Commit | Line | Data |
---|---|---|
dabbe2c0 | 1 | /* Shared library support for IRIX. |
197e01b6 | 2 | Copyright (C) 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004 |
dabbe2c0 KB |
3 | Free Software Foundation, Inc. |
4 | ||
5 | This file was created using portions of irix5-nat.c originally | |
6 | contributed to GDB by Ian Lance Taylor. | |
7 | ||
8 | This file is part of GDB. | |
9 | ||
10 | This program is free software; you can redistribute it and/or modify | |
11 | it under the terms of the GNU General Public License as published by | |
12 | the Free Software Foundation; either version 2 of the License, or | |
13 | (at your option) any later version. | |
14 | ||
15 | This program is distributed in the hope that it will be useful, | |
16 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
17 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
18 | GNU General Public License for more details. | |
19 | ||
20 | You should have received a copy of the GNU General Public License | |
21 | along with this program; if not, write to the Free Software | |
197e01b6 EZ |
22 | Foundation, Inc., 51 Franklin Street, Fifth Floor, |
23 | Boston, MA 02110-1301, USA. */ | |
dabbe2c0 KB |
24 | |
25 | #include "defs.h" | |
26 | ||
27 | #include "symtab.h" | |
28 | #include "bfd.h" | |
9ab9195f EZ |
29 | /* FIXME: ezannoni/2004-02-13 Verify that the include below is |
30 | really needed. */ | |
dabbe2c0 KB |
31 | #include "symfile.h" |
32 | #include "objfiles.h" | |
33 | #include "gdbcore.h" | |
34 | #include "target.h" | |
35 | #include "inferior.h" | |
36 | ||
37 | #include "solist.h" | |
38 | ||
39 | /* Link map info to include in an allocate so_list entry. Unlike some | |
40 | of the other solib backends, this (Irix) backend chooses to decode | |
41 | the link map info obtained from the target and store it as (mostly) | |
42 | CORE_ADDRs which need no further decoding. This is more convenient | |
43 | because there are three different link map formats to worry about. | |
44 | We use a single routine (fetch_lm_info) to read (and decode) the target | |
45 | specific link map data. */ | |
46 | ||
47 | struct lm_info | |
48 | { | |
49 | CORE_ADDR addr; /* address of obj_info or obj_list | |
50 | struct on target (from which the | |
51 | following information is obtained). */ | |
52 | CORE_ADDR next; /* address of next item in list. */ | |
53 | CORE_ADDR reloc_offset; /* amount to relocate by */ | |
54 | CORE_ADDR pathname_addr; /* address of pathname */ | |
55 | int pathname_len; /* length of pathname */ | |
56 | }; | |
57 | ||
58 | /* It's not desirable to use the system header files to obtain the | |
59 | structure of the obj_list or obj_info structs. Therefore, we use a | |
60 | platform neutral representation which has been derived from the IRIX | |
61 | header files. */ | |
62 | ||
63 | typedef struct | |
64 | { | |
65 | char b[4]; | |
66 | } | |
67 | gdb_int32_bytes; | |
68 | typedef struct | |
69 | { | |
70 | char b[8]; | |
71 | } | |
72 | gdb_int64_bytes; | |
73 | ||
74 | /* The "old" obj_list struct. This is used with old (o32) binaries. | |
75 | The ``data'' member points at a much larger and more complicated | |
76 | struct which we will only refer to by offsets. See | |
77 | fetch_lm_info(). */ | |
78 | ||
79 | struct irix_obj_list | |
80 | { | |
81 | gdb_int32_bytes data; | |
82 | gdb_int32_bytes next; | |
83 | gdb_int32_bytes prev; | |
84 | }; | |
85 | ||
86 | /* The ELF32 and ELF64 versions of the above struct. The oi_magic value | |
87 | corresponds to the ``data'' value in the "old" struct. When this value | |
88 | is 0xffffffff, the data will be in one of the following formats. The | |
89 | ``oi_size'' field is used to decide which one we actually have. */ | |
90 | ||
91 | struct irix_elf32_obj_info | |
92 | { | |
93 | gdb_int32_bytes oi_magic; | |
94 | gdb_int32_bytes oi_size; | |
95 | gdb_int32_bytes oi_next; | |
96 | gdb_int32_bytes oi_prev; | |
97 | gdb_int32_bytes oi_ehdr; | |
98 | gdb_int32_bytes oi_orig_ehdr; | |
99 | gdb_int32_bytes oi_pathname; | |
100 | gdb_int32_bytes oi_pathname_len; | |
101 | }; | |
102 | ||
103 | struct irix_elf64_obj_info | |
104 | { | |
105 | gdb_int32_bytes oi_magic; | |
106 | gdb_int32_bytes oi_size; | |
107 | gdb_int64_bytes oi_next; | |
108 | gdb_int64_bytes oi_prev; | |
109 | gdb_int64_bytes oi_ehdr; | |
110 | gdb_int64_bytes oi_orig_ehdr; | |
111 | gdb_int64_bytes oi_pathname; | |
112 | gdb_int32_bytes oi_pathname_len; | |
113 | gdb_int32_bytes padding; | |
114 | }; | |
115 | ||
116 | /* Union of all of the above (plus a split out magic field). */ | |
117 | ||
118 | union irix_obj_info | |
119 | { | |
120 | gdb_int32_bytes magic; | |
121 | struct irix_obj_list ol32; | |
122 | struct irix_elf32_obj_info oi32; | |
123 | struct irix_elf64_obj_info oi64; | |
124 | }; | |
125 | ||
126 | /* MIPS sign extends its 32 bit addresses. We could conceivably use | |
127 | extract_typed_address here, but to do so, we'd have to construct an | |
ae0167b9 | 128 | appropriate type. Calling extract_signed_integer seems simpler. */ |
dabbe2c0 KB |
129 | |
130 | static CORE_ADDR | |
131 | extract_mips_address (void *addr, int len) | |
132 | { | |
ae0167b9 | 133 | return extract_signed_integer (addr, len); |
dabbe2c0 KB |
134 | } |
135 | ||
136 | /* Fetch and return the link map data associated with ADDR. Note that | |
137 | this routine automatically determines which (of three) link map | |
138 | formats is in use by the target. */ | |
139 | ||
140 | struct lm_info | |
141 | fetch_lm_info (CORE_ADDR addr) | |
142 | { | |
143 | struct lm_info li; | |
144 | union irix_obj_info buf; | |
145 | ||
146 | li.addr = addr; | |
147 | ||
148 | /* The smallest region that we'll need is for buf.ol32. We'll read | |
149 | that first. We'll read more of the buffer later if we have to deal | |
150 | with one of the other cases. (We don't want to incur a memory error | |
151 | if we were to read a larger region that generates an error due to | |
152 | being at the end of a page or the like.) */ | |
153 | read_memory (addr, (char *) &buf, sizeof (buf.ol32)); | |
154 | ||
155 | if (extract_unsigned_integer (&buf.magic, sizeof (buf.magic)) != 0xffffffff) | |
156 | { | |
157 | /* Use buf.ol32... */ | |
158 | char obj_buf[432]; | |
159 | CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data, | |
160 | sizeof (buf.ol32.data)); | |
161 | li.next = extract_mips_address (&buf.ol32.next, sizeof (buf.ol32.next)); | |
162 | ||
163 | read_memory (obj_addr, obj_buf, sizeof (obj_buf)); | |
164 | ||
165 | li.pathname_addr = extract_mips_address (&obj_buf[236], 4); | |
166 | li.pathname_len = 0; /* unknown */ | |
167 | li.reloc_offset = extract_mips_address (&obj_buf[196], 4) | |
168 | - extract_mips_address (&obj_buf[248], 4); | |
169 | ||
170 | } | |
171 | else if (extract_unsigned_integer (&buf.oi32.oi_size, | |
172 | sizeof (buf.oi32.oi_size)) | |
173 | == sizeof (buf.oi32)) | |
174 | { | |
175 | /* Use buf.oi32... */ | |
176 | ||
177 | /* Read rest of buffer. */ | |
178 | read_memory (addr + sizeof (buf.ol32), | |
179 | ((char *) &buf) + sizeof (buf.ol32), | |
180 | sizeof (buf.oi32) - sizeof (buf.ol32)); | |
181 | ||
182 | /* Fill in fields using buffer contents. */ | |
183 | li.next = extract_mips_address (&buf.oi32.oi_next, | |
184 | sizeof (buf.oi32.oi_next)); | |
185 | li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr, | |
186 | sizeof (buf.oi32.oi_ehdr)) | |
187 | - extract_mips_address (&buf.oi32.oi_orig_ehdr, | |
188 | sizeof (buf.oi32.oi_orig_ehdr)); | |
189 | li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname, | |
190 | sizeof (buf.oi32.oi_pathname)); | |
191 | li.pathname_len = extract_unsigned_integer (&buf.oi32.oi_pathname_len, | |
192 | sizeof (buf.oi32. | |
193 | oi_pathname_len)); | |
194 | } | |
195 | else if (extract_unsigned_integer (&buf.oi64.oi_size, | |
196 | sizeof (buf.oi64.oi_size)) | |
197 | == sizeof (buf.oi64)) | |
198 | { | |
199 | /* Use buf.oi64... */ | |
200 | ||
201 | /* Read rest of buffer. */ | |
202 | read_memory (addr + sizeof (buf.ol32), | |
203 | ((char *) &buf) + sizeof (buf.ol32), | |
204 | sizeof (buf.oi64) - sizeof (buf.ol32)); | |
205 | ||
206 | /* Fill in fields using buffer contents. */ | |
207 | li.next = extract_mips_address (&buf.oi64.oi_next, | |
208 | sizeof (buf.oi64.oi_next)); | |
209 | li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr, | |
210 | sizeof (buf.oi64.oi_ehdr)) | |
211 | - extract_mips_address (&buf.oi64.oi_orig_ehdr, | |
212 | sizeof (buf.oi64.oi_orig_ehdr)); | |
213 | li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname, | |
214 | sizeof (buf.oi64.oi_pathname)); | |
215 | li.pathname_len = extract_unsigned_integer (&buf.oi64.oi_pathname_len, | |
216 | sizeof (buf.oi64. | |
217 | oi_pathname_len)); | |
218 | } | |
219 | else | |
220 | { | |
8a3fe4f8 | 221 | error (_("Unable to fetch shared library obj_info or obj_list info.")); |
dabbe2c0 KB |
222 | } |
223 | ||
224 | return li; | |
225 | } | |
226 | ||
227 | /* The symbol which starts off the list of shared libraries. */ | |
228 | #define DEBUG_BASE "__rld_obj_head" | |
229 | ||
230 | char shadow_contents[BREAKPOINT_MAX]; /* Stash old bkpt addr contents */ | |
231 | ||
232 | static CORE_ADDR debug_base; /* Base of dynamic linker structures */ | |
233 | static CORE_ADDR breakpoint_addr; /* Address where end bkpt is set */ | |
234 | ||
235 | /* | |
236 | ||
237 | LOCAL FUNCTION | |
238 | ||
239 | locate_base -- locate the base address of dynamic linker structs | |
240 | ||
241 | SYNOPSIS | |
242 | ||
243 | CORE_ADDR locate_base (void) | |
244 | ||
245 | DESCRIPTION | |
246 | ||
247 | For both the SunOS and SVR4 shared library implementations, if the | |
248 | inferior executable has been linked dynamically, there is a single | |
249 | address somewhere in the inferior's data space which is the key to | |
250 | locating all of the dynamic linker's runtime structures. This | |
251 | address is the value of the symbol defined by the macro DEBUG_BASE. | |
252 | The job of this function is to find and return that address, or to | |
253 | return 0 if there is no such address (the executable is statically | |
254 | linked for example). | |
255 | ||
256 | For SunOS, the job is almost trivial, since the dynamic linker and | |
257 | all of it's structures are statically linked to the executable at | |
258 | link time. Thus the symbol for the address we are looking for has | |
259 | already been added to the minimal symbol table for the executable's | |
260 | objfile at the time the symbol file's symbols were read, and all we | |
261 | have to do is look it up there. Note that we explicitly do NOT want | |
262 | to find the copies in the shared library. | |
263 | ||
264 | The SVR4 version is much more complicated because the dynamic linker | |
265 | and it's structures are located in the shared C library, which gets | |
266 | run as the executable's "interpreter" by the kernel. We have to go | |
267 | to a lot more work to discover the address of DEBUG_BASE. Because | |
268 | of this complexity, we cache the value we find and return that value | |
269 | on subsequent invocations. Note there is no copy in the executable | |
270 | symbol tables. | |
271 | ||
272 | Irix 5 is basically like SunOS. | |
273 | ||
274 | Note that we can assume nothing about the process state at the time | |
275 | we need to find this address. We may be stopped on the first instruc- | |
276 | tion of the interpreter (C shared library), the first instruction of | |
277 | the executable itself, or somewhere else entirely (if we attached | |
278 | to the process for example). | |
279 | ||
280 | */ | |
281 | ||
282 | static CORE_ADDR | |
283 | locate_base (void) | |
284 | { | |
285 | struct minimal_symbol *msymbol; | |
286 | CORE_ADDR address = 0; | |
287 | ||
288 | msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile); | |
289 | if ((msymbol != NULL) && (SYMBOL_VALUE_ADDRESS (msymbol) != 0)) | |
290 | { | |
291 | address = SYMBOL_VALUE_ADDRESS (msymbol); | |
292 | } | |
293 | return (address); | |
294 | } | |
295 | ||
296 | /* | |
297 | ||
298 | LOCAL FUNCTION | |
299 | ||
300 | disable_break -- remove the "mapping changed" breakpoint | |
301 | ||
302 | SYNOPSIS | |
303 | ||
304 | static int disable_break () | |
305 | ||
306 | DESCRIPTION | |
307 | ||
308 | Removes the breakpoint that gets hit when the dynamic linker | |
309 | completes a mapping change. | |
310 | ||
311 | */ | |
312 | ||
313 | static int | |
314 | disable_break (void) | |
315 | { | |
316 | int status = 1; | |
317 | ||
318 | ||
319 | /* Note that breakpoint address and original contents are in our address | |
320 | space, so we just need to write the original contents back. */ | |
321 | ||
322 | if (memory_remove_breakpoint (breakpoint_addr, shadow_contents) != 0) | |
323 | { | |
324 | status = 0; | |
325 | } | |
326 | ||
9185ddce JB |
327 | /* Note that it is possible that we have stopped at a location that |
328 | is different from the location where we inserted our breakpoint. | |
329 | On mips-irix, we can actually land in __dbx_init(), so we should | |
330 | not check the PC against our breakpoint address here. See procfs.c | |
331 | for more details. */ | |
dabbe2c0 KB |
332 | |
333 | return (status); | |
334 | } | |
335 | ||
336 | /* | |
337 | ||
338 | LOCAL FUNCTION | |
339 | ||
340 | enable_break -- arrange for dynamic linker to hit breakpoint | |
341 | ||
342 | SYNOPSIS | |
343 | ||
344 | int enable_break (void) | |
345 | ||
346 | DESCRIPTION | |
347 | ||
348 | This functions inserts a breakpoint at the entry point of the | |
349 | main executable, where all shared libraries are mapped in. | |
350 | */ | |
351 | ||
352 | static int | |
353 | enable_break (void) | |
354 | { | |
355 | if (symfile_objfile != NULL | |
9ab9195f | 356 | && target_insert_breakpoint (entry_point_address (), |
dabbe2c0 KB |
357 | shadow_contents) == 0) |
358 | { | |
9ab9195f | 359 | breakpoint_addr = entry_point_address (); |
dabbe2c0 KB |
360 | return 1; |
361 | } | |
362 | ||
363 | return 0; | |
364 | } | |
365 | ||
366 | /* | |
367 | ||
368 | LOCAL FUNCTION | |
369 | ||
370 | irix_solib_create_inferior_hook -- shared library startup support | |
371 | ||
372 | SYNOPSIS | |
373 | ||
7095b863 | 374 | void solib_create_inferior_hook () |
dabbe2c0 KB |
375 | |
376 | DESCRIPTION | |
377 | ||
378 | When gdb starts up the inferior, it nurses it along (through the | |
379 | shell) until it is ready to execute it's first instruction. At this | |
380 | point, this function gets called via expansion of the macro | |
381 | SOLIB_CREATE_INFERIOR_HOOK. | |
382 | ||
383 | For SunOS executables, this first instruction is typically the | |
384 | one at "_start", or a similar text label, regardless of whether | |
385 | the executable is statically or dynamically linked. The runtime | |
386 | startup code takes care of dynamically linking in any shared | |
387 | libraries, once gdb allows the inferior to continue. | |
388 | ||
389 | For SVR4 executables, this first instruction is either the first | |
390 | instruction in the dynamic linker (for dynamically linked | |
391 | executables) or the instruction at "start" for statically linked | |
392 | executables. For dynamically linked executables, the system | |
393 | first exec's /lib/libc.so.N, which contains the dynamic linker, | |
394 | and starts it running. The dynamic linker maps in any needed | |
395 | shared libraries, maps in the actual user executable, and then | |
396 | jumps to "start" in the user executable. | |
397 | ||
398 | For both SunOS shared libraries, and SVR4 shared libraries, we | |
399 | can arrange to cooperate with the dynamic linker to discover the | |
400 | names of shared libraries that are dynamically linked, and the | |
401 | base addresses to which they are linked. | |
402 | ||
403 | This function is responsible for discovering those names and | |
404 | addresses, and saving sufficient information about them to allow | |
405 | their symbols to be read at a later time. | |
406 | ||
407 | FIXME | |
408 | ||
409 | Between enable_break() and disable_break(), this code does not | |
410 | properly handle hitting breakpoints which the user might have | |
411 | set in the startup code or in the dynamic linker itself. Proper | |
412 | handling will probably have to wait until the implementation is | |
413 | changed to use the "breakpoint handler function" method. | |
414 | ||
415 | Also, what if child has exit()ed? Must exit loop somehow. | |
416 | */ | |
417 | ||
418 | static void | |
419 | irix_solib_create_inferior_hook (void) | |
420 | { | |
421 | if (!enable_break ()) | |
422 | { | |
8a3fe4f8 | 423 | warning (_("shared library handler failed to enable breakpoint")); |
dabbe2c0 KB |
424 | return; |
425 | } | |
426 | ||
427 | /* Now run the target. It will eventually hit the breakpoint, at | |
428 | which point all of the libraries will have been mapped in and we | |
429 | can go groveling around in the dynamic linker structures to find | |
430 | out what we need to know about them. */ | |
431 | ||
432 | clear_proceed_status (); | |
c0236d92 | 433 | stop_soon = STOP_QUIETLY; |
dabbe2c0 KB |
434 | stop_signal = TARGET_SIGNAL_0; |
435 | do | |
436 | { | |
437 | target_resume (pid_to_ptid (-1), 0, stop_signal); | |
438 | wait_for_inferior (); | |
439 | } | |
440 | while (stop_signal != TARGET_SIGNAL_TRAP); | |
441 | ||
442 | /* We are now either at the "mapping complete" breakpoint (or somewhere | |
443 | else, a condition we aren't prepared to deal with anyway), so adjust | |
444 | the PC as necessary after a breakpoint, disable the breakpoint, and | |
445 | add any shared libraries that were mapped in. */ | |
446 | ||
447 | if (!disable_break ()) | |
448 | { | |
8a3fe4f8 | 449 | warning (_("shared library handler failed to disable breakpoint")); |
dabbe2c0 KB |
450 | } |
451 | ||
452 | /* solib_add will call reinit_frame_cache. | |
453 | But we are stopped in the startup code and we might not have symbols | |
454 | for the startup code, so heuristic_proc_start could be called | |
455 | and will put out an annoying warning. | |
c0236d92 | 456 | Delaying the resetting of stop_soon until after symbol loading |
dabbe2c0 KB |
457 | suppresses the warning. */ |
458 | solib_add ((char *) 0, 0, (struct target_ops *) 0, auto_solib_add); | |
c0236d92 | 459 | stop_soon = NO_STOP_QUIETLY; |
dabbe2c0 KB |
460 | re_enable_breakpoints_in_shlibs (); |
461 | } | |
462 | ||
463 | /* LOCAL FUNCTION | |
464 | ||
465 | current_sos -- build a list of currently loaded shared objects | |
466 | ||
467 | SYNOPSIS | |
468 | ||
469 | struct so_list *current_sos () | |
470 | ||
471 | DESCRIPTION | |
472 | ||
473 | Build a list of `struct so_list' objects describing the shared | |
474 | objects currently loaded in the inferior. This list does not | |
475 | include an entry for the main executable file. | |
476 | ||
477 | Note that we only gather information directly available from the | |
478 | inferior --- we don't examine any of the shared library files | |
479 | themselves. The declaration of `struct so_list' says which fields | |
480 | we provide values for. */ | |
481 | ||
482 | static struct so_list * | |
483 | irix_current_sos (void) | |
484 | { | |
485 | CORE_ADDR lma; | |
486 | char addr_buf[8]; | |
487 | struct so_list *head = 0; | |
488 | struct so_list **link_ptr = &head; | |
489 | int is_first = 1; | |
490 | struct lm_info lm; | |
491 | ||
492 | /* Make sure we've looked up the inferior's dynamic linker's base | |
493 | structure. */ | |
494 | if (!debug_base) | |
495 | { | |
496 | debug_base = locate_base (); | |
497 | ||
498 | /* If we can't find the dynamic linker's base structure, this | |
499 | must not be a dynamically linked executable. Hmm. */ | |
500 | if (!debug_base) | |
501 | return 0; | |
502 | } | |
503 | ||
504 | read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT); | |
505 | lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT); | |
506 | ||
507 | while (lma) | |
508 | { | |
509 | lm = fetch_lm_info (lma); | |
510 | if (!is_first) | |
511 | { | |
512 | int errcode; | |
513 | char *name_buf; | |
514 | int name_size; | |
515 | struct so_list *new | |
516 | = (struct so_list *) xmalloc (sizeof (struct so_list)); | |
517 | struct cleanup *old_chain = make_cleanup (xfree, new); | |
518 | ||
519 | memset (new, 0, sizeof (*new)); | |
520 | ||
521 | new->lm_info = xmalloc (sizeof (struct lm_info)); | |
522 | make_cleanup (xfree, new->lm_info); | |
523 | ||
524 | *new->lm_info = lm; | |
525 | ||
526 | /* Extract this shared object's name. */ | |
527 | name_size = lm.pathname_len; | |
528 | if (name_size == 0) | |
529 | name_size = SO_NAME_MAX_PATH_SIZE - 1; | |
530 | ||
531 | if (name_size >= SO_NAME_MAX_PATH_SIZE) | |
532 | { | |
533 | name_size = SO_NAME_MAX_PATH_SIZE - 1; | |
534 | warning | |
535 | ("current_sos: truncating name of %d characters to only %d characters", | |
536 | lm.pathname_len, name_size); | |
537 | } | |
538 | ||
539 | target_read_string (lm.pathname_addr, &name_buf, | |
540 | name_size, &errcode); | |
541 | if (errcode != 0) | |
8a3fe4f8 | 542 | warning (_("Can't read pathname for load map: %s."), |
dabbe2c0 | 543 | safe_strerror (errcode)); |
dabbe2c0 KB |
544 | else |
545 | { | |
546 | strncpy (new->so_name, name_buf, name_size); | |
547 | new->so_name[name_size] = '\0'; | |
548 | xfree (name_buf); | |
549 | strcpy (new->so_original_name, new->so_name); | |
550 | } | |
551 | ||
552 | new->next = 0; | |
553 | *link_ptr = new; | |
554 | link_ptr = &new->next; | |
555 | ||
556 | discard_cleanups (old_chain); | |
557 | } | |
558 | is_first = 0; | |
559 | lma = lm.next; | |
560 | } | |
561 | ||
562 | return head; | |
563 | } | |
564 | ||
565 | /* | |
566 | ||
567 | LOCAL FUNCTION | |
568 | ||
569 | irix_open_symbol_file_object | |
570 | ||
571 | SYNOPSIS | |
572 | ||
573 | void irix_open_symbol_file_object (void *from_tty) | |
574 | ||
575 | DESCRIPTION | |
576 | ||
577 | If no open symbol file, attempt to locate and open the main symbol | |
578 | file. On IRIX, this is the first link map entry. If its name is | |
579 | here, we can open it. Useful when attaching to a process without | |
580 | first loading its symbol file. | |
581 | ||
582 | If FROM_TTYP dereferences to a non-zero integer, allow messages to | |
583 | be printed. This parameter is a pointer rather than an int because | |
584 | open_symbol_file_object() is called via catch_errors() and | |
585 | catch_errors() requires a pointer argument. */ | |
586 | ||
587 | static int | |
588 | irix_open_symbol_file_object (void *from_ttyp) | |
589 | { | |
590 | CORE_ADDR lma; | |
591 | char addr_buf[8]; | |
592 | struct lm_info lm; | |
593 | struct cleanup *cleanups; | |
594 | int errcode; | |
595 | int from_tty = *(int *) from_ttyp; | |
596 | char *filename; | |
597 | ||
598 | if (symfile_objfile) | |
599 | if (!query ("Attempt to reload symbols from process? ")) | |
600 | return 0; | |
601 | ||
602 | if ((debug_base = locate_base ()) == 0) | |
603 | return 0; /* failed somehow... */ | |
604 | ||
605 | /* First link map member should be the executable. */ | |
606 | read_memory (debug_base, addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT); | |
607 | lma = extract_mips_address (addr_buf, TARGET_ADDR_BIT / TARGET_CHAR_BIT); | |
608 | if (lma == 0) | |
609 | return 0; /* failed somehow... */ | |
610 | ||
611 | lm = fetch_lm_info (lma); | |
612 | ||
613 | if (lm.pathname_addr == 0) | |
614 | return 0; /* No filename. */ | |
615 | ||
616 | /* Now fetch the filename from target memory. */ | |
617 | target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1, | |
618 | &errcode); | |
619 | ||
620 | if (errcode) | |
621 | { | |
8a3fe4f8 | 622 | warning (_("failed to read exec filename from attached file: %s"), |
dabbe2c0 KB |
623 | safe_strerror (errcode)); |
624 | return 0; | |
625 | } | |
626 | ||
627 | cleanups = make_cleanup (xfree, filename); | |
628 | /* Have a pathname: read the symbol file. */ | |
629 | symbol_file_add_main (filename, from_tty); | |
630 | ||
631 | do_cleanups (cleanups); | |
632 | ||
633 | return 1; | |
634 | } | |
635 | ||
636 | ||
637 | /* | |
638 | ||
639 | LOCAL FUNCTION | |
640 | ||
641 | irix_special_symbol_handling -- additional shared library symbol handling | |
642 | ||
643 | SYNOPSIS | |
644 | ||
645 | void irix_special_symbol_handling () | |
646 | ||
647 | DESCRIPTION | |
648 | ||
649 | Once the symbols from a shared object have been loaded in the usual | |
650 | way, we are called to do any system specific symbol handling that | |
651 | is needed. | |
652 | ||
653 | For SunOS4, this consisted of grunging around in the dynamic | |
654 | linkers structures to find symbol definitions for "common" symbols | |
655 | and adding them to the minimal symbol table for the runtime common | |
656 | objfile. | |
657 | ||
658 | However, for IRIX, there's nothing to do. | |
659 | ||
660 | */ | |
661 | ||
662 | static void | |
663 | irix_special_symbol_handling (void) | |
664 | { | |
665 | } | |
666 | ||
667 | /* Using the solist entry SO, relocate the addresses in SEC. */ | |
668 | ||
669 | static void | |
670 | irix_relocate_section_addresses (struct so_list *so, | |
671 | struct section_table *sec) | |
672 | { | |
673 | sec->addr += so->lm_info->reloc_offset; | |
674 | sec->endaddr += so->lm_info->reloc_offset; | |
675 | } | |
676 | ||
677 | /* Free the lm_info struct. */ | |
678 | ||
679 | static void | |
680 | irix_free_so (struct so_list *so) | |
681 | { | |
682 | xfree (so->lm_info); | |
683 | } | |
684 | ||
685 | /* Clear backend specific state. */ | |
686 | ||
687 | static void | |
688 | irix_clear_solib (void) | |
689 | { | |
690 | debug_base = 0; | |
691 | } | |
692 | ||
693 | /* Return 1 if PC lies in the dynamic symbol resolution code of the | |
694 | run time loader. */ | |
695 | static int | |
696 | irix_in_dynsym_resolve_code (CORE_ADDR pc) | |
697 | { | |
698 | return 0; | |
699 | } | |
700 | ||
701 | static struct target_so_ops irix_so_ops; | |
702 | ||
703 | void | |
704 | _initialize_irix_solib (void) | |
705 | { | |
706 | irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses; | |
707 | irix_so_ops.free_so = irix_free_so; | |
708 | irix_so_ops.clear_solib = irix_clear_solib; | |
709 | irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook; | |
710 | irix_so_ops.special_symbol_handling = irix_special_symbol_handling; | |
711 | irix_so_ops.current_sos = irix_current_sos; | |
712 | irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object; | |
713 | irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code; | |
714 | ||
715 | /* FIXME: Don't do this here. *_gdbarch_init() should set so_ops. */ | |
716 | current_target_so_ops = &irix_so_ops; | |
717 | } |