[IRIX] eliminate deprecated_insert_raw_breakpoint uses
[deliverable/binutils-gdb.git] / gdb / solib-irix.c
CommitLineData
dabbe2c0 1/* Shared library support for IRIX.
ecd75fc8 2 Copyright (C) 1993-2014 Free Software Foundation, Inc.
dabbe2c0
KB
3
4 This file was created using portions of irix5-nat.c originally
5 contributed to GDB by Ian Lance Taylor.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
dabbe2c0
KB
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
dabbe2c0
KB
21
22#include "defs.h"
23
24#include "symtab.h"
25#include "bfd.h"
9ab9195f
EZ
26/* FIXME: ezannoni/2004-02-13 Verify that the include below is
27 really needed. */
dabbe2c0
KB
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
31#include "target.h"
32#include "inferior.h"
45741a9c 33#include "infrun.h"
2020b7ab 34#include "gdbthread.h"
dabbe2c0
KB
35
36#include "solist.h"
734598d9
UW
37#include "solib.h"
38#include "solib-irix.h"
39
dabbe2c0
KB
40
41/* Link map info to include in an allocate so_list entry. Unlike some
42 of the other solib backends, this (Irix) backend chooses to decode
43 the link map info obtained from the target and store it as (mostly)
44 CORE_ADDRs which need no further decoding. This is more convenient
45 because there are three different link map formats to worry about.
46 We use a single routine (fetch_lm_info) to read (and decode) the target
47 specific link map data. */
48
49struct lm_info
50{
51 CORE_ADDR addr; /* address of obj_info or obj_list
52 struct on target (from which the
53 following information is obtained). */
54 CORE_ADDR next; /* address of next item in list. */
55 CORE_ADDR reloc_offset; /* amount to relocate by */
56 CORE_ADDR pathname_addr; /* address of pathname */
57 int pathname_len; /* length of pathname */
58};
59
60/* It's not desirable to use the system header files to obtain the
61 structure of the obj_list or obj_info structs. Therefore, we use a
62 platform neutral representation which has been derived from the IRIX
63 header files. */
64
65typedef struct
66{
725a826f 67 gdb_byte b[4];
dabbe2c0
KB
68}
69gdb_int32_bytes;
70typedef struct
71{
725a826f 72 gdb_byte b[8];
dabbe2c0
KB
73}
74gdb_int64_bytes;
75
76/* The "old" obj_list struct. This is used with old (o32) binaries.
77 The ``data'' member points at a much larger and more complicated
78 struct which we will only refer to by offsets. See
79 fetch_lm_info(). */
80
81struct irix_obj_list
82{
83 gdb_int32_bytes data;
84 gdb_int32_bytes next;
85 gdb_int32_bytes prev;
86};
87
88/* The ELF32 and ELF64 versions of the above struct. The oi_magic value
89 corresponds to the ``data'' value in the "old" struct. When this value
90 is 0xffffffff, the data will be in one of the following formats. The
91 ``oi_size'' field is used to decide which one we actually have. */
92
93struct irix_elf32_obj_info
94{
95 gdb_int32_bytes oi_magic;
96 gdb_int32_bytes oi_size;
97 gdb_int32_bytes oi_next;
98 gdb_int32_bytes oi_prev;
99 gdb_int32_bytes oi_ehdr;
100 gdb_int32_bytes oi_orig_ehdr;
101 gdb_int32_bytes oi_pathname;
102 gdb_int32_bytes oi_pathname_len;
103};
104
105struct irix_elf64_obj_info
106{
107 gdb_int32_bytes oi_magic;
108 gdb_int32_bytes oi_size;
109 gdb_int64_bytes oi_next;
110 gdb_int64_bytes oi_prev;
111 gdb_int64_bytes oi_ehdr;
112 gdb_int64_bytes oi_orig_ehdr;
113 gdb_int64_bytes oi_pathname;
114 gdb_int32_bytes oi_pathname_len;
115 gdb_int32_bytes padding;
116};
117
118/* Union of all of the above (plus a split out magic field). */
119
120union irix_obj_info
121{
122 gdb_int32_bytes magic;
123 struct irix_obj_list ol32;
124 struct irix_elf32_obj_info oi32;
125 struct irix_elf64_obj_info oi64;
126};
127
128/* MIPS sign extends its 32 bit addresses. We could conceivably use
129 extract_typed_address here, but to do so, we'd have to construct an
ae0167b9 130 appropriate type. Calling extract_signed_integer seems simpler. */
dabbe2c0
KB
131
132static CORE_ADDR
e17a4113 133extract_mips_address (void *addr, int len, enum bfd_endian byte_order)
dabbe2c0 134{
e17a4113 135 return extract_signed_integer (addr, len, byte_order);
dabbe2c0
KB
136}
137
138/* Fetch and return the link map data associated with ADDR. Note that
139 this routine automatically determines which (of three) link map
140 formats is in use by the target. */
141
63807e1d 142static struct lm_info
dabbe2c0
KB
143fetch_lm_info (CORE_ADDR addr)
144{
f5656ead 145 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
dabbe2c0
KB
146 struct lm_info li;
147 union irix_obj_info buf;
148
149 li.addr = addr;
150
151 /* The smallest region that we'll need is for buf.ol32. We'll read
152 that first. We'll read more of the buffer later if we have to deal
153 with one of the other cases. (We don't want to incur a memory error
154 if we were to read a larger region that generates an error due to
155 being at the end of a page or the like.) */
948f8e3d 156 read_memory (addr, (gdb_byte *) &buf, sizeof (buf.ol32));
dabbe2c0 157
e17a4113
UW
158 if (extract_unsigned_integer (buf.magic.b, sizeof (buf.magic), byte_order)
159 != 0xffffffff)
dabbe2c0 160 {
c378eb4e 161 /* Use buf.ol32... */
948f8e3d 162 gdb_byte obj_buf[432];
dabbe2c0 163 CORE_ADDR obj_addr = extract_mips_address (&buf.ol32.data,
e17a4113
UW
164 sizeof (buf.ol32.data),
165 byte_order);
433759f7 166
e17a4113
UW
167 li.next = extract_mips_address (&buf.ol32.next,
168 sizeof (buf.ol32.next), byte_order);
dabbe2c0
KB
169
170 read_memory (obj_addr, obj_buf, sizeof (obj_buf));
171
e17a4113 172 li.pathname_addr = extract_mips_address (&obj_buf[236], 4, byte_order);
dabbe2c0 173 li.pathname_len = 0; /* unknown */
e17a4113
UW
174 li.reloc_offset = extract_mips_address (&obj_buf[196], 4, byte_order)
175 - extract_mips_address (&obj_buf[248], 4, byte_order);
dabbe2c0
KB
176
177 }
725a826f 178 else if (extract_unsigned_integer (buf.oi32.oi_size.b,
e17a4113 179 sizeof (buf.oi32.oi_size), byte_order)
dabbe2c0
KB
180 == sizeof (buf.oi32))
181 {
182 /* Use buf.oi32... */
183
184 /* Read rest of buffer. */
185 read_memory (addr + sizeof (buf.ol32),
948f8e3d 186 ((gdb_byte *) &buf) + sizeof (buf.ol32),
dabbe2c0
KB
187 sizeof (buf.oi32) - sizeof (buf.ol32));
188
189 /* Fill in fields using buffer contents. */
190 li.next = extract_mips_address (&buf.oi32.oi_next,
e17a4113 191 sizeof (buf.oi32.oi_next), byte_order);
dabbe2c0 192 li.reloc_offset = extract_mips_address (&buf.oi32.oi_ehdr,
e17a4113
UW
193 sizeof (buf.oi32.oi_ehdr),
194 byte_order)
dabbe2c0 195 - extract_mips_address (&buf.oi32.oi_orig_ehdr,
e17a4113 196 sizeof (buf.oi32.oi_orig_ehdr), byte_order);
dabbe2c0 197 li.pathname_addr = extract_mips_address (&buf.oi32.oi_pathname,
e17a4113
UW
198 sizeof (buf.oi32.oi_pathname),
199 byte_order);
725a826f 200 li.pathname_len = extract_unsigned_integer (buf.oi32.oi_pathname_len.b,
dabbe2c0 201 sizeof (buf.oi32.
e17a4113
UW
202 oi_pathname_len),
203 byte_order);
dabbe2c0 204 }
725a826f 205 else if (extract_unsigned_integer (buf.oi64.oi_size.b,
e17a4113 206 sizeof (buf.oi64.oi_size), byte_order)
dabbe2c0
KB
207 == sizeof (buf.oi64))
208 {
209 /* Use buf.oi64... */
210
211 /* Read rest of buffer. */
212 read_memory (addr + sizeof (buf.ol32),
948f8e3d 213 ((gdb_byte *) &buf) + sizeof (buf.ol32),
dabbe2c0
KB
214 sizeof (buf.oi64) - sizeof (buf.ol32));
215
216 /* Fill in fields using buffer contents. */
217 li.next = extract_mips_address (&buf.oi64.oi_next,
e17a4113 218 sizeof (buf.oi64.oi_next), byte_order);
dabbe2c0 219 li.reloc_offset = extract_mips_address (&buf.oi64.oi_ehdr,
e17a4113
UW
220 sizeof (buf.oi64.oi_ehdr),
221 byte_order)
dabbe2c0 222 - extract_mips_address (&buf.oi64.oi_orig_ehdr,
e17a4113 223 sizeof (buf.oi64.oi_orig_ehdr), byte_order);
dabbe2c0 224 li.pathname_addr = extract_mips_address (&buf.oi64.oi_pathname,
e17a4113
UW
225 sizeof (buf.oi64.oi_pathname),
226 byte_order);
725a826f 227 li.pathname_len = extract_unsigned_integer (buf.oi64.oi_pathname_len.b,
dabbe2c0 228 sizeof (buf.oi64.
e17a4113
UW
229 oi_pathname_len),
230 byte_order);
dabbe2c0
KB
231 }
232 else
233 {
8a3fe4f8 234 error (_("Unable to fetch shared library obj_info or obj_list info."));
dabbe2c0
KB
235 }
236
237 return li;
238}
239
240/* The symbol which starts off the list of shared libraries. */
241#define DEBUG_BASE "__rld_obj_head"
242
c378eb4e 243static CORE_ADDR debug_base; /* Base of dynamic linker structures. */
dabbe2c0 244
7f86f058 245/* Locate the base address of dynamic linker structs.
dabbe2c0
KB
246
247 For both the SunOS and SVR4 shared library implementations, if the
248 inferior executable has been linked dynamically, there is a single
249 address somewhere in the inferior's data space which is the key to
250 locating all of the dynamic linker's runtime structures. This
251 address is the value of the symbol defined by the macro DEBUG_BASE.
252 The job of this function is to find and return that address, or to
253 return 0 if there is no such address (the executable is statically
254 linked for example).
255
256 For SunOS, the job is almost trivial, since the dynamic linker and
257 all of it's structures are statically linked to the executable at
258 link time. Thus the symbol for the address we are looking for has
259 already been added to the minimal symbol table for the executable's
260 objfile at the time the symbol file's symbols were read, and all we
261 have to do is look it up there. Note that we explicitly do NOT want
262 to find the copies in the shared library.
263
264 The SVR4 version is much more complicated because the dynamic linker
265 and it's structures are located in the shared C library, which gets
266 run as the executable's "interpreter" by the kernel. We have to go
267 to a lot more work to discover the address of DEBUG_BASE. Because
268 of this complexity, we cache the value we find and return that value
269 on subsequent invocations. Note there is no copy in the executable
270 symbol tables.
271
272 Irix 5 is basically like SunOS.
273
274 Note that we can assume nothing about the process state at the time
275 we need to find this address. We may be stopped on the first instruc-
276 tion of the interpreter (C shared library), the first instruction of
277 the executable itself, or somewhere else entirely (if we attached
7f86f058 278 to the process for example). */
dabbe2c0
KB
279
280static CORE_ADDR
281locate_base (void)
282{
3b7344d5 283 struct bound_minimal_symbol msymbol;
dabbe2c0
KB
284 CORE_ADDR address = 0;
285
286 msymbol = lookup_minimal_symbol (DEBUG_BASE, NULL, symfile_objfile);
77e371c0 287 if ((msymbol.minsym != NULL) && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
dabbe2c0 288 {
77e371c0 289 address = BMSYMBOL_VALUE_ADDRESS (msymbol);
dabbe2c0
KB
290 }
291 return (address);
292}
293
dabbe2c0 294
7f86f058 295/* Arrange for dynamic linker to hit breakpoint.
dabbe2c0
KB
296
297 This functions inserts a breakpoint at the entry point of the
7f86f058 298 main executable, where all shared libraries are mapped in. */
dabbe2c0
KB
299
300static int
301enable_break (void)
302{
6c95b8df 303 if (symfile_objfile != NULL && has_stack_frames ())
dabbe2c0 304 {
abd0a5fa 305 CORE_ADDR entry_point;
6c95b8df 306
f37f681c
PA
307 if (entry_point_address_query (&entry_point))
308 {
309 create_solib_event_breakpoint (target_gdbarch (), entry_point);
310 return 1;
311 }
dabbe2c0
KB
312 }
313
314 return 0;
315}
316
f37f681c
PA
317/* Implement the "handle_event" target_solib_ops method. */
318
319static void
320irix_solib_handle_event (void)
321{
322 /* We are now at the "mapping complete" breakpoint, we no longer
323 need it. Note that it is possible that we have stopped at a
324 location that is different from the location where we inserted
325 our breakpoint: On mips-irix, we can actually land in
326 __dbx_link(), so we should not check the PC against our
327 breakpoint address here. See procfs.c for more details. Note
328 we're being called by the bpstat handling code, and so can't
329 delete the breakpoint immediately. Mark it for later deletion,
330 which has the same effect (it'll be removed before we next resume
331 or if we're stopping). */
332 remove_solib_event_breakpoints_at_next_stop ();
333
334 /* The caller calls solib_add, which will add any shared libraries
335 that were mapped in. */
336}
337
7f86f058 338/* Implement the "create_inferior_hook" target_solib_ops method.
dabbe2c0
KB
339
340 For SunOS executables, this first instruction is typically the
341 one at "_start", or a similar text label, regardless of whether
342 the executable is statically or dynamically linked. The runtime
343 startup code takes care of dynamically linking in any shared
344 libraries, once gdb allows the inferior to continue.
345
346 For SVR4 executables, this first instruction is either the first
347 instruction in the dynamic linker (for dynamically linked
348 executables) or the instruction at "start" for statically linked
349 executables. For dynamically linked executables, the system
350 first exec's /lib/libc.so.N, which contains the dynamic linker,
351 and starts it running. The dynamic linker maps in any needed
352 shared libraries, maps in the actual user executable, and then
353 jumps to "start" in the user executable.
354
355 For both SunOS shared libraries, and SVR4 shared libraries, we
356 can arrange to cooperate with the dynamic linker to discover the
357 names of shared libraries that are dynamically linked, and the
358 base addresses to which they are linked.
359
360 This function is responsible for discovering those names and
361 addresses, and saving sufficient information about them to allow
362 their symbols to be read at a later time.
363
364 FIXME
365
366 Between enable_break() and disable_break(), this code does not
367 properly handle hitting breakpoints which the user might have
368 set in the startup code or in the dynamic linker itself. Proper
369 handling will probably have to wait until the implementation is
370 changed to use the "breakpoint handler function" method.
371
7f86f058 372 Also, what if child has exit()ed? Must exit loop somehow. */
dabbe2c0
KB
373
374static void
268a4a75 375irix_solib_create_inferior_hook (int from_tty)
dabbe2c0 376{
d6b48e9c 377 struct inferior *inf;
2020b7ab
PA
378 struct thread_info *tp;
379
b2391021
JB
380 inf = current_inferior ();
381
382 /* If we are attaching to the inferior, the shared libraries
383 have already been mapped, so nothing more to do. */
384 if (inf->attach_flag)
385 return;
386
11377e68
JB
387 /* Likewise when debugging from a core file, the shared libraries
388 have already been mapped, so nothing more to do. */
389 if (!target_can_run (&current_target))
390 return;
391
dabbe2c0
KB
392 if (!enable_break ())
393 {
8a3fe4f8 394 warning (_("shared library handler failed to enable breakpoint"));
dabbe2c0
KB
395 return;
396 }
397
f37f681c
PA
398 /* The target will eventually hit the breakpoint, at which point all
399 of the libraries will have been mapped in and we can go groveling
400 around in the dynamic linker structures to find out what we need
401 to know about them. */
dabbe2c0
KB
402}
403
7f86f058 404/* Implement the "current_sos" target_so_ops method. */
dabbe2c0
KB
405
406static struct so_list *
407irix_current_sos (void)
408{
f5656ead
TT
409 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
410 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / TARGET_CHAR_BIT;
dabbe2c0 411 CORE_ADDR lma;
948f8e3d 412 gdb_byte addr_buf[8];
dabbe2c0
KB
413 struct so_list *head = 0;
414 struct so_list **link_ptr = &head;
415 int is_first = 1;
416 struct lm_info lm;
417
418 /* Make sure we've looked up the inferior's dynamic linker's base
419 structure. */
420 if (!debug_base)
421 {
422 debug_base = locate_base ();
423
424 /* If we can't find the dynamic linker's base structure, this
425 must not be a dynamically linked executable. Hmm. */
426 if (!debug_base)
427 return 0;
428 }
429
e17a4113
UW
430 read_memory (debug_base, addr_buf, addr_size);
431 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
432
433 while (lma)
434 {
435 lm = fetch_lm_info (lma);
436 if (!is_first)
437 {
438 int errcode;
439 char *name_buf;
440 int name_size;
441 struct so_list *new
442 = (struct so_list *) xmalloc (sizeof (struct so_list));
443 struct cleanup *old_chain = make_cleanup (xfree, new);
444
445 memset (new, 0, sizeof (*new));
446
447 new->lm_info = xmalloc (sizeof (struct lm_info));
448 make_cleanup (xfree, new->lm_info);
449
450 *new->lm_info = lm;
451
452 /* Extract this shared object's name. */
453 name_size = lm.pathname_len;
454 if (name_size == 0)
455 name_size = SO_NAME_MAX_PATH_SIZE - 1;
456
457 if (name_size >= SO_NAME_MAX_PATH_SIZE)
458 {
459 name_size = SO_NAME_MAX_PATH_SIZE - 1;
8f7e195f
JB
460 warning (_("current_sos: truncating name of "
461 "%d characters to only %d characters"),
3e43a32a 462 lm.pathname_len, name_size);
dabbe2c0
KB
463 }
464
465 target_read_string (lm.pathname_addr, &name_buf,
466 name_size, &errcode);
467 if (errcode != 0)
8a3fe4f8 468 warning (_("Can't read pathname for load map: %s."),
dabbe2c0 469 safe_strerror (errcode));
dabbe2c0
KB
470 else
471 {
472 strncpy (new->so_name, name_buf, name_size);
473 new->so_name[name_size] = '\0';
474 xfree (name_buf);
475 strcpy (new->so_original_name, new->so_name);
476 }
477
478 new->next = 0;
479 *link_ptr = new;
480 link_ptr = &new->next;
481
482 discard_cleanups (old_chain);
483 }
484 is_first = 0;
485 lma = lm.next;
486 }
487
488 return head;
489}
490
7f86f058 491/* Implement the "open_symbol_file_object" target_so_ops method.
dabbe2c0 492
7f86f058
PA
493 If no open symbol file, attempt to locate and open the main symbol
494 file. On IRIX, this is the first link map entry. If its name is
495 here, we can open it. Useful when attaching to a process without
496 first loading its symbol file. */
dabbe2c0
KB
497
498static int
499irix_open_symbol_file_object (void *from_ttyp)
500{
f5656ead
TT
501 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
502 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / TARGET_CHAR_BIT;
dabbe2c0 503 CORE_ADDR lma;
948f8e3d 504 gdb_byte addr_buf[8];
dabbe2c0
KB
505 struct lm_info lm;
506 struct cleanup *cleanups;
507 int errcode;
508 int from_tty = *(int *) from_ttyp;
509 char *filename;
510
511 if (symfile_objfile)
9e2f0ad4 512 if (!query (_("Attempt to reload symbols from process? ")))
dabbe2c0
KB
513 return 0;
514
515 if ((debug_base = locate_base ()) == 0)
516 return 0; /* failed somehow... */
517
518 /* First link map member should be the executable. */
e17a4113
UW
519 read_memory (debug_base, addr_buf, addr_size);
520 lma = extract_mips_address (addr_buf, addr_size, byte_order);
dabbe2c0
KB
521 if (lma == 0)
522 return 0; /* failed somehow... */
523
524 lm = fetch_lm_info (lma);
525
526 if (lm.pathname_addr == 0)
527 return 0; /* No filename. */
528
529 /* Now fetch the filename from target memory. */
530 target_read_string (lm.pathname_addr, &filename, SO_NAME_MAX_PATH_SIZE - 1,
531 &errcode);
532
533 if (errcode)
534 {
8a3fe4f8 535 warning (_("failed to read exec filename from attached file: %s"),
dabbe2c0
KB
536 safe_strerror (errcode));
537 return 0;
538 }
539
540 cleanups = make_cleanup (xfree, filename);
541 /* Have a pathname: read the symbol file. */
542 symbol_file_add_main (filename, from_tty);
543
544 do_cleanups (cleanups);
545
546 return 1;
547}
548
7f86f058 549/* Implement the "special_symbol_handling" target_so_ops method.
dabbe2c0 550
7f86f058 551 For IRIX, there's nothing to do. */
dabbe2c0
KB
552
553static void
554irix_special_symbol_handling (void)
555{
556}
557
558/* Using the solist entry SO, relocate the addresses in SEC. */
559
560static void
561irix_relocate_section_addresses (struct so_list *so,
0542c86d 562 struct target_section *sec)
dabbe2c0
KB
563{
564 sec->addr += so->lm_info->reloc_offset;
565 sec->endaddr += so->lm_info->reloc_offset;
566}
567
568/* Free the lm_info struct. */
569
570static void
571irix_free_so (struct so_list *so)
572{
573 xfree (so->lm_info);
574}
575
576/* Clear backend specific state. */
577
578static void
579irix_clear_solib (void)
580{
581 debug_base = 0;
582}
583
584/* Return 1 if PC lies in the dynamic symbol resolution code of the
585 run time loader. */
586static int
587irix_in_dynsym_resolve_code (CORE_ADDR pc)
588{
589 return 0;
590}
591
734598d9 592struct target_so_ops irix_so_ops;
dabbe2c0 593
63807e1d
PA
594/* Provide a prototype to silence -Wmissing-prototypes. */
595extern initialize_file_ftype _initialize_irix_solib;
596
dabbe2c0
KB
597void
598_initialize_irix_solib (void)
599{
600 irix_so_ops.relocate_section_addresses = irix_relocate_section_addresses;
601 irix_so_ops.free_so = irix_free_so;
602 irix_so_ops.clear_solib = irix_clear_solib;
603 irix_so_ops.solib_create_inferior_hook = irix_solib_create_inferior_hook;
604 irix_so_ops.special_symbol_handling = irix_special_symbol_handling;
605 irix_so_ops.current_sos = irix_current_sos;
606 irix_so_ops.open_symbol_file_object = irix_open_symbol_file_object;
607 irix_so_ops.in_dynsym_resolve_code = irix_in_dynsym_resolve_code;
831a0c44 608 irix_so_ops.bfd_open = solib_bfd_open;
f37f681c 609 irix_so_ops.handle_event = irix_solib_handle_event;
dabbe2c0 610}
This page took 1.277461 seconds and 4 git commands to generate.