* configure.ac: Check for the GNU/Linux ptrace signature.
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
6aba47ca 3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
9b254dd1 4 2003, 2004, 2005, 2007, 2008 Free Software Foundation, Inc.
55ff77ac
CV
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
a9762ec7 10 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
a9762ec7 19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac
CV
20
21/*
22 Contributed by Steve Chamberlain
23 sac@cygnus.com
24 */
25
26#include "defs.h"
27#include "frame.h"
c30dc700
CV
28#include "frame-base.h"
29#include "frame-unwind.h"
30#include "dwarf2-frame.h"
55ff77ac 31#include "symtab.h"
55ff77ac
CV
32#include "gdbtypes.h"
33#include "gdbcmd.h"
34#include "gdbcore.h"
35#include "value.h"
36#include "dis-asm.h"
37#include "inferior.h"
38#include "gdb_string.h"
c30dc700 39#include "gdb_assert.h"
55ff77ac 40#include "arch-utils.h"
55ff77ac 41#include "regcache.h"
55ff77ac
CV
42#include "osabi.h"
43
44#include "elf-bfd.h"
55ff77ac
CV
45
46/* sh flags */
47#include "elf/sh.h"
48/* registers numbers shared with the simulator */
49#include "gdb/sim-sh.h"
d8ca156b 50#include "language.h"
55ff77ac 51
7bb11558 52/* Information that is dependent on the processor variant. */
55ff77ac
CV
53enum sh_abi
54 {
55 SH_ABI_UNKNOWN,
56 SH_ABI_32,
57 SH_ABI_64
58 };
59
60struct gdbarch_tdep
61 {
62 enum sh_abi sh_abi;
63 };
64
c30dc700
CV
65struct sh64_frame_cache
66{
67 /* Base address. */
68 CORE_ADDR base;
69 LONGEST sp_offset;
70 CORE_ADDR pc;
71
72 /* Flag showing that a frame has been created in the prologue code. */
73 int uses_fp;
74
75 int media_mode;
76
77 /* Saved registers. */
78 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
79 CORE_ADDR saved_sp;
80};
81
55ff77ac
CV
82/* Registers of SH5 */
83enum
84 {
85 R0_REGNUM = 0,
86 DEFAULT_RETURN_REGNUM = 2,
87 STRUCT_RETURN_REGNUM = 2,
88 ARG0_REGNUM = 2,
89 ARGLAST_REGNUM = 9,
90 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 91 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
92 PR_REGNUM = 18,
93 SR_REGNUM = 65,
94 DR0_REGNUM = 141,
95 DR_LAST_REGNUM = 172,
96 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 97 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
55ff77ac 98 point register. Unfortunately on the sh5, the floating point
7bb11558 99 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
100 FPP0_REGNUM = 173,
101 FPP_LAST_REGNUM = 204,
102 FV0_REGNUM = 205,
103 FV_LAST_REGNUM = 220,
104 R0_C_REGNUM = 221,
105 R_LAST_C_REGNUM = 236,
106 PC_C_REGNUM = 237,
107 GBR_C_REGNUM = 238,
108 MACH_C_REGNUM = 239,
109 MACL_C_REGNUM = 240,
110 PR_C_REGNUM = 241,
111 T_C_REGNUM = 242,
112 FPSCR_C_REGNUM = 243,
113 FPUL_C_REGNUM = 244,
114 FP0_C_REGNUM = 245,
115 FP_LAST_C_REGNUM = 260,
116 DR0_C_REGNUM = 261,
117 DR_LAST_C_REGNUM = 268,
118 FV0_C_REGNUM = 269,
119 FV_LAST_C_REGNUM = 272,
120 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
121 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
122 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
123 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
124 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
125 };
126
55ff77ac 127static const char *
d93859e2 128sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
129{
130 static char *register_names[] =
131 {
132 /* SH MEDIA MODE (ISA 32) */
133 /* general registers (64-bit) 0-63 */
134 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
135 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
136 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
137 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
138 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
139 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
140 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
141 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
142
143 /* pc (64-bit) 64 */
144 "pc",
145
146 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
147 "sr", "ssr", "spc",
148
149 /* target registers (64-bit) 68-75*/
150 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
151
152 /* floating point state control register (32-bit) 76 */
153 "fpscr",
154
155 /* single precision floating point registers (32-bit) 77-140*/
156 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
157 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
158 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
159 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
160 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
161 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
162 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
163 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
164
165 /* double precision registers (pseudo) 141-172 */
166 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
167 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
168 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
169 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
170
171 /* floating point pairs (pseudo) 173-204*/
172 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
173 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
174 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
175 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
176
177 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
178 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
179 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
180
181 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
182 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
183 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
184 "pc_c",
185 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
186 "fpscr_c", "fpul_c",
187 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
189 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
190 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
191 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
192 };
193
194 if (reg_nr < 0)
195 return NULL;
196 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
197 return NULL;
198 return register_names[reg_nr];
199}
200
201#define NUM_PSEUDO_REGS_SH_MEDIA 80
202#define NUM_PSEUDO_REGS_SH_COMPACT 51
203
204/* Macros and functions for setting and testing a bit in a minimal
205 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 206 symbol's "info" field is used for this purpose.
55ff77ac 207
95f1da47
UW
208 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
209 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 210 minimal symbol to mark it as a 32-bit function
f594e5e9 211 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
212
213#define MSYMBOL_IS_SPECIAL(msym) \
214 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
215
216static void
217sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
218{
219 if (msym == NULL)
220 return;
221
222 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
223 {
224 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
225 SYMBOL_VALUE_ADDRESS (msym) |= 1;
226 }
227}
228
229/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
230 are some macros to test, set, or clear bit 0 of addresses. */
231#define IS_ISA32_ADDR(addr) ((addr) & 1)
232#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
233#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
234
235static int
236pc_is_isa32 (bfd_vma memaddr)
237{
238 struct minimal_symbol *sym;
239
240 /* If bit 0 of the address is set, assume this is a
7bb11558 241 ISA32 (shmedia) address. */
55ff77ac
CV
242 if (IS_ISA32_ADDR (memaddr))
243 return 1;
244
245 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
246 the high bit of the info field. Use this to decide if the function is
247 ISA16 or ISA32. */
248 sym = lookup_minimal_symbol_by_pc (memaddr);
249 if (sym)
250 return MSYMBOL_IS_SPECIAL (sym);
251 else
252 return 0;
253}
254
255static const unsigned char *
67d57894 256sh64_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
257{
258 /* The BRK instruction for shmedia is
259 01101111 11110101 11111111 11110000
260 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
261 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
262
263 /* The BRK instruction for shcompact is
264 00000000 00111011
265 which translates in big endian mode to 0x0, 0x3b
266 and in little endian mode to 0x3b, 0x0*/
267
67d57894 268 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
269 {
270 if (pc_is_isa32 (*pcptr))
271 {
272 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
273 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
274 *lenptr = sizeof (big_breakpoint_media);
275 return big_breakpoint_media;
276 }
277 else
278 {
279 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
280 *lenptr = sizeof (big_breakpoint_compact);
281 return big_breakpoint_compact;
282 }
283 }
284 else
285 {
286 if (pc_is_isa32 (*pcptr))
287 {
288 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
289 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
290 *lenptr = sizeof (little_breakpoint_media);
291 return little_breakpoint_media;
292 }
293 else
294 {
295 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
296 *lenptr = sizeof (little_breakpoint_compact);
297 return little_breakpoint_compact;
298 }
299 }
300}
301
302/* Prologue looks like
303 [mov.l <regs>,@-r15]...
304 [sts.l pr,@-r15]
305 [mov.l r14,@-r15]
306 [mov r15,r14]
307
308 Actually it can be more complicated than this. For instance, with
309 newer gcc's:
310
311 mov.l r14,@-r15
312 add #-12,r15
313 mov r15,r14
314 mov r4,r1
315 mov r5,r2
316 mov.l r6,@(4,r14)
317 mov.l r7,@(8,r14)
318 mov.b r1,@r14
319 mov r14,r1
320 mov r14,r1
321 add #2,r1
322 mov.w r2,@r1
323
324 */
325
326/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
327 with l=1 and n = 18 0110101111110001010010100aaa0000 */
328#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
329
330/* STS.L PR,@-r0 0100000000100010
331 r0-4-->r0, PR-->(r0) */
332#define IS_STS_R0(x) ((x) == 0x4022)
333
334/* STS PR, Rm 0000mmmm00101010
335 PR-->Rm */
336#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
337
338/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
339 Rm-->(dispx4+r15) */
340#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
341
342/* MOV.L R14,@(disp,r15) 000111111110dddd
343 R14-->(dispx4+r15) */
344#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
345
346/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
347 R18-->(dispx8+R14) */
348#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
349
350/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
351 R18-->(dispx8+R15) */
352#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
353
354/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
355 R18-->(dispx4+R15) */
356#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
357
358/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
359 R14-->(dispx8+R15) */
360#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
361
362/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
363 R14-->(dispx4+R15) */
364#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
365
366/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
367 R15 + imm --> R15 */
368#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
369
370/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
371 R15 + imm --> R15 */
372#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
373
374/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
375 R15 + R63 --> R14 */
376#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
377
378/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
379 R15 + R63 --> R14 */
380#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
381
382#define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
383
384/* MOV #imm, R0 1110 0000 ssss ssss
385 #imm-->R0 */
386#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
387
388/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
389#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
390
391/* ADD r15,r0 0011 0000 1111 1100
392 r15+r0-->r0 */
393#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
394
395/* MOV.L R14 @-R0 0010 0000 1110 0110
396 R14-->(R0-4), R0-4-->R0 */
397#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
398
399/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 400 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
401/* FIXME: Recognize the float and double register moves too! */
402#define IS_MEDIA_IND_ARG_MOV(x) \
403((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
404
405/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
406 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 407 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
408#define IS_MEDIA_ARG_MOV(x) \
409(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
410 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
411
412/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
413/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
414/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
415/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
416/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
417#define IS_MEDIA_MOV_TO_R14(x) \
418((((x) & 0xfffffc0f) == 0xa0e00000) \
419|| (((x) & 0xfffffc0f) == 0xa4e00000) \
420|| (((x) & 0xfffffc0f) == 0xa8e00000) \
421|| (((x) & 0xfffffc0f) == 0xb4e00000) \
422|| (((x) & 0xfffffc0f) == 0xbce00000))
423
424/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
425 where Rm is r2-r9 */
426#define IS_COMPACT_IND_ARG_MOV(x) \
427((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
428
429/* compact direct arg move!
430 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
431#define IS_COMPACT_ARG_MOV(x) \
432(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
433
434/* MOV.B Rm, @R14 0010 1110 mmmm 0000
435 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
436#define IS_COMPACT_MOV_TO_R14(x) \
437((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
438
439#define IS_JSR_R0(x) ((x) == 0x400b)
440#define IS_NOP(x) ((x) == 0x0009)
441
442
443/* MOV r15,r14 0110111011110011
444 r15-->r14 */
445#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
446
447/* ADD #imm,r15 01111111iiiiiiii
448 r15+imm-->r15 */
449#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
450
451/* Skip any prologue before the guts of a function */
452
7bb11558
MS
453/* Skip the prologue using the debug information. If this fails we'll
454 fall back on the 'guess' method below. */
55ff77ac
CV
455static CORE_ADDR
456after_prologue (CORE_ADDR pc)
457{
458 struct symtab_and_line sal;
459 CORE_ADDR func_addr, func_end;
460
461 /* If we can not find the symbol in the partial symbol table, then
462 there is no hope we can determine the function's start address
463 with this code. */
464 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
465 return 0;
466
c30dc700 467
55ff77ac
CV
468 /* Get the line associated with FUNC_ADDR. */
469 sal = find_pc_line (func_addr, 0);
470
471 /* There are only two cases to consider. First, the end of the source line
472 is within the function bounds. In that case we return the end of the
473 source line. Second is the end of the source line extends beyond the
474 bounds of the current function. We need to use the slow code to
475 examine instructions in that case. */
476 if (sal.end < func_end)
477 return sal.end;
478 else
479 return 0;
480}
481
482static CORE_ADDR
483look_for_args_moves (CORE_ADDR start_pc, int media_mode)
484{
485 CORE_ADDR here, end;
486 int w;
487 int insn_size = (media_mode ? 4 : 2);
488
489 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
490 {
491 if (media_mode)
492 {
493 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
494 here += insn_size;
495 if (IS_MEDIA_IND_ARG_MOV (w))
496 {
497 /* This must be followed by a store to r14, so the argument
498 is where the debug info says it is. This can happen after
7bb11558 499 the SP has been saved, unfortunately. */
55ff77ac
CV
500
501 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
502 insn_size);
503 here += insn_size;
504 if (IS_MEDIA_MOV_TO_R14 (next_insn))
505 start_pc = here;
506 }
507 else if (IS_MEDIA_ARG_MOV (w))
508 {
7bb11558 509 /* These instructions store directly the argument in r14. */
55ff77ac
CV
510 start_pc = here;
511 }
512 else
513 break;
514 }
515 else
516 {
517 w = read_memory_integer (here, insn_size);
518 w = w & 0xffff;
519 here += insn_size;
520 if (IS_COMPACT_IND_ARG_MOV (w))
521 {
522 /* This must be followed by a store to r14, so the argument
523 is where the debug info says it is. This can happen after
7bb11558 524 the SP has been saved, unfortunately. */
55ff77ac
CV
525
526 int next_insn = 0xffff & read_memory_integer (here, insn_size);
527 here += insn_size;
528 if (IS_COMPACT_MOV_TO_R14 (next_insn))
529 start_pc = here;
530 }
531 else if (IS_COMPACT_ARG_MOV (w))
532 {
7bb11558 533 /* These instructions store directly the argument in r14. */
55ff77ac
CV
534 start_pc = here;
535 }
536 else if (IS_MOVL_R0 (w))
537 {
538 /* There is a function that gcc calls to get the arguments
539 passed correctly to the function. Only after this
540 function call the arguments will be found at the place
541 where they are supposed to be. This happens in case the
542 argument has to be stored into a 64-bit register (for
543 instance doubles, long longs). SHcompact doesn't have
544 access to the full 64-bits, so we store the register in
545 stack slot and store the address of the stack slot in
546 the register, then do a call through a wrapper that
547 loads the memory value into the register. A SHcompact
548 callee calls an argument decoder
549 (GCC_shcompact_incoming_args) that stores the 64-bit
550 value in a stack slot and stores the address of the
551 stack slot in the register. GCC thinks the argument is
552 just passed by transparent reference, but this is only
553 true after the argument decoder is called. Such a call
7bb11558 554 needs to be considered part of the prologue. */
55ff77ac
CV
555
556 /* This must be followed by a JSR @r0 instruction and by
557 a NOP instruction. After these, the prologue is over! */
558
559 int next_insn = 0xffff & read_memory_integer (here, insn_size);
560 here += insn_size;
561 if (IS_JSR_R0 (next_insn))
562 {
563 next_insn = 0xffff & read_memory_integer (here, insn_size);
564 here += insn_size;
565
566 if (IS_NOP (next_insn))
567 start_pc = here;
568 }
569 }
570 else
571 break;
572 }
573 }
574
575 return start_pc;
576}
577
578static CORE_ADDR
579sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
580{
581 CORE_ADDR here, end;
582 int updated_fp = 0;
583 int insn_size = 4;
584 int media_mode = 1;
585
586 if (!start_pc)
587 return 0;
588
589 if (pc_is_isa32 (start_pc) == 0)
590 {
591 insn_size = 2;
592 media_mode = 0;
593 }
594
595 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
596 {
597
598 if (media_mode)
599 {
600 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
601 here += insn_size;
602 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
603 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
604 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
605 {
606 start_pc = here;
607 }
608 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
609 {
610 start_pc = here;
611 updated_fp = 1;
612 }
613 else
614 if (updated_fp)
615 {
616 /* Don't bail out yet, we may have arguments stored in
617 registers here, according to the debug info, so that
7bb11558 618 gdb can print the frames correctly. */
55ff77ac
CV
619 start_pc = look_for_args_moves (here - insn_size, media_mode);
620 break;
621 }
622 }
623 else
624 {
625 int w = 0xffff & read_memory_integer (here, insn_size);
626 here += insn_size;
627
628 if (IS_STS_R0 (w) || IS_STS_PR (w)
629 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
630 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
631 {
632 start_pc = here;
633 }
634 else if (IS_MOV_SP_FP (w))
635 {
636 start_pc = here;
637 updated_fp = 1;
638 }
639 else
640 if (updated_fp)
641 {
642 /* Don't bail out yet, we may have arguments stored in
643 registers here, according to the debug info, so that
7bb11558 644 gdb can print the frames correctly. */
55ff77ac
CV
645 start_pc = look_for_args_moves (here - insn_size, media_mode);
646 break;
647 }
648 }
649 }
650
651 return start_pc;
652}
653
654static CORE_ADDR
6093d2eb 655sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
656{
657 CORE_ADDR post_prologue_pc;
658
659 /* See if we can determine the end of the prologue via the symbol table.
660 If so, then return either PC, or the PC after the prologue, whichever
661 is greater. */
662 post_prologue_pc = after_prologue (pc);
663
664 /* If after_prologue returned a useful address, then use it. Else
7bb11558 665 fall back on the instruction skipping code. */
55ff77ac
CV
666 if (post_prologue_pc != 0)
667 return max (pc, post_prologue_pc);
668 else
669 return sh64_skip_prologue_hard_way (pc);
670}
671
55ff77ac
CV
672/* Should call_function allocate stack space for a struct return? */
673static int
c30dc700 674sh64_use_struct_convention (struct type *type)
55ff77ac
CV
675{
676 return (TYPE_LENGTH (type) > 8);
677}
678
55ff77ac
CV
679/* Disassemble an instruction. */
680static int
c30dc700 681gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
55ff77ac 682{
4c6b5505 683 info->endian = gdbarch_byte_order (current_gdbarch);
55ff77ac
CV
684 return print_insn_sh (memaddr, info);
685}
686
7bb11558 687/* For vectors of 4 floating point registers. */
55ff77ac 688static int
d93859e2 689sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
690{
691 int fp_regnum;
692
d93859e2 693 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
694 return fp_regnum;
695}
696
697/* For double precision floating point registers, i.e 2 fp regs.*/
698static int
d93859e2 699sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
700{
701 int fp_regnum;
702
d93859e2 703 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
704 return fp_regnum;
705}
706
707/* For pairs of floating point registers */
708static int
d93859e2 709sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
710{
711 int fp_regnum;
712
d93859e2 713 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
714 return fp_regnum;
715}
716
55ff77ac
CV
717/* *INDENT-OFF* */
718/*
719 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
720 GDB_REGNUM BASE_REGNUM
721 r0_c 221 0
722 r1_c 222 1
723 r2_c 223 2
724 r3_c 224 3
725 r4_c 225 4
726 r5_c 226 5
727 r6_c 227 6
728 r7_c 228 7
729 r8_c 229 8
730 r9_c 230 9
731 r10_c 231 10
732 r11_c 232 11
733 r12_c 233 12
734 r13_c 234 13
735 r14_c 235 14
736 r15_c 236 15
737
738 pc_c 237 64
739 gbr_c 238 16
740 mach_c 239 17
741 macl_c 240 17
742 pr_c 241 18
743 t_c 242 19
744 fpscr_c 243 76
745 fpul_c 244 109
746
747 fr0_c 245 77
748 fr1_c 246 78
749 fr2_c 247 79
750 fr3_c 248 80
751 fr4_c 249 81
752 fr5_c 250 82
753 fr6_c 251 83
754 fr7_c 252 84
755 fr8_c 253 85
756 fr9_c 254 86
757 fr10_c 255 87
758 fr11_c 256 88
759 fr12_c 257 89
760 fr13_c 258 90
761 fr14_c 259 91
762 fr15_c 260 92
763
764 dr0_c 261 77
765 dr2_c 262 79
766 dr4_c 263 81
767 dr6_c 264 83
768 dr8_c 265 85
769 dr10_c 266 87
770 dr12_c 267 89
771 dr14_c 268 91
772
773 fv0_c 269 77
774 fv4_c 270 81
775 fv8_c 271 85
776 fv12_c 272 91
777*/
778/* *INDENT-ON* */
779static int
d93859e2 780sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 781{
c30dc700 782 int base_regnum = reg_nr;
55ff77ac
CV
783
784 /* general register N maps to general register N */
785 if (reg_nr >= R0_C_REGNUM
786 && reg_nr <= R_LAST_C_REGNUM)
787 base_regnum = reg_nr - R0_C_REGNUM;
788
789 /* floating point register N maps to floating point register N */
790 else if (reg_nr >= FP0_C_REGNUM
791 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 792 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
793
794 /* double prec register N maps to base regnum for double prec register N */
795 else if (reg_nr >= DR0_C_REGNUM
796 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
797 base_regnum = sh64_dr_reg_base_num (gdbarch,
798 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
799
800 /* vector N maps to base regnum for vector register N */
801 else if (reg_nr >= FV0_C_REGNUM
802 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
803 base_regnum = sh64_fv_reg_base_num (gdbarch,
804 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
805
806 else if (reg_nr == PC_C_REGNUM)
d93859e2 807 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
808
809 else if (reg_nr == GBR_C_REGNUM)
810 base_regnum = 16;
811
812 else if (reg_nr == MACH_C_REGNUM
813 || reg_nr == MACL_C_REGNUM)
814 base_regnum = 17;
815
816 else if (reg_nr == PR_C_REGNUM)
c30dc700 817 base_regnum = PR_REGNUM;
55ff77ac
CV
818
819 else if (reg_nr == T_C_REGNUM)
820 base_regnum = 19;
821
822 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 823 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
824
825 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 826 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
827
828 return base_regnum;
829}
830
55ff77ac
CV
831static int
832sign_extend (int value, int bits)
833{
834 value = value & ((1 << bits) - 1);
835 return (value & (1 << (bits - 1))
836 ? value | (~((1 << bits) - 1))
837 : value);
838}
839
840static void
c30dc700
CV
841sh64_analyze_prologue (struct gdbarch *gdbarch,
842 struct sh64_frame_cache *cache,
843 CORE_ADDR func_pc,
844 CORE_ADDR current_pc)
55ff77ac 845{
c30dc700 846 int reg_nr;
55ff77ac
CV
847 int pc;
848 int opc;
849 int insn;
850 int r0_val = 0;
55ff77ac
CV
851 int insn_size;
852 int gdb_register_number;
853 int register_number;
c30dc700 854 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
55ff77ac 855
c30dc700 856 cache->sp_offset = 0;
55ff77ac
CV
857
858 /* Loop around examining the prologue insns until we find something
859 that does not appear to be part of the prologue. But give up
7bb11558 860 after 20 of them, since we're getting silly then. */
55ff77ac 861
c30dc700 862 pc = func_pc;
55ff77ac 863
c30dc700
CV
864 if (cache->media_mode)
865 insn_size = 4;
55ff77ac 866 else
c30dc700 867 insn_size = 2;
55ff77ac 868
c30dc700
CV
869 opc = pc + (insn_size * 28);
870 if (opc > current_pc)
871 opc = current_pc;
872 for ( ; pc <= opc; pc += insn_size)
55ff77ac 873 {
c30dc700
CV
874 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
875 : pc,
55ff77ac
CV
876 insn_size);
877
c30dc700 878 if (!cache->media_mode)
55ff77ac
CV
879 {
880 if (IS_STS_PR (insn))
881 {
882 int next_insn = read_memory_integer (pc + insn_size, insn_size);
883 if (IS_MOV_TO_R15 (next_insn))
884 {
c30dc700
CV
885 cache->saved_regs[PR_REGNUM] =
886 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
887 pc += insn_size;
888 }
889 }
c30dc700 890
55ff77ac 891 else if (IS_MOV_R14 (insn))
c30dc700
CV
892 cache->saved_regs[MEDIA_FP_REGNUM] =
893 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
894
895 else if (IS_MOV_R0 (insn))
896 {
897 /* Put in R0 the offset from SP at which to store some
898 registers. We are interested in this value, because it
899 will tell us where the given registers are stored within
900 the frame. */
901 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
902 }
c30dc700 903
55ff77ac
CV
904 else if (IS_ADD_SP_R0 (insn))
905 {
906 /* This instruction still prepares r0, but we don't care.
7bb11558 907 We already have the offset in r0_val. */
55ff77ac 908 }
c30dc700 909
55ff77ac
CV
910 else if (IS_STS_R0 (insn))
911 {
912 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
c30dc700 913 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 914 r0_val -= 4;
55ff77ac 915 }
c30dc700 916
55ff77ac
CV
917 else if (IS_MOV_R14_R0 (insn))
918 {
919 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
c30dc700
CV
920 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
921 - (r0_val - 4);
55ff77ac
CV
922 r0_val -= 4;
923 }
924
925 else if (IS_ADD_SP (insn))
c30dc700
CV
926 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
927
55ff77ac
CV
928 else if (IS_MOV_SP_FP (insn))
929 break;
930 }
931 else
932 {
c30dc700
CV
933 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
934 cache->sp_offset -=
935 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
936
937 else if (IS_STQ_R18_R15 (insn))
c30dc700
CV
938 cache->saved_regs[PR_REGNUM] =
939 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
940
941 else if (IS_STL_R18_R15 (insn))
c30dc700
CV
942 cache->saved_regs[PR_REGNUM] =
943 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
944
945 else if (IS_STQ_R14_R15 (insn))
c30dc700
CV
946 cache->saved_regs[MEDIA_FP_REGNUM] =
947 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
948
949 else if (IS_STL_R14_R15 (insn))
c30dc700
CV
950 cache->saved_regs[MEDIA_FP_REGNUM] =
951 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
952
953 else if (IS_MOV_SP_FP_MEDIA (insn))
954 break;
955 }
956 }
957
c30dc700
CV
958 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
959 cache->uses_fp = 1;
55ff77ac
CV
960}
961
55ff77ac 962static CORE_ADDR
c30dc700 963sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 964{
c30dc700 965 return sp & ~7;
55ff77ac
CV
966}
967
c30dc700 968/* Function: push_dummy_call
55ff77ac
CV
969 Setup the function arguments for calling a function in the inferior.
970
85a453d5 971 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
972 which are dedicated for passing function arguments. Up to the first
973 four arguments (depending on size) may go into these registers.
974 The rest go on the stack.
975
976 Arguments that are smaller than 4 bytes will still take up a whole
977 register or a whole 32-bit word on the stack, and will be
978 right-justified in the register or the stack word. This includes
979 chars, shorts, and small aggregate types.
980
981 Arguments that are larger than 4 bytes may be split between two or
982 more registers. If there are not enough registers free, an argument
983 may be passed partly in a register (or registers), and partly on the
984 stack. This includes doubles, long longs, and larger aggregates.
985 As far as I know, there is no upper limit to the size of aggregates
986 that will be passed in this way; in other words, the convention of
987 passing a pointer to a large aggregate instead of a copy is not used.
988
989 An exceptional case exists for struct arguments (and possibly other
990 aggregates such as arrays) if the size is larger than 4 bytes but
991 not a multiple of 4 bytes. In this case the argument is never split
992 between the registers and the stack, but instead is copied in its
993 entirety onto the stack, AND also copied into as many registers as
994 there is room for. In other words, space in registers permitting,
995 two copies of the same argument are passed in. As far as I can tell,
996 only the one on the stack is used, although that may be a function
997 of the level of compiler optimization. I suspect this is a compiler
998 bug. Arguments of these odd sizes are left-justified within the
999 word (as opposed to arguments smaller than 4 bytes, which are
1000 right-justified).
1001
1002 If the function is to return an aggregate type such as a struct, it
1003 is either returned in the normal return value register R0 (if its
1004 size is no greater than one byte), or else the caller must allocate
1005 space into which the callee will copy the return value (if the size
1006 is greater than one byte). In this case, a pointer to the return
1007 value location is passed into the callee in register R2, which does
1008 not displace any of the other arguments passed in via registers R4
1009 to R7. */
1010
1011/* R2-R9 for integer types and integer equivalent (char, pointers) and
1012 non-scalar (struct, union) elements (even if the elements are
1013 floats).
1014 FR0-FR11 for single precision floating point (float)
1015 DR0-DR10 for double precision floating point (double)
1016
1017 If a float is argument number 3 (for instance) and arguments number
1018 1,2, and 4 are integer, the mapping will be:
1019 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1020
1021 If a float is argument number 10 (for instance) and arguments number
1022 1 through 10 are integer, the mapping will be:
1023 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1024 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1025 I.e. there is hole in the stack.
1026
1027 Different rules apply for variable arguments functions, and for functions
7bb11558 1028 for which the prototype is not known. */
55ff77ac
CV
1029
1030static CORE_ADDR
c30dc700
CV
1031sh64_push_dummy_call (struct gdbarch *gdbarch,
1032 struct value *function,
1033 struct regcache *regcache,
1034 CORE_ADDR bp_addr,
1035 int nargs, struct value **args,
1036 CORE_ADDR sp, int struct_return,
1037 CORE_ADDR struct_addr)
55ff77ac
CV
1038{
1039 int stack_offset, stack_alloc;
1040 int int_argreg;
1041 int float_argreg;
1042 int double_argreg;
1043 int float_arg_index = 0;
1044 int double_arg_index = 0;
1045 int argnum;
1046 struct type *type;
1047 CORE_ADDR regval;
1048 char *val;
1049 char valbuf[8];
1050 char valbuf_tmp[8];
1051 int len;
1052 int argreg_size;
1053 int fp_args[12];
55ff77ac
CV
1054
1055 memset (fp_args, 0, sizeof (fp_args));
1056
1057 /* first force sp to a 8-byte alignment */
c30dc700 1058 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1059
1060 /* The "struct return pointer" pseudo-argument has its own dedicated
1061 register */
1062
1063 if (struct_return)
c30dc700
CV
1064 regcache_cooked_write_unsigned (regcache,
1065 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac
CV
1066
1067 /* Now make sure there's space on the stack */
1068 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1069 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
55ff77ac
CV
1070 sp -= stack_alloc; /* make room on stack for args */
1071
1072 /* Now load as many as possible of the first arguments into
1073 registers, and push the rest onto the stack. There are 64 bytes
1074 in eight registers available. Loop thru args from first to last. */
1075
1076 int_argreg = ARG0_REGNUM;
58643501 1077 float_argreg = gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
1078 double_argreg = DR0_REGNUM;
1079
1080 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1081 {
4991999e 1082 type = value_type (args[argnum]);
55ff77ac
CV
1083 len = TYPE_LENGTH (type);
1084 memset (valbuf, 0, sizeof (valbuf));
1085
1086 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1087 {
58643501 1088 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1089
1090 if (len < argreg_size)
1091 {
1092 /* value gets right-justified in the register or stack word */
58643501 1093 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1094 memcpy (valbuf + argreg_size - len,
0fd88904 1095 (char *) value_contents (args[argnum]), len);
55ff77ac 1096 else
0fd88904 1097 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
55ff77ac
CV
1098
1099 val = valbuf;
1100 }
1101 else
0fd88904 1102 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1103
1104 while (len > 0)
1105 {
1106 if (int_argreg > ARGLAST_REGNUM)
1107 {
1108 /* must go on the stack */
079c8cd0
CV
1109 write_memory (sp + stack_offset, (const bfd_byte *) val,
1110 argreg_size);
55ff77ac
CV
1111 stack_offset += 8;/*argreg_size;*/
1112 }
1113 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1114 That's because some *&^%$ things get passed on the stack
1115 AND in the registers! */
1116 if (int_argreg <= ARGLAST_REGNUM)
1117 {
1118 /* there's room in a register */
1119 regval = extract_unsigned_integer (val, argreg_size);
c30dc700 1120 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
55ff77ac
CV
1121 }
1122 /* Store the value 8 bytes at a time. This means that
1123 things larger than 8 bytes may go partly in registers
1124 and partly on the stack. FIXME: argreg is incremented
7bb11558 1125 before we use its size. */
55ff77ac
CV
1126 len -= argreg_size;
1127 val += argreg_size;
1128 int_argreg++;
1129 }
1130 }
1131 else
1132 {
0fd88904 1133 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1134 if (len == 4)
1135 {
1136 /* Where is it going to be stored? */
1137 while (fp_args[float_arg_index])
1138 float_arg_index ++;
1139
1140 /* Now float_argreg points to the register where it
1141 should be stored. Are we still within the allowed
1142 register set? */
1143 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1144 {
1145 /* Goes in FR0...FR11 */
c30dc700 1146 regcache_cooked_write (regcache,
58643501 1147 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1148 + float_arg_index,
c30dc700 1149 val);
55ff77ac 1150 fp_args[float_arg_index] = 1;
7bb11558 1151 /* Skip the corresponding general argument register. */
55ff77ac
CV
1152 int_argreg ++;
1153 }
1154 else
1155 ;
1156 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1157 necessary spilling on the stack. */
55ff77ac
CV
1158
1159 }
1160 else if (len == 8)
1161 {
1162 /* Where is it going to be stored? */
1163 while (fp_args[double_arg_index])
1164 double_arg_index += 2;
1165 /* Now double_argreg points to the register
1166 where it should be stored.
1167 Are we still within the allowed register set? */
1168 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1169 {
1170 /* Goes in DR0...DR10 */
1171 /* The numbering of the DRi registers is consecutive,
7bb11558 1172 i.e. includes odd numbers. */
55ff77ac 1173 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1174 int regnum = DR0_REGNUM + double_register_offset;
1175 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1176 fp_args[double_arg_index] = 1;
1177 fp_args[double_arg_index + 1] = 1;
7bb11558 1178 /* Skip the corresponding general argument register. */
55ff77ac
CV
1179 int_argreg ++;
1180 }
1181 else
1182 ;
1183 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1184 necessary spilling on the stack. */
55ff77ac
CV
1185 }
1186 }
1187 }
c30dc700
CV
1188 /* Store return address. */
1189 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1190
c30dc700 1191 /* Update stack pointer. */
3e8c568d 1192 regcache_cooked_write_unsigned (regcache,
58643501 1193 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1194
55ff77ac
CV
1195 return sp;
1196}
1197
1198/* Find a function's return value in the appropriate registers (in
1199 regbuf), and copy it into valbuf. Extract from an array REGBUF
1200 containing the (raw) register state a function return value of type
1201 TYPE, and copy that, in virtual format, into VALBUF. */
1202static void
c30dc700
CV
1203sh64_extract_return_value (struct type *type, struct regcache *regcache,
1204 void *valbuf)
55ff77ac 1205{
d93859e2 1206 struct gdbarch *gdbarch = get_regcache_arch (regcache);
55ff77ac 1207 int len = TYPE_LENGTH (type);
d93859e2 1208
55ff77ac
CV
1209 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1210 {
1211 if (len == 4)
1212 {
3e8c568d
UW
1213 /* Return value stored in gdbarch_fp0_regnum */
1214 regcache_raw_read (regcache,
d93859e2 1215 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1216 }
1217 else if (len == 8)
1218 {
1219 /* return value stored in DR0_REGNUM */
1220 DOUBLEST val;
18cf8b5b 1221 gdb_byte buf[8];
55ff77ac 1222
18cf8b5b 1223 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1224
d93859e2 1225 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1226 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1227 buf, &val);
55ff77ac
CV
1228 else
1229 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1230 buf, &val);
7bb11558 1231 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1232 }
1233 }
1234 else
1235 {
1236 if (len <= 8)
1237 {
c30dc700
CV
1238 int offset;
1239 char buf[8];
55ff77ac 1240 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1241 at the most significant end. */
c30dc700
CV
1242 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1243
d93859e2
UW
1244 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1245 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1246 - len;
55ff77ac 1247 else
c30dc700
CV
1248 offset = 0;
1249 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1250 }
1251 else
1252 error ("bad size for return value");
1253 }
1254}
1255
1256/* Write into appropriate registers a function return value
1257 of type TYPE, given in virtual format.
1258 If the architecture is sh4 or sh3e, store a function's return value
1259 in the R0 general register or in the FP0 floating point register,
1260 depending on the type of the return value. In all the other cases
7bb11558 1261 the result is stored in r0, left-justified. */
55ff77ac
CV
1262
1263static void
c30dc700
CV
1264sh64_store_return_value (struct type *type, struct regcache *regcache,
1265 const void *valbuf)
55ff77ac 1266{
d93859e2 1267 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7bb11558 1268 char buf[64]; /* more than enough... */
55ff77ac
CV
1269 int len = TYPE_LENGTH (type);
1270
1271 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1272 {
d93859e2 1273 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1274 for (i = 0; i < len; i += 4)
d93859e2 1275 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700
CV
1276 regcache_raw_write (regcache, regnum++,
1277 (char *) valbuf + len - 4 - i);
1278 else
1279 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
55ff77ac
CV
1280 }
1281 else
1282 {
1283 int return_register = DEFAULT_RETURN_REGNUM;
1284 int offset = 0;
1285
d93859e2 1286 if (len <= register_size (gdbarch, return_register))
55ff77ac 1287 {
7bb11558 1288 /* Pad with zeros. */
d93859e2
UW
1289 memset (buf, 0, register_size (gdbarch, return_register));
1290 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1291 offset = 0; /*register_size (gdbarch,
7bb11558 1292 return_register) - len;*/
55ff77ac 1293 else
d93859e2 1294 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1295
1296 memcpy (buf + offset, valbuf, len);
c30dc700 1297 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1298 }
1299 else
c30dc700 1300 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1301 }
1302}
1303
c30dc700 1304static enum return_value_convention
c055b101
CV
1305sh64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1306 struct type *type, struct regcache *regcache,
18cf8b5b 1307 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1308{
1309 if (sh64_use_struct_convention (type))
1310 return RETURN_VALUE_STRUCT_CONVENTION;
1311 if (writebuf)
1312 sh64_store_return_value (type, regcache, writebuf);
1313 else if (readbuf)
1314 sh64_extract_return_value (type, regcache, readbuf);
1315 return RETURN_VALUE_REGISTER_CONVENTION;
1316}
1317
55ff77ac 1318static void
c458d6db 1319sh64_show_media_regs (struct frame_info *frame)
55ff77ac 1320{
58643501 1321 struct gdbarch *gdbarch = get_frame_arch (frame);
55ff77ac 1322 int i;
55ff77ac 1323
c458d6db
UW
1324 printf_filtered
1325 ("PC=%s SR=%016llx \n",
3e8c568d 1326 paddr (get_frame_register_unsigned (frame,
58643501 1327 gdbarch_pc_regnum (gdbarch))),
c458d6db 1328 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
55ff77ac 1329
c458d6db
UW
1330 printf_filtered
1331 ("SSR=%016llx SPC=%016llx \n",
1332 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1333 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1334 printf_filtered
1335 ("FPSCR=%016lx\n ",
1336 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
55ff77ac
CV
1337
1338 for (i = 0; i < 64; i = i + 4)
c458d6db
UW
1339 printf_filtered
1340 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1341 i, i + 3,
1342 (long long) get_frame_register_unsigned (frame, i + 0),
1343 (long long) get_frame_register_unsigned (frame, i + 1),
1344 (long long) get_frame_register_unsigned (frame, i + 2),
1345 (long long) get_frame_register_unsigned (frame, i + 3));
55ff77ac
CV
1346
1347 printf_filtered ("\n");
1348
1349 for (i = 0; i < 64; i = i + 8)
c458d6db
UW
1350 printf_filtered
1351 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1352 i, i + 7,
3e8c568d 1353 (long) get_frame_register_unsigned
58643501 1354 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
3e8c568d 1355 (long) get_frame_register_unsigned
58643501 1356 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
3e8c568d 1357 (long) get_frame_register_unsigned
58643501 1358 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
3e8c568d 1359 (long) get_frame_register_unsigned
58643501 1360 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
3e8c568d 1361 (long) get_frame_register_unsigned
58643501 1362 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
3e8c568d 1363 (long) get_frame_register_unsigned
58643501 1364 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
3e8c568d 1365 (long) get_frame_register_unsigned
58643501 1366 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
3e8c568d 1367 (long) get_frame_register_unsigned
58643501 1368 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
55ff77ac
CV
1369}
1370
1371static void
c458d6db 1372sh64_show_compact_regs (struct frame_info *frame)
55ff77ac 1373{
58643501 1374 struct gdbarch *gdbarch = get_frame_arch (frame);
55ff77ac 1375 int i;
55ff77ac 1376
c458d6db
UW
1377 printf_filtered
1378 ("PC=%s \n",
1379 paddr (get_frame_register_unsigned (frame, PC_C_REGNUM)));
1380
1381 printf_filtered
1382 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1383 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1384 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1385 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1386 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1387 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1388 printf_filtered
1389 ("FPSCR=%08lx FPUL=%08lx\n",
1390 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1391 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
55ff77ac
CV
1392
1393 for (i = 0; i < 16; i = i + 4)
c458d6db
UW
1394 printf_filtered
1395 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1396 i, i + 3,
1397 (long) get_frame_register_unsigned (frame, i + 0),
1398 (long) get_frame_register_unsigned (frame, i + 1),
1399 (long) get_frame_register_unsigned (frame, i + 2),
1400 (long) get_frame_register_unsigned (frame, i + 3));
55ff77ac
CV
1401
1402 printf_filtered ("\n");
1403
1404 for (i = 0; i < 16; i = i + 8)
c458d6db
UW
1405 printf_filtered
1406 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1407 i, i + 7,
3e8c568d 1408 (long) get_frame_register_unsigned
58643501 1409 (frame, gdbarch_fp0_regnum (gdbarch) + i + 0),
3e8c568d 1410 (long) get_frame_register_unsigned
58643501 1411 (frame, gdbarch_fp0_regnum (gdbarch) + i + 1),
3e8c568d 1412 (long) get_frame_register_unsigned
58643501 1413 (frame, gdbarch_fp0_regnum (gdbarch) + i + 2),
3e8c568d 1414 (long) get_frame_register_unsigned
58643501 1415 (frame, gdbarch_fp0_regnum (gdbarch) + i + 3),
3e8c568d 1416 (long) get_frame_register_unsigned
58643501 1417 (frame, gdbarch_fp0_regnum (gdbarch) + i + 4),
3e8c568d 1418 (long) get_frame_register_unsigned
58643501 1419 (frame, gdbarch_fp0_regnum (gdbarch) + i + 5),
3e8c568d 1420 (long) get_frame_register_unsigned
58643501 1421 (frame, gdbarch_fp0_regnum (gdbarch) + i + 6),
3e8c568d 1422 (long) get_frame_register_unsigned
58643501 1423 (frame, gdbarch_fp0_regnum (gdbarch) + i + 7));
55ff77ac
CV
1424}
1425
7bb11558
MS
1426/* FIXME!!! This only shows the registers for shmedia, excluding the
1427 pseudo registers. */
55ff77ac 1428void
c458d6db 1429sh64_show_regs (struct frame_info *frame)
55ff77ac 1430{
c458d6db
UW
1431 if (pc_is_isa32 (get_frame_pc (frame)))
1432 sh64_show_media_regs (frame);
55ff77ac 1433 else
c458d6db 1434 sh64_show_compact_regs (frame);
55ff77ac
CV
1435}
1436
1437/* *INDENT-OFF* */
1438/*
1439 SH MEDIA MODE (ISA 32)
1440 general registers (64-bit) 0-63
14410 r0, r1, r2, r3, r4, r5, r6, r7,
144264 r8, r9, r10, r11, r12, r13, r14, r15,
1443128 r16, r17, r18, r19, r20, r21, r22, r23,
1444192 r24, r25, r26, r27, r28, r29, r30, r31,
1445256 r32, r33, r34, r35, r36, r37, r38, r39,
1446320 r40, r41, r42, r43, r44, r45, r46, r47,
1447384 r48, r49, r50, r51, r52, r53, r54, r55,
1448448 r56, r57, r58, r59, r60, r61, r62, r63,
1449
1450 pc (64-bit) 64
1451512 pc,
1452
1453 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1454520 sr, ssr, spc,
1455
1456 target registers (64-bit) 68-75
1457544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1458
1459 floating point state control register (32-bit) 76
1460608 fpscr,
1461
1462 single precision floating point registers (32-bit) 77-140
1463612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1464644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1465676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1466708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1467740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1468772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1469804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1470836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1471
1472TOTAL SPACE FOR REGISTERS: 868 bytes
1473
1474From here on they are all pseudo registers: no memory allocated.
1475REGISTER_BYTE returns the register byte for the base register.
1476
1477 double precision registers (pseudo) 141-172
1478 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1479 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1480 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1481 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1482
1483 floating point pairs (pseudo) 173-204
1484 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1485 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1486 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1487 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1488
1489 floating point vectors (4 floating point regs) (pseudo) 205-220
1490 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1491 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1492
1493 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1494 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1495 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1496 pc_c,
1497 gbr_c, mach_c, macl_c, pr_c, t_c,
1498 fpscr_c, fpul_c,
1499 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1500 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1501 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1502 fv0_c, fv4_c, fv8_c, fv12_c
1503*/
55ff77ac 1504
55ff77ac 1505static struct type *
39add00a 1506sh64_build_float_register_type (int high)
55ff77ac
CV
1507{
1508 struct type *temp;
1509
1510 temp = create_range_type (NULL, builtin_type_int, 0, high);
1511 return create_array_type (NULL, builtin_type_float, temp);
1512}
1513
7bb11558
MS
1514/* Return the GDB type object for the "standard" data type
1515 of data in register REG_NR. */
55ff77ac 1516static struct type *
7bb11558 1517sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1518{
58643501 1519 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1520 && reg_nr <= FP_LAST_REGNUM)
1521 || (reg_nr >= FP0_C_REGNUM
1522 && reg_nr <= FP_LAST_C_REGNUM))
1523 return builtin_type_float;
1524 else if ((reg_nr >= DR0_REGNUM
1525 && reg_nr <= DR_LAST_REGNUM)
1526 || (reg_nr >= DR0_C_REGNUM
1527 && reg_nr <= DR_LAST_C_REGNUM))
1528 return builtin_type_double;
1529 else if (reg_nr >= FPP0_REGNUM
1530 && reg_nr <= FPP_LAST_REGNUM)
39add00a 1531 return sh64_build_float_register_type (1);
55ff77ac
CV
1532 else if ((reg_nr >= FV0_REGNUM
1533 && reg_nr <= FV_LAST_REGNUM)
1534 ||(reg_nr >= FV0_C_REGNUM
1535 && reg_nr <= FV_LAST_C_REGNUM))
39add00a 1536 return sh64_build_float_register_type (3);
55ff77ac
CV
1537 else if (reg_nr == FPSCR_REGNUM)
1538 return builtin_type_int;
1539 else if (reg_nr >= R0_C_REGNUM
1540 && reg_nr < FP0_C_REGNUM)
1541 return builtin_type_int;
1542 else
1543 return builtin_type_long_long;
1544}
1545
1546static void
d93859e2
UW
1547sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1548 struct type *type, char *from, char *to)
55ff77ac 1549{
d93859e2 1550 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1551 {
7bb11558 1552 /* It is a no-op. */
d93859e2 1553 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1554 return;
1555 }
1556
1557 if ((regnum >= DR0_REGNUM
1558 && regnum <= DR_LAST_REGNUM)
1559 || (regnum >= DR0_C_REGNUM
1560 && regnum <= DR_LAST_C_REGNUM))
1561 {
1562 DOUBLEST val;
7bb11558
MS
1563 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1564 from, &val);
39add00a 1565 store_typed_floating (to, type, val);
55ff77ac
CV
1566 }
1567 else
39add00a 1568 error ("sh64_register_convert_to_virtual called with non DR register number");
55ff77ac
CV
1569}
1570
1571static void
d93859e2
UW
1572sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1573 int regnum, const void *from, void *to)
55ff77ac 1574{
d93859e2 1575 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1576 {
7bb11558 1577 /* It is a no-op. */
d93859e2 1578 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1579 return;
1580 }
1581
1582 if ((regnum >= DR0_REGNUM
1583 && regnum <= DR_LAST_REGNUM)
1584 || (regnum >= DR0_C_REGNUM
1585 && regnum <= DR_LAST_C_REGNUM))
1586 {
1587 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
7bb11558
MS
1588 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1589 &val, to);
55ff77ac
CV
1590 }
1591 else
39add00a 1592 error ("sh64_register_convert_to_raw called with non DR register number");
55ff77ac
CV
1593}
1594
1595static void
1596sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1597 int reg_nr, gdb_byte *buffer)
55ff77ac
CV
1598{
1599 int base_regnum;
1600 int portion;
1601 int offset = 0;
1602 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1603
1604 if (reg_nr >= DR0_REGNUM
1605 && reg_nr <= DR_LAST_REGNUM)
1606 {
d93859e2 1607 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1608
7bb11558 1609 /* Build the value in the provided buffer. */
55ff77ac 1610 /* DR regs are double precision registers obtained by
7bb11558 1611 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1612 for (portion = 0; portion < 2; portion++)
1613 regcache_raw_read (regcache, base_regnum + portion,
1614 (temp_buffer
7bb11558 1615 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1616
7bb11558 1617 /* We must pay attention to the endianness. */
d93859e2 1618 sh64_register_convert_to_virtual (gdbarch, reg_nr,
7b9ee6a8 1619 register_type (gdbarch, reg_nr),
39add00a 1620 temp_buffer, buffer);
55ff77ac
CV
1621
1622 }
1623
1624 else if (reg_nr >= FPP0_REGNUM
1625 && reg_nr <= FPP_LAST_REGNUM)
1626 {
d93859e2 1627 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1628
7bb11558 1629 /* Build the value in the provided buffer. */
55ff77ac 1630 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1631 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1632 for (portion = 0; portion < 2; portion++)
1633 regcache_raw_read (regcache, base_regnum + portion,
1634 ((char *) buffer
7bb11558 1635 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1636 }
1637
1638 else if (reg_nr >= FV0_REGNUM
1639 && reg_nr <= FV_LAST_REGNUM)
1640 {
d93859e2 1641 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1642
7bb11558 1643 /* Build the value in the provided buffer. */
55ff77ac 1644 /* FV regs are vectors of single precision registers obtained by
7bb11558 1645 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1646 for (portion = 0; portion < 4; portion++)
1647 regcache_raw_read (regcache, base_regnum + portion,
1648 ((char *) buffer
7bb11558 1649 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1650 }
1651
1652 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1653 else if (reg_nr >= R0_C_REGNUM
1654 && reg_nr <= T_C_REGNUM)
1655 {
d93859e2 1656 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1657
7bb11558 1658 /* Build the value in the provided buffer. */
55ff77ac 1659 regcache_raw_read (regcache, base_regnum, temp_buffer);
58643501 1660 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1661 offset = 4;
1662 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1663 }
1664
1665 else if (reg_nr >= FP0_C_REGNUM
1666 && reg_nr <= FP_LAST_C_REGNUM)
1667 {
d93859e2 1668 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1669
7bb11558 1670 /* Build the value in the provided buffer. */
55ff77ac 1671 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1672 they have the same size and endianness. */
55ff77ac
CV
1673 regcache_raw_read (regcache, base_regnum, buffer);
1674 }
1675
1676 else if (reg_nr >= DR0_C_REGNUM
1677 && reg_nr <= DR_LAST_C_REGNUM)
1678 {
d93859e2 1679 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1680
1681 /* DR_C regs are double precision registers obtained by
7bb11558 1682 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1683 for (portion = 0; portion < 2; portion++)
1684 regcache_raw_read (regcache, base_regnum + portion,
1685 (temp_buffer
7bb11558 1686 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1687
7bb11558 1688 /* We must pay attention to the endianness. */
d93859e2 1689 sh64_register_convert_to_virtual (gdbarch, reg_nr,
7b9ee6a8 1690 register_type (gdbarch, reg_nr),
39add00a 1691 temp_buffer, buffer);
55ff77ac
CV
1692 }
1693
1694 else if (reg_nr >= FV0_C_REGNUM
1695 && reg_nr <= FV_LAST_C_REGNUM)
1696 {
d93859e2 1697 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1698
7bb11558 1699 /* Build the value in the provided buffer. */
55ff77ac 1700 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1701 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1702 for (portion = 0; portion < 4; portion++)
1703 regcache_raw_read (regcache, base_regnum + portion,
1704 ((char *) buffer
7bb11558 1705 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1706 }
1707
1708 else if (reg_nr == FPSCR_C_REGNUM)
1709 {
1710 int fpscr_base_regnum;
1711 int sr_base_regnum;
1712 unsigned int fpscr_value;
1713 unsigned int sr_value;
1714 unsigned int fpscr_c_value;
1715 unsigned int fpscr_c_part1_value;
1716 unsigned int fpscr_c_part2_value;
1717
1718 fpscr_base_regnum = FPSCR_REGNUM;
1719 sr_base_regnum = SR_REGNUM;
1720
7bb11558 1721 /* Build the value in the provided buffer. */
55ff77ac
CV
1722 /* FPSCR_C is a very weird register that contains sparse bits
1723 from the FPSCR and the SR architectural registers.
1724 Specifically: */
1725 /* *INDENT-OFF* */
1726 /*
1727 FPSRC_C bit
1728 0 Bit 0 of FPSCR
1729 1 reserved
1730 2-17 Bit 2-18 of FPSCR
1731 18-20 Bits 12,13,14 of SR
1732 21-31 reserved
1733 */
1734 /* *INDENT-ON* */
1735 /* Get FPSCR into a local buffer */
1736 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
7bb11558 1737 /* Get value as an int. */
55ff77ac
CV
1738 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1739 /* Get SR into a local buffer */
1740 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
7bb11558 1741 /* Get value as an int. */
55ff77ac 1742 sr_value = extract_unsigned_integer (temp_buffer, 4);
7bb11558 1743 /* Build the new value. */
55ff77ac
CV
1744 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1745 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1746 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1747 /* Store that in out buffer!!! */
1748 store_unsigned_integer (buffer, 4, fpscr_c_value);
7bb11558 1749 /* FIXME There is surely an endianness gotcha here. */
55ff77ac
CV
1750 }
1751
1752 else if (reg_nr == FPUL_C_REGNUM)
1753 {
d93859e2 1754 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1755
1756 /* FPUL_C register is floating point register 32,
7bb11558 1757 same size, same endianness. */
55ff77ac
CV
1758 regcache_raw_read (regcache, base_regnum, buffer);
1759 }
1760}
1761
1762static void
1763sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1764 int reg_nr, const gdb_byte *buffer)
55ff77ac
CV
1765{
1766 int base_regnum, portion;
1767 int offset;
1768 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1769
1770 if (reg_nr >= DR0_REGNUM
1771 && reg_nr <= DR_LAST_REGNUM)
1772 {
d93859e2 1773 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1774 /* We must pay attention to the endianness. */
d93859e2 1775 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1776 reg_nr,
1777 buffer, temp_buffer);
55ff77ac
CV
1778
1779 /* Write the real regs for which this one is an alias. */
1780 for (portion = 0; portion < 2; portion++)
1781 regcache_raw_write (regcache, base_regnum + portion,
1782 (temp_buffer
7bb11558
MS
1783 + register_size (gdbarch,
1784 base_regnum) * portion));
55ff77ac
CV
1785 }
1786
1787 else if (reg_nr >= FPP0_REGNUM
1788 && reg_nr <= FPP_LAST_REGNUM)
1789 {
d93859e2 1790 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1791
1792 /* Write the real regs for which this one is an alias. */
1793 for (portion = 0; portion < 2; portion++)
1794 regcache_raw_write (regcache, base_regnum + portion,
1795 ((char *) buffer
7bb11558
MS
1796 + register_size (gdbarch,
1797 base_regnum) * portion));
55ff77ac
CV
1798 }
1799
1800 else if (reg_nr >= FV0_REGNUM
1801 && reg_nr <= FV_LAST_REGNUM)
1802 {
d93859e2 1803 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1804
1805 /* Write the real regs for which this one is an alias. */
1806 for (portion = 0; portion < 4; portion++)
1807 regcache_raw_write (regcache, base_regnum + portion,
1808 ((char *) buffer
7bb11558
MS
1809 + register_size (gdbarch,
1810 base_regnum) * portion));
55ff77ac
CV
1811 }
1812
1813 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1814 register but only 4 bytes of it. */
1815 else if (reg_nr >= R0_C_REGNUM
1816 && reg_nr <= T_C_REGNUM)
1817 {
d93859e2 1818 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1819 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1820 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1821 offset = 4;
1822 else
1823 offset = 0;
1824 /* Let's read the value of the base register into a temporary
1825 buffer, so that overwriting the last four bytes with the new
7bb11558 1826 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac
CV
1827 regcache_raw_read (regcache, base_regnum, temp_buffer);
1828 /* Write as an 8 byte quantity */
1829 memcpy (temp_buffer + offset, buffer, 4);
1830 regcache_raw_write (regcache, base_regnum, temp_buffer);
1831 }
1832
1833 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
7bb11558 1834 registers. Both are 4 bytes. */
55ff77ac
CV
1835 else if (reg_nr >= FP0_C_REGNUM
1836 && reg_nr <= FP_LAST_C_REGNUM)
1837 {
d93859e2 1838 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1839 regcache_raw_write (regcache, base_regnum, buffer);
1840 }
1841
1842 else if (reg_nr >= DR0_C_REGNUM
1843 && reg_nr <= DR_LAST_C_REGNUM)
1844 {
d93859e2 1845 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1846 for (portion = 0; portion < 2; portion++)
1847 {
7bb11558 1848 /* We must pay attention to the endianness. */
d93859e2
UW
1849 sh64_register_convert_to_raw (gdbarch,
1850 register_type (gdbarch, reg_nr),
39add00a
MS
1851 reg_nr,
1852 buffer, temp_buffer);
55ff77ac
CV
1853
1854 regcache_raw_write (regcache, base_regnum + portion,
1855 (temp_buffer
7bb11558
MS
1856 + register_size (gdbarch,
1857 base_regnum) * portion));
55ff77ac
CV
1858 }
1859 }
1860
1861 else if (reg_nr >= FV0_C_REGNUM
1862 && reg_nr <= FV_LAST_C_REGNUM)
1863 {
d93859e2 1864 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1865
1866 for (portion = 0; portion < 4; portion++)
1867 {
1868 regcache_raw_write (regcache, base_regnum + portion,
1869 ((char *) buffer
7bb11558
MS
1870 + register_size (gdbarch,
1871 base_regnum) * portion));
55ff77ac
CV
1872 }
1873 }
1874
1875 else if (reg_nr == FPSCR_C_REGNUM)
1876 {
1877 int fpscr_base_regnum;
1878 int sr_base_regnum;
1879 unsigned int fpscr_value;
1880 unsigned int sr_value;
1881 unsigned int old_fpscr_value;
1882 unsigned int old_sr_value;
1883 unsigned int fpscr_c_value;
1884 unsigned int fpscr_mask;
1885 unsigned int sr_mask;
1886
1887 fpscr_base_regnum = FPSCR_REGNUM;
1888 sr_base_regnum = SR_REGNUM;
1889
1890 /* FPSCR_C is a very weird register that contains sparse bits
1891 from the FPSCR and the SR architectural registers.
1892 Specifically: */
1893 /* *INDENT-OFF* */
1894 /*
1895 FPSRC_C bit
1896 0 Bit 0 of FPSCR
1897 1 reserved
1898 2-17 Bit 2-18 of FPSCR
1899 18-20 Bits 12,13,14 of SR
1900 21-31 reserved
1901 */
1902 /* *INDENT-ON* */
7bb11558 1903 /* Get value as an int. */
55ff77ac
CV
1904 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1905
7bb11558 1906 /* Build the new values. */
55ff77ac
CV
1907 fpscr_mask = 0x0003fffd;
1908 sr_mask = 0x001c0000;
1909
1910 fpscr_value = fpscr_c_value & fpscr_mask;
1911 sr_value = (fpscr_value & sr_mask) >> 6;
1912
1913 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1914 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1915 old_fpscr_value &= 0xfffc0002;
1916 fpscr_value |= old_fpscr_value;
1917 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1918 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1919
1920 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1921 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1922 old_sr_value &= 0xffff8fff;
1923 sr_value |= old_sr_value;
1924 store_unsigned_integer (temp_buffer, 4, sr_value);
1925 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1926 }
1927
1928 else if (reg_nr == FPUL_C_REGNUM)
1929 {
d93859e2 1930 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1931 regcache_raw_write (regcache, base_regnum, buffer);
1932 }
1933}
1934
55ff77ac 1935/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1936 shmedia REGISTERS. */
1937/* Control registers, compact mode. */
55ff77ac 1938static void
c30dc700
CV
1939sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1940 int cr_c_regnum)
55ff77ac
CV
1941{
1942 switch (cr_c_regnum)
1943 {
c30dc700
CV
1944 case PC_C_REGNUM:
1945 fprintf_filtered (file, "pc_c\t0x%08x\n",
1946 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1947 break;
c30dc700
CV
1948 case GBR_C_REGNUM:
1949 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1950 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1951 break;
c30dc700
CV
1952 case MACH_C_REGNUM:
1953 fprintf_filtered (file, "mach_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1955 break;
c30dc700
CV
1956 case MACL_C_REGNUM:
1957 fprintf_filtered (file, "macl_c\t0x%08x\n",
1958 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1959 break;
c30dc700
CV
1960 case PR_C_REGNUM:
1961 fprintf_filtered (file, "pr_c\t0x%08x\n",
1962 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1963 break;
c30dc700
CV
1964 case T_C_REGNUM:
1965 fprintf_filtered (file, "t_c\t0x%08x\n",
1966 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1967 break;
c30dc700
CV
1968 case FPSCR_C_REGNUM:
1969 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1970 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1971 break;
c30dc700
CV
1972 case FPUL_C_REGNUM:
1973 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1974 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1975 break;
1976 }
1977}
1978
1979static void
c30dc700
CV
1980sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1981 struct frame_info *frame, int regnum)
55ff77ac 1982{ /* do values for FP (float) regs */
079c8cd0 1983 unsigned char *raw_buffer;
55ff77ac
CV
1984 double flt; /* double extracted from raw hex data */
1985 int inv;
1986 int j;
1987
7bb11558 1988 /* Allocate space for the float. */
3e8c568d
UW
1989 raw_buffer = (unsigned char *) alloca
1990 (register_size (gdbarch,
1991 gdbarch_fp0_regnum
58643501 1992 (gdbarch)));
55ff77ac
CV
1993
1994 /* Get the data in raw format. */
c30dc700 1995 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572 1996 error ("can't read register %d (%s)",
58643501 1997 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac
CV
1998
1999 /* Get the register as a number */
2000 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2001
7bb11558 2002 /* Print the name and some spaces. */
58643501 2003 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2004 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2005 (gdbarch, regnum)), file);
55ff77ac 2006
7bb11558 2007 /* Print the value. */
55ff77ac
CV
2008 if (inv)
2009 fprintf_filtered (file, "<invalid float>");
2010 else
2011 fprintf_filtered (file, "%-10.9g", flt);
2012
7bb11558 2013 /* Print the fp register as hex. */
55ff77ac
CV
2014 fprintf_filtered (file, "\t(raw 0x");
2015 for (j = 0; j < register_size (gdbarch, regnum); j++)
2016 {
58643501 2017 int idx = gdbarch_byte_order (gdbarch)
4c6b5505
UW
2018 == BFD_ENDIAN_BIG ? j : register_size
2019 (gdbarch, regnum) - 1 - j;
079c8cd0 2020 fprintf_filtered (file, "%02x", raw_buffer[idx]);
55ff77ac
CV
2021 }
2022 fprintf_filtered (file, ")");
2023 fprintf_filtered (file, "\n");
2024}
2025
2026static void
c30dc700
CV
2027sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2028 struct frame_info *frame, int regnum)
55ff77ac 2029{
7bb11558 2030 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 2031
58643501
UW
2032 if (regnum < gdbarch_num_regs (gdbarch)
2033 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
2034 + NUM_PSEUDO_REGS_SH_MEDIA
2035 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 2036 internal_error (__FILE__, __LINE__,
e2e0b3e5 2037 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 2038
c30dc700
CV
2039 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2040 {
d93859e2 2041 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
2042 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2043 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2044 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2045 }
55ff77ac 2046
c30dc700
CV
2047 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2048 {
d93859e2 2049 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2050 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2053 }
55ff77ac 2054
c30dc700
CV
2055 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2056 {
d93859e2 2057 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
2058 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2059 regnum - FV0_REGNUM,
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2061 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2062 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2063 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2064 }
55ff77ac 2065
c30dc700
CV
2066 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2067 {
d93859e2 2068 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2069 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2070 regnum - FV0_C_REGNUM,
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2072 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2073 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2074 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2075 }
2076
2077 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2078 {
d93859e2 2079 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2080 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2083 }
2084
2085 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2086 {
d93859e2 2087 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2088 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2090 }
2091 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2092 /* This should work also for pseudoregs. */
c30dc700
CV
2093 sh64_do_fp_register (gdbarch, file, frame, regnum);
2094 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2095 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2096}
2097
2098static void
c30dc700
CV
2099sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2100 struct frame_info *frame, int regnum)
55ff77ac 2101{
079c8cd0 2102 unsigned char raw_buffer[MAX_REGISTER_SIZE];
55ff77ac 2103
58643501 2104 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2105 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2106 (gdbarch, regnum)), file);
55ff77ac
CV
2107
2108 /* Get the data in raw format. */
c30dc700 2109 if (!frame_register_read (frame, regnum, raw_buffer))
55ff77ac
CV
2110 fprintf_filtered (file, "*value not available*\n");
2111
7b9ee6a8 2112 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
d8ca156b 2113 file, 'x', 1, 0, Val_pretty_default, current_language);
55ff77ac 2114 fprintf_filtered (file, "\t");
7b9ee6a8 2115 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
d8ca156b 2116 file, 0, 1, 0, Val_pretty_default, current_language);
55ff77ac
CV
2117 fprintf_filtered (file, "\n");
2118}
2119
2120static void
c30dc700
CV
2121sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2122 struct frame_info *frame, int regnum)
55ff77ac 2123{
58643501
UW
2124 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2125 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2126 internal_error (__FILE__, __LINE__,
e2e0b3e5 2127 _("Invalid register number %d\n"), regnum);
55ff77ac 2128
58643501 2129 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2130 {
7b9ee6a8 2131 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2132 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2133 else
c30dc700 2134 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2135 }
2136
58643501
UW
2137 else if (regnum < gdbarch_num_regs (gdbarch)
2138 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2139 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2140}
2141
2142static void
c30dc700
CV
2143sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2144 struct frame_info *frame, int regnum,
2145 int fpregs)
55ff77ac
CV
2146{
2147 if (regnum != -1) /* do one specified register */
2148 {
58643501 2149 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2150 error ("Not a valid register for the current processor type");
2151
c30dc700 2152 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2153 }
2154 else
2155 /* do all (or most) registers */
2156 {
2157 regnum = 0;
58643501 2158 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2159 {
2160 /* If the register name is empty, it is undefined for this
2161 processor, so don't display anything. */
58643501
UW
2162 if (gdbarch_register_name (gdbarch, regnum) == NULL
2163 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2164 {
2165 regnum++;
2166 continue;
2167 }
2168
7b9ee6a8 2169 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2170 == TYPE_CODE_FLT)
55ff77ac
CV
2171 {
2172 if (fpregs)
2173 {
2174 /* true for "INFO ALL-REGISTERS" command */
c30dc700 2175 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2176 regnum ++;
2177 }
2178 else
58643501 2179 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2180 /* skip FP regs */
55ff77ac
CV
2181 }
2182 else
2183 {
c30dc700 2184 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2185 regnum++;
2186 }
2187 }
2188
2189 if (fpregs)
58643501
UW
2190 while (regnum < gdbarch_num_regs (gdbarch)
2191 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2192 {
c30dc700 2193 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2194 regnum++;
2195 }
2196 }
2197}
2198
2199static void
c30dc700
CV
2200sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2201 struct ui_file *file,
2202 struct frame_info *frame, int regnum,
2203 int fpregs)
55ff77ac 2204{
55ff77ac
CV
2205 if (regnum != -1) /* do one specified register */
2206 {
58643501 2207 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2208 error ("Not a valid register for the current processor type");
2209
2210 if (regnum >= 0 && regnum < R0_C_REGNUM)
2211 error ("Not a valid register for the current processor mode.");
2212
c30dc700 2213 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2214 }
2215 else
2216 /* do all compact registers */
2217 {
2218 regnum = R0_C_REGNUM;
58643501
UW
2219 while (regnum < gdbarch_num_regs (gdbarch)
2220 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2221 {
c30dc700 2222 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2223 regnum++;
2224 }
2225 }
2226}
2227
2228static void
c30dc700
CV
2229sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2230 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2231{
c30dc700
CV
2232 if (pc_is_isa32 (get_frame_pc (frame)))
2233 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2234 else
c30dc700 2235 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2236}
2237
c30dc700
CV
2238static struct sh64_frame_cache *
2239sh64_alloc_frame_cache (void)
2240{
2241 struct sh64_frame_cache *cache;
2242 int i;
2243
2244 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2245
2246 /* Base address. */
2247 cache->base = 0;
2248 cache->saved_sp = 0;
2249 cache->sp_offset = 0;
2250 cache->pc = 0;
55ff77ac 2251
c30dc700
CV
2252 /* Frameless until proven otherwise. */
2253 cache->uses_fp = 0;
55ff77ac 2254
c30dc700
CV
2255 /* Saved registers. We initialize these to -1 since zero is a valid
2256 offset (that's where fp is supposed to be stored). */
2257 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2258 {
2259 cache->saved_regs[i] = -1;
2260 }
2261
2262 return cache;
2263}
2264
2265static struct sh64_frame_cache *
94afd7a6 2266sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2267{
58643501 2268 struct gdbarch *gdbarch;
c30dc700
CV
2269 struct sh64_frame_cache *cache;
2270 CORE_ADDR current_pc;
2271 int i;
55ff77ac 2272
c30dc700
CV
2273 if (*this_cache)
2274 return *this_cache;
2275
94afd7a6 2276 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2277 cache = sh64_alloc_frame_cache ();
2278 *this_cache = cache;
2279
94afd7a6 2280 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2281 cache->media_mode = pc_is_isa32 (current_pc);
2282
2283 /* In principle, for normal frames, fp holds the frame pointer,
2284 which holds the base address for the current stack frame.
2285 However, for functions that don't need it, the frame pointer is
2286 optional. For these "frameless" functions the frame pointer is
2287 actually the frame pointer of the calling frame. */
94afd7a6 2288 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2289 if (cache->base == 0)
2290 return cache;
2291
94afd7a6 2292 cache->pc = get_frame_func (this_frame);
c30dc700 2293 if (cache->pc != 0)
58643501 2294 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2295
2296 if (!cache->uses_fp)
55ff77ac 2297 {
c30dc700
CV
2298 /* We didn't find a valid frame, which means that CACHE->base
2299 currently holds the frame pointer for our calling frame. If
2300 we're at the start of a function, or somewhere half-way its
2301 prologue, the function's frame probably hasn't been fully
2302 setup yet. Try to reconstruct the base address for the stack
2303 frame by looking at the stack pointer. For truly "frameless"
2304 functions this might work too. */
94afd7a6
UW
2305 cache->base = get_frame_register_unsigned
2306 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2307 }
55ff77ac 2308
c30dc700
CV
2309 /* Now that we have the base address for the stack frame we can
2310 calculate the value of sp in the calling frame. */
2311 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2312
c30dc700
CV
2313 /* Adjust all the saved registers such that they contain addresses
2314 instead of offsets. */
2315 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2316 if (cache->saved_regs[i] != -1)
2317 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2318
c30dc700
CV
2319 return cache;
2320}
55ff77ac 2321
94afd7a6
UW
2322static struct value *
2323sh64_frame_prev_register (struct frame_info *this_frame,
2324 void **this_cache, int regnum)
c30dc700 2325{
94afd7a6
UW
2326 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2327 struct gdbarch *gdbarch = get_frame_arch (this_frame);
55ff77ac 2328
c30dc700 2329 gdb_assert (regnum >= 0);
55ff77ac 2330
58643501 2331 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2332 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2333
2334 /* The PC of the previous frame is stored in the PR register of
2335 the current frame. Frob regnum so that we pull the value from
2336 the correct place. */
58643501 2337 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2338 regnum = PR_REGNUM;
2339
2340 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2341 {
58643501 2342 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2343 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2344 {
94afd7a6
UW
2345 CORE_ADDR val;
2346 val = read_memory_unsigned_integer (cache->saved_regs[regnum], 4);
2347 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2348 }
94afd7a6
UW
2349
2350 return frame_unwind_got_memory (this_frame, regnum,
2351 cache->saved_regs[regnum]);
55ff77ac
CV
2352 }
2353
94afd7a6 2354 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2355}
55ff77ac 2356
c30dc700 2357static void
94afd7a6 2358sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2359 struct frame_id *this_id)
2360{
94afd7a6 2361 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2362
2363 /* This marks the outermost frame. */
2364 if (cache->base == 0)
2365 return;
2366
2367 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2368}
2369
2370static const struct frame_unwind sh64_frame_unwind = {
2371 NORMAL_FRAME,
2372 sh64_frame_this_id,
94afd7a6
UW
2373 sh64_frame_prev_register,
2374 NULL,
2375 default_frame_sniffer
c30dc700
CV
2376};
2377
c30dc700
CV
2378static CORE_ADDR
2379sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2380{
3e8c568d 2381 return frame_unwind_register_unsigned (next_frame,
58643501 2382 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2383}
2384
2385static CORE_ADDR
2386sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2387{
3e8c568d 2388 return frame_unwind_register_unsigned (next_frame,
58643501 2389 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2390}
2391
2392static struct frame_id
94afd7a6 2393sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2394{
94afd7a6
UW
2395 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2396 gdbarch_sp_regnum (gdbarch));
2397 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2398}
2399
2400static CORE_ADDR
94afd7a6 2401sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2402{
94afd7a6 2403 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2404
2405 return cache->base;
2406}
2407
2408static const struct frame_base sh64_frame_base = {
2409 &sh64_frame_unwind,
2410 sh64_frame_base_address,
2411 sh64_frame_base_address,
2412 sh64_frame_base_address
2413};
2414
55ff77ac
CV
2415
2416struct gdbarch *
2417sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2418{
55ff77ac
CV
2419 struct gdbarch *gdbarch;
2420 struct gdbarch_tdep *tdep;
2421
2422 /* If there is already a candidate, use it. */
2423 arches = gdbarch_list_lookup_by_info (arches, &info);
2424 if (arches != NULL)
2425 return arches->gdbarch;
2426
2427 /* None found, create a new architecture from the information
7bb11558 2428 provided. */
55ff77ac
CV
2429 tdep = XMALLOC (struct gdbarch_tdep);
2430 gdbarch = gdbarch_alloc (&info, tdep);
2431
55ff77ac
CV
2432 /* Determine the ABI */
2433 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2434 {
7bb11558 2435 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2436 tdep->sh_abi = SH_ABI_64;
2437 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2438 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2439 }
2440 else
2441 {
2442 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2443 compact. */
55ff77ac
CV
2444 tdep->sh_abi = SH_ABI_32;
2445 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2446 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2447 }
2448
2449 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2450 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2451 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2452 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2453 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2454 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2455 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2456
c30dc700
CV
2457 /* The number of real registers is the same whether we are in
2458 ISA16(compact) or ISA32(media). */
2459 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2460 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2461 set_gdbarch_pc_regnum (gdbarch, 64);
2462 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2463 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2464 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2465
c30dc700
CV
2466 set_gdbarch_register_name (gdbarch, sh64_register_name);
2467 set_gdbarch_register_type (gdbarch, sh64_register_type);
2468
2469 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2470 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2471
2472 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2473
2474 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
55ff77ac
CV
2475 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2476
c30dc700 2477 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2478
c30dc700
CV
2479 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2480 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2481
c30dc700 2482 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2483
c30dc700 2484 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2485
c30dc700
CV
2486 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2487 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2488 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2489 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2490 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2491
c30dc700 2492 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2493
55ff77ac
CV
2494 set_gdbarch_elf_make_msymbol_special (gdbarch,
2495 sh64_elf_make_msymbol_special);
2496
2497 /* Hook in ABI-specific overrides, if they have been registered. */
2498 gdbarch_init_osabi (info, gdbarch);
2499
94afd7a6
UW
2500 dwarf2_append_unwinders (gdbarch);
2501 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2502
55ff77ac
CV
2503 return gdbarch;
2504}
This page took 0.60069 seconds and 4 git commands to generate.