2011-02-26 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / solib-irix.c
CommitLineData
dabbe2c0 1/* Shared library support for IRIX.
6aba47ca 2 Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004,
7b6bb8da 3 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
dabbe2c0
KB
4
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
dabbe2c0
KB
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
dabbe2c0
KB
22
23#include "defs.h"
24
25#include "symtab.h"
26#include "bfd.h"
9ab9195f
EZ
27/* FIXME: ezannoni/2004-02-13 Verify that the include below is
28 really needed. */
dabbe2c0
KB
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcore.h"
32#include "target.h"
33#include "inferior.h"
2020b7ab 34#include "gdbthread.h"
dabbe2c0
KB
35
36#include "solist.h"
734598d9
UW
37#include "solib.h"
38#include "solib-irix.h"
39
dabbe2c0
KB
40
41/* Link map info to include in an allocate so_list entry. Unlike some
42 of the other solib backends, this (Irix) backend chooses to decode
43 the link map info obtained from the target and store it as (mostly)
44 CORE_ADDRs which need no further decoding. This is more convenient
45 because there are three different link map formats to worry about.
46 We use a single routine (fetch_lm_info) to read (and decode) the target
47 specific link map data. */
48
49struct lm_info
50{
51 CORE_ADDR addr; /* address of obj_info or obj_list
52 struct on target (from which the
53 following information is obtained). */
54 CORE_ADDR next; /* address of next item in list. */
55 CORE_ADDR reloc_offset; /* amount to relocate by */
56 CORE_ADDR pathname_addr; /* address of pathname */
57 int pathname_len; /* length of pathname */
58};
59
60/* It's not desirable to use the system header files to obtain the
61 structure of the obj_list or obj_info structs. Therefore, we use a
62 platform neutral representation which has been derived from the IRIX
63 header files. */
64
65typedef struct
66{
725a826f 67 gdb_byte b[4];
dabbe2c0
KB
68}
69gdb_int32_bytes;
70typedef struct
71{
725a826f 72 gdb_byte b[8];
dabbe2c0
KB
73}
74gdb_int64_bytes;
75
76/* The "old" obj_list struct. This is used with old (o32) binaries.
77 The ``data'' member points at a much larger and more complicated
78 struct which we will only refer to by offsets. See
79 fetch_lm_info(). */
80
81struct irix_obj_list
82{
83 gdb_int32_bytes data;
84 gdb_int32_bytes next;
85 gdb_int32_bytes prev;
86};
87
88/* The ELF32 and ELF64 versions of the above struct. The oi_magic value
89 corresponds to the ``data'' value in the "old" struct. When this value
90 is 0xffffffff, the data will be in one of the following formats. The
91 ``oi_size'' field is used to decide which one we actually have. */
92
93struct irix_elf32_obj_info
94{
95 gdb_int32_bytes oi_magic;
96 gdb_int32_bytes oi_size;
97 gdb_int32_bytes oi_next;
98 gdb_int32_bytes oi_prev;
99 gdb_int32_bytes oi_ehdr;
100 gdb_int32_bytes oi_orig_ehdr;
101 gdb_int32_bytes oi_pathname;
102 gdb_int32_bytes oi_pathname_len;
103};
104
105struct irix_elf64_obj_info
106{
107 gdb_int32_bytes oi_magic;
108 gdb_int32_bytes oi_size;
109 gdb_int64_bytes oi_next;
110 gdb_int64_bytes oi_prev;
111 gdb_int64_bytes oi_ehdr;
112 gdb_int64_bytes oi_orig_ehdr;
113 gdb_int64_bytes oi_pathname;
114 gdb_int32_bytes oi_pathname_len;
115 gdb_int32_bytes padding;
116};
117
118/* Union of all of the above (plus a split out magic field). */
119
120union irix_obj_info
121{
122 gdb_int32_bytes magic;
123 struct irix_obj_list ol32;
124 struct irix_elf32_obj_info oi32;
125 struct irix_elf64_obj_info oi64;
126};
127
128/* MIPS sign extends its 32 bit addresses. We could conceivably use
129 extract_typed_address here, but to do so, we'd have to construct an
ae0167b9 130 appropriate type. Calling extract_signed_integer seems simpler. */
dabbe2c0
KB
131
132static CORE_ADDR
e17a4113 133extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
dabbe2c0 134{
e17a4113 135 return extract_signed_integer (addr, len, byte_order);
dabbe2c0
KB
136}
137
138/* Fetch and return the link map data associated with ADDR. Note that
139 this routine automatically determines which (of three) link map
140 formats is in use by the target. */
141
63807e1d 142static struct lm_info
dabbe2c0
KB
143fetch_lm_info (CORE_ADDR addr)
144{
e17a4113 145 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
dabbe2c0
KB
146 struct lm_info li;
147 union irix_obj_info buf;
148
149 li.addr = addr;
150
151 /* The smallest region that we'll need is for buf.ol32. We'll read
152 that first. We'll read more of the buffer later if we have to deal
153 with one of the other cases. (We don't want to incur a memory error
154 if we were to read a larger region that generates an error due to
155 being at the end of a page or the like.) */
156 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
157
e17a4113
UW
158 if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159 != 0xffffffff)
dabbe2c0 160 {
c378eb4e 161 /* Use buf.ol32... */
dabbe2c0
KB
162 char obj_buf[432];
163 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
e17a4113
UW
164 sizeof (buf.ol32.data),
165 byte_order);
433759f7 166
e17a4113
UW
167 li.next = extract_mips_address (&buf.ol32.next,
168 sizeof (buf.ol32.next), byte_order);
dabbe2c0
KB
169
170 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
171
e17a4113 172 li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
dabbe2c0 173 li.pathname_len = 0; /* unknown */
e17a4113
UW
174 li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
175 - extract_mips_address (&obj_buf[248], 4, byte_order);
dabbe2c0
KB
176
177 }
725a826f 178 else if (extract_unsigned_integer (buf.oi32.oi_size.b,
e17a4113 179 sizeof (buf.oi32.oi_size), byte_order)
dabbe2c0
KB
180 == sizeof (buf.oi32))
181 {
182 /* Use buf.oi32... */
183
184 /* Read rest of buffer. */
185 read_memory (addr + sizeof (buf.ol32),
186 ((char *) &buf) + sizeof (buf.ol32),
187 sizeof (buf.oi32) - sizeof (buf.ol32));
188
189 /* Fill in fields using buffer contents. */
190 li.next = extract_mips_address (&buf.oi32.oi_next,
e17a4113 191 sizeof (buf.oi32.oi_next), byte_order);
dabbe2c0 192 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
e17a4113
UW
193 sizeof (buf.oi32.oi_ehdr),
194 byte_order)
dabbe2c0 195 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
e17a4113 196 sizeof (buf.oi32.oi_orig_ehdr), byte_order);
dabbe2c0 197 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
e17a4113
UW
198 sizeof (buf.oi32.oi_pathname),
199 byte_order);
725a826f 200 li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
dabbe2c0 201 sizeof (buf.oi32.
e17a4113
UW
202 oi_pathname_len),
203 byte_order);
dabbe2c0 204 }
725a826f 205 else if (extract_unsigned_integer (buf.oi64.oi_size.b,
e17a4113 206 sizeof (buf.oi64.oi_size), byte_order)
dabbe2c0
KB
207 == sizeof (buf.oi64))
208 {
209 /* Use buf.oi64... */
210
211 /* Read rest of buffer. */
212 read_memory (addr + sizeof (buf.ol32),
213 ((char *) &buf) + sizeof (buf.ol32),
214 sizeof (buf.oi64) - sizeof (buf.ol32));
215
216 /* Fill in fields using buffer contents. */
217 li.next = extract_mips_address (&buf.oi64.oi_next,
e17a4113 218 sizeof (buf.oi64.oi_next), byte_order);
dabbe2c0 219 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
e17a4113
UW
220 sizeof (buf.oi64.oi_ehdr),
221 byte_order)
dabbe2c0 222 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
e17a4113 223 sizeof (buf.oi64.oi_orig_ehdr), byte_order);
dabbe2c0 224 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
e17a4113
UW
225 sizeof (buf.oi64.oi_pathname),
226 byte_order);
725a826f 227 li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
dabbe2c0 228 sizeof (buf.oi64.
e17a4113
UW
229 oi_pathname_len),
230 byte_order);
dabbe2c0
KB
231 }
232 else
233 {
8a3fe4f8 234 error (_("Unable to fetch shared library obj_info or obj_list info."));
dabbe2c0
KB
235 }
236
237 return li;
238}
239
240/* The symbol which starts off the list of shared libraries. */
241#define DEBUG_BASE "__rld_obj_head"
242
8181d85f 243static void *base_breakpoint;
dabbe2c0 244
c378eb4e 245static CORE_ADDR debug_base; /* Base of dynamic linker structures. */
dabbe2c0
KB
246
247/*
248
249 LOCAL FUNCTION
250
251 locate_base -- locate the base address of dynamic linker structs
252
253 SYNOPSIS
254
255 CORE_ADDR locate_base (void)
256
257 DESCRIPTION
258
259 For both the SunOS and SVR4 shared library implementations, if the
260 inferior executable has been linked dynamically, there is a single
261 address somewhere in the inferior's data space which is the key to
262 locating all of the dynamic linker's runtime structures. This
263 address is the value of the symbol defined by the macro DEBUG_BASE.
264 The job of this function is to find and return that address, or to
265 return 0 if there is no such address (the executable is statically
266 linked for example).
267
268 For SunOS, the job is almost trivial, since the dynamic linker and
269 all of it's structures are statically linked to the executable at
270 link time. Thus the symbol for the address we are looking for has
271 already been added to the minimal symbol table for the executable's
272 objfile at the time the symbol file's symbols were read, and all we
273 have to do is look it up there. Note that we explicitly do NOT want
274 to find the copies in the shared library.
275
276 The SVR4 version is much more complicated because the dynamic linker
277 and it's structures are located in the shared C library, which gets
278 run as the executable's "interpreter" by the kernel. We have to go
279 to a lot more work to discover the address of DEBUG_BASE. Because
280 of this complexity, we cache the value we find and return that value
281 on subsequent invocations. Note there is no copy in the executable
282 symbol tables.
283
284 Irix 5 is basically like SunOS.
285
286 Note that we can assume nothing about the process state at the time
287 we need to find this address. We may be stopped on the first instruc-
288 tion of the interpreter (C shared library), the first instruction of
289 the executable itself, or somewhere else entirely (if we attached
290 to the process for example).
291
292 */
293
294static CORE_ADDR
295locate_base (void)
296{
297 struct minimal_symbol *msymbol;
298 CORE_ADDR address = 0;
299
300 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
301 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
302 {
303 address = SYMBOL_VALUE_ADDRESS (msymbol);
304 }
305 return (address);
306}
307
308/*
309
310 LOCAL FUNCTION
311
312 disable_break -- remove the "mapping changed" breakpoint
313
314 SYNOPSIS
315
316 static int disable_break ()
317
318 DESCRIPTION
319
320 Removes the breakpoint that gets hit when the dynamic linker
321 completes a mapping change.
322
323 */
324
325static int
326disable_break (void)
327{
328 int status = 1;
329
dabbe2c0 330 /* Note that breakpoint address and original contents are in our address
c378eb4e 331 space, so we just need to write the original contents back. */
dabbe2c0 332
a6d9a66e 333 if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
dabbe2c0
KB
334 {
335 status = 0;
336 }
337
8181d85f
DJ
338 base_breakpoint = NULL;
339
9185ddce
JB
340 /* Note that it is possible that we have stopped at a location that
341 is different from the location where we inserted our breakpoint.
342 On mips-irix, we can actually land in __dbx_init(), so we should
343 not check the PC against our breakpoint address here. See procfs.c
344 for more details. */
dabbe2c0
KB
345
346 return (status);
347}
348
349/*
350
351 LOCAL FUNCTION
352
353 enable_break -- arrange for dynamic linker to hit breakpoint
354
355 SYNOPSIS
356
357 int enable_break (void)
358
359 DESCRIPTION
360
361 This functions inserts a breakpoint at the entry point of the
362 main executable, where all shared libraries are mapped in.
363 */
364
365static int
366enable_break (void)
367{
6c95b8df 368 if (symfile_objfile != NULL && has_stack_frames ())
dabbe2c0 369 {
6c95b8df
PA
370 struct frame_info *frame = get_current_frame ();
371 struct address_space *aspace = get_frame_address_space (frame);
abd0a5fa 372 CORE_ADDR entry_point;
6c95b8df 373
abd0a5fa
JK
374 if (!entry_point_address_query (&entry_point))
375 return 0;
376
377 base_breakpoint = deprecated_insert_raw_breakpoint (target_gdbarch,
378 aspace, entry_point);
8181d85f
DJ
379
380 if (base_breakpoint != NULL)
381 return 1;
dabbe2c0
KB
382 }
383
384 return 0;
385}
386
387/*
388
389 LOCAL FUNCTION
390
391 irix_solib_create_inferior_hook -- shared library startup support
392
393 SYNOPSIS
394
268a4a75 395 void solib_create_inferior_hook (int from_tty)
dabbe2c0
KB
396
397 DESCRIPTION
398
399 When gdb starts up the inferior, it nurses it along (through the
400 shell) until it is ready to execute it's first instruction. At this
401 point, this function gets called via expansion of the macro
402 SOLIB_CREATE_INFERIOR_HOOK.
403
404 For SunOS executables, this first instruction is typically the
405 one at "_start", or a similar text label, regardless of whether
406 the executable is statically or dynamically linked. The runtime
407 startup code takes care of dynamically linking in any shared
408 libraries, once gdb allows the inferior to continue.
409
410 For SVR4 executables, this first instruction is either the first
411 instruction in the dynamic linker (for dynamically linked
412 executables) or the instruction at "start" for statically linked
413 executables. For dynamically linked executables, the system
414 first exec's /lib/libc.so.N, which contains the dynamic linker,
415 and starts it running. The dynamic linker maps in any needed
416 shared libraries, maps in the actual user executable, and then
417 jumps to "start" in the user executable.
418
419 For both SunOS shared libraries, and SVR4 shared libraries, we
420 can arrange to cooperate with the dynamic linker to discover the
421 names of shared libraries that are dynamically linked, and the
422 base addresses to which they are linked.
423
424 This function is responsible for discovering those names and
425 addresses, and saving sufficient information about them to allow
426 their symbols to be read at a later time.
427
428 FIXME
429
430 Between enable_break() and disable_break(), this code does not
431 properly handle hitting breakpoints which the user might have
432 set in the startup code or in the dynamic linker itself. Proper
433 handling will probably have to wait until the implementation is
434 changed to use the "breakpoint handler function" method.
435
436 Also, what if child has exit()ed? Must exit loop somehow.
437 */
438
439static void
268a4a75 440irix_solib_create_inferior_hook (int from_tty)
dabbe2c0 441{
d6b48e9c 442 struct inferior *inf;
2020b7ab
PA
443 struct thread_info *tp;
444
b2391021
JB
445 inf = current_inferior ();
446
447 /* If we are attaching to the inferior, the shared libraries
448 have already been mapped, so nothing more to do. */
449 if (inf->attach_flag)
450 return;
451
11377e68
JB
452 /* Likewise when debugging from a core file, the shared libraries
453 have already been mapped, so nothing more to do. */
454 if (!target_can_run (&current_target))
455 return;
456
dabbe2c0
KB
457 if (!enable_break ())
458 {
8a3fe4f8 459 warning (_("shared library handler failed to enable breakpoint"));
dabbe2c0
KB
460 return;
461 }
462
463 /* Now run the target. It will eventually hit the breakpoint, at
464 which point all of the libraries will have been mapped in and we
465 can go groveling around in the dynamic linker structures to find
c378eb4e 466 out what we need to know about them. */
dabbe2c0 467
2020b7ab 468 tp = inferior_thread ();
d6b48e9c 469
dabbe2c0 470 clear_proceed_status ();
d6b48e9c 471
16c381f0
JK
472 inf->control.stop_soon = STOP_QUIETLY;
473 tp->suspend.stop_signal = TARGET_SIGNAL_0;
d6b48e9c 474
dabbe2c0
KB
475 do
476 {
16c381f0 477 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
ae123ec6 478 wait_for_inferior (0);
dabbe2c0 479 }
16c381f0 480 while (tp->suspend.stop_signal != TARGET_SIGNAL_TRAP);
dabbe2c0
KB
481
482 /* We are now either at the "mapping complete" breakpoint (or somewhere
483 else, a condition we aren't prepared to deal with anyway), so adjust
484 the PC as necessary after a breakpoint, disable the breakpoint, and
c378eb4e 485 add any shared libraries that were mapped in. */
dabbe2c0
KB
486
487 if (!disable_break ())
488 {
8a3fe4f8 489 warning (_("shared library handler failed to disable breakpoint"));
dabbe2c0
KB
490 }
491
492 /* solib_add will call reinit_frame_cache.
493 But we are stopped in the startup code and we might not have symbols
494 for the startup code, so heuristic_proc_start could be called
495 and will put out an annoying warning.
c0236d92 496 Delaying the resetting of stop_soon until after symbol loading
dabbe2c0
KB
497 suppresses the warning. */
498 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
16c381f0 499 inf->control.stop_soon = NO_STOP_QUIETLY;
dabbe2c0
KB
500}
501
502/* LOCAL FUNCTION
503
504 current_sos -- build a list of currently loaded shared objects
505
506 SYNOPSIS
507
508 struct so_list *current_sos ()
509
510 DESCRIPTION
511
512 Build a list of `struct so_list' objects describing the shared
513 objects currently loaded in the inferior. This list does not
514 include an entry for the main executable file.
515
516 Note that we only gather information directly available from the
517 inferior --- we don't examine any of the shared library files
518 themselves. The declaration of `struct so_list' says which fields
519 we provide values for. */
520
521static struct so_list *
522irix_current_sos (void)
523{
e17a4113
UW
524 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
525 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
dabbe2c0
KB
526 CORE_ADDR lma;
527 char addr_buf[8];
528 struct so_list *head = 0;
529 struct so_list **link_ptr = &head;
530 int is_first = 1;
531 struct lm_info lm;
532
533 /* Make sure we've looked up the inferior's dynamic linker's base
534 structure. */
535 if (!debug_base)
536 {
537 debug_base = locate_base ();
538
539 /* If we can't find the dynamic linker's base structure, this
540 must not be a dynamically linked executable. Hmm. */
541 if (!debug_base)
542 return 0;
543 }
544
e17a4113
UW
545 read_memory (debug_base, addr_buf, addr_size);
546 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
547
548 while (lma)
549 {
550 lm = fetch_lm_info (lma);
551 if (!is_first)
552 {
553 int errcode;
554 char *name_buf;
555 int name_size;
556 struct so_list *new
557 = (struct so_list *) xmalloc (sizeof (struct so_list));
558 struct cleanup *old_chain = make_cleanup (xfree, new);
559
560 memset (new, 0, sizeof (*new));
561
562 new->lm_info = xmalloc (sizeof (struct lm_info));
563 make_cleanup (xfree, new->lm_info);
564
565 *new->lm_info = lm;
566
567 /* Extract this shared object's name. */
568 name_size = lm.pathname_len;
569 if (name_size == 0)
570 name_size = SO_NAME_MAX_PATH_SIZE - 1;
571
572 if (name_size >= SO_NAME_MAX_PATH_SIZE)
573 {
574 name_size = SO_NAME_MAX_PATH_SIZE - 1;
8f7e195f
JB
575 warning (_("current_sos: truncating name of "
576 "%d characters to only %d characters"),
3e43a32a 577 lm.pathname_len, name_size);
dabbe2c0
KB
578 }
579
580 target_read_string (lm.pathname_addr, &name_buf,
581 name_size, &errcode);
582 if (errcode != 0)
8a3fe4f8 583 warning (_("Can't read pathname for load map: %s."),
dabbe2c0 584 safe_strerror (errcode));
dabbe2c0
KB
585 else
586 {
587 strncpy (new->so_name, name_buf, name_size);
588 new->so_name[name_size] = '\0';
589 xfree (name_buf);
590 strcpy (new->so_original_name, new->so_name);
591 }
592
593 new->next = 0;
594 *link_ptr = new;
595 link_ptr = &new->next;
596
597 discard_cleanups (old_chain);
598 }
599 is_first = 0;
600 lma = lm.next;
601 }
602
603 return head;
604}
605
606/*
607
608 LOCAL FUNCTION
609
610 irix_open_symbol_file_object
611
612 SYNOPSIS
613
614 void irix_open_symbol_file_object (void *from_tty)
615
616 DESCRIPTION
617
618 If no open symbol file, attempt to locate and open the main symbol
619 file. On IRIX, this is the first link map entry. If its name is
620 here, we can open it. Useful when attaching to a process without
621 first loading its symbol file.
622
623 If FROM_TTYP dereferences to a non-zero integer, allow messages to
624 be printed. This parameter is a pointer rather than an int because
625 open_symbol_file_object() is called via catch_errors() and
c378eb4e 626 catch_errors() requires a pointer argument. */
dabbe2c0
KB
627
628static int
629irix_open_symbol_file_object (void *from_ttyp)
630{
e17a4113
UW
631 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
632 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
dabbe2c0
KB
633 CORE_ADDR lma;
634 char addr_buf[8];
635 struct lm_info lm;
636 struct cleanup *cleanups;
637 int errcode;
638 int from_tty = *(int *) from_ttyp;
639 char *filename;
640
641 if (symfile_objfile)
9e2f0ad4 642 if (!query (_("Attempt to reload symbols from process? ")))
dabbe2c0
KB
643 return 0;
644
645 if ((debug_base = locate_base ()) == 0)
646 return 0; /* failed somehow... */
647
648 /* First link map member should be the executable. */
e17a4113
UW
649 read_memory (debug_base, addr_buf, addr_size);
650 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
651 if (lma == 0)
652 return 0; /* failed somehow... */
653
654 lm = fetch_lm_info (lma);
655
656 if (lm.pathname_addr == 0)
657 return 0; /* No filename. */
658
659 /* Now fetch the filename from target memory. */
660 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
661 &errcode);
662
663 if (errcode)
664 {
8a3fe4f8 665 warning (_("failed to read exec filename from attached file: %s"),
dabbe2c0
KB
666 safe_strerror (errcode));
667 return 0;
668 }
669
670 cleanups = make_cleanup (xfree, filename);
671 /* Have a pathname: read the symbol file. */
672 symbol_file_add_main (filename, from_tty);
673
674 do_cleanups (cleanups);
675
676 return 1;
677}
678
679
680/*
681
682 LOCAL FUNCTION
683
684 irix_special_symbol_handling -- additional shared library symbol handling
685
686 SYNOPSIS
687
688 void irix_special_symbol_handling ()
689
690 DESCRIPTION
691
692 Once the symbols from a shared object have been loaded in the usual
693 way, we are called to do any system specific symbol handling that
694 is needed.
695
696 For SunOS4, this consisted of grunging around in the dynamic
697 linkers structures to find symbol definitions for "common" symbols
698 and adding them to the minimal symbol table for the runtime common
699 objfile.
700
701 However, for IRIX, there's nothing to do.
702
703 */
704
705static void
706irix_special_symbol_handling (void)
707{
708}
709
710/* Using the solist entry SO, relocate the addresses in SEC. */
711
712static void
713irix_relocate_section_addresses (struct so_list *so,
0542c86d 714 struct target_section *sec)
dabbe2c0
KB
715{
716 sec->addr += so->lm_info->reloc_offset;
717 sec->endaddr += so->lm_info->reloc_offset;
718}
719
720/* Free the lm_info struct. */
721
722static void
723irix_free_so (struct so_list *so)
724{
725 xfree (so->lm_info);
726}
727
728/* Clear backend specific state. */
729
730static void
731irix_clear_solib (void)
732{
733 debug_base = 0;
734}
735
736/* Return 1 if PC lies in the dynamic symbol resolution code of the
737 run time loader. */
738static int
739irix_in_dynsym_resolve_code (CORE_ADDR pc)
740{
741 return 0;
742}
743
734598d9 744struct target_so_ops irix_so_ops;
dabbe2c0 745
63807e1d
PA
746/* Provide a prototype to silence -Wmissing-prototypes. */
747extern initialize_file_ftype _initialize_irix_solib;
748
dabbe2c0
KB
749void
750_initialize_irix_solib (void)
751{
752 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
753 irix_so_ops.free_so = irix_free_so;
754 irix_so_ops.clear_solib = irix_clear_solib;
755 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
756 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
757 irix_so_ops.current_sos = irix_current_sos;
758 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
759 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
831a0c44 760 irix_so_ops.bfd_open = solib_bfd_open;
dabbe2c0 761}
This page took 1.079192 seconds and 4 git commands to generate.