Make inferior::detaching a bool, and introduce scoped_restore::release()
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
61baf725 2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
c4d10515
KB
21#include "inferior.h"
22#include "gdbcore.h"
cb5c8c39 23#include "solib.h"
c4d10515
KB
24#include "solist.h"
25#include "frv-tdep.h"
26#include "objfiles.h"
27#include "symtab.h"
28#include "language.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "elf/frv.h"
cbb099e8 32#include "gdb_bfd.h"
c4d10515
KB
33
34/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 35static unsigned int solib_frv_debug;
c4d10515
KB
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
f5656ead 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
e2b7c966 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
e2b7c966 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
c4d10515
KB
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
e2b7c966 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
c4d10515 128
9bc7b6c6
KB
129 if (nsegs <= 0)
130 return NULL;
131
c4d10515
KB
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
224c3ddb 135 ext_ldmbuf = (struct ext_elf32_fdpic_loadmap *) xmalloc (ext_ldmbuf_size);
c4d10515
KB
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
224c3ddb 154 int_ldmbuf = (struct int_elf32_fdpic_loadmap *) xmalloc (int_ldmbuf_size);
c4d10515
KB
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
c4d10515 165 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
c4d10515 169 int_ldmbuf->segs[seg].p_memsz
e2b7c966 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
c4d10515
KB
173 }
174
d5c560f7 175 xfree (ext_ldmbuf);
c4d10515
KB
176 return int_ldmbuf;
177}
178
179/* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
e2b7c966 181typedef gdb_byte ext_ptr[4];
c4d10515
KB
182
183struct ext_elf32_fdpic_loadaddr
184{
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187};
188
189struct ext_link_map
190{
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201};
202
c378eb4e 203/* Link map info to include in an allocated so_list entry. */
c4d10515
KB
204
205struct lm_info
206 {
207 /* The loadmap, digested into an easier to use form. */
208 struct int_elf32_fdpic_loadmap *map;
209 /* The GOT address for this link map entry. */
210 CORE_ADDR got_value;
186993b4
KB
211 /* The link map address, needed for frv_fetch_objfile_link_map(). */
212 CORE_ADDR lm_addr;
c4d10515
KB
213
214 /* Cached dynamic symbol table and dynamic relocs initialized and
215 used only by find_canonical_descriptor_in_load_object().
216
217 Note: kevinb/2004-02-26: It appears that calls to
218 bfd_canonicalize_dynamic_reloc() will use the same symbols as
219 those supplied to the first call to this function. Therefore,
220 it's important to NOT free the asymbol ** data structure
221 supplied to the first call. Thus the caching of the dynamic
222 symbols (dyn_syms) is critical for correct operation. The
223 caching of the dynamic relocations could be dispensed with. */
224 asymbol **dyn_syms;
225 arelent **dyn_relocs;
c378eb4e 226 int dyn_reloc_count; /* Number of dynamic relocs. */
c4d10515
KB
227
228 };
229
230/* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234static struct lm_info *main_executable_lm_info;
235
236static void frv_relocate_main_executable (void);
237static CORE_ADDR main_got (void);
238static int enable_break2 (void);
239
7f86f058 240/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
241
242static int
243open_symbol_file_object (void *from_ttyp)
244{
245 /* Unimplemented. */
246 return 0;
247}
248
249/* Cached value for lm_base(), below. */
250static CORE_ADDR lm_base_cache = 0;
251
186993b4
KB
252/* Link map address for main module. */
253static CORE_ADDR main_lm_addr = 0;
254
c4d10515
KB
255/* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263static CORE_ADDR
264lm_base (void)
265{
f5656ead 266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3b7344d5 267 struct bound_minimal_symbol got_sym;
c4d10515 268 CORE_ADDR addr;
e2b7c966 269 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 270
89a7ee67
KB
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
c4d10515
KB
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 symfile_objfile);
3b7344d5 285 if (got_sym.minsym == 0)
c4d10515
KB
286 {
287 if (solib_frv_debug)
288 fprintf_unfiltered (gdb_stdlog,
289 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
290 return 0;
291 }
292
77e371c0 293 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
c4d10515
KB
294
295 if (solib_frv_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 298 hex_string_custom (addr, 8));
c4d10515
KB
299
300 if (target_read_memory (addr, buf, sizeof buf) != 0)
301 return 0;
e17a4113 302 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
303
304 if (solib_frv_debug)
305 fprintf_unfiltered (gdb_stdlog,
306 "lm_base: lm_base_cache = %s\n",
bb599908 307 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
308
309 return lm_base_cache;
310}
311
312
7f86f058 313/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
314
315static struct so_list *
316frv_current_sos (void)
317{
f5656ead 318 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
319 CORE_ADDR lm_addr, mgot;
320 struct so_list *sos_head = NULL;
321 struct so_list **sos_next_ptr = &sos_head;
322
7c699b81
KB
323 /* Make sure that the main executable has been relocated. This is
324 required in order to find the address of the global offset table,
325 which in turn is used to find the link map info. (See lm_base()
326 for details.)
327
328 Note that the relocation of the main executable is also performed
4d1eb6b4 329 by solib_create_inferior_hook(), however, in the case of core
7c699b81 330 files, this hook is called too late in order to be of benefit to
4d1eb6b4 331 solib_add. solib_add eventually calls this this function,
7c699b81 332 frv_current_sos, and also precedes the call to
4d1eb6b4 333 solib_create_inferior_hook(). (See post_create_inferior() in
7c699b81
KB
334 infcmd.c.) */
335 if (main_executable_lm_info == 0 && core_bfd != NULL)
336 frv_relocate_main_executable ();
337
338 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
339 mgot = main_got ();
340
341 /* Locate the address of the first link map struct. */
342 lm_addr = lm_base ();
343
b021a221 344 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
345 building the solist chain. */
346 while (lm_addr)
347 {
348 struct ext_link_map lm_buf;
349 CORE_ADDR got_addr;
350
351 if (solib_frv_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "current_sos: reading link_map entry at %s\n",
bb599908 354 hex_string_custom (lm_addr, 8));
c4d10515 355
3e43a32a
MS
356 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
357 sizeof (lm_buf)) != 0)
c4d10515 358 {
3e43a32a
MS
359 warning (_("frv_current_sos: Unable to read link map entry. "
360 "Shared object chain may be incomplete."));
c4d10515
KB
361 break;
362 }
363
364 got_addr
e2b7c966 365 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
366 sizeof (lm_buf.l_addr.got_value),
367 byte_order);
c4d10515
KB
368 /* If the got_addr is the same as mgotr, then we're looking at the
369 entry for the main executable. By convention, we don't include
370 this in the list of shared objects. */
371 if (got_addr != mgot)
372 {
373 int errcode;
374 char *name_buf;
375 struct int_elf32_fdpic_loadmap *loadmap;
376 struct so_list *sop;
377 CORE_ADDR addr;
378
379 /* Fetch the load map address. */
e2b7c966 380 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
381 sizeof lm_buf.l_addr.map,
382 byte_order);
c4d10515
KB
383 loadmap = fetch_loadmap (addr);
384 if (loadmap == NULL)
385 {
3e43a32a
MS
386 warning (_("frv_current_sos: Unable to fetch load map. "
387 "Shared object chain may be incomplete."));
c4d10515
KB
388 break;
389 }
390
8d749320
SM
391 sop = XCNEW (struct so_list);
392 sop->lm_info = XCNEW (struct lm_info);
c4d10515
KB
393 sop->lm_info->map = loadmap;
394 sop->lm_info->got_value = got_addr;
186993b4 395 sop->lm_info->lm_addr = lm_addr;
c4d10515 396 /* Fetch the name. */
e2b7c966 397 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
398 sizeof (lm_buf.l_name),
399 byte_order);
c4d10515
KB
400 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
401 &errcode);
402
403 if (solib_frv_debug)
404 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
405 name_buf);
406
407 if (errcode != 0)
8a3fe4f8
AC
408 warning (_("Can't read pathname for link map entry: %s."),
409 safe_strerror (errcode));
c4d10515
KB
410 else
411 {
412 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
413 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
414 xfree (name_buf);
415 strcpy (sop->so_original_name, sop->so_name);
416 }
417
418 *sos_next_ptr = sop;
419 sos_next_ptr = &sop->next;
420 }
186993b4
KB
421 else
422 {
423 main_lm_addr = lm_addr;
424 }
c4d10515 425
e17a4113
UW
426 lm_addr = extract_unsigned_integer (lm_buf.l_next,
427 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
428 }
429
430 enable_break2 ();
431
432 return sos_head;
433}
434
435
436/* Return 1 if PC lies in the dynamic symbol resolution code of the
437 run time loader. */
438
439static CORE_ADDR interp_text_sect_low;
440static CORE_ADDR interp_text_sect_high;
441static CORE_ADDR interp_plt_sect_low;
442static CORE_ADDR interp_plt_sect_high;
443
444static int
445frv_in_dynsym_resolve_code (CORE_ADDR pc)
446{
447 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
448 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
3e5d3a5a 449 || in_plt_section (pc));
c4d10515
KB
450}
451
452/* Given a loadmap and an address, return the displacement needed
453 to relocate the address. */
454
63807e1d 455static CORE_ADDR
c4d10515
KB
456displacement_from_map (struct int_elf32_fdpic_loadmap *map,
457 CORE_ADDR addr)
458{
459 int seg;
460
461 for (seg = 0; seg < map->nsegs; seg++)
462 {
463 if (map->segs[seg].p_vaddr <= addr
464 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
465 {
466 return map->segs[seg].addr - map->segs[seg].p_vaddr;
467 }
468 }
469
470 return 0;
471}
472
473/* Print a warning about being unable to set the dynamic linker
474 breakpoint. */
475
476static void
477enable_break_failure_warning (void)
478{
8a3fe4f8 479 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 480 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 481 "and track explicitly loaded dynamic code."));
c4d10515
KB
482}
483
cb457ae2
YQ
484/* Helper function for gdb_bfd_lookup_symbol. */
485
486static int
3953f15c 487cmp_name (const asymbol *sym, const void *data)
cb457ae2
YQ
488{
489 return (strcmp (sym->name, (const char *) data) == 0);
490}
491
7f86f058 492/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
493
494 The dynamic linkers has, as part of its debugger interface, support
495 for arranging for the inferior to hit a breakpoint after mapping in
496 the shared libraries. This function enables that breakpoint.
497
498 On the FR-V, using the shared library (FDPIC) ABI, the symbol
499 _dl_debug_addr points to the r_debug struct which contains
500 a field called r_brk. r_brk is the address of the function
501 descriptor upon which a breakpoint must be placed. Being a
502 function descriptor, we must extract the entry point in order
503 to set the breakpoint.
504
505 Our strategy will be to get the .interp section from the
506 executable. This section will provide us with the name of the
507 interpreter. We'll open the interpreter and then look up
508 the address of _dl_debug_addr. We then relocate this address
509 using the interpreter's loadmap. Once the relocated address
510 is known, we fetch the value (address) corresponding to r_brk
511 and then use that value to fetch the entry point of the function
7f86f058 512 we're interested in. */
c4d10515 513
c4d10515
KB
514static int enable_break2_done = 0;
515
516static int
517enable_break2 (void)
518{
f5656ead 519 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
520 asection *interp_sect;
521
cb7db0f2 522 if (enable_break2_done)
c4d10515
KB
523 return 1;
524
c4d10515
KB
525 interp_text_sect_low = interp_text_sect_high = 0;
526 interp_plt_sect_low = interp_plt_sect_high = 0;
527
528 /* Find the .interp section; if not found, warn the user and drop
529 into the old breakpoint at symbol code. */
530 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
531 if (interp_sect)
532 {
533 unsigned int interp_sect_size;
001f13d8 534 char *buf;
c4d10515
KB
535 int status;
536 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 537 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515
KB
538 struct int_elf32_fdpic_loadmap *ldm;
539
540 /* Read the contents of the .interp section into a local buffer;
541 the contents specify the dynamic linker this program uses. */
542 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
224c3ddb 543 buf = (char *) alloca (interp_sect_size);
c4d10515
KB
544 bfd_get_section_contents (exec_bfd, interp_sect,
545 buf, 0, interp_sect_size);
546
547 /* Now we need to figure out where the dynamic linker was
548 loaded so that we can load its symbols and place a breakpoint
549 in the dynamic linker itself.
550
551 This address is stored on the stack. However, I've been unable
552 to find any magic formula to find it for Solaris (appears to
553 be trivial on GNU/Linux). Therefore, we have to try an alternate
554 mechanism to find the dynamic linker's base address. */
555
192b62ce 556 gdb_bfd_ref_ptr tmp_bfd;
492d29ea 557 TRY
f1838a98
UW
558 {
559 tmp_bfd = solib_bfd_open (buf);
560 }
492d29ea
PA
561 CATCH (ex, RETURN_MASK_ALL)
562 {
563 }
564 END_CATCH
565
c4d10515
KB
566 if (tmp_bfd == NULL)
567 {
568 enable_break_failure_warning ();
569 return 0;
570 }
571
f5656ead 572 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
c4d10515
KB
573 &interp_loadmap_addr, 0);
574 if (status < 0)
575 {
8a3fe4f8 576 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 577 enable_break_failure_warning ();
c4d10515
KB
578 return 0;
579 }
580
581 if (solib_frv_debug)
582 fprintf_unfiltered (gdb_stdlog,
583 "enable_break: interp_loadmap_addr = %s\n",
bb599908 584 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
585
586 ldm = fetch_loadmap (interp_loadmap_addr);
587 if (ldm == NULL)
588 {
8a3fe4f8 589 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 590 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 591 enable_break_failure_warning ();
c4d10515
KB
592 return 0;
593 }
594
595 /* Record the relocated start and end address of the dynamic linker
596 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 597 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
c4d10515
KB
598 if (interp_sect)
599 {
600 interp_text_sect_low
192b62ce 601 = bfd_section_vma (tmp_bfd.get (), interp_sect);
c4d10515
KB
602 interp_text_sect_low
603 += displacement_from_map (ldm, interp_text_sect_low);
604 interp_text_sect_high
192b62ce
TT
605 = interp_text_sect_low + bfd_section_size (tmp_bfd.get (),
606 interp_sect);
c4d10515 607 }
192b62ce 608 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
c4d10515
KB
609 if (interp_sect)
610 {
611 interp_plt_sect_low =
192b62ce 612 bfd_section_vma (tmp_bfd.get (), interp_sect);
c4d10515
KB
613 interp_plt_sect_low
614 += displacement_from_map (ldm, interp_plt_sect_low);
615 interp_plt_sect_high =
192b62ce
TT
616 interp_plt_sect_low + bfd_section_size (tmp_bfd.get (),
617 interp_sect);
c4d10515
KB
618 }
619
192b62ce 620 addr = gdb_bfd_lookup_symbol (tmp_bfd.get (), cmp_name, "_dl_debug_addr");
cb457ae2 621
c4d10515
KB
622 if (addr == 0)
623 {
3e43a32a
MS
624 warning (_("Could not find symbol _dl_debug_addr "
625 "in dynamic linker"));
c4d10515 626 enable_break_failure_warning ();
c4d10515
KB
627 return 0;
628 }
629
630 if (solib_frv_debug)
631 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
632 "enable_break: _dl_debug_addr "
633 "(prior to relocation) = %s\n",
bb599908 634 hex_string_custom (addr, 8));
c4d10515
KB
635
636 addr += displacement_from_map (ldm, addr);
637
638 if (solib_frv_debug)
639 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
640 "enable_break: _dl_debug_addr "
641 "(after relocation) = %s\n",
bb599908 642 hex_string_custom (addr, 8));
c4d10515
KB
643
644 /* Fetch the address of the r_debug struct. */
645 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
646 {
3e43a32a
MS
647 warning (_("Unable to fetch contents of _dl_debug_addr "
648 "(at address %s) from dynamic linker"),
bb599908 649 hex_string_custom (addr, 8));
c4d10515 650 }
e17a4113 651 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 652
cb7db0f2
MF
653 if (solib_frv_debug)
654 fprintf_unfiltered (gdb_stdlog,
655 "enable_break: _dl_debug_addr[0..3] = %s\n",
656 hex_string_custom (addr, 8));
657
658 /* If it's zero, then the ldso hasn't initialized yet, and so
659 there are no shared libs yet loaded. */
660 if (addr == 0)
661 {
662 if (solib_frv_debug)
663 fprintf_unfiltered (gdb_stdlog,
664 "enable_break: ldso not yet initialized\n");
665 /* Do not warn, but mark to run again. */
666 return 0;
667 }
668
c4d10515
KB
669 /* Fetch the r_brk field. It's 8 bytes from the start of
670 _dl_debug_addr. */
671 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
672 {
3e43a32a
MS
673 warning (_("Unable to fetch _dl_debug_addr->r_brk "
674 "(at address %s) from dynamic linker"),
bb599908 675 hex_string_custom (addr + 8, 8));
c4d10515 676 enable_break_failure_warning ();
c4d10515
KB
677 return 0;
678 }
e17a4113 679 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
680
681 /* Now fetch the function entry point. */
682 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
683 {
3e43a32a
MS
684 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
685 "(at address %s) from dynamic linker"),
bb599908 686 hex_string_custom (addr, 8));
c4d10515 687 enable_break_failure_warning ();
c4d10515
KB
688 return 0;
689 }
e17a4113 690 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 691
192b62ce 692 /* We're done with the loadmap. */
c4d10515
KB
693 xfree (ldm);
694
cb7db0f2
MF
695 /* Remove all the solib event breakpoints. Their addresses
696 may have changed since the last time we ran the program. */
697 remove_solib_event_breakpoints ();
698
c4d10515 699 /* Now (finally!) create the solib breakpoint. */
f5656ead 700 create_solib_event_breakpoint (target_gdbarch (), addr);
c4d10515 701
cb7db0f2
MF
702 enable_break2_done = 1;
703
c4d10515
KB
704 return 1;
705 }
706
707 /* Tell the user we couldn't set a dynamic linker breakpoint. */
708 enable_break_failure_warning ();
709
710 /* Failure return. */
711 return 0;
712}
713
714static int
715enable_break (void)
716{
717 asection *interp_sect;
d56e56aa 718 CORE_ADDR entry_point;
c4d10515 719
abd0a5fa 720 if (symfile_objfile == NULL)
c4d10515 721 {
abd0a5fa
JK
722 if (solib_frv_debug)
723 fprintf_unfiltered (gdb_stdlog,
724 "enable_break: No symbol file found.\n");
725 return 0;
726 }
c4d10515 727
d56e56aa 728 if (!entry_point_address_query (&entry_point))
abd0a5fa 729 {
c4d10515
KB
730 if (solib_frv_debug)
731 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
732 "enable_break: Symbol file has no entry point.\n");
733 return 0;
c4d10515 734 }
abd0a5fa
JK
735
736 /* Check for the presence of a .interp section. If there is no
737 such section, the executable is statically linked. */
738
739 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
740
741 if (interp_sect == NULL)
c4d10515
KB
742 {
743 if (solib_frv_debug)
744 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
745 "enable_break: No .interp section found.\n");
746 return 0;
c4d10515
KB
747 }
748
d56e56aa 749 create_solib_event_breakpoint (target_gdbarch (), entry_point);
abd0a5fa
JK
750
751 if (solib_frv_debug)
752 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
753 "enable_break: solib event breakpoint "
754 "placed at entry point: %s\n",
d56e56aa 755 hex_string_custom (entry_point, 8));
c4d10515
KB
756 return 1;
757}
758
c4d10515
KB
759static void
760frv_relocate_main_executable (void)
761{
762 int status;
9bc7b6c6 763 CORE_ADDR exec_addr, interp_addr;
c4d10515
KB
764 struct int_elf32_fdpic_loadmap *ldm;
765 struct cleanup *old_chain;
766 struct section_offsets *new_offsets;
767 int changed;
768 struct obj_section *osect;
769
f5656ead 770 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
9bc7b6c6 771 &interp_addr, &exec_addr);
c4d10515 772
9bc7b6c6 773 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
774 {
775 /* Not using FDPIC ABI, so do nothing. */
776 return;
777 }
778
779 /* Fetch the loadmap located at ``exec_addr''. */
780 ldm = fetch_loadmap (exec_addr);
781 if (ldm == NULL)
8a3fe4f8 782 error (_("Unable to load the executable's loadmap."));
c4d10515
KB
783
784 if (main_executable_lm_info)
785 xfree (main_executable_lm_info);
8d749320 786 main_executable_lm_info = XCNEW (struct lm_info);
c4d10515
KB
787 main_executable_lm_info->map = ldm;
788
224c3ddb
SM
789 new_offsets = XCNEWVEC (struct section_offsets,
790 symfile_objfile->num_sections);
c4d10515
KB
791 old_chain = make_cleanup (xfree, new_offsets);
792 changed = 0;
793
794 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
795 {
796 CORE_ADDR orig_addr, addr, offset;
797 int osect_idx;
798 int seg;
799
65cf3563 800 osect_idx = osect - symfile_objfile->sections;
c4d10515
KB
801
802 /* Current address of section. */
aded6f54 803 addr = obj_section_addr (osect);
c4d10515
KB
804 /* Offset from where this section started. */
805 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
806 /* Original address prior to any past relocations. */
807 orig_addr = addr - offset;
808
809 for (seg = 0; seg < ldm->nsegs; seg++)
810 {
811 if (ldm->segs[seg].p_vaddr <= orig_addr
812 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
813 {
814 new_offsets->offsets[osect_idx]
815 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
816
817 if (new_offsets->offsets[osect_idx] != offset)
818 changed = 1;
819 break;
820 }
821 }
822 }
823
824 if (changed)
825 objfile_relocate (symfile_objfile, new_offsets);
826
827 do_cleanups (old_chain);
828
829 /* Now that symfile_objfile has been relocated, we can compute the
830 GOT value and stash it away. */
831 main_executable_lm_info->got_value = main_got ();
832}
833
7f86f058 834/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 835
7f86f058
PA
836 For the FR-V shared library ABI (FDPIC), the main executable needs
837 to be relocated. The shared library breakpoints also need to be
838 enabled. */
c4d10515
KB
839
840static void
268a4a75 841frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
842{
843 /* Relocate main executable. */
844 frv_relocate_main_executable ();
845
846 /* Enable shared library breakpoints. */
847 if (!enable_break ())
848 {
8a3fe4f8 849 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
850 return;
851 }
852}
853
854static void
855frv_clear_solib (void)
856{
857 lm_base_cache = 0;
c4d10515 858 enable_break2_done = 0;
186993b4 859 main_lm_addr = 0;
7c699b81
KB
860 if (main_executable_lm_info != 0)
861 {
862 xfree (main_executable_lm_info->map);
863 xfree (main_executable_lm_info->dyn_syms);
864 xfree (main_executable_lm_info->dyn_relocs);
865 xfree (main_executable_lm_info);
866 main_executable_lm_info = 0;
867 }
c4d10515
KB
868}
869
870static void
871frv_free_so (struct so_list *so)
872{
873 xfree (so->lm_info->map);
874 xfree (so->lm_info->dyn_syms);
875 xfree (so->lm_info->dyn_relocs);
876 xfree (so->lm_info);
877}
878
879static void
880frv_relocate_section_addresses (struct so_list *so,
0542c86d 881 struct target_section *sec)
c4d10515
KB
882{
883 int seg;
884 struct int_elf32_fdpic_loadmap *map;
885
886 map = so->lm_info->map;
887
888 for (seg = 0; seg < map->nsegs; seg++)
889 {
890 if (map->segs[seg].p_vaddr <= sec->addr
891 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
892 {
893 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 894
c4d10515
KB
895 sec->addr += displ;
896 sec->endaddr += displ;
897 break;
898 }
899 }
900}
901
902/* Return the GOT address associated with the main executable. Return
903 0 if it can't be found. */
904
905static CORE_ADDR
906main_got (void)
907{
3b7344d5 908 struct bound_minimal_symbol got_sym;
c4d10515 909
3e43a32a
MS
910 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
911 NULL, symfile_objfile);
3b7344d5 912 if (got_sym.minsym == 0)
c4d10515
KB
913 return 0;
914
77e371c0 915 return BMSYMBOL_VALUE_ADDRESS (got_sym);
c4d10515
KB
916}
917
918/* Find the global pointer for the given function address ADDR. */
919
920CORE_ADDR
921frv_fdpic_find_global_pointer (CORE_ADDR addr)
922{
923 struct so_list *so;
924
925 so = master_so_list ();
926 while (so)
927 {
928 int seg;
929 struct int_elf32_fdpic_loadmap *map;
930
931 map = so->lm_info->map;
932
933 for (seg = 0; seg < map->nsegs; seg++)
934 {
935 if (map->segs[seg].addr <= addr
936 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
937 return so->lm_info->got_value;
938 }
939
940 so = so->next;
941 }
942
7a9dd1b2 943 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
944 main executable. */
945 return main_got ();
946}
947
948/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
949static CORE_ADDR find_canonical_descriptor_in_load_object
0d5cff50 950 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
c4d10515
KB
951
952/* Given a function entry point, attempt to find the canonical descriptor
953 associated with that entry point. Return 0 if no canonical descriptor
954 could be found. */
955
956CORE_ADDR
957frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
958{
0d5cff50 959 const char *name;
c4d10515
KB
960 CORE_ADDR addr;
961 CORE_ADDR got_value;
c4d10515 962 struct symbol *sym;
c4d10515
KB
963
964 /* Fetch the corresponding global pointer for the entry point. */
965 got_value = frv_fdpic_find_global_pointer (entry_point);
966
967 /* Attempt to find the name of the function. If the name is available,
968 it'll be used as an aid in finding matching functions in the dynamic
969 symbol table. */
970 sym = find_pc_function (entry_point);
971 if (sym == 0)
972 name = 0;
973 else
974 name = SYMBOL_LINKAGE_NAME (sym);
975
976 /* Check the main executable. */
977 addr = find_canonical_descriptor_in_load_object
978 (entry_point, got_value, name, symfile_objfile->obfd,
979 main_executable_lm_info);
980
981 /* If descriptor not found via main executable, check each load object
982 in list of shared objects. */
983 if (addr == 0)
984 {
985 struct so_list *so;
986
987 so = master_so_list ();
988 while (so)
989 {
990 addr = find_canonical_descriptor_in_load_object
991 (entry_point, got_value, name, so->abfd, so->lm_info);
992
993 if (addr != 0)
994 break;
995
996 so = so->next;
997 }
998 }
999
1000 return addr;
1001}
1002
1003static CORE_ADDR
1004find_canonical_descriptor_in_load_object
0d5cff50 1005 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
c4d10515
KB
1006 struct lm_info *lm)
1007{
f5656ead 1008 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
1009 arelent *rel;
1010 unsigned int i;
1011 CORE_ADDR addr = 0;
1012
1013 /* Nothing to do if no bfd. */
1014 if (abfd == 0)
1015 return 0;
1016
35e08e03
KB
1017 /* Nothing to do if no link map. */
1018 if (lm == 0)
1019 return 0;
1020
c4d10515
KB
1021 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1022 (More about this later.) But in order to fetch the relocs, we
1023 need to first fetch the dynamic symbols. These symbols need to
1024 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1025 works. (See the comments in the declaration of struct lm_info
1026 for more information.) */
1027 if (lm->dyn_syms == NULL)
1028 {
1029 long storage_needed;
1030 unsigned int number_of_symbols;
1031
1032 /* Determine amount of space needed to hold the dynamic symbol table. */
1033 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1034
1035 /* If there are no dynamic symbols, there's nothing to do. */
1036 if (storage_needed <= 0)
1037 return 0;
1038
1039 /* Allocate space for the dynamic symbol table. */
1040 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1041
1042 /* Fetch the dynamic symbol table. */
1043 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1044
1045 if (number_of_symbols == 0)
1046 return 0;
1047 }
1048
1049 /* Fetch the dynamic relocations if not already cached. */
1050 if (lm->dyn_relocs == NULL)
1051 {
1052 long storage_needed;
1053
1054 /* Determine amount of space needed to hold the dynamic relocs. */
1055 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1056
1057 /* Bail out if there are no dynamic relocs. */
1058 if (storage_needed <= 0)
1059 return 0;
1060
1061 /* Allocate space for the relocs. */
1062 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1063
1064 /* Fetch the dynamic relocs. */
1065 lm->dyn_reloc_count
1066 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1067 }
1068
1069 /* Search the dynamic relocs. */
1070 for (i = 0; i < lm->dyn_reloc_count; i++)
1071 {
1072 rel = lm->dyn_relocs[i];
1073
1074 /* Relocs of interest are those which meet the following
1075 criteria:
1076
1077 - the names match (assuming the caller could provide
1078 a name which matches ``entry_point'').
1079 - the relocation type must be R_FRV_FUNCDESC. Relocs
1080 of this type are used (by the dynamic linker) to
1081 look up the address of a canonical descriptor (allocating
1082 it if need be) and initializing the GOT entry referred
1083 to by the offset to the address of the descriptor.
1084
1085 These relocs of interest may be used to obtain a
1086 candidate descriptor by first adjusting the reloc's
1087 address according to the link map and then dereferencing
1088 this address (which is a GOT entry) to obtain a descriptor
1089 address. */
1090 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1091 && rel->howto->type == R_FRV_FUNCDESC)
1092 {
e2b7c966 1093 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1094
1095 /* Compute address of address of candidate descriptor. */
1096 addr = rel->address + displacement_from_map (lm->map, rel->address);
1097
1098 /* Fetch address of candidate descriptor. */
1099 if (target_read_memory (addr, buf, sizeof buf) != 0)
1100 continue;
e17a4113 1101 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1102
1103 /* Check for matching entry point. */
1104 if (target_read_memory (addr, buf, sizeof buf) != 0)
1105 continue;
e17a4113
UW
1106 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1107 != entry_point)
c4d10515
KB
1108 continue;
1109
1110 /* Check for matching got value. */
1111 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1112 continue;
e17a4113
UW
1113 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1114 != got_value)
c4d10515
KB
1115 continue;
1116
1117 /* Match was successful! Exit loop. */
1118 break;
1119 }
1120 }
1121
1122 return addr;
1123}
1124
186993b4
KB
1125/* Given an objfile, return the address of its link map. This value is
1126 needed for TLS support. */
1127CORE_ADDR
1128frv_fetch_objfile_link_map (struct objfile *objfile)
1129{
1130 struct so_list *so;
1131
1132 /* Cause frv_current_sos() to be run if it hasn't been already. */
1133 if (main_lm_addr == 0)
e696b3ad 1134 solib_add (0, 0, 1);
186993b4
KB
1135
1136 /* frv_current_sos() will set main_lm_addr for the main executable. */
1137 if (objfile == symfile_objfile)
1138 return main_lm_addr;
1139
1140 /* The other link map addresses may be found by examining the list
1141 of shared libraries. */
1142 for (so = master_so_list (); so; so = so->next)
1143 {
1144 if (so->objfile == objfile)
1145 return so->lm_info->lm_addr;
1146 }
1147
1148 /* Not found! */
1149 return 0;
1150}
1151
917630e4 1152struct target_so_ops frv_so_ops;
c4d10515 1153
63807e1d
PA
1154/* Provide a prototype to silence -Wmissing-prototypes. */
1155extern initialize_file_ftype _initialize_frv_solib;
1156
c4d10515
KB
1157void
1158_initialize_frv_solib (void)
1159{
1160 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1161 frv_so_ops.free_so = frv_free_so;
1162 frv_so_ops.clear_solib = frv_clear_solib;
1163 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
c4d10515
KB
1164 frv_so_ops.current_sos = frv_current_sos;
1165 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1166 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1167 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1168
c4d10515 1169 /* Debug this file's internals. */
ccce17b0
YQ
1170 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1171 &solib_frv_debug, _("\
85c07804
AC
1172Set internal debugging of shared library code for FR-V."), _("\
1173Show internal debugging of shared library code for FR-V."), _("\
1174When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1175 NULL,
1176 NULL, /* FIXME: i18n: */
1177 &setdebuglist, &showdebuglist);
c4d10515 1178}
This page took 1.332334 seconds and 4 git commands to generate.