Target FP: Add string routines to target-float.{c,h}
[deliverable/binutils-gdb.git] / gdb / sh64-tdep.c
CommitLineData
85a453d5 1/* Target-dependent code for Renesas Super-H, for GDB.
cf5b2f1b 2
61baf725 3 Copyright (C) 1993-2017 Free Software Foundation, Inc.
55ff77ac
CV
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
55ff77ac
CV
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
55ff77ac 19
c378eb4e
MS
20/* Contributed by Steve Chamberlain
21 sac@cygnus.com. */
55ff77ac
CV
22
23#include "defs.h"
24#include "frame.h"
c30dc700
CV
25#include "frame-base.h"
26#include "frame-unwind.h"
27#include "dwarf2-frame.h"
55ff77ac 28#include "symtab.h"
55ff77ac
CV
29#include "gdbtypes.h"
30#include "gdbcmd.h"
31#include "gdbcore.h"
32#include "value.h"
33#include "dis-asm.h"
34#include "inferior.h"
55ff77ac 35#include "arch-utils.h"
55ff77ac 36#include "regcache.h"
55ff77ac 37#include "osabi.h"
f69fdf9b 38#include "target-float.h"
79a45b7d 39#include "valprint.h"
55ff77ac
CV
40
41#include "elf-bfd.h"
55ff77ac
CV
42
43/* sh flags */
44#include "elf/sh.h"
c378eb4e 45/* Register numbers shared with the simulator. */
55ff77ac 46#include "gdb/sim-sh.h"
d8ca156b 47#include "language.h"
04dcf5fa 48#include "sh64-tdep.h"
325fac50 49#include <algorithm>
55ff77ac 50
7bb11558 51/* Information that is dependent on the processor variant. */
55ff77ac
CV
52enum sh_abi
53 {
54 SH_ABI_UNKNOWN,
55 SH_ABI_32,
56 SH_ABI_64
57 };
58
59struct gdbarch_tdep
60 {
61 enum sh_abi sh_abi;
96a5a1d3
UW
62 /* ISA-specific data types. */
63 struct type *sh_littlebyte_bigword_type;
55ff77ac
CV
64 };
65
96a5a1d3
UW
66struct type *
67sh64_littlebyte_bigword_type (struct gdbarch *gdbarch)
68{
69 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
70
71 if (tdep->sh_littlebyte_bigword_type == NULL)
72 tdep->sh_littlebyte_bigword_type
73 = arch_float_type (gdbarch, -1, "builtin_type_sh_littlebyte_bigword",
74 floatformats_ieee_double_littlebyte_bigword);
75
76 return tdep->sh_littlebyte_bigword_type;
77}
78
c30dc700
CV
79struct sh64_frame_cache
80{
81 /* Base address. */
82 CORE_ADDR base;
83 LONGEST sp_offset;
84 CORE_ADDR pc;
85
c378eb4e 86 /* Flag showing that a frame has been created in the prologue code. */
c30dc700
CV
87 int uses_fp;
88
89 int media_mode;
90
91 /* Saved registers. */
92 CORE_ADDR saved_regs[SIM_SH64_NR_REGS];
93 CORE_ADDR saved_sp;
94};
95
55ff77ac
CV
96/* Registers of SH5 */
97enum
98 {
99 R0_REGNUM = 0,
100 DEFAULT_RETURN_REGNUM = 2,
101 STRUCT_RETURN_REGNUM = 2,
102 ARG0_REGNUM = 2,
103 ARGLAST_REGNUM = 9,
104 FLOAT_ARGLAST_REGNUM = 11,
c30dc700 105 MEDIA_FP_REGNUM = 14,
55ff77ac
CV
106 PR_REGNUM = 18,
107 SR_REGNUM = 65,
108 DR0_REGNUM = 141,
109 DR_LAST_REGNUM = 172,
110 /* FPP stands for Floating Point Pair, to avoid confusion with
3e8c568d 111 GDB's gdbarch_fp0_regnum, which is the number of the first Floating
c378eb4e 112 point register. Unfortunately on the sh5, the floating point
7bb11558 113 registers are called FR, and the floating point pairs are called FP. */
55ff77ac
CV
114 FPP0_REGNUM = 173,
115 FPP_LAST_REGNUM = 204,
116 FV0_REGNUM = 205,
117 FV_LAST_REGNUM = 220,
118 R0_C_REGNUM = 221,
119 R_LAST_C_REGNUM = 236,
120 PC_C_REGNUM = 237,
121 GBR_C_REGNUM = 238,
122 MACH_C_REGNUM = 239,
123 MACL_C_REGNUM = 240,
124 PR_C_REGNUM = 241,
125 T_C_REGNUM = 242,
126 FPSCR_C_REGNUM = 243,
127 FPUL_C_REGNUM = 244,
128 FP0_C_REGNUM = 245,
129 FP_LAST_C_REGNUM = 260,
130 DR0_C_REGNUM = 261,
131 DR_LAST_C_REGNUM = 268,
132 FV0_C_REGNUM = 269,
133 FV_LAST_C_REGNUM = 272,
134 FPSCR_REGNUM = SIM_SH64_FPCSR_REGNUM,
135 SSR_REGNUM = SIM_SH64_SSR_REGNUM,
136 SPC_REGNUM = SIM_SH64_SPC_REGNUM,
137 TR7_REGNUM = SIM_SH64_TR0_REGNUM + 7,
138 FP_LAST_REGNUM = SIM_SH64_FR0_REGNUM + SIM_SH64_NR_FP_REGS - 1
139 };
140
55ff77ac 141static const char *
d93859e2 142sh64_register_name (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 143{
a121b7c1 144 static const char *register_names[] =
55ff77ac
CV
145 {
146 /* SH MEDIA MODE (ISA 32) */
147 /* general registers (64-bit) 0-63 */
148 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
149 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
150 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23",
151 "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31",
152 "r32", "r33", "r34", "r35", "r36", "r37", "r38", "r39",
153 "r40", "r41", "r42", "r43", "r44", "r45", "r46", "r47",
154 "r48", "r49", "r50", "r51", "r52", "r53", "r54", "r55",
155 "r56", "r57", "r58", "r59", "r60", "r61", "r62", "r63",
156
157 /* pc (64-bit) 64 */
158 "pc",
159
160 /* status reg., saved status reg., saved pc reg. (64-bit) 65-67 */
161 "sr", "ssr", "spc",
162
c378eb4e 163 /* target registers (64-bit) 68-75 */
55ff77ac
CV
164 "tr0", "tr1", "tr2", "tr3", "tr4", "tr5", "tr6", "tr7",
165
166 /* floating point state control register (32-bit) 76 */
167 "fpscr",
168
c378eb4e 169 /* single precision floating point registers (32-bit) 77-140 */
55ff77ac
CV
170 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7",
171 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15",
172 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23",
173 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31",
174 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39",
175 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47",
176 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55",
177 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63",
178
179 /* double precision registers (pseudo) 141-172 */
180 "dr0", "dr2", "dr4", "dr6", "dr8", "dr10", "dr12", "dr14",
181 "dr16", "dr18", "dr20", "dr22", "dr24", "dr26", "dr28", "dr30",
182 "dr32", "dr34", "dr36", "dr38", "dr40", "dr42", "dr44", "dr46",
183 "dr48", "dr50", "dr52", "dr54", "dr56", "dr58", "dr60", "dr62",
184
c378eb4e 185 /* floating point pairs (pseudo) 173-204 */
55ff77ac
CV
186 "fp0", "fp2", "fp4", "fp6", "fp8", "fp10", "fp12", "fp14",
187 "fp16", "fp18", "fp20", "fp22", "fp24", "fp26", "fp28", "fp30",
188 "fp32", "fp34", "fp36", "fp38", "fp40", "fp42", "fp44", "fp46",
189 "fp48", "fp50", "fp52", "fp54", "fp56", "fp58", "fp60", "fp62",
190
c378eb4e 191 /* floating point vectors (4 floating point regs) (pseudo) 205-220 */
55ff77ac
CV
192 "fv0", "fv4", "fv8", "fv12", "fv16", "fv20", "fv24", "fv28",
193 "fv32", "fv36", "fv40", "fv44", "fv48", "fv52", "fv56", "fv60",
194
c378eb4e 195 /* SH COMPACT MODE (ISA 16) (all pseudo) 221-272 */
55ff77ac
CV
196 "r0_c", "r1_c", "r2_c", "r3_c", "r4_c", "r5_c", "r6_c", "r7_c",
197 "r8_c", "r9_c", "r10_c", "r11_c", "r12_c", "r13_c", "r14_c", "r15_c",
198 "pc_c",
199 "gbr_c", "mach_c", "macl_c", "pr_c", "t_c",
200 "fpscr_c", "fpul_c",
c378eb4e
MS
201 "fr0_c", "fr1_c", "fr2_c", "fr3_c",
202 "fr4_c", "fr5_c", "fr6_c", "fr7_c",
203 "fr8_c", "fr9_c", "fr10_c", "fr11_c",
204 "fr12_c", "fr13_c", "fr14_c", "fr15_c",
205 "dr0_c", "dr2_c", "dr4_c", "dr6_c",
206 "dr8_c", "dr10_c", "dr12_c", "dr14_c",
55ff77ac 207 "fv0_c", "fv4_c", "fv8_c", "fv12_c",
c378eb4e 208 /* FIXME!!!! XF0 XF15, XD0 XD14 ????? */
55ff77ac
CV
209 };
210
211 if (reg_nr < 0)
212 return NULL;
213 if (reg_nr >= (sizeof (register_names) / sizeof (*register_names)))
214 return NULL;
215 return register_names[reg_nr];
216}
217
218#define NUM_PSEUDO_REGS_SH_MEDIA 80
219#define NUM_PSEUDO_REGS_SH_COMPACT 51
220
221/* Macros and functions for setting and testing a bit in a minimal
222 symbol that marks it as 32-bit function. The MSB of the minimal
f594e5e9 223 symbol's "info" field is used for this purpose.
55ff77ac 224
95f1da47
UW
225 gdbarch_elf_make_msymbol_special tests whether an ELF symbol is "special",
226 i.e. refers to a 32-bit function, and sets a "special" bit in a
55ff77ac 227 minimal symbol to mark it as a 32-bit function
f594e5e9 228 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
55ff77ac
CV
229
230#define MSYMBOL_IS_SPECIAL(msym) \
b887350f 231 MSYMBOL_TARGET_FLAG_1 (msym)
55ff77ac
CV
232
233static void
234sh64_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
235{
236 if (msym == NULL)
237 return;
238
239 if (((elf_symbol_type *)(sym))->internal_elf_sym.st_other == STO_SH5_ISA32)
240 {
b887350f 241 MSYMBOL_TARGET_FLAG_1 (msym) = 1;
77e371c0 242 SET_MSYMBOL_VALUE_ADDRESS (msym, MSYMBOL_VALUE_RAW_ADDRESS (msym) | 1);
55ff77ac
CV
243 }
244}
245
246/* ISA32 (shmedia) function addresses are odd (bit 0 is set). Here
247 are some macros to test, set, or clear bit 0 of addresses. */
248#define IS_ISA32_ADDR(addr) ((addr) & 1)
249#define MAKE_ISA32_ADDR(addr) ((addr) | 1)
250#define UNMAKE_ISA32_ADDR(addr) ((addr) & ~1)
251
252static int
253pc_is_isa32 (bfd_vma memaddr)
254{
7cbd4a93 255 struct bound_minimal_symbol sym;
55ff77ac
CV
256
257 /* If bit 0 of the address is set, assume this is a
7bb11558 258 ISA32 (shmedia) address. */
55ff77ac
CV
259 if (IS_ISA32_ADDR (memaddr))
260 return 1;
261
262 /* A flag indicating that this is a ISA32 function is stored by elfread.c in
263 the high bit of the info field. Use this to decide if the function is
264 ISA16 or ISA32. */
265 sym = lookup_minimal_symbol_by_pc (memaddr);
7cbd4a93
TT
266 if (sym.minsym)
267 return MSYMBOL_IS_SPECIAL (sym.minsym);
55ff77ac
CV
268 else
269 return 0;
270}
271
d19280ad
YQ
272static int
273sh64_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
55ff77ac 274{
d19280ad
YQ
275 if (pc_is_isa32 (*pcptr))
276 {
277 *pcptr = UNMAKE_ISA32_ADDR (*pcptr);
278 return 4;
279 }
280 else
281 return 2;
282}
283
284static const gdb_byte *
285sh64_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
286{
287 *size = kind;
288
289 /* The BRK instruction for shmedia is
55ff77ac
CV
290 01101111 11110101 11111111 11110000
291 which translates in big endian mode to 0x6f, 0xf5, 0xff, 0xf0
292 and in little endian mode to 0xf0, 0xff, 0xf5, 0x6f */
293
294 /* The BRK instruction for shcompact is
295 00000000 00111011
296 which translates in big endian mode to 0x0, 0x3b
c378eb4e 297 and in little endian mode to 0x3b, 0x0 */
55ff77ac 298
d19280ad 299 if (kind == 4)
55ff77ac 300 {
d19280ad
YQ
301 static unsigned char big_breakpoint_media[] = {
302 0x6f, 0xf5, 0xff, 0xf0
303 };
304 static unsigned char little_breakpoint_media[] = {
305 0xf0, 0xff, 0xf5, 0x6f
306 };
307
308 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
309 return big_breakpoint_media;
55ff77ac 310 else
d19280ad 311 return little_breakpoint_media;
55ff77ac
CV
312 }
313 else
314 {
d19280ad
YQ
315 static unsigned char big_breakpoint_compact[] = {0x0, 0x3b};
316 static unsigned char little_breakpoint_compact[] = {0x3b, 0x0};
317
318 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
319 return big_breakpoint_compact;
55ff77ac 320 else
d19280ad 321 return little_breakpoint_compact;
55ff77ac
CV
322 }
323}
324
325/* Prologue looks like
326 [mov.l <regs>,@-r15]...
327 [sts.l pr,@-r15]
328 [mov.l r14,@-r15]
329 [mov r15,r14]
330
331 Actually it can be more complicated than this. For instance, with
332 newer gcc's:
333
334 mov.l r14,@-r15
335 add #-12,r15
336 mov r15,r14
337 mov r4,r1
338 mov r5,r2
339 mov.l r6,@(4,r14)
340 mov.l r7,@(8,r14)
341 mov.b r1,@r14
342 mov r14,r1
343 mov r14,r1
344 add #2,r1
345 mov.w r2,@r1
346
347 */
348
349/* PTABS/L Rn, TRa 0110101111110001nnnnnnl00aaa0000
350 with l=1 and n = 18 0110101111110001010010100aaa0000 */
351#define IS_PTABSL_R18(x) (((x) & 0xffffff8f) == 0x6bf14a00)
352
353/* STS.L PR,@-r0 0100000000100010
354 r0-4-->r0, PR-->(r0) */
355#define IS_STS_R0(x) ((x) == 0x4022)
356
357/* STS PR, Rm 0000mmmm00101010
358 PR-->Rm */
359#define IS_STS_PR(x) (((x) & 0xf0ff) == 0x2a)
360
361/* MOV.L Rm,@(disp,r15) 00011111mmmmdddd
362 Rm-->(dispx4+r15) */
363#define IS_MOV_TO_R15(x) (((x) & 0xff00) == 0x1f00)
364
365/* MOV.L R14,@(disp,r15) 000111111110dddd
366 R14-->(dispx4+r15) */
367#define IS_MOV_R14(x) (((x) & 0xfff0) == 0x1fe0)
368
369/* ST.Q R14, disp, R18 101011001110dddddddddd0100100000
370 R18-->(dispx8+R14) */
371#define IS_STQ_R18_R14(x) (((x) & 0xfff003ff) == 0xace00120)
372
373/* ST.Q R15, disp, R18 101011001111dddddddddd0100100000
374 R18-->(dispx8+R15) */
375#define IS_STQ_R18_R15(x) (((x) & 0xfff003ff) == 0xacf00120)
376
377/* ST.L R15, disp, R18 101010001111dddddddddd0100100000
378 R18-->(dispx4+R15) */
379#define IS_STL_R18_R15(x) (((x) & 0xfff003ff) == 0xa8f00120)
380
381/* ST.Q R15, disp, R14 1010 1100 1111 dddd dddd dd00 1110 0000
382 R14-->(dispx8+R15) */
383#define IS_STQ_R14_R15(x) (((x) & 0xfff003ff) == 0xacf000e0)
384
385/* ST.L R15, disp, R14 1010 1000 1111 dddd dddd dd00 1110 0000
386 R14-->(dispx4+R15) */
387#define IS_STL_R14_R15(x) (((x) & 0xfff003ff) == 0xa8f000e0)
388
389/* ADDI.L R15,imm,R15 1101 0100 1111 ssss ssss ss00 1111 0000
390 R15 + imm --> R15 */
391#define IS_ADDIL_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd4f000f0)
392
393/* ADDI R15,imm,R15 1101 0000 1111 ssss ssss ss00 1111 0000
394 R15 + imm --> R15 */
395#define IS_ADDI_SP_MEDIA(x) (((x) & 0xfff003ff) == 0xd0f000f0)
396
397/* ADD.L R15,R63,R14 0000 0000 1111 1000 1111 1100 1110 0000
398 R15 + R63 --> R14 */
399#define IS_ADDL_SP_FP_MEDIA(x) ((x) == 0x00f8fce0)
400
401/* ADD R15,R63,R14 0000 0000 1111 1001 1111 1100 1110 0000
402 R15 + R63 --> R14 */
403#define IS_ADD_SP_FP_MEDIA(x) ((x) == 0x00f9fce0)
404
c378eb4e
MS
405#define IS_MOV_SP_FP_MEDIA(x) \
406 (IS_ADDL_SP_FP_MEDIA(x) || IS_ADD_SP_FP_MEDIA(x))
55ff77ac
CV
407
408/* MOV #imm, R0 1110 0000 ssss ssss
409 #imm-->R0 */
410#define IS_MOV_R0(x) (((x) & 0xff00) == 0xe000)
411
412/* MOV.L @(disp,PC), R0 1101 0000 iiii iiii */
413#define IS_MOVL_R0(x) (((x) & 0xff00) == 0xd000)
414
415/* ADD r15,r0 0011 0000 1111 1100
416 r15+r0-->r0 */
417#define IS_ADD_SP_R0(x) ((x) == 0x30fc)
418
419/* MOV.L R14 @-R0 0010 0000 1110 0110
420 R14-->(R0-4), R0-4-->R0 */
421#define IS_MOV_R14_R0(x) ((x) == 0x20e6)
422
423/* ADD Rm,R63,Rn Rm+R63-->Rn 0000 00mm mmmm 1001 1111 11nn nnnn 0000
7bb11558 424 where Rm is one of r2-r9 which are the argument registers. */
c378eb4e 425/* FIXME: Recognize the float and double register moves too! */
55ff77ac 426#define IS_MEDIA_IND_ARG_MOV(x) \
c378eb4e
MS
427 ((((x) & 0xfc0ffc0f) == 0x0009fc00) \
428 && (((x) & 0x03f00000) >= 0x00200000 \
429 && ((x) & 0x03f00000) <= 0x00900000))
55ff77ac
CV
430
431/* ST.Q Rn,0,Rm Rm-->Rn+0 1010 11nn nnnn 0000 0000 00mm mmmm 0000
432 or ST.L Rn,0,Rm Rm-->Rn+0 1010 10nn nnnn 0000 0000 00mm mmmm 0000
7bb11558 433 where Rm is one of r2-r9 which are the argument registers. */
55ff77ac
CV
434#define IS_MEDIA_ARG_MOV(x) \
435(((((x) & 0xfc0ffc0f) == 0xac000000) || (((x) & 0xfc0ffc0f) == 0xa8000000)) \
436 && (((x) & 0x000003f0) >= 0x00000020 && ((x) & 0x000003f0) <= 0x00000090))
437
c378eb4e
MS
438/* ST.B R14,0,Rn Rn-->(R14+0) 1010 0000 1110 0000 0000 00nn nnnn 0000 */
439/* ST.W R14,0,Rn Rn-->(R14+0) 1010 0100 1110 0000 0000 00nn nnnn 0000 */
440/* ST.L R14,0,Rn Rn-->(R14+0) 1010 1000 1110 0000 0000 00nn nnnn 0000 */
441/* FST.S R14,0,FRn Rn-->(R14+0) 1011 0100 1110 0000 0000 00nn nnnn 0000 */
442/* FST.D R14,0,DRn Rn-->(R14+0) 1011 1100 1110 0000 0000 00nn nnnn 0000 */
55ff77ac
CV
443#define IS_MEDIA_MOV_TO_R14(x) \
444((((x) & 0xfffffc0f) == 0xa0e00000) \
445|| (((x) & 0xfffffc0f) == 0xa4e00000) \
446|| (((x) & 0xfffffc0f) == 0xa8e00000) \
447|| (((x) & 0xfffffc0f) == 0xb4e00000) \
448|| (((x) & 0xfffffc0f) == 0xbce00000))
449
450/* MOV Rm, Rn Rm-->Rn 0110 nnnn mmmm 0011
451 where Rm is r2-r9 */
452#define IS_COMPACT_IND_ARG_MOV(x) \
c378eb4e
MS
453 ((((x) & 0xf00f) == 0x6003) && (((x) & 0x00f0) >= 0x0020) \
454 && (((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
455
456/* compact direct arg move!
457 MOV.L Rn, @r14 0010 1110 mmmm 0010 */
458#define IS_COMPACT_ARG_MOV(x) \
c378eb4e
MS
459 (((((x) & 0xff0f) == 0x2e02) && (((x) & 0x00f0) >= 0x0020) \
460 && ((x) & 0x00f0) <= 0x0090))
55ff77ac
CV
461
462/* MOV.B Rm, @R14 0010 1110 mmmm 0000
463 MOV.W Rm, @R14 0010 1110 mmmm 0001 */
464#define IS_COMPACT_MOV_TO_R14(x) \
465((((x) & 0xff0f) == 0x2e00) || (((x) & 0xff0f) == 0x2e01))
466
467#define IS_JSR_R0(x) ((x) == 0x400b)
468#define IS_NOP(x) ((x) == 0x0009)
469
470
471/* MOV r15,r14 0110111011110011
472 r15-->r14 */
473#define IS_MOV_SP_FP(x) ((x) == 0x6ef3)
474
475/* ADD #imm,r15 01111111iiiiiiii
476 r15+imm-->r15 */
477#define IS_ADD_SP(x) (((x) & 0xff00) == 0x7f00)
478
c378eb4e 479/* Skip any prologue before the guts of a function. */
55ff77ac 480
7bb11558
MS
481/* Skip the prologue using the debug information. If this fails we'll
482 fall back on the 'guess' method below. */
55ff77ac
CV
483static CORE_ADDR
484after_prologue (CORE_ADDR pc)
485{
486 struct symtab_and_line sal;
487 CORE_ADDR func_addr, func_end;
488
489 /* If we can not find the symbol in the partial symbol table, then
490 there is no hope we can determine the function's start address
491 with this code. */
492 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
493 return 0;
494
c30dc700 495
55ff77ac
CV
496 /* Get the line associated with FUNC_ADDR. */
497 sal = find_pc_line (func_addr, 0);
498
499 /* There are only two cases to consider. First, the end of the source line
500 is within the function bounds. In that case we return the end of the
501 source line. Second is the end of the source line extends beyond the
502 bounds of the current function. We need to use the slow code to
503 examine instructions in that case. */
504 if (sal.end < func_end)
505 return sal.end;
506 else
507 return 0;
508}
509
510static CORE_ADDR
e17a4113
UW
511look_for_args_moves (struct gdbarch *gdbarch,
512 CORE_ADDR start_pc, int media_mode)
55ff77ac 513{
e17a4113 514 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
515 CORE_ADDR here, end;
516 int w;
517 int insn_size = (media_mode ? 4 : 2);
518
519 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
520 {
521 if (media_mode)
522 {
e17a4113
UW
523 w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
524 insn_size, byte_order);
55ff77ac
CV
525 here += insn_size;
526 if (IS_MEDIA_IND_ARG_MOV (w))
527 {
528 /* This must be followed by a store to r14, so the argument
c378eb4e 529 is where the debug info says it is. This can happen after
7bb11558 530 the SP has been saved, unfortunately. */
55ff77ac
CV
531
532 int next_insn = read_memory_integer (UNMAKE_ISA32_ADDR (here),
e17a4113 533 insn_size, byte_order);
55ff77ac
CV
534 here += insn_size;
535 if (IS_MEDIA_MOV_TO_R14 (next_insn))
536 start_pc = here;
537 }
538 else if (IS_MEDIA_ARG_MOV (w))
539 {
7bb11558 540 /* These instructions store directly the argument in r14. */
55ff77ac
CV
541 start_pc = here;
542 }
543 else
544 break;
545 }
546 else
547 {
e17a4113 548 w = read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
549 w = w & 0xffff;
550 here += insn_size;
551 if (IS_COMPACT_IND_ARG_MOV (w))
552 {
553 /* This must be followed by a store to r14, so the argument
c378eb4e 554 is where the debug info says it is. This can happen after
7bb11558 555 the SP has been saved, unfortunately. */
55ff77ac 556
e17a4113
UW
557 int next_insn = 0xffff & read_memory_integer (here, insn_size,
558 byte_order);
55ff77ac
CV
559 here += insn_size;
560 if (IS_COMPACT_MOV_TO_R14 (next_insn))
561 start_pc = here;
562 }
563 else if (IS_COMPACT_ARG_MOV (w))
564 {
7bb11558 565 /* These instructions store directly the argument in r14. */
55ff77ac
CV
566 start_pc = here;
567 }
568 else if (IS_MOVL_R0 (w))
569 {
570 /* There is a function that gcc calls to get the arguments
c378eb4e 571 passed correctly to the function. Only after this
55ff77ac 572 function call the arguments will be found at the place
c378eb4e 573 where they are supposed to be. This happens in case the
55ff77ac
CV
574 argument has to be stored into a 64-bit register (for
575 instance doubles, long longs). SHcompact doesn't have
576 access to the full 64-bits, so we store the register in
577 stack slot and store the address of the stack slot in
578 the register, then do a call through a wrapper that
579 loads the memory value into the register. A SHcompact
580 callee calls an argument decoder
581 (GCC_shcompact_incoming_args) that stores the 64-bit
582 value in a stack slot and stores the address of the
583 stack slot in the register. GCC thinks the argument is
584 just passed by transparent reference, but this is only
c378eb4e 585 true after the argument decoder is called. Such a call
7bb11558 586 needs to be considered part of the prologue. */
55ff77ac
CV
587
588 /* This must be followed by a JSR @r0 instruction and by
c378eb4e 589 a NOP instruction. After these, the prologue is over! */
55ff77ac 590
e17a4113
UW
591 int next_insn = 0xffff & read_memory_integer (here, insn_size,
592 byte_order);
55ff77ac
CV
593 here += insn_size;
594 if (IS_JSR_R0 (next_insn))
595 {
e17a4113
UW
596 next_insn = 0xffff & read_memory_integer (here, insn_size,
597 byte_order);
55ff77ac
CV
598 here += insn_size;
599
600 if (IS_NOP (next_insn))
601 start_pc = here;
602 }
603 }
604 else
605 break;
606 }
607 }
608
609 return start_pc;
610}
611
612static CORE_ADDR
e17a4113 613sh64_skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR start_pc)
55ff77ac 614{
e17a4113 615 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
616 CORE_ADDR here, end;
617 int updated_fp = 0;
618 int insn_size = 4;
619 int media_mode = 1;
620
621 if (!start_pc)
622 return 0;
623
624 if (pc_is_isa32 (start_pc) == 0)
625 {
626 insn_size = 2;
627 media_mode = 0;
628 }
629
630 for (here = start_pc, end = start_pc + (insn_size * 28); here < end;)
631 {
632
633 if (media_mode)
634 {
e17a4113
UW
635 int w = read_memory_integer (UNMAKE_ISA32_ADDR (here),
636 insn_size, byte_order);
55ff77ac
CV
637 here += insn_size;
638 if (IS_STQ_R18_R14 (w) || IS_STQ_R18_R15 (w) || IS_STQ_R14_R15 (w)
639 || IS_STL_R14_R15 (w) || IS_STL_R18_R15 (w)
c378eb4e
MS
640 || IS_ADDIL_SP_MEDIA (w) || IS_ADDI_SP_MEDIA (w)
641 || IS_PTABSL_R18 (w))
55ff77ac
CV
642 {
643 start_pc = here;
644 }
645 else if (IS_MOV_SP_FP (w) || IS_MOV_SP_FP_MEDIA(w))
646 {
647 start_pc = here;
648 updated_fp = 1;
649 }
650 else
651 if (updated_fp)
652 {
653 /* Don't bail out yet, we may have arguments stored in
654 registers here, according to the debug info, so that
7bb11558 655 gdb can print the frames correctly. */
e17a4113
UW
656 start_pc = look_for_args_moves (gdbarch,
657 here - insn_size, media_mode);
55ff77ac
CV
658 break;
659 }
660 }
661 else
662 {
e17a4113 663 int w = 0xffff & read_memory_integer (here, insn_size, byte_order);
55ff77ac
CV
664 here += insn_size;
665
666 if (IS_STS_R0 (w) || IS_STS_PR (w)
667 || IS_MOV_TO_R15 (w) || IS_MOV_R14 (w)
668 || IS_MOV_R0 (w) || IS_ADD_SP_R0 (w) || IS_MOV_R14_R0 (w))
669 {
670 start_pc = here;
671 }
672 else if (IS_MOV_SP_FP (w))
673 {
674 start_pc = here;
675 updated_fp = 1;
676 }
677 else
678 if (updated_fp)
679 {
680 /* Don't bail out yet, we may have arguments stored in
681 registers here, according to the debug info, so that
7bb11558 682 gdb can print the frames correctly. */
e17a4113
UW
683 start_pc = look_for_args_moves (gdbarch,
684 here - insn_size, media_mode);
55ff77ac
CV
685 break;
686 }
687 }
688 }
689
690 return start_pc;
691}
692
693static CORE_ADDR
6093d2eb 694sh64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
55ff77ac
CV
695{
696 CORE_ADDR post_prologue_pc;
697
698 /* See if we can determine the end of the prologue via the symbol table.
699 If so, then return either PC, or the PC after the prologue, whichever
700 is greater. */
701 post_prologue_pc = after_prologue (pc);
702
703 /* If after_prologue returned a useful address, then use it. Else
7bb11558 704 fall back on the instruction skipping code. */
55ff77ac 705 if (post_prologue_pc != 0)
325fac50 706 return std::max (pc, post_prologue_pc);
55ff77ac 707 else
e17a4113 708 return sh64_skip_prologue_hard_way (gdbarch, pc);
55ff77ac
CV
709}
710
55ff77ac
CV
711/* Should call_function allocate stack space for a struct return? */
712static int
c30dc700 713sh64_use_struct_convention (struct type *type)
55ff77ac
CV
714{
715 return (TYPE_LENGTH (type) > 8);
716}
717
7bb11558 718/* For vectors of 4 floating point registers. */
55ff77ac 719static int
d93859e2 720sh64_fv_reg_base_num (struct gdbarch *gdbarch, int fv_regnum)
55ff77ac
CV
721{
722 int fp_regnum;
723
d93859e2 724 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fv_regnum - FV0_REGNUM) * 4;
55ff77ac
CV
725 return fp_regnum;
726}
727
c378eb4e 728/* For double precision floating point registers, i.e 2 fp regs. */
55ff77ac 729static int
d93859e2 730sh64_dr_reg_base_num (struct gdbarch *gdbarch, int dr_regnum)
55ff77ac
CV
731{
732 int fp_regnum;
733
d93859e2 734 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (dr_regnum - DR0_REGNUM) * 2;
55ff77ac
CV
735 return fp_regnum;
736}
737
c378eb4e 738/* For pairs of floating point registers. */
55ff77ac 739static int
d93859e2 740sh64_fpp_reg_base_num (struct gdbarch *gdbarch, int fpp_regnum)
55ff77ac
CV
741{
742 int fp_regnum;
743
d93859e2 744 fp_regnum = gdbarch_fp0_regnum (gdbarch) + (fpp_regnum - FPP0_REGNUM) * 2;
55ff77ac
CV
745 return fp_regnum;
746}
747
55ff77ac
CV
748/* *INDENT-OFF* */
749/*
750 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
751 GDB_REGNUM BASE_REGNUM
752 r0_c 221 0
753 r1_c 222 1
754 r2_c 223 2
755 r3_c 224 3
756 r4_c 225 4
757 r5_c 226 5
758 r6_c 227 6
759 r7_c 228 7
760 r8_c 229 8
761 r9_c 230 9
762 r10_c 231 10
763 r11_c 232 11
764 r12_c 233 12
765 r13_c 234 13
766 r14_c 235 14
767 r15_c 236 15
768
769 pc_c 237 64
770 gbr_c 238 16
771 mach_c 239 17
772 macl_c 240 17
773 pr_c 241 18
774 t_c 242 19
775 fpscr_c 243 76
776 fpul_c 244 109
777
778 fr0_c 245 77
779 fr1_c 246 78
780 fr2_c 247 79
781 fr3_c 248 80
782 fr4_c 249 81
783 fr5_c 250 82
784 fr6_c 251 83
785 fr7_c 252 84
786 fr8_c 253 85
787 fr9_c 254 86
788 fr10_c 255 87
789 fr11_c 256 88
790 fr12_c 257 89
791 fr13_c 258 90
792 fr14_c 259 91
793 fr15_c 260 92
794
795 dr0_c 261 77
796 dr2_c 262 79
797 dr4_c 263 81
798 dr6_c 264 83
799 dr8_c 265 85
800 dr10_c 266 87
801 dr12_c 267 89
802 dr14_c 268 91
803
804 fv0_c 269 77
805 fv4_c 270 81
806 fv8_c 271 85
807 fv12_c 272 91
808*/
809/* *INDENT-ON* */
810static int
d93859e2 811sh64_compact_reg_base_num (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 812{
c30dc700 813 int base_regnum = reg_nr;
55ff77ac
CV
814
815 /* general register N maps to general register N */
816 if (reg_nr >= R0_C_REGNUM
817 && reg_nr <= R_LAST_C_REGNUM)
818 base_regnum = reg_nr - R0_C_REGNUM;
819
820 /* floating point register N maps to floating point register N */
821 else if (reg_nr >= FP0_C_REGNUM
822 && reg_nr <= FP_LAST_C_REGNUM)
d93859e2 823 base_regnum = reg_nr - FP0_C_REGNUM + gdbarch_fp0_regnum (gdbarch);
55ff77ac
CV
824
825 /* double prec register N maps to base regnum for double prec register N */
826 else if (reg_nr >= DR0_C_REGNUM
827 && reg_nr <= DR_LAST_C_REGNUM)
d93859e2
UW
828 base_regnum = sh64_dr_reg_base_num (gdbarch,
829 DR0_REGNUM + reg_nr - DR0_C_REGNUM);
55ff77ac
CV
830
831 /* vector N maps to base regnum for vector register N */
832 else if (reg_nr >= FV0_C_REGNUM
833 && reg_nr <= FV_LAST_C_REGNUM)
d93859e2
UW
834 base_regnum = sh64_fv_reg_base_num (gdbarch,
835 FV0_REGNUM + reg_nr - FV0_C_REGNUM);
55ff77ac
CV
836
837 else if (reg_nr == PC_C_REGNUM)
d93859e2 838 base_regnum = gdbarch_pc_regnum (gdbarch);
55ff77ac
CV
839
840 else if (reg_nr == GBR_C_REGNUM)
841 base_regnum = 16;
842
843 else if (reg_nr == MACH_C_REGNUM
844 || reg_nr == MACL_C_REGNUM)
845 base_regnum = 17;
846
847 else if (reg_nr == PR_C_REGNUM)
c30dc700 848 base_regnum = PR_REGNUM;
55ff77ac
CV
849
850 else if (reg_nr == T_C_REGNUM)
851 base_regnum = 19;
852
853 else if (reg_nr == FPSCR_C_REGNUM)
7bb11558 854 base_regnum = FPSCR_REGNUM; /*???? this register is a mess. */
55ff77ac
CV
855
856 else if (reg_nr == FPUL_C_REGNUM)
d93859e2 857 base_regnum = gdbarch_fp0_regnum (gdbarch) + 32;
55ff77ac
CV
858
859 return base_regnum;
860}
861
55ff77ac
CV
862static int
863sign_extend (int value, int bits)
864{
865 value = value & ((1 << bits) - 1);
866 return (value & (1 << (bits - 1))
867 ? value | (~((1 << bits) - 1))
868 : value);
869}
870
871static void
c30dc700
CV
872sh64_analyze_prologue (struct gdbarch *gdbarch,
873 struct sh64_frame_cache *cache,
874 CORE_ADDR func_pc,
875 CORE_ADDR current_pc)
55ff77ac 876{
55ff77ac
CV
877 int pc;
878 int opc;
879 int insn;
880 int r0_val = 0;
55ff77ac 881 int insn_size;
e17a4113 882 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 883
c30dc700 884 cache->sp_offset = 0;
55ff77ac
CV
885
886 /* Loop around examining the prologue insns until we find something
887 that does not appear to be part of the prologue. But give up
7bb11558 888 after 20 of them, since we're getting silly then. */
55ff77ac 889
c30dc700 890 pc = func_pc;
55ff77ac 891
c30dc700
CV
892 if (cache->media_mode)
893 insn_size = 4;
55ff77ac 894 else
c30dc700 895 insn_size = 2;
55ff77ac 896
c30dc700
CV
897 opc = pc + (insn_size * 28);
898 if (opc > current_pc)
899 opc = current_pc;
900 for ( ; pc <= opc; pc += insn_size)
55ff77ac 901 {
c30dc700
CV
902 insn = read_memory_integer (cache->media_mode ? UNMAKE_ISA32_ADDR (pc)
903 : pc,
e17a4113 904 insn_size, byte_order);
55ff77ac 905
c30dc700 906 if (!cache->media_mode)
55ff77ac
CV
907 {
908 if (IS_STS_PR (insn))
909 {
e17a4113
UW
910 int next_insn = read_memory_integer (pc + insn_size,
911 insn_size, byte_order);
55ff77ac
CV
912 if (IS_MOV_TO_R15 (next_insn))
913 {
c378eb4e
MS
914 cache->saved_regs[PR_REGNUM]
915 = cache->sp_offset - ((((next_insn & 0xf) ^ 0x8)
916 - 0x8) << 2);
55ff77ac
CV
917 pc += insn_size;
918 }
919 }
c30dc700 920
55ff77ac 921 else if (IS_MOV_R14 (insn))
9ca10714
JB
922 {
923 cache->saved_regs[MEDIA_FP_REGNUM] =
924 cache->sp_offset - ((((insn & 0xf) ^ 0x8) - 0x8) << 2);
925 cache->uses_fp = 1;
926 }
55ff77ac
CV
927
928 else if (IS_MOV_R0 (insn))
929 {
930 /* Put in R0 the offset from SP at which to store some
c378eb4e 931 registers. We are interested in this value, because it
55ff77ac
CV
932 will tell us where the given registers are stored within
933 the frame. */
934 r0_val = ((insn & 0xff) ^ 0x80) - 0x80;
935 }
c30dc700 936
55ff77ac
CV
937 else if (IS_ADD_SP_R0 (insn))
938 {
939 /* This instruction still prepares r0, but we don't care.
7bb11558 940 We already have the offset in r0_val. */
55ff77ac 941 }
c30dc700 942
55ff77ac
CV
943 else if (IS_STS_R0 (insn))
944 {
c378eb4e 945 /* Store PR at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700 946 cache->saved_regs[PR_REGNUM] = cache->sp_offset - (r0_val - 4);
55ff77ac 947 r0_val -= 4;
55ff77ac 948 }
c30dc700 949
55ff77ac
CV
950 else if (IS_MOV_R14_R0 (insn))
951 {
c378eb4e 952 /* Store R14 at r0_val-4 from SP. Decrement r0 by 4. */
c30dc700
CV
953 cache->saved_regs[MEDIA_FP_REGNUM] = cache->sp_offset
954 - (r0_val - 4);
9ca10714 955 cache->uses_fp = 1;
55ff77ac
CV
956 r0_val -= 4;
957 }
958
959 else if (IS_ADD_SP (insn))
c30dc700
CV
960 cache->sp_offset -= ((insn & 0xff) ^ 0x80) - 0x80;
961
55ff77ac
CV
962 else if (IS_MOV_SP_FP (insn))
963 break;
964 }
965 else
966 {
c30dc700
CV
967 if (IS_ADDIL_SP_MEDIA (insn) || IS_ADDI_SP_MEDIA (insn))
968 cache->sp_offset -=
969 sign_extend ((((insn & 0xffc00) ^ 0x80000) - 0x80000) >> 10, 9);
55ff77ac
CV
970
971 else if (IS_STQ_R18_R15 (insn))
c378eb4e
MS
972 cache->saved_regs[PR_REGNUM]
973 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
974 9) << 3);
55ff77ac
CV
975
976 else if (IS_STL_R18_R15 (insn))
c378eb4e
MS
977 cache->saved_regs[PR_REGNUM]
978 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
979 9) << 2);
55ff77ac
CV
980
981 else if (IS_STQ_R14_R15 (insn))
9ca10714
JB
982 {
983 cache->saved_regs[MEDIA_FP_REGNUM]
984 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
985 9) << 3);
986 cache->uses_fp = 1;
987 }
55ff77ac
CV
988
989 else if (IS_STL_R14_R15 (insn))
9ca10714
JB
990 {
991 cache->saved_regs[MEDIA_FP_REGNUM]
992 = cache->sp_offset - (sign_extend ((insn & 0xffc00) >> 10,
993 9) << 2);
994 cache->uses_fp = 1;
995 }
55ff77ac
CV
996
997 else if (IS_MOV_SP_FP_MEDIA (insn))
998 break;
999 }
1000 }
55ff77ac
CV
1001}
1002
55ff77ac 1003static CORE_ADDR
c30dc700 1004sh64_frame_align (struct gdbarch *ignore, CORE_ADDR sp)
55ff77ac 1005{
c30dc700 1006 return sp & ~7;
55ff77ac
CV
1007}
1008
c30dc700 1009/* Function: push_dummy_call
55ff77ac
CV
1010 Setup the function arguments for calling a function in the inferior.
1011
85a453d5 1012 On the Renesas SH architecture, there are four registers (R4 to R7)
55ff77ac
CV
1013 which are dedicated for passing function arguments. Up to the first
1014 four arguments (depending on size) may go into these registers.
1015 The rest go on the stack.
1016
1017 Arguments that are smaller than 4 bytes will still take up a whole
1018 register or a whole 32-bit word on the stack, and will be
1019 right-justified in the register or the stack word. This includes
1020 chars, shorts, and small aggregate types.
1021
1022 Arguments that are larger than 4 bytes may be split between two or
1023 more registers. If there are not enough registers free, an argument
1024 may be passed partly in a register (or registers), and partly on the
c378eb4e 1025 stack. This includes doubles, long longs, and larger aggregates.
55ff77ac
CV
1026 As far as I know, there is no upper limit to the size of aggregates
1027 that will be passed in this way; in other words, the convention of
1028 passing a pointer to a large aggregate instead of a copy is not used.
1029
1030 An exceptional case exists for struct arguments (and possibly other
1031 aggregates such as arrays) if the size is larger than 4 bytes but
1032 not a multiple of 4 bytes. In this case the argument is never split
1033 between the registers and the stack, but instead is copied in its
1034 entirety onto the stack, AND also copied into as many registers as
1035 there is room for. In other words, space in registers permitting,
1036 two copies of the same argument are passed in. As far as I can tell,
1037 only the one on the stack is used, although that may be a function
1038 of the level of compiler optimization. I suspect this is a compiler
1039 bug. Arguments of these odd sizes are left-justified within the
1040 word (as opposed to arguments smaller than 4 bytes, which are
1041 right-justified).
1042
1043 If the function is to return an aggregate type such as a struct, it
1044 is either returned in the normal return value register R0 (if its
1045 size is no greater than one byte), or else the caller must allocate
1046 space into which the callee will copy the return value (if the size
1047 is greater than one byte). In this case, a pointer to the return
1048 value location is passed into the callee in register R2, which does
1049 not displace any of the other arguments passed in via registers R4
c378eb4e 1050 to R7. */
55ff77ac
CV
1051
1052/* R2-R9 for integer types and integer equivalent (char, pointers) and
1053 non-scalar (struct, union) elements (even if the elements are
1054 floats).
1055 FR0-FR11 for single precision floating point (float)
1056 DR0-DR10 for double precision floating point (double)
1057
1058 If a float is argument number 3 (for instance) and arguments number
1059 1,2, and 4 are integer, the mapping will be:
c378eb4e 1060 arg1 -->R2, arg2 --> R3, arg3 -->FR0, arg4 --> R5. I.e. R4 is not used.
55ff77ac
CV
1061
1062 If a float is argument number 10 (for instance) and arguments number
1063 1 through 10 are integer, the mapping will be:
1064 arg1->R2, arg2->R3, arg3->R4, arg4->R5, arg5->R6, arg6->R7, arg7->R8,
c378eb4e
MS
1065 arg8->R9, arg9->(0,SP)stack(8-byte aligned), arg10->FR0,
1066 arg11->stack(16,SP). I.e. there is hole in the stack.
55ff77ac
CV
1067
1068 Different rules apply for variable arguments functions, and for functions
7bb11558 1069 for which the prototype is not known. */
55ff77ac
CV
1070
1071static CORE_ADDR
c30dc700
CV
1072sh64_push_dummy_call (struct gdbarch *gdbarch,
1073 struct value *function,
1074 struct regcache *regcache,
1075 CORE_ADDR bp_addr,
1076 int nargs, struct value **args,
1077 CORE_ADDR sp, int struct_return,
1078 CORE_ADDR struct_addr)
55ff77ac 1079{
e17a4113 1080 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1081 int stack_offset, stack_alloc;
1082 int int_argreg;
55ff77ac
CV
1083 int float_arg_index = 0;
1084 int double_arg_index = 0;
1085 int argnum;
1086 struct type *type;
1087 CORE_ADDR regval;
948f8e3d
PA
1088 const gdb_byte *val;
1089 gdb_byte valbuf[8];
55ff77ac
CV
1090 int len;
1091 int argreg_size;
1092 int fp_args[12];
55ff77ac
CV
1093
1094 memset (fp_args, 0, sizeof (fp_args));
1095
c378eb4e 1096 /* First force sp to a 8-byte alignment. */
c30dc700 1097 sp = sh64_frame_align (gdbarch, sp);
55ff77ac
CV
1098
1099 /* The "struct return pointer" pseudo-argument has its own dedicated
c378eb4e 1100 register. */
55ff77ac
CV
1101
1102 if (struct_return)
c30dc700
CV
1103 regcache_cooked_write_unsigned (regcache,
1104 STRUCT_RETURN_REGNUM, struct_addr);
55ff77ac 1105
c378eb4e 1106 /* Now make sure there's space on the stack. */
55ff77ac 1107 for (argnum = 0, stack_alloc = 0; argnum < nargs; argnum++)
4991999e 1108 stack_alloc += ((TYPE_LENGTH (value_type (args[argnum])) + 7) & ~7);
c378eb4e 1109 sp -= stack_alloc; /* Make room on stack for args. */
55ff77ac
CV
1110
1111 /* Now load as many as possible of the first arguments into
1112 registers, and push the rest onto the stack. There are 64 bytes
1113 in eight registers available. Loop thru args from first to last. */
1114
1115 int_argreg = ARG0_REGNUM;
55ff77ac
CV
1116
1117 for (argnum = 0, stack_offset = 0; argnum < nargs; argnum++)
1118 {
4991999e 1119 type = value_type (args[argnum]);
55ff77ac
CV
1120 len = TYPE_LENGTH (type);
1121 memset (valbuf, 0, sizeof (valbuf));
1122
1123 if (TYPE_CODE (type) != TYPE_CODE_FLT)
1124 {
58643501 1125 argreg_size = register_size (gdbarch, int_argreg);
55ff77ac
CV
1126
1127 if (len < argreg_size)
1128 {
c378eb4e 1129 /* value gets right-justified in the register or stack word. */
58643501 1130 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1131 memcpy (valbuf + argreg_size - len,
948f8e3d 1132 value_contents (args[argnum]), len);
55ff77ac 1133 else
948f8e3d 1134 memcpy (valbuf, value_contents (args[argnum]), len);
55ff77ac
CV
1135
1136 val = valbuf;
1137 }
1138 else
948f8e3d 1139 val = value_contents (args[argnum]);
55ff77ac
CV
1140
1141 while (len > 0)
1142 {
1143 if (int_argreg > ARGLAST_REGNUM)
1144 {
c378eb4e 1145 /* Must go on the stack. */
948f8e3d 1146 write_memory (sp + stack_offset, val, argreg_size);
55ff77ac
CV
1147 stack_offset += 8;/*argreg_size;*/
1148 }
1149 /* NOTE WELL!!!!! This is not an "else if" clause!!!
1150 That's because some *&^%$ things get passed on the stack
1151 AND in the registers! */
1152 if (int_argreg <= ARGLAST_REGNUM)
1153 {
c378eb4e 1154 /* There's room in a register. */
e17a4113
UW
1155 regval = extract_unsigned_integer (val, argreg_size,
1156 byte_order);
c378eb4e
MS
1157 regcache_cooked_write_unsigned (regcache,
1158 int_argreg, regval);
55ff77ac
CV
1159 }
1160 /* Store the value 8 bytes at a time. This means that
1161 things larger than 8 bytes may go partly in registers
c378eb4e 1162 and partly on the stack. FIXME: argreg is incremented
7bb11558 1163 before we use its size. */
55ff77ac
CV
1164 len -= argreg_size;
1165 val += argreg_size;
1166 int_argreg++;
1167 }
1168 }
1169 else
1170 {
948f8e3d 1171 val = value_contents (args[argnum]);
55ff77ac
CV
1172 if (len == 4)
1173 {
c378eb4e 1174 /* Where is it going to be stored? */
55ff77ac
CV
1175 while (fp_args[float_arg_index])
1176 float_arg_index ++;
1177
1178 /* Now float_argreg points to the register where it
1179 should be stored. Are we still within the allowed
c378eb4e 1180 register set? */
55ff77ac
CV
1181 if (float_arg_index <= FLOAT_ARGLAST_REGNUM)
1182 {
1183 /* Goes in FR0...FR11 */
c30dc700 1184 regcache_cooked_write (regcache,
58643501 1185 gdbarch_fp0_regnum (gdbarch)
3e8c568d 1186 + float_arg_index,
c30dc700 1187 val);
55ff77ac 1188 fp_args[float_arg_index] = 1;
7bb11558 1189 /* Skip the corresponding general argument register. */
55ff77ac
CV
1190 int_argreg ++;
1191 }
1192 else
d4fb63e1
TT
1193 {
1194 /* Store it as the integers, 8 bytes at the time, if
1195 necessary spilling on the stack. */
1196 }
55ff77ac
CV
1197 }
1198 else if (len == 8)
1199 {
c378eb4e 1200 /* Where is it going to be stored? */
55ff77ac
CV
1201 while (fp_args[double_arg_index])
1202 double_arg_index += 2;
1203 /* Now double_argreg points to the register
1204 where it should be stored.
c378eb4e 1205 Are we still within the allowed register set? */
55ff77ac
CV
1206 if (double_arg_index < FLOAT_ARGLAST_REGNUM)
1207 {
1208 /* Goes in DR0...DR10 */
1209 /* The numbering of the DRi registers is consecutive,
7bb11558 1210 i.e. includes odd numbers. */
55ff77ac 1211 int double_register_offset = double_arg_index / 2;
c30dc700
CV
1212 int regnum = DR0_REGNUM + double_register_offset;
1213 regcache_cooked_write (regcache, regnum, val);
55ff77ac
CV
1214 fp_args[double_arg_index] = 1;
1215 fp_args[double_arg_index + 1] = 1;
7bb11558 1216 /* Skip the corresponding general argument register. */
55ff77ac
CV
1217 int_argreg ++;
1218 }
1219 else
d4fb63e1
TT
1220 {
1221 /* Store it as the integers, 8 bytes at the time, if
1222 necessary spilling on the stack. */
1223 }
55ff77ac
CV
1224 }
1225 }
1226 }
c378eb4e 1227 /* Store return address. */
c30dc700 1228 regcache_cooked_write_unsigned (regcache, PR_REGNUM, bp_addr);
55ff77ac 1229
c30dc700 1230 /* Update stack pointer. */
3e8c568d 1231 regcache_cooked_write_unsigned (regcache,
58643501 1232 gdbarch_sp_regnum (gdbarch), sp);
55ff77ac 1233
55ff77ac
CV
1234 return sp;
1235}
1236
1237/* Find a function's return value in the appropriate registers (in
1238 regbuf), and copy it into valbuf. Extract from an array REGBUF
1239 containing the (raw) register state a function return value of type
1240 TYPE, and copy that, in virtual format, into VALBUF. */
1241static void
c30dc700 1242sh64_extract_return_value (struct type *type, struct regcache *regcache,
7c543f7b 1243 gdb_byte *valbuf)
55ff77ac 1244{
ac7936df 1245 struct gdbarch *gdbarch = regcache->arch ();
55ff77ac 1246 int len = TYPE_LENGTH (type);
d93859e2 1247
55ff77ac
CV
1248 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1249 {
1250 if (len == 4)
1251 {
c378eb4e 1252 /* Return value stored in gdbarch_fp0_regnum. */
3e8c568d 1253 regcache_raw_read (regcache,
d93859e2 1254 gdbarch_fp0_regnum (gdbarch), valbuf);
55ff77ac
CV
1255 }
1256 else if (len == 8)
1257 {
c378eb4e 1258 /* return value stored in DR0_REGNUM. */
18cf8b5b 1259 gdb_byte buf[8];
18cf8b5b 1260 regcache_cooked_read (regcache, DR0_REGNUM, buf);
55ff77ac 1261
96a5a1d3
UW
1262 convert_typed_floating (buf, sh64_littlebyte_bigword_type (gdbarch),
1263 valbuf, type);
55ff77ac
CV
1264 }
1265 }
1266 else
1267 {
1268 if (len <= 8)
1269 {
c30dc700 1270 int offset;
e362b510 1271 gdb_byte buf[8];
c378eb4e 1272 /* Result is in register 2. If smaller than 8 bytes, it is padded
7bb11558 1273 at the most significant end. */
c30dc700
CV
1274 regcache_raw_read (regcache, DEFAULT_RETURN_REGNUM, buf);
1275
d93859e2
UW
1276 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1277 offset = register_size (gdbarch, DEFAULT_RETURN_REGNUM)
c30dc700 1278 - len;
55ff77ac 1279 else
c30dc700
CV
1280 offset = 0;
1281 memcpy (valbuf, buf + offset, len);
55ff77ac
CV
1282 }
1283 else
a73c6dcd 1284 error (_("bad size for return value"));
55ff77ac
CV
1285 }
1286}
1287
1288/* Write into appropriate registers a function return value
1289 of type TYPE, given in virtual format.
1290 If the architecture is sh4 or sh3e, store a function's return value
1291 in the R0 general register or in the FP0 floating point register,
c378eb4e 1292 depending on the type of the return value. In all the other cases
7bb11558 1293 the result is stored in r0, left-justified. */
55ff77ac
CV
1294
1295static void
c30dc700 1296sh64_store_return_value (struct type *type, struct regcache *regcache,
948f8e3d 1297 const gdb_byte *valbuf)
55ff77ac 1298{
ac7936df 1299 struct gdbarch *gdbarch = regcache->arch ();
e362b510 1300 gdb_byte buf[64]; /* more than enough... */
55ff77ac
CV
1301 int len = TYPE_LENGTH (type);
1302
1303 if (TYPE_CODE (type) == TYPE_CODE_FLT)
1304 {
d93859e2 1305 int i, regnum = gdbarch_fp0_regnum (gdbarch);
c30dc700 1306 for (i = 0; i < len; i += 4)
d93859e2 1307 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
c30dc700 1308 regcache_raw_write (regcache, regnum++,
948f8e3d 1309 valbuf + len - 4 - i);
c30dc700 1310 else
948f8e3d 1311 regcache_raw_write (regcache, regnum++, valbuf + i);
55ff77ac
CV
1312 }
1313 else
1314 {
1315 int return_register = DEFAULT_RETURN_REGNUM;
1316 int offset = 0;
1317
d93859e2 1318 if (len <= register_size (gdbarch, return_register))
55ff77ac 1319 {
7bb11558 1320 /* Pad with zeros. */
d93859e2
UW
1321 memset (buf, 0, register_size (gdbarch, return_register));
1322 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_LITTLE)
1323 offset = 0; /*register_size (gdbarch,
7bb11558 1324 return_register) - len;*/
55ff77ac 1325 else
d93859e2 1326 offset = register_size (gdbarch, return_register) - len;
55ff77ac
CV
1327
1328 memcpy (buf + offset, valbuf, len);
c30dc700 1329 regcache_raw_write (regcache, return_register, buf);
55ff77ac
CV
1330 }
1331 else
c30dc700 1332 regcache_raw_write (regcache, return_register, valbuf);
55ff77ac
CV
1333 }
1334}
1335
c30dc700 1336static enum return_value_convention
6a3a010b 1337sh64_return_value (struct gdbarch *gdbarch, struct value *function,
c055b101 1338 struct type *type, struct regcache *regcache,
18cf8b5b 1339 gdb_byte *readbuf, const gdb_byte *writebuf)
c30dc700
CV
1340{
1341 if (sh64_use_struct_convention (type))
1342 return RETURN_VALUE_STRUCT_CONVENTION;
1343 if (writebuf)
1344 sh64_store_return_value (type, regcache, writebuf);
1345 else if (readbuf)
1346 sh64_extract_return_value (type, regcache, readbuf);
1347 return RETURN_VALUE_REGISTER_CONVENTION;
1348}
1349
55ff77ac
CV
1350/* *INDENT-OFF* */
1351/*
1352 SH MEDIA MODE (ISA 32)
1353 general registers (64-bit) 0-63
13540 r0, r1, r2, r3, r4, r5, r6, r7,
135564 r8, r9, r10, r11, r12, r13, r14, r15,
1356128 r16, r17, r18, r19, r20, r21, r22, r23,
1357192 r24, r25, r26, r27, r28, r29, r30, r31,
1358256 r32, r33, r34, r35, r36, r37, r38, r39,
1359320 r40, r41, r42, r43, r44, r45, r46, r47,
1360384 r48, r49, r50, r51, r52, r53, r54, r55,
1361448 r56, r57, r58, r59, r60, r61, r62, r63,
1362
1363 pc (64-bit) 64
1364512 pc,
1365
1366 status reg., saved status reg., saved pc reg. (64-bit) 65-67
1367520 sr, ssr, spc,
1368
1369 target registers (64-bit) 68-75
1370544 tr0, tr1, tr2, tr3, tr4, tr5, tr6, tr7,
1371
1372 floating point state control register (32-bit) 76
1373608 fpscr,
1374
1375 single precision floating point registers (32-bit) 77-140
1376612 fr0, fr1, fr2, fr3, fr4, fr5, fr6, fr7,
1377644 fr8, fr9, fr10, fr11, fr12, fr13, fr14, fr15,
1378676 fr16, fr17, fr18, fr19, fr20, fr21, fr22, fr23,
1379708 fr24, fr25, fr26, fr27, fr28, fr29, fr30, fr31,
1380740 fr32, fr33, fr34, fr35, fr36, fr37, fr38, fr39,
1381772 fr40, fr41, fr42, fr43, fr44, fr45, fr46, fr47,
1382804 fr48, fr49, fr50, fr51, fr52, fr53, fr54, fr55,
1383836 fr56, fr57, fr58, fr59, fr60, fr61, fr62, fr63,
1384
1385TOTAL SPACE FOR REGISTERS: 868 bytes
1386
1387From here on they are all pseudo registers: no memory allocated.
1388REGISTER_BYTE returns the register byte for the base register.
1389
1390 double precision registers (pseudo) 141-172
1391 dr0, dr2, dr4, dr6, dr8, dr10, dr12, dr14,
1392 dr16, dr18, dr20, dr22, dr24, dr26, dr28, dr30,
1393 dr32, dr34, dr36, dr38, dr40, dr42, dr44, dr46,
1394 dr48, dr50, dr52, dr54, dr56, dr58, dr60, dr62,
1395
1396 floating point pairs (pseudo) 173-204
1397 fp0, fp2, fp4, fp6, fp8, fp10, fp12, fp14,
1398 fp16, fp18, fp20, fp22, fp24, fp26, fp28, fp30,
1399 fp32, fp34, fp36, fp38, fp40, fp42, fp44, fp46,
1400 fp48, fp50, fp52, fp54, fp56, fp58, fp60, fp62,
1401
1402 floating point vectors (4 floating point regs) (pseudo) 205-220
1403 fv0, fv4, fv8, fv12, fv16, fv20, fv24, fv28,
1404 fv32, fv36, fv40, fv44, fv48, fv52, fv56, fv60,
1405
1406 SH COMPACT MODE (ISA 16) (all pseudo) 221-272
1407 r0_c, r1_c, r2_c, r3_c, r4_c, r5_c, r6_c, r7_c,
1408 r8_c, r9_c, r10_c, r11_c, r12_c, r13_c, r14_c, r15_c,
1409 pc_c,
1410 gbr_c, mach_c, macl_c, pr_c, t_c,
1411 fpscr_c, fpul_c,
1412 fr0_c, fr1_c, fr2_c, fr3_c, fr4_c, fr5_c, fr6_c, fr7_c,
1413 fr8_c, fr9_c, fr10_c, fr11_c, fr12_c, fr13_c, fr14_c, fr15_c
1414 dr0_c, dr2_c, dr4_c, dr6_c, dr8_c, dr10_c, dr12_c, dr14_c
1415 fv0_c, fv4_c, fv8_c, fv12_c
1416*/
55ff77ac 1417
55ff77ac 1418static struct type *
0dfff4cb 1419sh64_build_float_register_type (struct gdbarch *gdbarch, int high)
55ff77ac 1420{
e3506a9f
UW
1421 return lookup_array_range_type (builtin_type (gdbarch)->builtin_float,
1422 0, high);
55ff77ac
CV
1423}
1424
7bb11558
MS
1425/* Return the GDB type object for the "standard" data type
1426 of data in register REG_NR. */
55ff77ac 1427static struct type *
7bb11558 1428sh64_register_type (struct gdbarch *gdbarch, int reg_nr)
55ff77ac 1429{
58643501 1430 if ((reg_nr >= gdbarch_fp0_regnum (gdbarch)
55ff77ac
CV
1431 && reg_nr <= FP_LAST_REGNUM)
1432 || (reg_nr >= FP0_C_REGNUM
1433 && reg_nr <= FP_LAST_C_REGNUM))
0dfff4cb 1434 return builtin_type (gdbarch)->builtin_float;
55ff77ac
CV
1435 else if ((reg_nr >= DR0_REGNUM
1436 && reg_nr <= DR_LAST_REGNUM)
1437 || (reg_nr >= DR0_C_REGNUM
1438 && reg_nr <= DR_LAST_C_REGNUM))
0dfff4cb 1439 return builtin_type (gdbarch)->builtin_double;
55ff77ac
CV
1440 else if (reg_nr >= FPP0_REGNUM
1441 && reg_nr <= FPP_LAST_REGNUM)
0dfff4cb 1442 return sh64_build_float_register_type (gdbarch, 1);
55ff77ac
CV
1443 else if ((reg_nr >= FV0_REGNUM
1444 && reg_nr <= FV_LAST_REGNUM)
1445 ||(reg_nr >= FV0_C_REGNUM
1446 && reg_nr <= FV_LAST_C_REGNUM))
0dfff4cb 1447 return sh64_build_float_register_type (gdbarch, 3);
55ff77ac 1448 else if (reg_nr == FPSCR_REGNUM)
0dfff4cb 1449 return builtin_type (gdbarch)->builtin_int;
55ff77ac
CV
1450 else if (reg_nr >= R0_C_REGNUM
1451 && reg_nr < FP0_C_REGNUM)
0dfff4cb 1452 return builtin_type (gdbarch)->builtin_int;
55ff77ac 1453 else
0dfff4cb 1454 return builtin_type (gdbarch)->builtin_long_long;
55ff77ac
CV
1455}
1456
1457static void
d93859e2 1458sh64_register_convert_to_virtual (struct gdbarch *gdbarch, int regnum,
948f8e3d 1459 struct type *type, gdb_byte *from, gdb_byte *to)
55ff77ac 1460{
d93859e2 1461 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1462 {
7bb11558 1463 /* It is a no-op. */
d93859e2 1464 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1465 return;
1466 }
1467
1468 if ((regnum >= DR0_REGNUM
1469 && regnum <= DR_LAST_REGNUM)
1470 || (regnum >= DR0_C_REGNUM
1471 && regnum <= DR_LAST_C_REGNUM))
96a5a1d3
UW
1472 convert_typed_floating (from, sh64_littlebyte_bigword_type (gdbarch),
1473 to, type);
55ff77ac 1474 else
a73c6dcd
MS
1475 error (_("sh64_register_convert_to_virtual "
1476 "called with non DR register number"));
55ff77ac
CV
1477}
1478
1479static void
d93859e2
UW
1480sh64_register_convert_to_raw (struct gdbarch *gdbarch, struct type *type,
1481 int regnum, const void *from, void *to)
55ff77ac 1482{
d93859e2 1483 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_LITTLE)
55ff77ac 1484 {
7bb11558 1485 /* It is a no-op. */
d93859e2 1486 memcpy (to, from, register_size (gdbarch, regnum));
55ff77ac
CV
1487 return;
1488 }
1489
1490 if ((regnum >= DR0_REGNUM
1491 && regnum <= DR_LAST_REGNUM)
1492 || (regnum >= DR0_C_REGNUM
1493 && regnum <= DR_LAST_C_REGNUM))
96a5a1d3
UW
1494 convert_typed_floating (from, type,
1495 to, sh64_littlebyte_bigword_type (gdbarch));
55ff77ac 1496 else
a73c6dcd
MS
1497 error (_("sh64_register_convert_to_raw called "
1498 "with non DR register number"));
55ff77ac
CV
1499}
1500
05d1431c
PA
1501/* Concatenate PORTIONS contiguous raw registers starting at
1502 BASE_REGNUM into BUFFER. */
1503
1504static enum register_status
1505pseudo_register_read_portions (struct gdbarch *gdbarch,
1506 struct regcache *regcache,
1507 int portions,
1508 int base_regnum, gdb_byte *buffer)
1509{
1510 int portion;
1511
1512 for (portion = 0; portion < portions; portion++)
1513 {
1514 enum register_status status;
1515 gdb_byte *b;
1516
1517 b = buffer + register_size (gdbarch, base_regnum) * portion;
1518 status = regcache_raw_read (regcache, base_regnum + portion, b);
1519 if (status != REG_VALID)
1520 return status;
1521 }
1522
1523 return REG_VALID;
1524}
1525
1526static enum register_status
55ff77ac 1527sh64_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1528 int reg_nr, gdb_byte *buffer)
55ff77ac 1529{
e17a4113 1530 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 1531 int base_regnum;
55ff77ac 1532 int offset = 0;
05d1431c 1533 enum register_status status;
55ff77ac
CV
1534
1535 if (reg_nr >= DR0_REGNUM
1536 && reg_nr <= DR_LAST_REGNUM)
1537 {
4a8a33c8 1538 gdb_byte temp_buffer[8];
d93859e2 1539 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
55ff77ac 1540
7bb11558 1541 /* Build the value in the provided buffer. */
55ff77ac 1542 /* DR regs are double precision registers obtained by
7bb11558 1543 concatenating 2 single precision floating point registers. */
05d1431c
PA
1544 status = pseudo_register_read_portions (gdbarch, regcache,
1545 2, base_regnum, temp_buffer);
1546 if (status == REG_VALID)
1547 {
1548 /* We must pay attention to the endianness. */
1549 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1550 register_type (gdbarch, reg_nr),
1551 temp_buffer, buffer);
1552 }
55ff77ac 1553
05d1431c 1554 return status;
55ff77ac
CV
1555 }
1556
05d1431c 1557 else if (reg_nr >= FPP0_REGNUM
55ff77ac
CV
1558 && reg_nr <= FPP_LAST_REGNUM)
1559 {
d93859e2 1560 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac 1561
7bb11558 1562 /* Build the value in the provided buffer. */
55ff77ac 1563 /* FPP regs are pairs of single precision registers obtained by
7bb11558 1564 concatenating 2 single precision floating point registers. */
05d1431c
PA
1565 return pseudo_register_read_portions (gdbarch, regcache,
1566 2, base_regnum, buffer);
55ff77ac
CV
1567 }
1568
1569 else if (reg_nr >= FV0_REGNUM
1570 && reg_nr <= FV_LAST_REGNUM)
1571 {
d93859e2 1572 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac 1573
7bb11558 1574 /* Build the value in the provided buffer. */
55ff77ac 1575 /* FV regs are vectors of single precision registers obtained by
7bb11558 1576 concatenating 4 single precision floating point registers. */
05d1431c
PA
1577 return pseudo_register_read_portions (gdbarch, regcache,
1578 4, base_regnum, buffer);
55ff77ac
CV
1579 }
1580
c378eb4e 1581 /* sh compact pseudo registers. 1-to-1 with a shmedia register. */
55ff77ac
CV
1582 else if (reg_nr >= R0_C_REGNUM
1583 && reg_nr <= T_C_REGNUM)
1584 {
4a8a33c8 1585 gdb_byte temp_buffer[8];
d93859e2 1586 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1587
7bb11558 1588 /* Build the value in the provided buffer. */
05d1431c
PA
1589 status = regcache_raw_read (regcache, base_regnum, temp_buffer);
1590 if (status != REG_VALID)
1591 return status;
58643501 1592 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac 1593 offset = 4;
c378eb4e
MS
1594 memcpy (buffer,
1595 temp_buffer + offset, 4); /* get LOWER 32 bits only???? */
05d1431c 1596 return REG_VALID;
55ff77ac
CV
1597 }
1598
1599 else if (reg_nr >= FP0_C_REGNUM
1600 && reg_nr <= FP_LAST_C_REGNUM)
1601 {
d93859e2 1602 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1603
7bb11558 1604 /* Build the value in the provided buffer. */
55ff77ac 1605 /* Floating point registers map 1-1 to the media fp regs,
7bb11558 1606 they have the same size and endianness. */
05d1431c 1607 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac
CV
1608 }
1609
1610 else if (reg_nr >= DR0_C_REGNUM
1611 && reg_nr <= DR_LAST_C_REGNUM)
1612 {
4a8a33c8 1613 gdb_byte temp_buffer[8];
d93859e2 1614 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1615
1616 /* DR_C regs are double precision registers obtained by
7bb11558 1617 concatenating 2 single precision floating point registers. */
05d1431c
PA
1618 status = pseudo_register_read_portions (gdbarch, regcache,
1619 2, base_regnum, temp_buffer);
1620 if (status == REG_VALID)
1621 {
1622 /* We must pay attention to the endianness. */
1623 sh64_register_convert_to_virtual (gdbarch, reg_nr,
1624 register_type (gdbarch, reg_nr),
1625 temp_buffer, buffer);
1626 }
1627 return status;
55ff77ac
CV
1628 }
1629
1630 else if (reg_nr >= FV0_C_REGNUM
1631 && reg_nr <= FV_LAST_C_REGNUM)
1632 {
d93859e2 1633 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac 1634
7bb11558 1635 /* Build the value in the provided buffer. */
55ff77ac 1636 /* FV_C regs are vectors of single precision registers obtained by
7bb11558 1637 concatenating 4 single precision floating point registers. */
05d1431c
PA
1638 return pseudo_register_read_portions (gdbarch, regcache,
1639 4, base_regnum, buffer);
55ff77ac
CV
1640 }
1641
1642 else if (reg_nr == FPSCR_C_REGNUM)
1643 {
1644 int fpscr_base_regnum;
1645 int sr_base_regnum;
4a8a33c8
AH
1646 ULONGEST fpscr_value;
1647 ULONGEST sr_value;
55ff77ac
CV
1648 unsigned int fpscr_c_value;
1649 unsigned int fpscr_c_part1_value;
1650 unsigned int fpscr_c_part2_value;
1651
1652 fpscr_base_regnum = FPSCR_REGNUM;
1653 sr_base_regnum = SR_REGNUM;
1654
7bb11558 1655 /* Build the value in the provided buffer. */
55ff77ac
CV
1656 /* FPSCR_C is a very weird register that contains sparse bits
1657 from the FPSCR and the SR architectural registers.
1658 Specifically: */
1659 /* *INDENT-OFF* */
1660 /*
1661 FPSRC_C bit
1662 0 Bit 0 of FPSCR
1663 1 reserved
1664 2-17 Bit 2-18 of FPSCR
1665 18-20 Bits 12,13,14 of SR
1666 21-31 reserved
1667 */
1668 /* *INDENT-ON* */
4a8a33c8 1669 /* Get FPSCR as an int. */
6f98355c 1670 status = regcache->raw_read (fpscr_base_regnum, &fpscr_value);
05d1431c
PA
1671 if (status != REG_VALID)
1672 return status;
4a8a33c8 1673 /* Get SR as an int. */
6f98355c 1674 status = regcache->raw_read (sr_base_regnum, &sr_value);
05d1431c
PA
1675 if (status != REG_VALID)
1676 return status;
7bb11558 1677 /* Build the new value. */
55ff77ac
CV
1678 fpscr_c_part1_value = fpscr_value & 0x3fffd;
1679 fpscr_c_part2_value = (sr_value & 0x7000) << 6;
1680 fpscr_c_value = fpscr_c_part1_value | fpscr_c_part2_value;
c378eb4e 1681 /* Store that in out buffer!!! */
e17a4113 1682 store_unsigned_integer (buffer, 4, byte_order, fpscr_c_value);
7bb11558 1683 /* FIXME There is surely an endianness gotcha here. */
05d1431c
PA
1684
1685 return REG_VALID;
55ff77ac
CV
1686 }
1687
1688 else if (reg_nr == FPUL_C_REGNUM)
1689 {
d93859e2 1690 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1691
1692 /* FPUL_C register is floating point register 32,
7bb11558 1693 same size, same endianness. */
05d1431c 1694 return regcache_raw_read (regcache, base_regnum, buffer);
55ff77ac 1695 }
05d1431c
PA
1696 else
1697 gdb_assert_not_reached ("invalid pseudo register number");
55ff77ac
CV
1698}
1699
1700static void
1701sh64_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
18cf8b5b 1702 int reg_nr, const gdb_byte *buffer)
55ff77ac 1703{
e17a4113 1704 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac
CV
1705 int base_regnum, portion;
1706 int offset;
55ff77ac
CV
1707
1708 if (reg_nr >= DR0_REGNUM
1709 && reg_nr <= DR_LAST_REGNUM)
1710 {
4a8a33c8 1711 gdb_byte temp_buffer[8];
d93859e2 1712 base_regnum = sh64_dr_reg_base_num (gdbarch, reg_nr);
7bb11558 1713 /* We must pay attention to the endianness. */
d93859e2 1714 sh64_register_convert_to_raw (gdbarch, register_type (gdbarch, reg_nr),
39add00a
MS
1715 reg_nr,
1716 buffer, temp_buffer);
55ff77ac
CV
1717
1718 /* Write the real regs for which this one is an alias. */
1719 for (portion = 0; portion < 2; portion++)
1720 regcache_raw_write (regcache, base_regnum + portion,
1721 (temp_buffer
948f8e3d 1722 + register_size (gdbarch,
7bb11558 1723 base_regnum) * portion));
55ff77ac
CV
1724 }
1725
1726 else if (reg_nr >= FPP0_REGNUM
1727 && reg_nr <= FPP_LAST_REGNUM)
1728 {
d93859e2 1729 base_regnum = sh64_fpp_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1730
1731 /* Write the real regs for which this one is an alias. */
1732 for (portion = 0; portion < 2; portion++)
1733 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1734 (buffer + register_size (gdbarch,
1735 base_regnum) * portion));
55ff77ac
CV
1736 }
1737
1738 else if (reg_nr >= FV0_REGNUM
1739 && reg_nr <= FV_LAST_REGNUM)
1740 {
d93859e2 1741 base_regnum = sh64_fv_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1742
1743 /* Write the real regs for which this one is an alias. */
1744 for (portion = 0; portion < 4; portion++)
1745 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d
PA
1746 (buffer + register_size (gdbarch,
1747 base_regnum) * portion));
55ff77ac
CV
1748 }
1749
c378eb4e 1750 /* sh compact general pseudo registers. 1-to-1 with a shmedia
55ff77ac
CV
1751 register but only 4 bytes of it. */
1752 else if (reg_nr >= R0_C_REGNUM
1753 && reg_nr <= T_C_REGNUM)
1754 {
4a8a33c8 1755 gdb_byte temp_buffer[8];
d93859e2 1756 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
7bb11558 1757 /* reg_nr is 32 bit here, and base_regnum is 64 bits. */
58643501 1758 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
55ff77ac
CV
1759 offset = 4;
1760 else
1761 offset = 0;
1762 /* Let's read the value of the base register into a temporary
1763 buffer, so that overwriting the last four bytes with the new
7bb11558 1764 value of the pseudo will leave the upper 4 bytes unchanged. */
55ff77ac 1765 regcache_raw_read (regcache, base_regnum, temp_buffer);
c378eb4e 1766 /* Write as an 8 byte quantity. */
55ff77ac
CV
1767 memcpy (temp_buffer + offset, buffer, 4);
1768 regcache_raw_write (regcache, base_regnum, temp_buffer);
1769 }
1770
c378eb4e
MS
1771 /* sh floating point compact pseudo registers. 1-to-1 with a shmedia
1772 registers. Both are 4 bytes. */
55ff77ac
CV
1773 else if (reg_nr >= FP0_C_REGNUM
1774 && reg_nr <= FP_LAST_C_REGNUM)
1775 {
d93859e2 1776 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1777 regcache_raw_write (regcache, base_regnum, buffer);
1778 }
1779
1780 else if (reg_nr >= DR0_C_REGNUM
1781 && reg_nr <= DR_LAST_C_REGNUM)
1782 {
4a8a33c8 1783 gdb_byte temp_buffer[8];
d93859e2 1784 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1785 for (portion = 0; portion < 2; portion++)
1786 {
7bb11558 1787 /* We must pay attention to the endianness. */
d93859e2
UW
1788 sh64_register_convert_to_raw (gdbarch,
1789 register_type (gdbarch, reg_nr),
39add00a
MS
1790 reg_nr,
1791 buffer, temp_buffer);
55ff77ac
CV
1792
1793 regcache_raw_write (regcache, base_regnum + portion,
1794 (temp_buffer
7bb11558
MS
1795 + register_size (gdbarch,
1796 base_regnum) * portion));
55ff77ac
CV
1797 }
1798 }
1799
1800 else if (reg_nr >= FV0_C_REGNUM
1801 && reg_nr <= FV_LAST_C_REGNUM)
1802 {
d93859e2 1803 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1804
1805 for (portion = 0; portion < 4; portion++)
1806 {
1807 regcache_raw_write (regcache, base_regnum + portion,
948f8e3d 1808 (buffer
7bb11558
MS
1809 + register_size (gdbarch,
1810 base_regnum) * portion));
55ff77ac
CV
1811 }
1812 }
1813
1814 else if (reg_nr == FPSCR_C_REGNUM)
1815 {
1816 int fpscr_base_regnum;
1817 int sr_base_regnum;
4a8a33c8
AH
1818 ULONGEST fpscr_value;
1819 ULONGEST sr_value;
1820 ULONGEST old_fpscr_value;
1821 ULONGEST old_sr_value;
55ff77ac
CV
1822 unsigned int fpscr_c_value;
1823 unsigned int fpscr_mask;
1824 unsigned int sr_mask;
1825
1826 fpscr_base_regnum = FPSCR_REGNUM;
1827 sr_base_regnum = SR_REGNUM;
1828
1829 /* FPSCR_C is a very weird register that contains sparse bits
1830 from the FPSCR and the SR architectural registers.
1831 Specifically: */
1832 /* *INDENT-OFF* */
1833 /*
1834 FPSRC_C bit
1835 0 Bit 0 of FPSCR
1836 1 reserved
1837 2-17 Bit 2-18 of FPSCR
1838 18-20 Bits 12,13,14 of SR
1839 21-31 reserved
1840 */
1841 /* *INDENT-ON* */
7bb11558 1842 /* Get value as an int. */
e17a4113 1843 fpscr_c_value = extract_unsigned_integer (buffer, 4, byte_order);
55ff77ac 1844
7bb11558 1845 /* Build the new values. */
55ff77ac
CV
1846 fpscr_mask = 0x0003fffd;
1847 sr_mask = 0x001c0000;
1848
1849 fpscr_value = fpscr_c_value & fpscr_mask;
1850 sr_value = (fpscr_value & sr_mask) >> 6;
1851
6f98355c 1852 regcache->raw_read (fpscr_base_regnum, &old_fpscr_value);
55ff77ac
CV
1853 old_fpscr_value &= 0xfffc0002;
1854 fpscr_value |= old_fpscr_value;
6f98355c 1855 regcache->raw_write (fpscr_base_regnum, fpscr_value);
4a8a33c8 1856
6f98355c 1857 regcache->raw_read (sr_base_regnum, &old_sr_value);
55ff77ac
CV
1858 old_sr_value &= 0xffff8fff;
1859 sr_value |= old_sr_value;
6f98355c 1860 regcache->raw_write (sr_base_regnum, sr_value);
55ff77ac
CV
1861 }
1862
1863 else if (reg_nr == FPUL_C_REGNUM)
1864 {
d93859e2 1865 base_regnum = sh64_compact_reg_base_num (gdbarch, reg_nr);
55ff77ac
CV
1866 regcache_raw_write (regcache, base_regnum, buffer);
1867 }
1868}
1869
55ff77ac 1870/* FIXME:!! THIS SHOULD TAKE CARE OF GETTING THE RIGHT PORTION OF THE
7bb11558
MS
1871 shmedia REGISTERS. */
1872/* Control registers, compact mode. */
55ff77ac 1873static void
c30dc700
CV
1874sh64_do_cr_c_register_info (struct ui_file *file, struct frame_info *frame,
1875 int cr_c_regnum)
55ff77ac
CV
1876{
1877 switch (cr_c_regnum)
1878 {
c30dc700
CV
1879 case PC_C_REGNUM:
1880 fprintf_filtered (file, "pc_c\t0x%08x\n",
1881 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1882 break;
c30dc700
CV
1883 case GBR_C_REGNUM:
1884 fprintf_filtered (file, "gbr_c\t0x%08x\n",
1885 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1886 break;
c30dc700
CV
1887 case MACH_C_REGNUM:
1888 fprintf_filtered (file, "mach_c\t0x%08x\n",
1889 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1890 break;
c30dc700
CV
1891 case MACL_C_REGNUM:
1892 fprintf_filtered (file, "macl_c\t0x%08x\n",
1893 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1894 break;
c30dc700
CV
1895 case PR_C_REGNUM:
1896 fprintf_filtered (file, "pr_c\t0x%08x\n",
1897 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1898 break;
c30dc700
CV
1899 case T_C_REGNUM:
1900 fprintf_filtered (file, "t_c\t0x%08x\n",
1901 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1902 break;
c30dc700
CV
1903 case FPSCR_C_REGNUM:
1904 fprintf_filtered (file, "fpscr_c\t0x%08x\n",
1905 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac 1906 break;
c30dc700
CV
1907 case FPUL_C_REGNUM:
1908 fprintf_filtered (file, "fpul_c\t0x%08x\n",
1909 (int) get_frame_register_unsigned (frame, cr_c_regnum));
55ff77ac
CV
1910 break;
1911 }
1912}
1913
1914static void
c30dc700
CV
1915sh64_do_fp_register (struct gdbarch *gdbarch, struct ui_file *file,
1916 struct frame_info *frame, int regnum)
c378eb4e 1917{ /* Do values for FP (float) regs. */
079c8cd0 1918 unsigned char *raw_buffer;
55ff77ac 1919
7bb11558 1920 /* Allocate space for the float. */
c378eb4e
MS
1921 raw_buffer = (unsigned char *)
1922 alloca (register_size (gdbarch, gdbarch_fp0_regnum (gdbarch)));
55ff77ac
CV
1923
1924 /* Get the data in raw format. */
ca9d61b9 1925 if (!deprecated_frame_register_read (frame, regnum, raw_buffer))
a73c6dcd 1926 error (_("can't read register %d (%s)"),
58643501 1927 regnum, gdbarch_register_name (gdbarch, regnum));
55ff77ac 1928
7bb11558 1929 /* Print the name and some spaces. */
58643501 1930 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 1931 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 1932 (gdbarch, regnum)), file);
55ff77ac 1933
7bb11558 1934 /* Print the value. */
f69fdf9b
UW
1935 const struct type *flt_type = builtin_type (gdbarch)->builtin_float;
1936 std::string str = target_float_to_string (raw_buffer, flt_type, "%-10.9g");
8ba0dd51 1937 fprintf_filtered (file, "%s", str.c_str ());
55ff77ac 1938
7bb11558 1939 /* Print the fp register as hex. */
2cc762b5
AB
1940 fprintf_filtered (file, "\t(raw ");
1941 print_hex_chars (file, raw_buffer,
1942 register_size (gdbarch, regnum),
30a25466 1943 gdbarch_byte_order (gdbarch), true);
55ff77ac
CV
1944 fprintf_filtered (file, ")");
1945 fprintf_filtered (file, "\n");
1946}
1947
1948static void
c30dc700
CV
1949sh64_do_pseudo_register (struct gdbarch *gdbarch, struct ui_file *file,
1950 struct frame_info *frame, int regnum)
55ff77ac 1951{
7bb11558 1952 /* All the sh64-compact mode registers are pseudo registers. */
55ff77ac 1953
58643501
UW
1954 if (regnum < gdbarch_num_regs (gdbarch)
1955 || regnum >= gdbarch_num_regs (gdbarch)
f57d151a
UW
1956 + NUM_PSEUDO_REGS_SH_MEDIA
1957 + NUM_PSEUDO_REGS_SH_COMPACT)
55ff77ac 1958 internal_error (__FILE__, __LINE__,
e2e0b3e5 1959 _("Invalid pseudo register number %d\n"), regnum);
55ff77ac 1960
c30dc700
CV
1961 else if ((regnum >= DR0_REGNUM && regnum <= DR_LAST_REGNUM))
1962 {
d93859e2 1963 int fp_regnum = sh64_dr_reg_base_num (gdbarch, regnum);
c30dc700
CV
1964 fprintf_filtered (file, "dr%d\t0x%08x%08x\n", regnum - DR0_REGNUM,
1965 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1966 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1967 }
55ff77ac 1968
c30dc700
CV
1969 else if ((regnum >= DR0_C_REGNUM && regnum <= DR_LAST_C_REGNUM))
1970 {
d93859e2 1971 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1972 fprintf_filtered (file, "dr%d_c\t0x%08x%08x\n", regnum - DR0_C_REGNUM,
1973 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1974 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
1975 }
55ff77ac 1976
c30dc700
CV
1977 else if ((regnum >= FV0_REGNUM && regnum <= FV_LAST_REGNUM))
1978 {
d93859e2 1979 int fp_regnum = sh64_fv_reg_base_num (gdbarch, regnum);
c30dc700
CV
1980 fprintf_filtered (file, "fv%d\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1981 regnum - FV0_REGNUM,
1982 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1983 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1984 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1985 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1986 }
55ff77ac 1987
c30dc700
CV
1988 else if ((regnum >= FV0_C_REGNUM && regnum <= FV_LAST_C_REGNUM))
1989 {
d93859e2 1990 int fp_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
1991 fprintf_filtered (file, "fv%d_c\t0x%08x\t0x%08x\t0x%08x\t0x%08x\n",
1992 regnum - FV0_C_REGNUM,
1993 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
1994 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1),
1995 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 2),
1996 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 3));
1997 }
1998
1999 else if (regnum >= FPP0_REGNUM && regnum <= FPP_LAST_REGNUM)
2000 {
d93859e2 2001 int fp_regnum = sh64_fpp_reg_base_num (gdbarch, regnum);
c30dc700
CV
2002 fprintf_filtered (file, "fpp%d\t0x%08x\t0x%08x\n", regnum - FPP0_REGNUM,
2003 (unsigned) get_frame_register_unsigned (frame, fp_regnum),
2004 (unsigned) get_frame_register_unsigned (frame, fp_regnum + 1));
2005 }
2006
2007 else if (regnum >= R0_C_REGNUM && regnum <= R_LAST_C_REGNUM)
2008 {
d93859e2 2009 int c_regnum = sh64_compact_reg_base_num (gdbarch, regnum);
c30dc700
CV
2010 fprintf_filtered (file, "r%d_c\t0x%08x\n", regnum - R0_C_REGNUM,
2011 (unsigned) get_frame_register_unsigned (frame, c_regnum));
2012 }
2013 else if (regnum >= FP0_C_REGNUM && regnum <= FP_LAST_C_REGNUM)
7bb11558 2014 /* This should work also for pseudoregs. */
c30dc700
CV
2015 sh64_do_fp_register (gdbarch, file, frame, regnum);
2016 else if (regnum >= PC_C_REGNUM && regnum <= FPUL_C_REGNUM)
2017 sh64_do_cr_c_register_info (file, frame, regnum);
55ff77ac
CV
2018}
2019
2020static void
c30dc700
CV
2021sh64_do_register (struct gdbarch *gdbarch, struct ui_file *file,
2022 struct frame_info *frame, int regnum)
55ff77ac 2023{
79a45b7d 2024 struct value_print_options opts;
cc977dc7 2025 struct value *val;
55ff77ac 2026
58643501 2027 fputs_filtered (gdbarch_register_name (gdbarch, regnum), file);
c9f4d572 2028 print_spaces_filtered (15 - strlen (gdbarch_register_name
58643501 2029 (gdbarch, regnum)), file);
55ff77ac
CV
2030
2031 /* Get the data in raw format. */
cc977dc7
YQ
2032 val = get_frame_register_value (frame, regnum);
2033 if (value_optimized_out (val) || !value_entirely_available (val))
47061676
AB
2034 {
2035 fprintf_filtered (file, "*value not available*\n");
2036 return;
2037 }
79a45b7d
TT
2038
2039 get_formatted_print_options (&opts, 'x');
2040 opts.deref_ref = 1;
cc977dc7 2041 val_print (register_type (gdbarch, regnum),
e8b24d9f 2042 0, 0,
cc977dc7 2043 file, 0, val, &opts, current_language);
55ff77ac 2044 fprintf_filtered (file, "\t");
79a45b7d
TT
2045 get_formatted_print_options (&opts, 0);
2046 opts.deref_ref = 1;
cc977dc7 2047 val_print (register_type (gdbarch, regnum),
e8b24d9f 2048 0, 0,
cc977dc7 2049 file, 0, val, &opts, current_language);
55ff77ac
CV
2050 fprintf_filtered (file, "\n");
2051}
2052
2053static void
c30dc700
CV
2054sh64_print_register (struct gdbarch *gdbarch, struct ui_file *file,
2055 struct frame_info *frame, int regnum)
55ff77ac 2056{
58643501
UW
2057 if (regnum < 0 || regnum >= gdbarch_num_regs (gdbarch)
2058 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2059 internal_error (__FILE__, __LINE__,
e2e0b3e5 2060 _("Invalid register number %d\n"), regnum);
55ff77ac 2061
58643501 2062 else if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
55ff77ac 2063 {
7b9ee6a8 2064 if (TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
c30dc700 2065 sh64_do_fp_register (gdbarch, file, frame, regnum); /* FP regs */
55ff77ac 2066 else
c30dc700 2067 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2068 }
2069
58643501
UW
2070 else if (regnum < gdbarch_num_regs (gdbarch)
2071 + gdbarch_num_pseudo_regs (gdbarch))
c30dc700 2072 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2073}
2074
2075static void
c30dc700
CV
2076sh64_media_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2077 struct frame_info *frame, int regnum,
2078 int fpregs)
55ff77ac 2079{
c378eb4e 2080 if (regnum != -1) /* Do one specified register. */
55ff77ac 2081 {
58643501 2082 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2083 error (_("Not a valid register for the current processor type"));
55ff77ac 2084
c30dc700 2085 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2086 }
2087 else
c378eb4e 2088 /* Do all (or most) registers. */
55ff77ac
CV
2089 {
2090 regnum = 0;
58643501 2091 while (regnum < gdbarch_num_regs (gdbarch))
55ff77ac
CV
2092 {
2093 /* If the register name is empty, it is undefined for this
2094 processor, so don't display anything. */
58643501
UW
2095 if (gdbarch_register_name (gdbarch, regnum) == NULL
2096 || *(gdbarch_register_name (gdbarch, regnum)) == '\0')
55ff77ac
CV
2097 {
2098 regnum++;
2099 continue;
2100 }
2101
7b9ee6a8 2102 if (TYPE_CODE (register_type (gdbarch, regnum))
c30dc700 2103 == TYPE_CODE_FLT)
55ff77ac
CV
2104 {
2105 if (fpregs)
2106 {
c378eb4e 2107 /* true for "INFO ALL-REGISTERS" command. */
c30dc700 2108 sh64_do_fp_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2109 regnum ++;
2110 }
2111 else
58643501 2112 regnum += FP_LAST_REGNUM - gdbarch_fp0_regnum (gdbarch);
3e8c568d 2113 /* skip FP regs */
55ff77ac
CV
2114 }
2115 else
2116 {
c30dc700 2117 sh64_do_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2118 regnum++;
2119 }
2120 }
2121
2122 if (fpregs)
58643501
UW
2123 while (regnum < gdbarch_num_regs (gdbarch)
2124 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2125 {
c30dc700 2126 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2127 regnum++;
2128 }
2129 }
2130}
2131
2132static void
c30dc700
CV
2133sh64_compact_print_registers_info (struct gdbarch *gdbarch,
2134 struct ui_file *file,
2135 struct frame_info *frame, int regnum,
2136 int fpregs)
55ff77ac 2137{
c378eb4e 2138 if (regnum != -1) /* Do one specified register. */
55ff77ac 2139 {
58643501 2140 if (*(gdbarch_register_name (gdbarch, regnum)) == '\0')
a73c6dcd 2141 error (_("Not a valid register for the current processor type"));
55ff77ac
CV
2142
2143 if (regnum >= 0 && regnum < R0_C_REGNUM)
a73c6dcd 2144 error (_("Not a valid register for the current processor mode."));
55ff77ac 2145
c30dc700 2146 sh64_print_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2147 }
2148 else
c378eb4e 2149 /* Do all compact registers. */
55ff77ac
CV
2150 {
2151 regnum = R0_C_REGNUM;
58643501
UW
2152 while (regnum < gdbarch_num_regs (gdbarch)
2153 + gdbarch_num_pseudo_regs (gdbarch))
55ff77ac 2154 {
c30dc700 2155 sh64_do_pseudo_register (gdbarch, file, frame, regnum);
55ff77ac
CV
2156 regnum++;
2157 }
2158 }
2159}
2160
2161static void
c30dc700
CV
2162sh64_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
2163 struct frame_info *frame, int regnum, int fpregs)
55ff77ac 2164{
c30dc700
CV
2165 if (pc_is_isa32 (get_frame_pc (frame)))
2166 sh64_media_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac 2167 else
c30dc700 2168 sh64_compact_print_registers_info (gdbarch, file, frame, regnum, fpregs);
55ff77ac
CV
2169}
2170
c30dc700
CV
2171static struct sh64_frame_cache *
2172sh64_alloc_frame_cache (void)
2173{
2174 struct sh64_frame_cache *cache;
2175 int i;
2176
2177 cache = FRAME_OBSTACK_ZALLOC (struct sh64_frame_cache);
2178
2179 /* Base address. */
2180 cache->base = 0;
2181 cache->saved_sp = 0;
2182 cache->sp_offset = 0;
2183 cache->pc = 0;
55ff77ac 2184
c30dc700
CV
2185 /* Frameless until proven otherwise. */
2186 cache->uses_fp = 0;
55ff77ac 2187
c30dc700
CV
2188 /* Saved registers. We initialize these to -1 since zero is a valid
2189 offset (that's where fp is supposed to be stored). */
2190 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2191 {
2192 cache->saved_regs[i] = -1;
2193 }
2194
2195 return cache;
2196}
2197
2198static struct sh64_frame_cache *
94afd7a6 2199sh64_frame_cache (struct frame_info *this_frame, void **this_cache)
55ff77ac 2200{
58643501 2201 struct gdbarch *gdbarch;
c30dc700
CV
2202 struct sh64_frame_cache *cache;
2203 CORE_ADDR current_pc;
2204 int i;
55ff77ac 2205
c30dc700 2206 if (*this_cache)
19ba03f4 2207 return (struct sh64_frame_cache *) *this_cache;
c30dc700 2208
94afd7a6 2209 gdbarch = get_frame_arch (this_frame);
c30dc700
CV
2210 cache = sh64_alloc_frame_cache ();
2211 *this_cache = cache;
2212
94afd7a6 2213 current_pc = get_frame_pc (this_frame);
c30dc700
CV
2214 cache->media_mode = pc_is_isa32 (current_pc);
2215
2216 /* In principle, for normal frames, fp holds the frame pointer,
2217 which holds the base address for the current stack frame.
2218 However, for functions that don't need it, the frame pointer is
2219 optional. For these "frameless" functions the frame pointer is
c378eb4e 2220 actually the frame pointer of the calling frame. */
94afd7a6 2221 cache->base = get_frame_register_unsigned (this_frame, MEDIA_FP_REGNUM);
c30dc700
CV
2222 if (cache->base == 0)
2223 return cache;
2224
94afd7a6 2225 cache->pc = get_frame_func (this_frame);
c30dc700 2226 if (cache->pc != 0)
58643501 2227 sh64_analyze_prologue (gdbarch, cache, cache->pc, current_pc);
c30dc700
CV
2228
2229 if (!cache->uses_fp)
55ff77ac 2230 {
c30dc700
CV
2231 /* We didn't find a valid frame, which means that CACHE->base
2232 currently holds the frame pointer for our calling frame. If
2233 we're at the start of a function, or somewhere half-way its
2234 prologue, the function's frame probably hasn't been fully
2235 setup yet. Try to reconstruct the base address for the stack
2236 frame by looking at the stack pointer. For truly "frameless"
2237 functions this might work too. */
94afd7a6
UW
2238 cache->base = get_frame_register_unsigned
2239 (this_frame, gdbarch_sp_regnum (gdbarch));
c30dc700 2240 }
55ff77ac 2241
c30dc700
CV
2242 /* Now that we have the base address for the stack frame we can
2243 calculate the value of sp in the calling frame. */
2244 cache->saved_sp = cache->base + cache->sp_offset;
55ff77ac 2245
c30dc700
CV
2246 /* Adjust all the saved registers such that they contain addresses
2247 instead of offsets. */
2248 for (i = 0; i < SIM_SH64_NR_REGS; i++)
2249 if (cache->saved_regs[i] != -1)
2250 cache->saved_regs[i] = cache->saved_sp - cache->saved_regs[i];
55ff77ac 2251
c30dc700
CV
2252 return cache;
2253}
55ff77ac 2254
94afd7a6
UW
2255static struct value *
2256sh64_frame_prev_register (struct frame_info *this_frame,
2257 void **this_cache, int regnum)
c30dc700 2258{
94afd7a6
UW
2259 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
2260 struct gdbarch *gdbarch = get_frame_arch (this_frame);
e17a4113 2261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
55ff77ac 2262
c30dc700 2263 gdb_assert (regnum >= 0);
55ff77ac 2264
58643501 2265 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
94afd7a6 2266 frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
c30dc700
CV
2267
2268 /* The PC of the previous frame is stored in the PR register of
2269 the current frame. Frob regnum so that we pull the value from
2270 the correct place. */
58643501 2271 if (regnum == gdbarch_pc_regnum (gdbarch))
c30dc700
CV
2272 regnum = PR_REGNUM;
2273
2274 if (regnum < SIM_SH64_NR_REGS && cache->saved_regs[regnum] != -1)
2275 {
58643501 2276 if (gdbarch_tdep (gdbarch)->sh_abi == SH_ABI_32
c30dc700 2277 && (regnum == MEDIA_FP_REGNUM || regnum == PR_REGNUM))
c30dc700 2278 {
94afd7a6 2279 CORE_ADDR val;
e17a4113
UW
2280 val = read_memory_unsigned_integer (cache->saved_regs[regnum],
2281 4, byte_order);
94afd7a6 2282 return frame_unwind_got_constant (this_frame, regnum, val);
c30dc700 2283 }
94afd7a6
UW
2284
2285 return frame_unwind_got_memory (this_frame, regnum,
2286 cache->saved_regs[regnum]);
55ff77ac
CV
2287 }
2288
94afd7a6 2289 return frame_unwind_got_register (this_frame, regnum, regnum);
55ff77ac 2290}
55ff77ac 2291
c30dc700 2292static void
94afd7a6 2293sh64_frame_this_id (struct frame_info *this_frame, void **this_cache,
c30dc700
CV
2294 struct frame_id *this_id)
2295{
94afd7a6 2296 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2297
2298 /* This marks the outermost frame. */
2299 if (cache->base == 0)
2300 return;
2301
2302 *this_id = frame_id_build (cache->saved_sp, cache->pc);
2303}
2304
2305static const struct frame_unwind sh64_frame_unwind = {
2306 NORMAL_FRAME,
8fbca658 2307 default_frame_unwind_stop_reason,
c30dc700 2308 sh64_frame_this_id,
94afd7a6
UW
2309 sh64_frame_prev_register,
2310 NULL,
2311 default_frame_sniffer
c30dc700
CV
2312};
2313
c30dc700
CV
2314static CORE_ADDR
2315sh64_unwind_sp (struct gdbarch *gdbarch, struct frame_info *next_frame)
2316{
3e8c568d 2317 return frame_unwind_register_unsigned (next_frame,
58643501 2318 gdbarch_sp_regnum (gdbarch));
c30dc700
CV
2319}
2320
2321static CORE_ADDR
2322sh64_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2323{
3e8c568d 2324 return frame_unwind_register_unsigned (next_frame,
58643501 2325 gdbarch_pc_regnum (gdbarch));
c30dc700
CV
2326}
2327
2328static struct frame_id
94afd7a6 2329sh64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
c30dc700 2330{
94afd7a6
UW
2331 CORE_ADDR sp = get_frame_register_unsigned (this_frame,
2332 gdbarch_sp_regnum (gdbarch));
2333 return frame_id_build (sp, get_frame_pc (this_frame));
c30dc700
CV
2334}
2335
2336static CORE_ADDR
94afd7a6 2337sh64_frame_base_address (struct frame_info *this_frame, void **this_cache)
c30dc700 2338{
94afd7a6 2339 struct sh64_frame_cache *cache = sh64_frame_cache (this_frame, this_cache);
c30dc700
CV
2340
2341 return cache->base;
2342}
2343
2344static const struct frame_base sh64_frame_base = {
2345 &sh64_frame_unwind,
2346 sh64_frame_base_address,
2347 sh64_frame_base_address,
2348 sh64_frame_base_address
2349};
2350
55ff77ac
CV
2351
2352struct gdbarch *
2353sh64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2354{
55ff77ac
CV
2355 struct gdbarch *gdbarch;
2356 struct gdbarch_tdep *tdep;
2357
2358 /* If there is already a candidate, use it. */
2359 arches = gdbarch_list_lookup_by_info (arches, &info);
2360 if (arches != NULL)
2361 return arches->gdbarch;
2362
2363 /* None found, create a new architecture from the information
7bb11558 2364 provided. */
cdd238da 2365 tdep = XCNEW (struct gdbarch_tdep);
55ff77ac
CV
2366 gdbarch = gdbarch_alloc (&info, tdep);
2367
55ff77ac
CV
2368 /* Determine the ABI */
2369 if (info.abfd && bfd_get_arch_size (info.abfd) == 64)
2370 {
7bb11558 2371 /* If the ABI is the 64-bit one, it can only be sh-media. */
55ff77ac
CV
2372 tdep->sh_abi = SH_ABI_64;
2373 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2374 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2375 }
2376 else
2377 {
2378 /* If the ABI is the 32-bit one it could be either media or
7bb11558 2379 compact. */
55ff77ac
CV
2380 tdep->sh_abi = SH_ABI_32;
2381 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2382 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2383 }
2384
2385 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
2386 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
c30dc700 2387 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
55ff77ac
CV
2388 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2389 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
2390 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2391 set_gdbarch_long_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
2392
c30dc700
CV
2393 /* The number of real registers is the same whether we are in
2394 ISA16(compact) or ISA32(media). */
2395 set_gdbarch_num_regs (gdbarch, SIM_SH64_NR_REGS);
55ff77ac 2396 set_gdbarch_sp_regnum (gdbarch, 15);
c30dc700
CV
2397 set_gdbarch_pc_regnum (gdbarch, 64);
2398 set_gdbarch_fp0_regnum (gdbarch, SIM_SH64_FR0_REGNUM);
2399 set_gdbarch_num_pseudo_regs (gdbarch, NUM_PSEUDO_REGS_SH_MEDIA
2400 + NUM_PSEUDO_REGS_SH_COMPACT);
55ff77ac 2401
c30dc700
CV
2402 set_gdbarch_register_name (gdbarch, sh64_register_name);
2403 set_gdbarch_register_type (gdbarch, sh64_register_type);
2404
2405 set_gdbarch_pseudo_register_read (gdbarch, sh64_pseudo_register_read);
2406 set_gdbarch_pseudo_register_write (gdbarch, sh64_pseudo_register_write);
2407
04180708
YQ
2408 set_gdbarch_breakpoint_kind_from_pc (gdbarch, sh64_breakpoint_kind_from_pc);
2409 set_gdbarch_sw_breakpoint_from_kind (gdbarch, sh64_sw_breakpoint_from_kind);
55ff77ac
CV
2410 set_gdbarch_register_sim_regno (gdbarch, legacy_register_sim_regno);
2411
c30dc700 2412 set_gdbarch_return_value (gdbarch, sh64_return_value);
55ff77ac 2413
c30dc700
CV
2414 set_gdbarch_skip_prologue (gdbarch, sh64_skip_prologue);
2415 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
55ff77ac 2416
c30dc700 2417 set_gdbarch_push_dummy_call (gdbarch, sh64_push_dummy_call);
55ff77ac 2418
c30dc700 2419 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
55ff77ac 2420
c30dc700
CV
2421 set_gdbarch_frame_align (gdbarch, sh64_frame_align);
2422 set_gdbarch_unwind_sp (gdbarch, sh64_unwind_sp);
2423 set_gdbarch_unwind_pc (gdbarch, sh64_unwind_pc);
94afd7a6 2424 set_gdbarch_dummy_id (gdbarch, sh64_dummy_id);
c30dc700 2425 frame_base_set_default (gdbarch, &sh64_frame_base);
55ff77ac 2426
c30dc700 2427 set_gdbarch_print_registers_info (gdbarch, sh64_print_registers_info);
55ff77ac 2428
55ff77ac
CV
2429 set_gdbarch_elf_make_msymbol_special (gdbarch,
2430 sh64_elf_make_msymbol_special);
2431
2432 /* Hook in ABI-specific overrides, if they have been registered. */
2433 gdbarch_init_osabi (info, gdbarch);
2434
94afd7a6
UW
2435 dwarf2_append_unwinders (gdbarch);
2436 frame_unwind_append_unwinder (gdbarch, &sh64_frame_unwind);
c30dc700 2437
55ff77ac
CV
2438 return gdbarch;
2439}
This page took 1.707506 seconds and 4 git commands to generate.