2007-06-18 Markus Deuling <deuling@de.ibm.com>
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
6aba47ca
DJ
3 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2007 Free Software Foundation, Inc.
55ff77ac
CV
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
197e01b6
EZ
20 Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 Boston, MA 02110-1301, USA. */
55ff77ac
CV
22
23/*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28#include "defs.h"
29#include "frame.h"
c30dc700
CV
30#include "frame-base.h"
31#include "frame-unwind.h"
32#include "dwarf2-frame.h"
55ff77ac 33#include "symtab.h"
55ff77ac
CV
34#include "gdbtypes.h"
35#include "gdbcmd.h"
36#include "gdbcore.h"
37#include "value.h"
38#include "dis-asm.h"
39#include "inferior.h"
40#include "gdb_string.h"
c30dc700 41#include "gdb_assert.h"
55ff77ac 42#include "arch-utils.h"
55ff77ac 43#include "regcache.h"
55ff77ac
CV
44#include "osabi.h"
45
46#include "elf-bfd.h"
55ff77ac
CV
47
48/* sh flags */
49#include "elf/sh.h"
50/* registers numbers shared with the simulator */
51#include "gdb/sim-sh.h"
52
7bb11558 53/* Information that is dependent on the processor variant. */
55ff77ac
CV
54enum sh_abi
55 {
56 SH_ABI_UNKNOWN,
57 SH_ABI_32,
58 SH_ABI_64
59 };
60
61struct gdbarch_tdep
62 {
63 enum sh_abi sh_abi;
64 };
65
c30dc700
CV
66struct sh64_frame_cache
67{
68 /* Base address. */
69 CORE_ADDR base;
70 LONGEST sp_offset;
71 CORE_ADDR pc;
72
73 /* Flag showing that a frame has been created in the prologue code. */
74 int uses_fp;
75
76 int media_mode;
77
78 /* Saved registers. */
79 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
80 CORE_ADDR saved_sp;
81};
82
55ff77ac
CV
83/* Registers of SH5 */
84enum
85 {
86 R0_REGNUM = 0,
87 DEFAULT_RETURN_REGNUM = 2,
88 STRUCT_RETURN_REGNUM = 2,
89 ARG0_REGNUM = 2,
90 ARGLAST_REGNUM = 9,
91 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 92 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
93 PR_REGNUM = 18,
94 SR_REGNUM = 65,
95 DR0_REGNUM = 141,
96 DR_LAST_REGNUM = 172,
97 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 98 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
55ff77ac 99 point register. Unfortunately on the sh5, the floating point
7bb11558 100 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
101 FPP0_REGNUM = 173,
102 FPP_LAST_REGNUM = 204,
103 FV0_REGNUM = 205,
104 FV_LAST_REGNUM = 220,
105 R0_C_REGNUM = 221,
106 R_LAST_C_REGNUM = 236,
107 PC_C_REGNUM = 237,
108 GBR_C_REGNUM = 238,
109 MACH_C_REGNUM = 239,
110 MACL_C_REGNUM = 240,
111 PR_C_REGNUM = 241,
112 T_C_REGNUM = 242,
113 FPSCR_C_REGNUM = 243,
114 FPUL_C_REGNUM = 244,
115 FP0_C_REGNUM = 245,
116 FP_LAST_C_REGNUM = 260,
117 DR0_C_REGNUM = 261,
118 DR_LAST_C_REGNUM = 268,
119 FV0_C_REGNUM = 269,
120 FV_LAST_C_REGNUM = 272,
121 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
122 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
123 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
124 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
125 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
126 };
127
55ff77ac 128static const char *
39add00a 129sh64_register_name (int reg_nr)
55ff77ac
CV
130{
131 static char *register_names[] =
132 {
133 /* SH MEDIA MODE (ISA 32) */
134 /* general registers (64-bit) 0-63 */
135 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
136 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
137 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
138 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
139 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
140 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
141 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
142 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
143
144 /* pc (64-bit) 64 */
145 "pc",
146
147 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
148 "sr", "ssr", "spc",
149
150 /* target registers (64-bit) 68-75*/
151 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
152
153 /* floating point state control register (32-bit) 76 */
154 "fpscr",
155
156 /* single precision floating point registers (32-bit) 77-140*/
157 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
158 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
159 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
160 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
161 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
162 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
163 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
164 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
165
166 /* double precision registers (pseudo) 141-172 */
167 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
168 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
169 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
170 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
171
172 /* floating point pairs (pseudo) 173-204*/
173 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
174 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
175 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
176 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
177
178 /* floating point vectors (4 floating point regs) (pseudo) 205-220*/
179 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
180 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
181
182 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272*/
183 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
184 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
185 "pc_c",
186 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
187 "fpscr_c", "fpul_c",
188 "fr0_c", "fr1_c", "fr2_c", "fr3_c", "fr4_c", "fr5_c", "fr6_c", "fr7_c",
189 "fr8_c", "fr9_c", "fr10_c", "fr11_c", "fr12_c", "fr13_c", "fr14_c", "fr15_c",
190 "dr0_c", "dr2_c", "dr4_c", "dr6_c", "dr8_c", "dr10_c", "dr12_c", "dr14_c",
191 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
192 /* FIXME!!!! XF0 XF15, XD0 XD14 ?????*/
193 };
194
195 if (reg_nr < 0)
196 return NULL;
197 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
198 return NULL;
199 return register_names[reg_nr];
200}
201
202#define NUM_PSEUDO_REGS_SH_MEDIA 80
203#define NUM_PSEUDO_REGS_SH_COMPACT 51
204
205/* Macros and functions for setting and testing a bit in a minimal
206 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 207 symbol's "info" field is used for this purpose.
55ff77ac 208
95f1da47
UW
209 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
210 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 211 minimal symbol to mark it as a 32-bit function
f594e5e9 212 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
213
214#define MSYMBOL_IS_SPECIAL(msym) \
215 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
216
217static void
218sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
219{
220 if (msym == NULL)
221 return;
222
223 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
224 {
225 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) | 0x80000000);
226 SYMBOL_VALUE_ADDRESS (msym) |= 1;
227 }
228}
229
230/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
231 are some macros to test, set, or clear bit 0 of addresses. */
232#define IS_ISA32_ADDR(addr) ((addr) & 1)
233#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
234#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
235
236static int
237pc_is_isa32 (bfd_vma memaddr)
238{
239 struct minimal_symbol *sym;
240
241 /* If bit 0 of the address is set, assume this is a
7bb11558 242 ISA32 (shmedia) address. */
55ff77ac
CV
243 if (IS_ISA32_ADDR (memaddr))
244 return 1;
245
246 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
247 the high bit of the info field. Use this to decide if the function is
248 ISA16 or ISA32. */
249 sym = lookup_minimal_symbol_by_pc (memaddr);
250 if (sym)
251 return MSYMBOL_IS_SPECIAL (sym);
252 else
253 return 0;
254}
255
256static const unsigned char *
39add00a 257sh64_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
55ff77ac
CV
258{
259 /* The BRK instruction for shmedia is
260 01101111 11110101 11111111 11110000
261 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
262 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
263
264 /* The BRK instruction for shcompact is
265 00000000 00111011
266 which translates in big endian mode to 0x0, 0x3b
267 and in little endian mode to 0x3b, 0x0*/
268
4c6b5505 269 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
270 {
271 if (pc_is_isa32 (*pcptr))
272 {
273 static unsigned char big_breakpoint_media[] = {0x6f, 0xf5, 0xff, 0xf0};
274 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
275 *lenptr = sizeof (big_breakpoint_media);
276 return big_breakpoint_media;
277 }
278 else
279 {
280 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
281 *lenptr = sizeof (big_breakpoint_compact);
282 return big_breakpoint_compact;
283 }
284 }
285 else
286 {
287 if (pc_is_isa32 (*pcptr))
288 {
289 static unsigned char little_breakpoint_media[] = {0xf0, 0xff, 0xf5, 0x6f};
290 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
291 *lenptr = sizeof (little_breakpoint_media);
292 return little_breakpoint_media;
293 }
294 else
295 {
296 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
297 *lenptr = sizeof (little_breakpoint_compact);
298 return little_breakpoint_compact;
299 }
300 }
301}
302
303/* Prologue looks like
304 [mov.l <regs>,@-r15]...
305 [sts.l pr,@-r15]
306 [mov.l r14,@-r15]
307 [mov r15,r14]
308
309 Actually it can be more complicated than this. For instance, with
310 newer gcc's:
311
312 mov.l r14,@-r15
313 add #-12,r15
314 mov r15,r14
315 mov r4,r1
316 mov r5,r2
317 mov.l r6,@(4,r14)
318 mov.l r7,@(8,r14)
319 mov.b r1,@r14
320 mov r14,r1
321 mov r14,r1
322 add #2,r1
323 mov.w r2,@r1
324
325 */
326
327/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
328 with l=1 and n = 18 0110101111110001010010100aaa0000 */
329#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
330
331/* STS.L PR,@-r0 0100000000100010
332 r0-4-->r0, PR-->(r0) */
333#define IS_STS_R0(x) ((x) == 0x4022)
334
335/* STS PR, Rm 0000mmmm00101010
336 PR-->Rm */
337#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
338
339/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
340 Rm-->(dispx4+r15) */
341#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
342
343/* MOV.L R14,@(disp,r15) 000111111110dddd
344 R14-->(dispx4+r15) */
345#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
346
347/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
348 R18-->(dispx8+R14) */
349#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
350
351/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
352 R18-->(dispx8+R15) */
353#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
354
355/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
356 R18-->(dispx4+R15) */
357#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
358
359/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
360 R14-->(dispx8+R15) */
361#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
362
363/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
364 R14-->(dispx4+R15) */
365#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
366
367/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
368 R15 + imm --> R15 */
369#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
370
371/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
372 R15 + imm --> R15 */
373#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
374
375/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
376 R15 + R63 --> R14 */
377#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
378
379/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
380 R15 + R63 --> R14 */
381#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
382
383#define IS_MOV_SP_FP_MEDIA(x) (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
384
385/* MOV #imm, R0 1110 0000 ssss ssss
386 #imm-->R0 */
387#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
388
389/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
390#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
391
392/* ADD r15,r0 0011 0000 1111 1100
393 r15+r0-->r0 */
394#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
395
396/* MOV.L R14 @-R0 0010 0000 1110 0110
397 R14-->(R0-4), R0-4-->R0 */
398#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
399
400/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 401 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
402/* FIXME: Recognize the float and double register moves too! */
403#define IS_MEDIA_IND_ARG_MOV(x) \
404((((x) & 0xfc0ffc0f) == 0x0009fc00) && (((x) & 0x03f00000) >= 0x00200000 && ((x) & 0x03f00000) <= 0x00900000))
405
406/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
407 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 408 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
409#define IS_MEDIA_ARG_MOV(x) \
410(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
411 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
412
413/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000*/
414/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000*/
415/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000*/
416/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000*/
417/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000*/
418#define IS_MEDIA_MOV_TO_R14(x) \
419((((x) & 0xfffffc0f) == 0xa0e00000) \
420|| (((x) & 0xfffffc0f) == 0xa4e00000) \
421|| (((x) & 0xfffffc0f) == 0xa8e00000) \
422|| (((x) & 0xfffffc0f) == 0xb4e00000) \
423|| (((x) & 0xfffffc0f) == 0xbce00000))
424
425/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
426 where Rm is r2-r9 */
427#define IS_COMPACT_IND_ARG_MOV(x) \
428((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) && (((x) & 0x00f0) <= 0x0090))
429
430/* compact direct arg move!
431 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
432#define IS_COMPACT_ARG_MOV(x) \
433(((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) && ((x) & 0x00f0) <= 0x0090))
434
435/* MOV.B Rm, @R14 0010 1110 mmmm 0000
436 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
437#define IS_COMPACT_MOV_TO_R14(x) \
438((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
439
440#define IS_JSR_R0(x) ((x) == 0x400b)
441#define IS_NOP(x) ((x) == 0x0009)
442
443
444/* MOV r15,r14 0110111011110011
445 r15-->r14 */
446#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
447
448/* ADD #imm,r15 01111111iiiiiiii
449 r15+imm-->r15 */
450#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
451
452/* Skip any prologue before the guts of a function */
453
7bb11558
MS
454/* Skip the prologue using the debug information. If this fails we'll
455 fall back on the 'guess' method below. */
55ff77ac
CV
456static CORE_ADDR
457after_prologue (CORE_ADDR pc)
458{
459 struct symtab_and_line sal;
460 CORE_ADDR func_addr, func_end;
461
462 /* If we can not find the symbol in the partial symbol table, then
463 there is no hope we can determine the function's start address
464 with this code. */
465 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
466 return 0;
467
c30dc700 468
55ff77ac
CV
469 /* Get the line associated with FUNC_ADDR. */
470 sal = find_pc_line (func_addr, 0);
471
472 /* There are only two cases to consider. First, the end of the source line
473 is within the function bounds. In that case we return the end of the
474 source line. Second is the end of the source line extends beyond the
475 bounds of the current function. We need to use the slow code to
476 examine instructions in that case. */
477 if (sal.end < func_end)
478 return sal.end;
479 else
480 return 0;
481}
482
483static CORE_ADDR
484look_for_args_moves (CORE_ADDR start_pc, int media_mode)
485{
486 CORE_ADDR here, end;
487 int w;
488 int insn_size = (media_mode ? 4 : 2);
489
490 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
491 {
492 if (media_mode)
493 {
494 w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
495 here += insn_size;
496 if (IS_MEDIA_IND_ARG_MOV (w))
497 {
498 /* This must be followed by a store to r14, so the argument
499 is where the debug info says it is. This can happen after
7bb11558 500 the SP has been saved, unfortunately. */
55ff77ac
CV
501
502 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
503 insn_size);
504 here += insn_size;
505 if (IS_MEDIA_MOV_TO_R14 (next_insn))
506 start_pc = here;
507 }
508 else if (IS_MEDIA_ARG_MOV (w))
509 {
7bb11558 510 /* These instructions store directly the argument in r14. */
55ff77ac
CV
511 start_pc = here;
512 }
513 else
514 break;
515 }
516 else
517 {
518 w = read_memory_integer (here, insn_size);
519 w = w & 0xffff;
520 here += insn_size;
521 if (IS_COMPACT_IND_ARG_MOV (w))
522 {
523 /* This must be followed by a store to r14, so the argument
524 is where the debug info says it is. This can happen after
7bb11558 525 the SP has been saved, unfortunately. */
55ff77ac
CV
526
527 int next_insn = 0xffff & read_memory_integer (here, insn_size);
528 here += insn_size;
529 if (IS_COMPACT_MOV_TO_R14 (next_insn))
530 start_pc = here;
531 }
532 else if (IS_COMPACT_ARG_MOV (w))
533 {
7bb11558 534 /* These instructions store directly the argument in r14. */
55ff77ac
CV
535 start_pc = here;
536 }
537 else if (IS_MOVL_R0 (w))
538 {
539 /* There is a function that gcc calls to get the arguments
540 passed correctly to the function. Only after this
541 function call the arguments will be found at the place
542 where they are supposed to be. This happens in case the
543 argument has to be stored into a 64-bit register (for
544 instance doubles, long longs). SHcompact doesn't have
545 access to the full 64-bits, so we store the register in
546 stack slot and store the address of the stack slot in
547 the register, then do a call through a wrapper that
548 loads the memory value into the register. A SHcompact
549 callee calls an argument decoder
550 (GCC_shcompact_incoming_args) that stores the 64-bit
551 value in a stack slot and stores the address of the
552 stack slot in the register. GCC thinks the argument is
553 just passed by transparent reference, but this is only
554 true after the argument decoder is called. Such a call
7bb11558 555 needs to be considered part of the prologue. */
55ff77ac
CV
556
557 /* This must be followed by a JSR @r0 instruction and by
558 a NOP instruction. After these, the prologue is over! */
559
560 int next_insn = 0xffff & read_memory_integer (here, insn_size);
561 here += insn_size;
562 if (IS_JSR_R0 (next_insn))
563 {
564 next_insn = 0xffff & read_memory_integer (here, insn_size);
565 here += insn_size;
566
567 if (IS_NOP (next_insn))
568 start_pc = here;
569 }
570 }
571 else
572 break;
573 }
574 }
575
576 return start_pc;
577}
578
579static CORE_ADDR
580sh64_skip_prologue_hard_way (CORE_ADDR start_pc)
581{
582 CORE_ADDR here, end;
583 int updated_fp = 0;
584 int insn_size = 4;
585 int media_mode = 1;
586
587 if (!start_pc)
588 return 0;
589
590 if (pc_is_isa32 (start_pc) == 0)
591 {
592 insn_size = 2;
593 media_mode = 0;
594 }
595
596 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
597 {
598
599 if (media_mode)
600 {
601 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here), insn_size);
602 here += insn_size;
603 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
604 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
605 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w) || IS_PTABSL_R18 (w))
606 {
607 start_pc = here;
608 }
609 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
610 {
611 start_pc = here;
612 updated_fp = 1;
613 }
614 else
615 if (updated_fp)
616 {
617 /* Don't bail out yet, we may have arguments stored in
618 registers here, according to the debug info, so that
7bb11558 619 gdb can print the frames correctly. */
55ff77ac
CV
620 start_pc = look_for_args_moves (here - insn_size, media_mode);
621 break;
622 }
623 }
624 else
625 {
626 int w = 0xffff & read_memory_integer (here, insn_size);
627 here += insn_size;
628
629 if (IS_STS_R0 (w) || IS_STS_PR (w)
630 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
631 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
632 {
633 start_pc = here;
634 }
635 else if (IS_MOV_SP_FP (w))
636 {
637 start_pc = here;
638 updated_fp = 1;
639 }
640 else
641 if (updated_fp)
642 {
643 /* Don't bail out yet, we may have arguments stored in
644 registers here, according to the debug info, so that
7bb11558 645 gdb can print the frames correctly. */
55ff77ac
CV
646 start_pc = look_for_args_moves (here - insn_size, media_mode);
647 break;
648 }
649 }
650 }
651
652 return start_pc;
653}
654
655static CORE_ADDR
c30dc700 656sh64_skip_prologue (CORE_ADDR pc)
55ff77ac
CV
657{
658 CORE_ADDR post_prologue_pc;
659
660 /* See if we can determine the end of the prologue via the symbol table.
661 If so, then return either PC, or the PC after the prologue, whichever
662 is greater. */
663 post_prologue_pc = after_prologue (pc);
664
665 /* If after_prologue returned a useful address, then use it. Else
7bb11558 666 fall back on the instruction skipping code. */
55ff77ac
CV
667 if (post_prologue_pc != 0)
668 return max (pc, post_prologue_pc);
669 else
670 return sh64_skip_prologue_hard_way (pc);
671}
672
55ff77ac
CV
673/* Should call_function allocate stack space for a struct return? */
674static int
c30dc700 675sh64_use_struct_convention (struct type *type)
55ff77ac
CV
676{
677 return (TYPE_LENGTH (type) > 8);
678}
679
55ff77ac
CV
680/* Disassemble an instruction. */
681static int
c30dc700 682gdb_print_insn_sh64 (bfd_vma memaddr, disassemble_info *info)
55ff77ac 683{
4c6b5505 684 info->endian = gdbarch_byte_order (current_gdbarch);
55ff77ac
CV
685 return print_insn_sh (memaddr, info);
686}
687
7bb11558 688/* For vectors of 4 floating point registers. */
55ff77ac 689static int
c30dc700 690sh64_fv_reg_base_num (int fv_regnum)
55ff77ac
CV
691{
692 int fp_regnum;
693
3e8c568d 694 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
55ff77ac
CV
695 (fv_regnum - FV0_REGNUM) * 4;
696 return fp_regnum;
697}
698
699/* For double precision floating point registers, i.e 2 fp regs.*/
700static int
c30dc700 701sh64_dr_reg_base_num (int dr_regnum)
55ff77ac
CV
702{
703 int fp_regnum;
704
3e8c568d 705 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
55ff77ac
CV
706 (dr_regnum - DR0_REGNUM) * 2;
707 return fp_regnum;
708}
709
710/* For pairs of floating point registers */
711static int
c30dc700 712sh64_fpp_reg_base_num (int fpp_regnum)
55ff77ac
CV
713{
714 int fp_regnum;
715
3e8c568d 716 fp_regnum = gdbarch_fp0_regnum (current_gdbarch) +
55ff77ac
CV
717 (fpp_regnum - FPP0_REGNUM) * 2;
718 return fp_regnum;
719}
720
55ff77ac
CV
721/* *INDENT-OFF* */
722/*
723 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
724 GDB_REGNUM BASE_REGNUM
725 r0_c 221 0
726 r1_c 222 1
727 r2_c 223 2
728 r3_c 224 3
729 r4_c 225 4
730 r5_c 226 5
731 r6_c 227 6
732 r7_c 228 7
733 r8_c 229 8
734 r9_c 230 9
735 r10_c 231 10
736 r11_c 232 11
737 r12_c 233 12
738 r13_c 234 13
739 r14_c 235 14
740 r15_c 236 15
741
742 pc_c 237 64
743 gbr_c 238 16
744 mach_c 239 17
745 macl_c 240 17
746 pr_c 241 18
747 t_c 242 19
748 fpscr_c 243 76
749 fpul_c 244 109
750
751 fr0_c 245 77
752 fr1_c 246 78
753 fr2_c 247 79
754 fr3_c 248 80
755 fr4_c 249 81
756 fr5_c 250 82
757 fr6_c 251 83
758 fr7_c 252 84
759 fr8_c 253 85
760 fr9_c 254 86
761 fr10_c 255 87
762 fr11_c 256 88
763 fr12_c 257 89
764 fr13_c 258 90
765 fr14_c 259 91
766 fr15_c 260 92
767
768 dr0_c 261 77
769 dr2_c 262 79
770 dr4_c 263 81
771 dr6_c 264 83
772 dr8_c 265 85
773 dr10_c 266 87
774 dr12_c 267 89
775 dr14_c 268 91
776
777 fv0_c 269 77
778 fv4_c 270 81
779 fv8_c 271 85
780 fv12_c 272 91
781*/
782/* *INDENT-ON* */
783static int
784sh64_compact_reg_base_num (int reg_nr)
785{
c30dc700 786 int base_regnum = reg_nr;
55ff77ac
CV
787
788 /* general register N maps to general register N */
789 if (reg_nr >= R0_C_REGNUM
790 && reg_nr <= R_LAST_C_REGNUM)
791 base_regnum = reg_nr - R0_C_REGNUM;
792
793 /* floating point register N maps to floating point register N */
794 else if (reg_nr >= FP0_C_REGNUM
795 && reg_nr <= FP_LAST_C_REGNUM)
3e8c568d 796 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (current_gdbarch);
55ff77ac
CV
797
798 /* double prec register N maps to base regnum for double prec register N */
799 else if (reg_nr >= DR0_C_REGNUM
800 && reg_nr <= DR_LAST_C_REGNUM)
c30dc700 801 base_regnum = sh64_dr_reg_base_num (DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
802
803 /* vector N maps to base regnum for vector register N */
804 else if (reg_nr >= FV0_C_REGNUM
805 && reg_nr <= FV_LAST_C_REGNUM)
c30dc700 806 base_regnum = sh64_fv_reg_base_num (FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
807
808 else if (reg_nr == PC_C_REGNUM)
3e8c568d 809 base_regnum = gdbarch_pc_regnum (current_gdbarch);
55ff77ac
CV
810
811 else if (reg_nr == GBR_C_REGNUM)
812 base_regnum = 16;
813
814 else if (reg_nr == MACH_C_REGNUM
815 || reg_nr == MACL_C_REGNUM)
816 base_regnum = 17;
817
818 else if (reg_nr == PR_C_REGNUM)
c30dc700 819 base_regnum = PR_REGNUM;
55ff77ac
CV
820
821 else if (reg_nr == T_C_REGNUM)
822 base_regnum = 19;
823
824 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 825 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
826
827 else if (reg_nr == FPUL_C_REGNUM)
3e8c568d 828 base_regnum = gdbarch_fp0_regnum (current_gdbarch) + 32;
55ff77ac
CV
829
830 return base_regnum;
831}
832
55ff77ac
CV
833static int
834sign_extend (int value, int bits)
835{
836 value = value & ((1 << bits) - 1);
837 return (value & (1 << (bits - 1))
838 ? value | (~((1 << bits) - 1))
839 : value);
840}
841
842static void
c30dc700
CV
843sh64_analyze_prologue (struct gdbarch *gdbarch,
844 struct sh64_frame_cache *cache,
845 CORE_ADDR func_pc,
846 CORE_ADDR current_pc)
55ff77ac 847{
c30dc700 848 int reg_nr;
55ff77ac
CV
849 int pc;
850 int opc;
851 int insn;
852 int r0_val = 0;
55ff77ac
CV
853 int insn_size;
854 int gdb_register_number;
855 int register_number;
c30dc700 856 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
55ff77ac 857
c30dc700 858 cache->sp_offset = 0;
55ff77ac
CV
859
860 /* Loop around examining the prologue insns until we find something
861 that does not appear to be part of the prologue. But give up
7bb11558 862 after 20 of them, since we're getting silly then. */
55ff77ac 863
c30dc700 864 pc = func_pc;
55ff77ac 865
c30dc700
CV
866 if (cache->media_mode)
867 insn_size = 4;
55ff77ac 868 else
c30dc700 869 insn_size = 2;
55ff77ac 870
c30dc700
CV
871 opc = pc + (insn_size * 28);
872 if (opc > current_pc)
873 opc = current_pc;
874 for ( ; pc <= opc; pc += insn_size)
55ff77ac 875 {
c30dc700
CV
876 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
877 : pc,
55ff77ac
CV
878 insn_size);
879
c30dc700 880 if (!cache->media_mode)
55ff77ac
CV
881 {
882 if (IS_STS_PR (insn))
883 {
884 int next_insn = read_memory_integer (pc + insn_size, insn_size);
885 if (IS_MOV_TO_R15 (next_insn))
886 {
c30dc700
CV
887 cache->saved_regs[PR_REGNUM] =
888 cache->sp_offset - ((((next_insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
889 pc += insn_size;
890 }
891 }
c30dc700 892
55ff77ac 893 else if (IS_MOV_R14 (insn))
c30dc700
CV
894 cache->saved_regs[MEDIA_FP_REGNUM] =
895 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
55ff77ac
CV
896
897 else if (IS_MOV_R0 (insn))
898 {
899 /* Put in R0 the offset from SP at which to store some
900 registers. We are interested in this value, because it
901 will tell us where the given registers are stored within
902 the frame. */
903 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
904 }
c30dc700 905
55ff77ac
CV
906 else if (IS_ADD_SP_R0 (insn))
907 {
908 /* This instruction still prepares r0, but we don't care.
7bb11558 909 We already have the offset in r0_val. */
55ff77ac 910 }
c30dc700 911
55ff77ac
CV
912 else if (IS_STS_R0 (insn))
913 {
914 /* Store PR at r0_val-4 from SP. Decrement r0 by 4*/
c30dc700 915 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 916 r0_val -= 4;
55ff77ac 917 }
c30dc700 918
55ff77ac
CV
919 else if (IS_MOV_R14_R0 (insn))
920 {
921 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4 */
c30dc700
CV
922 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
923 - (r0_val - 4);
55ff77ac
CV
924 r0_val -= 4;
925 }
926
927 else if (IS_ADD_SP (insn))
c30dc700
CV
928 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
929
55ff77ac
CV
930 else if (IS_MOV_SP_FP (insn))
931 break;
932 }
933 else
934 {
c30dc700
CV
935 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
936 cache->sp_offset -=
937 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
938
939 else if (IS_STQ_R18_R15 (insn))
c30dc700
CV
940 cache->saved_regs[PR_REGNUM] =
941 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
942
943 else if (IS_STL_R18_R15 (insn))
c30dc700
CV
944 cache->saved_regs[PR_REGNUM] =
945 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
946
947 else if (IS_STQ_R14_R15 (insn))
c30dc700
CV
948 cache->saved_regs[MEDIA_FP_REGNUM] =
949 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 3);
55ff77ac
CV
950
951 else if (IS_STL_R14_R15 (insn))
c30dc700
CV
952 cache->saved_regs[MEDIA_FP_REGNUM] =
953 cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10, 9) << 2);
55ff77ac
CV
954
955 else if (IS_MOV_SP_FP_MEDIA (insn))
956 break;
957 }
958 }
959
c30dc700
CV
960 if (cache->saved_regs[MEDIA_FP_REGNUM] >= 0)
961 cache->uses_fp = 1;
55ff77ac
CV
962}
963
964static CORE_ADDR
07be497a 965sh64_extract_struct_value_address (struct regcache *regcache)
55ff77ac 966{
07be497a
AC
967 /* FIXME: cagney/2004-01-17: Does the ABI guarantee that the return
968 address regster is preserved across function calls? Probably
969 not, making this function wrong. */
970 ULONGEST val;
971 regcache_raw_read_unsigned (regcache, STRUCT_RETURN_REGNUM, &val);
972 return val;
55ff77ac
CV
973}
974
975static CORE_ADDR
c30dc700 976sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 977{
c30dc700 978 return sp & ~7;
55ff77ac
CV
979}
980
c30dc700 981/* Function: push_dummy_call
55ff77ac
CV
982 Setup the function arguments for calling a function in the inferior.
983
85a453d5 984 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
985 which are dedicated for passing function arguments. Up to the first
986 four arguments (depending on size) may go into these registers.
987 The rest go on the stack.
988
989 Arguments that are smaller than 4 bytes will still take up a whole
990 register or a whole 32-bit word on the stack, and will be
991 right-justified in the register or the stack word. This includes
992 chars, shorts, and small aggregate types.
993
994 Arguments that are larger than 4 bytes may be split between two or
995 more registers. If there are not enough registers free, an argument
996 may be passed partly in a register (or registers), and partly on the
997 stack. This includes doubles, long longs, and larger aggregates.
998 As far as I know, there is no upper limit to the size of aggregates
999 that will be passed in this way; in other words, the convention of
1000 passing a pointer to a large aggregate instead of a copy is not used.
1001
1002 An exceptional case exists for struct arguments (and possibly other
1003 aggregates such as arrays) if the size is larger than 4 bytes but
1004 not a multiple of 4 bytes. In this case the argument is never split
1005 between the registers and the stack, but instead is copied in its
1006 entirety onto the stack, AND also copied into as many registers as
1007 there is room for. In other words, space in registers permitting,
1008 two copies of the same argument are passed in. As far as I can tell,
1009 only the one on the stack is used, although that may be a function
1010 of the level of compiler optimization. I suspect this is a compiler
1011 bug. Arguments of these odd sizes are left-justified within the
1012 word (as opposed to arguments smaller than 4 bytes, which are
1013 right-justified).
1014
1015 If the function is to return an aggregate type such as a struct, it
1016 is either returned in the normal return value register R0 (if its
1017 size is no greater than one byte), or else the caller must allocate
1018 space into which the callee will copy the return value (if the size
1019 is greater than one byte). In this case, a pointer to the return
1020 value location is passed into the callee in register R2, which does
1021 not displace any of the other arguments passed in via registers R4
1022 to R7. */
1023
1024/* R2-R9 for integer types and integer equivalent (char, pointers) and
1025 non-scalar (struct, union) elements (even if the elements are
1026 floats).
1027 FR0-FR11 for single precision floating point (float)
1028 DR0-DR10 for double precision floating point (double)
1029
1030 If a float is argument number 3 (for instance) and arguments number
1031 1,2, and 4 are integer, the mapping will be:
1032 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
1033
1034 If a float is argument number 10 (for instance) and arguments number
1035 1 through 10 are integer, the mapping will be:
1036 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
1037 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0, arg11->stack(16,SP).
1038 I.e. there is hole in the stack.
1039
1040 Different rules apply for variable arguments functions, and for functions
7bb11558 1041 for which the prototype is not known. */
55ff77ac
CV
1042
1043static CORE_ADDR
c30dc700
CV
1044sh64_push_dummy_call (struct gdbarch *gdbarch,
1045 struct value *function,
1046 struct regcache *regcache,
1047 CORE_ADDR bp_addr,
1048 int nargs, struct value **args,
1049 CORE_ADDR sp, int struct_return,
1050 CORE_ADDR struct_addr)
55ff77ac
CV
1051{
1052 int stack_offset, stack_alloc;
1053 int int_argreg;
1054 int float_argreg;
1055 int double_argreg;
1056 int float_arg_index = 0;
1057 int double_arg_index = 0;
1058 int argnum;
1059 struct type *type;
1060 CORE_ADDR regval;
1061 char *val;
1062 char valbuf[8];
1063 char valbuf_tmp[8];
1064 int len;
1065 int argreg_size;
1066 int fp_args[12];
55ff77ac
CV
1067
1068 memset (fp_args, 0, sizeof (fp_args));
1069
1070 /* first force sp to a 8-byte alignment */
c30dc700 1071 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1072
1073 /* The "struct return pointer" pseudo-argument has its own dedicated
1074 register */
1075
1076 if (struct_return)
c30dc700
CV
1077 regcache_cooked_write_unsigned (regcache,
1078 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac
CV
1079
1080 /* Now make sure there's space on the stack */
1081 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1082 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
55ff77ac
CV
1083 sp -= stack_alloc; /* make room on stack for args */
1084
1085 /* Now load as many as possible of the first arguments into
1086 registers, and push the rest onto the stack. There are 64 bytes
1087 in eight registers available. Loop thru args from first to last. */
1088
1089 int_argreg = ARG0_REGNUM;
3e8c568d 1090 float_argreg = gdbarch_fp0_regnum (current_gdbarch);
55ff77ac
CV
1091 double_argreg = DR0_REGNUM;
1092
1093 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1094 {
4991999e 1095 type = value_type (args[argnum]);
55ff77ac
CV
1096 len = TYPE_LENGTH (type);
1097 memset (valbuf, 0, sizeof (valbuf));
1098
1099 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1100 {
7bb11558 1101 argreg_size = register_size (current_gdbarch, int_argreg);
55ff77ac
CV
1102
1103 if (len < argreg_size)
1104 {
1105 /* value gets right-justified in the register or stack word */
4c6b5505 1106 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1107 memcpy (valbuf + argreg_size - len,
0fd88904 1108 (char *) value_contents (args[argnum]), len);
55ff77ac 1109 else
0fd88904 1110 memcpy (valbuf, (char *) value_contents (args[argnum]), len);
55ff77ac
CV
1111
1112 val = valbuf;
1113 }
1114 else
0fd88904 1115 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1116
1117 while (len > 0)
1118 {
1119 if (int_argreg > ARGLAST_REGNUM)
1120 {
1121 /* must go on the stack */
079c8cd0
CV
1122 write_memory (sp + stack_offset, (const bfd_byte *) val,
1123 argreg_size);
55ff77ac
CV
1124 stack_offset += 8;/*argreg_size;*/
1125 }
1126 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1127 That's because some *&^%$ things get passed on the stack
1128 AND in the registers! */
1129 if (int_argreg <= ARGLAST_REGNUM)
1130 {
1131 /* there's room in a register */
1132 regval = extract_unsigned_integer (val, argreg_size);
c30dc700 1133 regcache_cooked_write_unsigned (regcache, int_argreg, regval);
55ff77ac
CV
1134 }
1135 /* Store the value 8 bytes at a time. This means that
1136 things larger than 8 bytes may go partly in registers
1137 and partly on the stack. FIXME: argreg is incremented
7bb11558 1138 before we use its size. */
55ff77ac
CV
1139 len -= argreg_size;
1140 val += argreg_size;
1141 int_argreg++;
1142 }
1143 }
1144 else
1145 {
0fd88904 1146 val = (char *) value_contents (args[argnum]);
55ff77ac
CV
1147 if (len == 4)
1148 {
1149 /* Where is it going to be stored? */
1150 while (fp_args[float_arg_index])
1151 float_arg_index ++;
1152
1153 /* Now float_argreg points to the register where it
1154 should be stored. Are we still within the allowed
1155 register set? */
1156 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1157 {
1158 /* Goes in FR0...FR11 */
c30dc700 1159 regcache_cooked_write (regcache,
3e8c568d
UW
1160 gdbarch_fp0_regnum (current_gdbarch)
1161 + float_arg_index,
c30dc700 1162 val);
55ff77ac 1163 fp_args[float_arg_index] = 1;
7bb11558 1164 /* Skip the corresponding general argument register. */
55ff77ac
CV
1165 int_argreg ++;
1166 }
1167 else
1168 ;
1169 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1170 necessary spilling on the stack. */
55ff77ac
CV
1171
1172 }
1173 else if (len == 8)
1174 {
1175 /* Where is it going to be stored? */
1176 while (fp_args[double_arg_index])
1177 double_arg_index += 2;
1178 /* Now double_argreg points to the register
1179 where it should be stored.
1180 Are we still within the allowed register set? */
1181 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in DR0...DR10 */
1184 /* The numbering of the DRi registers is consecutive,
7bb11558 1185 i.e. includes odd numbers. */
55ff77ac 1186 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1187 int regnum = DR0_REGNUM + double_register_offset;
1188 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1189 fp_args[double_arg_index] = 1;
1190 fp_args[double_arg_index + 1] = 1;
7bb11558 1191 /* Skip the corresponding general argument register. */
55ff77ac
CV
1192 int_argreg ++;
1193 }
1194 else
1195 ;
1196 /* Store it as the integers, 8 bytes at the time, if
7bb11558 1197 necessary spilling on the stack. */
55ff77ac
CV
1198 }
1199 }
1200 }
c30dc700
CV
1201 /* Store return address. */
1202 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1203
c30dc700 1204 /* Update stack pointer. */
3e8c568d
UW
1205 regcache_cooked_write_unsigned (regcache,
1206 gdbarch_sp_regnum (current_gdbarch), sp);
55ff77ac 1207
55ff77ac
CV
1208 return sp;
1209}
1210
1211/* Find a function's return value in the appropriate registers (in
1212 regbuf), and copy it into valbuf. Extract from an array REGBUF
1213 containing the (raw) register state a function return value of type
1214 TYPE, and copy that, in virtual format, into VALBUF. */
1215static void
c30dc700
CV
1216sh64_extract_return_value (struct type *type, struct regcache *regcache,
1217 void *valbuf)
55ff77ac 1218{
55ff77ac 1219 int len = TYPE_LENGTH (type);
55ff77ac
CV
1220
1221 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1222 {
1223 if (len == 4)
1224 {
3e8c568d
UW
1225 /* Return value stored in gdbarch_fp0_regnum */
1226 regcache_raw_read (regcache,
1227 gdbarch_fp0_regnum (current_gdbarch), valbuf);
55ff77ac
CV
1228 }
1229 else if (len == 8)
1230 {
1231 /* return value stored in DR0_REGNUM */
1232 DOUBLEST val;
18cf8b5b 1233 gdb_byte buf[8];
55ff77ac 1234
18cf8b5b 1235 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1236
4c6b5505 1237 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
55ff77ac 1238 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
c30dc700 1239 buf, &val);
55ff77ac
CV
1240 else
1241 floatformat_to_doublest (&floatformat_ieee_double_big,
c30dc700 1242 buf, &val);
7bb11558 1243 store_typed_floating (valbuf, type, val);
55ff77ac
CV
1244 }
1245 }
1246 else
1247 {
1248 if (len <= 8)
1249 {
c30dc700
CV
1250 int offset;
1251 char buf[8];
55ff77ac 1252 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1253 at the most significant end. */
c30dc700
CV
1254 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1255
4c6b5505 1256 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
c30dc700
CV
1257 offset = register_size (current_gdbarch, DEFAULT_RETURN_REGNUM)
1258 - len;
55ff77ac 1259 else
c30dc700
CV
1260 offset = 0;
1261 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1262 }
1263 else
1264 error ("bad size for return value");
1265 }
1266}
1267
1268/* Write into appropriate registers a function return value
1269 of type TYPE, given in virtual format.
1270 If the architecture is sh4 or sh3e, store a function's return value
1271 in the R0 general register or in the FP0 floating point register,
1272 depending on the type of the return value. In all the other cases
7bb11558 1273 the result is stored in r0, left-justified. */
55ff77ac
CV
1274
1275static void
c30dc700
CV
1276sh64_store_return_value (struct type *type, struct regcache *regcache,
1277 const void *valbuf)
55ff77ac 1278{
7bb11558 1279 char buf[64]; /* more than enough... */
55ff77ac
CV
1280 int len = TYPE_LENGTH (type);
1281
1282 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1283 {
3e8c568d 1284 int i, regnum = gdbarch_fp0_regnum (current_gdbarch);
c30dc700 1285 for (i = 0; i < len; i += 4)
4c6b5505 1286 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700
CV
1287 regcache_raw_write (regcache, regnum++,
1288 (char *) valbuf + len - 4 - i);
1289 else
1290 regcache_raw_write (regcache, regnum++, (char *) valbuf + i);
55ff77ac
CV
1291 }
1292 else
1293 {
1294 int return_register = DEFAULT_RETURN_REGNUM;
1295 int offset = 0;
1296
7bb11558 1297 if (len <= register_size (current_gdbarch, return_register))
55ff77ac 1298 {
7bb11558
MS
1299 /* Pad with zeros. */
1300 memset (buf, 0, register_size (current_gdbarch, return_register));
4c6b5505 1301 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
7bb11558
MS
1302 offset = 0; /*register_size (current_gdbarch,
1303 return_register) - len;*/
55ff77ac 1304 else
7bb11558 1305 offset = register_size (current_gdbarch, return_register) - len;
55ff77ac
CV
1306
1307 memcpy (buf + offset, valbuf, len);
c30dc700 1308 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1309 }
1310 else
c30dc700 1311 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1312 }
1313}
1314
c30dc700
CV
1315static enum return_value_convention
1316sh64_return_value (struct gdbarch *gdbarch, struct type *type,
1317 struct regcache *regcache,
18cf8b5b 1318 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1319{
1320 if (sh64_use_struct_convention (type))
1321 return RETURN_VALUE_STRUCT_CONVENTION;
1322 if (writebuf)
1323 sh64_store_return_value (type, regcache, writebuf);
1324 else if (readbuf)
1325 sh64_extract_return_value (type, regcache, readbuf);
1326 return RETURN_VALUE_REGISTER_CONVENTION;
1327}
1328
55ff77ac 1329static void
c458d6db 1330sh64_show_media_regs (struct frame_info *frame)
55ff77ac
CV
1331{
1332 int i;
55ff77ac 1333
c458d6db
UW
1334 printf_filtered
1335 ("PC=%s SR=%016llx \n",
3e8c568d
UW
1336 paddr (get_frame_register_unsigned (frame,
1337 gdbarch_pc_regnum (current_gdbarch))),
c458d6db 1338 (long long) get_frame_register_unsigned (frame, SR_REGNUM));
55ff77ac 1339
c458d6db
UW
1340 printf_filtered
1341 ("SSR=%016llx SPC=%016llx \n",
1342 (long long) get_frame_register_unsigned (frame, SSR_REGNUM),
1343 (long long) get_frame_register_unsigned (frame, SPC_REGNUM));
1344 printf_filtered
1345 ("FPSCR=%016lx\n ",
1346 (long) get_frame_register_unsigned (frame, FPSCR_REGNUM));
55ff77ac
CV
1347
1348 for (i = 0; i < 64; i = i + 4)
c458d6db
UW
1349 printf_filtered
1350 ("\nR%d-R%d %016llx %016llx %016llx %016llx\n",
1351 i, i + 3,
1352 (long long) get_frame_register_unsigned (frame, i + 0),
1353 (long long) get_frame_register_unsigned (frame, i + 1),
1354 (long long) get_frame_register_unsigned (frame, i + 2),
1355 (long long) get_frame_register_unsigned (frame, i + 3));
55ff77ac
CV
1356
1357 printf_filtered ("\n");
1358
1359 for (i = 0; i < 64; i = i + 8)
c458d6db
UW
1360 printf_filtered
1361 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1362 i, i + 7,
3e8c568d
UW
1363 (long) get_frame_register_unsigned
1364 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 0),
1365 (long) get_frame_register_unsigned
1366 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 1),
1367 (long) get_frame_register_unsigned
1368 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 2),
1369 (long) get_frame_register_unsigned
1370 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 3),
1371 (long) get_frame_register_unsigned
1372 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 4),
1373 (long) get_frame_register_unsigned
1374 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 5),
1375 (long) get_frame_register_unsigned
1376 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 6),
1377 (long) get_frame_register_unsigned
1378 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 7));
55ff77ac
CV
1379}
1380
1381static void
c458d6db 1382sh64_show_compact_regs (struct frame_info *frame)
55ff77ac
CV
1383{
1384 int i;
55ff77ac 1385
c458d6db
UW
1386 printf_filtered
1387 ("PC=%s \n",
1388 paddr (get_frame_register_unsigned (frame, PC_C_REGNUM)));
1389
1390 printf_filtered
1391 ("GBR=%08lx MACH=%08lx MACL=%08lx PR=%08lx T=%08lx\n",
1392 (long) get_frame_register_unsigned (frame, GBR_C_REGNUM),
1393 (long) get_frame_register_unsigned (frame, MACH_C_REGNUM),
1394 (long) get_frame_register_unsigned (frame, MACL_C_REGNUM),
1395 (long) get_frame_register_unsigned (frame, PR_C_REGNUM),
1396 (long) get_frame_register_unsigned (frame, T_C_REGNUM));
1397 printf_filtered
1398 ("FPSCR=%08lx FPUL=%08lx\n",
1399 (long) get_frame_register_unsigned (frame, FPSCR_C_REGNUM),
1400 (long) get_frame_register_unsigned (frame, FPUL_C_REGNUM));
55ff77ac
CV
1401
1402 for (i = 0; i < 16; i = i + 4)
c458d6db
UW
1403 printf_filtered
1404 ("\nR%d-R%d %08lx %08lx %08lx %08lx\n",
1405 i, i + 3,
1406 (long) get_frame_register_unsigned (frame, i + 0),
1407 (long) get_frame_register_unsigned (frame, i + 1),
1408 (long) get_frame_register_unsigned (frame, i + 2),
1409 (long) get_frame_register_unsigned (frame, i + 3));
55ff77ac
CV
1410
1411 printf_filtered ("\n");
1412
1413 for (i = 0; i < 16; i = i + 8)
c458d6db
UW
1414 printf_filtered
1415 ("FR%d-FR%d %08lx %08lx %08lx %08lx %08lx %08lx %08lx %08lx\n",
1416 i, i + 7,
3e8c568d
UW
1417 (long) get_frame_register_unsigned
1418 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 0),
1419 (long) get_frame_register_unsigned
1420 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 1),
1421 (long) get_frame_register_unsigned
1422 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 2),
1423 (long) get_frame_register_unsigned
1424 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 3),
1425 (long) get_frame_register_unsigned
1426 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 4),
1427 (long) get_frame_register_unsigned
1428 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 5),
1429 (long) get_frame_register_unsigned
1430 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 6),
1431 (long) get_frame_register_unsigned
1432 (frame, gdbarch_fp0_regnum (current_gdbarch) + i + 7));
55ff77ac
CV
1433}
1434
7bb11558
MS
1435/* FIXME!!! This only shows the registers for shmedia, excluding the
1436 pseudo registers. */
55ff77ac 1437void
c458d6db 1438sh64_show_regs (struct frame_info *frame)
55ff77ac 1439{
c458d6db
UW
1440 if (pc_is_isa32 (get_frame_pc (frame)))
1441 sh64_show_media_regs (frame);
55ff77ac 1442 else
c458d6db 1443 sh64_show_compact_regs (frame);
55ff77ac
CV
1444}
1445
1446/* *INDENT-OFF* */
1447/*
1448 SH MEDIA MODE (ISA 32)
1449 general registers (64-bit) 0-63
14500 r0, r1, r2, r3, r4, r5, r6, r7,
145164 r8, r9, r10, r11, r12, r13, r14, r15,
1452128 r16, r17, r18, r19, r20, r21, r22, r23,
1453192 r24, r25, r26, r27, r28, r29, r30, r31,
1454256 r32, r33, r34, r35, r36, r37, r38, r39,
1455320 r40, r41, r42, r43, r44, r45, r46, r47,
1456384 r48, r49, r50, r51, r52, r53, r54, r55,
1457448 r56, r57, r58, r59, r60, r61, r62, r63,
1458
1459 pc (64-bit) 64
1460512 pc,
1461
1462 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1463520 sr, ssr, spc,
1464
1465 target registers (64-bit) 68-75
1466544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1467
1468 floating point state control register (32-bit) 76
1469608 fpscr,
1470
1471 single precision floating point registers (32-bit) 77-140
1472612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1473644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1474676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1475708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1476740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1477772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1478804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1479836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1480
1481TOTAL SPACE FOR REGISTERS: 868 bytes
1482
1483From here on they are all pseudo registers: no memory allocated.
1484REGISTER_BYTE returns the register byte for the base register.
1485
1486 double precision registers (pseudo) 141-172
1487 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1488 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1489 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1490 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1491
1492 floating point pairs (pseudo) 173-204
1493 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1494 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1495 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1496 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1497
1498 floating point vectors (4 floating point regs) (pseudo) 205-220
1499 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1500 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1501
1502 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1503 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1504 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1505 pc_c,
1506 gbr_c, mach_c, macl_c, pr_c, t_c,
1507 fpscr_c, fpul_c,
1508 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1509 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1510 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1511 fv0_c, fv4_c, fv8_c, fv12_c
1512*/
55ff77ac 1513
55ff77ac 1514static struct type *
39add00a 1515sh64_build_float_register_type (int high)
55ff77ac
CV
1516{
1517 struct type *temp;
1518
1519 temp = create_range_type (NULL, builtin_type_int, 0, high);
1520 return create_array_type (NULL, builtin_type_float, temp);
1521}
1522
7bb11558
MS
1523/* Return the GDB type object for the "standard" data type
1524 of data in register REG_NR. */
55ff77ac 1525static struct type *
7bb11558 1526sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1527{
3e8c568d 1528 if ((reg_nr >= gdbarch_fp0_regnum (current_gdbarch)
55ff77ac
CV
1529 && reg_nr <= FP_LAST_REGNUM)
1530 || (reg_nr >= FP0_C_REGNUM
1531 && reg_nr <= FP_LAST_C_REGNUM))
1532 return builtin_type_float;
1533 else if ((reg_nr >= DR0_REGNUM
1534 && reg_nr <= DR_LAST_REGNUM)
1535 || (reg_nr >= DR0_C_REGNUM
1536 && reg_nr <= DR_LAST_C_REGNUM))
1537 return builtin_type_double;
1538 else if (reg_nr >= FPP0_REGNUM
1539 && reg_nr <= FPP_LAST_REGNUM)
39add00a 1540 return sh64_build_float_register_type (1);
55ff77ac
CV
1541 else if ((reg_nr >= FV0_REGNUM
1542 && reg_nr <= FV_LAST_REGNUM)
1543 ||(reg_nr >= FV0_C_REGNUM
1544 && reg_nr <= FV_LAST_C_REGNUM))
39add00a 1545 return sh64_build_float_register_type (3);
55ff77ac
CV
1546 else if (reg_nr == FPSCR_REGNUM)
1547 return builtin_type_int;
1548 else if (reg_nr >= R0_C_REGNUM
1549 && reg_nr < FP0_C_REGNUM)
1550 return builtin_type_int;
1551 else
1552 return builtin_type_long_long;
1553}
1554
1555static void
39add00a 1556sh64_register_convert_to_virtual (int regnum, struct type *type,
55ff77ac
CV
1557 char *from, char *to)
1558{
4c6b5505 1559 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1560 {
7bb11558
MS
1561 /* It is a no-op. */
1562 memcpy (to, from, register_size (current_gdbarch, regnum));
55ff77ac
CV
1563 return;
1564 }
1565
1566 if ((regnum >= DR0_REGNUM
1567 && regnum <= DR_LAST_REGNUM)
1568 || (regnum >= DR0_C_REGNUM
1569 && regnum <= DR_LAST_C_REGNUM))
1570 {
1571 DOUBLEST val;
7bb11558
MS
1572 floatformat_to_doublest (&floatformat_ieee_double_littlebyte_bigword,
1573 from, &val);
39add00a 1574 store_typed_floating (to, type, val);
55ff77ac
CV
1575 }
1576 else
39add00a 1577 error ("sh64_register_convert_to_virtual called with non DR register number");
55ff77ac
CV
1578}
1579
1580static void
39add00a 1581sh64_register_convert_to_raw (struct type *type, int regnum,
55ff77ac
CV
1582 const void *from, void *to)
1583{
4c6b5505 1584 if (gdbarch_byte_order (current_gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1585 {
7bb11558
MS
1586 /* It is a no-op. */
1587 memcpy (to, from, register_size (current_gdbarch, regnum));
55ff77ac
CV
1588 return;
1589 }
1590
1591 if ((regnum >= DR0_REGNUM
1592 && regnum <= DR_LAST_REGNUM)
1593 || (regnum >= DR0_C_REGNUM
1594 && regnum <= DR_LAST_C_REGNUM))
1595 {
1596 DOUBLEST val = deprecated_extract_floating (from, TYPE_LENGTH(type));
7bb11558
MS
1597 floatformat_from_doublest (&floatformat_ieee_double_littlebyte_bigword,
1598 &val, to);
55ff77ac
CV
1599 }
1600 else
39add00a 1601 error ("sh64_register_convert_to_raw called with non DR register number");
55ff77ac
CV
1602}
1603
1604static void
1605sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1606 int reg_nr, gdb_byte *buffer)
55ff77ac
CV
1607{
1608 int base_regnum;
1609 int portion;
1610 int offset = 0;
1611 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1612
1613 if (reg_nr >= DR0_REGNUM
1614 && reg_nr <= DR_LAST_REGNUM)
1615 {
c30dc700 1616 base_regnum = sh64_dr_reg_base_num (reg_nr);
55ff77ac 1617
7bb11558 1618 /* Build the value in the provided buffer. */
55ff77ac 1619 /* DR regs are double precision registers obtained by
7bb11558 1620 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1621 for (portion = 0; portion < 2; portion++)
1622 regcache_raw_read (regcache, base_regnum + portion,
1623 (temp_buffer
7bb11558 1624 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1625
7bb11558 1626 /* We must pay attention to the endianness. */
39add00a 1627 sh64_register_convert_to_virtual (reg_nr,
7b9ee6a8 1628 register_type (gdbarch, reg_nr),
39add00a 1629 temp_buffer, buffer);
55ff77ac
CV
1630
1631 }
1632
1633 else if (reg_nr >= FPP0_REGNUM
1634 && reg_nr <= FPP_LAST_REGNUM)
1635 {
c30dc700 1636 base_regnum = sh64_fpp_reg_base_num (reg_nr);
55ff77ac 1637
7bb11558 1638 /* Build the value in the provided buffer. */
55ff77ac 1639 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1640 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1641 for (portion = 0; portion < 2; portion++)
1642 regcache_raw_read (regcache, base_regnum + portion,
1643 ((char *) buffer
7bb11558 1644 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1645 }
1646
1647 else if (reg_nr >= FV0_REGNUM
1648 && reg_nr <= FV_LAST_REGNUM)
1649 {
c30dc700 1650 base_regnum = sh64_fv_reg_base_num (reg_nr);
55ff77ac 1651
7bb11558 1652 /* Build the value in the provided buffer. */
55ff77ac 1653 /* FV regs are vectors of single precision registers obtained by
7bb11558 1654 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1655 for (portion = 0; portion < 4; portion++)
1656 regcache_raw_read (regcache, base_regnum + portion,
1657 ((char *) buffer
7bb11558 1658 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1659 }
1660
1661 /* sh compact pseudo registers. 1-to-1 with a shmedia register */
1662 else if (reg_nr >= R0_C_REGNUM
1663 && reg_nr <= T_C_REGNUM)
1664 {
1665 base_regnum = sh64_compact_reg_base_num (reg_nr);
1666
7bb11558 1667 /* Build the value in the provided buffer. */
55ff77ac 1668 regcache_raw_read (regcache, base_regnum, temp_buffer);
4c6b5505 1669 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1670 offset = 4;
1671 memcpy (buffer, temp_buffer + offset, 4); /* get LOWER 32 bits only????*/
1672 }
1673
1674 else if (reg_nr >= FP0_C_REGNUM
1675 && reg_nr <= FP_LAST_C_REGNUM)
1676 {
1677 base_regnum = sh64_compact_reg_base_num (reg_nr);
1678
7bb11558 1679 /* Build the value in the provided buffer. */
55ff77ac 1680 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1681 they have the same size and endianness. */
55ff77ac
CV
1682 regcache_raw_read (regcache, base_regnum, buffer);
1683 }
1684
1685 else if (reg_nr >= DR0_C_REGNUM
1686 && reg_nr <= DR_LAST_C_REGNUM)
1687 {
1688 base_regnum = sh64_compact_reg_base_num (reg_nr);
1689
1690 /* DR_C regs are double precision registers obtained by
7bb11558 1691 concatenating 2 single precision floating point registers. */
55ff77ac
CV
1692 for (portion = 0; portion < 2; portion++)
1693 regcache_raw_read (regcache, base_regnum + portion,
1694 (temp_buffer
7bb11558 1695 + register_size (gdbarch, base_regnum) * portion));
55ff77ac 1696
7bb11558 1697 /* We must pay attention to the endianness. */
39add00a 1698 sh64_register_convert_to_virtual (reg_nr,
7b9ee6a8 1699 register_type (gdbarch, reg_nr),
39add00a 1700 temp_buffer, buffer);
55ff77ac
CV
1701 }
1702
1703 else if (reg_nr >= FV0_C_REGNUM
1704 && reg_nr <= FV_LAST_C_REGNUM)
1705 {
1706 base_regnum = sh64_compact_reg_base_num (reg_nr);
1707
7bb11558 1708 /* Build the value in the provided buffer. */
55ff77ac 1709 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1710 concatenating 4 single precision floating point registers. */
55ff77ac
CV
1711 for (portion = 0; portion < 4; portion++)
1712 regcache_raw_read (regcache, base_regnum + portion,
1713 ((char *) buffer
7bb11558 1714 + register_size (gdbarch, base_regnum) * portion));
55ff77ac
CV
1715 }
1716
1717 else if (reg_nr == FPSCR_C_REGNUM)
1718 {
1719 int fpscr_base_regnum;
1720 int sr_base_regnum;
1721 unsigned int fpscr_value;
1722 unsigned int sr_value;
1723 unsigned int fpscr_c_value;
1724 unsigned int fpscr_c_part1_value;
1725 unsigned int fpscr_c_part2_value;
1726
1727 fpscr_base_regnum = FPSCR_REGNUM;
1728 sr_base_regnum = SR_REGNUM;
1729
7bb11558 1730 /* Build the value in the provided buffer. */
55ff77ac
CV
1731 /* FPSCR_C is a very weird register that contains sparse bits
1732 from the FPSCR and the SR architectural registers.
1733 Specifically: */
1734 /* *INDENT-OFF* */
1735 /*
1736 FPSRC_C bit
1737 0 Bit 0 of FPSCR
1738 1 reserved
1739 2-17 Bit 2-18 of FPSCR
1740 18-20 Bits 12,13,14 of SR
1741 21-31 reserved
1742 */
1743 /* *INDENT-ON* */
1744 /* Get FPSCR into a local buffer */
1745 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
7bb11558 1746 /* Get value as an int. */
55ff77ac
CV
1747 fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1748 /* Get SR into a local buffer */
1749 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
7bb11558 1750 /* Get value as an int. */
55ff77ac 1751 sr_value = extract_unsigned_integer (temp_buffer, 4);
7bb11558 1752 /* Build the new value. */
55ff77ac
CV
1753 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1754 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1755 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
1756 /* Store that in out buffer!!! */
1757 store_unsigned_integer (buffer, 4, fpscr_c_value);
7bb11558 1758 /* FIXME There is surely an endianness gotcha here. */
55ff77ac
CV
1759 }
1760
1761 else if (reg_nr == FPUL_C_REGNUM)
1762 {
1763 base_regnum = sh64_compact_reg_base_num (reg_nr);
1764
1765 /* FPUL_C register is floating point register 32,
7bb11558 1766 same size, same endianness. */
55ff77ac
CV
1767 regcache_raw_read (regcache, base_regnum, buffer);
1768 }
1769}
1770
1771static void
1772sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1773 int reg_nr, const gdb_byte *buffer)
55ff77ac
CV
1774{
1775 int base_regnum, portion;
1776 int offset;
1777 char temp_buffer[MAX_REGISTER_SIZE];
55ff77ac
CV
1778
1779 if (reg_nr >= DR0_REGNUM
1780 && reg_nr <= DR_LAST_REGNUM)
1781 {
c30dc700 1782 base_regnum = sh64_dr_reg_base_num (reg_nr);
7bb11558 1783 /* We must pay attention to the endianness. */
7b9ee6a8 1784 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
39add00a
MS
1785 reg_nr,
1786 buffer, temp_buffer);
55ff77ac
CV
1787
1788 /* Write the real regs for which this one is an alias. */
1789 for (portion = 0; portion < 2; portion++)
1790 regcache_raw_write (regcache, base_regnum + portion,
1791 (temp_buffer
7bb11558
MS
1792 + register_size (gdbarch,
1793 base_regnum) * portion));
55ff77ac
CV
1794 }
1795
1796 else if (reg_nr >= FPP0_REGNUM
1797 && reg_nr <= FPP_LAST_REGNUM)
1798 {
c30dc700 1799 base_regnum = sh64_fpp_reg_base_num (reg_nr);
55ff77ac
CV
1800
1801 /* Write the real regs for which this one is an alias. */
1802 for (portion = 0; portion < 2; portion++)
1803 regcache_raw_write (regcache, base_regnum + portion,
1804 ((char *) buffer
7bb11558
MS
1805 + register_size (gdbarch,
1806 base_regnum) * portion));
55ff77ac
CV
1807 }
1808
1809 else if (reg_nr >= FV0_REGNUM
1810 && reg_nr <= FV_LAST_REGNUM)
1811 {
c30dc700 1812 base_regnum = sh64_fv_reg_base_num (reg_nr);
55ff77ac
CV
1813
1814 /* Write the real regs for which this one is an alias. */
1815 for (portion = 0; portion < 4; portion++)
1816 regcache_raw_write (regcache, base_regnum + portion,
1817 ((char *) buffer
7bb11558
MS
1818 + register_size (gdbarch,
1819 base_regnum) * portion));
55ff77ac
CV
1820 }
1821
1822 /* sh compact general pseudo registers. 1-to-1 with a shmedia
1823 register but only 4 bytes of it. */
1824 else if (reg_nr >= R0_C_REGNUM
1825 && reg_nr <= T_C_REGNUM)
1826 {
1827 base_regnum = sh64_compact_reg_base_num (reg_nr);
7bb11558 1828 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
4c6b5505 1829 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1830 offset = 4;
1831 else
1832 offset = 0;
1833 /* Let's read the value of the base register into a temporary
1834 buffer, so that overwriting the last four bytes with the new
7bb11558 1835 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac
CV
1836 regcache_raw_read (regcache, base_regnum, temp_buffer);
1837 /* Write as an 8 byte quantity */
1838 memcpy (temp_buffer + offset, buffer, 4);
1839 regcache_raw_write (regcache, base_regnum, temp_buffer);
1840 }
1841
1842 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
7bb11558 1843 registers. Both are 4 bytes. */
55ff77ac
CV
1844 else if (reg_nr >= FP0_C_REGNUM
1845 && reg_nr <= FP_LAST_C_REGNUM)
1846 {
1847 base_regnum = sh64_compact_reg_base_num (reg_nr);
1848 regcache_raw_write (regcache, base_regnum, buffer);
1849 }
1850
1851 else if (reg_nr >= DR0_C_REGNUM
1852 && reg_nr <= DR_LAST_C_REGNUM)
1853 {
1854 base_regnum = sh64_compact_reg_base_num (reg_nr);
1855 for (portion = 0; portion < 2; portion++)
1856 {
7bb11558 1857 /* We must pay attention to the endianness. */
7b9ee6a8 1858 sh64_register_convert_to_raw (register_type (gdbarch, reg_nr),
39add00a
MS
1859 reg_nr,
1860 buffer, temp_buffer);
55ff77ac
CV
1861
1862 regcache_raw_write (regcache, base_regnum + portion,
1863 (temp_buffer
7bb11558
MS
1864 + register_size (gdbarch,
1865 base_regnum) * portion));
55ff77ac
CV
1866 }
1867 }
1868
1869 else if (reg_nr >= FV0_C_REGNUM
1870 && reg_nr <= FV_LAST_C_REGNUM)
1871 {
1872 base_regnum = sh64_compact_reg_base_num (reg_nr);
1873
1874 for (portion = 0; portion < 4; portion++)
1875 {
1876 regcache_raw_write (regcache, base_regnum + portion,
1877 ((char *) buffer
7bb11558
MS
1878 + register_size (gdbarch,
1879 base_regnum) * portion));
55ff77ac
CV
1880 }
1881 }
1882
1883 else if (reg_nr == FPSCR_C_REGNUM)
1884 {
1885 int fpscr_base_regnum;
1886 int sr_base_regnum;
1887 unsigned int fpscr_value;
1888 unsigned int sr_value;
1889 unsigned int old_fpscr_value;
1890 unsigned int old_sr_value;
1891 unsigned int fpscr_c_value;
1892 unsigned int fpscr_mask;
1893 unsigned int sr_mask;
1894
1895 fpscr_base_regnum = FPSCR_REGNUM;
1896 sr_base_regnum = SR_REGNUM;
1897
1898 /* FPSCR_C is a very weird register that contains sparse bits
1899 from the FPSCR and the SR architectural registers.
1900 Specifically: */
1901 /* *INDENT-OFF* */
1902 /*
1903 FPSRC_C bit
1904 0 Bit 0 of FPSCR
1905 1 reserved
1906 2-17 Bit 2-18 of FPSCR
1907 18-20 Bits 12,13,14 of SR
1908 21-31 reserved
1909 */
1910 /* *INDENT-ON* */
7bb11558 1911 /* Get value as an int. */
55ff77ac
CV
1912 fpscr_c_value = extract_unsigned_integer (buffer, 4);
1913
7bb11558 1914 /* Build the new values. */
55ff77ac
CV
1915 fpscr_mask = 0x0003fffd;
1916 sr_mask = 0x001c0000;
1917
1918 fpscr_value = fpscr_c_value & fpscr_mask;
1919 sr_value = (fpscr_value & sr_mask) >> 6;
1920
1921 regcache_raw_read (regcache, fpscr_base_regnum, temp_buffer);
1922 old_fpscr_value = extract_unsigned_integer (temp_buffer, 4);
1923 old_fpscr_value &= 0xfffc0002;
1924 fpscr_value |= old_fpscr_value;
1925 store_unsigned_integer (temp_buffer, 4, fpscr_value);
1926 regcache_raw_write (regcache, fpscr_base_regnum, temp_buffer);
1927
1928 regcache_raw_read (regcache, sr_base_regnum, temp_buffer);
1929 old_sr_value = extract_unsigned_integer (temp_buffer, 4);
1930 old_sr_value &= 0xffff8fff;
1931 sr_value |= old_sr_value;
1932 store_unsigned_integer (temp_buffer, 4, sr_value);
1933 regcache_raw_write (regcache, sr_base_regnum, temp_buffer);
1934 }
1935
1936 else if (reg_nr == FPUL_C_REGNUM)
1937 {
1938 base_regnum = sh64_compact_reg_base_num (reg_nr);
1939 regcache_raw_write (regcache, base_regnum, buffer);
1940 }
1941}
1942
55ff77ac 1943/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1944 shmedia REGISTERS. */
1945/* Control registers, compact mode. */
55ff77ac 1946static void
c30dc700
CV
1947sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1948 int cr_c_regnum)
55ff77ac
CV
1949{
1950 switch (cr_c_regnum)
1951 {
c30dc700
CV
1952 case PC_C_REGNUM:
1953 fprintf_filtered (file, "pc_c\t0x%08x\n",
1954 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1955 break;
c30dc700
CV
1956 case GBR_C_REGNUM:
1957 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1958 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1959 break;
c30dc700
CV
1960 case MACH_C_REGNUM:
1961 fprintf_filtered (file, "mach_c\t0x%08x\n",
1962 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1963 break;
c30dc700
CV
1964 case MACL_C_REGNUM:
1965 fprintf_filtered (file, "macl_c\t0x%08x\n",
1966 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1967 break;
c30dc700
CV
1968 case PR_C_REGNUM:
1969 fprintf_filtered (file, "pr_c\t0x%08x\n",
1970 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1971 break;
c30dc700
CV
1972 case T_C_REGNUM:
1973 fprintf_filtered (file, "t_c\t0x%08x\n",
1974 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1975 break;
c30dc700
CV
1976 case FPSCR_C_REGNUM:
1977 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1978 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1979 break;
c30dc700
CV
1980 case FPUL_C_REGNUM:
1981 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1982 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1983 break;
1984 }
1985}
1986
1987static void
c30dc700
CV
1988sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1989 struct frame_info *frame, int regnum)
55ff77ac 1990{ /* do values for FP (float) regs */
079c8cd0 1991 unsigned char *raw_buffer;
55ff77ac
CV
1992 double flt; /* double extracted from raw hex data */
1993 int inv;
1994 int j;
1995
7bb11558 1996 /* Allocate space for the float. */
3e8c568d
UW
1997 raw_buffer = (unsigned char *) alloca
1998 (register_size (gdbarch,
1999 gdbarch_fp0_regnum
2000 (current_gdbarch)));
55ff77ac
CV
2001
2002 /* Get the data in raw format. */
c30dc700 2003 if (!frame_register_read (frame, regnum, raw_buffer))
c9f4d572
UW
2004 error ("can't read register %d (%s)",
2005 regnum, gdbarch_register_name (current_gdbarch, regnum));
55ff77ac
CV
2006
2007 /* Get the register as a number */
2008 flt = unpack_double (builtin_type_float, raw_buffer, &inv);
2009
7bb11558 2010 /* Print the name and some spaces. */
c9f4d572
UW
2011 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
2012 print_spaces_filtered (15 - strlen (gdbarch_register_name
2013 (current_gdbarch, regnum)), file);
55ff77ac 2014
7bb11558 2015 /* Print the value. */
55ff77ac
CV
2016 if (inv)
2017 fprintf_filtered (file, "<invalid float>");
2018 else
2019 fprintf_filtered (file, "%-10.9g", flt);
2020
7bb11558 2021 /* Print the fp register as hex. */
55ff77ac
CV
2022 fprintf_filtered (file, "\t(raw 0x");
2023 for (j = 0; j < register_size (gdbarch, regnum); j++)
2024 {
4c6b5505
UW
2025 int idx = gdbarch_byte_order (current_gdbarch)
2026 == BFD_ENDIAN_BIG ? j : register_size
2027 (gdbarch, regnum) - 1 - j;
079c8cd0 2028 fprintf_filtered (file, "%02x", raw_buffer[idx]);
55ff77ac
CV
2029 }
2030 fprintf_filtered (file, ")");
2031 fprintf_filtered (file, "\n");
2032}
2033
2034static void
c30dc700
CV
2035sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
2036 struct frame_info *frame, int regnum)
55ff77ac 2037{
7bb11558 2038 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 2039
f57d151a
UW
2040 if (regnum < gdbarch_num_regs (current_gdbarch)
2041 || regnum >= gdbarch_num_regs (current_gdbarch)
2042 + NUM_PSEUDO_REGS_SH_MEDIA
2043 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 2044 internal_error (__FILE__, __LINE__,
e2e0b3e5 2045 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 2046
c30dc700
CV
2047 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
2048 {
2049 int fp_regnum = sh64_dr_reg_base_num (regnum);
2050 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
2051 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2052 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2053 }
55ff77ac 2054
c30dc700
CV
2055 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
2056 {
2057 int fp_regnum = sh64_compact_reg_base_num (regnum);
2058 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
2059 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2060 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2061 }
55ff77ac 2062
c30dc700
CV
2063 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
2064 {
2065 int fp_regnum = sh64_fv_reg_base_num (regnum);
2066 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2067 regnum - FV0_REGNUM,
2068 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2069 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2070 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2071 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2072 }
55ff77ac 2073
c30dc700
CV
2074 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
2075 {
2076 int fp_regnum = sh64_compact_reg_base_num (regnum);
2077 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
2078 regnum - FV0_C_REGNUM,
2079 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2080 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
2081 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
2082 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
2083 }
2084
2085 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2086 {
2087 int fp_regnum = sh64_fpp_reg_base_num (regnum);
2088 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2089 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2090 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2091 }
2092
2093 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2094 {
2095 int c_regnum = sh64_compact_reg_base_num (regnum);
2096 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2097 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2098 }
2099 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2100 /* This should work also for pseudoregs. */
c30dc700
CV
2101 sh64_do_fp_register (gdbarch, file, frame, regnum);
2102 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2103 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2104}
2105
2106static void
c30dc700
CV
2107sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2108 struct frame_info *frame, int regnum)
55ff77ac 2109{
079c8cd0 2110 unsigned char raw_buffer[MAX_REGISTER_SIZE];
55ff77ac 2111
c9f4d572
UW
2112 fputs_filtered (gdbarch_register_name (current_gdbarch, regnum), file);
2113 print_spaces_filtered (15 - strlen (gdbarch_register_name
2114 (current_gdbarch, regnum)), file);
55ff77ac
CV
2115
2116 /* Get the data in raw format. */
c30dc700 2117 if (!frame_register_read (frame, regnum, raw_buffer))
55ff77ac
CV
2118 fprintf_filtered (file, "*value not available*\n");
2119
7b9ee6a8 2120 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
55ff77ac
CV
2121 file, 'x', 1, 0, Val_pretty_default);
2122 fprintf_filtered (file, "\t");
7b9ee6a8 2123 val_print (register_type (gdbarch, regnum), raw_buffer, 0, 0,
55ff77ac
CV
2124 file, 0, 1, 0, Val_pretty_default);
2125 fprintf_filtered (file, "\n");
2126}
2127
2128static void
c30dc700
CV
2129sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2130 struct frame_info *frame, int regnum)
55ff77ac 2131{
f57d151a
UW
2132 if (regnum < 0 || regnum >= gdbarch_num_regs (current_gdbarch)
2133 + gdbarch_num_pseudo_regs (current_gdbarch))
55ff77ac 2134 internal_error (__FILE__, __LINE__,
e2e0b3e5 2135 _("Invalid register number %d\n"), regnum);
55ff77ac 2136
f57d151a 2137 else if (regnum >= 0 && regnum < gdbarch_num_regs (current_gdbarch))
55ff77ac 2138 {
7b9ee6a8 2139 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2140 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2141 else
c30dc700 2142 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2143 }
2144
f57d151a
UW
2145 else if (regnum < gdbarch_num_regs (current_gdbarch)
2146 + gdbarch_num_pseudo_regs (current_gdbarch))
c30dc700 2147 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2148}
2149
2150static void
c30dc700
CV
2151sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2152 struct frame_info *frame, int regnum,
2153 int fpregs)
55ff77ac
CV
2154{
2155 if (regnum != -1) /* do one specified register */
2156 {
c9f4d572 2157 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
55ff77ac
CV
2158 error ("Not a valid register for the current processor type");
2159
c30dc700 2160 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2161 }
2162 else
2163 /* do all (or most) registers */
2164 {
2165 regnum = 0;
f57d151a 2166 while (regnum < gdbarch_num_regs (current_gdbarch))
55ff77ac
CV
2167 {
2168 /* If the register name is empty, it is undefined for this
2169 processor, so don't display anything. */
c9f4d572
UW
2170 if (gdbarch_register_name (current_gdbarch, regnum) == NULL
2171 || *(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
55ff77ac
CV
2172 {
2173 regnum++;
2174 continue;
2175 }
2176
7b9ee6a8 2177 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2178 == TYPE_CODE_FLT)
55ff77ac
CV
2179 {
2180 if (fpregs)
2181 {
2182 /* true for "INFO ALL-REGISTERS" command */
c30dc700 2183 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2184 regnum ++;
2185 }
2186 else
3e8c568d
UW
2187 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (current_gdbarch);
2188 /* skip FP regs */
55ff77ac
CV
2189 }
2190 else
2191 {
c30dc700 2192 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2193 regnum++;
2194 }
2195 }
2196
2197 if (fpregs)
f57d151a
UW
2198 while (regnum < gdbarch_num_regs (current_gdbarch)
2199 + gdbarch_num_pseudo_regs (current_gdbarch))
55ff77ac 2200 {
c30dc700 2201 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2202 regnum++;
2203 }
2204 }
2205}
2206
2207static void
c30dc700
CV
2208sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2209 struct ui_file *file,
2210 struct frame_info *frame, int regnum,
2211 int fpregs)
55ff77ac 2212{
55ff77ac
CV
2213 if (regnum != -1) /* do one specified register */
2214 {
c9f4d572 2215 if (*(gdbarch_register_name (current_gdbarch, regnum)) == '\0')
55ff77ac
CV
2216 error ("Not a valid register for the current processor type");
2217
2218 if (regnum >= 0 && regnum < R0_C_REGNUM)
2219 error ("Not a valid register for the current processor mode.");
2220
c30dc700 2221 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2222 }
2223 else
2224 /* do all compact registers */
2225 {
2226 regnum = R0_C_REGNUM;
f57d151a
UW
2227 while (regnum < gdbarch_num_regs (current_gdbarch)
2228 + gdbarch_num_pseudo_regs (current_gdbarch))
55ff77ac 2229 {
c30dc700 2230 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2231 regnum++;
2232 }
2233 }
2234}
2235
2236static void
c30dc700
CV
2237sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2238 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2239{
c30dc700
CV
2240 if (pc_is_isa32 (get_frame_pc (frame)))
2241 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2242 else
c30dc700 2243 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2244}
2245
c30dc700
CV
2246static struct sh64_frame_cache *
2247sh64_alloc_frame_cache (void)
2248{
2249 struct sh64_frame_cache *cache;
2250 int i;
2251
2252 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2253
2254 /* Base address. */
2255 cache->base = 0;
2256 cache->saved_sp = 0;
2257 cache->sp_offset = 0;
2258 cache->pc = 0;
55ff77ac 2259
c30dc700
CV
2260 /* Frameless until proven otherwise. */
2261 cache->uses_fp = 0;
55ff77ac 2262
c30dc700
CV
2263 /* Saved registers. We initialize these to -1 since zero is a valid
2264 offset (that's where fp is supposed to be stored). */
2265 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2266 {
2267 cache->saved_regs[i] = -1;
2268 }
2269
2270 return cache;
2271}
2272
2273static struct sh64_frame_cache *
2274sh64_frame_cache (struct frame_info *next_frame, void **this_cache)
55ff77ac 2275{
c30dc700
CV
2276 struct sh64_frame_cache *cache;
2277 CORE_ADDR current_pc;
2278 int i;
55ff77ac 2279
c30dc700
CV
2280 if (*this_cache)
2281 return *this_cache;
2282
2283 cache = sh64_alloc_frame_cache ();
2284 *this_cache = cache;
2285
2286 current_pc = frame_pc_unwind (next_frame);
2287 cache->media_mode = pc_is_isa32 (current_pc);
2288
2289 /* In principle, for normal frames, fp holds the frame pointer,
2290 which holds the base address for the current stack frame.
2291 However, for functions that don't need it, the frame pointer is
2292 optional. For these "frameless" functions the frame pointer is
2293 actually the frame pointer of the calling frame. */
2294 cache->base = frame_unwind_register_unsigned (next_frame, MEDIA_FP_REGNUM);
2295 if (cache->base == 0)
2296 return cache;
2297
93d42b30 2298 cache->pc = frame_func_unwind (next_frame, NORMAL_FRAME);
c30dc700
CV
2299 if (cache->pc != 0)
2300 sh64_analyze_prologue (current_gdbarch, cache, cache->pc, current_pc);
2301
2302 if (!cache->uses_fp)
55ff77ac 2303 {
c30dc700
CV
2304 /* We didn't find a valid frame, which means that CACHE->base
2305 currently holds the frame pointer for our calling frame. If
2306 we're at the start of a function, or somewhere half-way its
2307 prologue, the function's frame probably hasn't been fully
2308 setup yet. Try to reconstruct the base address for the stack
2309 frame by looking at the stack pointer. For truly "frameless"
2310 functions this might work too. */
3e8c568d
UW
2311 cache->base = frame_unwind_register_unsigned
2312 (next_frame, gdbarch_sp_regnum (current_gdbarch));
c30dc700 2313 }
55ff77ac 2314
c30dc700
CV
2315 /* Now that we have the base address for the stack frame we can
2316 calculate the value of sp in the calling frame. */
2317 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2318
c30dc700
CV
2319 /* Adjust all the saved registers such that they contain addresses
2320 instead of offsets. */
2321 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2322 if (cache->saved_regs[i] != -1)
2323 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2324
c30dc700
CV
2325 return cache;
2326}
55ff77ac 2327
c30dc700
CV
2328static void
2329sh64_frame_prev_register (struct frame_info *next_frame, void **this_cache,
2330 int regnum, int *optimizedp,
2331 enum lval_type *lvalp, CORE_ADDR *addrp,
18cf8b5b 2332 int *realnump, gdb_byte *valuep)
c30dc700
CV
2333{
2334 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
55ff77ac 2335
c30dc700 2336 gdb_assert (regnum >= 0);
55ff77ac 2337
3e8c568d 2338 if (regnum == gdbarch_sp_regnum (current_gdbarch) && cache->saved_sp)
c30dc700
CV
2339 {
2340 *optimizedp = 0;
2341 *lvalp = not_lval;
2342 *addrp = 0;
2343 *realnump = -1;
2344 if (valuep)
2345 {
2346 /* Store the value. */
2347 store_unsigned_integer (valuep,
3e8c568d
UW
2348 register_size (current_gdbarch,
2349 gdbarch_sp_regnum (current_gdbarch)),
c30dc700
CV
2350 cache->saved_sp);
2351 }
2352 return;
2353 }
2354
2355 /* The PC of the previous frame is stored in the PR register of
2356 the current frame. Frob regnum so that we pull the value from
2357 the correct place. */
3e8c568d 2358 if (regnum == gdbarch_pc_regnum (current_gdbarch))
c30dc700
CV
2359 regnum = PR_REGNUM;
2360
2361 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2362 {
2363 int reg_size = register_size (current_gdbarch, regnum);
2364 int size;
55ff77ac 2365
c30dc700
CV
2366 *optimizedp = 0;
2367 *lvalp = lval_memory;
2368 *addrp = cache->saved_regs[regnum];
2369 *realnump = -1;
2370 if (gdbarch_tdep (current_gdbarch)->sh_abi == SH_ABI_32
2371 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
2372 size = 4;
2373 else
2374 size = reg_size;
2375 if (valuep)
2376 {
2377 memset (valuep, 0, reg_size);
4c6b5505 2378 if (gdbarch_byte_order (current_gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700
CV
2379 read_memory (*addrp, valuep, size);
2380 else
2381 read_memory (*addrp, (char *) valuep + reg_size - size, size);
2382 }
2383 return;
55ff77ac
CV
2384 }
2385
c30dc700
CV
2386 *optimizedp = 0;
2387 *lvalp = lval_register;
2388 *addrp = 0;
2389 *realnump = regnum;
2390 if (valuep)
2391 frame_unwind_register (next_frame, (*realnump), valuep);
55ff77ac 2392}
55ff77ac 2393
c30dc700
CV
2394static void
2395sh64_frame_this_id (struct frame_info *next_frame, void **this_cache,
2396 struct frame_id *this_id)
2397{
2398 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2399
2400 /* This marks the outermost frame. */
2401 if (cache->base == 0)
2402 return;
2403
2404 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2405}
2406
2407static const struct frame_unwind sh64_frame_unwind = {
2408 NORMAL_FRAME,
2409 sh64_frame_this_id,
2410 sh64_frame_prev_register
2411};
2412
2413static const struct frame_unwind *
2414sh64_frame_sniffer (struct frame_info *next_frame)
2415{
2416 return &sh64_frame_unwind;
2417}
2418
2419static CORE_ADDR
2420sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2421{
3e8c568d
UW
2422 return frame_unwind_register_unsigned (next_frame,
2423 gdbarch_sp_regnum (current_gdbarch));
c30dc700
CV
2424}
2425
2426static CORE_ADDR
2427sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2428{
3e8c568d
UW
2429 return frame_unwind_register_unsigned (next_frame,
2430 gdbarch_pc_regnum (current_gdbarch));
c30dc700
CV
2431}
2432
2433static struct frame_id
2434sh64_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2435{
2436 return frame_id_build (sh64_unwind_sp (gdbarch, next_frame),
2437 frame_pc_unwind (next_frame));
2438}
2439
2440static CORE_ADDR
2441sh64_frame_base_address (struct frame_info *next_frame, void **this_cache)
2442{
2443 struct sh64_frame_cache *cache = sh64_frame_cache (next_frame, this_cache);
2444
2445 return cache->base;
2446}
2447
2448static const struct frame_base sh64_frame_base = {
2449 &sh64_frame_unwind,
2450 sh64_frame_base_address,
2451 sh64_frame_base_address,
2452 sh64_frame_base_address
2453};
2454
55ff77ac
CV
2455
2456struct gdbarch *
2457sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2458{
55ff77ac
CV
2459 struct gdbarch *gdbarch;
2460 struct gdbarch_tdep *tdep;
2461
2462 /* If there is already a candidate, use it. */
2463 arches = gdbarch_list_lookup_by_info (arches, &info);
2464 if (arches != NULL)
2465 return arches->gdbarch;
2466
2467 /* None found, create a new architecture from the information
7bb11558 2468 provided. */
55ff77ac
CV
2469 tdep = XMALLOC (struct gdbarch_tdep);
2470 gdbarch = gdbarch_alloc (&info, tdep);
2471
55ff77ac
CV
2472 /* Determine the ABI */
2473 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2474 {
7bb11558 2475 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2476 tdep->sh_abi = SH_ABI_64;
2477 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2478 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2479 }
2480 else
2481 {
2482 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2483 compact. */
55ff77ac
CV
2484 tdep->sh_abi = SH_ABI_32;
2485 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2486 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2487 }
2488
2489 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2490 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2491 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2492 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2493 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2494 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2495 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2496
c30dc700
CV
2497 /* The number of real registers is the same whether we are in
2498 ISA16(compact) or ISA32(media). */
2499 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2500 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2501 set_gdbarch_pc_regnum (gdbarch, 64);
2502 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2503 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2504 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2505
c30dc700
CV
2506 set_gdbarch_register_name (gdbarch, sh64_register_name);
2507 set_gdbarch_register_type (gdbarch, sh64_register_type);
2508
2509 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2510 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2511
2512 set_gdbarch_breakpoint_from_pc (gdbarch, sh64_breakpoint_from_pc);
2513
2514 set_gdbarch_print_insn (gdbarch, gdb_print_insn_sh64);
55ff77ac
CV
2515 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2516
c30dc700
CV
2517 set_gdbarch_return_value (gdbarch, sh64_return_value);
2518 set_gdbarch_deprecated_extract_struct_value_address (gdbarch,
2519 sh64_extract_struct_value_address);
55ff77ac 2520
c30dc700
CV
2521 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2522 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2523
c30dc700 2524 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2525
c30dc700 2526 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2527
c30dc700
CV
2528 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2529 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2530 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
2531 set_gdbarch_unwind_dummy_id (gdbarch, sh64_unwind_dummy_id);
2532 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2533
c30dc700 2534 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2535
55ff77ac
CV
2536 set_gdbarch_elf_make_msymbol_special (gdbarch,
2537 sh64_elf_make_msymbol_special);
2538
2539 /* Hook in ABI-specific overrides, if they have been registered. */
2540 gdbarch_init_osabi (info, gdbarch);
2541
c30dc700
CV
2542 frame_unwind_append_sniffer (gdbarch, dwarf2_frame_sniffer);
2543 frame_unwind_append_sniffer (gdbarch, sh64_frame_sniffer);
2544
55ff77ac
CV
2545 return gdbarch;
2546}
This page took 0.459791 seconds and 4 git commands to generate.