daily update
[deliverable/binutils-gdb.git] / gdb / solib-irix.c
CommitLineData
dabbe2c0 1/* Shared library support for IRIX.
0b302171
JB
2 Copyright (C) 1993-1996, 1998-2002, 2004, 2007-2012 Free Software
3 Foundation, Inc.
dabbe2c0
KB
4
5 This file was created using portions of irix5-nat.c originally
6 contributed to GDB by Ian Lance Taylor.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
a9762ec7 12 the Free Software Foundation; either version 3 of the License, or
dabbe2c0
KB
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
a9762ec7 21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
dabbe2c0
KB
22
23#include "defs.h"
24
25#include "symtab.h"
26#include "bfd.h"
9ab9195f
EZ
27/* FIXME: ezannoni/2004-02-13 Verify that the include below is
28 really needed. */
dabbe2c0
KB
29#include "symfile.h"
30#include "objfiles.h"
31#include "gdbcore.h"
32#include "target.h"
33#include "inferior.h"
2020b7ab 34#include "gdbthread.h"
dabbe2c0
KB
35
36#include "solist.h"
734598d9
UW
37#include "solib.h"
38#include "solib-irix.h"
39
dabbe2c0
KB
40
41/* Link map info to include in an allocate so_list entry. Unlike some
42 of the other solib backends, this (Irix) backend chooses to decode
43 the link map info obtained from the target and store it as (mostly)
44 CORE_ADDRs which need no further decoding. This is more convenient
45 because there are three different link map formats to worry about.
46 We use a single routine (fetch_lm_info) to read (and decode) the target
47 specific link map data. */
48
49struct lm_info
50{
51 CORE_ADDR addr; /* address of obj_info or obj_list
52 struct on target (from which the
53 following information is obtained). */
54 CORE_ADDR next; /* address of next item in list. */
55 CORE_ADDR reloc_offset; /* amount to relocate by */
56 CORE_ADDR pathname_addr; /* address of pathname */
57 int pathname_len; /* length of pathname */
58};
59
60/* It's not desirable to use the system header files to obtain the
61 structure of the obj_list or obj_info structs. Therefore, we use a
62 platform neutral representation which has been derived from the IRIX
63 header files. */
64
65typedef struct
66{
725a826f 67 gdb_byte b[4];
dabbe2c0
KB
68}
69gdb_int32_bytes;
70typedef struct
71{
725a826f 72 gdb_byte b[8];
dabbe2c0
KB
73}
74gdb_int64_bytes;
75
76/* The "old" obj_list struct. This is used with old (o32) binaries.
77 The ``data'' member points at a much larger and more complicated
78 struct which we will only refer to by offsets. See
79 fetch_lm_info(). */
80
81struct irix_obj_list
82{
83 gdb_int32_bytes data;
84 gdb_int32_bytes next;
85 gdb_int32_bytes prev;
86};
87
88/* The ELF32 and ELF64 versions of the above struct. The oi_magic value
89 corresponds to the ``data'' value in the "old" struct. When this value
90 is 0xffffffff, the data will be in one of the following formats. The
91 ``oi_size'' field is used to decide which one we actually have. */
92
93struct irix_elf32_obj_info
94{
95 gdb_int32_bytes oi_magic;
96 gdb_int32_bytes oi_size;
97 gdb_int32_bytes oi_next;
98 gdb_int32_bytes oi_prev;
99 gdb_int32_bytes oi_ehdr;
100 gdb_int32_bytes oi_orig_ehdr;
101 gdb_int32_bytes oi_pathname;
102 gdb_int32_bytes oi_pathname_len;
103};
104
105struct irix_elf64_obj_info
106{
107 gdb_int32_bytes oi_magic;
108 gdb_int32_bytes oi_size;
109 gdb_int64_bytes oi_next;
110 gdb_int64_bytes oi_prev;
111 gdb_int64_bytes oi_ehdr;
112 gdb_int64_bytes oi_orig_ehdr;
113 gdb_int64_bytes oi_pathname;
114 gdb_int32_bytes oi_pathname_len;
115 gdb_int32_bytes padding;
116};
117
118/* Union of all of the above (plus a split out magic field). */
119
120union irix_obj_info
121{
122 gdb_int32_bytes magic;
123 struct irix_obj_list ol32;
124 struct irix_elf32_obj_info oi32;
125 struct irix_elf64_obj_info oi64;
126};
127
128/* MIPS sign extends its 32 bit addresses. We could conceivably use
129 extract_typed_address here, but to do so, we'd have to construct an
ae0167b9 130 appropriate type. Calling extract_signed_integer seems simpler. */
dabbe2c0
KB
131
132static CORE_ADDR
e17a4113 133extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
dabbe2c0 134{
e17a4113 135 return extract_signed_integer (addr, len, byte_order);
dabbe2c0
KB
136}
137
138/* Fetch and return the link map data associated with ADDR. Note that
139 this routine automatically determines which (of three) link map
140 formats is in use by the target. */
141
63807e1d 142static struct lm_info
dabbe2c0
KB
143fetch_lm_info (CORE_ADDR addr)
144{
e17a4113 145 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
dabbe2c0
KB
146 struct lm_info li;
147 union irix_obj_info buf;
148
149 li.addr = addr;
150
151 /* The smallest region that we'll need is for buf.ol32. We'll read
152 that first. We'll read more of the buffer later if we have to deal
153 with one of the other cases. (We don't want to incur a memory error
154 if we were to read a larger region that generates an error due to
155 being at the end of a page or the like.) */
156 read_memory (addr, (char *) &buf, sizeof (buf.ol32));
157
e17a4113
UW
158 if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159 != 0xffffffff)
dabbe2c0 160 {
c378eb4e 161 /* Use buf.ol32... */
dabbe2c0
KB
162 char obj_buf[432];
163 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
e17a4113
UW
164 sizeof (buf.ol32.data),
165 byte_order);
433759f7 166
e17a4113
UW
167 li.next = extract_mips_address (&buf.ol32.next,
168 sizeof (buf.ol32.next), byte_order);
dabbe2c0
KB
169
170 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
171
e17a4113 172 li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
dabbe2c0 173 li.pathname_len = 0; /* unknown */
e17a4113
UW
174 li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
175 - extract_mips_address (&obj_buf[248], 4, byte_order);
dabbe2c0
KB
176
177 }
725a826f 178 else if (extract_unsigned_integer (buf.oi32.oi_size.b,
e17a4113 179 sizeof (buf.oi32.oi_size), byte_order)
dabbe2c0
KB
180 == sizeof (buf.oi32))
181 {
182 /* Use buf.oi32... */
183
184 /* Read rest of buffer. */
185 read_memory (addr + sizeof (buf.ol32),
186 ((char *) &buf) + sizeof (buf.ol32),
187 sizeof (buf.oi32) - sizeof (buf.ol32));
188
189 /* Fill in fields using buffer contents. */
190 li.next = extract_mips_address (&buf.oi32.oi_next,
e17a4113 191 sizeof (buf.oi32.oi_next), byte_order);
dabbe2c0 192 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
e17a4113
UW
193 sizeof (buf.oi32.oi_ehdr),
194 byte_order)
dabbe2c0 195 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
e17a4113 196 sizeof (buf.oi32.oi_orig_ehdr), byte_order);
dabbe2c0 197 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
e17a4113
UW
198 sizeof (buf.oi32.oi_pathname),
199 byte_order);
725a826f 200 li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
dabbe2c0 201 sizeof (buf.oi32.
e17a4113
UW
202 oi_pathname_len),
203 byte_order);
dabbe2c0 204 }
725a826f 205 else if (extract_unsigned_integer (buf.oi64.oi_size.b,
e17a4113 206 sizeof (buf.oi64.oi_size), byte_order)
dabbe2c0
KB
207 == sizeof (buf.oi64))
208 {
209 /* Use buf.oi64... */
210
211 /* Read rest of buffer. */
212 read_memory (addr + sizeof (buf.ol32),
213 ((char *) &buf) + sizeof (buf.ol32),
214 sizeof (buf.oi64) - sizeof (buf.ol32));
215
216 /* Fill in fields using buffer contents. */
217 li.next = extract_mips_address (&buf.oi64.oi_next,
e17a4113 218 sizeof (buf.oi64.oi_next), byte_order);
dabbe2c0 219 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
e17a4113
UW
220 sizeof (buf.oi64.oi_ehdr),
221 byte_order)
dabbe2c0 222 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
e17a4113 223 sizeof (buf.oi64.oi_orig_ehdr), byte_order);
dabbe2c0 224 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
e17a4113
UW
225 sizeof (buf.oi64.oi_pathname),
226 byte_order);
725a826f 227 li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
dabbe2c0 228 sizeof (buf.oi64.
e17a4113
UW
229 oi_pathname_len),
230 byte_order);
dabbe2c0
KB
231 }
232 else
233 {
8a3fe4f8 234 error (_("Unable to fetch shared library obj_info or obj_list info."));
dabbe2c0
KB
235 }
236
237 return li;
238}
239
240/* The symbol which starts off the list of shared libraries. */
241#define DEBUG_BASE "__rld_obj_head"
242
8181d85f 243static void *base_breakpoint;
dabbe2c0 244
c378eb4e 245static CORE_ADDR debug_base; /* Base of dynamic linker structures. */
dabbe2c0 246
7f86f058 247/* Locate the base address of dynamic linker structs.
dabbe2c0
KB
248
249 For both the SunOS and SVR4 shared library implementations, if the
250 inferior executable has been linked dynamically, there is a single
251 address somewhere in the inferior's data space which is the key to
252 locating all of the dynamic linker's runtime structures. This
253 address is the value of the symbol defined by the macro DEBUG_BASE.
254 The job of this function is to find and return that address, or to
255 return 0 if there is no such address (the executable is statically
256 linked for example).
257
258 For SunOS, the job is almost trivial, since the dynamic linker and
259 all of it's structures are statically linked to the executable at
260 link time. Thus the symbol for the address we are looking for has
261 already been added to the minimal symbol table for the executable's
262 objfile at the time the symbol file's symbols were read, and all we
263 have to do is look it up there. Note that we explicitly do NOT want
264 to find the copies in the shared library.
265
266 The SVR4 version is much more complicated because the dynamic linker
267 and it's structures are located in the shared C library, which gets
268 run as the executable's "interpreter" by the kernel. We have to go
269 to a lot more work to discover the address of DEBUG_BASE. Because
270 of this complexity, we cache the value we find and return that value
271 on subsequent invocations. Note there is no copy in the executable
272 symbol tables.
273
274 Irix 5 is basically like SunOS.
275
276 Note that we can assume nothing about the process state at the time
277 we need to find this address. We may be stopped on the first instruc-
278 tion of the interpreter (C shared library), the first instruction of
279 the executable itself, or somewhere else entirely (if we attached
7f86f058 280 to the process for example). */
dabbe2c0
KB
281
282static CORE_ADDR
283locate_base (void)
284{
285 struct minimal_symbol *msymbol;
286 CORE_ADDR address = 0;
287
288 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
289 if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0))
290 {
291 address = SYMBOL_VALUE_ADDRESS (msymbol);
292 }
293 return (address);
294}
295
7f86f058 296/* Remove the "mapping changed" breakpoint.
dabbe2c0
KB
297
298 Removes the breakpoint that gets hit when the dynamic linker
7f86f058 299 completes a mapping change. */
dabbe2c0
KB
300
301static int
302disable_break (void)
303{
304 int status = 1;
305
dabbe2c0 306 /* Note that breakpoint address and original contents are in our address
c378eb4e 307 space, so we just need to write the original contents back. */
dabbe2c0 308
a6d9a66e 309 if (deprecated_remove_raw_breakpoint (target_gdbarch, base_breakpoint) != 0)
dabbe2c0
KB
310 {
311 status = 0;
312 }
313
8181d85f
DJ
314 base_breakpoint = NULL;
315
9185ddce
JB
316 /* Note that it is possible that we have stopped at a location that
317 is different from the location where we inserted our breakpoint.
318 On mips-irix, we can actually land in __dbx_init(), so we should
319 not check the PC against our breakpoint address here. See procfs.c
320 for more details. */
dabbe2c0
KB
321
322 return (status);
323}
324
7f86f058 325/* Arrange for dynamic linker to hit breakpoint.
dabbe2c0
KB
326
327 This functions inserts a breakpoint at the entry point of the
7f86f058 328 main executable, where all shared libraries are mapped in. */
dabbe2c0
KB
329
330static int
331enable_break (void)
332{
6c95b8df 333 if (symfile_objfile != NULL && has_stack_frames ())
dabbe2c0 334 {
6c95b8df
PA
335 struct frame_info *frame = get_current_frame ();
336 struct address_space *aspace = get_frame_address_space (frame);
abd0a5fa 337 CORE_ADDR entry_point;
6c95b8df 338
abd0a5fa
JK
339 if (!entry_point_address_query (&entry_point))
340 return 0;
341
342 base_breakpoint = deprecated_insert_raw_breakpoint (target_gdbarch,
343 aspace, entry_point);
8181d85f
DJ
344
345 if (base_breakpoint != NULL)
346 return 1;
dabbe2c0
KB
347 }
348
349 return 0;
350}
351
7f86f058 352/* Implement the "create_inferior_hook" target_solib_ops method.
dabbe2c0
KB
353
354 For SunOS executables, this first instruction is typically the
355 one at "_start", or a similar text label, regardless of whether
356 the executable is statically or dynamically linked. The runtime
357 startup code takes care of dynamically linking in any shared
358 libraries, once gdb allows the inferior to continue.
359
360 For SVR4 executables, this first instruction is either the first
361 instruction in the dynamic linker (for dynamically linked
362 executables) or the instruction at "start" for statically linked
363 executables. For dynamically linked executables, the system
364 first exec's /lib/libc.so.N, which contains the dynamic linker,
365 and starts it running. The dynamic linker maps in any needed
366 shared libraries, maps in the actual user executable, and then
367 jumps to "start" in the user executable.
368
369 For both SunOS shared libraries, and SVR4 shared libraries, we
370 can arrange to cooperate with the dynamic linker to discover the
371 names of shared libraries that are dynamically linked, and the
372 base addresses to which they are linked.
373
374 This function is responsible for discovering those names and
375 addresses, and saving sufficient information about them to allow
376 their symbols to be read at a later time.
377
378 FIXME
379
380 Between enable_break() and disable_break(), this code does not
381 properly handle hitting breakpoints which the user might have
382 set in the startup code or in the dynamic linker itself. Proper
383 handling will probably have to wait until the implementation is
384 changed to use the "breakpoint handler function" method.
385
7f86f058 386 Also, what if child has exit()ed? Must exit loop somehow. */
dabbe2c0
KB
387
388static void
268a4a75 389irix_solib_create_inferior_hook (int from_tty)
dabbe2c0 390{
d6b48e9c 391 struct inferior *inf;
2020b7ab
PA
392 struct thread_info *tp;
393
b2391021
JB
394 inf = current_inferior ();
395
396 /* If we are attaching to the inferior, the shared libraries
397 have already been mapped, so nothing more to do. */
398 if (inf->attach_flag)
399 return;
400
11377e68
JB
401 /* Likewise when debugging from a core file, the shared libraries
402 have already been mapped, so nothing more to do. */
403 if (!target_can_run (&current_target))
404 return;
405
dabbe2c0
KB
406 if (!enable_break ())
407 {
8a3fe4f8 408 warning (_("shared library handler failed to enable breakpoint"));
dabbe2c0
KB
409 return;
410 }
411
412 /* Now run the target. It will eventually hit the breakpoint, at
413 which point all of the libraries will have been mapped in and we
414 can go groveling around in the dynamic linker structures to find
c378eb4e 415 out what we need to know about them. */
dabbe2c0 416
2020b7ab 417 tp = inferior_thread ();
d6b48e9c 418
dabbe2c0 419 clear_proceed_status ();
d6b48e9c 420
16c381f0 421 inf->control.stop_soon = STOP_QUIETLY;
a493e3e2 422 tp->suspend.stop_signal = GDB_SIGNAL_0;
d6b48e9c 423
dabbe2c0
KB
424 do
425 {
16c381f0 426 target_resume (pid_to_ptid (-1), 0, tp->suspend.stop_signal);
e4c8541f 427 wait_for_inferior ();
dabbe2c0 428 }
a493e3e2 429 while (tp->suspend.stop_signal != GDB_SIGNAL_TRAP);
dabbe2c0
KB
430
431 /* We are now either at the "mapping complete" breakpoint (or somewhere
432 else, a condition we aren't prepared to deal with anyway), so adjust
433 the PC as necessary after a breakpoint, disable the breakpoint, and
c378eb4e 434 add any shared libraries that were mapped in. */
dabbe2c0
KB
435
436 if (!disable_break ())
437 {
8a3fe4f8 438 warning (_("shared library handler failed to disable breakpoint"));
dabbe2c0
KB
439 }
440
441 /* solib_add will call reinit_frame_cache.
442 But we are stopped in the startup code and we might not have symbols
443 for the startup code, so heuristic_proc_start could be called
444 and will put out an annoying warning.
c0236d92 445 Delaying the resetting of stop_soon until after symbol loading
dabbe2c0
KB
446 suppresses the warning. */
447 solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add);
16c381f0 448 inf->control.stop_soon = NO_STOP_QUIETLY;
dabbe2c0
KB
449}
450
7f86f058 451/* Implement the "current_sos" target_so_ops method. */
dabbe2c0
KB
452
453static struct so_list *
454irix_current_sos (void)
455{
e17a4113
UW
456 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
457 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
dabbe2c0
KB
458 CORE_ADDR lma;
459 char addr_buf[8];
460 struct so_list *head = 0;
461 struct so_list **link_ptr = &head;
462 int is_first = 1;
463 struct lm_info lm;
464
465 /* Make sure we've looked up the inferior's dynamic linker's base
466 structure. */
467 if (!debug_base)
468 {
469 debug_base = locate_base ();
470
471 /* If we can't find the dynamic linker's base structure, this
472 must not be a dynamically linked executable. Hmm. */
473 if (!debug_base)
474 return 0;
475 }
476
e17a4113
UW
477 read_memory (debug_base, addr_buf, addr_size);
478 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
479
480 while (lma)
481 {
482 lm = fetch_lm_info (lma);
483 if (!is_first)
484 {
485 int errcode;
486 char *name_buf;
487 int name_size;
488 struct so_list *new
489 = (struct so_list *) xmalloc (sizeof (struct so_list));
490 struct cleanup *old_chain = make_cleanup (xfree, new);
491
492 memset (new, 0, sizeof (*new));
493
494 new->lm_info = xmalloc (sizeof (struct lm_info));
495 make_cleanup (xfree, new->lm_info);
496
497 *new->lm_info = lm;
498
499 /* Extract this shared object's name. */
500 name_size = lm.pathname_len;
501 if (name_size == 0)
502 name_size = SO_NAME_MAX_PATH_SIZE - 1;
503
504 if (name_size >= SO_NAME_MAX_PATH_SIZE)
505 {
506 name_size = SO_NAME_MAX_PATH_SIZE - 1;
8f7e195f
JB
507 warning (_("current_sos: truncating name of "
508 "%d characters to only %d characters"),
3e43a32a 509 lm.pathname_len, name_size);
dabbe2c0
KB
510 }
511
512 target_read_string (lm.pathname_addr, &name_buf,
513 name_size, &errcode);
514 if (errcode != 0)
8a3fe4f8 515 warning (_("Can't read pathname for load map: %s."),
dabbe2c0 516 safe_strerror (errcode));
dabbe2c0
KB
517 else
518 {
519 strncpy (new->so_name, name_buf, name_size);
520 new->so_name[name_size] = '\0';
521 xfree (name_buf);
522 strcpy (new->so_original_name, new->so_name);
523 }
524
525 new->next = 0;
526 *link_ptr = new;
527 link_ptr = &new->next;
528
529 discard_cleanups (old_chain);
530 }
531 is_first = 0;
532 lma = lm.next;
533 }
534
535 return head;
536}
537
7f86f058 538/* Implement the "open_symbol_file_object" target_so_ops method.
dabbe2c0 539
7f86f058
PA
540 If no open symbol file, attempt to locate and open the main symbol
541 file. On IRIX, this is the first link map entry. If its name is
542 here, we can open it. Useful when attaching to a process without
543 first loading its symbol file. */
dabbe2c0
KB
544
545static int
546irix_open_symbol_file_object (void *from_ttyp)
547{
e17a4113
UW
548 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch);
549 int addr_size = gdbarch_addr_bit (target_gdbarch) / TARGET_CHAR_BIT;
dabbe2c0
KB
550 CORE_ADDR lma;
551 char addr_buf[8];
552 struct lm_info lm;
553 struct cleanup *cleanups;
554 int errcode;
555 int from_tty = *(int *) from_ttyp;
556 char *filename;
557
558 if (symfile_objfile)
9e2f0ad4 559 if (!query (_("Attempt to reload symbols from process? ")))
dabbe2c0
KB
560 return 0;
561
562 if ((debug_base = locate_base ()) == 0)
563 return 0; /* failed somehow... */
564
565 /* First link map member should be the executable. */
e17a4113
UW
566 read_memory (debug_base, addr_buf, addr_size);
567 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
568 if (lma == 0)
569 return 0; /* failed somehow... */
570
571 lm = fetch_lm_info (lma);
572
573 if (lm.pathname_addr == 0)
574 return 0; /* No filename. */
575
576 /* Now fetch the filename from target memory. */
577 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
578 &errcode);
579
580 if (errcode)
581 {
8a3fe4f8 582 warning (_("failed to read exec filename from attached file: %s"),
dabbe2c0
KB
583 safe_strerror (errcode));
584 return 0;
585 }
586
587 cleanups = make_cleanup (xfree, filename);
588 /* Have a pathname: read the symbol file. */
589 symbol_file_add_main (filename, from_tty);
590
591 do_cleanups (cleanups);
592
593 return 1;
594}
595
7f86f058 596/* Implement the "special_symbol_handling" target_so_ops method.
dabbe2c0 597
7f86f058 598 For IRIX, there's nothing to do. */
dabbe2c0
KB
599
600static void
601irix_special_symbol_handling (void)
602{
603}
604
605/* Using the solist entry SO, relocate the addresses in SEC. */
606
607static void
608irix_relocate_section_addresses (struct so_list *so,
0542c86d 609 struct target_section *sec)
dabbe2c0
KB
610{
611 sec->addr += so->lm_info->reloc_offset;
612 sec->endaddr += so->lm_info->reloc_offset;
613}
614
615/* Free the lm_info struct. */
616
617static void
618irix_free_so (struct so_list *so)
619{
620 xfree (so->lm_info);
621}
622
623/* Clear backend specific state. */
624
625static void
626irix_clear_solib (void)
627{
628 debug_base = 0;
629}
630
631/* Return 1 if PC lies in the dynamic symbol resolution code of the
632 run time loader. */
633static int
634irix_in_dynsym_resolve_code (CORE_ADDR pc)
635{
636 return 0;
637}
638
734598d9 639struct target_so_ops irix_so_ops;
dabbe2c0 640
63807e1d
PA
641/* Provide a prototype to silence -Wmissing-prototypes. */
642extern initialize_file_ftype _initialize_irix_solib;
643
dabbe2c0
KB
644void
645_initialize_irix_solib (void)
646{
647 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
648 irix_so_ops.free_so = irix_free_so;
649 irix_so_ops.clear_solib = irix_clear_solib;
650 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
651 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
652 irix_so_ops.current_sos = irix_current_sos;
653 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
654 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
831a0c44 655 irix_so_ops.bfd_open = solib_bfd_open;
dabbe2c0 656}
This page took 1.103617 seconds and 4 git commands to generate.