gdb/
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
0b302171 3 Copyright (C) 1993-2005, 2007-2012 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
35#include "gdb_string.h"
c30dc700 36#include "gdb_assert.h"
55ff77ac 37#include "arch-utils.h"
55ff77ac 38#include "regcache.h"
55ff77ac 39#include "osabi.h"
79a45b7d 40#include "valprint.h"
55ff77ac
CV
41
42#include "elf-bfd.h"
55ff77ac
CV
43
44/* sh flags */
45#include "elf/sh.h"
c378eb4e 46/* Register numbers shared with the simulator. */
55ff77ac 47#include "gdb/sim-sh.h"
d8ca156b 48#include "language.h"
04dcf5fa 49#include "sh64-tdep.h"
55ff77ac 50
7bb11558 51/* Information that is dependent on the processor variant. */
55ff77ac
CV
52enum sh_abi
53 {
54 SH_ABI_UNKNOWN,
55 SH_ABI_32,
56 SH_ABI_64
57 };
58
59struct gdbarch_tdep
60 {
61 enum sh_abi sh_abi;
62 };
63
c30dc700
CV
64struct sh64_frame_cache
65{
66 /* Base address. */
67 CORE_ADDR base;
68 LONGEST sp_offset;
69 CORE_ADDR pc;
70
c378eb4e 71 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
72 int uses_fp;
73
74 int media_mode;
75
76 /* Saved registers. */
77 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
78 CORE_ADDR saved_sp;
79};
80
55ff77ac
CV
81/* Registers of SH5 */
82enum
83 {
84 R0_REGNUM = 0,
85 DEFAULT_RETURN_REGNUM = 2,
86 STRUCT_RETURN_REGNUM = 2,
87 ARG0_REGNUM = 2,
88 ARGLAST_REGNUM = 9,
89 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 90 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
91 PR_REGNUM = 18,
92 SR_REGNUM = 65,
93 DR0_REGNUM = 141,
94 DR_LAST_REGNUM = 172,
95 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 96 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 97 point register. Unfortunately on the sh5, the floating point
7bb11558 98 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
99 FPP0_REGNUM = 173,
100 FPP_LAST_REGNUM = 204,
101 FV0_REGNUM = 205,
102 FV_LAST_REGNUM = 220,
103 R0_C_REGNUM = 221,
104 R_LAST_C_REGNUM = 236,
105 PC_C_REGNUM = 237,
106 GBR_C_REGNUM = 238,
107 MACH_C_REGNUM = 239,
108 MACL_C_REGNUM = 240,
109 PR_C_REGNUM = 241,
110 T_C_REGNUM = 242,
111 FPSCR_C_REGNUM = 243,
112 FPUL_C_REGNUM = 244,
113 FP0_C_REGNUM = 245,
114 FP_LAST_C_REGNUM = 260,
115 DR0_C_REGNUM = 261,
116 DR_LAST_C_REGNUM = 268,
117 FV0_C_REGNUM = 269,
118 FV_LAST_C_REGNUM = 272,
119 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
120 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
121 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
122 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
123 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
124 };
125
55ff77ac 126static const char *
d93859e2 127sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac
CV
128{
129 static char *register_names[] =
130 {
131 /* SH MEDIA MODE (ISA 32) */
132 /* general registers (64-bit) 0-63 */
133 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
134 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
135 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
136 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
137 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
138 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
139 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
140 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
141
142 /* pc (64-bit) 64 */
143 "pc",
144
145 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
146 "sr", "ssr", "spc",
147
c378eb4e 148 /* target registers (64-bit) 68-75 */
55ff77ac
CV
149 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
150
151 /* floating point state control register (32-bit) 76 */
152 "fpscr",
153
c378eb4e 154 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
155 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
156 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
157 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
158 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
159 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
160 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
161 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
162 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
163
164 /* double precision registers (pseudo) 141-172 */
165 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
166 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
167 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
168 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
169
c378eb4e 170 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
171 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
172 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
173 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
174 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
175
c378eb4e 176 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
177 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
178 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
179
c378eb4e 180 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
181 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
182 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
183 "pc_c",
184 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
185 "fpscr_c", "fpul_c",
c378eb4e
MS
186 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
187 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
188 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
189 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
191 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 192 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 193 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
194 };
195
196 if (reg_nr < 0)
197 return NULL;
198 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
199 return NULL;
200 return register_names[reg_nr];
201}
202
203#define NUM_PSEUDO_REGS_SH_MEDIA 80
204#define NUM_PSEUDO_REGS_SH_COMPACT 51
205
206/* Macros and functions for setting and testing a bit in a minimal
207 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 208 symbol's "info" field is used for this purpose.
55ff77ac 209
95f1da47
UW
210 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
211 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 212 minimal symbol to mark it as a 32-bit function
f594e5e9 213 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
214
215#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 216 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
217
218static void
219sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
220{
221 if (msym == NULL)
222 return;
223
224 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
225 {
b887350f 226 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
55ff77ac
CV
227 SYMBOL_VALUE_ADDRESS (msym) |= 1;
228 }
229}
230
231/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
232 are some macros to test, set, or clear bit 0 of addresses. */
233#define IS_ISA32_ADDR(addr) ((addr) & 1)
234#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
235#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
236
237static int
238pc_is_isa32 (bfd_vma memaddr)
239{
240 struct minimal_symbol *sym;
241
242 /* If bit 0 of the address is set, assume this is a
7bb11558 243 ISA32 (shmedia) address. */
55ff77ac
CV
244 if (IS_ISA32_ADDR (memaddr))
245 return 1;
246
247 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
248 the high bit of the info field. Use this to decide if the function is
249 ISA16 or ISA32. */
250 sym = lookup_minimal_symbol_by_pc (memaddr);
251 if (sym)
252 return MSYMBOL_IS_SPECIAL (sym);
253 else
254 return 0;
255}
256
257static const unsigned char *
c378eb4e
MS
258sh64_breakpoint_from_pc (struct gdbarch *gdbarch,
259 CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
260{
261 /* The BRK instruction for shmedia is
262 01101111 11110101 11111111 11110000
263 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
264 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
265
266 /* The BRK instruction for shcompact is
267 00000000 00111011
268 which translates in big endian mode to 0x0, 0x3b
c378eb4e 269 and in little endian mode to 0x3b, 0x0 */
55ff77ac 270
67d57894 271 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
272 {
273 if (pc_is_isa32 (*pcptr))
274 {
c378eb4e
MS
275 static unsigned char big_breakpoint_media[] = {
276 0x6f, 0xf5, 0xff, 0xf0
277 };
55ff77ac
CV
278 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
279 *lenptr = sizeof (big_breakpoint_media);
280 return big_breakpoint_media;
281 }
282 else
283 {
284 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
285 *lenptr = sizeof (big_breakpoint_compact);
286 return big_breakpoint_compact;
287 }
288 }
289 else
290 {
291 if (pc_is_isa32 (*pcptr))
292 {
c378eb4e
MS
293 static unsigned char little_breakpoint_media[] = {
294 0xf0, 0xff, 0xf5, 0x6f
295 };
55ff77ac
CV
296 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
297 *lenptr = sizeof (little_breakpoint_media);
298 return little_breakpoint_media;
299 }
300 else
301 {
302 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
303 *lenptr = sizeof (little_breakpoint_compact);
304 return little_breakpoint_compact;
305 }
306 }
307}
308
309/* Prologue looks like
310 [mov.l <regs>,@-r15]...
311 [sts.l pr,@-r15]
312 [mov.l r14,@-r15]
313 [mov r15,r14]
314
315 Actually it can be more complicated than this. For instance, with
316 newer gcc's:
317
318 mov.l r14,@-r15
319 add #-12,r15
320 mov r15,r14
321 mov r4,r1
322 mov r5,r2
323 mov.l r6,@(4,r14)
324 mov.l r7,@(8,r14)
325 mov.b r1,@r14
326 mov r14,r1
327 mov r14,r1
328 add #2,r1
329 mov.w r2,@r1
330
331 */
332
333/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
334 with l=1 and n = 18 0110101111110001010010100aaa0000 */
335#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
336
337/* STS.L PR,@-r0 0100000000100010
338 r0-4-->r0, PR-->(r0) */
339#define IS_STS_R0(x) ((x) == 0x4022)
340
341/* STS PR, Rm 0000mmmm00101010
342 PR-->Rm */
343#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
344
345/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
346 Rm-->(dispx4+r15) */
347#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
348
349/* MOV.L R14,@(disp,r15) 000111111110dddd
350 R14-->(dispx4+r15) */
351#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
352
353/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
354 R18-->(dispx8+R14) */
355#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
356
357/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
358 R18-->(dispx8+R15) */
359#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
360
361/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
362 R18-->(dispx4+R15) */
363#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
364
365/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
366 R14-->(dispx8+R15) */
367#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
368
369/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
370 R14-->(dispx4+R15) */
371#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
372
373/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
374 R15 + imm --> R15 */
375#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
376
377/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
378 R15 + imm --> R15 */
379#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
380
381/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
382 R15 + R63 --> R14 */
383#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
384
385/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
386 R15 + R63 --> R14 */
387#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
388
c378eb4e
MS
389#define IS_MOV_SP_FP_MEDIA(x) \
390 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
391
392/* MOV #imm, R0 1110 0000 ssss ssss
393 #imm-->R0 */
394#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
395
396/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
397#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
398
399/* ADD r15,r0 0011 0000 1111 1100
400 r15+r0-->r0 */
401#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
402
403/* MOV.L R14 @-R0 0010 0000 1110 0110
404 R14-->(R0-4), R0-4-->R0 */
405#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
406
407/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 408 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 409/* FIXME: Recognize the float and double register moves too! */
55ff77ac 410#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
411 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
412 && (((x) & 0x03f00000) >= 0x00200000 \
413 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
414
415/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
416 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 417 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
418#define IS_MEDIA_ARG_MOV(x) \
419(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
420 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
421
c378eb4e
MS
422/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
423/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
424/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
425/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
426/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
427#define IS_MEDIA_MOV_TO_R14(x) \
428((((x) & 0xfffffc0f) == 0xa0e00000) \
429|| (((x) & 0xfffffc0f) == 0xa4e00000) \
430|| (((x) & 0xfffffc0f) == 0xa8e00000) \
431|| (((x) & 0xfffffc0f) == 0xb4e00000) \
432|| (((x) & 0xfffffc0f) == 0xbce00000))
433
434/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
435 where Rm is r2-r9 */
436#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
437 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
438 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
439
440/* compact direct arg move!
441 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
442#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
443 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
444 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
445
446/* MOV.B Rm, @R14 0010 1110 mmmm 0000
447 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
448#define IS_COMPACT_MOV_TO_R14(x) \
449((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
450
451#define IS_JSR_R0(x) ((x) == 0x400b)
452#define IS_NOP(x) ((x) == 0x0009)
453
454
455/* MOV r15,r14 0110111011110011
456 r15-->r14 */
457#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
458
459/* ADD #imm,r15 01111111iiiiiiii
460 r15+imm-->r15 */
461#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
462
c378eb4e 463/* Skip any prologue before the guts of a function. */
55ff77ac 464
7bb11558
MS
465/* Skip the prologue using the debug information. If this fails we'll
466 fall back on the 'guess' method below. */
55ff77ac
CV
467static CORE_ADDR
468after_prologue (CORE_ADDR pc)
469{
470 struct symtab_and_line sal;
471 CORE_ADDR func_addr, func_end;
472
473 /* If we can not find the symbol in the partial symbol table, then
474 there is no hope we can determine the function's start address
475 with this code. */
476 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
477 return 0;
478
c30dc700 479
55ff77ac
CV
480 /* Get the line associated with FUNC_ADDR. */
481 sal = find_pc_line (func_addr, 0);
482
483 /* There are only two cases to consider. First, the end of the source line
484 is within the function bounds. In that case we return the end of the
485 source line. Second is the end of the source line extends beyond the
486 bounds of the current function. We need to use the slow code to
487 examine instructions in that case. */
488 if (sal.end < func_end)
489 return sal.end;
490 else
491 return 0;
492}
493
494static CORE_ADDR
e17a4113
UW
495look_for_args_moves (struct gdbarch *gdbarch,
496 CORE_ADDR start_pc, int media_mode)
55ff77ac 497{
e17a4113 498 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
499 CORE_ADDR here, end;
500 int w;
501 int insn_size = (media_mode ? 4 : 2);
502
503 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
504 {
505 if (media_mode)
506 {
e17a4113
UW
507 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
508 insn_size, byte_order);
55ff77ac
CV
509 here += insn_size;
510 if (IS_MEDIA_IND_ARG_MOV (w))
511 {
512 /* This must be followed by a store to r14, so the argument
c378eb4e 513 is where the debug info says it is. This can happen after
7bb11558 514 the SP has been saved, unfortunately. */
55ff77ac
CV
515
516 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 517 insn_size, byte_order);
55ff77ac
CV
518 here += insn_size;
519 if (IS_MEDIA_MOV_TO_R14 (next_insn))
520 start_pc = here;
521 }
522 else if (IS_MEDIA_ARG_MOV (w))
523 {
7bb11558 524 /* These instructions store directly the argument in r14. */
55ff77ac
CV
525 start_pc = here;
526 }
527 else
528 break;
529 }
530 else
531 {
e17a4113 532 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
533 w = w & 0xffff;
534 here += insn_size;
535 if (IS_COMPACT_IND_ARG_MOV (w))
536 {
537 /* This must be followed by a store to r14, so the argument
c378eb4e 538 is where the debug info says it is. This can happen after
7bb11558 539 the SP has been saved, unfortunately. */
55ff77ac 540
e17a4113
UW
541 int next_insn = 0xffff & read_memory_integer (here, insn_size,
542 byte_order);
55ff77ac
CV
543 here += insn_size;
544 if (IS_COMPACT_MOV_TO_R14 (next_insn))
545 start_pc = here;
546 }
547 else if (IS_COMPACT_ARG_MOV (w))
548 {
7bb11558 549 /* These instructions store directly the argument in r14. */
55ff77ac
CV
550 start_pc = here;
551 }
552 else if (IS_MOVL_R0 (w))
553 {
554 /* There is a function that gcc calls to get the arguments
c378eb4e 555 passed correctly to the function. Only after this
55ff77ac 556 function call the arguments will be found at the place
c378eb4e 557 where they are supposed to be. This happens in case the
55ff77ac
CV
558 argument has to be stored into a 64-bit register (for
559 instance doubles, long longs). SHcompact doesn't have
560 access to the full 64-bits, so we store the register in
561 stack slot and store the address of the stack slot in
562 the register, then do a call through a wrapper that
563 loads the memory value into the register. A SHcompact
564 callee calls an argument decoder
565 (GCC_shcompact_incoming_args) that stores the 64-bit
566 value in a stack slot and stores the address of the
567 stack slot in the register. GCC thinks the argument is
568 just passed by transparent reference, but this is only
c378eb4e 569 true after the argument decoder is called. Such a call
7bb11558 570 needs to be considered part of the prologue. */
55ff77ac
CV
571
572 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 573 a NOP instruction. After these, the prologue is over! */
55ff77ac 574
e17a4113
UW
575 int next_insn = 0xffff & read_memory_integer (here, insn_size,
576 byte_order);
55ff77ac
CV
577 here += insn_size;
578 if (IS_JSR_R0 (next_insn))
579 {
e17a4113
UW
580 next_insn = 0xffff & read_memory_integer (here, insn_size,
581 byte_order);
55ff77ac
CV
582 here += insn_size;
583
584 if (IS_NOP (next_insn))
585 start_pc = here;
586 }
587 }
588 else
589 break;
590 }
591 }
592
593 return start_pc;
594}
595
596static CORE_ADDR
e17a4113 597sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 598{
e17a4113 599 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
600 CORE_ADDR here, end;
601 int updated_fp = 0;
602 int insn_size = 4;
603 int media_mode = 1;
604
605 if (!start_pc)
606 return 0;
607
608 if (pc_is_isa32 (start_pc) == 0)
609 {
610 insn_size = 2;
611 media_mode = 0;
612 }
613
614 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
615 {
616
617 if (media_mode)
618 {
e17a4113
UW
619 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
620 insn_size, byte_order);
55ff77ac
CV
621 here += insn_size;
622 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
623 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
624 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
625 || IS_PTABSL_R18 (w))
55ff77ac
CV
626 {
627 start_pc = here;
628 }
629 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
630 {
631 start_pc = here;
632 updated_fp = 1;
633 }
634 else
635 if (updated_fp)
636 {
637 /* Don't bail out yet, we may have arguments stored in
638 registers here, according to the debug info, so that
7bb11558 639 gdb can print the frames correctly. */
e17a4113
UW
640 start_pc = look_for_args_moves (gdbarch,
641 here - insn_size, media_mode);
55ff77ac
CV
642 break;
643 }
644 }
645 else
646 {
e17a4113 647 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
648 here += insn_size;
649
650 if (IS_STS_R0 (w) || IS_STS_PR (w)
651 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
652 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
653 {
654 start_pc = here;
655 }
656 else if (IS_MOV_SP_FP (w))
657 {
658 start_pc = here;
659 updated_fp = 1;
660 }
661 else
662 if (updated_fp)
663 {
664 /* Don't bail out yet, we may have arguments stored in
665 registers here, according to the debug info, so that
7bb11558 666 gdb can print the frames correctly. */
e17a4113
UW
667 start_pc = look_for_args_moves (gdbarch,
668 here - insn_size, media_mode);
55ff77ac
CV
669 break;
670 }
671 }
672 }
673
674 return start_pc;
675}
676
677static CORE_ADDR
6093d2eb 678sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
679{
680 CORE_ADDR post_prologue_pc;
681
682 /* See if we can determine the end of the prologue via the symbol table.
683 If so, then return either PC, or the PC after the prologue, whichever
684 is greater. */
685 post_prologue_pc = after_prologue (pc);
686
687 /* If after_prologue returned a useful address, then use it. Else
7bb11558 688 fall back on the instruction skipping code. */
55ff77ac
CV
689 if (post_prologue_pc != 0)
690 return max (pc, post_prologue_pc);
691 else
e17a4113 692 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
693}
694
55ff77ac
CV
695/* Should call_function allocate stack space for a struct return? */
696static int
c30dc700 697sh64_use_struct_convention (struct type *type)
55ff77ac
CV
698{
699 return (TYPE_LENGTH (type) > 8);
700}
701
7bb11558 702/* For vectors of 4 floating point registers. */
55ff77ac 703static int
d93859e2 704sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
705{
706 int fp_regnum;
707
d93859e2 708 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
709 return fp_regnum;
710}
711
c378eb4e 712/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 713static int
d93859e2 714sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
715{
716 int fp_regnum;
717
d93859e2 718 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
719 return fp_regnum;
720}
721
c378eb4e 722/* For pairs of floating point registers. */
55ff77ac 723static int
d93859e2 724sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
725{
726 int fp_regnum;
727
d93859e2 728 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
729 return fp_regnum;
730}
731
55ff77ac
CV
732/* *INDENT-OFF* */
733/*
734 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
735 GDB_REGNUM BASE_REGNUM
736 r0_c 221 0
737 r1_c 222 1
738 r2_c 223 2
739 r3_c 224 3
740 r4_c 225 4
741 r5_c 226 5
742 r6_c 227 6
743 r7_c 228 7
744 r8_c 229 8
745 r9_c 230 9
746 r10_c 231 10
747 r11_c 232 11
748 r12_c 233 12
749 r13_c 234 13
750 r14_c 235 14
751 r15_c 236 15
752
753 pc_c 237 64
754 gbr_c 238 16
755 mach_c 239 17
756 macl_c 240 17
757 pr_c 241 18
758 t_c 242 19
759 fpscr_c 243 76
760 fpul_c 244 109
761
762 fr0_c 245 77
763 fr1_c 246 78
764 fr2_c 247 79
765 fr3_c 248 80
766 fr4_c 249 81
767 fr5_c 250 82
768 fr6_c 251 83
769 fr7_c 252 84
770 fr8_c 253 85
771 fr9_c 254 86
772 fr10_c 255 87
773 fr11_c 256 88
774 fr12_c 257 89
775 fr13_c 258 90
776 fr14_c 259 91
777 fr15_c 260 92
778
779 dr0_c 261 77
780 dr2_c 262 79
781 dr4_c 263 81
782 dr6_c 264 83
783 dr8_c 265 85
784 dr10_c 266 87
785 dr12_c 267 89
786 dr14_c 268 91
787
788 fv0_c 269 77
789 fv4_c 270 81
790 fv8_c 271 85
791 fv12_c 272 91
792*/
793/* *INDENT-ON* */
794static int
d93859e2 795sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 796{
c30dc700 797 int base_regnum = reg_nr;
55ff77ac
CV
798
799 /* general register N maps to general register N */
800 if (reg_nr >= R0_C_REGNUM
801 && reg_nr <= R_LAST_C_REGNUM)
802 base_regnum = reg_nr - R0_C_REGNUM;
803
804 /* floating point register N maps to floating point register N */
805 else if (reg_nr >= FP0_C_REGNUM
806 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 807 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
808
809 /* double prec register N maps to base regnum for double prec register N */
810 else if (reg_nr >= DR0_C_REGNUM
811 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
812 base_regnum = sh64_dr_reg_base_num (gdbarch,
813 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
814
815 /* vector N maps to base regnum for vector register N */
816 else if (reg_nr >= FV0_C_REGNUM
817 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
818 base_regnum = sh64_fv_reg_base_num (gdbarch,
819 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
820
821 else if (reg_nr == PC_C_REGNUM)
d93859e2 822 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
823
824 else if (reg_nr == GBR_C_REGNUM)
825 base_regnum = 16;
826
827 else if (reg_nr == MACH_C_REGNUM
828 || reg_nr == MACL_C_REGNUM)
829 base_regnum = 17;
830
831 else if (reg_nr == PR_C_REGNUM)
c30dc700 832 base_regnum = PR_REGNUM;
55ff77ac
CV
833
834 else if (reg_nr == T_C_REGNUM)
835 base_regnum = 19;
836
837 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 838 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
839
840 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 841 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
842
843 return base_regnum;
844}
845
55ff77ac
CV
846static int
847sign_extend (int value, int bits)
848{
849 value = value & ((1 << bits) - 1);
850 return (value & (1 << (bits - 1))
851 ? value | (~((1 << bits) - 1))
852 : value);
853}
854
855static void
c30dc700
CV
856sh64_analyze_prologue (struct gdbarch *gdbarch,
857 struct sh64_frame_cache *cache,
858 CORE_ADDR func_pc,
859 CORE_ADDR current_pc)
55ff77ac 860{
55ff77ac
CV
861 int pc;
862 int opc;
863 int insn;
864 int r0_val = 0;
55ff77ac
CV
865 int insn_size;
866 int gdb_register_number;
867 int register_number;
c30dc700 868 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
e17a4113 869 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 870
c30dc700 871 cache->sp_offset = 0;
55ff77ac
CV
872
873 /* Loop around examining the prologue insns until we find something
874 that does not appear to be part of the prologue. But give up
7bb11558 875 after 20 of them, since we're getting silly then. */
55ff77ac 876
c30dc700 877 pc = func_pc;
55ff77ac 878
c30dc700
CV
879 if (cache->media_mode)
880 insn_size = 4;
55ff77ac 881 else
c30dc700 882 insn_size = 2;
55ff77ac 883
c30dc700
CV
884 opc = pc + (insn_size * 28);
885 if (opc > current_pc)
886 opc = current_pc;
887 for ( ; pc <= opc; pc += insn_size)
55ff77ac 888 {
c30dc700
CV
889 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
890 : pc,
e17a4113 891 insn_size, byte_order);
55ff77ac 892
c30dc700 893 if (!cache->media_mode)
55ff77ac
CV
894 {
895 if (IS_STS_PR (insn))
896 {
e17a4113
UW
897 int next_insn = read_memory_integer (pc + insn_size,
898 insn_size, byte_order);
55ff77ac
CV
899 if (IS_MOV_TO_R15 (next_insn))
900 {
c378eb4e
MS
901 cache->saved_regs[PR_REGNUM]
902 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
903 - 0x8) << 2);
55ff77ac
CV
904 pc += insn_size;
905 }
906 }
c30dc700 907
55ff77ac 908 else if (IS_MOV_R14 (insn))
c30dc700
CV
909 cache->saved_regs[MEDIA_FP_REGNUM] =
910 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
911
912 else if (IS_MOV_R0 (insn))
913 {
914 /* Put in R0 the offset from SP at which to store some
c378eb4e 915 registers. We are interested in this value, because it
55ff77ac
CV
916 will tell us where the given registers are stored within
917 the frame. */
918 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
919 }
c30dc700 920
55ff77ac
CV
921 else if (IS_ADD_SP_R0 (insn))
922 {
923 /* This instruction still prepares r0, but we don't care.
7bb11558 924 We already have the offset in r0_val. */
55ff77ac 925 }
c30dc700 926
55ff77ac
CV
927 else if (IS_STS_R0 (insn))
928 {
c378eb4e 929 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 930 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 931 r0_val -= 4;
55ff77ac 932 }
c30dc700 933
55ff77ac
CV
934 else if (IS_MOV_R14_R0 (insn))
935 {
c378eb4e 936 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
937 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
938 - (r0_val - 4);
55ff77ac
CV
939 r0_val -= 4;
940 }
941
942 else if (IS_ADD_SP (insn))
c30dc700
CV
943 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
944
55ff77ac
CV
945 else if (IS_MOV_SP_FP (insn))
946 break;
947 }
948 else
949 {
c30dc700
CV
950 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
951 cache->sp_offset -=
952 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
953
954 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
955 cache->saved_regs[PR_REGNUM]
956 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
957 9) << 3);
55ff77ac
CV
958
959 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
960 cache->saved_regs[PR_REGNUM]
961 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
962 9) << 2);
55ff77ac
CV
963
964 else if (IS_STQ_R14_R15 (insn))
c378eb4e
MS
965 cache->saved_regs[MEDIA_FP_REGNUM]
966 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
967 9) << 3);
55ff77ac
CV
968
969 else if (IS_STL_R14_R15 (insn))
c378eb4e
MS
970 cache->saved_regs[MEDIA_FP_REGNUM]
971 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
972 9) << 2);
55ff77ac
CV
973
974 else if (IS_MOV_SP_FP_MEDIA (insn))
975 break;
976 }
977 }
978
c30dc700
CV
979 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
980 cache->uses_fp = 1;
55ff77ac
CV
981}
982
55ff77ac 983static CORE_ADDR
c30dc700 984sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 985{
c30dc700 986 return sp & ~7;
55ff77ac
CV
987}
988
c30dc700 989/* Function: push_dummy_call
55ff77ac
CV
990 Setup the function arguments for calling a function in the inferior.
991
85a453d5 992 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
993 which are dedicated for passing function arguments. Up to the first
994 four arguments (depending on size) may go into these registers.
995 The rest go on the stack.
996
997 Arguments that are smaller than 4 bytes will still take up a whole
998 register or a whole 32-bit word on the stack, and will be
999 right-justified in the register or the stack word. This includes
1000 chars, shorts, and small aggregate types.
1001
1002 Arguments that are larger than 4 bytes may be split between two or
1003 more registers. If there are not enough registers free, an argument
1004 may be passed partly in a register (or registers), and partly on the
c378eb4e 1005 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1006 As far as I know, there is no upper limit to the size of aggregates
1007 that will be passed in this way; in other words, the convention of
1008 passing a pointer to a large aggregate instead of a copy is not used.
1009
1010 An exceptional case exists for struct arguments (and possibly other
1011 aggregates such as arrays) if the size is larger than 4 bytes but
1012 not a multiple of 4 bytes. In this case the argument is never split
1013 between the registers and the stack, but instead is copied in its
1014 entirety onto the stack, AND also copied into as many registers as
1015 there is room for. In other words, space in registers permitting,
1016 two copies of the same argument are passed in. As far as I can tell,
1017 only the one on the stack is used, although that may be a function
1018 of the level of compiler optimization. I suspect this is a compiler
1019 bug. Arguments of these odd sizes are left-justified within the
1020 word (as opposed to arguments smaller than 4 bytes, which are
1021 right-justified).
1022
1023 If the function is to return an aggregate type such as a struct, it
1024 is either returned in the normal return value register R0 (if its
1025 size is no greater than one byte), or else the caller must allocate
1026 space into which the callee will copy the return value (if the size
1027 is greater than one byte). In this case, a pointer to the return
1028 value location is passed into the callee in register R2, which does
1029 not displace any of the other arguments passed in via registers R4
c378eb4e 1030 to R7. */
55ff77ac
CV
1031
1032/* R2-R9 for integer types and integer equivalent (char, pointers) and
1033 non-scalar (struct, union) elements (even if the elements are
1034 floats).
1035 FR0-FR11 for single precision floating point (float)
1036 DR0-DR10 for double precision floating point (double)
1037
1038 If a float is argument number 3 (for instance) and arguments number
1039 1,2, and 4 are integer, the mapping will be:
c378eb4e 1040 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1041
1042 If a float is argument number 10 (for instance) and arguments number
1043 1 through 10 are integer, the mapping will be:
1044 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1045 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1046 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1047
1048 Different rules apply for variable arguments functions, and for functions
7bb11558 1049 for which the prototype is not known. */
55ff77ac
CV
1050
1051static CORE_ADDR
c30dc700
CV
1052sh64_push_dummy_call (struct gdbarch *gdbarch,
1053 struct value *function,
1054 struct regcache *regcache,
1055 CORE_ADDR bp_addr,
1056 int nargs, struct value **args,
1057 CORE_ADDR sp, int struct_return,
1058 CORE_ADDR struct_addr)
55ff77ac 1059{
e17a4113 1060 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1061 int stack_offset, stack_alloc;
1062 int int_argreg;
1063 int float_argreg;
1064 int double_argreg;
1065 int float_arg_index = 0;
1066 int double_arg_index = 0;
1067 int argnum;
1068 struct type *type;
1069 CORE_ADDR regval;
1070 char *val;
1071 char valbuf[8];
55ff77ac
CV
1072 int len;
1073 int argreg_size;
1074 int fp_args[12];
55ff77ac
CV
1075
1076 memset (fp_args, 0, sizeof (fp_args));
1077
c378eb4e 1078 /* First force sp to a 8-byte alignment. */
c30dc700 1079 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1080
1081 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1082 register. */
55ff77ac
CV
1083
1084 if (struct_return)
c30dc700
CV
1085 regcache_cooked_write_unsigned (regcache,
1086 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1087
c378eb4e 1088 /* Now make sure there's space on the stack. */
55ff77ac 1089 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1090 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1091 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1092
1093 /* Now load as many as possible of the first arguments into
1094 registers, and push the rest onto the stack. There are 64 bytes
1095 in eight registers available. Loop thru args from first to last. */
1096
1097 int_argreg = ARG0_REGNUM;
58643501 1098 float_argreg = gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
1099 double_argreg = DR0_REGNUM;
1100
1101 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1102 {
4991999e 1103 type = value_type (args[argnum]);
55ff77ac
CV
1104 len = TYPE_LENGTH (type);
1105 memset (valbuf, 0, sizeof (valbuf));
1106
1107 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1108 {
58643501 1109 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1110
1111 if (len < argreg_size)
1112 {
c378eb4e 1113 /* value gets right-justified in the register or stack word. */
58643501 1114 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1115 memcpy (valbuf + argreg_size - len,
0fd88904 1116 (char *) value_contents (args[argnum]), len);
55ff77ac 1117 else
0fd88904 1118 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
55ff77ac
CV
1119
1120 val = valbuf;
1121 }
1122 else
0fd88904 1123 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1124
1125 while (len > 0)
1126 {
1127 if (int_argreg > ARGLAST_REGNUM)
1128 {
c378eb4e 1129 /* Must go on the stack. */
079c8cd0
CV
1130 write_memory (sp + stack_offset, (const bfd_byte *) val,
1131 argreg_size);
55ff77ac
CV
1132 stack_offset += 8;/*argreg_size;*/
1133 }
1134 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1135 That's because some *&^%$ things get passed on the stack
1136 AND in the registers! */
1137 if (int_argreg <= ARGLAST_REGNUM)
1138 {
c378eb4e 1139 /* There's room in a register. */
e17a4113
UW
1140 regval = extract_unsigned_integer (val, argreg_size,
1141 byte_order);
c378eb4e
MS
1142 regcache_cooked_write_unsigned (regcache,
1143 int_argreg, regval);
55ff77ac
CV
1144 }
1145 /* Store the value 8 bytes at a time. This means that
1146 things larger than 8 bytes may go partly in registers
c378eb4e 1147 and partly on the stack. FIXME: argreg is incremented
7bb11558 1148 before we use its size. */
55ff77ac
CV
1149 len -= argreg_size;
1150 val += argreg_size;
1151 int_argreg++;
1152 }
1153 }
1154 else
1155 {
0fd88904 1156 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1157 if (len == 4)
1158 {
c378eb4e 1159 /* Where is it going to be stored? */
55ff77ac
CV
1160 while (fp_args[float_arg_index])
1161 float_arg_index ++;
1162
1163 /* Now float_argreg points to the register where it
1164 should be stored. Are we still within the allowed
c378eb4e 1165 register set? */
55ff77ac
CV
1166 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1167 {
1168 /* Goes in FR0...FR11 */
c30dc700 1169 regcache_cooked_write (regcache,
58643501 1170 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1171 + float_arg_index,
c30dc700 1172 val);
55ff77ac 1173 fp_args[float_arg_index] = 1;
7bb11558 1174 /* Skip the corresponding general argument register. */
55ff77ac
CV
1175 int_argreg ++;
1176 }
1177 else
1178 ;
1179 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1180 necessary spilling on the stack. */
55ff77ac
CV
1181
1182 }
1183 else if (len == 8)
1184 {
c378eb4e 1185 /* Where is it going to be stored? */
55ff77ac
CV
1186 while (fp_args[double_arg_index])
1187 double_arg_index += 2;
1188 /* Now double_argreg points to the register
1189 where it should be stored.
c378eb4e 1190 Are we still within the allowed register set? */
55ff77ac
CV
1191 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1192 {
1193 /* Goes in DR0...DR10 */
1194 /* The numbering of the DRi registers is consecutive,
7bb11558 1195 i.e. includes odd numbers. */
55ff77ac 1196 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1197 int regnum = DR0_REGNUM + double_register_offset;
1198 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1199 fp_args[double_arg_index] = 1;
1200 fp_args[double_arg_index + 1] = 1;
7bb11558 1201 /* Skip the corresponding general argument register. */
55ff77ac
CV
1202 int_argreg ++;
1203 }
1204 else
1205 ;
1206 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1207 necessary spilling on the stack. */
55ff77ac
CV
1208 }
1209 }
1210 }
c378eb4e 1211 /* Store return address. */
c30dc700 1212 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1213
c30dc700 1214 /* Update stack pointer. */
3e8c568d 1215 regcache_cooked_write_unsigned (regcache,
58643501 1216 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1217
55ff77ac
CV
1218 return sp;
1219}
1220
1221/* Find a function's return value in the appropriate registers (in
1222 regbuf), and copy it into valbuf. Extract from an array REGBUF
1223 containing the (raw) register state a function return value of type
1224 TYPE, and copy that, in virtual format, into VALBUF. */
1225static void
c30dc700
CV
1226sh64_extract_return_value (struct type *type, struct regcache *regcache,
1227 void *valbuf)
55ff77ac 1228{
d93859e2 1229 struct gdbarch *gdbarch = get_regcache_arch (regcache);
e17a4113 1230 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1231 int len = TYPE_LENGTH (type);
d93859e2 1232
55ff77ac
CV
1233 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1234 {
1235 if (len == 4)
1236 {
c378eb4e 1237 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1238 regcache_raw_read (regcache,
d93859e2 1239 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1240 }
1241 else if (len == 8)
1242 {
c378eb4e 1243 /* return value stored in DR0_REGNUM. */
55ff77ac 1244 DOUBLEST val;
18cf8b5b 1245 gdb_byte buf[8];
55ff77ac 1246
18cf8b5b 1247 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1248
d93859e2 1249 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1250 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1251 buf, &val);
55ff77ac
CV
1252 else
1253 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1254 buf, &val);
7bb11558 1255 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1256 }
1257 }
1258 else
1259 {
1260 if (len <= 8)
1261 {
c30dc700
CV
1262 int offset;
1263 char buf[8];
c378eb4e 1264 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1265 at the most significant end. */
c30dc700
CV
1266 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1267
d93859e2
UW
1268 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1269 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1270 - len;
55ff77ac 1271 else
c30dc700
CV
1272 offset = 0;
1273 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1274 }
1275 else
a73c6dcd 1276 error (_("bad size for return value"));
55ff77ac
CV
1277 }
1278}
1279
1280/* Write into appropriate registers a function return value
1281 of type TYPE, given in virtual format.
1282 If the architecture is sh4 or sh3e, store a function's return value
1283 in the R0 general register or in the FP0 floating point register,
c378eb4e 1284 depending on the type of the return value. In all the other cases
7bb11558 1285 the result is stored in r0, left-justified. */
55ff77ac
CV
1286
1287static void
c30dc700
CV
1288sh64_store_return_value (struct type *type, struct regcache *regcache,
1289 const void *valbuf)
55ff77ac 1290{
d93859e2 1291 struct gdbarch *gdbarch = get_regcache_arch (regcache);
7bb11558 1292 char buf[64]; /* more than enough... */
55ff77ac
CV
1293 int len = TYPE_LENGTH (type);
1294
1295 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1296 {
d93859e2 1297 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1298 for (i = 0; i < len; i += 4)
d93859e2 1299 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700
CV
1300 regcache_raw_write (regcache, regnum++,
1301 (char *) valbuf + len - 4 - i);
1302 else
1303 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
55ff77ac
CV
1304 }
1305 else
1306 {
1307 int return_register = DEFAULT_RETURN_REGNUM;
1308 int offset = 0;
1309
d93859e2 1310 if (len <= register_size (gdbarch, return_register))
55ff77ac 1311 {
7bb11558 1312 /* Pad with zeros. */
d93859e2
UW
1313 memset (buf, 0, register_size (gdbarch, return_register));
1314 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1315 offset = 0; /*register_size (gdbarch,
7bb11558 1316 return_register) - len;*/
55ff77ac 1317 else
d93859e2 1318 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1319
1320 memcpy (buf + offset, valbuf, len);
c30dc700 1321 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1322 }
1323 else
c30dc700 1324 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1325 }
1326}
1327
c30dc700 1328static enum return_value_convention
6a3a010b 1329sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1330 struct type *type, struct regcache *regcache,
18cf8b5b 1331 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1332{
1333 if (sh64_use_struct_convention (type))
1334 return RETURN_VALUE_STRUCT_CONVENTION;
1335 if (writebuf)
1336 sh64_store_return_value (type, regcache, writebuf);
1337 else if (readbuf)
1338 sh64_extract_return_value (type, regcache, readbuf);
1339 return RETURN_VALUE_REGISTER_CONVENTION;
1340}
1341
55ff77ac
CV
1342/* *INDENT-OFF* */
1343/*
1344 SH MEDIA MODE (ISA 32)
1345 general registers (64-bit) 0-63
13460 r0, r1, r2, r3, r4, r5, r6, r7,
134764 r8, r9, r10, r11, r12, r13, r14, r15,
1348128 r16, r17, r18, r19, r20, r21, r22, r23,
1349192 r24, r25, r26, r27, r28, r29, r30, r31,
1350256 r32, r33, r34, r35, r36, r37, r38, r39,
1351320 r40, r41, r42, r43, r44, r45, r46, r47,
1352384 r48, r49, r50, r51, r52, r53, r54, r55,
1353448 r56, r57, r58, r59, r60, r61, r62, r63,
1354
1355 pc (64-bit) 64
1356512 pc,
1357
1358 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1359520 sr, ssr, spc,
1360
1361 target registers (64-bit) 68-75
1362544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1363
1364 floating point state control register (32-bit) 76
1365608 fpscr,
1366
1367 single precision floating point registers (32-bit) 77-140
1368612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1369644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1370676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1371708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1372740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1373772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1374804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1375836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1376
1377TOTAL SPACE FOR REGISTERS: 868 bytes
1378
1379From here on they are all pseudo registers: no memory allocated.
1380REGISTER_BYTE returns the register byte for the base register.
1381
1382 double precision registers (pseudo) 141-172
1383 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1384 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1385 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1386 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1387
1388 floating point pairs (pseudo) 173-204
1389 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1390 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1391 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1392 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1393
1394 floating point vectors (4 floating point regs) (pseudo) 205-220
1395 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1396 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1397
1398 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1399 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1400 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1401 pc_c,
1402 gbr_c, mach_c, macl_c, pr_c, t_c,
1403 fpscr_c, fpul_c,
1404 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1405 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1406 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1407 fv0_c, fv4_c, fv8_c, fv12_c
1408*/
55ff77ac 1409
55ff77ac 1410static struct type *
0dfff4cb 1411sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1412{
e3506a9f
UW
1413 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1414 0, high);
55ff77ac
CV
1415}
1416
7bb11558
MS
1417/* Return the GDB type object for the "standard" data type
1418 of data in register REG_NR. */
55ff77ac 1419static struct type *
7bb11558 1420sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1421{
58643501 1422 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1423 && reg_nr <= FP_LAST_REGNUM)
1424 || (reg_nr >= FP0_C_REGNUM
1425 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1426 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1427 else if ((reg_nr >= DR0_REGNUM
1428 && reg_nr <= DR_LAST_REGNUM)
1429 || (reg_nr >= DR0_C_REGNUM
1430 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1431 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1432 else if (reg_nr >= FPP0_REGNUM
1433 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1434 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1435 else if ((reg_nr >= FV0_REGNUM
1436 && reg_nr <= FV_LAST_REGNUM)
1437 ||(reg_nr >= FV0_C_REGNUM
1438 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1439 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1440 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1441 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1442 else if (reg_nr >= R0_C_REGNUM
1443 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1444 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1445 else
0dfff4cb 1446 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1447}
1448
1449static void
d93859e2
UW
1450sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
1451 struct type *type, char *from, char *to)
55ff77ac 1452{
d93859e2 1453 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1454 {
7bb11558 1455 /* It is a no-op. */
d93859e2 1456 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1457 return;
1458 }
1459
1460 if ((regnum >= DR0_REGNUM
1461 && regnum <= DR_LAST_REGNUM)
1462 || (regnum >= DR0_C_REGNUM
1463 && regnum <= DR_LAST_C_REGNUM))
1464 {
1465 DOUBLEST val;
7bb11558
MS
1466 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1467 from, &val);
39add00a 1468 store_typed_floating (to, type, val);
55ff77ac
CV
1469 }
1470 else
a73c6dcd
MS
1471 error (_("sh64_register_convert_to_virtual "
1472 "called with non DR register number"));
55ff77ac
CV
1473}
1474
1475static void
d93859e2
UW
1476sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1477 int regnum, const void *from, void *to)
55ff77ac 1478{
d93859e2 1479 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1480 {
7bb11558 1481 /* It is a no-op. */
d93859e2 1482 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1483 return;
1484 }
1485
1486 if ((regnum >= DR0_REGNUM
1487 && regnum <= DR_LAST_REGNUM)
1488 || (regnum >= DR0_C_REGNUM
1489 && regnum <= DR_LAST_C_REGNUM))
1490 {
e035e373 1491 DOUBLEST val = extract_typed_floating (from, type);
7bb11558
MS
1492 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1493 &val, to);
55ff77ac
CV
1494 }
1495 else
a73c6dcd
MS
1496 error (_("sh64_register_convert_to_raw called "
1497 "with non DR register number"));
55ff77ac
CV
1498}
1499
05d1431c
PA
1500/* Concatenate PORTIONS contiguous raw registers starting at
1501 BASE_REGNUM into BUFFER. */
1502
1503static enum register_status
1504pseudo_register_read_portions (struct gdbarch *gdbarch,
1505 struct regcache *regcache,
1506 int portions,
1507 int base_regnum, gdb_byte *buffer)
1508{
1509 int portion;
1510
1511 for (portion = 0; portion < portions; portion++)
1512 {
1513 enum register_status status;
1514 gdb_byte *b;
1515
1516 b = buffer + register_size (gdbarch, base_regnum) * portion;
1517 status = regcache_raw_read (regcache, base_regnum + portion, b);
1518 if (status != REG_VALID)
1519 return status;
1520 }
1521
1522 return REG_VALID;
1523}
1524
1525static enum register_status
55ff77ac 1526sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1527 int reg_nr, gdb_byte *buffer)
55ff77ac 1528{
e17a4113 1529 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1530 int base_regnum;
55ff77ac
CV
1531 int offset = 0;
1532 char temp_buffer[MAX_REGISTER_SIZE];
05d1431c 1533 enum register_status status;
55ff77ac
CV
1534
1535 if (reg_nr >= DR0_REGNUM
1536 && reg_nr <= DR_LAST_REGNUM)
1537 {
d93859e2 1538 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1539
7bb11558 1540 /* Build the value in the provided buffer. */
55ff77ac 1541 /* DR regs are double precision registers obtained by
7bb11558 1542 concatenating 2 single precision floating point registers. */
05d1431c
PA
1543 status = pseudo_register_read_portions (gdbarch, regcache,
1544 2, base_regnum, temp_buffer);
1545 if (status == REG_VALID)
1546 {
1547 /* We must pay attention to the endianness. */
1548 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1549 register_type (gdbarch, reg_nr),
1550 temp_buffer, buffer);
1551 }
55ff77ac 1552
05d1431c 1553 return status;
55ff77ac
CV
1554 }
1555
05d1431c 1556 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1557 && reg_nr <= FPP_LAST_REGNUM)
1558 {
d93859e2 1559 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1560
7bb11558 1561 /* Build the value in the provided buffer. */
55ff77ac 1562 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1563 concatenating 2 single precision floating point registers. */
05d1431c
PA
1564 return pseudo_register_read_portions (gdbarch, regcache,
1565 2, base_regnum, buffer);
55ff77ac
CV
1566 }
1567
1568 else if (reg_nr >= FV0_REGNUM
1569 && reg_nr <= FV_LAST_REGNUM)
1570 {
d93859e2 1571 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1572
7bb11558 1573 /* Build the value in the provided buffer. */
55ff77ac 1574 /* FV regs are vectors of single precision registers obtained by
7bb11558 1575 concatenating 4 single precision floating point registers. */
05d1431c
PA
1576 return pseudo_register_read_portions (gdbarch, regcache,
1577 4, base_regnum, buffer);
55ff77ac
CV
1578 }
1579
c378eb4e 1580 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1581 else if (reg_nr >= R0_C_REGNUM
1582 && reg_nr <= T_C_REGNUM)
1583 {
d93859e2 1584 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1585
7bb11558 1586 /* Build the value in the provided buffer. */
05d1431c
PA
1587 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1588 if (status != REG_VALID)
1589 return status;
58643501 1590 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1591 offset = 4;
c378eb4e
MS
1592 memcpy (buffer,
1593 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1594 return REG_VALID;
55ff77ac
CV
1595 }
1596
1597 else if (reg_nr >= FP0_C_REGNUM
1598 && reg_nr <= FP_LAST_C_REGNUM)
1599 {
d93859e2 1600 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1601
7bb11558 1602 /* Build the value in the provided buffer. */
55ff77ac 1603 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1604 they have the same size and endianness. */
05d1431c 1605 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1606 }
1607
1608 else if (reg_nr >= DR0_C_REGNUM
1609 && reg_nr <= DR_LAST_C_REGNUM)
1610 {
d93859e2 1611 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1612
1613 /* DR_C regs are double precision registers obtained by
7bb11558 1614 concatenating 2 single precision floating point registers. */
05d1431c
PA
1615 status = pseudo_register_read_portions (gdbarch, regcache,
1616 2, base_regnum, temp_buffer);
1617 if (status == REG_VALID)
1618 {
1619 /* We must pay attention to the endianness. */
1620 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1621 register_type (gdbarch, reg_nr),
1622 temp_buffer, buffer);
1623 }
1624 return status;
55ff77ac
CV
1625 }
1626
1627 else if (reg_nr >= FV0_C_REGNUM
1628 && reg_nr <= FV_LAST_C_REGNUM)
1629 {
d93859e2 1630 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1631
7bb11558 1632 /* Build the value in the provided buffer. */
55ff77ac 1633 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1634 concatenating 4 single precision floating point registers. */
05d1431c
PA
1635 return pseudo_register_read_portions (gdbarch, regcache,
1636 4, base_regnum, buffer);
55ff77ac
CV
1637 }
1638
1639 else if (reg_nr == FPSCR_C_REGNUM)
1640 {
1641 int fpscr_base_regnum;
1642 int sr_base_regnum;
1643 unsigned int fpscr_value;
1644 unsigned int sr_value;
1645 unsigned int fpscr_c_value;
1646 unsigned int fpscr_c_part1_value;
1647 unsigned int fpscr_c_part2_value;
1648
1649 fpscr_base_regnum = FPSCR_REGNUM;
1650 sr_base_regnum = SR_REGNUM;
1651
7bb11558 1652 /* Build the value in the provided buffer. */
55ff77ac
CV
1653 /* FPSCR_C is a very weird register that contains sparse bits
1654 from the FPSCR and the SR architectural registers.
1655 Specifically: */
1656 /* *INDENT-OFF* */
1657 /*
1658 FPSRC_C bit
1659 0 Bit 0 of FPSCR
1660 1 reserved
1661 2-17 Bit 2-18 of FPSCR
1662 18-20 Bits 12,13,14 of SR
1663 21-31 reserved
1664 */
1665 /* *INDENT-ON* */
c378eb4e 1666 /* Get FPSCR into a local buffer. */
05d1431c
PA
1667 status = regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1668 if (status != REG_VALID)
1669 return status;
7bb11558 1670 /* Get value as an int. */
e17a4113 1671 fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac 1672 /* Get SR into a local buffer */
05d1431c
PA
1673 status = regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1674 if (status != REG_VALID)
1675 return status;
7bb11558 1676 /* Get value as an int. */
e17a4113 1677 sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
7bb11558 1678 /* Build the new value. */
55ff77ac
CV
1679 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1680 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1681 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1682 /* Store that in out buffer!!! */
e17a4113 1683 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1684 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1685
1686 return REG_VALID;
55ff77ac
CV
1687 }
1688
1689 else if (reg_nr == FPUL_C_REGNUM)
1690 {
d93859e2 1691 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1692
1693 /* FPUL_C register is floating point register 32,
7bb11558 1694 same size, same endianness. */
05d1431c 1695 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1696 }
05d1431c
PA
1697 else
1698 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1699}
1700
1701static void
1702sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1703 int reg_nr, const gdb_byte *buffer)
55ff77ac 1704{
e17a4113 1705 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1706 int base_regnum, portion;
1707 int offset;
1708 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1709
1710 if (reg_nr >= DR0_REGNUM
1711 && reg_nr <= DR_LAST_REGNUM)
1712 {
d93859e2 1713 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1714 /* We must pay attention to the endianness. */
d93859e2 1715 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1716 reg_nr,
1717 buffer, temp_buffer);
55ff77ac
CV
1718
1719 /* Write the real regs for which this one is an alias. */
1720 for (portion = 0; portion < 2; portion++)
1721 regcache_raw_write (regcache, base_regnum + portion,
1722 (temp_buffer
7bb11558
MS
1723 + register_size (gdbarch,
1724 base_regnum) * portion));
55ff77ac
CV
1725 }
1726
1727 else if (reg_nr >= FPP0_REGNUM
1728 && reg_nr <= FPP_LAST_REGNUM)
1729 {
d93859e2 1730 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1731
1732 /* Write the real regs for which this one is an alias. */
1733 for (portion = 0; portion < 2; portion++)
1734 regcache_raw_write (regcache, base_regnum + portion,
1735 ((char *) buffer
7bb11558
MS
1736 + register_size (gdbarch,
1737 base_regnum) * portion));
55ff77ac
CV
1738 }
1739
1740 else if (reg_nr >= FV0_REGNUM
1741 && reg_nr <= FV_LAST_REGNUM)
1742 {
d93859e2 1743 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1744
1745 /* Write the real regs for which this one is an alias. */
1746 for (portion = 0; portion < 4; portion++)
1747 regcache_raw_write (regcache, base_regnum + portion,
1748 ((char *) buffer
7bb11558
MS
1749 + register_size (gdbarch,
1750 base_regnum) * portion));
55ff77ac
CV
1751 }
1752
c378eb4e 1753 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1754 register but only 4 bytes of it. */
1755 else if (reg_nr >= R0_C_REGNUM
1756 && reg_nr <= T_C_REGNUM)
1757 {
d93859e2 1758 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1759 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1760 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1761 offset = 4;
1762 else
1763 offset = 0;
1764 /* Let's read the value of the base register into a temporary
1765 buffer, so that overwriting the last four bytes with the new
7bb11558 1766 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1767 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1768 /* Write as an 8 byte quantity. */
55ff77ac
CV
1769 memcpy (temp_buffer + offset, buffer, 4);
1770 regcache_raw_write (regcache, base_regnum, temp_buffer);
1771 }
1772
c378eb4e
MS
1773 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1774 registers. Both are 4 bytes. */
55ff77ac
CV
1775 else if (reg_nr >= FP0_C_REGNUM
1776 && reg_nr <= FP_LAST_C_REGNUM)
1777 {
d93859e2 1778 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1779 regcache_raw_write (regcache, base_regnum, buffer);
1780 }
1781
1782 else if (reg_nr >= DR0_C_REGNUM
1783 && reg_nr <= DR_LAST_C_REGNUM)
1784 {
d93859e2 1785 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1786 for (portion = 0; portion < 2; portion++)
1787 {
7bb11558 1788 /* We must pay attention to the endianness. */
d93859e2
UW
1789 sh64_register_convert_to_raw (gdbarch,
1790 register_type (gdbarch, reg_nr),
39add00a
MS
1791 reg_nr,
1792 buffer, temp_buffer);
55ff77ac
CV
1793
1794 regcache_raw_write (regcache, base_regnum + portion,
1795 (temp_buffer
7bb11558
MS
1796 + register_size (gdbarch,
1797 base_regnum) * portion));
55ff77ac
CV
1798 }
1799 }
1800
1801 else if (reg_nr >= FV0_C_REGNUM
1802 && reg_nr <= FV_LAST_C_REGNUM)
1803 {
d93859e2 1804 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1805
1806 for (portion = 0; portion < 4; portion++)
1807 {
1808 regcache_raw_write (regcache, base_regnum + portion,
1809 ((char *) buffer
7bb11558
MS
1810 + register_size (gdbarch,
1811 base_regnum) * portion));
55ff77ac
CV
1812 }
1813 }
1814
1815 else if (reg_nr == FPSCR_C_REGNUM)
1816 {
1817 int fpscr_base_regnum;
1818 int sr_base_regnum;
1819 unsigned int fpscr_value;
1820 unsigned int sr_value;
1821 unsigned int old_fpscr_value;
1822 unsigned int old_sr_value;
1823 unsigned int fpscr_c_value;
1824 unsigned int fpscr_mask;
1825 unsigned int sr_mask;
1826
1827 fpscr_base_regnum = FPSCR_REGNUM;
1828 sr_base_regnum = SR_REGNUM;
1829
1830 /* FPSCR_C is a very weird register that contains sparse bits
1831 from the FPSCR and the SR architectural registers.
1832 Specifically: */
1833 /* *INDENT-OFF* */
1834 /*
1835 FPSRC_C bit
1836 0 Bit 0 of FPSCR
1837 1 reserved
1838 2-17 Bit 2-18 of FPSCR
1839 18-20 Bits 12,13,14 of SR
1840 21-31 reserved
1841 */
1842 /* *INDENT-ON* */
7bb11558 1843 /* Get value as an int. */
e17a4113 1844 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1845
7bb11558 1846 /* Build the new values. */
55ff77ac
CV
1847 fpscr_mask = 0x0003fffd;
1848 sr_mask = 0x001c0000;
1849
1850 fpscr_value = fpscr_c_value & fpscr_mask;
1851 sr_value = (fpscr_value & sr_mask) >> 6;
1852
1853 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
e17a4113 1854 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1855 old_fpscr_value &= 0xfffc0002;
1856 fpscr_value |= old_fpscr_value;
e17a4113 1857 store_unsigned_integer (temp_buffer, 4, byte_order, fpscr_value);
55ff77ac
CV
1858 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1859
1860 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
e17a4113 1861 old_sr_value = extract_unsigned_integer (temp_buffer, 4, byte_order);
55ff77ac
CV
1862 old_sr_value &= 0xffff8fff;
1863 sr_value |= old_sr_value;
e17a4113 1864 store_unsigned_integer (temp_buffer, 4, byte_order, sr_value);
55ff77ac
CV
1865 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1866 }
1867
1868 else if (reg_nr == FPUL_C_REGNUM)
1869 {
d93859e2 1870 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1871 regcache_raw_write (regcache, base_regnum, buffer);
1872 }
1873}
1874
55ff77ac 1875/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1876 shmedia REGISTERS. */
1877/* Control registers, compact mode. */
55ff77ac 1878static void
c30dc700
CV
1879sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1880 int cr_c_regnum)
55ff77ac
CV
1881{
1882 switch (cr_c_regnum)
1883 {
c30dc700
CV
1884 case PC_C_REGNUM:
1885 fprintf_filtered (file, "pc_c\t0x%08x\n",
1886 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1887 break;
c30dc700
CV
1888 case GBR_C_REGNUM:
1889 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1890 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1891 break;
c30dc700
CV
1892 case MACH_C_REGNUM:
1893 fprintf_filtered (file, "mach_c\t0x%08x\n",
1894 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1895 break;
c30dc700
CV
1896 case MACL_C_REGNUM:
1897 fprintf_filtered (file, "macl_c\t0x%08x\n",
1898 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1899 break;
c30dc700
CV
1900 case PR_C_REGNUM:
1901 fprintf_filtered (file, "pr_c\t0x%08x\n",
1902 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1903 break;
c30dc700
CV
1904 case T_C_REGNUM:
1905 fprintf_filtered (file, "t_c\t0x%08x\n",
1906 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1907 break;
c30dc700
CV
1908 case FPSCR_C_REGNUM:
1909 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1910 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1911 break;
c30dc700
CV
1912 case FPUL_C_REGNUM:
1913 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1914 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1915 break;
1916 }
1917}
1918
1919static void
c30dc700
CV
1920sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1921 struct frame_info *frame, int regnum)
c378eb4e 1922{ /* Do values for FP (float) regs. */
079c8cd0 1923 unsigned char *raw_buffer;
c378eb4e 1924 double flt; /* Double extracted from raw hex data. */
55ff77ac
CV
1925 int inv;
1926 int j;
1927
7bb11558 1928 /* Allocate space for the float. */
c378eb4e
MS
1929 raw_buffer = (unsigned char *)
1930 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1931
1932 /* Get the data in raw format. */
c30dc700 1933 if (!frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1934 error (_("can't read register %d (%s)"),
58643501 1935 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1936
c378eb4e
MS
1937 /* Get the register as a number. */
1938 flt = unpack_double (builtin_type (gdbarch)->builtin_float,
1939 raw_buffer, &inv);
55ff77ac 1940
7bb11558 1941 /* Print the name and some spaces. */
58643501 1942 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1943 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1944 (gdbarch, regnum)), file);
55ff77ac 1945
7bb11558 1946 /* Print the value. */
55ff77ac
CV
1947 if (inv)
1948 fprintf_filtered (file, "<invalid float>");
1949 else
1950 fprintf_filtered (file, "%-10.9g", flt);
1951
7bb11558 1952 /* Print the fp register as hex. */
55ff77ac
CV
1953 fprintf_filtered (file, "\t(raw 0x");
1954 for (j = 0; j < register_size (gdbarch, regnum); j++)
1955 {
58643501 1956 int idx = gdbarch_byte_order (gdbarch)
4c6b5505
UW
1957 == BFD_ENDIAN_BIG ? j : register_size
1958 (gdbarch, regnum) - 1 - j;
079c8cd0 1959 fprintf_filtered (file, "%02x", raw_buffer[idx]);
55ff77ac
CV
1960 }
1961 fprintf_filtered (file, ")");
1962 fprintf_filtered (file, "\n");
1963}
1964
1965static void
c30dc700
CV
1966sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1967 struct frame_info *frame, int regnum)
55ff77ac 1968{
7bb11558 1969 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1970
58643501
UW
1971 if (regnum < gdbarch_num_regs (gdbarch)
1972 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1973 + NUM_PSEUDO_REGS_SH_MEDIA
1974 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1975 internal_error (__FILE__, __LINE__,
e2e0b3e5 1976 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1977
c30dc700
CV
1978 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1979 {
d93859e2 1980 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1981 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1984 }
55ff77ac 1985
c30dc700
CV
1986 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1987 {
d93859e2 1988 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1989 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1990 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1991 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1992 }
55ff77ac 1993
c30dc700
CV
1994 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1995 {
d93859e2 1996 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1997 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1998 regnum - FV0_REGNUM,
1999 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2000 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2001 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2002 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2003 }
55ff77ac 2004
c30dc700
CV
2005 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2006 {
d93859e2 2007 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2008 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2009 regnum - FV0_C_REGNUM,
2010 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2011 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2012 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2013 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2014 }
2015
2016 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2017 {
d93859e2 2018 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2019 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2020 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2021 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2022 }
2023
2024 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2025 {
d93859e2 2026 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2027 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2028 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2029 }
2030 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2031 /* This should work also for pseudoregs. */
c30dc700
CV
2032 sh64_do_fp_register (gdbarch, file, frame, regnum);
2033 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2034 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2035}
2036
2037static void
c30dc700
CV
2038sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2039 struct frame_info *frame, int regnum)
55ff77ac 2040{
079c8cd0 2041 unsigned char raw_buffer[MAX_REGISTER_SIZE];
79a45b7d 2042 struct value_print_options opts;
55ff77ac 2043
58643501 2044 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2045 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2046 (gdbarch, regnum)), file);
55ff77ac
CV
2047
2048 /* Get the data in raw format. */
c30dc700 2049 if (!frame_register_read (frame, regnum, raw_buffer))
55ff77ac 2050 fprintf_filtered (file, "*value not available*\n");
79a45b7d
TT
2051
2052 get_formatted_print_options (&opts, 'x');
2053 opts.deref_ref = 1;
7b9ee6a8 2054 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2055 file, 0, NULL, &opts, current_language);
55ff77ac 2056 fprintf_filtered (file, "\t");
79a45b7d
TT
2057 get_formatted_print_options (&opts, 0);
2058 opts.deref_ref = 1;
7b9ee6a8 2059 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
0e03807e 2060 file, 0, NULL, &opts, current_language);
55ff77ac
CV
2061 fprintf_filtered (file, "\n");
2062}
2063
2064static void
c30dc700
CV
2065sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2066 struct frame_info *frame, int regnum)
55ff77ac 2067{
58643501
UW
2068 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2069 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2070 internal_error (__FILE__, __LINE__,
e2e0b3e5 2071 _("Invalid register number %d\n"), regnum);
55ff77ac 2072
58643501 2073 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2074 {
7b9ee6a8 2075 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2076 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2077 else
c30dc700 2078 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2079 }
2080
58643501
UW
2081 else if (regnum < gdbarch_num_regs (gdbarch)
2082 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2083 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2084}
2085
2086static void
c30dc700
CV
2087sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2088 struct frame_info *frame, int regnum,
2089 int fpregs)
55ff77ac 2090{
c378eb4e 2091 if (regnum != -1) /* Do one specified register. */
55ff77ac 2092 {
58643501 2093 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2094 error (_("Not a valid register for the current processor type"));
55ff77ac 2095
c30dc700 2096 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2097 }
2098 else
c378eb4e 2099 /* Do all (or most) registers. */
55ff77ac
CV
2100 {
2101 regnum = 0;
58643501 2102 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2103 {
2104 /* If the register name is empty, it is undefined for this
2105 processor, so don't display anything. */
58643501
UW
2106 if (gdbarch_register_name (gdbarch, regnum) == NULL
2107 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2108 {
2109 regnum++;
2110 continue;
2111 }
2112
7b9ee6a8 2113 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2114 == TYPE_CODE_FLT)
55ff77ac
CV
2115 {
2116 if (fpregs)
2117 {
c378eb4e 2118 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2119 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2120 regnum ++;
2121 }
2122 else
58643501 2123 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2124 /* skip FP regs */
55ff77ac
CV
2125 }
2126 else
2127 {
c30dc700 2128 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2129 regnum++;
2130 }
2131 }
2132
2133 if (fpregs)
58643501
UW
2134 while (regnum < gdbarch_num_regs (gdbarch)
2135 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2136 {
c30dc700 2137 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2138 regnum++;
2139 }
2140 }
2141}
2142
2143static void
c30dc700
CV
2144sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2145 struct ui_file *file,
2146 struct frame_info *frame, int regnum,
2147 int fpregs)
55ff77ac 2148{
c378eb4e 2149 if (regnum != -1) /* Do one specified register. */
55ff77ac 2150 {
58643501 2151 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2152 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2153
2154 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2155 error (_("Not a valid register for the current processor mode."));
55ff77ac 2156
c30dc700 2157 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2158 }
2159 else
c378eb4e 2160 /* Do all compact registers. */
55ff77ac
CV
2161 {
2162 regnum = R0_C_REGNUM;
58643501
UW
2163 while (regnum < gdbarch_num_regs (gdbarch)
2164 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2165 {
c30dc700 2166 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2167 regnum++;
2168 }
2169 }
2170}
2171
2172static void
c30dc700
CV
2173sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2174 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2175{
c30dc700
CV
2176 if (pc_is_isa32 (get_frame_pc (frame)))
2177 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2178 else
c30dc700 2179 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2180}
2181
c30dc700
CV
2182static struct sh64_frame_cache *
2183sh64_alloc_frame_cache (void)
2184{
2185 struct sh64_frame_cache *cache;
2186 int i;
2187
2188 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2189
2190 /* Base address. */
2191 cache->base = 0;
2192 cache->saved_sp = 0;
2193 cache->sp_offset = 0;
2194 cache->pc = 0;
55ff77ac 2195
c30dc700
CV
2196 /* Frameless until proven otherwise. */
2197 cache->uses_fp = 0;
55ff77ac 2198
c30dc700
CV
2199 /* Saved registers. We initialize these to -1 since zero is a valid
2200 offset (that's where fp is supposed to be stored). */
2201 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2202 {
2203 cache->saved_regs[i] = -1;
2204 }
2205
2206 return cache;
2207}
2208
2209static struct sh64_frame_cache *
94afd7a6 2210sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2211{
58643501 2212 struct gdbarch *gdbarch;
c30dc700
CV
2213 struct sh64_frame_cache *cache;
2214 CORE_ADDR current_pc;
2215 int i;
55ff77ac 2216
c30dc700
CV
2217 if (*this_cache)
2218 return *this_cache;
2219
94afd7a6 2220 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2221 cache = sh64_alloc_frame_cache ();
2222 *this_cache = cache;
2223
94afd7a6 2224 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2225 cache->media_mode = pc_is_isa32 (current_pc);
2226
2227 /* In principle, for normal frames, fp holds the frame pointer,
2228 which holds the base address for the current stack frame.
2229 However, for functions that don't need it, the frame pointer is
2230 optional. For these "frameless" functions the frame pointer is
c378eb4e 2231 actually the frame pointer of the calling frame. */
94afd7a6 2232 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2233 if (cache->base == 0)
2234 return cache;
2235
94afd7a6 2236 cache->pc = get_frame_func (this_frame);
c30dc700 2237 if (cache->pc != 0)
58643501 2238 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2239
2240 if (!cache->uses_fp)
55ff77ac 2241 {
c30dc700
CV
2242 /* We didn't find a valid frame, which means that CACHE->base
2243 currently holds the frame pointer for our calling frame. If
2244 we're at the start of a function, or somewhere half-way its
2245 prologue, the function's frame probably hasn't been fully
2246 setup yet. Try to reconstruct the base address for the stack
2247 frame by looking at the stack pointer. For truly "frameless"
2248 functions this might work too. */
94afd7a6
UW
2249 cache->base = get_frame_register_unsigned
2250 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2251 }
55ff77ac 2252
c30dc700
CV
2253 /* Now that we have the base address for the stack frame we can
2254 calculate the value of sp in the calling frame. */
2255 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2256
c30dc700
CV
2257 /* Adjust all the saved registers such that they contain addresses
2258 instead of offsets. */
2259 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2260 if (cache->saved_regs[i] != -1)
2261 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2262
c30dc700
CV
2263 return cache;
2264}
55ff77ac 2265
94afd7a6
UW
2266static struct value *
2267sh64_frame_prev_register (struct frame_info *this_frame,
2268 void **this_cache, int regnum)
c30dc700 2269{
94afd7a6
UW
2270 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2271 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2272 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2273
c30dc700 2274 gdb_assert (regnum >= 0);
55ff77ac 2275
58643501 2276 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2277 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2278
2279 /* The PC of the previous frame is stored in the PR register of
2280 the current frame. Frob regnum so that we pull the value from
2281 the correct place. */
58643501 2282 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2283 regnum = PR_REGNUM;
2284
2285 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2286 {
58643501 2287 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2288 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2289 {
94afd7a6 2290 CORE_ADDR val;
e17a4113
UW
2291 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2292 4, byte_order);
94afd7a6 2293 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2294 }
94afd7a6
UW
2295
2296 return frame_unwind_got_memory (this_frame, regnum,
2297 cache->saved_regs[regnum]);
55ff77ac
CV
2298 }
2299
94afd7a6 2300 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2301}
55ff77ac 2302
c30dc700 2303static void
94afd7a6 2304sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2305 struct frame_id *this_id)
2306{
94afd7a6 2307 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2308
2309 /* This marks the outermost frame. */
2310 if (cache->base == 0)
2311 return;
2312
2313 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2314}
2315
2316static const struct frame_unwind sh64_frame_unwind = {
2317 NORMAL_FRAME,
8fbca658 2318 default_frame_unwind_stop_reason,
c30dc700 2319 sh64_frame_this_id,
94afd7a6
UW
2320 sh64_frame_prev_register,
2321 NULL,
2322 default_frame_sniffer
c30dc700
CV
2323};
2324
c30dc700
CV
2325static CORE_ADDR
2326sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2327{
3e8c568d 2328 return frame_unwind_register_unsigned (next_frame,
58643501 2329 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2330}
2331
2332static CORE_ADDR
2333sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2334{
3e8c568d 2335 return frame_unwind_register_unsigned (next_frame,
58643501 2336 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2337}
2338
2339static struct frame_id
94afd7a6 2340sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2341{
94afd7a6
UW
2342 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2343 gdbarch_sp_regnum (gdbarch));
2344 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2345}
2346
2347static CORE_ADDR
94afd7a6 2348sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2349{
94afd7a6 2350 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2351
2352 return cache->base;
2353}
2354
2355static const struct frame_base sh64_frame_base = {
2356 &sh64_frame_unwind,
2357 sh64_frame_base_address,
2358 sh64_frame_base_address,
2359 sh64_frame_base_address
2360};
2361
55ff77ac
CV
2362
2363struct gdbarch *
2364sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2365{
55ff77ac
CV
2366 struct gdbarch *gdbarch;
2367 struct gdbarch_tdep *tdep;
2368
2369 /* If there is already a candidate, use it. */
2370 arches = gdbarch_list_lookup_by_info (arches, &info);
2371 if (arches != NULL)
2372 return arches->gdbarch;
2373
2374 /* None found, create a new architecture from the information
7bb11558 2375 provided. */
55ff77ac
CV
2376 tdep = XMALLOC (struct gdbarch_tdep);
2377 gdbarch = gdbarch_alloc (&info, tdep);
2378
55ff77ac
CV
2379 /* Determine the ABI */
2380 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2381 {
7bb11558 2382 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2383 tdep->sh_abi = SH_ABI_64;
2384 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2385 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2386 }
2387 else
2388 {
2389 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2390 compact. */
55ff77ac
CV
2391 tdep->sh_abi = SH_ABI_32;
2392 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2393 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2394 }
2395
2396 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2397 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2398 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2399 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2400 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2401 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2402 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2403
c30dc700
CV
2404 /* The number of real registers is the same whether we are in
2405 ISA16(compact) or ISA32(media). */
2406 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2407 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2408 set_gdbarch_pc_regnum (gdbarch, 64);
2409 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2410 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2411 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2412
c30dc700
CV
2413 set_gdbarch_register_name (gdbarch, sh64_register_name);
2414 set_gdbarch_register_type (gdbarch, sh64_register_type);
2415
2416 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2417 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2418
2419 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2420
9dae60cc 2421 set_gdbarch_print_insn (gdbarch, print_insn_sh);
55ff77ac
CV
2422 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2423
c30dc700 2424 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2425
c30dc700
CV
2426 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2427 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2428
c30dc700 2429 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2430
c30dc700 2431 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2432
c30dc700
CV
2433 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2434 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2435 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2436 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2437 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2438
c30dc700 2439 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2440
55ff77ac
CV
2441 set_gdbarch_elf_make_msymbol_special (gdbarch,
2442 sh64_elf_make_msymbol_special);
2443
2444 /* Hook in ABI-specific overrides, if they have been registered. */
2445 gdbarch_init_osabi (info, gdbarch);
2446
94afd7a6
UW
2447 dwarf2_append_unwinders (gdbarch);
2448 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2449
55ff77ac
CV
2450 return gdbarch;
2451}
This page took 1.021033 seconds and 4 git commands to generate.