include/elf/
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
6aba47ca 3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
7b6bb8da
JB
4 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
55ff77ac
CV
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 21
c378eb4e
MS
22/* Contributed by Steve Chamberlain
23 sac@cygnus.com. */
55ff77ac
CV
24
25#include "defs.h"
26#include "frame.h"
c30dc700
CV
27#include "frame-base.h"
28#include "frame-unwind.h"
29#include "dwarf2-frame.h"
55ff77ac 30#include "symtab.h"
55ff77ac
CV
31#include "gdbtypes.h"
32#include "gdbcmd.h"
33#include "gdbcore.h"
34#include "value.h"
35#include "dis-asm.h"
36#include "inferior.h"
37#include "gdb_string.h"
c30dc700 38#include "gdb_assert.h"
55ff77ac 39#include "arch-utils.h"
55ff77ac 40#include "regcache.h"
55ff77ac 41#include "osabi.h"
79a45b7d 42#include "valprint.h"
55ff77ac
CV
43
44#include "elf-bfd.h"
55ff77ac
CV
45
46/* sh flags */
47#include "elf/sh.h"
c378eb4e 48/* Register numbers shared with the simulator. */
55ff77ac 49#include "gdb/sim-sh.h"
d8ca156b 50#include "language.h"
55ff77ac 51
7bb11558 52/* Information that is dependent on the processor variant. */
55ff77ac
CV
53enum sh_abi
54 {
55 SH_ABI_UNKNOWN,
56 SH_ABI_32,
57 SH_ABI_64
58 };
59
60struct gdbarch_tdep
61 {
62 enum sh_abi sh_abi;
63 };
64
c30dc700
CV
65struct sh64_frame_cache
66{
67 /* Base address. */
68 CORE_ADDR base;
69 LONGEST sp_offset;
70 CORE_ADDR pc;
71
c378eb4e 72 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
73 int uses_fp;
74
75 int media_mode;
76
77 /* Saved registers. */
78 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
79 CORE_ADDR saved_sp;
80};
81
55ff77ac
CV
82/* Registers of SH5 */
83enum
84 {
85 R0_REGNUM = 0,
86 DEFAULT_RETURN_REGNUM = 2,
87 STRUCT_RETURN_REGNUM = 2,
88 ARG0_REGNUM = 2,
89 ARGLAST_REGNUM = 9,
90 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 91 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
92 PR_REGNUM = 18,
93 SR_REGNUM = 65,
94 DR0_REGNUM = 141,
95 DR_LAST_REGNUM = 172,
96 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 97 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 98 point register. Unfortunately on the sh5, the floating point
7bb11558 99 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
100 FPP0_REGNUM = 173,
101 FPP_LAST_REGNUM = 204,
102 FV0_REGNUM = 205,
103 FV_LAST_REGNUM = 220,
104 R0_C_REGNUM = 221,
105 R_LAST_C_REGNUM = 236,
106 PC_C_REGNUM = 237,
107 GBR_C_REGNUM = 238,
108 MACH_C_REGNUM = 239,
109 MACL_C_REGNUM = 240,
110 PR_C_REGNUM = 241,
111 T_C_REGNUM = 242,
112 FPSCR_C_REGNUM = 243,
113 FPUL_C_REGNUM = 244,
114 FP0_C_REGNUM = 245,
115 FP_LAST_C_REGNUM = 260,
116 DR0_C_REGNUM = 261,
117 DR_LAST_C_REGNUM = 268,
118 FV0_C_REGNUM = 269,
119 FV_LAST_C_REGNUM = 272,
120 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
121 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
122 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
123 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
124 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
125 };
126
55ff77ac 127static const char *
d93859e2 128sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
129{
130 static char *register_names[] =
131 {
132 /* SH MEDIA MODE (ISA 32) */
133 /* general registers (64-bit) 0-63 */
134 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
135 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
136 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
137 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
138 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
139 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
140 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
141 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
142
143 /* pc (64-bit) 64 */
144 "pc",
145
146 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
147 "sr", "ssr", "spc",
148
c378eb4e 149 /* target registers (64-bit) 68-75 */
55ff77ac
CV
150 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
151
152 /* floating point state control register (32-bit) 76 */
153 "fpscr",
154
c378eb4e 155 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
156 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
157 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
158 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
159 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
160 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
161 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
162 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
163 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
164
165 /* double precision registers (pseudo) 141-172 */
166 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
167 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
168 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
169 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
170
c378eb4e 171 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
172 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
173 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
174 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
175 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
176
c378eb4e 177 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
178 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
179 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
180
c378eb4e 181 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
182 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
183 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
184 "pc_c",
185 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
186 "fpscr_c", "fpul_c",
c378eb4e
MS
187 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
188 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
190 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
191 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
192 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 193 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 194 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
195 };
196
197 if (reg_nr < 0)
198 return NULL;
199 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
200 return NULL;
201 return register_names[reg_nr];
202}
203
204#define NUM_PSEUDO_REGS_SH_MEDIA 80
205#define NUM_PSEUDO_REGS_SH_COMPACT 51
206
207/* Macros and functions for setting and testing a bit in a minimal
208 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 209 symbol's "info" field is used for this purpose.
55ff77ac 210
95f1da47
UW
211 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
212 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 213 minimal symbol to mark it as a 32-bit function
f594e5e9 214 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
215
216#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 217 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
218
219static void
220sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
221{
222 if (msym == NULL)
223 return;
224
225 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
226 {
b887350f 227 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
55ff77ac
CV
228 SYMBOL_VALUE_ADDRESS (msym) |= 1;
229 }
230}
231
232/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
233 are some macros to test, set, or clear bit 0 of addresses. */
234#define IS_ISA32_ADDR(addr) ((addr) & 1)
235#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
236#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
237
238static int
239pc_is_isa32 (bfd_vma memaddr)
240{
241 struct minimal_symbol *sym;
242
243 /* If bit 0 of the address is set, assume this is a
7bb11558 244 ISA32 (shmedia) address. */
55ff77ac
CV
245 if (IS_ISA32_ADDR (memaddr))
246 return 1;
247
248 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
249 the high bit of the info field. Use this to decide if the function is
250 ISA16 or ISA32. */
251 sym = lookup_minimal_symbol_by_pc (memaddr);
252 if (sym)
253 return MSYMBOL_IS_SPECIAL (sym);
254 else
255 return 0;
256}
257
258static const unsigned char *
c378eb4e
MS
259sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
260 CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
261{
262 /* The BRK instruction for shmedia is
263 01101111 11110101 11111111 11110000
264 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
265 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
266
267 /* The BRK instruction for shcompact is
268 00000000 00111011
269 which translates in big endian mode to 0x0, 0x3b
c378eb4e 270 and in little endian mode to 0x3b, 0x0 */
55ff77ac 271
67d57894 272 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
273 {
274 if (pc_is_isa32 (*pcptr))
275 {
c378eb4e
MS
276 static unsigned char big_breakpoint_media[] = {
277 0x6f, 0xf5, 0xff, 0xf0
278 };
55ff77ac
CV
279 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
280 *lenptr = sizeof (big_breakpoint_media);
281 return big_breakpoint_media;
282 }
283 else
284 {
285 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
286 *lenptr = sizeof (big_breakpoint_compact);
287 return big_breakpoint_compact;
288 }
289 }
290 else
291 {
292 if (pc_is_isa32 (*pcptr))
293 {
c378eb4e
MS
294 static unsigned char little_breakpoint_media[] = {
295 0xf0, 0xff, 0xf5, 0x6f
296 };
55ff77ac
CV
297 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
298 *lenptr = sizeof (little_breakpoint_media);
299 return little_breakpoint_media;
300 }
301 else
302 {
303 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
304 *lenptr = sizeof (little_breakpoint_compact);
305 return little_breakpoint_compact;
306 }
307 }
308}
309
310/* Prologue looks like
311 [mov.l <regs>,@-r15]...
312 [sts.l pr,@-r15]
313 [mov.l r14,@-r15]
314 [mov r15,r14]
315
316 Actually it can be more complicated than this. For instance, with
317 newer gcc's:
318
319 mov.l r14,@-r15
320 add #-12,r15
321 mov r15,r14
322 mov r4,r1
323 mov r5,r2
324 mov.l r6,@(4,r14)
325 mov.l r7,@(8,r14)
326 mov.b r1,@r14
327 mov r14,r1
328 mov r14,r1
329 add #2,r1
330 mov.w r2,@r1
331
332 */
333
334/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
335 with l=1 and n = 18 0110101111110001010010100aaa0000 */
336#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
337
338/* STS.L PR,@-r0 0100000000100010
339 r0-4-->r0, PR-->(r0) */
340#define IS_STS_R0(x) ((x) == 0x4022)
341
342/* STS PR, Rm 0000mmmm00101010
343 PR-->Rm */
344#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
345
346/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
347 Rm-->(dispx4+r15) */
348#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
349
350/* MOV.L R14,@(disp,r15) 000111111110dddd
351 R14-->(dispx4+r15) */
352#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
353
354/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
355 R18-->(dispx8+R14) */
356#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
357
358/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
359 R18-->(dispx8+R15) */
360#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
361
362/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
363 R18-->(dispx4+R15) */
364#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
365
366/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
367 R14-->(dispx8+R15) */
368#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
369
370/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
371 R14-->(dispx4+R15) */
372#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
373
374/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
375 R15 + imm --> R15 */
376#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
377
378/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
379 R15 + imm --> R15 */
380#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
381
382/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
383 R15 + R63 --> R14 */
384#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
385
386/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
387 R15 + R63 --> R14 */
388#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
389
c378eb4e
MS
390#define IS_MOV_SP_FP_MEDIA(x) \
391 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
392
393/* MOV #imm, R0 1110 0000 ssss ssss
394 #imm-->R0 */
395#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
396
397/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
398#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
399
400/* ADD r15,r0 0011 0000 1111 1100
401 r15+r0-->r0 */
402#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
403
404/* MOV.L R14 @-R0 0010 0000 1110 0110
405 R14-->(R0-4), R0-4-->R0 */
406#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
407
408/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 409 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 410/* FIXME: Recognize the float and double register moves too! */
55ff77ac 411#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
412 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
413 && (((x) & 0x03f00000) >= 0x00200000 \
414 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
415
416/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
417 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 418 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
419#define IS_MEDIA_ARG_MOV(x) \
420(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
421 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
422
c378eb4e
MS
423/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
424/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
425/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
426/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
427/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
428#define IS_MEDIA_MOV_TO_R14(x) \
429((((x) & 0xfffffc0f) == 0xa0e00000) \
430|| (((x) & 0xfffffc0f) == 0xa4e00000) \
431|| (((x) & 0xfffffc0f) == 0xa8e00000) \
432|| (((x) & 0xfffffc0f) == 0xb4e00000) \
433|| (((x) & 0xfffffc0f) == 0xbce00000))
434
435/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
436 where Rm is r2-r9 */
437#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
438 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
439 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
440
441/* compact direct arg move!
442 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
443#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
444 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
445 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
446
447/* MOV.B Rm, @R14 0010 1110 mmmm 0000
448 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
449#define IS_COMPACT_MOV_TO_R14(x) \
450((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
451
452#define IS_JSR_R0(x) ((x) == 0x400b)
453#define IS_NOP(x) ((x) == 0x0009)
454
455
456/* MOV r15,r14 0110111011110011
457 r15-->r14 */
458#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
459
460/* ADD #imm,r15 01111111iiiiiiii
461 r15+imm-->r15 */
462#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
463
c378eb4e 464/* Skip any prologue before the guts of a function. */
55ff77ac 465
7bb11558
MS
466/* Skip the prologue using the debug information. If this fails we'll
467 fall back on the 'guess' method below. */
55ff77ac
CV
468static CORE_ADDR
469after_prologue (CORE_ADDR pc)
470{
471 struct symtab_and_line sal;
472 CORE_ADDR func_addr, func_end;
473
474 /* If we can not find the symbol in the partial symbol table, then
475 there is no hope we can determine the function's start address
476 with this code. */
477 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
478 return 0;
479
c30dc700 480
55ff77ac
CV
481 /* Get the line associated with FUNC_ADDR. */
482 sal = find_pc_line (func_addr, 0);
483
484 /* There are only two cases to consider. First, the end of the source line
485 is within the function bounds. In that case we return the end of the
486 source line. Second is the end of the source line extends beyond the
487 bounds of the current function. We need to use the slow code to
488 examine instructions in that case. */
489 if (sal.end < func_end)
490 return sal.end;
491 else
492 return 0;
493}
494
495static CORE_ADDR
e17a4113
UW
496look_for_args_moves (struct gdbarch *gdbarch,
497 CORE_ADDR start_pc, int media_mode)
55ff77ac 498{
e17a4113 499 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
500 CORE_ADDR here, end;
501 int w;
502 int insn_size = (media_mode ? 4 : 2);
503
504 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
505 {
506 if (media_mode)
507 {
e17a4113
UW
508 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
509 insn_size, byte_order);
55ff77ac
CV
510 here += insn_size;
511 if (IS_MEDIA_IND_ARG_MOV (w))
512 {
513 /* This must be followed by a store to r14, so the argument
c378eb4e 514 is where the debug info says it is. This can happen after
7bb11558 515 the SP has been saved, unfortunately. */
55ff77ac
CV
516
517 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 518 insn_size, byte_order);
55ff77ac
CV
519 here += insn_size;
520 if (IS_MEDIA_MOV_TO_R14 (next_insn))
521 start_pc = here;
522 }
523 else if (IS_MEDIA_ARG_MOV (w))
524 {
7bb11558 525 /* These instructions store directly the argument in r14. */
55ff77ac
CV
526 start_pc = here;
527 }
528 else
529 break;
530 }
531 else
532 {
e17a4113 533 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
534 w = w & 0xffff;
535 here += insn_size;
536 if (IS_COMPACT_IND_ARG_MOV (w))
537 {
538 /* This must be followed by a store to r14, so the argument
c378eb4e 539 is where the debug info says it is. This can happen after
7bb11558 540 the SP has been saved, unfortunately. */
55ff77ac 541
e17a4113
UW
542 int next_insn = 0xffff & read_memory_integer (here, insn_size,
543 byte_order);
55ff77ac
CV
544 here += insn_size;
545 if (IS_COMPACT_MOV_TO_R14 (next_insn))
546 start_pc = here;
547 }
548 else if (IS_COMPACT_ARG_MOV (w))
549 {
7bb11558 550 /* These instructions store directly the argument in r14. */
55ff77ac
CV
551 start_pc = here;
552 }
553 else if (IS_MOVL_R0 (w))
554 {
555 /* There is a function that gcc calls to get the arguments
c378eb4e 556 passed correctly to the function. Only after this
55ff77ac 557 function call the arguments will be found at the place
c378eb4e 558 where they are supposed to be. This happens in case the
55ff77ac
CV
559 argument has to be stored into a 64-bit register (for
560 instance doubles, long longs). SHcompact doesn't have
561 access to the full 64-bits, so we store the register in
562 stack slot and store the address of the stack slot in
563 the register, then do a call through a wrapper that
564 loads the memory value into the register. A SHcompact
565 callee calls an argument decoder
566 (GCC_shcompact_incoming_args) that stores the 64-bit
567 value in a stack slot and stores the address of the
568 stack slot in the register. GCC thinks the argument is
569 just passed by transparent reference, but this is only
c378eb4e 570 true after the argument decoder is called. Such a call
7bb11558 571 needs to be considered part of the prologue. */
55ff77ac
CV
572
573 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 574 a NOP instruction. After these, the prologue is over! */
55ff77ac 575
e17a4113
UW
576 int next_insn = 0xffff & read_memory_integer (here, insn_size,
577 byte_order);
55ff77ac
CV
578 here += insn_size;
579 if (IS_JSR_R0 (next_insn))
580 {
e17a4113
UW
581 next_insn = 0xffff & read_memory_integer (here, insn_size,
582 byte_order);
55ff77ac
CV
583 here += insn_size;
584
585 if (IS_NOP (next_insn))
586 start_pc = here;
587 }
588 }
589 else
590 break;
591 }
592 }
593
594 return start_pc;
595}
596
597static CORE_ADDR
e17a4113 598sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 599{
e17a4113 600 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
601 CORE_ADDR here, end;
602 int updated_fp = 0;
603 int insn_size = 4;
604 int media_mode = 1;
605
606 if (!start_pc)
607 return 0;
608
609 if (pc_is_isa32 (start_pc) == 0)
610 {
611 insn_size = 2;
612 media_mode = 0;
613 }
614
615 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
616 {
617
618 if (media_mode)
619 {
e17a4113
UW
620 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
621 insn_size, byte_order);
55ff77ac
CV
622 here += insn_size;
623 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
624 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
625 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
626 || IS_PTABSL_R18 (w))
55ff77ac
CV
627 {
628 start_pc = here;
629 }
630 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
631 {
632 start_pc = here;
633 updated_fp = 1;
634 }
635 else
636 if (updated_fp)
637 {
638 /* Don't bail out yet, we may have arguments stored in
639 registers here, according to the debug info, so that
7bb11558 640 gdb can print the frames correctly. */
e17a4113
UW
641 start_pc = look_for_args_moves (gdbarch,
642 here - insn_size, media_mode);
55ff77ac
CV
643 break;
644 }
645 }
646 else
647 {
e17a4113 648 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
649 here += insn_size;
650
651 if (IS_STS_R0 (w) || IS_STS_PR (w)
652 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
653 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
654 {
655 start_pc = here;
656 }
657 else if (IS_MOV_SP_FP (w))
658 {
659 start_pc = here;
660 updated_fp = 1;
661 }
662 else
663 if (updated_fp)
664 {
665 /* Don't bail out yet, we may have arguments stored in
666 registers here, according to the debug info, so that
7bb11558 667 gdb can print the frames correctly. */
e17a4113
UW
668 start_pc = look_for_args_moves (gdbarch,
669 here - insn_size, media_mode);
55ff77ac
CV
670 break;
671 }
672 }
673 }
674
675 return start_pc;
676}
677
678static CORE_ADDR
6093d2eb 679sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
680{
681 CORE_ADDR post_prologue_pc;
682
683 /* See if we can determine the end of the prologue via the symbol table.
684 If so, then return either PC, or the PC after the prologue, whichever
685 is greater. */
686 post_prologue_pc = after_prologue (pc);
687
688 /* If after_prologue returned a useful address, then use it. Else
7bb11558 689 fall back on the instruction skipping code. */
55ff77ac
CV
690 if (post_prologue_pc != 0)
691 return max (pc, post_prologue_pc);
692 else
e17a4113 693 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
694}
695
55ff77ac
CV
696/* Should call_function allocate stack space for a struct return? */
697static int
c30dc700 698sh64_use_struct_convention (struct type *type)
55ff77ac
CV
699{
700 return (TYPE_LENGTH (type) > 8);
701}
702
7bb11558 703/* For vectors of 4 floating point registers. */
55ff77ac 704static int
d93859e2 705sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
706{
707 int fp_regnum;
708
d93859e2 709 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
710 return fp_regnum;
711}
712
c378eb4e 713/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 714static int
d93859e2 715sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
716{
717 int fp_regnum;
718
d93859e2 719 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
720 return fp_regnum;
721}
722
c378eb4e 723/* For pairs of floating point registers. */
55ff77ac 724static int
d93859e2 725sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
726{
727 int fp_regnum;
728
d93859e2 729 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
730 return fp_regnum;
731}
732
55ff77ac
CV
733/* *INDENT-OFF* */
734/*
735 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
736 GDB_REGNUM BASE_REGNUM
737 r0_c 221 0
738 r1_c 222 1
739 r2_c 223 2
740 r3_c 224 3
741 r4_c 225 4
742 r5_c 226 5
743 r6_c 227 6
744 r7_c 228 7
745 r8_c 229 8
746 r9_c 230 9
747 r10_c 231 10
748 r11_c 232 11
749 r12_c 233 12
750 r13_c 234 13
751 r14_c 235 14
752 r15_c 236 15
753
754 pc_c 237 64
755 gbr_c 238 16
756 mach_c 239 17
757 macl_c 240 17
758 pr_c 241 18
759 t_c 242 19
760 fpscr_c 243 76
761 fpul_c 244 109
762
763 fr0_c 245 77
764 fr1_c 246 78
765 fr2_c 247 79
766 fr3_c 248 80
767 fr4_c 249 81
768 fr5_c 250 82
769 fr6_c 251 83
770 fr7_c 252 84
771 fr8_c 253 85
772 fr9_c 254 86
773 fr10_c 255 87
774 fr11_c 256 88
775 fr12_c 257 89
776 fr13_c 258 90
777 fr14_c 259 91
778 fr15_c 260 92
779
780 dr0_c 261 77
781 dr2_c 262 79
782 dr4_c 263 81
783 dr6_c 264 83
784 dr8_c 265 85
785 dr10_c 266 87
786 dr12_c 267 89
787 dr14_c 268 91
788
789 fv0_c 269 77
790 fv4_c 270 81
791 fv8_c 271 85
792 fv12_c 272 91
793*/
794/* *INDENT-ON* */
795static int
d93859e2 796sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 797{
c30dc700 798 int base_regnum = reg_nr;
55ff77ac
CV
799
800 /* general register N maps to general register N */
801 if (reg_nr >= R0_C_REGNUM
802 && reg_nr <= R_LAST_C_REGNUM)
803 base_regnum = reg_nr - R0_C_REGNUM;
804
805 /* floating point register N maps to floating point register N */
806 else if (reg_nr >= FP0_C_REGNUM
807 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 808 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
809
810 /* double prec register N maps to base regnum for double prec register N */
811 else if (reg_nr >= DR0_C_REGNUM
812 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
813 base_regnum = sh64_dr_reg_base_num (gdbarch,
814 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
815
816 /* vector N maps to base regnum for vector register N */
817 else if (reg_nr >= FV0_C_REGNUM
818 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
819 base_regnum = sh64_fv_reg_base_num (gdbarch,
820 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
821
822 else if (reg_nr == PC_C_REGNUM)
d93859e2 823 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
824
825 else if (reg_nr == GBR_C_REGNUM)
826 base_regnum = 16;
827
828 else if (reg_nr == MACH_C_REGNUM
829 || reg_nr == MACL_C_REGNUM)
830 base_regnum = 17;
831
832 else if (reg_nr == PR_C_REGNUM)
c30dc700 833 base_regnum = PR_REGNUM;
55ff77ac
CV
834
835 else if (reg_nr == T_C_REGNUM)
836 base_regnum = 19;
837
838 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 839 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
840
841 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 842 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
843
844 return base_regnum;
845}
846
55ff77ac
CV
847static int
848sign_extend (int value, int bits)
849{
850 value = value & ((1 << bits) - 1);
851 return (value & (1 << (bits - 1))
852 ? value | (~((1 << bits) - 1))
853 : value);
854}
855
856static void
c30dc700
CV
857sh64_analyze_prologue (struct gdbarch *gdbarch,
858 struct sh64_frame_cache *cache,
859 CORE_ADDR func_pc,
860 CORE_ADDR current_pc)
55ff77ac 861{
c30dc700 862 int reg_nr;
55ff77ac
CV
863 int pc;
864 int opc;
865 int insn;
866 int r0_val = 0;
55ff77ac
CV
867 int insn_size;
868 int gdb_register_number;
869 int register_number;
c30dc700 870 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 871 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 872
c30dc700 873 cache->sp_offset = 0;
55ff77ac
CV
874
875 /* Loop around examining the prologue insns until we find something
876 that does not appear to be part of the prologue. But give up
7bb11558 877 after 20 of them, since we're getting silly then. */
55ff77ac 878
c30dc700 879 pc = func_pc;
55ff77ac 880
c30dc700
CV
881 if (cache->media_mode)
882 insn_size = 4;
55ff77ac 883 else
c30dc700 884 insn_size = 2;
55ff77ac 885
c30dc700
CV
886 opc = pc + (insn_size * 28);
887 if (opc > current_pc)
888 opc = current_pc;
889 for ( ; pc <= opc; pc += insn_size)
55ff77ac 890 {
c30dc700
CV
891 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
892 : pc,
e17a4113 893 insn_size, byte_order);
55ff77ac 894
c30dc700 895 if (!cache->media_mode)
55ff77ac
CV
896 {
897 if (IS_STS_PR (insn))
898 {
e17a4113
UW
899 int next_insn = read_memory_integer (pc + insn_size,
900 insn_size, byte_order);
55ff77ac
CV
901 if (IS_MOV_TO_R15 (next_insn))
902 {
c378eb4e
MS
903 cache->saved_regs[PR_REGNUM]
904 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
905 - 0x8) << 2);
55ff77ac
CV
906 pc += insn_size;
907 }
908 }
c30dc700 909
55ff77ac 910 else if (IS_MOV_R14 (insn))
c30dc700
CV
911 cache->saved_regs[MEDIA_FP_REGNUM] =
912 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
913
914 else if (IS_MOV_R0 (insn))
915 {
916 /* Put in R0 the offset from SP at which to store some
c378eb4e 917 registers. We are interested in this value, because it
55ff77ac
CV
918 will tell us where the given registers are stored within
919 the frame. */
920 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
921 }
c30dc700 922
55ff77ac
CV
923 else if (IS_ADD_SP_R0 (insn))
924 {
925 /* This instruction still prepares r0, but we don't care.
7bb11558 926 We already have the offset in r0_val. */
55ff77ac 927 }
c30dc700 928
55ff77ac
CV
929 else if (IS_STS_R0 (insn))
930 {
c378eb4e 931 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 932 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 933 r0_val -= 4;
55ff77ac 934 }
c30dc700 935
55ff77ac
CV
936 else if (IS_MOV_R14_R0 (insn))
937 {
c378eb4e 938 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
939 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
940 - (r0_val - 4);
55ff77ac
CV
941 r0_val -= 4;
942 }
943
944 else if (IS_ADD_SP (insn))
c30dc700
CV
945 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
946
55ff77ac
CV
947 else if (IS_MOV_SP_FP (insn))
948 break;
949 }
950 else
951 {
c30dc700
CV
952 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
953 cache->sp_offset -=
954 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
955
956 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
957 cache->saved_regs[PR_REGNUM]
958 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
959 9) << 3);
55ff77ac
CV
960
961 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
962 cache->saved_regs[PR_REGNUM]
963 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
964 9) << 2);
55ff77ac
CV
965
966 else if (IS_STQ_R14_R15 (insn))
c378eb4e
MS
967 cache->saved_regs[MEDIA_FP_REGNUM]
968 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
969 9) << 3);
55ff77ac
CV
970
971 else if (IS_STL_R14_R15 (insn))
c378eb4e
MS
972 cache->saved_regs[MEDIA_FP_REGNUM]
973 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
974 9) << 2);
55ff77ac
CV
975
976 else if (IS_MOV_SP_FP_MEDIA (insn))
977 break;
978 }
979 }
980
c30dc700
CV
981 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
982 cache->uses_fp = 1;
55ff77ac
CV
983}
984
55ff77ac 985static CORE_ADDR
c30dc700 986sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 987{
c30dc700 988 return sp & ~7;
55ff77ac
CV
989}
990
c30dc700 991/* Function: push_dummy_call
55ff77ac
CV
992 Setup the function arguments for calling a function in the inferior.
993
85a453d5 994 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
995 which are dedicated for passing function arguments. Up to the first
996 four arguments (depending on size) may go into these registers.
997 The rest go on the stack.
998
999 Arguments that are smaller than 4 bytes will still take up a whole
1000 register or a whole 32-bit word on the stack, and will be
1001 right-justified in the register or the stack word. This includes
1002 chars, shorts, and small aggregate types.
1003
1004 Arguments that are larger than 4 bytes may be split between two or
1005 more registers. If there are not enough registers free, an argument
1006 may be passed partly in a register (or registers), and partly on the
c378eb4e 1007 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1008 As far as I know, there is no upper limit to the size of aggregates
1009 that will be passed in this way; in other words, the convention of
1010 passing a pointer to a large aggregate instead of a copy is not used.
1011
1012 An exceptional case exists for struct arguments (and possibly other
1013 aggregates such as arrays) if the size is larger than 4 bytes but
1014 not a multiple of 4 bytes. In this case the argument is never split
1015 between the registers and the stack, but instead is copied in its
1016 entirety onto the stack, AND also copied into as many registers as
1017 there is room for. In other words, space in registers permitting,
1018 two copies of the same argument are passed in. As far as I can tell,
1019 only the one on the stack is used, although that may be a function
1020 of the level of compiler optimization. I suspect this is a compiler
1021 bug. Arguments of these odd sizes are left-justified within the
1022 word (as opposed to arguments smaller than 4 bytes, which are
1023 right-justified).
1024
1025 If the function is to return an aggregate type such as a struct, it
1026 is either returned in the normal return value register R0 (if its
1027 size is no greater than one byte), or else the caller must allocate
1028 space into which the callee will copy the return value (if the size
1029 is greater than one byte). In this case, a pointer to the return
1030 value location is passed into the callee in register R2, which does
1031 not displace any of the other arguments passed in via registers R4
c378eb4e 1032 to R7. */
55ff77ac
CV
1033
1034/* R2-R9 for integer types and integer equivalent (char, pointers) and
1035 non-scalar (struct, union) elements (even if the elements are
1036 floats).
1037 FR0-FR11 for single precision floating point (float)
1038 DR0-DR10 for double precision floating point (double)
1039
1040 If a float is argument number 3 (for instance) and arguments number
1041 1,2, and 4 are integer, the mapping will be:
c378eb4e 1042 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1043
1044 If a float is argument number 10 (for instance) and arguments number
1045 1 through 10 are integer, the mapping will be:
1046 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1047 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1048 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1049
1050 Different rules apply for variable arguments functions, and for functions
7bb11558 1051 for which the prototype is not known. */
55ff77ac
CV
1052
1053static CORE_ADDR
c30dc700
CV
1054sh64_push_dummy_call (struct gdbarch *gdbarch,
1055 struct value *function,
1056 struct regcache *regcache,
1057 CORE_ADDR bp_addr,
1058 int nargs, struct value **args,
1059 CORE_ADDR sp, int struct_return,
1060 CORE_ADDR struct_addr)
55ff77ac 1061{
e17a4113 1062 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1063 int stack_offset, stack_alloc;
1064 int int_argreg;
1065 int float_argreg;
1066 int double_argreg;
1067 int float_arg_index = 0;
1068 int double_arg_index = 0;
1069 int argnum;
1070 struct type *type;
1071 CORE_ADDR regval;
1072 char *val;
1073 char valbuf[8];
1074 char valbuf_tmp[8];
1075 int len;
1076 int argreg_size;
1077 int fp_args[12];
55ff77ac
CV
1078
1079 memset (fp_args, 0, sizeof (fp_args));
1080
c378eb4e 1081 /* First force sp to a 8-byte alignment. */
c30dc700 1082 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1083
1084 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1085 register. */
55ff77ac
CV
1086
1087 if (struct_return)
c30dc700
CV
1088 regcache_cooked_write_unsigned (regcache,
1089 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1090
c378eb4e 1091 /* Now make sure there's space on the stack. */
55ff77ac 1092 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1093 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1094 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1095
1096 /* Now load as many as possible of the first arguments into
1097 registers, and push the rest onto the stack. There are 64 bytes
1098 in eight registers available. Loop thru args from first to last. */
1099
1100 int_argreg = ARG0_REGNUM;
58643501 1101 float_argreg = gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
1102 double_argreg = DR0_REGNUM;
1103
1104 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1105 {
4991999e 1106 type = value_type (args[argnum]);
55ff77ac
CV
1107 len = TYPE_LENGTH (type);
1108 memset (valbuf, 0, sizeof (valbuf));
1109
1110 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1111 {
58643501 1112 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1113
1114 if (len < argreg_size)
1115 {
c378eb4e 1116 /* value gets right-justified in the register or stack word. */
58643501 1117 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1118 memcpy (valbuf + argreg_size - len,
0fd88904 1119 (char *) value_contents (args[argnum]), len);
55ff77ac 1120 else
0fd88904 1121 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
55ff77ac
CV
1122
1123 val = valbuf;
1124 }
1125 else
0fd88904 1126 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1127
1128 while (len > 0)
1129 {
1130 if (int_argreg > ARGLAST_REGNUM)
1131 {
c378eb4e 1132 /* Must go on the stack. */
079c8cd0
CV
1133 write_memory (sp + stack_offset, (const bfd_byte *) val,
1134 argreg_size);
55ff77ac
CV
1135 stack_offset += 8;/*argreg_size;*/
1136 }
1137 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1138 That's because some *&^%$ things get passed on the stack
1139 AND in the registers! */
1140 if (int_argreg <= ARGLAST_REGNUM)
1141 {
c378eb4e 1142 /* There's room in a register. */
e17a4113
UW
1143 regval = extract_unsigned_integer (val, argreg_size,
1144 byte_order);
c378eb4e
MS
1145 regcache_cooked_write_unsigned (regcache,
1146 int_argreg, regval);
55ff77ac
CV
1147 }
1148 /* Store the value 8 bytes at a time. This means that
1149 things larger than 8 bytes may go partly in registers
c378eb4e 1150 and partly on the stack. FIXME: argreg is incremented
7bb11558 1151 before we use its size. */
55ff77ac
CV
1152 len -= argreg_size;
1153 val += argreg_size;
1154 int_argreg++;
1155 }
1156 }
1157 else
1158 {
0fd88904 1159 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1160 if (len == 4)
1161 {
c378eb4e 1162 /* Where is it going to be stored? */
55ff77ac
CV
1163 while (fp_args[float_arg_index])
1164 float_arg_index ++;
1165
1166 /* Now float_argreg points to the register where it
1167 should be stored. Are we still within the allowed
c378eb4e 1168 register set? */
55ff77ac
CV
1169 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1170 {
1171 /* Goes in FR0...FR11 */
c30dc700 1172 regcache_cooked_write (regcache,
58643501 1173 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1174 + float_arg_index,
c30dc700 1175 val);
55ff77ac 1176 fp_args[float_arg_index] = 1;
7bb11558 1177 /* Skip the corresponding general argument register. */
55ff77ac
CV
1178 int_argreg ++;
1179 }
1180 else
1181 ;
1182 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1183 necessary spilling on the stack. */
55ff77ac
CV
1184
1185 }
1186 else if (len == 8)
1187 {
c378eb4e 1188 /* Where is it going to be stored? */
55ff77ac
CV
1189 while (fp_args[double_arg_index])
1190 double_arg_index += 2;
1191 /* Now double_argreg points to the register
1192 where it should be stored.
c378eb4e 1193 Are we still within the allowed register set? */
55ff77ac
CV
1194 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1195 {
1196 /* Goes in DR0...DR10 */
1197 /* The numbering of the DRi registers is consecutive,
7bb11558 1198 i.e. includes odd numbers. */
55ff77ac 1199 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1200 int regnum = DR0_REGNUM + double_register_offset;
1201 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1202 fp_args[double_arg_index] = 1;
1203 fp_args[double_arg_index + 1] = 1;
7bb11558 1204 /* Skip the corresponding general argument register. */
55ff77ac
CV
1205 int_argreg ++;
1206 }
1207 else
1208 ;
1209 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1210 necessary spilling on the stack. */
55ff77ac
CV
1211 }
1212 }
1213 }
c378eb4e 1214 /* Store return address. */
c30dc700 1215 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1216
c30dc700 1217 /* Update stack pointer. */
3e8c568d 1218 regcache_cooked_write_unsigned (regcache,
58643501 1219 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1220
55ff77ac
CV
1221 return sp;
1222}
1223
1224/* Find a function's return value in the appropriate registers (in
1225 regbuf), and copy it into valbuf. Extract from an array REGBUF
1226 containing the (raw) register state a function return value of type
1227 TYPE, and copy that, in virtual format, into VALBUF. */
1228static void
c30dc700
CV
1229sh64_extract_return_value (struct type *type, struct regcache *regcache,
1230 void *valbuf)
55ff77ac 1231{
d93859e2 1232 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 1233 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1234 int len = TYPE_LENGTH (type);
d93859e2 1235
55ff77ac
CV
1236 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1237 {
1238 if (len == 4)
1239 {
c378eb4e 1240 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1241 regcache_raw_read (regcache,
d93859e2 1242 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1243 }
1244 else if (len == 8)
1245 {
c378eb4e 1246 /* return value stored in DR0_REGNUM. */
55ff77ac 1247 DOUBLEST val;
18cf8b5b 1248 gdb_byte buf[8];
55ff77ac 1249
18cf8b5b 1250 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1251
d93859e2 1252 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1253 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1254 buf, &val);
55ff77ac
CV
1255 else
1256 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1257 buf, &val);
7bb11558 1258 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1259 }
1260 }
1261 else
1262 {
1263 if (len <= 8)
1264 {
c30dc700
CV
1265 int offset;
1266 char buf[8];
c378eb4e 1267 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1268 at the most significant end. */
c30dc700
CV
1269 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1270
d93859e2
UW
1271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1272 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1273 - len;
55ff77ac 1274 else
c30dc700
CV
1275 offset = 0;
1276 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1277 }
1278 else
a73c6dcd 1279 error (_("bad size for return value"));
55ff77ac
CV
1280 }
1281}
1282
1283/* Write into appropriate registers a function return value
1284 of type TYPE, given in virtual format.
1285 If the architecture is sh4 or sh3e, store a function's return value
1286 in the R0 general register or in the FP0 floating point register,
c378eb4e 1287 depending on the type of the return value. In all the other cases
7bb11558 1288 the result is stored in r0, left-justified. */
55ff77ac
CV
1289
1290static void
c30dc700
CV
1291sh64_store_return_value (struct type *type, struct regcache *regcache,
1292 const void *valbuf)
55ff77ac 1293{
d93859e2 1294 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7bb11558 1295 char buf[64]; /* more than enough... */
55ff77ac
CV
1296 int len = TYPE_LENGTH (type);
1297
1298 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1299 {
d93859e2 1300 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1301 for (i = 0; i < len; i += 4)
d93859e2 1302 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700
CV
1303 regcache_raw_write (regcache, regnum++,
1304 (char *) valbuf + len - 4 - i);
1305 else
1306 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
55ff77ac
CV
1307 }
1308 else
1309 {
1310 int return_register = DEFAULT_RETURN_REGNUM;
1311 int offset = 0;
1312
d93859e2 1313 if (len <= register_size (gdbarch, return_register))
55ff77ac 1314 {
7bb11558 1315 /* Pad with zeros. */
d93859e2
UW
1316 memset (buf, 0, register_size (gdbarch, return_register));
1317 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1318 offset = 0; /*register_size (gdbarch,
7bb11558 1319 return_register) - len;*/
55ff77ac 1320 else
d93859e2 1321 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1322
1323 memcpy (buf + offset, valbuf, len);
c30dc700 1324 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1325 }
1326 else
c30dc700 1327 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1328 }
1329}
1330
c30dc700 1331static enum return_value_convention
c055b101
CV
1332sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1333 struct type *type, struct regcache *regcache,
18cf8b5b 1334 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1335{
1336 if (sh64_use_struct_convention (type))
1337 return RETURN_VALUE_STRUCT_CONVENTION;
1338 if (writebuf)
1339 sh64_store_return_value (type, regcache, writebuf);
1340 else if (readbuf)
1341 sh64_extract_return_value (type, regcache, readbuf);
1342 return RETURN_VALUE_REGISTER_CONVENTION;
1343}
1344
55ff77ac 1345static void
c458d6db 1346sh64_show_media_regs (struct frame_info *frame)
55ff77ac 1347{
58643501 1348 struct gdbarch *gdbarch = get_frame_arch (frame);
55ff77ac 1349 int i;
55ff77ac 1350
c458d6db 1351 printf_filtered
cce7e648 1352 ("PC=%s SR=%s\n",
5af949e3
UW
1353 phex (get_frame_register_unsigned (frame,
1354 gdbarch_pc_regnum (gdbarch)), 8),
2244ba2e 1355 phex (get_frame_register_unsigned (frame, SR_REGNUM), 8));
55ff77ac 1356
c458d6db 1357 printf_filtered
cce7e648 1358 ("SSR=%s SPC=%s\n",
2244ba2e
PM
1359 phex (get_frame_register_unsigned (frame, SSR_REGNUM), 8),
1360 phex (get_frame_register_unsigned (frame, SPC_REGNUM), 8));
c458d6db 1361 printf_filtered
2244ba2e
PM
1362 ("FPSCR=%s\n ",
1363 phex (get_frame_register_unsigned (frame, FPSCR_REGNUM), 8));
55ff77ac
CV
1364
1365 for (i = 0; i < 64; i = i + 4)
c458d6db 1366 printf_filtered
2244ba2e 1367 ("\nR%d-R%d %s %s %s %s\n",
c458d6db 1368 i, i + 3,
2244ba2e
PM
1369 phex (get_frame_register_unsigned (frame, i + 0), 8),
1370 phex (get_frame_register_unsigned (frame, i + 1), 8),
1371 phex (get_frame_register_unsigned (frame, i + 2), 8),
1372 phex (get_frame_register_unsigned (frame, i + 3), 8));
55ff77ac
CV
1373
1374 printf_filtered ("\n");
1375
1376 for (i = 0; i < 64; i = i + 8)
c458d6db
UW
1377 printf_filtered
1378 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1379 i, i + 7,
3e8c568d 1380 (long) get_frame_register_unsigned
58643501 1381 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
3e8c568d 1382 (long) get_frame_register_unsigned
58643501 1383 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
3e8c568d 1384 (long) get_frame_register_unsigned
58643501 1385 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
3e8c568d 1386 (long) get_frame_register_unsigned
58643501 1387 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
3e8c568d 1388 (long) get_frame_register_unsigned
58643501 1389 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
3e8c568d 1390 (long) get_frame_register_unsigned
58643501 1391 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
3e8c568d 1392 (long) get_frame_register_unsigned
58643501 1393 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
3e8c568d 1394 (long) get_frame_register_unsigned
58643501 1395 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
55ff77ac
CV
1396}
1397
1398static void
c458d6db 1399sh64_show_compact_regs (struct frame_info *frame)
55ff77ac 1400{
58643501 1401 struct gdbarch *gdbarch = get_frame_arch (frame);
55ff77ac 1402 int i;
55ff77ac 1403
c458d6db 1404 printf_filtered
cce7e648 1405 ("PC=%s\n",
5af949e3 1406 phex (get_frame_register_unsigned (frame, PC_C_REGNUM), 8));
c458d6db
UW
1407
1408 printf_filtered
1409 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1410 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1411 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1412 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1413 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1414 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1415 printf_filtered
1416 ("FPSCR=%08lx FPUL=%08lx\n",
1417 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1418 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
55ff77ac
CV
1419
1420 for (i = 0; i < 16; i = i + 4)
c458d6db
UW
1421 printf_filtered
1422 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1423 i, i + 3,
1424 (long) get_frame_register_unsigned (frame, i + 0),
1425 (long) get_frame_register_unsigned (frame, i + 1),
1426 (long) get_frame_register_unsigned (frame, i + 2),
1427 (long) get_frame_register_unsigned (frame, i + 3));
55ff77ac
CV
1428
1429 printf_filtered ("\n");
1430
1431 for (i = 0; i < 16; i = i + 8)
c458d6db
UW
1432 printf_filtered
1433 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1434 i, i + 7,
3e8c568d 1435 (long) get_frame_register_unsigned
58643501 1436 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
3e8c568d 1437 (long) get_frame_register_unsigned
58643501 1438 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
3e8c568d 1439 (long) get_frame_register_unsigned
58643501 1440 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
3e8c568d 1441 (long) get_frame_register_unsigned
58643501 1442 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
3e8c568d 1443 (long) get_frame_register_unsigned
58643501 1444 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
3e8c568d 1445 (long) get_frame_register_unsigned
58643501 1446 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
3e8c568d 1447 (long) get_frame_register_unsigned
58643501 1448 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
3e8c568d 1449 (long) get_frame_register_unsigned
58643501 1450 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
55ff77ac
CV
1451}
1452
7bb11558
MS
1453/* FIXME!!! This only shows the registers for shmedia, excluding the
1454 pseudo registers. */
55ff77ac 1455void
c458d6db 1456sh64_show_regs (struct frame_info *frame)
55ff77ac 1457{
c458d6db
UW
1458 if (pc_is_isa32 (get_frame_pc (frame)))
1459 sh64_show_media_regs (frame);
55ff77ac 1460 else
c458d6db 1461 sh64_show_compact_regs (frame);
55ff77ac
CV
1462}
1463
1464/* *INDENT-OFF* */
1465/*
1466 SH MEDIA MODE (ISA 32)
1467 general registers (64-bit) 0-63
14680 r0, r1, r2, r3, r4, r5, r6, r7,
146964 r8, r9, r10, r11, r12, r13, r14, r15,
1470128 r16, r17, r18, r19, r20, r21, r22, r23,
1471192 r24, r25, r26, r27, r28, r29, r30, r31,
1472256 r32, r33, r34, r35, r36, r37, r38, r39,
1473320 r40, r41, r42, r43, r44, r45, r46, r47,
1474384 r48, r49, r50, r51, r52, r53, r54, r55,
1475448 r56, r57, r58, r59, r60, r61, r62, r63,
1476
1477 pc (64-bit) 64
1478512 pc,
1479
1480 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1481520 sr, ssr, spc,
1482
1483 target registers (64-bit) 68-75
1484544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1485
1486 floating point state control register (32-bit) 76
1487608 fpscr,
1488
1489 single precision floating point registers (32-bit) 77-140
1490612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1491644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1492676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1493708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1494740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1495772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1496804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1497836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1498
1499TOTAL SPACE FOR REGISTERS: 868 bytes
1500
1501From here on they are all pseudo registers: no memory allocated.
1502REGISTER_BYTE returns the register byte for the base register.
1503
1504 double precision registers (pseudo) 141-172
1505 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1506 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1507 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1508 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1509
1510 floating point pairs (pseudo) 173-204
1511 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1512 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1513 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1514 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1515
1516 floating point vectors (4 floating point regs) (pseudo) 205-220
1517 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1518 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1519
1520 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1521 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1522 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1523 pc_c,
1524 gbr_c, mach_c, macl_c, pr_c, t_c,
1525 fpscr_c, fpul_c,
1526 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1527 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1528 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1529 fv0_c, fv4_c, fv8_c, fv12_c
1530*/
55ff77ac 1531
55ff77ac 1532static struct type *
0dfff4cb 1533sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1534{
e3506a9f
UW
1535 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1536 0, high);
55ff77ac
CV
1537}
1538
7bb11558
MS
1539/* Return the GDB type object for the "standard" data type
1540 of data in register REG_NR. */
55ff77ac 1541static struct type *
7bb11558 1542sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1543{
58643501 1544 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1545 && reg_nr <= FP_LAST_REGNUM)
1546 || (reg_nr >= FP0_C_REGNUM
1547 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1548 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1549 else if ((reg_nr >= DR0_REGNUM
1550 && reg_nr <= DR_LAST_REGNUM)
1551 || (reg_nr >= DR0_C_REGNUM
1552 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1553 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1554 else if (reg_nr >= FPP0_REGNUM
1555 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1556 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1557 else if ((reg_nr >= FV0_REGNUM
1558 && reg_nr <= FV_LAST_REGNUM)
1559 ||(reg_nr >= FV0_C_REGNUM
1560 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1561 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1562 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1563 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1564 else if (reg_nr >= R0_C_REGNUM
1565 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1566 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1567 else
0dfff4cb 1568 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1569}
1570
1571static void
d93859e2
UW
1572sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1573 struct type *type, char *from, char *to)
55ff77ac 1574{
d93859e2 1575 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1576 {
7bb11558 1577 /* It is a no-op. */
d93859e2 1578 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1579 return;
1580 }
1581
1582 if ((regnum >= DR0_REGNUM
1583 && regnum <= DR_LAST_REGNUM)
1584 || (regnum >= DR0_C_REGNUM
1585 && regnum <= DR_LAST_C_REGNUM))
1586 {
1587 DOUBLEST val;
7bb11558
MS
1588 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1589 from, &val);
39add00a 1590 store_typed_floating (to, type, val);
55ff77ac
CV
1591 }
1592 else
a73c6dcd
MS
1593 error (_("sh64_register_convert_to_virtual "
1594 "called with non DR register number"));
55ff77ac
CV
1595}
1596
1597static void
d93859e2
UW
1598sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1599 int regnum, const void *from, void *to)
55ff77ac 1600{
d93859e2 1601 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1602 {
7bb11558 1603 /* It is a no-op. */
d93859e2 1604 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1605 return;
1606 }
1607
1608 if ((regnum >= DR0_REGNUM
1609 && regnum <= DR_LAST_REGNUM)
1610 || (regnum >= DR0_C_REGNUM
1611 && regnum <= DR_LAST_C_REGNUM))
1612 {
e035e373 1613 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1614 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1615 &val, to);
55ff77ac
CV
1616 }
1617 else
a73c6dcd
MS
1618 error (_("sh64_register_convert_to_raw called "
1619 "with non DR register number"));
55ff77ac
CV
1620}
1621
1622static void
1623sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1624 int reg_nr, gdb_byte *buffer)
55ff77ac 1625{
e17a4113 1626 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1627 int base_regnum;
1628 int portion;
1629 int offset = 0;
1630 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1631
1632 if (reg_nr >= DR0_REGNUM
1633 && reg_nr <= DR_LAST_REGNUM)
1634 {
d93859e2 1635 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1636
7bb11558 1637 /* Build the value in the provided buffer. */
55ff77ac 1638 /* DR regs are double precision registers obtained by
7bb11558 1639 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1640 for (portion = 0; portion < 2; portion++)
1641 regcache_raw_read (regcache, base_regnum + portion,
1642 (temp_buffer
7bb11558 1643 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1644
7bb11558 1645 /* We must pay attention to the endianness. */
d93859e2 1646 sh64_register_convert_to_virtual (gdbarch, reg_nr,
7b9ee6a8 1647 register_type (gdbarch, reg_nr),
39add00a 1648 temp_buffer, buffer);
55ff77ac
CV
1649
1650 }
1651
1652 else if (reg_nr >= FPP0_REGNUM
1653 && reg_nr <= FPP_LAST_REGNUM)
1654 {
d93859e2 1655 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1656
7bb11558 1657 /* Build the value in the provided buffer. */
55ff77ac 1658 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1659 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1660 for (portion = 0; portion < 2; portion++)
1661 regcache_raw_read (regcache, base_regnum + portion,
1662 ((char *) buffer
7bb11558 1663 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1664 }
1665
1666 else if (reg_nr >= FV0_REGNUM
1667 && reg_nr <= FV_LAST_REGNUM)
1668 {
d93859e2 1669 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1670
7bb11558 1671 /* Build the value in the provided buffer. */
55ff77ac 1672 /* FV regs are vectors of single precision registers obtained by
7bb11558 1673 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1674 for (portion = 0; portion < 4; portion++)
1675 regcache_raw_read (regcache, base_regnum + portion,
1676 ((char *) buffer
7bb11558 1677 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1678 }
1679
c378eb4e 1680 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1681 else if (reg_nr >= R0_C_REGNUM
1682 && reg_nr <= T_C_REGNUM)
1683 {
d93859e2 1684 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1685
7bb11558 1686 /* Build the value in the provided buffer. */
55ff77ac 1687 regcache_raw_read (regcache, base_regnum, temp_buffer);
58643501 1688 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1689 offset = 4;
c378eb4e
MS
1690 memcpy (buffer,
1691 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
55ff77ac
CV
1692 }
1693
1694 else if (reg_nr >= FP0_C_REGNUM
1695 && reg_nr <= FP_LAST_C_REGNUM)
1696 {
d93859e2 1697 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1698
7bb11558 1699 /* Build the value in the provided buffer. */
55ff77ac 1700 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1701 they have the same size and endianness. */
55ff77ac
CV
1702 regcache_raw_read (regcache, base_regnum, buffer);
1703 }
1704
1705 else if (reg_nr >= DR0_C_REGNUM
1706 && reg_nr <= DR_LAST_C_REGNUM)
1707 {
d93859e2 1708 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1709
1710 /* DR_C regs are double precision registers obtained by
7bb11558 1711 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1712 for (portion = 0; portion < 2; portion++)
1713 regcache_raw_read (regcache, base_regnum + portion,
1714 (temp_buffer
7bb11558 1715 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1716
7bb11558 1717 /* We must pay attention to the endianness. */
d93859e2 1718 sh64_register_convert_to_virtual (gdbarch, reg_nr,
7b9ee6a8 1719 register_type (gdbarch, reg_nr),
39add00a 1720 temp_buffer, buffer);
55ff77ac
CV
1721 }
1722
1723 else if (reg_nr >= FV0_C_REGNUM
1724 && reg_nr <= FV_LAST_C_REGNUM)
1725 {
d93859e2 1726 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1727
7bb11558 1728 /* Build the value in the provided buffer. */
55ff77ac 1729 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1730 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1731 for (portion = 0; portion < 4; portion++)
1732 regcache_raw_read (regcache, base_regnum + portion,
1733 ((char *) buffer
7bb11558 1734 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1735 }
1736
1737 else if (reg_nr == FPSCR_C_REGNUM)
1738 {
1739 int fpscr_base_regnum;
1740 int sr_base_regnum;
1741 unsigned int fpscr_value;
1742 unsigned int sr_value;
1743 unsigned int fpscr_c_value;
1744 unsigned int fpscr_c_part1_value;
1745 unsigned int fpscr_c_part2_value;
1746
1747 fpscr_base_regnum = FPSCR_REGNUM;
1748 sr_base_regnum = SR_REGNUM;
1749
7bb11558 1750 /* Build the value in the provided buffer. */
55ff77ac
CV
1751 /* FPSCR_C is a very weird register that contains sparse bits
1752 from the FPSCR and the SR architectural registers.
1753 Specifically: */
1754 /* *INDENT-OFF* */
1755 /*
1756 FPSRC_C bit
1757 0 Bit 0 of FPSCR
1758 1 reserved
1759 2-17 Bit 2-18 of FPSCR
1760 18-20 Bits 12,13,14 of SR
1761 21-31 reserved
1762 */
1763 /* *INDENT-ON* */
c378eb4e 1764 /* Get FPSCR into a local buffer. */
55ff77ac 1765 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
7bb11558 1766 /* Get value as an int. */
e17a4113 1767 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1768 /* Get SR into a local buffer */
1769 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
7bb11558 1770 /* Get value as an int. */
e17a4113 1771 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1772 /* Build the new value. */
55ff77ac
CV
1773 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1774 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1775 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1776 /* Store that in out buffer!!! */
e17a4113 1777 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1778 /* FIXME There is surely an endianness gotcha here. */
55ff77ac
CV
1779 }
1780
1781 else if (reg_nr == FPUL_C_REGNUM)
1782 {
d93859e2 1783 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1784
1785 /* FPUL_C register is floating point register 32,
7bb11558 1786 same size, same endianness. */
55ff77ac
CV
1787 regcache_raw_read (regcache, base_regnum, buffer);
1788 }
1789}
1790
1791static void
1792sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1793 int reg_nr, const gdb_byte *buffer)
55ff77ac 1794{
e17a4113 1795 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1796 int base_regnum, portion;
1797 int offset;
1798 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1799
1800 if (reg_nr >= DR0_REGNUM
1801 && reg_nr <= DR_LAST_REGNUM)
1802 {
d93859e2 1803 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1804 /* We must pay attention to the endianness. */
d93859e2 1805 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1806 reg_nr,
1807 buffer, temp_buffer);
55ff77ac
CV
1808
1809 /* Write the real regs for which this one is an alias. */
1810 for (portion = 0; portion < 2; portion++)
1811 regcache_raw_write (regcache, base_regnum + portion,
1812 (temp_buffer
7bb11558
MS
1813 + register_size (gdbarch,
1814 base_regnum) * portion));
55ff77ac
CV
1815 }
1816
1817 else if (reg_nr >= FPP0_REGNUM
1818 && reg_nr <= FPP_LAST_REGNUM)
1819 {
d93859e2 1820 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1821
1822 /* Write the real regs for which this one is an alias. */
1823 for (portion = 0; portion < 2; portion++)
1824 regcache_raw_write (regcache, base_regnum + portion,
1825 ((char *) buffer
7bb11558
MS
1826 + register_size (gdbarch,
1827 base_regnum) * portion));
55ff77ac
CV
1828 }
1829
1830 else if (reg_nr >= FV0_REGNUM
1831 && reg_nr <= FV_LAST_REGNUM)
1832 {
d93859e2 1833 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1834
1835 /* Write the real regs for which this one is an alias. */
1836 for (portion = 0; portion < 4; portion++)
1837 regcache_raw_write (regcache, base_regnum + portion,
1838 ((char *) buffer
7bb11558
MS
1839 + register_size (gdbarch,
1840 base_regnum) * portion));
55ff77ac
CV
1841 }
1842
c378eb4e 1843 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1844 register but only 4 bytes of it. */
1845 else if (reg_nr >= R0_C_REGNUM
1846 && reg_nr <= T_C_REGNUM)
1847 {
d93859e2 1848 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1849 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1850 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1851 offset = 4;
1852 else
1853 offset = 0;
1854 /* Let's read the value of the base register into a temporary
1855 buffer, so that overwriting the last four bytes with the new
7bb11558 1856 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1857 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1858 /* Write as an 8 byte quantity. */
55ff77ac
CV
1859 memcpy (temp_buffer + offset, buffer, 4);
1860 regcache_raw_write (regcache, base_regnum, temp_buffer);
1861 }
1862
c378eb4e
MS
1863 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1864 registers. Both are 4 bytes. */
55ff77ac
CV
1865 else if (reg_nr >= FP0_C_REGNUM
1866 && reg_nr <= FP_LAST_C_REGNUM)
1867 {
d93859e2 1868 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1869 regcache_raw_write (regcache, base_regnum, buffer);
1870 }
1871
1872 else if (reg_nr >= DR0_C_REGNUM
1873 && reg_nr <= DR_LAST_C_REGNUM)
1874 {
d93859e2 1875 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1876 for (portion = 0; portion < 2; portion++)
1877 {
7bb11558 1878 /* We must pay attention to the endianness. */
d93859e2
UW
1879 sh64_register_convert_to_raw (gdbarch,
1880 register_type (gdbarch, reg_nr),
39add00a
MS
1881 reg_nr,
1882 buffer, temp_buffer);
55ff77ac
CV
1883
1884 regcache_raw_write (regcache, base_regnum + portion,
1885 (temp_buffer
7bb11558
MS
1886 + register_size (gdbarch,
1887 base_regnum) * portion));
55ff77ac
CV
1888 }
1889 }
1890
1891 else if (reg_nr >= FV0_C_REGNUM
1892 && reg_nr <= FV_LAST_C_REGNUM)
1893 {
d93859e2 1894 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1895
1896 for (portion = 0; portion < 4; portion++)
1897 {
1898 regcache_raw_write (regcache, base_regnum + portion,
1899 ((char *) buffer
7bb11558
MS
1900 + register_size (gdbarch,
1901 base_regnum) * portion));
55ff77ac
CV
1902 }
1903 }
1904
1905 else if (reg_nr == FPSCR_C_REGNUM)
1906 {
1907 int fpscr_base_regnum;
1908 int sr_base_regnum;
1909 unsigned int fpscr_value;
1910 unsigned int sr_value;
1911 unsigned int old_fpscr_value;
1912 unsigned int old_sr_value;
1913 unsigned int fpscr_c_value;
1914 unsigned int fpscr_mask;
1915 unsigned int sr_mask;
1916
1917 fpscr_base_regnum = FPSCR_REGNUM;
1918 sr_base_regnum = SR_REGNUM;
1919
1920 /* FPSCR_C is a very weird register that contains sparse bits
1921 from the FPSCR and the SR architectural registers.
1922 Specifically: */
1923 /* *INDENT-OFF* */
1924 /*
1925 FPSRC_C bit
1926 0 Bit 0 of FPSCR
1927 1 reserved
1928 2-17 Bit 2-18 of FPSCR
1929 18-20 Bits 12,13,14 of SR
1930 21-31 reserved
1931 */
1932 /* *INDENT-ON* */
7bb11558 1933 /* Get value as an int. */
e17a4113 1934 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1935
7bb11558 1936 /* Build the new values. */
55ff77ac
CV
1937 fpscr_mask = 0x0003fffd;
1938 sr_mask = 0x001c0000;
1939
1940 fpscr_value = fpscr_c_value & fpscr_mask;
1941 sr_value = (fpscr_value & sr_mask) >> 6;
1942
1943 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1944 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1945 old_fpscr_value &= 0xfffc0002;
1946 fpscr_value |= old_fpscr_value;
e17a4113 1947 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1948 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1949
1950 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1951 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1952 old_sr_value &= 0xffff8fff;
1953 sr_value |= old_sr_value;
e17a4113 1954 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1955 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1956 }
1957
1958 else if (reg_nr == FPUL_C_REGNUM)
1959 {
d93859e2 1960 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1961 regcache_raw_write (regcache, base_regnum, buffer);
1962 }
1963}
1964
55ff77ac 1965/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1966 shmedia REGISTERS. */
1967/* Control registers, compact mode. */
55ff77ac 1968static void
c30dc700
CV
1969sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1970 int cr_c_regnum)
55ff77ac
CV
1971{
1972 switch (cr_c_regnum)
1973 {
c30dc700
CV
1974 case PC_C_REGNUM:
1975 fprintf_filtered (file, "pc_c\t0x%08x\n",
1976 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1977 break;
c30dc700
CV
1978 case GBR_C_REGNUM:
1979 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1980 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1981 break;
c30dc700
CV
1982 case MACH_C_REGNUM:
1983 fprintf_filtered (file, "mach_c\t0x%08x\n",
1984 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1985 break;
c30dc700
CV
1986 case MACL_C_REGNUM:
1987 fprintf_filtered (file, "macl_c\t0x%08x\n",
1988 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1989 break;
c30dc700
CV
1990 case PR_C_REGNUM:
1991 fprintf_filtered (file, "pr_c\t0x%08x\n",
1992 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1993 break;
c30dc700
CV
1994 case T_C_REGNUM:
1995 fprintf_filtered (file, "t_c\t0x%08x\n",
1996 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1997 break;
c30dc700
CV
1998 case FPSCR_C_REGNUM:
1999 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
2000 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 2001 break;
c30dc700
CV
2002 case FPUL_C_REGNUM:
2003 fprintf_filtered (file, "fpul_c\t0x%08x\n",
2004 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
2005 break;
2006 }
2007}
2008
2009static void
c30dc700
CV
2010sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
2011 struct frame_info *frame, int regnum)
c378eb4e 2012{ /* Do values for FP (float) regs. */
079c8cd0 2013 unsigned char *raw_buffer;
c378eb4e 2014 double flt; /* Double extracted from raw hex data. */
55ff77ac
CV
2015 int inv;
2016 int j;
2017
7bb11558 2018 /* Allocate space for the float. */
c378eb4e
MS
2019 raw_buffer = (unsigned char *)
2020 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
2021
2022 /* Get the data in raw format. */
c30dc700 2023 if (!frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 2024 error (_("can't read register %d (%s)"),
58643501 2025 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 2026
c378eb4e
MS
2027 /* Get the register as a number. */
2028 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
2029 raw_buffer, &inv);
55ff77ac 2030
7bb11558 2031 /* Print the name and some spaces. */
58643501 2032 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2033 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2034 (gdbarch, regnum)), file);
55ff77ac 2035
7bb11558 2036 /* Print the value. */
55ff77ac
CV
2037 if (inv)
2038 fprintf_filtered (file, "<invalid float>");
2039 else
2040 fprintf_filtered (file, "%-10.9g", flt);
2041
7bb11558 2042 /* Print the fp register as hex. */
55ff77ac
CV
2043 fprintf_filtered (file, "\t(raw 0x");
2044 for (j = 0; j < register_size (gdbarch, regnum); j++)
2045 {
58643501 2046 int idx = gdbarch_byte_order (gdbarch)
4c6b5505
UW
2047 == BFD_ENDIAN_BIG ? j : register_size
2048 (gdbarch, regnum) - 1 - j;
079c8cd0 2049 fprintf_filtered (file, "%02x", raw_buffer[idx]);
55ff77ac
CV
2050 }
2051 fprintf_filtered (file, ")");
2052 fprintf_filtered (file, "\n");
2053}
2054
2055static void
c30dc700
CV
2056sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2057 struct frame_info *frame, int regnum)
55ff77ac 2058{
7bb11558 2059 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 2060
58643501
UW
2061 if (regnum < gdbarch_num_regs (gdbarch)
2062 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
2063 + NUM_PSEUDO_REGS_SH_MEDIA
2064 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 2065 internal_error (__FILE__, __LINE__,
e2e0b3e5 2066 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 2067
c30dc700
CV
2068 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2069 {
d93859e2 2070 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
2071 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2073 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2074 }
55ff77ac 2075
c30dc700
CV
2076 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2077 {
d93859e2 2078 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2079 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2082 }
55ff77ac 2083
c30dc700
CV
2084 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2085 {
d93859e2 2086 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
2087 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2088 regnum - FV0_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2090 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2091 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2092 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2093 }
55ff77ac 2094
c30dc700
CV
2095 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2096 {
d93859e2 2097 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2098 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2099 regnum - FV0_C_REGNUM,
2100 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2101 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2102 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2103 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2104 }
2105
2106 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2107 {
d93859e2 2108 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2109 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2110 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2111 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2112 }
2113
2114 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2115 {
d93859e2 2116 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2117 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2118 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2119 }
2120 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2121 /* This should work also for pseudoregs. */
c30dc700
CV
2122 sh64_do_fp_register (gdbarch, file, frame, regnum);
2123 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2124 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2125}
2126
2127static void
c30dc700
CV
2128sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2129 struct frame_info *frame, int regnum)
55ff77ac 2130{
079c8cd0 2131 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2132 struct value_print_options opts;
55ff77ac 2133
58643501 2134 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2135 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2136 (gdbarch, regnum)), file);
55ff77ac
CV
2137
2138 /* Get the data in raw format. */
c30dc700 2139 if (!frame_register_read (frame, regnum, raw_buffer))
55ff77ac 2140 fprintf_filtered (file, "*value not available*\n");
79a45b7d
TT
2141
2142 get_formatted_print_options (&opts, 'x');
2143 opts.deref_ref = 1;
7b9ee6a8 2144 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2145 file, 0, NULL, &opts, current_language);
55ff77ac 2146 fprintf_filtered (file, "\t");
79a45b7d
TT
2147 get_formatted_print_options (&opts, 0);
2148 opts.deref_ref = 1;
7b9ee6a8 2149 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2150 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2151 fprintf_filtered (file, "\n");
2152}
2153
2154static void
c30dc700
CV
2155sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2156 struct frame_info *frame, int regnum)
55ff77ac 2157{
58643501
UW
2158 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2159 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2160 internal_error (__FILE__, __LINE__,
e2e0b3e5 2161 _("Invalid register number %d\n"), regnum);
55ff77ac 2162
58643501 2163 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2164 {
7b9ee6a8 2165 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2166 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2167 else
c30dc700 2168 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2169 }
2170
58643501
UW
2171 else if (regnum < gdbarch_num_regs (gdbarch)
2172 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2173 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2174}
2175
2176static void
c30dc700
CV
2177sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2178 struct frame_info *frame, int regnum,
2179 int fpregs)
55ff77ac 2180{
c378eb4e 2181 if (regnum != -1) /* Do one specified register. */
55ff77ac 2182 {
58643501 2183 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2184 error (_("Not a valid register for the current processor type"));
55ff77ac 2185
c30dc700 2186 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2187 }
2188 else
c378eb4e 2189 /* Do all (or most) registers. */
55ff77ac
CV
2190 {
2191 regnum = 0;
58643501 2192 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2193 {
2194 /* If the register name is empty, it is undefined for this
2195 processor, so don't display anything. */
58643501
UW
2196 if (gdbarch_register_name (gdbarch, regnum) == NULL
2197 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2198 {
2199 regnum++;
2200 continue;
2201 }
2202
7b9ee6a8 2203 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2204 == TYPE_CODE_FLT)
55ff77ac
CV
2205 {
2206 if (fpregs)
2207 {
c378eb4e 2208 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2209 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2210 regnum ++;
2211 }
2212 else
58643501 2213 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2214 /* skip FP regs */
55ff77ac
CV
2215 }
2216 else
2217 {
c30dc700 2218 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2219 regnum++;
2220 }
2221 }
2222
2223 if (fpregs)
58643501
UW
2224 while (regnum < gdbarch_num_regs (gdbarch)
2225 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2226 {
c30dc700 2227 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2228 regnum++;
2229 }
2230 }
2231}
2232
2233static void
c30dc700
CV
2234sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2235 struct ui_file *file,
2236 struct frame_info *frame, int regnum,
2237 int fpregs)
55ff77ac 2238{
c378eb4e 2239 if (regnum != -1) /* Do one specified register. */
55ff77ac 2240 {
58643501 2241 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2242 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2243
2244 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2245 error (_("Not a valid register for the current processor mode."));
55ff77ac 2246
c30dc700 2247 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2248 }
2249 else
c378eb4e 2250 /* Do all compact registers. */
55ff77ac
CV
2251 {
2252 regnum = R0_C_REGNUM;
58643501
UW
2253 while (regnum < gdbarch_num_regs (gdbarch)
2254 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2255 {
c30dc700 2256 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2257 regnum++;
2258 }
2259 }
2260}
2261
2262static void
c30dc700
CV
2263sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2264 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2265{
c30dc700
CV
2266 if (pc_is_isa32 (get_frame_pc (frame)))
2267 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2268 else
c30dc700 2269 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2270}
2271
c30dc700
CV
2272static struct sh64_frame_cache *
2273sh64_alloc_frame_cache (void)
2274{
2275 struct sh64_frame_cache *cache;
2276 int i;
2277
2278 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2279
2280 /* Base address. */
2281 cache->base = 0;
2282 cache->saved_sp = 0;
2283 cache->sp_offset = 0;
2284 cache->pc = 0;
55ff77ac 2285
c30dc700
CV
2286 /* Frameless until proven otherwise. */
2287 cache->uses_fp = 0;
55ff77ac 2288
c30dc700
CV
2289 /* Saved registers. We initialize these to -1 since zero is a valid
2290 offset (that's where fp is supposed to be stored). */
2291 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2292 {
2293 cache->saved_regs[i] = -1;
2294 }
2295
2296 return cache;
2297}
2298
2299static struct sh64_frame_cache *
94afd7a6 2300sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2301{
58643501 2302 struct gdbarch *gdbarch;
c30dc700
CV
2303 struct sh64_frame_cache *cache;
2304 CORE_ADDR current_pc;
2305 int i;
55ff77ac 2306
c30dc700
CV
2307 if (*this_cache)
2308 return *this_cache;
2309
94afd7a6 2310 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2311 cache = sh64_alloc_frame_cache ();
2312 *this_cache = cache;
2313
94afd7a6 2314 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2315 cache->media_mode = pc_is_isa32 (current_pc);
2316
2317 /* In principle, for normal frames, fp holds the frame pointer,
2318 which holds the base address for the current stack frame.
2319 However, for functions that don't need it, the frame pointer is
2320 optional. For these "frameless" functions the frame pointer is
c378eb4e 2321 actually the frame pointer of the calling frame. */
94afd7a6 2322 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2323 if (cache->base == 0)
2324 return cache;
2325
94afd7a6 2326 cache->pc = get_frame_func (this_frame);
c30dc700 2327 if (cache->pc != 0)
58643501 2328 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2329
2330 if (!cache->uses_fp)
55ff77ac 2331 {
c30dc700
CV
2332 /* We didn't find a valid frame, which means that CACHE->base
2333 currently holds the frame pointer for our calling frame. If
2334 we're at the start of a function, or somewhere half-way its
2335 prologue, the function's frame probably hasn't been fully
2336 setup yet. Try to reconstruct the base address for the stack
2337 frame by looking at the stack pointer. For truly "frameless"
2338 functions this might work too. */
94afd7a6
UW
2339 cache->base = get_frame_register_unsigned
2340 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2341 }
55ff77ac 2342
c30dc700
CV
2343 /* Now that we have the base address for the stack frame we can
2344 calculate the value of sp in the calling frame. */
2345 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2346
c30dc700
CV
2347 /* Adjust all the saved registers such that they contain addresses
2348 instead of offsets. */
2349 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2350 if (cache->saved_regs[i] != -1)
2351 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2352
c30dc700
CV
2353 return cache;
2354}
55ff77ac 2355
94afd7a6
UW
2356static struct value *
2357sh64_frame_prev_register (struct frame_info *this_frame,
2358 void **this_cache, int regnum)
c30dc700 2359{
94afd7a6
UW
2360 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2361 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2362 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2363
c30dc700 2364 gdb_assert (regnum >= 0);
55ff77ac 2365
58643501 2366 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2367 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2368
2369 /* The PC of the previous frame is stored in the PR register of
2370 the current frame. Frob regnum so that we pull the value from
2371 the correct place. */
58643501 2372 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2373 regnum = PR_REGNUM;
2374
2375 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2376 {
58643501 2377 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2378 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2379 {
94afd7a6 2380 CORE_ADDR val;
e17a4113
UW
2381 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2382 4, byte_order);
94afd7a6 2383 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2384 }
94afd7a6
UW
2385
2386 return frame_unwind_got_memory (this_frame, regnum,
2387 cache->saved_regs[regnum]);
55ff77ac
CV
2388 }
2389
94afd7a6 2390 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2391}
55ff77ac 2392
c30dc700 2393static void
94afd7a6 2394sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2395 struct frame_id *this_id)
2396{
94afd7a6 2397 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2398
2399 /* This marks the outermost frame. */
2400 if (cache->base == 0)
2401 return;
2402
2403 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2404}
2405
2406static const struct frame_unwind sh64_frame_unwind = {
2407 NORMAL_FRAME,
2408 sh64_frame_this_id,
94afd7a6
UW
2409 sh64_frame_prev_register,
2410 NULL,
2411 default_frame_sniffer
c30dc700
CV
2412};
2413
c30dc700
CV
2414static CORE_ADDR
2415sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2416{
3e8c568d 2417 return frame_unwind_register_unsigned (next_frame,
58643501 2418 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2419}
2420
2421static CORE_ADDR
2422sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2423{
3e8c568d 2424 return frame_unwind_register_unsigned (next_frame,
58643501 2425 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2426}
2427
2428static struct frame_id
94afd7a6 2429sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2430{
94afd7a6
UW
2431 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2432 gdbarch_sp_regnum (gdbarch));
2433 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2434}
2435
2436static CORE_ADDR
94afd7a6 2437sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2438{
94afd7a6 2439 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2440
2441 return cache->base;
2442}
2443
2444static const struct frame_base sh64_frame_base = {
2445 &sh64_frame_unwind,
2446 sh64_frame_base_address,
2447 sh64_frame_base_address,
2448 sh64_frame_base_address
2449};
2450
55ff77ac
CV
2451
2452struct gdbarch *
2453sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2454{
55ff77ac
CV
2455 struct gdbarch *gdbarch;
2456 struct gdbarch_tdep *tdep;
2457
2458 /* If there is already a candidate, use it. */
2459 arches = gdbarch_list_lookup_by_info (arches, &info);
2460 if (arches != NULL)
2461 return arches->gdbarch;
2462
2463 /* None found, create a new architecture from the information
7bb11558 2464 provided. */
55ff77ac
CV
2465 tdep = XMALLOC (struct gdbarch_tdep);
2466 gdbarch = gdbarch_alloc (&info, tdep);
2467
55ff77ac
CV
2468 /* Determine the ABI */
2469 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2470 {
7bb11558 2471 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2472 tdep->sh_abi = SH_ABI_64;
2473 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2474 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2475 }
2476 else
2477 {
2478 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2479 compact. */
55ff77ac
CV
2480 tdep->sh_abi = SH_ABI_32;
2481 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2482 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2483 }
2484
2485 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2486 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2487 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2488 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2489 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2490 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2491 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2492
c30dc700
CV
2493 /* The number of real registers is the same whether we are in
2494 ISA16(compact) or ISA32(media). */
2495 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2496 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2497 set_gdbarch_pc_regnum (gdbarch, 64);
2498 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2499 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2500 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2501
c30dc700
CV
2502 set_gdbarch_register_name (gdbarch, sh64_register_name);
2503 set_gdbarch_register_type (gdbarch, sh64_register_type);
2504
2505 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2506 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2507
2508 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2509
9dae60cc 2510 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2511 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2512
c30dc700 2513 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2514
c30dc700
CV
2515 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2516 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2517
c30dc700 2518 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2519
c30dc700 2520 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2521
c30dc700
CV
2522 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2523 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2524 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2525 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2526 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2527
c30dc700 2528 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2529
55ff77ac
CV
2530 set_gdbarch_elf_make_msymbol_special (gdbarch,
2531 sh64_elf_make_msymbol_special);
2532
2533 /* Hook in ABI-specific overrides, if they have been registered. */
2534 gdbarch_init_osabi (info, gdbarch);
2535
94afd7a6
UW
2536 dwarf2_append_unwinders (gdbarch);
2537 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2538
55ff77ac
CV
2539 return gdbarch;
2540}
This page took 0.894285 seconds and 4 git commands to generate.