed data (e.g. big offsets) which are
617daa0e
CV
2446 unfortunately also treated as part of the function (which
2447 means, they are below func_end. */
1c0159e0
CV
2448 CORE_ADDR addr = func_end - 28;
2449 if (addr < func_addr + 4)
617daa0e 2450 addr = func_addr + 4;
1c0159e0
CV
2451 if (pc < addr)
2452 return 0;
2453
2454 /* First search forward until hitting an rts. */
2455 while (addr < func_end
617daa0e 2456 && !IS_RTS (read_memory_unsigned_integer (addr, 2)))
1c0159e0
CV
2457 addr += 2;
2458 if (addr >= func_end)
617daa0e 2459 return 0;
1c0159e0
CV
2460
2461 /* At this point we should find a mov.l @r15+,r14 instruction,
2462 either before or after the rts. If not, then the function has
617daa0e 2463 probably no "normal" epilogue and we bail out here. */
1c0159e0
CV
2464 inst = read_memory_unsigned_integer (addr - 2, 2);
2465 if (IS_RESTORE_FP (read_memory_unsigned_integer (addr - 2, 2)))
617daa0e 2466 addr -= 2;
1c0159e0
CV
2467 else if (!IS_RESTORE_FP (read_memory_unsigned_integer (addr + 2, 2)))
2468 return 0;
2469
1c0159e0 2470 inst = read_memory_unsigned_integer (addr - 2, 2);
03131d99
CV
2471
2472 /* Step over possible lds.l @r15+,macl. */
2473 if (IS_MACL_LDS (inst))
2474 {
2475 addr -= 2;
2476 inst = read_memory_unsigned_integer (addr - 2, 2);
2477 }
2478
2479 /* Step over possible lds.l @r15+,pr. */
1c0159e0 2480 if (IS_LDS (inst))
617daa0e 2481 {
1c0159e0
CV
2482 addr -= 2;
2483 inst = read_memory_unsigned_integer (addr - 2, 2);
2484 }
2485
2486 /* Step over possible mov r14,r15. */
2487 if (IS_MOV_FP_SP (inst))
617daa0e 2488 {
1c0159e0
CV
2489 addr -= 2;
2490 inst = read_memory_unsigned_integer (addr - 2, 2);
2491 }
2492
2493 /* Now check for FP adjustments, using add #imm,r14 or add rX, r14
2494 instructions. */
2495 while (addr > func_addr + 4
617daa0e 2496 && (IS_ADD_REG_TO_FP (inst) || IS_ADD_IMM_FP (inst)))
1c0159e0
CV
2497 {
2498 addr -= 2;
2499 inst = read_memory_unsigned_integer (addr - 2, 2);
2500 }
2501
03131d99
CV
2502 /* On SH2a check if the previous instruction was perhaps a MOVI20.
2503 That's allowed for the epilogue. */
2504 if ((gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a
2505 || gdbarch_bfd_arch_info (gdbarch)->mach == bfd_mach_sh2a_nofpu)
2506 && addr > func_addr + 6
2507 && IS_MOVI20 (read_memory_unsigned_integer (addr - 4, 2)))
2508 addr -= 4;
2509
1c0159e0
CV
2510 if (pc >= addr)
2511 return 1;
2512 }
2513 return 0;
2514}
2515
cc17453a
EZ
2516static gdbarch_init_ftype sh_gdbarch_init;
2517
2518static struct gdbarch *
fba45db2 2519sh_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
cc17453a 2520{
cc17453a 2521 struct gdbarch *gdbarch;
d658f924 2522
55ff77ac
CV
2523 sh_show_regs = sh_generic_show_regs;
2524 switch (info.bfd_arch_info->mach)
2525 {
617daa0e
CV
2526 case bfd_mach_sh2e:
2527 sh_show_regs = sh2e_show_regs;
2528 break;
da962468
CV
2529 case bfd_mach_sh2a:
2530 sh_show_regs = sh2a_show_regs;
2531 break;
2532 case bfd_mach_sh2a_nofpu:
2533 sh_show_regs = sh2a_nofpu_show_regs;
2534 break;
617daa0e
CV
2535 case bfd_mach_sh_dsp:
2536 sh_show_regs = sh_dsp_show_regs;
2537 break;
55ff77ac 2538
617daa0e
CV
2539 case bfd_mach_sh3:
2540 sh_show_regs = sh3_show_regs;
2541 break;
55ff77ac 2542
617daa0e
CV
2543 case bfd_mach_sh3e:
2544 sh_show_regs = sh3e_show_regs;
2545 break;
55ff77ac 2546
617daa0e 2547 case bfd_mach_sh3_dsp:
474e5826 2548 case bfd_mach_sh4al_dsp:
617daa0e
CV
2549 sh_show_regs = sh3_dsp_show_regs;
2550 break;
55ff77ac 2551
617daa0e 2552 case bfd_mach_sh4:
474e5826 2553 case bfd_mach_sh4a:
617daa0e
CV
2554 sh_show_regs = sh4_show_regs;
2555 break;
55ff77ac 2556
474e5826
CV
2557 case bfd_mach_sh4_nofpu:
2558 case bfd_mach_sh4a_nofpu:
2559 sh_show_regs = sh4_nofpu_show_regs;
2560 break;
2561
03d363a1 2562#if 0
617daa0e
CV
2563 case bfd_mach_sh5:
2564 sh_show_regs = sh64_show_regs;
2565 /* SH5 is handled entirely in sh64-tdep.c */
2566 return sh64_gdbarch_init (info, arches);
03d363a1 2567#endif
55ff77ac
CV
2568 }
2569
4be87837
DJ
2570 /* If there is already a candidate, use it. */
2571 arches = gdbarch_list_lookup_by_info (arches, &info);
2572 if (arches != NULL)
2573 return arches->gdbarch;
cc17453a
EZ
2574
2575 /* None found, create a new architecture from the information
2576 provided. */
f2ea0907 2577 gdbarch = gdbarch_alloc (&info, NULL);
cc17453a 2578
48db5a3c
CV
2579 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2580 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
ec920329 2581 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c
CV
2582 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2583 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2584 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2585 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
a38d2a54 2586 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
48db5a3c 2587
f2ea0907 2588 set_gdbarch_num_regs (gdbarch, SH_NUM_REGS);
a38d2a54 2589 set_gdbarch_sp_regnum (gdbarch, 15);
a38d2a54 2590 set_gdbarch_pc_regnum (gdbarch, 16);
48db5a3c
CV
2591 set_gdbarch_fp0_regnum (gdbarch, -1);
2592 set_gdbarch_num_pseudo_regs (gdbarch, 0);
2593
1c0159e0
CV
2594 set_gdbarch_register_type (gdbarch, sh_default_register_type);
2595
2596 set_gdbarch_print_registers_info (gdbarch, sh_print_registers_info);
2597
eaf90c5d 2598 set_gdbarch_breakpoint_from_pc (gdbarch, sh_breakpoint_from_pc);
48db5a3c 2599
2bf0cb65 2600 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh);
2f14585c 2601 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
48db5a3c
CV
2602
2603 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
2604
c0409442
CV
2605 set_gdbarch_return_value (gdbarch, sh_return_value_nofpu);
2606 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2607 sh_extract_struct_value_address);
1c0159e0 2608
48db5a3c
CV
2609 set_gdbarch_skip_prologue (gdbarch, sh_skip_prologue);
2610 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
48db5a3c 2611
1c0159e0
CV
2612 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_nofpu);
2613
48db5a3c
CV
2614 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2615
19f59343 2616 set_gdbarch_frame_align (gdbarch, sh_frame_align);
1c0159e0
CV
2617 set_gdbarch_unwind_sp (gdbarch, sh_unwind_sp);
2618 set_gdbarch_unwind_pc (gdbarch, sh_unwind_pc);
2619 set_gdbarch_unwind_dummy_id (gdbarch, sh_unwind_dummy_id);
2620 frame_base_set_default (gdbarch, &sh_frame_base);
2621
617daa0e 2622 set_gdbarch_in_function_epilogue_p (gdbarch, sh_in_function_epilogue_p);
cc17453a
EZ
2623
2624 switch (info.bfd_arch_info->mach)
8db62801 2625 {
cc17453a 2626 case bfd_mach_sh:
48db5a3c 2627 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2628 break;
1c0159e0 2629
cc17453a 2630 case bfd_mach_sh2:
48db5a3c 2631 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
617daa0e 2632 break;
1c0159e0 2633
2d188dd3 2634 case bfd_mach_sh2e:
48db5a3c
CV
2635 /* doubles on sh2e and sh3e are actually 4 byte. */
2636 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2637
2638 set_gdbarch_register_name (gdbarch, sh_sh2e_register_name);
48db5a3c 2639 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
2d188dd3 2640 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2641 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2642 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2d188dd3 2643 break;
1c0159e0 2644
da962468
CV
2645 case bfd_mach_sh2a:
2646 set_gdbarch_register_name (gdbarch, sh_sh2a_register_name);
2647 set_gdbarch_register_type (gdbarch, sh_sh2a_register_type);
2648 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2649
2650 set_gdbarch_fp0_regnum (gdbarch, 25);
2651 set_gdbarch_num_pseudo_regs (gdbarch, 9);
2652 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2653 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2654 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
da962468
CV
2655 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
2656 break;
2657
2658 case bfd_mach_sh2a_nofpu:
2659 set_gdbarch_register_name (gdbarch, sh_sh2a_nofpu_register_name);
2660 set_gdbarch_register_sim_regno (gdbarch, sh_sh2a_register_sim_regno);
2661
2662 set_gdbarch_num_pseudo_regs (gdbarch, 1);
2663 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2664 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
2665 break;
2666
cc17453a 2667 case bfd_mach_sh_dsp:
48db5a3c 2668 set_gdbarch_register_name (gdbarch, sh_sh_dsp_register_name);
2f14585c 2669 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2670 break;
1c0159e0 2671
cc17453a 2672 case bfd_mach_sh3:
48db5a3c 2673 set_gdbarch_register_name (gdbarch, sh_sh3_register_name);
cc17453a 2674 break;
1c0159e0 2675
cc17453a 2676 case bfd_mach_sh3e:
48db5a3c
CV
2677 /* doubles on sh2e and sh3e are actually 4 byte. */
2678 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2679
2680 set_gdbarch_register_name (gdbarch, sh_sh3e_register_name);
48db5a3c 2681 set_gdbarch_register_type (gdbarch, sh_sh3e_register_type);
cc17453a 2682 set_gdbarch_fp0_regnum (gdbarch, 25);
c0409442 2683 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2684 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2685 break;
1c0159e0 2686
cc17453a 2687 case bfd_mach_sh3_dsp:
48db5a3c 2688 set_gdbarch_register_name (gdbarch, sh_sh3_dsp_register_name);
48db5a3c 2689 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
cc17453a 2690 break;
1c0159e0 2691
cc17453a 2692 case bfd_mach_sh4:
474e5826 2693 case bfd_mach_sh4a:
48db5a3c 2694 set_gdbarch_register_name (gdbarch, sh_sh4_register_name);
48db5a3c 2695 set_gdbarch_register_type (gdbarch, sh_sh4_register_type);
cc17453a 2696 set_gdbarch_fp0_regnum (gdbarch, 25);
da962468 2697 set_gdbarch_num_pseudo_regs (gdbarch, 13);
d8124050
AC
2698 set_gdbarch_pseudo_register_read (gdbarch, sh_pseudo_register_read);
2699 set_gdbarch_pseudo_register_write (gdbarch, sh_pseudo_register_write);
c0409442 2700 set_gdbarch_return_value (gdbarch, sh_return_value_fpu);
6df2bf50 2701 set_gdbarch_push_dummy_call (gdbarch, sh_push_dummy_call_fpu);
cc17453a 2702 break;
1c0159e0 2703
474e5826
CV
2704 case bfd_mach_sh4_nofpu:
2705 case bfd_mach_sh4a_nofpu:
2706 set_gdbarch_register_name (gdbarch, sh_sh4_nofpu_register_name);
2707 break;
2708
2709 case bfd_mach_sh4al_dsp:
2710 set_gdbarch_register_name (gdbarch, sh_sh4al_dsp_register_name);
2711 set_gdbarch_register_sim_regno (gdbarch, sh_dsp_register_sim_regno);
2712 break;
2713
cc17453a 2714 default:
b58cbbf2 2715 set_gdbarch_register_name (gdbarch, sh_sh_register_name);
cc17453a 2716 break;
8db62801 2717 }
cc17453a 2718
4be87837
DJ
2719 /* Hook in ABI-specific overrides, if they have been registered. */
2720 gdbarch_init_osabi (info, gdbarch);
d658f924 2721
1c0159e0
CV
2722 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2723 frame_unwind_append_sniffer (gdbarch, sh_frame_sniffer);
2724
cc17453a 2725 return gdbarch;
8db62801
EZ
2726}
2727
617daa0e 2728extern initialize_file_ftype _initialize_sh_tdep; /* -Wmissing-prototypes */
a78f21af 2729
c906108c 2730void
fba45db2 2731_initialize_sh_tdep (void)
c906108c
SS
2732{
2733 struct cmd_list_element *c;
617daa0e 2734
f2ea0907 2735 gdbarch_register (bfd_arch_sh, sh_gdbarch_init, NULL);
c906108c 2736
53116e27 2737 add_com ("regs", class_vars, sh_show_regs_command, "Print all registers");
c906108c 2738}
This page took 0.681021 seconds and 4 git commands to generate.