Import alloca explicitly
[deliverable/binutils-gdb.git] / gdb / solib-frv.c
CommitLineData
c4d10515 1/* Handle FR-V (FDPIC) shared libraries for GDB, the GNU Debugger.
ecd75fc8 2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
c4d10515
KB
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
c4d10515
KB
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c4d10515
KB
18
19
20#include "defs.h"
c4d10515
KB
21#include "inferior.h"
22#include "gdbcore.h"
cb5c8c39 23#include "solib.h"
c4d10515
KB
24#include "solist.h"
25#include "frv-tdep.h"
26#include "objfiles.h"
27#include "symtab.h"
28#include "language.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "elf/frv.h"
cbb099e8 32#include "gdb_bfd.h"
c4d10515
KB
33
34/* Flag which indicates whether internal debug messages should be printed. */
ccce17b0 35static unsigned int solib_frv_debug;
c4d10515
KB
36
37/* FR-V pointers are four bytes wide. */
38enum { FRV_PTR_SIZE = 4 };
39
40/* Representation of loadmap and related structs for the FR-V FDPIC ABI. */
41
42/* External versions; the size and alignment of the fields should be
43 the same as those on the target. When loaded, the placement of
44 the bits in each field will be the same as on the target. */
e2b7c966
KB
45typedef gdb_byte ext_Elf32_Half[2];
46typedef gdb_byte ext_Elf32_Addr[4];
47typedef gdb_byte ext_Elf32_Word[4];
c4d10515
KB
48
49struct ext_elf32_fdpic_loadseg
50{
51 /* Core address to which the segment is mapped. */
52 ext_Elf32_Addr addr;
53 /* VMA recorded in the program header. */
54 ext_Elf32_Addr p_vaddr;
55 /* Size of this segment in memory. */
56 ext_Elf32_Word p_memsz;
57};
58
59struct ext_elf32_fdpic_loadmap {
60 /* Protocol version number, must be zero. */
61 ext_Elf32_Half version;
62 /* Number of segments in this map. */
63 ext_Elf32_Half nsegs;
64 /* The actual memory map. */
65 struct ext_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
66};
67
68/* Internal versions; the types are GDB types and the data in each
69 of the fields is (or will be) decoded from the external struct
70 for ease of consumption. */
71struct int_elf32_fdpic_loadseg
72{
73 /* Core address to which the segment is mapped. */
74 CORE_ADDR addr;
75 /* VMA recorded in the program header. */
76 CORE_ADDR p_vaddr;
77 /* Size of this segment in memory. */
78 long p_memsz;
79};
80
81struct int_elf32_fdpic_loadmap {
82 /* Protocol version number, must be zero. */
83 int version;
84 /* Number of segments in this map. */
85 int nsegs;
86 /* The actual memory map. */
87 struct int_elf32_fdpic_loadseg segs[1 /* nsegs, actually */];
88};
89
90/* Given address LDMADDR, fetch and decode the loadmap at that address.
91 Return NULL if there is a problem reading the target memory or if
92 there doesn't appear to be a loadmap at the given address. The
93 allocated space (representing the loadmap) returned by this
94 function may be freed via a single call to xfree(). */
95
96static struct int_elf32_fdpic_loadmap *
97fetch_loadmap (CORE_ADDR ldmaddr)
98{
f5656ead 99 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
100 struct ext_elf32_fdpic_loadmap ext_ldmbuf_partial;
101 struct ext_elf32_fdpic_loadmap *ext_ldmbuf;
102 struct int_elf32_fdpic_loadmap *int_ldmbuf;
103 int ext_ldmbuf_size, int_ldmbuf_size;
104 int version, seg, nsegs;
105
106 /* Fetch initial portion of the loadmap. */
e2b7c966 107 if (target_read_memory (ldmaddr, (gdb_byte *) &ext_ldmbuf_partial,
c4d10515
KB
108 sizeof ext_ldmbuf_partial))
109 {
110 /* Problem reading the target's memory. */
111 return NULL;
112 }
113
114 /* Extract the version. */
e2b7c966 115 version = extract_unsigned_integer (ext_ldmbuf_partial.version,
e17a4113
UW
116 sizeof ext_ldmbuf_partial.version,
117 byte_order);
c4d10515
KB
118 if (version != 0)
119 {
120 /* We only handle version 0. */
121 return NULL;
122 }
123
124 /* Extract the number of segments. */
e2b7c966 125 nsegs = extract_unsigned_integer (ext_ldmbuf_partial.nsegs,
e17a4113
UW
126 sizeof ext_ldmbuf_partial.nsegs,
127 byte_order);
c4d10515 128
9bc7b6c6
KB
129 if (nsegs <= 0)
130 return NULL;
131
c4d10515
KB
132 /* Allocate space for the complete (external) loadmap. */
133 ext_ldmbuf_size = sizeof (struct ext_elf32_fdpic_loadmap)
134 + (nsegs - 1) * sizeof (struct ext_elf32_fdpic_loadseg);
135 ext_ldmbuf = xmalloc (ext_ldmbuf_size);
136
137 /* Copy over the portion of the loadmap that's already been read. */
138 memcpy (ext_ldmbuf, &ext_ldmbuf_partial, sizeof ext_ldmbuf_partial);
139
140 /* Read the rest of the loadmap from the target. */
141 if (target_read_memory (ldmaddr + sizeof ext_ldmbuf_partial,
e2b7c966 142 (gdb_byte *) ext_ldmbuf + sizeof ext_ldmbuf_partial,
c4d10515
KB
143 ext_ldmbuf_size - sizeof ext_ldmbuf_partial))
144 {
145 /* Couldn't read rest of the loadmap. */
146 xfree (ext_ldmbuf);
147 return NULL;
148 }
149
150 /* Allocate space into which to put information extract from the
151 external loadsegs. I.e, allocate the internal loadsegs. */
152 int_ldmbuf_size = sizeof (struct int_elf32_fdpic_loadmap)
153 + (nsegs - 1) * sizeof (struct int_elf32_fdpic_loadseg);
154 int_ldmbuf = xmalloc (int_ldmbuf_size);
155
156 /* Place extracted information in internal structs. */
157 int_ldmbuf->version = version;
158 int_ldmbuf->nsegs = nsegs;
159 for (seg = 0; seg < nsegs; seg++)
160 {
161 int_ldmbuf->segs[seg].addr
e2b7c966 162 = extract_unsigned_integer (ext_ldmbuf->segs[seg].addr,
e17a4113
UW
163 sizeof (ext_ldmbuf->segs[seg].addr),
164 byte_order);
c4d10515 165 int_ldmbuf->segs[seg].p_vaddr
e2b7c966 166 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_vaddr,
e17a4113
UW
167 sizeof (ext_ldmbuf->segs[seg].p_vaddr),
168 byte_order);
c4d10515 169 int_ldmbuf->segs[seg].p_memsz
e2b7c966 170 = extract_unsigned_integer (ext_ldmbuf->segs[seg].p_memsz,
e17a4113
UW
171 sizeof (ext_ldmbuf->segs[seg].p_memsz),
172 byte_order);
c4d10515
KB
173 }
174
d5c560f7 175 xfree (ext_ldmbuf);
c4d10515
KB
176 return int_ldmbuf;
177}
178
179/* External link_map and elf32_fdpic_loadaddr struct definitions. */
180
e2b7c966 181typedef gdb_byte ext_ptr[4];
c4d10515
KB
182
183struct ext_elf32_fdpic_loadaddr
184{
185 ext_ptr map; /* struct elf32_fdpic_loadmap *map; */
186 ext_ptr got_value; /* void *got_value; */
187};
188
189struct ext_link_map
190{
191 struct ext_elf32_fdpic_loadaddr l_addr;
192
193 /* Absolute file name object was found in. */
194 ext_ptr l_name; /* char *l_name; */
195
196 /* Dynamic section of the shared object. */
197 ext_ptr l_ld; /* ElfW(Dyn) *l_ld; */
198
199 /* Chain of loaded objects. */
200 ext_ptr l_next, l_prev; /* struct link_map *l_next, *l_prev; */
201};
202
c378eb4e 203/* Link map info to include in an allocated so_list entry. */
c4d10515
KB
204
205struct lm_info
206 {
207 /* The loadmap, digested into an easier to use form. */
208 struct int_elf32_fdpic_loadmap *map;
209 /* The GOT address for this link map entry. */
210 CORE_ADDR got_value;
186993b4
KB
211 /* The link map address, needed for frv_fetch_objfile_link_map(). */
212 CORE_ADDR lm_addr;
c4d10515
KB
213
214 /* Cached dynamic symbol table and dynamic relocs initialized and
215 used only by find_canonical_descriptor_in_load_object().
216
217 Note: kevinb/2004-02-26: It appears that calls to
218 bfd_canonicalize_dynamic_reloc() will use the same symbols as
219 those supplied to the first call to this function. Therefore,
220 it's important to NOT free the asymbol ** data structure
221 supplied to the first call. Thus the caching of the dynamic
222 symbols (dyn_syms) is critical for correct operation. The
223 caching of the dynamic relocations could be dispensed with. */
224 asymbol **dyn_syms;
225 arelent **dyn_relocs;
c378eb4e 226 int dyn_reloc_count; /* Number of dynamic relocs. */
c4d10515
KB
227
228 };
229
230/* The load map, got value, etc. are not available from the chain
231 of loaded shared objects. ``main_executable_lm_info'' provides
232 a way to get at this information so that it doesn't need to be
233 frequently recomputed. Initialized by frv_relocate_main_executable(). */
234static struct lm_info *main_executable_lm_info;
235
236static void frv_relocate_main_executable (void);
237static CORE_ADDR main_got (void);
238static int enable_break2 (void);
239
7f86f058 240/* Implement the "open_symbol_file_object" target_so_ops method. */
c4d10515
KB
241
242static int
243open_symbol_file_object (void *from_ttyp)
244{
245 /* Unimplemented. */
246 return 0;
247}
248
249/* Cached value for lm_base(), below. */
250static CORE_ADDR lm_base_cache = 0;
251
186993b4
KB
252/* Link map address for main module. */
253static CORE_ADDR main_lm_addr = 0;
254
c4d10515
KB
255/* Return the address from which the link map chain may be found. On
256 the FR-V, this may be found in a number of ways. Assuming that the
257 main executable has already been relocated, the easiest way to find
258 this value is to look up the address of _GLOBAL_OFFSET_TABLE_. A
259 pointer to the start of the link map will be located at the word found
260 at _GLOBAL_OFFSET_TABLE_ + 8. (This is part of the dynamic linker
261 reserve area mandated by the ABI.) */
262
263static CORE_ADDR
264lm_base (void)
265{
f5656ead 266 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
3b7344d5 267 struct bound_minimal_symbol got_sym;
c4d10515 268 CORE_ADDR addr;
e2b7c966 269 gdb_byte buf[FRV_PTR_SIZE];
c4d10515 270
89a7ee67
KB
271 /* One of our assumptions is that the main executable has been relocated.
272 Bail out if this has not happened. (Note that post_create_inferior()
273 in infcmd.c will call solib_add prior to solib_create_inferior_hook().
274 If we allow this to happen, lm_base_cache will be initialized with
275 a bogus value. */
276 if (main_executable_lm_info == 0)
277 return 0;
278
c4d10515
KB
279 /* If we already have a cached value, return it. */
280 if (lm_base_cache)
281 return lm_base_cache;
282
283 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_", NULL,
284 symfile_objfile);
3b7344d5 285 if (got_sym.minsym == 0)
c4d10515
KB
286 {
287 if (solib_frv_debug)
288 fprintf_unfiltered (gdb_stdlog,
289 "lm_base: _GLOBAL_OFFSET_TABLE_ not found.\n");
290 return 0;
291 }
292
77e371c0 293 addr = BMSYMBOL_VALUE_ADDRESS (got_sym) + 8;
c4d10515
KB
294
295 if (solib_frv_debug)
296 fprintf_unfiltered (gdb_stdlog,
297 "lm_base: _GLOBAL_OFFSET_TABLE_ + 8 = %s\n",
bb599908 298 hex_string_custom (addr, 8));
c4d10515
KB
299
300 if (target_read_memory (addr, buf, sizeof buf) != 0)
301 return 0;
e17a4113 302 lm_base_cache = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
303
304 if (solib_frv_debug)
305 fprintf_unfiltered (gdb_stdlog,
306 "lm_base: lm_base_cache = %s\n",
bb599908 307 hex_string_custom (lm_base_cache, 8));
c4d10515
KB
308
309 return lm_base_cache;
310}
311
312
7f86f058 313/* Implement the "current_sos" target_so_ops method. */
c4d10515
KB
314
315static struct so_list *
316frv_current_sos (void)
317{
f5656ead 318 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
319 CORE_ADDR lm_addr, mgot;
320 struct so_list *sos_head = NULL;
321 struct so_list **sos_next_ptr = &sos_head;
322
7c699b81
KB
323 /* Make sure that the main executable has been relocated. This is
324 required in order to find the address of the global offset table,
325 which in turn is used to find the link map info. (See lm_base()
326 for details.)
327
328 Note that the relocation of the main executable is also performed
4d1eb6b4 329 by solib_create_inferior_hook(), however, in the case of core
7c699b81 330 files, this hook is called too late in order to be of benefit to
4d1eb6b4 331 solib_add. solib_add eventually calls this this function,
7c699b81 332 frv_current_sos, and also precedes the call to
4d1eb6b4 333 solib_create_inferior_hook(). (See post_create_inferior() in
7c699b81
KB
334 infcmd.c.) */
335 if (main_executable_lm_info == 0 && core_bfd != NULL)
336 frv_relocate_main_executable ();
337
338 /* Fetch the GOT corresponding to the main executable. */
c4d10515
KB
339 mgot = main_got ();
340
341 /* Locate the address of the first link map struct. */
342 lm_addr = lm_base ();
343
b021a221 344 /* We have at least one link map entry. Fetch the lot of them,
c4d10515
KB
345 building the solist chain. */
346 while (lm_addr)
347 {
348 struct ext_link_map lm_buf;
349 CORE_ADDR got_addr;
350
351 if (solib_frv_debug)
352 fprintf_unfiltered (gdb_stdlog,
353 "current_sos: reading link_map entry at %s\n",
bb599908 354 hex_string_custom (lm_addr, 8));
c4d10515 355
3e43a32a
MS
356 if (target_read_memory (lm_addr, (gdb_byte *) &lm_buf,
357 sizeof (lm_buf)) != 0)
c4d10515 358 {
3e43a32a
MS
359 warning (_("frv_current_sos: Unable to read link map entry. "
360 "Shared object chain may be incomplete."));
c4d10515
KB
361 break;
362 }
363
364 got_addr
e2b7c966 365 = extract_unsigned_integer (lm_buf.l_addr.got_value,
e17a4113
UW
366 sizeof (lm_buf.l_addr.got_value),
367 byte_order);
c4d10515
KB
368 /* If the got_addr is the same as mgotr, then we're looking at the
369 entry for the main executable. By convention, we don't include
370 this in the list of shared objects. */
371 if (got_addr != mgot)
372 {
373 int errcode;
374 char *name_buf;
375 struct int_elf32_fdpic_loadmap *loadmap;
376 struct so_list *sop;
377 CORE_ADDR addr;
378
379 /* Fetch the load map address. */
e2b7c966 380 addr = extract_unsigned_integer (lm_buf.l_addr.map,
e17a4113
UW
381 sizeof lm_buf.l_addr.map,
382 byte_order);
c4d10515
KB
383 loadmap = fetch_loadmap (addr);
384 if (loadmap == NULL)
385 {
3e43a32a
MS
386 warning (_("frv_current_sos: Unable to fetch load map. "
387 "Shared object chain may be incomplete."));
c4d10515
KB
388 break;
389 }
390
391 sop = xcalloc (1, sizeof (struct so_list));
392 sop->lm_info = xcalloc (1, sizeof (struct lm_info));
393 sop->lm_info->map = loadmap;
394 sop->lm_info->got_value = got_addr;
186993b4 395 sop->lm_info->lm_addr = lm_addr;
c4d10515 396 /* Fetch the name. */
e2b7c966 397 addr = extract_unsigned_integer (lm_buf.l_name,
e17a4113
UW
398 sizeof (lm_buf.l_name),
399 byte_order);
c4d10515
KB
400 target_read_string (addr, &name_buf, SO_NAME_MAX_PATH_SIZE - 1,
401 &errcode);
402
403 if (solib_frv_debug)
404 fprintf_unfiltered (gdb_stdlog, "current_sos: name = %s\n",
405 name_buf);
406
407 if (errcode != 0)
8a3fe4f8
AC
408 warning (_("Can't read pathname for link map entry: %s."),
409 safe_strerror (errcode));
c4d10515
KB
410 else
411 {
412 strncpy (sop->so_name, name_buf, SO_NAME_MAX_PATH_SIZE - 1);
413 sop->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
414 xfree (name_buf);
415 strcpy (sop->so_original_name, sop->so_name);
416 }
417
418 *sos_next_ptr = sop;
419 sos_next_ptr = &sop->next;
420 }
186993b4
KB
421 else
422 {
423 main_lm_addr = lm_addr;
424 }
c4d10515 425
e17a4113
UW
426 lm_addr = extract_unsigned_integer (lm_buf.l_next,
427 sizeof (lm_buf.l_next), byte_order);
c4d10515
KB
428 }
429
430 enable_break2 ();
431
432 return sos_head;
433}
434
435
436/* Return 1 if PC lies in the dynamic symbol resolution code of the
437 run time loader. */
438
439static CORE_ADDR interp_text_sect_low;
440static CORE_ADDR interp_text_sect_high;
441static CORE_ADDR interp_plt_sect_low;
442static CORE_ADDR interp_plt_sect_high;
443
444static int
445frv_in_dynsym_resolve_code (CORE_ADDR pc)
446{
447 return ((pc >= interp_text_sect_low && pc < interp_text_sect_high)
448 || (pc >= interp_plt_sect_low && pc < interp_plt_sect_high)
3e5d3a5a 449 || in_plt_section (pc));
c4d10515
KB
450}
451
452/* Given a loadmap and an address, return the displacement needed
453 to relocate the address. */
454
63807e1d 455static CORE_ADDR
c4d10515
KB
456displacement_from_map (struct int_elf32_fdpic_loadmap *map,
457 CORE_ADDR addr)
458{
459 int seg;
460
461 for (seg = 0; seg < map->nsegs; seg++)
462 {
463 if (map->segs[seg].p_vaddr <= addr
464 && addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
465 {
466 return map->segs[seg].addr - map->segs[seg].p_vaddr;
467 }
468 }
469
470 return 0;
471}
472
473/* Print a warning about being unable to set the dynamic linker
474 breakpoint. */
475
476static void
477enable_break_failure_warning (void)
478{
8a3fe4f8 479 warning (_("Unable to find dynamic linker breakpoint function.\n"
c4d10515 480 "GDB will be unable to debug shared library initializers\n"
8a3fe4f8 481 "and track explicitly loaded dynamic code."));
c4d10515
KB
482}
483
cb457ae2
YQ
484/* Helper function for gdb_bfd_lookup_symbol. */
485
486static int
487cmp_name (asymbol *sym, void *data)
488{
489 return (strcmp (sym->name, (const char *) data) == 0);
490}
491
7f86f058 492/* Arrange for dynamic linker to hit breakpoint.
c4d10515
KB
493
494 The dynamic linkers has, as part of its debugger interface, support
495 for arranging for the inferior to hit a breakpoint after mapping in
496 the shared libraries. This function enables that breakpoint.
497
498 On the FR-V, using the shared library (FDPIC) ABI, the symbol
499 _dl_debug_addr points to the r_debug struct which contains
500 a field called r_brk. r_brk is the address of the function
501 descriptor upon which a breakpoint must be placed. Being a
502 function descriptor, we must extract the entry point in order
503 to set the breakpoint.
504
505 Our strategy will be to get the .interp section from the
506 executable. This section will provide us with the name of the
507 interpreter. We'll open the interpreter and then look up
508 the address of _dl_debug_addr. We then relocate this address
509 using the interpreter's loadmap. Once the relocated address
510 is known, we fetch the value (address) corresponding to r_brk
511 and then use that value to fetch the entry point of the function
7f86f058 512 we're interested in. */
c4d10515 513
c4d10515
KB
514static int enable_break2_done = 0;
515
516static int
517enable_break2 (void)
518{
f5656ead 519 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
520 int success = 0;
521 char **bkpt_namep;
522 asection *interp_sect;
523
cb7db0f2 524 if (enable_break2_done)
c4d10515
KB
525 return 1;
526
c4d10515
KB
527 interp_text_sect_low = interp_text_sect_high = 0;
528 interp_plt_sect_low = interp_plt_sect_high = 0;
529
530 /* Find the .interp section; if not found, warn the user and drop
531 into the old breakpoint at symbol code. */
532 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
533 if (interp_sect)
534 {
535 unsigned int interp_sect_size;
001f13d8 536 char *buf;
c4d10515 537 bfd *tmp_bfd = NULL;
c4d10515
KB
538 int status;
539 CORE_ADDR addr, interp_loadmap_addr;
e2b7c966 540 gdb_byte addr_buf[FRV_PTR_SIZE];
c4d10515 541 struct int_elf32_fdpic_loadmap *ldm;
f1838a98 542 volatile struct gdb_exception ex;
c4d10515
KB
543
544 /* Read the contents of the .interp section into a local buffer;
545 the contents specify the dynamic linker this program uses. */
546 interp_sect_size = bfd_section_size (exec_bfd, interp_sect);
547 buf = alloca (interp_sect_size);
548 bfd_get_section_contents (exec_bfd, interp_sect,
549 buf, 0, interp_sect_size);
550
551 /* Now we need to figure out where the dynamic linker was
552 loaded so that we can load its symbols and place a breakpoint
553 in the dynamic linker itself.
554
555 This address is stored on the stack. However, I've been unable
556 to find any magic formula to find it for Solaris (appears to
557 be trivial on GNU/Linux). Therefore, we have to try an alternate
558 mechanism to find the dynamic linker's base address. */
559
f1838a98
UW
560 TRY_CATCH (ex, RETURN_MASK_ALL)
561 {
562 tmp_bfd = solib_bfd_open (buf);
563 }
c4d10515
KB
564 if (tmp_bfd == NULL)
565 {
566 enable_break_failure_warning ();
567 return 0;
568 }
569
f5656ead 570 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
c4d10515
KB
571 &interp_loadmap_addr, 0);
572 if (status < 0)
573 {
8a3fe4f8 574 warning (_("Unable to determine dynamic linker loadmap address."));
c4d10515 575 enable_break_failure_warning ();
cbb099e8 576 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
577 return 0;
578 }
579
580 if (solib_frv_debug)
581 fprintf_unfiltered (gdb_stdlog,
582 "enable_break: interp_loadmap_addr = %s\n",
bb599908 583 hex_string_custom (interp_loadmap_addr, 8));
c4d10515
KB
584
585 ldm = fetch_loadmap (interp_loadmap_addr);
586 if (ldm == NULL)
587 {
8a3fe4f8 588 warning (_("Unable to load dynamic linker loadmap at address %s."),
bb599908 589 hex_string_custom (interp_loadmap_addr, 8));
c4d10515 590 enable_break_failure_warning ();
cbb099e8 591 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
592 return 0;
593 }
594
595 /* Record the relocated start and end address of the dynamic linker
596 text and plt section for svr4_in_dynsym_resolve_code. */
597 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
598 if (interp_sect)
599 {
600 interp_text_sect_low
601 = bfd_section_vma (tmp_bfd, interp_sect);
602 interp_text_sect_low
603 += displacement_from_map (ldm, interp_text_sect_low);
604 interp_text_sect_high
605 = interp_text_sect_low + bfd_section_size (tmp_bfd, interp_sect);
606 }
607 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
608 if (interp_sect)
609 {
610 interp_plt_sect_low =
611 bfd_section_vma (tmp_bfd, interp_sect);
612 interp_plt_sect_low
613 += displacement_from_map (ldm, interp_plt_sect_low);
614 interp_plt_sect_high =
615 interp_plt_sect_low + bfd_section_size (tmp_bfd, interp_sect);
616 }
617
cb457ae2
YQ
618 addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name, "_dl_debug_addr");
619
c4d10515
KB
620 if (addr == 0)
621 {
3e43a32a
MS
622 warning (_("Could not find symbol _dl_debug_addr "
623 "in dynamic linker"));
c4d10515 624 enable_break_failure_warning ();
cbb099e8 625 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
626 return 0;
627 }
628
629 if (solib_frv_debug)
630 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
631 "enable_break: _dl_debug_addr "
632 "(prior to relocation) = %s\n",
bb599908 633 hex_string_custom (addr, 8));
c4d10515
KB
634
635 addr += displacement_from_map (ldm, addr);
636
637 if (solib_frv_debug)
638 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
639 "enable_break: _dl_debug_addr "
640 "(after relocation) = %s\n",
bb599908 641 hex_string_custom (addr, 8));
c4d10515
KB
642
643 /* Fetch the address of the r_debug struct. */
644 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
645 {
3e43a32a
MS
646 warning (_("Unable to fetch contents of _dl_debug_addr "
647 "(at address %s) from dynamic linker"),
bb599908 648 hex_string_custom (addr, 8));
c4d10515 649 }
e17a4113 650 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515 651
cb7db0f2
MF
652 if (solib_frv_debug)
653 fprintf_unfiltered (gdb_stdlog,
654 "enable_break: _dl_debug_addr[0..3] = %s\n",
655 hex_string_custom (addr, 8));
656
657 /* If it's zero, then the ldso hasn't initialized yet, and so
658 there are no shared libs yet loaded. */
659 if (addr == 0)
660 {
661 if (solib_frv_debug)
662 fprintf_unfiltered (gdb_stdlog,
663 "enable_break: ldso not yet initialized\n");
664 /* Do not warn, but mark to run again. */
665 return 0;
666 }
667
c4d10515
KB
668 /* Fetch the r_brk field. It's 8 bytes from the start of
669 _dl_debug_addr. */
670 if (target_read_memory (addr + 8, addr_buf, sizeof addr_buf) != 0)
671 {
3e43a32a
MS
672 warning (_("Unable to fetch _dl_debug_addr->r_brk "
673 "(at address %s) from dynamic linker"),
bb599908 674 hex_string_custom (addr + 8, 8));
c4d10515 675 enable_break_failure_warning ();
cbb099e8 676 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
677 return 0;
678 }
e17a4113 679 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
680
681 /* Now fetch the function entry point. */
682 if (target_read_memory (addr, addr_buf, sizeof addr_buf) != 0)
683 {
3e43a32a
MS
684 warning (_("Unable to fetch _dl_debug_addr->.r_brk entry point "
685 "(at address %s) from dynamic linker"),
bb599908 686 hex_string_custom (addr, 8));
c4d10515 687 enable_break_failure_warning ();
cbb099e8 688 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
689 return 0;
690 }
e17a4113 691 addr = extract_unsigned_integer (addr_buf, sizeof addr_buf, byte_order);
c4d10515
KB
692
693 /* We're done with the temporary bfd. */
cbb099e8 694 gdb_bfd_unref (tmp_bfd);
c4d10515
KB
695
696 /* We're also done with the loadmap. */
697 xfree (ldm);
698
cb7db0f2
MF
699 /* Remove all the solib event breakpoints. Their addresses
700 may have changed since the last time we ran the program. */
701 remove_solib_event_breakpoints ();
702
c4d10515 703 /* Now (finally!) create the solib breakpoint. */
f5656ead 704 create_solib_event_breakpoint (target_gdbarch (), addr);
c4d10515 705
cb7db0f2
MF
706 enable_break2_done = 1;
707
c4d10515
KB
708 return 1;
709 }
710
711 /* Tell the user we couldn't set a dynamic linker breakpoint. */
712 enable_break_failure_warning ();
713
714 /* Failure return. */
715 return 0;
716}
717
718static int
719enable_break (void)
720{
721 asection *interp_sect;
d56e56aa 722 CORE_ADDR entry_point;
c4d10515 723
abd0a5fa 724 if (symfile_objfile == NULL)
c4d10515 725 {
abd0a5fa
JK
726 if (solib_frv_debug)
727 fprintf_unfiltered (gdb_stdlog,
728 "enable_break: No symbol file found.\n");
729 return 0;
730 }
c4d10515 731
d56e56aa 732 if (!entry_point_address_query (&entry_point))
abd0a5fa 733 {
c4d10515
KB
734 if (solib_frv_debug)
735 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
736 "enable_break: Symbol file has no entry point.\n");
737 return 0;
c4d10515 738 }
abd0a5fa
JK
739
740 /* Check for the presence of a .interp section. If there is no
741 such section, the executable is statically linked. */
742
743 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
744
745 if (interp_sect == NULL)
c4d10515
KB
746 {
747 if (solib_frv_debug)
748 fprintf_unfiltered (gdb_stdlog,
abd0a5fa
JK
749 "enable_break: No .interp section found.\n");
750 return 0;
c4d10515
KB
751 }
752
d56e56aa 753 create_solib_event_breakpoint (target_gdbarch (), entry_point);
abd0a5fa
JK
754
755 if (solib_frv_debug)
756 fprintf_unfiltered (gdb_stdlog,
3e43a32a
MS
757 "enable_break: solib event breakpoint "
758 "placed at entry point: %s\n",
d56e56aa 759 hex_string_custom (entry_point, 8));
c4d10515
KB
760 return 1;
761}
762
7f86f058 763/* Implement the "special_symbol_handling" target_so_ops method. */
c4d10515
KB
764
765static void
766frv_special_symbol_handling (void)
767{
7f86f058 768 /* Nothing needed for FRV. */
c4d10515
KB
769}
770
771static void
772frv_relocate_main_executable (void)
773{
774 int status;
9bc7b6c6 775 CORE_ADDR exec_addr, interp_addr;
c4d10515
KB
776 struct int_elf32_fdpic_loadmap *ldm;
777 struct cleanup *old_chain;
778 struct section_offsets *new_offsets;
779 int changed;
780 struct obj_section *osect;
781
f5656ead 782 status = frv_fdpic_loadmap_addresses (target_gdbarch (),
9bc7b6c6 783 &interp_addr, &exec_addr);
c4d10515 784
9bc7b6c6 785 if (status < 0 || (exec_addr == 0 && interp_addr == 0))
c4d10515
KB
786 {
787 /* Not using FDPIC ABI, so do nothing. */
788 return;
789 }
790
791 /* Fetch the loadmap located at ``exec_addr''. */
792 ldm = fetch_loadmap (exec_addr);
793 if (ldm == NULL)
8a3fe4f8 794 error (_("Unable to load the executable's loadmap."));
c4d10515
KB
795
796 if (main_executable_lm_info)
797 xfree (main_executable_lm_info);
798 main_executable_lm_info = xcalloc (1, sizeof (struct lm_info));
799 main_executable_lm_info->map = ldm;
800
801 new_offsets = xcalloc (symfile_objfile->num_sections,
802 sizeof (struct section_offsets));
803 old_chain = make_cleanup (xfree, new_offsets);
804 changed = 0;
805
806 ALL_OBJFILE_OSECTIONS (symfile_objfile, osect)
807 {
808 CORE_ADDR orig_addr, addr, offset;
809 int osect_idx;
810 int seg;
811
65cf3563 812 osect_idx = osect - symfile_objfile->sections;
c4d10515
KB
813
814 /* Current address of section. */
aded6f54 815 addr = obj_section_addr (osect);
c4d10515
KB
816 /* Offset from where this section started. */
817 offset = ANOFFSET (symfile_objfile->section_offsets, osect_idx);
818 /* Original address prior to any past relocations. */
819 orig_addr = addr - offset;
820
821 for (seg = 0; seg < ldm->nsegs; seg++)
822 {
823 if (ldm->segs[seg].p_vaddr <= orig_addr
824 && orig_addr < ldm->segs[seg].p_vaddr + ldm->segs[seg].p_memsz)
825 {
826 new_offsets->offsets[osect_idx]
827 = ldm->segs[seg].addr - ldm->segs[seg].p_vaddr;
828
829 if (new_offsets->offsets[osect_idx] != offset)
830 changed = 1;
831 break;
832 }
833 }
834 }
835
836 if (changed)
837 objfile_relocate (symfile_objfile, new_offsets);
838
839 do_cleanups (old_chain);
840
841 /* Now that symfile_objfile has been relocated, we can compute the
842 GOT value and stash it away. */
843 main_executable_lm_info->got_value = main_got ();
844}
845
7f86f058 846/* Implement the "create_inferior_hook" target_solib_ops method.
c4d10515 847
7f86f058
PA
848 For the FR-V shared library ABI (FDPIC), the main executable needs
849 to be relocated. The shared library breakpoints also need to be
850 enabled. */
c4d10515
KB
851
852static void
268a4a75 853frv_solib_create_inferior_hook (int from_tty)
c4d10515
KB
854{
855 /* Relocate main executable. */
856 frv_relocate_main_executable ();
857
858 /* Enable shared library breakpoints. */
859 if (!enable_break ())
860 {
8a3fe4f8 861 warning (_("shared library handler failed to enable breakpoint"));
c4d10515
KB
862 return;
863 }
864}
865
866static void
867frv_clear_solib (void)
868{
869 lm_base_cache = 0;
c4d10515 870 enable_break2_done = 0;
186993b4 871 main_lm_addr = 0;
7c699b81
KB
872 if (main_executable_lm_info != 0)
873 {
874 xfree (main_executable_lm_info->map);
875 xfree (main_executable_lm_info->dyn_syms);
876 xfree (main_executable_lm_info->dyn_relocs);
877 xfree (main_executable_lm_info);
878 main_executable_lm_info = 0;
879 }
c4d10515
KB
880}
881
882static void
883frv_free_so (struct so_list *so)
884{
885 xfree (so->lm_info->map);
886 xfree (so->lm_info->dyn_syms);
887 xfree (so->lm_info->dyn_relocs);
888 xfree (so->lm_info);
889}
890
891static void
892frv_relocate_section_addresses (struct so_list *so,
0542c86d 893 struct target_section *sec)
c4d10515
KB
894{
895 int seg;
896 struct int_elf32_fdpic_loadmap *map;
897
898 map = so->lm_info->map;
899
900 for (seg = 0; seg < map->nsegs; seg++)
901 {
902 if (map->segs[seg].p_vaddr <= sec->addr
903 && sec->addr < map->segs[seg].p_vaddr + map->segs[seg].p_memsz)
904 {
905 CORE_ADDR displ = map->segs[seg].addr - map->segs[seg].p_vaddr;
433759f7 906
c4d10515
KB
907 sec->addr += displ;
908 sec->endaddr += displ;
909 break;
910 }
911 }
912}
913
914/* Return the GOT address associated with the main executable. Return
915 0 if it can't be found. */
916
917static CORE_ADDR
918main_got (void)
919{
3b7344d5 920 struct bound_minimal_symbol got_sym;
c4d10515 921
3e43a32a
MS
922 got_sym = lookup_minimal_symbol ("_GLOBAL_OFFSET_TABLE_",
923 NULL, symfile_objfile);
3b7344d5 924 if (got_sym.minsym == 0)
c4d10515
KB
925 return 0;
926
77e371c0 927 return BMSYMBOL_VALUE_ADDRESS (got_sym);
c4d10515
KB
928}
929
930/* Find the global pointer for the given function address ADDR. */
931
932CORE_ADDR
933frv_fdpic_find_global_pointer (CORE_ADDR addr)
934{
935 struct so_list *so;
936
937 so = master_so_list ();
938 while (so)
939 {
940 int seg;
941 struct int_elf32_fdpic_loadmap *map;
942
943 map = so->lm_info->map;
944
945 for (seg = 0; seg < map->nsegs; seg++)
946 {
947 if (map->segs[seg].addr <= addr
948 && addr < map->segs[seg].addr + map->segs[seg].p_memsz)
949 return so->lm_info->got_value;
950 }
951
952 so = so->next;
953 }
954
7a9dd1b2 955 /* Didn't find it in any of the shared objects. So assume it's in the
c4d10515
KB
956 main executable. */
957 return main_got ();
958}
959
960/* Forward declarations for frv_fdpic_find_canonical_descriptor(). */
961static CORE_ADDR find_canonical_descriptor_in_load_object
0d5cff50 962 (CORE_ADDR, CORE_ADDR, const char *, bfd *, struct lm_info *);
c4d10515
KB
963
964/* Given a function entry point, attempt to find the canonical descriptor
965 associated with that entry point. Return 0 if no canonical descriptor
966 could be found. */
967
968CORE_ADDR
969frv_fdpic_find_canonical_descriptor (CORE_ADDR entry_point)
970{
0d5cff50 971 const char *name;
c4d10515
KB
972 CORE_ADDR addr;
973 CORE_ADDR got_value;
974 struct int_elf32_fdpic_loadmap *ldm = 0;
975 struct symbol *sym;
c4d10515
KB
976
977 /* Fetch the corresponding global pointer for the entry point. */
978 got_value = frv_fdpic_find_global_pointer (entry_point);
979
980 /* Attempt to find the name of the function. If the name is available,
981 it'll be used as an aid in finding matching functions in the dynamic
982 symbol table. */
983 sym = find_pc_function (entry_point);
984 if (sym == 0)
985 name = 0;
986 else
987 name = SYMBOL_LINKAGE_NAME (sym);
988
989 /* Check the main executable. */
990 addr = find_canonical_descriptor_in_load_object
991 (entry_point, got_value, name, symfile_objfile->obfd,
992 main_executable_lm_info);
993
994 /* If descriptor not found via main executable, check each load object
995 in list of shared objects. */
996 if (addr == 0)
997 {
998 struct so_list *so;
999
1000 so = master_so_list ();
1001 while (so)
1002 {
1003 addr = find_canonical_descriptor_in_load_object
1004 (entry_point, got_value, name, so->abfd, so->lm_info);
1005
1006 if (addr != 0)
1007 break;
1008
1009 so = so->next;
1010 }
1011 }
1012
1013 return addr;
1014}
1015
1016static CORE_ADDR
1017find_canonical_descriptor_in_load_object
0d5cff50 1018 (CORE_ADDR entry_point, CORE_ADDR got_value, const char *name, bfd *abfd,
c4d10515
KB
1019 struct lm_info *lm)
1020{
f5656ead 1021 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
c4d10515
KB
1022 arelent *rel;
1023 unsigned int i;
1024 CORE_ADDR addr = 0;
1025
1026 /* Nothing to do if no bfd. */
1027 if (abfd == 0)
1028 return 0;
1029
35e08e03
KB
1030 /* Nothing to do if no link map. */
1031 if (lm == 0)
1032 return 0;
1033
c4d10515
KB
1034 /* We want to scan the dynamic relocs for R_FRV_FUNCDESC relocations.
1035 (More about this later.) But in order to fetch the relocs, we
1036 need to first fetch the dynamic symbols. These symbols need to
1037 be cached due to the way that bfd_canonicalize_dynamic_reloc()
1038 works. (See the comments in the declaration of struct lm_info
1039 for more information.) */
1040 if (lm->dyn_syms == NULL)
1041 {
1042 long storage_needed;
1043 unsigned int number_of_symbols;
1044
1045 /* Determine amount of space needed to hold the dynamic symbol table. */
1046 storage_needed = bfd_get_dynamic_symtab_upper_bound (abfd);
1047
1048 /* If there are no dynamic symbols, there's nothing to do. */
1049 if (storage_needed <= 0)
1050 return 0;
1051
1052 /* Allocate space for the dynamic symbol table. */
1053 lm->dyn_syms = (asymbol **) xmalloc (storage_needed);
1054
1055 /* Fetch the dynamic symbol table. */
1056 number_of_symbols = bfd_canonicalize_dynamic_symtab (abfd, lm->dyn_syms);
1057
1058 if (number_of_symbols == 0)
1059 return 0;
1060 }
1061
1062 /* Fetch the dynamic relocations if not already cached. */
1063 if (lm->dyn_relocs == NULL)
1064 {
1065 long storage_needed;
1066
1067 /* Determine amount of space needed to hold the dynamic relocs. */
1068 storage_needed = bfd_get_dynamic_reloc_upper_bound (abfd);
1069
1070 /* Bail out if there are no dynamic relocs. */
1071 if (storage_needed <= 0)
1072 return 0;
1073
1074 /* Allocate space for the relocs. */
1075 lm->dyn_relocs = (arelent **) xmalloc (storage_needed);
1076
1077 /* Fetch the dynamic relocs. */
1078 lm->dyn_reloc_count
1079 = bfd_canonicalize_dynamic_reloc (abfd, lm->dyn_relocs, lm->dyn_syms);
1080 }
1081
1082 /* Search the dynamic relocs. */
1083 for (i = 0; i < lm->dyn_reloc_count; i++)
1084 {
1085 rel = lm->dyn_relocs[i];
1086
1087 /* Relocs of interest are those which meet the following
1088 criteria:
1089
1090 - the names match (assuming the caller could provide
1091 a name which matches ``entry_point'').
1092 - the relocation type must be R_FRV_FUNCDESC. Relocs
1093 of this type are used (by the dynamic linker) to
1094 look up the address of a canonical descriptor (allocating
1095 it if need be) and initializing the GOT entry referred
1096 to by the offset to the address of the descriptor.
1097
1098 These relocs of interest may be used to obtain a
1099 candidate descriptor by first adjusting the reloc's
1100 address according to the link map and then dereferencing
1101 this address (which is a GOT entry) to obtain a descriptor
1102 address. */
1103 if ((name == 0 || strcmp (name, (*rel->sym_ptr_ptr)->name) == 0)
1104 && rel->howto->type == R_FRV_FUNCDESC)
1105 {
e2b7c966 1106 gdb_byte buf [FRV_PTR_SIZE];
c4d10515
KB
1107
1108 /* Compute address of address of candidate descriptor. */
1109 addr = rel->address + displacement_from_map (lm->map, rel->address);
1110
1111 /* Fetch address of candidate descriptor. */
1112 if (target_read_memory (addr, buf, sizeof buf) != 0)
1113 continue;
e17a4113 1114 addr = extract_unsigned_integer (buf, sizeof buf, byte_order);
c4d10515
KB
1115
1116 /* Check for matching entry point. */
1117 if (target_read_memory (addr, buf, sizeof buf) != 0)
1118 continue;
e17a4113
UW
1119 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1120 != entry_point)
c4d10515
KB
1121 continue;
1122
1123 /* Check for matching got value. */
1124 if (target_read_memory (addr + 4, buf, sizeof buf) != 0)
1125 continue;
e17a4113
UW
1126 if (extract_unsigned_integer (buf, sizeof buf, byte_order)
1127 != got_value)
c4d10515
KB
1128 continue;
1129
1130 /* Match was successful! Exit loop. */
1131 break;
1132 }
1133 }
1134
1135 return addr;
1136}
1137
186993b4
KB
1138/* Given an objfile, return the address of its link map. This value is
1139 needed for TLS support. */
1140CORE_ADDR
1141frv_fetch_objfile_link_map (struct objfile *objfile)
1142{
1143 struct so_list *so;
1144
1145 /* Cause frv_current_sos() to be run if it hasn't been already. */
1146 if (main_lm_addr == 0)
1147 solib_add (0, 0, 0, 1);
1148
1149 /* frv_current_sos() will set main_lm_addr for the main executable. */
1150 if (objfile == symfile_objfile)
1151 return main_lm_addr;
1152
1153 /* The other link map addresses may be found by examining the list
1154 of shared libraries. */
1155 for (so = master_so_list (); so; so = so->next)
1156 {
1157 if (so->objfile == objfile)
1158 return so->lm_info->lm_addr;
1159 }
1160
1161 /* Not found! */
1162 return 0;
1163}
1164
917630e4 1165struct target_so_ops frv_so_ops;
c4d10515 1166
63807e1d
PA
1167/* Provide a prototype to silence -Wmissing-prototypes. */
1168extern initialize_file_ftype _initialize_frv_solib;
1169
c4d10515
KB
1170void
1171_initialize_frv_solib (void)
1172{
1173 frv_so_ops.relocate_section_addresses = frv_relocate_section_addresses;
1174 frv_so_ops.free_so = frv_free_so;
1175 frv_so_ops.clear_solib = frv_clear_solib;
1176 frv_so_ops.solib_create_inferior_hook = frv_solib_create_inferior_hook;
1177 frv_so_ops.special_symbol_handling = frv_special_symbol_handling;
1178 frv_so_ops.current_sos = frv_current_sos;
1179 frv_so_ops.open_symbol_file_object = open_symbol_file_object;
1180 frv_so_ops.in_dynsym_resolve_code = frv_in_dynsym_resolve_code;
831a0c44 1181 frv_so_ops.bfd_open = solib_bfd_open;
c4d10515 1182
c4d10515 1183 /* Debug this file's internals. */
ccce17b0
YQ
1184 add_setshow_zuinteger_cmd ("solib-frv", class_maintenance,
1185 &solib_frv_debug, _("\
85c07804
AC
1186Set internal debugging of shared library code for FR-V."), _("\
1187Show internal debugging of shared library code for FR-V."), _("\
1188When non-zero, FR-V solib specific internal debugging is enabled."),
ccce17b0
YQ
1189 NULL,
1190 NULL, /* FIXME: i18n: */
1191 &setdebuglist, &showdebuglist);
c4d10515 1192}
This page took 1.185503 seconds and 4 git commands to generate.