[bfd][arm] Don't assert on suspicious build attributes in input file
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
61baf725 3 Copyright (C) 1990-2017 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
13437d4b
KB
54/* On SVR4 systems, a list of symbols in the dynamic linker where
55 GDB can try to place a breakpoint to monitor shared library
56 events.
57
58 If none of these symbols are found, or other errors occur, then
59 SVR4 systems will fall back to using a symbol as the "startup
60 mapping complete" breakpoint address. */
61
bc043ef3 62static const char * const solib_break_names[] =
13437d4b
KB
63{
64 "r_debug_state",
65 "_r_debug_state",
66 "_dl_debug_state",
67 "rtld_db_dlactivity",
4c7dcb84 68 "__dl_rtld_db_dlactivity",
1f72e589 69 "_rtld_debug_state",
4c0122c8 70
13437d4b
KB
71 NULL
72};
13437d4b 73
bc043ef3 74static const char * const bkpt_names[] =
13437d4b 75{
13437d4b 76 "_start",
ad3dcc5c 77 "__start",
13437d4b
KB
78 "main",
79 NULL
80};
13437d4b 81
bc043ef3 82static const char * const main_name_list[] =
13437d4b
KB
83{
84 "main_$main",
85 NULL
86};
87
f9e14852
GB
88/* What to do when a probe stop occurs. */
89
90enum probe_action
91{
92 /* Something went seriously wrong. Stop using probes and
93 revert to using the older interface. */
94 PROBES_INTERFACE_FAILED,
95
96 /* No action is required. The shared object list is still
97 valid. */
98 DO_NOTHING,
99
100 /* The shared object list should be reloaded entirely. */
101 FULL_RELOAD,
102
103 /* Attempt to incrementally update the shared object list. If
104 the update fails or is not possible, fall back to reloading
105 the list in full. */
106 UPDATE_OR_RELOAD,
107};
108
109/* A probe's name and its associated action. */
110
111struct probe_info
112{
113 /* The name of the probe. */
114 const char *name;
115
116 /* What to do when a probe stop occurs. */
117 enum probe_action action;
118};
119
120/* A list of named probes and their associated actions. If all
121 probes are present in the dynamic linker then the probes-based
122 interface will be used. */
123
124static const struct probe_info probe_info[] =
125{
126 { "init_start", DO_NOTHING },
127 { "init_complete", FULL_RELOAD },
128 { "map_start", DO_NOTHING },
129 { "map_failed", DO_NOTHING },
130 { "reloc_complete", UPDATE_OR_RELOAD },
131 { "unmap_start", DO_NOTHING },
132 { "unmap_complete", FULL_RELOAD },
133};
134
135#define NUM_PROBES ARRAY_SIZE (probe_info)
136
4d7b2d5b
JB
137/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
138 the same shared library. */
139
140static int
141svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
142{
143 if (strcmp (gdb_so_name, inferior_so_name) == 0)
144 return 1;
145
146 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
147 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
148 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
149 sometimes they have identical content, but are not linked to each
150 other. We don't restrict this check for Solaris, but the chances
151 of running into this situation elsewhere are very low. */
152 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
153 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
154 return 1;
155
156 /* Similarly, we observed the same issue with sparc64, but with
157 different locations. */
158 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
159 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
160 return 1;
161
162 return 0;
163}
164
165static int
166svr4_same (struct so_list *gdb, struct so_list *inferior)
167{
168 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
169}
170
d0e449a1 171static lm_info_svr4 *
3957565a 172lm_info_read (CORE_ADDR lm_addr)
13437d4b 173{
4b188b9f 174 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a 175 gdb_byte *lm;
d0e449a1 176 lm_info_svr4 *lm_info;
3957565a
JK
177 struct cleanup *back_to;
178
224c3ddb 179 lm = (gdb_byte *) xmalloc (lmo->link_map_size);
3957565a
JK
180 back_to = make_cleanup (xfree, lm);
181
182 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
183 {
184 warning (_("Error reading shared library list entry at %s"),
f5656ead 185 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
186 lm_info = NULL;
187 }
188 else
189 {
f5656ead 190 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 191
76e75227 192 lm_info = new lm_info_svr4;
3957565a
JK
193 lm_info->lm_addr = lm_addr;
194
195 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
196 ptr_type);
197 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
198 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
199 ptr_type);
200 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
201 ptr_type);
202 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
203 ptr_type);
204 }
205
206 do_cleanups (back_to);
207
208 return lm_info;
13437d4b
KB
209}
210
cc10cae3 211static int
b23518f0 212has_lm_dynamic_from_link_map (void)
cc10cae3
AO
213{
214 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
215
cfaefc65 216 return lmo->l_ld_offset >= 0;
cc10cae3
AO
217}
218
cc10cae3 219static CORE_ADDR
f65ce5fb 220lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 221{
d0e449a1
SM
222 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
223
224 if (!li->l_addr_p)
cc10cae3
AO
225 {
226 struct bfd_section *dyninfo_sect;
28f34a8f 227 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 228
d0e449a1 229 l_addr = li->l_addr_inferior;
cc10cae3 230
b23518f0 231 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
232 goto set_addr;
233
d0e449a1 234 l_dynaddr = li->l_ld;
cc10cae3
AO
235
236 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
237 if (dyninfo_sect == NULL)
238 goto set_addr;
239
240 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
241
242 if (dynaddr + l_addr != l_dynaddr)
243 {
28f34a8f 244 CORE_ADDR align = 0x1000;
4e1fc9c9 245 CORE_ADDR minpagesize = align;
28f34a8f 246
cc10cae3
AO
247 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
248 {
249 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
250 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
251 int i;
252
253 align = 1;
254
255 for (i = 0; i < ehdr->e_phnum; i++)
256 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
257 align = phdr[i].p_align;
4e1fc9c9
JK
258
259 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
260 }
261
262 /* Turn it into a mask. */
263 align--;
264
265 /* If the changes match the alignment requirements, we
266 assume we're using a core file that was generated by the
267 same binary, just prelinked with a different base offset.
268 If it doesn't match, we may have a different binary, the
269 same binary with the dynamic table loaded at an unrelated
270 location, or anything, really. To avoid regressions,
271 don't adjust the base offset in the latter case, although
272 odds are that, if things really changed, debugging won't
5c0d192f
JK
273 quite work.
274
275 One could expect more the condition
276 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
277 but the one below is relaxed for PPC. The PPC kernel supports
278 either 4k or 64k page sizes. To be prepared for 64k pages,
279 PPC ELF files are built using an alignment requirement of 64k.
280 However, when running on a kernel supporting 4k pages, the memory
281 mapping of the library may not actually happen on a 64k boundary!
282
283 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
284 equivalent to the possibly expected check above.)
285
286 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 287
02835898
JK
288 l_addr = l_dynaddr - dynaddr;
289
4e1fc9c9
JK
290 if ((l_addr & (minpagesize - 1)) == 0
291 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 292 {
701ed6dc 293 if (info_verbose)
ccf26247
JK
294 printf_unfiltered (_("Using PIC (Position Independent Code) "
295 "prelink displacement %s for \"%s\".\n"),
f5656ead 296 paddress (target_gdbarch (), l_addr),
ccf26247 297 so->so_name);
cc10cae3 298 }
79d4c408 299 else
02835898
JK
300 {
301 /* There is no way to verify the library file matches. prelink
302 can during prelinking of an unprelinked file (or unprelinking
303 of a prelinked file) shift the DYNAMIC segment by arbitrary
304 offset without any page size alignment. There is no way to
305 find out the ELF header and/or Program Headers for a limited
306 verification if it they match. One could do a verification
307 of the DYNAMIC segment. Still the found address is the best
308 one GDB could find. */
309
310 warning (_(".dynamic section for \"%s\" "
311 "is not at the expected address "
312 "(wrong library or version mismatch?)"), so->so_name);
313 }
cc10cae3
AO
314 }
315
316 set_addr:
d0e449a1
SM
317 li->l_addr = l_addr;
318 li->l_addr_p = 1;
cc10cae3
AO
319 }
320
d0e449a1 321 return li->l_addr;
cc10cae3
AO
322}
323
6c95b8df 324/* Per pspace SVR4 specific data. */
13437d4b 325
1a816a87
PA
326struct svr4_info
327{
c378eb4e 328 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
329
330 /* Validity flag for debug_loader_offset. */
331 int debug_loader_offset_p;
332
333 /* Load address for the dynamic linker, inferred. */
334 CORE_ADDR debug_loader_offset;
335
336 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
337 char *debug_loader_name;
338
339 /* Load map address for the main executable. */
340 CORE_ADDR main_lm_addr;
1a816a87 341
6c95b8df
PA
342 CORE_ADDR interp_text_sect_low;
343 CORE_ADDR interp_text_sect_high;
344 CORE_ADDR interp_plt_sect_low;
345 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
346
347 /* Nonzero if the list of objects was last obtained from the target
348 via qXfer:libraries-svr4:read. */
349 int using_xfer;
350
351 /* Table of struct probe_and_action instances, used by the
352 probes-based interface to map breakpoint addresses to probes
353 and their associated actions. Lookup is performed using
354 probe_and_action->probe->address. */
355 htab_t probes_table;
356
357 /* List of objects loaded into the inferior, used by the probes-
358 based interface. */
359 struct so_list *solib_list;
6c95b8df 360};
1a816a87 361
6c95b8df
PA
362/* Per-program-space data key. */
363static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 364
f9e14852
GB
365/* Free the probes table. */
366
367static void
368free_probes_table (struct svr4_info *info)
369{
370 if (info->probes_table == NULL)
371 return;
372
373 htab_delete (info->probes_table);
374 info->probes_table = NULL;
375}
376
377/* Free the solib list. */
378
379static void
380free_solib_list (struct svr4_info *info)
381{
382 svr4_free_library_list (&info->solib_list);
383 info->solib_list = NULL;
384}
385
6c95b8df
PA
386static void
387svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 388{
19ba03f4 389 struct svr4_info *info = (struct svr4_info *) arg;
f9e14852
GB
390
391 free_probes_table (info);
392 free_solib_list (info);
393
6c95b8df 394 xfree (info);
1a816a87
PA
395}
396
6c95b8df
PA
397/* Get the current svr4 data. If none is found yet, add it now. This
398 function always returns a valid object. */
34439770 399
6c95b8df
PA
400static struct svr4_info *
401get_svr4_info (void)
1a816a87 402{
6c95b8df 403 struct svr4_info *info;
1a816a87 404
19ba03f4
SM
405 info = (struct svr4_info *) program_space_data (current_program_space,
406 solib_svr4_pspace_data);
6c95b8df
PA
407 if (info != NULL)
408 return info;
34439770 409
41bf6aca 410 info = XCNEW (struct svr4_info);
6c95b8df
PA
411 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
412 return info;
1a816a87 413}
93a57060 414
13437d4b
KB
415/* Local function prototypes */
416
bc043ef3 417static int match_main (const char *);
13437d4b 418
97ec2c2f
UW
419/* Read program header TYPE from inferior memory. The header is found
420 by scanning the OS auxillary vector.
421
09919ac2
JK
422 If TYPE == -1, return the program headers instead of the contents of
423 one program header.
424
97ec2c2f
UW
425 Return a pointer to allocated memory holding the program header contents,
426 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
427 size of those contents is returned to P_SECT_SIZE. Likewise, the target
a738da3a
MF
428 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE and
429 the base address of the section is returned in BASE_ADDR. */
97ec2c2f
UW
430
431static gdb_byte *
a738da3a
MF
432read_program_header (int type, int *p_sect_size, int *p_arch_size,
433 CORE_ADDR *base_addr)
97ec2c2f 434{
f5656ead 435 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 436 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
437 int arch_size, sect_size;
438 CORE_ADDR sect_addr;
439 gdb_byte *buf;
43136979 440 int pt_phdr_p = 0;
97ec2c2f
UW
441
442 /* Get required auxv elements from target. */
443 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
444 return 0;
445 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
446 return 0;
447 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
448 return 0;
449 if (!at_phdr || !at_phnum)
450 return 0;
451
452 /* Determine ELF architecture type. */
453 if (at_phent == sizeof (Elf32_External_Phdr))
454 arch_size = 32;
455 else if (at_phent == sizeof (Elf64_External_Phdr))
456 arch_size = 64;
457 else
458 return 0;
459
09919ac2
JK
460 /* Find the requested segment. */
461 if (type == -1)
462 {
463 sect_addr = at_phdr;
464 sect_size = at_phent * at_phnum;
465 }
466 else if (arch_size == 32)
97ec2c2f
UW
467 {
468 Elf32_External_Phdr phdr;
469 int i;
470
471 /* Search for requested PHDR. */
472 for (i = 0; i < at_phnum; i++)
473 {
43136979
AR
474 int p_type;
475
97ec2c2f
UW
476 if (target_read_memory (at_phdr + i * sizeof (phdr),
477 (gdb_byte *)&phdr, sizeof (phdr)))
478 return 0;
479
43136979
AR
480 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
481 4, byte_order);
482
483 if (p_type == PT_PHDR)
484 {
485 pt_phdr_p = 1;
486 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
487 4, byte_order);
488 }
489
490 if (p_type == type)
97ec2c2f
UW
491 break;
492 }
493
494 if (i == at_phnum)
495 return 0;
496
497 /* Retrieve address and size. */
e17a4113
UW
498 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
499 4, byte_order);
500 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
501 4, byte_order);
97ec2c2f
UW
502 }
503 else
504 {
505 Elf64_External_Phdr phdr;
506 int i;
507
508 /* Search for requested PHDR. */
509 for (i = 0; i < at_phnum; i++)
510 {
43136979
AR
511 int p_type;
512
97ec2c2f
UW
513 if (target_read_memory (at_phdr + i * sizeof (phdr),
514 (gdb_byte *)&phdr, sizeof (phdr)))
515 return 0;
516
43136979
AR
517 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
518 4, byte_order);
519
520 if (p_type == PT_PHDR)
521 {
522 pt_phdr_p = 1;
523 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
524 8, byte_order);
525 }
526
527 if (p_type == type)
97ec2c2f
UW
528 break;
529 }
530
531 if (i == at_phnum)
532 return 0;
533
534 /* Retrieve address and size. */
e17a4113
UW
535 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
536 8, byte_order);
537 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
538 8, byte_order);
97ec2c2f
UW
539 }
540
43136979
AR
541 /* PT_PHDR is optional, but we really need it
542 for PIE to make this work in general. */
543
544 if (pt_phdr_p)
545 {
546 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
547 Relocation offset is the difference between the two. */
548 sect_addr = sect_addr + (at_phdr - pt_phdr);
549 }
550
97ec2c2f 551 /* Read in requested program header. */
224c3ddb 552 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
553 if (target_read_memory (sect_addr, buf, sect_size))
554 {
555 xfree (buf);
556 return NULL;
557 }
558
559 if (p_arch_size)
560 *p_arch_size = arch_size;
561 if (p_sect_size)
562 *p_sect_size = sect_size;
a738da3a
MF
563 if (base_addr)
564 *base_addr = sect_addr;
97ec2c2f
UW
565
566 return buf;
567}
568
569
570/* Return program interpreter string. */
001f13d8 571static char *
97ec2c2f
UW
572find_program_interpreter (void)
573{
574 gdb_byte *buf = NULL;
575
576 /* If we have an exec_bfd, use its section table. */
577 if (exec_bfd
578 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
579 {
580 struct bfd_section *interp_sect;
581
582 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
583 if (interp_sect != NULL)
584 {
97ec2c2f
UW
585 int sect_size = bfd_section_size (exec_bfd, interp_sect);
586
224c3ddb 587 buf = (gdb_byte *) xmalloc (sect_size);
97ec2c2f
UW
588 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
589 }
590 }
591
592 /* If we didn't find it, use the target auxillary vector. */
593 if (!buf)
a738da3a 594 buf = read_program_header (PT_INTERP, NULL, NULL, NULL);
97ec2c2f 595
001f13d8 596 return (char *) buf;
97ec2c2f
UW
597}
598
599
b6d7a4bf
SM
600/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
601 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
602
603static int
a738da3a
MF
604scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr,
605 CORE_ADDR *ptr_addr)
3a40aaa0
UW
606{
607 int arch_size, step, sect_size;
b6d7a4bf 608 long current_dyntag;
b381ea14 609 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 610 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
611 Elf32_External_Dyn *x_dynp_32;
612 Elf64_External_Dyn *x_dynp_64;
613 struct bfd_section *sect;
61f0d762 614 struct target_section *target_section;
3a40aaa0
UW
615
616 if (abfd == NULL)
617 return 0;
0763ab81
PA
618
619 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
620 return 0;
621
3a40aaa0
UW
622 arch_size = bfd_get_arch_size (abfd);
623 if (arch_size == -1)
0763ab81 624 return 0;
3a40aaa0
UW
625
626 /* Find the start address of the .dynamic section. */
627 sect = bfd_get_section_by_name (abfd, ".dynamic");
628 if (sect == NULL)
629 return 0;
61f0d762
JK
630
631 for (target_section = current_target_sections->sections;
632 target_section < current_target_sections->sections_end;
633 target_section++)
634 if (sect == target_section->the_bfd_section)
635 break;
b381ea14
JK
636 if (target_section < current_target_sections->sections_end)
637 dyn_addr = target_section->addr;
638 else
639 {
640 /* ABFD may come from OBJFILE acting only as a symbol file without being
641 loaded into the target (see add_symbol_file_command). This case is
642 such fallback to the file VMA address without the possibility of
643 having the section relocated to its actual in-memory address. */
644
645 dyn_addr = bfd_section_vma (abfd, sect);
646 }
3a40aaa0 647
65728c26
DJ
648 /* Read in .dynamic from the BFD. We will get the actual value
649 from memory later. */
3a40aaa0 650 sect_size = bfd_section_size (abfd, sect);
224c3ddb 651 buf = bufstart = (gdb_byte *) alloca (sect_size);
65728c26
DJ
652 if (!bfd_get_section_contents (abfd, sect,
653 buf, 0, sect_size))
654 return 0;
3a40aaa0
UW
655
656 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
657 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
658 : sizeof (Elf64_External_Dyn);
659 for (bufend = buf + sect_size;
660 buf < bufend;
661 buf += step)
662 {
663 if (arch_size == 32)
664 {
665 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 666 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
667 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
668 }
65728c26 669 else
3a40aaa0
UW
670 {
671 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 672 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
673 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
674 }
b6d7a4bf 675 if (current_dyntag == DT_NULL)
3a40aaa0 676 return 0;
b6d7a4bf 677 if (current_dyntag == desired_dyntag)
3a40aaa0 678 {
65728c26
DJ
679 /* If requested, try to read the runtime value of this .dynamic
680 entry. */
3a40aaa0 681 if (ptr)
65728c26 682 {
b6da22b0 683 struct type *ptr_type;
65728c26 684 gdb_byte ptr_buf[8];
a738da3a 685 CORE_ADDR ptr_addr_1;
65728c26 686
f5656ead 687 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
a738da3a
MF
688 ptr_addr_1 = dyn_addr + (buf - bufstart) + arch_size / 8;
689 if (target_read_memory (ptr_addr_1, ptr_buf, arch_size / 8) == 0)
b6da22b0 690 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26 691 *ptr = dyn_ptr;
a738da3a
MF
692 if (ptr_addr)
693 *ptr_addr = dyn_addr + (buf - bufstart);
65728c26
DJ
694 }
695 return 1;
3a40aaa0
UW
696 }
697 }
698
699 return 0;
700}
701
b6d7a4bf
SM
702/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
703 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
704 is returned and the corresponding PTR is set. */
97ec2c2f
UW
705
706static int
a738da3a
MF
707scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr,
708 CORE_ADDR *ptr_addr)
97ec2c2f 709{
f5656ead 710 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 711 int sect_size, arch_size, step;
b6d7a4bf 712 long current_dyntag;
97ec2c2f 713 CORE_ADDR dyn_ptr;
a738da3a 714 CORE_ADDR base_addr;
97ec2c2f
UW
715 gdb_byte *bufend, *bufstart, *buf;
716
717 /* Read in .dynamic section. */
a738da3a
MF
718 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size,
719 &base_addr);
97ec2c2f
UW
720 if (!buf)
721 return 0;
722
723 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
724 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
725 : sizeof (Elf64_External_Dyn);
726 for (bufend = buf + sect_size;
727 buf < bufend;
728 buf += step)
729 {
730 if (arch_size == 32)
731 {
732 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 733
b6d7a4bf 734 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
735 4, byte_order);
736 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
737 4, byte_order);
97ec2c2f
UW
738 }
739 else
740 {
741 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 742
b6d7a4bf 743 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
744 8, byte_order);
745 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
746 8, byte_order);
97ec2c2f 747 }
b6d7a4bf 748 if (current_dyntag == DT_NULL)
97ec2c2f
UW
749 break;
750
b6d7a4bf 751 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
752 {
753 if (ptr)
754 *ptr = dyn_ptr;
755
a738da3a
MF
756 if (ptr_addr)
757 *ptr_addr = base_addr + buf - bufstart;
758
97ec2c2f
UW
759 xfree (bufstart);
760 return 1;
761 }
762 }
763
764 xfree (bufstart);
765 return 0;
766}
767
7f86f058
PA
768/* Locate the base address of dynamic linker structs for SVR4 elf
769 targets.
13437d4b
KB
770
771 For SVR4 elf targets the address of the dynamic linker's runtime
772 structure is contained within the dynamic info section in the
773 executable file. The dynamic section is also mapped into the
774 inferior address space. Because the runtime loader fills in the
775 real address before starting the inferior, we have to read in the
776 dynamic info section from the inferior address space.
777 If there are any errors while trying to find the address, we
7f86f058 778 silently return 0, otherwise the found address is returned. */
13437d4b
KB
779
780static CORE_ADDR
781elf_locate_base (void)
782{
3b7344d5 783 struct bound_minimal_symbol msymbol;
a738da3a 784 CORE_ADDR dyn_ptr, dyn_ptr_addr;
13437d4b 785
65728c26
DJ
786 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
787 instead of DT_DEBUG, although they sometimes contain an unused
788 DT_DEBUG. */
a738da3a
MF
789 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr, NULL)
790 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr, NULL))
3a40aaa0 791 {
f5656ead 792 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 793 gdb_byte *pbuf;
b6da22b0 794 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 795
224c3ddb 796 pbuf = (gdb_byte *) alloca (pbuf_size);
3a40aaa0
UW
797 /* DT_MIPS_RLD_MAP contains a pointer to the address
798 of the dynamic link structure. */
799 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 800 return 0;
b6da22b0 801 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
802 }
803
a738da3a
MF
804 /* Then check DT_MIPS_RLD_MAP_REL. MIPS executables now use this form
805 because of needing to support PIE. DT_MIPS_RLD_MAP will also exist
806 in non-PIE. */
807 if (scan_dyntag (DT_MIPS_RLD_MAP_REL, exec_bfd, &dyn_ptr, &dyn_ptr_addr)
808 || scan_dyntag_auxv (DT_MIPS_RLD_MAP_REL, &dyn_ptr, &dyn_ptr_addr))
809 {
810 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
811 gdb_byte *pbuf;
812 int pbuf_size = TYPE_LENGTH (ptr_type);
813
224c3ddb 814 pbuf = (gdb_byte *) alloca (pbuf_size);
a738da3a
MF
815 /* DT_MIPS_RLD_MAP_REL contains an offset from the address of the
816 DT slot to the address of the dynamic link structure. */
817 if (target_read_memory (dyn_ptr + dyn_ptr_addr, pbuf, pbuf_size))
818 return 0;
819 return extract_typed_address (pbuf, ptr_type);
820 }
821
65728c26 822 /* Find DT_DEBUG. */
a738da3a
MF
823 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr, NULL)
824 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr, NULL))
65728c26
DJ
825 return dyn_ptr;
826
3a40aaa0
UW
827 /* This may be a static executable. Look for the symbol
828 conventionally named _r_debug, as a last resort. */
829 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 830 if (msymbol.minsym != NULL)
77e371c0 831 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
832
833 /* DT_DEBUG entry not found. */
834 return 0;
835}
836
7f86f058 837/* Locate the base address of dynamic linker structs.
13437d4b
KB
838
839 For both the SunOS and SVR4 shared library implementations, if the
840 inferior executable has been linked dynamically, there is a single
841 address somewhere in the inferior's data space which is the key to
842 locating all of the dynamic linker's runtime structures. This
843 address is the value of the debug base symbol. The job of this
844 function is to find and return that address, or to return 0 if there
845 is no such address (the executable is statically linked for example).
846
847 For SunOS, the job is almost trivial, since the dynamic linker and
848 all of it's structures are statically linked to the executable at
849 link time. Thus the symbol for the address we are looking for has
850 already been added to the minimal symbol table for the executable's
851 objfile at the time the symbol file's symbols were read, and all we
852 have to do is look it up there. Note that we explicitly do NOT want
853 to find the copies in the shared library.
854
855 The SVR4 version is a bit more complicated because the address
856 is contained somewhere in the dynamic info section. We have to go
857 to a lot more work to discover the address of the debug base symbol.
858 Because of this complexity, we cache the value we find and return that
859 value on subsequent invocations. Note there is no copy in the
7f86f058 860 executable symbol tables. */
13437d4b
KB
861
862static CORE_ADDR
1a816a87 863locate_base (struct svr4_info *info)
13437d4b 864{
13437d4b
KB
865 /* Check to see if we have a currently valid address, and if so, avoid
866 doing all this work again and just return the cached address. If
867 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
868 section for ELF executables. There's no point in doing any of this
869 though if we don't have some link map offsets to work with. */
13437d4b 870
1a816a87 871 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 872 info->debug_base = elf_locate_base ();
1a816a87 873 return info->debug_base;
13437d4b
KB
874}
875
e4cd0d6a 876/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
877 return its address in the inferior. Return zero if the address
878 could not be determined.
13437d4b 879
e4cd0d6a
MK
880 FIXME: Perhaps we should validate the info somehow, perhaps by
881 checking r_version for a known version number, or r_state for
882 RT_CONSISTENT. */
13437d4b
KB
883
884static CORE_ADDR
1a816a87 885solib_svr4_r_map (struct svr4_info *info)
13437d4b 886{
4b188b9f 887 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 888 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 889 CORE_ADDR addr = 0;
13437d4b 890
492d29ea 891 TRY
08597104
JB
892 {
893 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
894 ptr_type);
895 }
492d29ea
PA
896 CATCH (ex, RETURN_MASK_ERROR)
897 {
898 exception_print (gdb_stderr, ex);
899 }
900 END_CATCH
901
08597104 902 return addr;
e4cd0d6a 903}
13437d4b 904
7cd25cfc
DJ
905/* Find r_brk from the inferior's debug base. */
906
907static CORE_ADDR
1a816a87 908solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
909{
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 912
1a816a87
PA
913 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
914 ptr_type);
7cd25cfc
DJ
915}
916
e4cd0d6a
MK
917/* Find the link map for the dynamic linker (if it is not in the
918 normal list of loaded shared objects). */
13437d4b 919
e4cd0d6a 920static CORE_ADDR
1a816a87 921solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
922{
923 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
924 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
925 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
926 ULONGEST version = 0;
927
928 TRY
929 {
930 /* Check version, and return zero if `struct r_debug' doesn't have
931 the r_ldsomap member. */
932 version
933 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
934 lmo->r_version_size, byte_order);
935 }
936 CATCH (ex, RETURN_MASK_ERROR)
937 {
938 exception_print (gdb_stderr, ex);
939 }
940 END_CATCH
13437d4b 941
e4cd0d6a
MK
942 if (version < 2 || lmo->r_ldsomap_offset == -1)
943 return 0;
13437d4b 944
1a816a87 945 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 946 ptr_type);
13437d4b
KB
947}
948
de18c1d8
JM
949/* On Solaris systems with some versions of the dynamic linker,
950 ld.so's l_name pointer points to the SONAME in the string table
951 rather than into writable memory. So that GDB can find shared
952 libraries when loading a core file generated by gcore, ensure that
953 memory areas containing the l_name string are saved in the core
954 file. */
955
956static int
957svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
958{
959 struct svr4_info *info;
960 CORE_ADDR ldsomap;
fe978cb0 961 struct so_list *newobj;
de18c1d8 962 struct cleanup *old_chain;
74de0234 963 CORE_ADDR name_lm;
de18c1d8
JM
964
965 info = get_svr4_info ();
966
967 info->debug_base = 0;
968 locate_base (info);
969 if (!info->debug_base)
970 return 0;
971
972 ldsomap = solib_svr4_r_ldsomap (info);
973 if (!ldsomap)
974 return 0;
975
fe978cb0
PA
976 newobj = XCNEW (struct so_list);
977 old_chain = make_cleanup (xfree, newobj);
d0e449a1
SM
978 lm_info_svr4 *li = lm_info_read (ldsomap);
979 newobj->lm_info = li;
fe978cb0 980 make_cleanup (xfree, newobj->lm_info);
d0e449a1 981 name_lm = li != NULL ? li->l_name : 0;
de18c1d8
JM
982 do_cleanups (old_chain);
983
74de0234 984 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
985}
986
7f86f058 987/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 988
7f86f058
PA
989 If no open symbol file, attempt to locate and open the main symbol
990 file. On SVR4 systems, this is the first link map entry. If its
991 name is here, we can open it. Useful when attaching to a process
992 without first loading its symbol file. */
13437d4b
KB
993
994static int
995open_symbol_file_object (void *from_ttyp)
996{
997 CORE_ADDR lm, l_name;
998 char *filename;
999 int errcode;
1000 int from_tty = *(int *)from_ttyp;
4b188b9f 1001 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 1002 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 1003 int l_name_size = TYPE_LENGTH (ptr_type);
224c3ddb 1004 gdb_byte *l_name_buf = (gdb_byte *) xmalloc (l_name_size);
b8c9b27d 1005 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 1006 struct svr4_info *info = get_svr4_info ();
ecf45d2c
SL
1007 symfile_add_flags add_flags = 0;
1008
1009 if (from_tty)
1010 add_flags |= SYMFILE_VERBOSE;
13437d4b
KB
1011
1012 if (symfile_objfile)
9e2f0ad4 1013 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
1014 {
1015 do_cleanups (cleanups);
1016 return 0;
1017 }
13437d4b 1018
7cd25cfc 1019 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1020 info->debug_base = 0;
1021 if (locate_base (info) == 0)
3bb47e8b
TT
1022 {
1023 do_cleanups (cleanups);
1024 return 0; /* failed somehow... */
1025 }
13437d4b
KB
1026
1027 /* First link map member should be the executable. */
1a816a87 1028 lm = solib_svr4_r_map (info);
e4cd0d6a 1029 if (lm == 0)
3bb47e8b
TT
1030 {
1031 do_cleanups (cleanups);
1032 return 0; /* failed somehow... */
1033 }
13437d4b
KB
1034
1035 /* Read address of name from target memory to GDB. */
cfaefc65 1036 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1037
cfaefc65 1038 /* Convert the address to host format. */
b6da22b0 1039 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1040
13437d4b 1041 if (l_name == 0)
3bb47e8b
TT
1042 {
1043 do_cleanups (cleanups);
1044 return 0; /* No filename. */
1045 }
13437d4b
KB
1046
1047 /* Now fetch the filename from target memory. */
1048 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1049 make_cleanup (xfree, filename);
13437d4b
KB
1050
1051 if (errcode)
1052 {
8a3fe4f8 1053 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1054 safe_strerror (errcode));
3bb47e8b 1055 do_cleanups (cleanups);
13437d4b
KB
1056 return 0;
1057 }
1058
13437d4b 1059 /* Have a pathname: read the symbol file. */
ecf45d2c 1060 symbol_file_add_main (filename, add_flags);
13437d4b 1061
3bb47e8b 1062 do_cleanups (cleanups);
13437d4b
KB
1063 return 1;
1064}
13437d4b 1065
2268b414
JK
1066/* Data exchange structure for the XML parser as returned by
1067 svr4_current_sos_via_xfer_libraries. */
1068
1069struct svr4_library_list
1070{
1071 struct so_list *head, **tailp;
1072
1073 /* Inferior address of struct link_map used for the main executable. It is
1074 NULL if not known. */
1075 CORE_ADDR main_lm;
1076};
1077
93f2a35e
JK
1078/* Implementation for target_so_ops.free_so. */
1079
1080static void
1081svr4_free_so (struct so_list *so)
1082{
76e75227
SM
1083 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1084
1085 delete li;
93f2a35e
JK
1086}
1087
0892cb63
DE
1088/* Implement target_so_ops.clear_so. */
1089
1090static void
1091svr4_clear_so (struct so_list *so)
1092{
d0e449a1
SM
1093 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1094
1095 if (li != NULL)
1096 li->l_addr_p = 0;
0892cb63
DE
1097}
1098
93f2a35e
JK
1099/* Free so_list built so far (called via cleanup). */
1100
1101static void
1102svr4_free_library_list (void *p_list)
1103{
1104 struct so_list *list = *(struct so_list **) p_list;
1105
1106 while (list != NULL)
1107 {
1108 struct so_list *next = list->next;
1109
3756ef7e 1110 free_so (list);
93f2a35e
JK
1111 list = next;
1112 }
1113}
1114
f9e14852
GB
1115/* Copy library list. */
1116
1117static struct so_list *
1118svr4_copy_library_list (struct so_list *src)
1119{
1120 struct so_list *dst = NULL;
1121 struct so_list **link = &dst;
1122
1123 while (src != NULL)
1124 {
fe978cb0 1125 struct so_list *newobj;
f9e14852 1126
8d749320 1127 newobj = XNEW (struct so_list);
fe978cb0 1128 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1129
76e75227
SM
1130 lm_info_svr4 *src_li = (lm_info_svr4 *) src->lm_info;
1131 newobj->lm_info = new lm_info_svr4 (*src_li);
f9e14852 1132
fe978cb0
PA
1133 newobj->next = NULL;
1134 *link = newobj;
1135 link = &newobj->next;
f9e14852
GB
1136
1137 src = src->next;
1138 }
1139
1140 return dst;
1141}
1142
2268b414
JK
1143#ifdef HAVE_LIBEXPAT
1144
1145#include "xml-support.h"
1146
1147/* Handle the start of a <library> element. Note: new elements are added
1148 at the tail of the list, keeping the list in order. */
1149
1150static void
1151library_list_start_library (struct gdb_xml_parser *parser,
1152 const struct gdb_xml_element *element,
1153 void *user_data, VEC(gdb_xml_value_s) *attributes)
1154{
19ba03f4
SM
1155 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1156 const char *name
1157 = (const char *) xml_find_attribute (attributes, "name")->value;
1158 ULONGEST *lmp
bc84451b 1159 = (ULONGEST *) xml_find_attribute (attributes, "lm")->value;
19ba03f4 1160 ULONGEST *l_addrp
bc84451b 1161 = (ULONGEST *) xml_find_attribute (attributes, "l_addr")->value;
19ba03f4 1162 ULONGEST *l_ldp
bc84451b 1163 = (ULONGEST *) xml_find_attribute (attributes, "l_ld")->value;
2268b414
JK
1164 struct so_list *new_elem;
1165
41bf6aca 1166 new_elem = XCNEW (struct so_list);
76e75227 1167 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1
SM
1168 new_elem->lm_info = li;
1169 li->lm_addr = *lmp;
1170 li->l_addr_inferior = *l_addrp;
1171 li->l_ld = *l_ldp;
2268b414
JK
1172
1173 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1174 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1175 strcpy (new_elem->so_original_name, new_elem->so_name);
1176
1177 *list->tailp = new_elem;
1178 list->tailp = &new_elem->next;
1179}
1180
1181/* Handle the start of a <library-list-svr4> element. */
1182
1183static void
1184svr4_library_list_start_list (struct gdb_xml_parser *parser,
1185 const struct gdb_xml_element *element,
1186 void *user_data, VEC(gdb_xml_value_s) *attributes)
1187{
19ba03f4
SM
1188 struct svr4_library_list *list = (struct svr4_library_list *) user_data;
1189 const char *version
1190 = (const char *) xml_find_attribute (attributes, "version")->value;
2268b414
JK
1191 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1192
1193 if (strcmp (version, "1.0") != 0)
1194 gdb_xml_error (parser,
1195 _("SVR4 Library list has unsupported version \"%s\""),
1196 version);
1197
1198 if (main_lm)
1199 list->main_lm = *(ULONGEST *) main_lm->value;
1200}
1201
1202/* The allowed elements and attributes for an XML library list.
1203 The root element is a <library-list>. */
1204
1205static const struct gdb_xml_attribute svr4_library_attributes[] =
1206{
1207 { "name", GDB_XML_AF_NONE, NULL, NULL },
1208 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1209 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1210 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1211 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1212};
1213
1214static const struct gdb_xml_element svr4_library_list_children[] =
1215{
1216 {
1217 "library", svr4_library_attributes, NULL,
1218 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1219 library_list_start_library, NULL
1220 },
1221 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1222};
1223
1224static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1225{
1226 { "version", GDB_XML_AF_NONE, NULL, NULL },
1227 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1228 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1229};
1230
1231static const struct gdb_xml_element svr4_library_list_elements[] =
1232{
1233 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1234 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1235 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1236};
1237
2268b414
JK
1238/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1239
1240 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1241 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1242 empty, caller is responsible for freeing all its entries. */
1243
1244static int
1245svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1246{
1247 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1248 &list->head);
1249
1250 memset (list, 0, sizeof (*list));
1251 list->tailp = &list->head;
2eca4a8d 1252 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1253 svr4_library_list_elements, document, list) == 0)
1254 {
1255 /* Parsed successfully, keep the result. */
1256 discard_cleanups (back_to);
1257 return 1;
1258 }
1259
1260 do_cleanups (back_to);
1261 return 0;
1262}
1263
f9e14852 1264/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1265
1266 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1267 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1268 empty, caller is responsible for freeing all its entries.
1269
1270 Note that ANNEX must be NULL if the remote does not explicitly allow
1271 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1272 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1273
1274static int
f9e14852
GB
1275svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1276 const char *annex)
2268b414
JK
1277{
1278 char *svr4_library_document;
1279 int result;
1280 struct cleanup *back_to;
1281
f9e14852
GB
1282 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1283
2268b414
JK
1284 /* Fetch the list of shared libraries. */
1285 svr4_library_document = target_read_stralloc (&current_target,
1286 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1287 annex);
2268b414
JK
1288 if (svr4_library_document == NULL)
1289 return 0;
1290
1291 back_to = make_cleanup (xfree, svr4_library_document);
1292 result = svr4_parse_libraries (svr4_library_document, list);
1293 do_cleanups (back_to);
1294
1295 return result;
1296}
1297
1298#else
1299
1300static int
f9e14852
GB
1301svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1302 const char *annex)
2268b414
JK
1303{
1304 return 0;
1305}
1306
1307#endif
1308
34439770
DJ
1309/* If no shared library information is available from the dynamic
1310 linker, build a fallback list from other sources. */
1311
1312static struct so_list *
1313svr4_default_sos (void)
1314{
6c95b8df 1315 struct svr4_info *info = get_svr4_info ();
fe978cb0 1316 struct so_list *newobj;
1a816a87 1317
8e5c319d
JK
1318 if (!info->debug_loader_offset_p)
1319 return NULL;
34439770 1320
fe978cb0 1321 newobj = XCNEW (struct so_list);
76e75227 1322 lm_info_svr4 *li = new lm_info_svr4;
d0e449a1 1323 newobj->lm_info = li;
34439770 1324
3957565a 1325 /* Nothing will ever check the other fields if we set l_addr_p. */
d0e449a1
SM
1326 li->l_addr = info->debug_loader_offset;
1327 li->l_addr_p = 1;
34439770 1328
fe978cb0
PA
1329 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1330 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1331 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1332
fe978cb0 1333 return newobj;
34439770
DJ
1334}
1335
f9e14852
GB
1336/* Read the whole inferior libraries chain starting at address LM.
1337 Expect the first entry in the chain's previous entry to be PREV_LM.
1338 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1339 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1340 to it. Returns nonzero upon success. If zero is returned the
1341 entries stored to LINK_PTR_PTR are still valid although they may
1342 represent only part of the inferior library list. */
13437d4b 1343
f9e14852
GB
1344static int
1345svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1346 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1347{
c725e7b6 1348 CORE_ADDR first_l_name = 0;
f9e14852 1349 CORE_ADDR next_lm;
13437d4b 1350
cb08cc53 1351 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1352 {
fe978cb0 1353 struct so_list *newobj;
cb08cc53
JK
1354 struct cleanup *old_chain;
1355 int errcode;
1356 char *buffer;
13437d4b 1357
fe978cb0
PA
1358 newobj = XCNEW (struct so_list);
1359 old_chain = make_cleanup_free_so (newobj);
13437d4b 1360
d0e449a1
SM
1361 lm_info_svr4 *li = lm_info_read (lm);
1362 newobj->lm_info = li;
1363 if (li == NULL)
3957565a
JK
1364 {
1365 do_cleanups (old_chain);
f9e14852 1366 return 0;
3957565a 1367 }
13437d4b 1368
d0e449a1 1369 next_lm = li->l_next;
492928e4 1370
d0e449a1 1371 if (li->l_prev != prev_lm)
492928e4 1372 {
2268b414 1373 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1374 paddress (target_gdbarch (), prev_lm),
d0e449a1 1375 paddress (target_gdbarch (), li->l_prev));
cb08cc53 1376 do_cleanups (old_chain);
f9e14852 1377 return 0;
492928e4 1378 }
13437d4b
KB
1379
1380 /* For SVR4 versions, the first entry in the link map is for the
1381 inferior executable, so we must ignore it. For some versions of
1382 SVR4, it has no name. For others (Solaris 2.3 for example), it
1383 does have a name, so we can no longer use a missing name to
c378eb4e 1384 decide when to ignore it. */
d0e449a1 1385 if (ignore_first && li->l_prev == 0)
93a57060 1386 {
cb08cc53
JK
1387 struct svr4_info *info = get_svr4_info ();
1388
d0e449a1
SM
1389 first_l_name = li->l_name;
1390 info->main_lm_addr = li->lm_addr;
cb08cc53
JK
1391 do_cleanups (old_chain);
1392 continue;
93a57060 1393 }
13437d4b 1394
cb08cc53 1395 /* Extract this shared object's name. */
d0e449a1
SM
1396 target_read_string (li->l_name, &buffer, SO_NAME_MAX_PATH_SIZE - 1,
1397 &errcode);
cb08cc53
JK
1398 if (errcode != 0)
1399 {
7d760051
UW
1400 /* If this entry's l_name address matches that of the
1401 inferior executable, then this is not a normal shared
1402 object, but (most likely) a vDSO. In this case, silently
1403 skip it; otherwise emit a warning. */
d0e449a1 1404 if (first_l_name == 0 || li->l_name != first_l_name)
7d760051
UW
1405 warning (_("Can't read pathname for load map: %s."),
1406 safe_strerror (errcode));
cb08cc53
JK
1407 do_cleanups (old_chain);
1408 continue;
13437d4b
KB
1409 }
1410
fe978cb0
PA
1411 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1412 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1413 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1414 xfree (buffer);
492928e4 1415
cb08cc53
JK
1416 /* If this entry has no name, or its name matches the name
1417 for the main executable, don't include it in the list. */
fe978cb0 1418 if (! newobj->so_name[0] || match_main (newobj->so_name))
492928e4 1419 {
cb08cc53
JK
1420 do_cleanups (old_chain);
1421 continue;
492928e4 1422 }
e4cd0d6a 1423
13437d4b 1424 discard_cleanups (old_chain);
fe978cb0
PA
1425 newobj->next = 0;
1426 **link_ptr_ptr = newobj;
1427 *link_ptr_ptr = &newobj->next;
13437d4b 1428 }
f9e14852
GB
1429
1430 return 1;
cb08cc53
JK
1431}
1432
f9e14852
GB
1433/* Read the full list of currently loaded shared objects directly
1434 from the inferior, without referring to any libraries read and
1435 stored by the probes interface. Handle special cases relating
1436 to the first elements of the list. */
cb08cc53
JK
1437
1438static struct so_list *
f9e14852 1439svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1440{
1441 CORE_ADDR lm;
1442 struct so_list *head = NULL;
1443 struct so_list **link_ptr = &head;
cb08cc53
JK
1444 struct cleanup *back_to;
1445 int ignore_first;
2268b414
JK
1446 struct svr4_library_list library_list;
1447
0c5bf5a9
JK
1448 /* Fall back to manual examination of the target if the packet is not
1449 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1450 tests a case where gdbserver cannot find the shared libraries list while
1451 GDB itself is able to find it via SYMFILE_OBJFILE.
1452
1453 Unfortunately statically linked inferiors will also fall back through this
1454 suboptimal code path. */
1455
f9e14852
GB
1456 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1457 NULL);
1458 if (info->using_xfer)
2268b414
JK
1459 {
1460 if (library_list.main_lm)
f9e14852 1461 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1462
1463 return library_list.head ? library_list.head : svr4_default_sos ();
1464 }
cb08cc53 1465
cb08cc53
JK
1466 /* Always locate the debug struct, in case it has moved. */
1467 info->debug_base = 0;
1468 locate_base (info);
1469
1470 /* If we can't find the dynamic linker's base structure, this
1471 must not be a dynamically linked executable. Hmm. */
1472 if (! info->debug_base)
1473 return svr4_default_sos ();
1474
1475 /* Assume that everything is a library if the dynamic loader was loaded
1476 late by a static executable. */
1477 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1478 ignore_first = 0;
1479 else
1480 ignore_first = 1;
1481
1482 back_to = make_cleanup (svr4_free_library_list, &head);
1483
1484 /* Walk the inferior's link map list, and build our list of
1485 `struct so_list' nodes. */
1486 lm = solib_svr4_r_map (info);
1487 if (lm)
f9e14852 1488 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1489
1490 /* On Solaris, the dynamic linker is not in the normal list of
1491 shared objects, so make sure we pick it up too. Having
1492 symbol information for the dynamic linker is quite crucial
1493 for skipping dynamic linker resolver code. */
1494 lm = solib_svr4_r_ldsomap (info);
1495 if (lm)
f9e14852 1496 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1497
1498 discard_cleanups (back_to);
13437d4b 1499
34439770
DJ
1500 if (head == NULL)
1501 return svr4_default_sos ();
1502
13437d4b
KB
1503 return head;
1504}
1505
8b9a549d
PA
1506/* Implement the main part of the "current_sos" target_so_ops
1507 method. */
f9e14852
GB
1508
1509static struct so_list *
8b9a549d 1510svr4_current_sos_1 (void)
f9e14852
GB
1511{
1512 struct svr4_info *info = get_svr4_info ();
1513
1514 /* If the solib list has been read and stored by the probes
1515 interface then we return a copy of the stored list. */
1516 if (info->solib_list != NULL)
1517 return svr4_copy_library_list (info->solib_list);
1518
1519 /* Otherwise obtain the solib list directly from the inferior. */
1520 return svr4_current_sos_direct (info);
1521}
1522
8b9a549d
PA
1523/* Implement the "current_sos" target_so_ops method. */
1524
1525static struct so_list *
1526svr4_current_sos (void)
1527{
1528 struct so_list *so_head = svr4_current_sos_1 ();
1529 struct mem_range vsyscall_range;
1530
1531 /* Filter out the vDSO module, if present. Its symbol file would
1532 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1533 managed by symfile-mem.c:add_vsyscall_page. */
1534 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1535 && vsyscall_range.length != 0)
1536 {
1537 struct so_list **sop;
1538
1539 sop = &so_head;
1540 while (*sop != NULL)
1541 {
1542 struct so_list *so = *sop;
1543
1544 /* We can't simply match the vDSO by starting address alone,
1545 because lm_info->l_addr_inferior (and also l_addr) do not
1546 necessarily represent the real starting address of the
1547 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1548 field (the ".dynamic" section of the shared object)
1549 always points at the absolute/resolved address though.
1550 So check whether that address is inside the vDSO's
1551 mapping instead.
1552
1553 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1554 0-based ELF, and we see:
1555
1556 (gdb) info auxv
1557 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1558 (gdb) p/x *_r_debug.r_map.l_next
1559 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1560
1561 And on Linux 2.6.32 (x86_64) we see:
1562
1563 (gdb) info auxv
1564 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1565 (gdb) p/x *_r_debug.r_map.l_next
1566 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1567
1568 Dumping that vDSO shows:
1569
1570 (gdb) info proc mappings
1571 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1572 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1573 # readelf -Wa vdso.bin
1574 [...]
1575 Entry point address: 0xffffffffff700700
1576 [...]
1577 Section Headers:
1578 [Nr] Name Type Address Off Size
1579 [ 0] NULL 0000000000000000 000000 000000
1580 [ 1] .hash HASH ffffffffff700120 000120 000038
1581 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1582 [...]
1583 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1584 */
d0e449a1
SM
1585
1586 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1587
1588 if (address_in_mem_range (li->l_ld, &vsyscall_range))
8b9a549d
PA
1589 {
1590 *sop = so->next;
1591 free_so (so);
1592 break;
1593 }
1594
1595 sop = &so->next;
1596 }
1597 }
1598
1599 return so_head;
1600}
1601
93a57060 1602/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1603
1604CORE_ADDR
1605svr4_fetch_objfile_link_map (struct objfile *objfile)
1606{
93a57060 1607 struct so_list *so;
6c95b8df 1608 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1609
93a57060 1610 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1611 if (info->main_lm_addr == 0)
e696b3ad 1612 solib_add (NULL, 0, auto_solib_add);
bc4a16ae 1613
93a57060
DJ
1614 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1615 if (objfile == symfile_objfile)
1a816a87 1616 return info->main_lm_addr;
93a57060
DJ
1617
1618 /* The other link map addresses may be found by examining the list
1619 of shared libraries. */
1620 for (so = master_so_list (); so; so = so->next)
1621 if (so->objfile == objfile)
d0e449a1
SM
1622 {
1623 lm_info_svr4 *li = (lm_info_svr4 *) so->lm_info;
1624
1625 return li->lm_addr;
1626 }
93a57060
DJ
1627
1628 /* Not found! */
bc4a16ae
EZ
1629 return 0;
1630}
13437d4b
KB
1631
1632/* On some systems, the only way to recognize the link map entry for
1633 the main executable file is by looking at its name. Return
1634 non-zero iff SONAME matches one of the known main executable names. */
1635
1636static int
bc043ef3 1637match_main (const char *soname)
13437d4b 1638{
bc043ef3 1639 const char * const *mainp;
13437d4b
KB
1640
1641 for (mainp = main_name_list; *mainp != NULL; mainp++)
1642 {
1643 if (strcmp (soname, *mainp) == 0)
1644 return (1);
1645 }
1646
1647 return (0);
1648}
1649
13437d4b
KB
1650/* Return 1 if PC lies in the dynamic symbol resolution code of the
1651 SVR4 run time loader. */
13437d4b 1652
7d522c90 1653int
d7fa2ae2 1654svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1655{
6c95b8df
PA
1656 struct svr4_info *info = get_svr4_info ();
1657
1658 return ((pc >= info->interp_text_sect_low
1659 && pc < info->interp_text_sect_high)
1660 || (pc >= info->interp_plt_sect_low
1661 && pc < info->interp_plt_sect_high)
3e5d3a5a 1662 || in_plt_section (pc)
0875794a 1663 || in_gnu_ifunc_stub (pc));
13437d4b 1664}
13437d4b 1665
2f4950cd
AC
1666/* Given an executable's ABFD and target, compute the entry-point
1667 address. */
1668
1669static CORE_ADDR
1670exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1671{
8c2b9656
YQ
1672 CORE_ADDR addr;
1673
2f4950cd
AC
1674 /* KevinB wrote ... for most targets, the address returned by
1675 bfd_get_start_address() is the entry point for the start
1676 function. But, for some targets, bfd_get_start_address() returns
1677 the address of a function descriptor from which the entry point
1678 address may be extracted. This address is extracted by
1679 gdbarch_convert_from_func_ptr_addr(). The method
1680 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1681 function for targets which don't use function descriptors. */
8c2b9656 1682 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1683 bfd_get_start_address (abfd),
1684 targ);
8c2b9656 1685 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1686}
13437d4b 1687
f9e14852
GB
1688/* A probe and its associated action. */
1689
1690struct probe_and_action
1691{
1692 /* The probe. */
1693 struct probe *probe;
1694
729662a5
TT
1695 /* The relocated address of the probe. */
1696 CORE_ADDR address;
1697
f9e14852
GB
1698 /* The action. */
1699 enum probe_action action;
1700};
1701
1702/* Returns a hash code for the probe_and_action referenced by p. */
1703
1704static hashval_t
1705hash_probe_and_action (const void *p)
1706{
19ba03f4 1707 const struct probe_and_action *pa = (const struct probe_and_action *) p;
f9e14852 1708
729662a5 1709 return (hashval_t) pa->address;
f9e14852
GB
1710}
1711
1712/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1713 are equal. */
1714
1715static int
1716equal_probe_and_action (const void *p1, const void *p2)
1717{
19ba03f4
SM
1718 const struct probe_and_action *pa1 = (const struct probe_and_action *) p1;
1719 const struct probe_and_action *pa2 = (const struct probe_and_action *) p2;
f9e14852 1720
729662a5 1721 return pa1->address == pa2->address;
f9e14852
GB
1722}
1723
1724/* Register a solib event probe and its associated action in the
1725 probes table. */
1726
1727static void
729662a5
TT
1728register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1729 enum probe_action action)
f9e14852
GB
1730{
1731 struct svr4_info *info = get_svr4_info ();
1732 struct probe_and_action lookup, *pa;
1733 void **slot;
1734
1735 /* Create the probes table, if necessary. */
1736 if (info->probes_table == NULL)
1737 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1738 equal_probe_and_action,
1739 xfree, xcalloc, xfree);
1740
1741 lookup.probe = probe;
729662a5 1742 lookup.address = address;
f9e14852
GB
1743 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1744 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1745
1746 pa = XCNEW (struct probe_and_action);
1747 pa->probe = probe;
729662a5 1748 pa->address = address;
f9e14852
GB
1749 pa->action = action;
1750
1751 *slot = pa;
1752}
1753
1754/* Get the solib event probe at the specified location, and the
1755 action associated with it. Returns NULL if no solib event probe
1756 was found. */
1757
1758static struct probe_and_action *
1759solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1760{
f9e14852
GB
1761 struct probe_and_action lookup;
1762 void **slot;
1763
729662a5 1764 lookup.address = address;
f9e14852
GB
1765 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1766
1767 if (slot == NULL)
1768 return NULL;
1769
1770 return (struct probe_and_action *) *slot;
1771}
1772
1773/* Decide what action to take when the specified solib event probe is
1774 hit. */
1775
1776static enum probe_action
1777solib_event_probe_action (struct probe_and_action *pa)
1778{
1779 enum probe_action action;
73c6b475 1780 unsigned probe_argc = 0;
08a6411c 1781 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1782
1783 action = pa->action;
1784 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1785 return action;
1786
1787 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1788
1789 /* Check that an appropriate number of arguments has been supplied.
1790 We expect:
1791 arg0: Lmid_t lmid (mandatory)
1792 arg1: struct r_debug *debug_base (mandatory)
1793 arg2: struct link_map *new (optional, for incremental updates) */
3bd7e5b7
SDJ
1794 TRY
1795 {
1796 probe_argc = get_probe_argument_count (pa->probe, frame);
1797 }
1798 CATCH (ex, RETURN_MASK_ERROR)
1799 {
1800 exception_print (gdb_stderr, ex);
1801 probe_argc = 0;
1802 }
1803 END_CATCH
1804
1805 /* If get_probe_argument_count throws an exception, probe_argc will
1806 be set to zero. However, if pa->probe does not have arguments,
1807 then get_probe_argument_count will succeed but probe_argc will
1808 also be zero. Both cases happen because of different things, but
1809 they are treated equally here: action will be set to
1810 PROBES_INTERFACE_FAILED. */
f9e14852
GB
1811 if (probe_argc == 2)
1812 action = FULL_RELOAD;
1813 else if (probe_argc < 2)
1814 action = PROBES_INTERFACE_FAILED;
1815
1816 return action;
1817}
1818
1819/* Populate the shared object list by reading the entire list of
1820 shared objects from the inferior. Handle special cases relating
1821 to the first elements of the list. Returns nonzero on success. */
1822
1823static int
1824solist_update_full (struct svr4_info *info)
1825{
1826 free_solib_list (info);
1827 info->solib_list = svr4_current_sos_direct (info);
1828
1829 return 1;
1830}
1831
1832/* Update the shared object list starting from the link-map entry
1833 passed by the linker in the probe's third argument. Returns
1834 nonzero if the list was successfully updated, or zero to indicate
1835 failure. */
1836
1837static int
1838solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1839{
1840 struct so_list *tail;
1841 CORE_ADDR prev_lm;
1842
1843 /* svr4_current_sos_direct contains logic to handle a number of
1844 special cases relating to the first elements of the list. To
1845 avoid duplicating this logic we defer to solist_update_full
1846 if the list is empty. */
1847 if (info->solib_list == NULL)
1848 return 0;
1849
1850 /* Fall back to a full update if we are using a remote target
1851 that does not support incremental transfers. */
1852 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1853 return 0;
1854
1855 /* Walk to the end of the list. */
1856 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1857 /* Nothing. */;
d0e449a1
SM
1858
1859 lm_info_svr4 *li = (lm_info_svr4 *) tail->lm_info;
1860 prev_lm = li->lm_addr;
f9e14852
GB
1861
1862 /* Read the new objects. */
1863 if (info->using_xfer)
1864 {
1865 struct svr4_library_list library_list;
1866 char annex[64];
1867
1868 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1869 phex_nz (lm, sizeof (lm)),
1870 phex_nz (prev_lm, sizeof (prev_lm)));
1871 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1872 return 0;
1873
1874 tail->next = library_list.head;
1875 }
1876 else
1877 {
1878 struct so_list **link = &tail->next;
1879
1880 /* IGNORE_FIRST may safely be set to zero here because the
1881 above check and deferral to solist_update_full ensures
1882 that this call to svr4_read_so_list will never see the
1883 first element. */
1884 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1885 return 0;
1886 }
1887
1888 return 1;
1889}
1890
1891/* Disable the probes-based linker interface and revert to the
1892 original interface. We don't reset the breakpoints as the
1893 ones set up for the probes-based interface are adequate. */
1894
1895static void
1896disable_probes_interface_cleanup (void *arg)
1897{
1898 struct svr4_info *info = get_svr4_info ();
1899
1900 warning (_("Probes-based dynamic linker interface failed.\n"
1901 "Reverting to original interface.\n"));
1902
1903 free_probes_table (info);
1904 free_solib_list (info);
1905}
1906
1907/* Update the solib list as appropriate when using the
1908 probes-based linker interface. Do nothing if using the
1909 standard interface. */
1910
1911static void
1912svr4_handle_solib_event (void)
1913{
1914 struct svr4_info *info = get_svr4_info ();
1915 struct probe_and_action *pa;
1916 enum probe_action action;
1917 struct cleanup *old_chain, *usm_chain;
ad1c917a 1918 struct value *val = NULL;
f9e14852 1919 CORE_ADDR pc, debug_base, lm = 0;
08a6411c 1920 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1921
1922 /* Do nothing if not using the probes interface. */
1923 if (info->probes_table == NULL)
1924 return;
1925
1926 /* If anything goes wrong we revert to the original linker
1927 interface. */
1928 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1929
1930 pc = regcache_read_pc (get_current_regcache ());
1931 pa = solib_event_probe_at (info, pc);
1932 if (pa == NULL)
1933 {
1934 do_cleanups (old_chain);
1935 return;
1936 }
1937
1938 action = solib_event_probe_action (pa);
1939 if (action == PROBES_INTERFACE_FAILED)
1940 {
1941 do_cleanups (old_chain);
1942 return;
1943 }
1944
1945 if (action == DO_NOTHING)
1946 {
1947 discard_cleanups (old_chain);
1948 return;
1949 }
1950
1951 /* evaluate_probe_argument looks up symbols in the dynamic linker
1952 using find_pc_section. find_pc_section is accelerated by a cache
1953 called the section map. The section map is invalidated every
1954 time a shared library is loaded or unloaded, and if the inferior
1955 is generating a lot of shared library events then the section map
1956 will be updated every time svr4_handle_solib_event is called.
1957 We called find_pc_section in svr4_create_solib_event_breakpoints,
1958 so we can guarantee that the dynamic linker's sections are in the
1959 section map. We can therefore inhibit section map updates across
1960 these calls to evaluate_probe_argument and save a lot of time. */
1961 inhibit_section_map_updates (current_program_space);
1962 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1963 current_program_space);
1964
3bd7e5b7
SDJ
1965 TRY
1966 {
1967 val = evaluate_probe_argument (pa->probe, 1, frame);
1968 }
1969 CATCH (ex, RETURN_MASK_ERROR)
1970 {
1971 exception_print (gdb_stderr, ex);
1972 val = NULL;
1973 }
1974 END_CATCH
1975
f9e14852
GB
1976 if (val == NULL)
1977 {
1978 do_cleanups (old_chain);
1979 return;
1980 }
1981
1982 debug_base = value_as_address (val);
1983 if (debug_base == 0)
1984 {
1985 do_cleanups (old_chain);
1986 return;
1987 }
1988
1989 /* Always locate the debug struct, in case it moved. */
1990 info->debug_base = 0;
1991 if (locate_base (info) == 0)
1992 {
1993 do_cleanups (old_chain);
1994 return;
1995 }
1996
1997 /* GDB does not currently support libraries loaded via dlmopen
1998 into namespaces other than the initial one. We must ignore
1999 any namespace other than the initial namespace here until
2000 support for this is added to GDB. */
2001 if (debug_base != info->debug_base)
2002 action = DO_NOTHING;
2003
2004 if (action == UPDATE_OR_RELOAD)
2005 {
3bd7e5b7
SDJ
2006 TRY
2007 {
2008 val = evaluate_probe_argument (pa->probe, 2, frame);
2009 }
2010 CATCH (ex, RETURN_MASK_ERROR)
2011 {
2012 exception_print (gdb_stderr, ex);
2013 do_cleanups (old_chain);
2014 return;
2015 }
2016 END_CATCH
2017
f9e14852
GB
2018 if (val != NULL)
2019 lm = value_as_address (val);
2020
2021 if (lm == 0)
2022 action = FULL_RELOAD;
2023 }
2024
2025 /* Resume section map updates. */
2026 do_cleanups (usm_chain);
2027
2028 if (action == UPDATE_OR_RELOAD)
2029 {
2030 if (!solist_update_incremental (info, lm))
2031 action = FULL_RELOAD;
2032 }
2033
2034 if (action == FULL_RELOAD)
2035 {
2036 if (!solist_update_full (info))
2037 {
2038 do_cleanups (old_chain);
2039 return;
2040 }
2041 }
2042
2043 discard_cleanups (old_chain);
2044}
2045
2046/* Helper function for svr4_update_solib_event_breakpoints. */
2047
2048static int
2049svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
2050{
2051 struct bp_location *loc;
2052
2053 if (b->type != bp_shlib_event)
2054 {
2055 /* Continue iterating. */
2056 return 0;
2057 }
2058
2059 for (loc = b->loc; loc != NULL; loc = loc->next)
2060 {
2061 struct svr4_info *info;
2062 struct probe_and_action *pa;
2063
19ba03f4
SM
2064 info = ((struct svr4_info *)
2065 program_space_data (loc->pspace, solib_svr4_pspace_data));
f9e14852
GB
2066 if (info == NULL || info->probes_table == NULL)
2067 continue;
2068
2069 pa = solib_event_probe_at (info, loc->address);
2070 if (pa == NULL)
2071 continue;
2072
2073 if (pa->action == DO_NOTHING)
2074 {
2075 if (b->enable_state == bp_disabled && stop_on_solib_events)
2076 enable_breakpoint (b);
2077 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2078 disable_breakpoint (b);
2079 }
2080
2081 break;
2082 }
2083
2084 /* Continue iterating. */
2085 return 0;
2086}
2087
2088/* Enable or disable optional solib event breakpoints as appropriate.
2089 Called whenever stop_on_solib_events is changed. */
2090
2091static void
2092svr4_update_solib_event_breakpoints (void)
2093{
2094 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2095}
2096
2097/* Create and register solib event breakpoints. PROBES is an array
2098 of NUM_PROBES elements, each of which is vector of probes. A
2099 solib event breakpoint will be created and registered for each
2100 probe. */
2101
2102static void
2103svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2104 VEC (probe_p) **probes,
2105 struct objfile *objfile)
f9e14852
GB
2106{
2107 int i;
2108
2109 for (i = 0; i < NUM_PROBES; i++)
2110 {
2111 enum probe_action action = probe_info[i].action;
2112 struct probe *probe;
2113 int ix;
2114
2115 for (ix = 0;
2116 VEC_iterate (probe_p, probes[i], ix, probe);
2117 ++ix)
2118 {
729662a5
TT
2119 CORE_ADDR address = get_probe_address (probe, objfile);
2120
2121 create_solib_event_breakpoint (gdbarch, address);
2122 register_solib_event_probe (probe, address, action);
f9e14852
GB
2123 }
2124 }
2125
2126 svr4_update_solib_event_breakpoints ();
2127}
2128
2129/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2130 before and after mapping and unmapping shared libraries. The sole
2131 purpose of this method is to allow debuggers to set a breakpoint so
2132 they can track these changes.
2133
2134 Some versions of the glibc dynamic linker contain named probes
2135 to allow more fine grained stopping. Given the address of the
2136 original marker function, this function attempts to find these
2137 probes, and if found, sets breakpoints on those instead. If the
2138 probes aren't found, a single breakpoint is set on the original
2139 marker function. */
2140
2141static void
2142svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2143 CORE_ADDR address)
2144{
2145 struct obj_section *os;
2146
2147 os = find_pc_section (address);
2148 if (os != NULL)
2149 {
2150 int with_prefix;
2151
2152 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2153 {
2154 VEC (probe_p) *probes[NUM_PROBES];
2155 int all_probes_found = 1;
25f9533e 2156 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2157 int i;
2158
2159 memset (probes, 0, sizeof (probes));
2160 for (i = 0; i < NUM_PROBES; i++)
2161 {
2162 const char *name = probe_info[i].name;
25f9533e 2163 struct probe *p;
f9e14852
GB
2164 char buf[32];
2165
2166 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2167 shipped with an early version of the probes code in
2168 which the probes' names were prefixed with "rtld_"
2169 and the "map_failed" probe did not exist. The
2170 locations of the probes are otherwise the same, so
2171 we check for probes with prefixed names if probes
2172 with unprefixed names are not present. */
2173 if (with_prefix)
2174 {
2175 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2176 name = buf;
2177 }
2178
2179 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2180
2181 /* The "map_failed" probe did not exist in early
2182 versions of the probes code in which the probes'
2183 names were prefixed with "rtld_". */
2184 if (strcmp (name, "rtld_map_failed") == 0)
2185 continue;
2186
2187 if (VEC_empty (probe_p, probes[i]))
2188 {
2189 all_probes_found = 0;
2190 break;
2191 }
25f9533e
SDJ
2192
2193 /* Ensure probe arguments can be evaluated. */
2194 if (!checked_can_use_probe_arguments)
2195 {
2196 p = VEC_index (probe_p, probes[i], 0);
2197 if (!can_evaluate_probe_arguments (p))
2198 {
2199 all_probes_found = 0;
2200 break;
2201 }
2202 checked_can_use_probe_arguments = 1;
2203 }
f9e14852
GB
2204 }
2205
2206 if (all_probes_found)
729662a5 2207 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2208
2209 for (i = 0; i < NUM_PROBES; i++)
2210 VEC_free (probe_p, probes[i]);
2211
2212 if (all_probes_found)
2213 return;
2214 }
2215 }
2216
2217 create_solib_event_breakpoint (gdbarch, address);
2218}
2219
cb457ae2
YQ
2220/* Helper function for gdb_bfd_lookup_symbol. */
2221
2222static int
3953f15c 2223cmp_name_and_sec_flags (const asymbol *sym, const void *data)
cb457ae2
YQ
2224{
2225 return (strcmp (sym->name, (const char *) data) == 0
2226 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2227}
7f86f058 2228/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2229
2230 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2231 debugger interface, support for arranging for the inferior to hit
2232 a breakpoint after mapping in the shared libraries. This function
2233 enables that breakpoint.
2234
2235 For SunOS, there is a special flag location (in_debugger) which we
2236 set to 1. When the dynamic linker sees this flag set, it will set
2237 a breakpoint at a location known only to itself, after saving the
2238 original contents of that place and the breakpoint address itself,
2239 in it's own internal structures. When we resume the inferior, it
2240 will eventually take a SIGTRAP when it runs into the breakpoint.
2241 We handle this (in a different place) by restoring the contents of
2242 the breakpointed location (which is only known after it stops),
2243 chasing around to locate the shared libraries that have been
2244 loaded, then resuming.
2245
2246 For SVR4, the debugger interface structure contains a member (r_brk)
2247 which is statically initialized at the time the shared library is
2248 built, to the offset of a function (_r_debug_state) which is guaran-
2249 teed to be called once before mapping in a library, and again when
2250 the mapping is complete. At the time we are examining this member,
2251 it contains only the unrelocated offset of the function, so we have
2252 to do our own relocation. Later, when the dynamic linker actually
2253 runs, it relocates r_brk to be the actual address of _r_debug_state().
2254
2255 The debugger interface structure also contains an enumeration which
2256 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2257 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2258 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2259
2260static int
268a4a75 2261enable_break (struct svr4_info *info, int from_tty)
13437d4b 2262{
3b7344d5 2263 struct bound_minimal_symbol msymbol;
bc043ef3 2264 const char * const *bkpt_namep;
13437d4b 2265 asection *interp_sect;
001f13d8 2266 char *interp_name;
7cd25cfc 2267 CORE_ADDR sym_addr;
13437d4b 2268
6c95b8df
PA
2269 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2270 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2271
7cd25cfc
DJ
2272 /* If we already have a shared library list in the target, and
2273 r_debug contains r_brk, set the breakpoint there - this should
2274 mean r_brk has already been relocated. Assume the dynamic linker
2275 is the object containing r_brk. */
2276
e696b3ad 2277 solib_add (NULL, from_tty, auto_solib_add);
7cd25cfc 2278 sym_addr = 0;
1a816a87
PA
2279 if (info->debug_base && solib_svr4_r_map (info) != 0)
2280 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2281
2282 if (sym_addr != 0)
2283 {
2284 struct obj_section *os;
2285
b36ec657 2286 sym_addr = gdbarch_addr_bits_remove
f5656ead 2287 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2288 sym_addr,
2289 &current_target));
b36ec657 2290
48379de6
DE
2291 /* On at least some versions of Solaris there's a dynamic relocation
2292 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2293 we get control before the dynamic linker has self-relocated.
2294 Check if SYM_ADDR is in a known section, if it is assume we can
2295 trust its value. This is just a heuristic though, it could go away
2296 or be replaced if it's getting in the way.
2297
2298 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2299 however it's spelled in your particular system) is ARM or Thumb.
2300 That knowledge is encoded in the address, if it's Thumb the low bit
2301 is 1. However, we've stripped that info above and it's not clear
2302 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2303 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2304 find_pc_section verifies we know about the address and have some
2305 hope of computing the right kind of breakpoint to use (via
2306 symbol info). It does mean that GDB needs to be pointed at a
2307 non-stripped version of the dynamic linker in order to obtain
2308 information it already knows about. Sigh. */
2309
7cd25cfc
DJ
2310 os = find_pc_section (sym_addr);
2311 if (os != NULL)
2312 {
2313 /* Record the relocated start and end address of the dynamic linker
2314 text and plt section for svr4_in_dynsym_resolve_code. */
2315 bfd *tmp_bfd;
2316 CORE_ADDR load_addr;
2317
2318 tmp_bfd = os->objfile->obfd;
2319 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2320 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2321
2322 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2323 if (interp_sect)
2324 {
6c95b8df 2325 info->interp_text_sect_low =
7cd25cfc 2326 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2327 info->interp_text_sect_high =
2328 info->interp_text_sect_low
2329 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2330 }
2331 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2332 if (interp_sect)
2333 {
6c95b8df 2334 info->interp_plt_sect_low =
7cd25cfc 2335 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2336 info->interp_plt_sect_high =
2337 info->interp_plt_sect_low
2338 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2339 }
2340
f9e14852 2341 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2342 return 1;
2343 }
2344 }
2345
97ec2c2f 2346 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2347 into the old breakpoint at symbol code. */
97ec2c2f
UW
2348 interp_name = find_program_interpreter ();
2349 if (interp_name)
13437d4b 2350 {
8ad2fcde
KB
2351 CORE_ADDR load_addr = 0;
2352 int load_addr_found = 0;
2ec9a4f8 2353 int loader_found_in_list = 0;
f8766ec1 2354 struct so_list *so;
2f4950cd 2355 struct target_ops *tmp_bfd_target;
13437d4b 2356
7cd25cfc 2357 sym_addr = 0;
13437d4b
KB
2358
2359 /* Now we need to figure out where the dynamic linker was
2360 loaded so that we can load its symbols and place a breakpoint
2361 in the dynamic linker itself.
2362
2363 This address is stored on the stack. However, I've been unable
2364 to find any magic formula to find it for Solaris (appears to
2365 be trivial on GNU/Linux). Therefore, we have to try an alternate
2366 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2367
192b62ce 2368 gdb_bfd_ref_ptr tmp_bfd;
492d29ea 2369 TRY
f1838a98 2370 {
97ec2c2f 2371 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2372 }
492d29ea
PA
2373 CATCH (ex, RETURN_MASK_ALL)
2374 {
2375 }
2376 END_CATCH
2377
13437d4b
KB
2378 if (tmp_bfd == NULL)
2379 goto bkpt_at_symbol;
2380
2f4950cd 2381 /* Now convert the TMP_BFD into a target. That way target, as
192b62ce
TT
2382 well as BFD operations can be used. target_bfd_reopen
2383 acquires its own reference. */
2384 tmp_bfd_target = target_bfd_reopen (tmp_bfd.get ());
2f4950cd 2385
f8766ec1
KB
2386 /* On a running target, we can get the dynamic linker's base
2387 address from the shared library table. */
f8766ec1
KB
2388 so = master_so_list ();
2389 while (so)
8ad2fcde 2390 {
97ec2c2f 2391 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2392 {
2393 load_addr_found = 1;
2ec9a4f8 2394 loader_found_in_list = 1;
192b62ce 2395 load_addr = lm_addr_check (so, tmp_bfd.get ());
8ad2fcde
KB
2396 break;
2397 }
f8766ec1 2398 so = so->next;
8ad2fcde
KB
2399 }
2400
8d4e36ba
JB
2401 /* If we were not able to find the base address of the loader
2402 from our so_list, then try using the AT_BASE auxilliary entry. */
2403 if (!load_addr_found)
2404 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2405 {
f5656ead 2406 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2407
2408 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2409 that `+ load_addr' will overflow CORE_ADDR width not creating
2410 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2411 GDB. */
2412
d182d057 2413 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2414 {
d182d057 2415 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
192b62ce 2416 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd.get (),
ad3a0e5b
JK
2417 tmp_bfd_target);
2418
2419 gdb_assert (load_addr < space_size);
2420
2421 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2422 64bit ld.so with 32bit executable, it should not happen. */
2423
2424 if (tmp_entry_point < space_size
2425 && tmp_entry_point + load_addr >= space_size)
2426 load_addr -= space_size;
2427 }
2428
2429 load_addr_found = 1;
2430 }
8d4e36ba 2431
8ad2fcde
KB
2432 /* Otherwise we find the dynamic linker's base address by examining
2433 the current pc (which should point at the entry point for the
8d4e36ba
JB
2434 dynamic linker) and subtracting the offset of the entry point.
2435
2436 This is more fragile than the previous approaches, but is a good
2437 fallback method because it has actually been working well in
2438 most cases. */
8ad2fcde 2439 if (!load_addr_found)
fb14de7b 2440 {
c2250ad1 2441 struct regcache *regcache
f5656ead 2442 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2443
fb14de7b 2444 load_addr = (regcache_read_pc (regcache)
192b62ce 2445 - exec_entry_point (tmp_bfd.get (), tmp_bfd_target));
fb14de7b 2446 }
2ec9a4f8
DJ
2447
2448 if (!loader_found_in_list)
34439770 2449 {
1a816a87
PA
2450 info->debug_loader_name = xstrdup (interp_name);
2451 info->debug_loader_offset_p = 1;
2452 info->debug_loader_offset = load_addr;
e696b3ad 2453 solib_add (NULL, from_tty, auto_solib_add);
34439770 2454 }
13437d4b
KB
2455
2456 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2457 text and plt section for svr4_in_dynsym_resolve_code. */
192b62ce 2458 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".text");
13437d4b
KB
2459 if (interp_sect)
2460 {
6c95b8df 2461 info->interp_text_sect_low =
192b62ce 2462 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2463 info->interp_text_sect_high =
2464 info->interp_text_sect_low
192b62ce 2465 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b 2466 }
192b62ce 2467 interp_sect = bfd_get_section_by_name (tmp_bfd.get (), ".plt");
13437d4b
KB
2468 if (interp_sect)
2469 {
6c95b8df 2470 info->interp_plt_sect_low =
192b62ce 2471 bfd_section_vma (tmp_bfd.get (), interp_sect) + load_addr;
6c95b8df
PA
2472 info->interp_plt_sect_high =
2473 info->interp_plt_sect_low
192b62ce 2474 + bfd_section_size (tmp_bfd.get (), interp_sect);
13437d4b
KB
2475 }
2476
2477 /* Now try to set a breakpoint in the dynamic linker. */
2478 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2479 {
192b62ce
TT
2480 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd.get (),
2481 cmp_name_and_sec_flags,
3953f15c 2482 *bkpt_namep);
13437d4b
KB
2483 if (sym_addr != 0)
2484 break;
2485 }
2486
2bbe3cc1
DJ
2487 if (sym_addr != 0)
2488 /* Convert 'sym_addr' from a function pointer to an address.
2489 Because we pass tmp_bfd_target instead of the current
2490 target, this will always produce an unrelocated value. */
f5656ead 2491 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2492 sym_addr,
2493 tmp_bfd_target);
2494
695c3173
TT
2495 /* We're done with both the temporary bfd and target. Closing
2496 the target closes the underlying bfd, because it holds the
2497 only remaining reference. */
460014f5 2498 target_close (tmp_bfd_target);
13437d4b
KB
2499
2500 if (sym_addr != 0)
2501 {
f9e14852
GB
2502 svr4_create_solib_event_breakpoints (target_gdbarch (),
2503 load_addr + sym_addr);
97ec2c2f 2504 xfree (interp_name);
13437d4b
KB
2505 return 1;
2506 }
2507
2508 /* For whatever reason we couldn't set a breakpoint in the dynamic
2509 linker. Warn and drop into the old code. */
2510 bkpt_at_symbol:
97ec2c2f 2511 xfree (interp_name);
82d03102
PG
2512 warning (_("Unable to find dynamic linker breakpoint function.\n"
2513 "GDB will be unable to debug shared library initializers\n"
2514 "and track explicitly loaded dynamic code."));
13437d4b 2515 }
13437d4b 2516
e499d0f1
DJ
2517 /* Scan through the lists of symbols, trying to look up the symbol and
2518 set a breakpoint there. Terminate loop when we/if we succeed. */
2519
2520 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2521 {
2522 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2523 if ((msymbol.minsym != NULL)
77e371c0 2524 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2525 {
77e371c0 2526 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2527 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2528 sym_addr,
2529 &current_target);
f9e14852 2530 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2531 return 1;
2532 }
2533 }
13437d4b 2534
fb139f32 2535 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2536 {
c6490bf2 2537 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2538 {
c6490bf2 2539 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2540 if ((msymbol.minsym != NULL)
77e371c0 2541 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2542 {
77e371c0 2543 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2544 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2545 sym_addr,
2546 &current_target);
f9e14852 2547 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2548 return 1;
2549 }
13437d4b
KB
2550 }
2551 }
542c95c2 2552 return 0;
13437d4b
KB
2553}
2554
09919ac2
JK
2555/* Read the ELF program headers from ABFD. Return the contents and
2556 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2557
09919ac2
JK
2558static gdb_byte *
2559read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2560{
09919ac2
JK
2561 Elf_Internal_Ehdr *ehdr;
2562 gdb_byte *buf;
e2a44558 2563
09919ac2 2564 ehdr = elf_elfheader (abfd);
b8040f19 2565
09919ac2
JK
2566 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2567 if (*phdrs_size == 0)
2568 return NULL;
2569
224c3ddb 2570 buf = (gdb_byte *) xmalloc (*phdrs_size);
09919ac2
JK
2571 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2572 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2573 {
2574 xfree (buf);
2575 return NULL;
2576 }
2577
2578 return buf;
b8040f19
JK
2579}
2580
01c30d6e
JK
2581/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2582 exec_bfd. Otherwise return 0.
2583
2584 We relocate all of the sections by the same amount. This
c378eb4e 2585 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2586 According to the System V Application Binary Interface,
2587 Edition 4.1, page 5-5:
2588
2589 ... Though the system chooses virtual addresses for
2590 individual processes, it maintains the segments' relative
2591 positions. Because position-independent code uses relative
2592 addressesing between segments, the difference between
2593 virtual addresses in memory must match the difference
2594 between virtual addresses in the file. The difference
2595 between the virtual address of any segment in memory and
2596 the corresponding virtual address in the file is thus a
2597 single constant value for any one executable or shared
2598 object in a given process. This difference is the base
2599 address. One use of the base address is to relocate the
2600 memory image of the program during dynamic linking.
2601
2602 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2603 ABI and is left unspecified in some of the earlier editions.
2604
2605 Decide if the objfile needs to be relocated. As indicated above, we will
2606 only be here when execution is stopped. But during attachment PC can be at
2607 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2608 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2609 regcache_read_pc would point to the interpreter and not the main executable.
2610
2611 So, to summarize, relocations are necessary when the start address obtained
2612 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2613
09919ac2
JK
2614 [ The astute reader will note that we also test to make sure that
2615 the executable in question has the DYNAMIC flag set. It is my
2616 opinion that this test is unnecessary (undesirable even). It
2617 was added to avoid inadvertent relocation of an executable
2618 whose e_type member in the ELF header is not ET_DYN. There may
2619 be a time in the future when it is desirable to do relocations
2620 on other types of files as well in which case this condition
2621 should either be removed or modified to accomodate the new file
2622 type. - Kevin, Nov 2000. ] */
b8040f19 2623
01c30d6e
JK
2624static int
2625svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2626{
41752192
JK
2627 /* ENTRY_POINT is a possible function descriptor - before
2628 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2629 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2630
2631 if (exec_bfd == NULL)
2632 return 0;
2633
09919ac2
JK
2634 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2635 being executed themselves and PIE (Position Independent Executable)
2636 executables are ET_DYN. */
2637
2638 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2639 return 0;
2640
2641 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2642 return 0;
2643
8f61baf8 2644 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2645
8f61baf8 2646 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2647 alignment. It is cheaper than the program headers comparison below. */
2648
2649 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2650 {
2651 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2652
2653 /* p_align of PT_LOAD segments does not specify any alignment but
2654 only congruency of addresses:
2655 p_offset % p_align == p_vaddr % p_align
2656 Kernel is free to load the executable with lower alignment. */
2657
8f61baf8 2658 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2659 return 0;
2660 }
2661
2662 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2663 comparing their program headers. If the program headers in the auxilliary
2664 vector do not match the program headers in the executable, then we are
2665 looking at a different file than the one used by the kernel - for
2666 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2667
2668 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2669 {
2670 /* Be optimistic and clear OK only if GDB was able to verify the headers
2671 really do not match. */
2672 int phdrs_size, phdrs2_size, ok = 1;
2673 gdb_byte *buf, *buf2;
0a1e94c7 2674 int arch_size;
09919ac2 2675
a738da3a 2676 buf = read_program_header (-1, &phdrs_size, &arch_size, NULL);
09919ac2 2677 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2678 if (buf != NULL && buf2 != NULL)
2679 {
f5656ead 2680 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2681
2682 /* We are dealing with three different addresses. EXEC_BFD
2683 represents current address in on-disk file. target memory content
2684 may be different from EXEC_BFD as the file may have been prelinked
2685 to a different address after the executable has been loaded.
2686 Moreover the address of placement in target memory can be
3e43a32a
MS
2687 different from what the program headers in target memory say -
2688 this is the goal of PIE.
0a1e94c7
JK
2689
2690 Detected DISPLACEMENT covers both the offsets of PIE placement and
2691 possible new prelink performed after start of the program. Here
2692 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2693 content offset for the verification purpose. */
2694
2695 if (phdrs_size != phdrs2_size
2696 || bfd_get_arch_size (exec_bfd) != arch_size)
2697 ok = 0;
3e43a32a
MS
2698 else if (arch_size == 32
2699 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2700 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2701 {
2702 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2703 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2704 CORE_ADDR displacement = 0;
2705 int i;
2706
2707 /* DISPLACEMENT could be found more easily by the difference of
2708 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2709 already have enough information to compute that displacement
2710 with what we've read. */
2711
2712 for (i = 0; i < ehdr2->e_phnum; i++)
2713 if (phdr2[i].p_type == PT_LOAD)
2714 {
2715 Elf32_External_Phdr *phdrp;
2716 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2717 CORE_ADDR vaddr, paddr;
2718 CORE_ADDR displacement_vaddr = 0;
2719 CORE_ADDR displacement_paddr = 0;
2720
2721 phdrp = &((Elf32_External_Phdr *) buf)[i];
2722 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2723 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2724
2725 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2726 byte_order);
2727 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2728
2729 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2730 byte_order);
2731 displacement_paddr = paddr - phdr2[i].p_paddr;
2732
2733 if (displacement_vaddr == displacement_paddr)
2734 displacement = displacement_vaddr;
2735
2736 break;
2737 }
2738
2739 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2740
2741 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2742 {
2743 Elf32_External_Phdr *phdrp;
2744 Elf32_External_Phdr *phdr2p;
2745 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2746 CORE_ADDR vaddr, paddr;
43b8e241 2747 asection *plt2_asect;
0a1e94c7
JK
2748
2749 phdrp = &((Elf32_External_Phdr *) buf)[i];
2750 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2751 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2752 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2753
2754 /* PT_GNU_STACK is an exception by being never relocated by
2755 prelink as its addresses are always zero. */
2756
2757 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2758 continue;
2759
2760 /* Check also other adjustment combinations - PR 11786. */
2761
3e43a32a
MS
2762 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2763 byte_order);
0a1e94c7
JK
2764 vaddr -= displacement;
2765 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2766
3e43a32a
MS
2767 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2768 byte_order);
0a1e94c7
JK
2769 paddr -= displacement;
2770 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2771
2772 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2773 continue;
2774
204b5331
DE
2775 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2776 CentOS-5 has problems with filesz, memsz as well.
2777 See PR 11786. */
2778 if (phdr2[i].p_type == PT_GNU_RELRO)
2779 {
2780 Elf32_External_Phdr tmp_phdr = *phdrp;
2781 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2782
2783 memset (tmp_phdr.p_filesz, 0, 4);
2784 memset (tmp_phdr.p_memsz, 0, 4);
2785 memset (tmp_phdr.p_flags, 0, 4);
2786 memset (tmp_phdr.p_align, 0, 4);
2787 memset (tmp_phdr2.p_filesz, 0, 4);
2788 memset (tmp_phdr2.p_memsz, 0, 4);
2789 memset (tmp_phdr2.p_flags, 0, 4);
2790 memset (tmp_phdr2.p_align, 0, 4);
2791
2792 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2793 == 0)
2794 continue;
2795 }
2796
43b8e241
JK
2797 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2798 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2799 if (plt2_asect)
2800 {
2801 int content2;
2802 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2803 CORE_ADDR filesz;
2804
2805 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2806 & SEC_HAS_CONTENTS) != 0;
2807
2808 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2809 byte_order);
2810
2811 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2812 FILESZ is from the in-memory image. */
2813 if (content2)
2814 filesz += bfd_get_section_size (plt2_asect);
2815 else
2816 filesz -= bfd_get_section_size (plt2_asect);
2817
2818 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2819 filesz);
2820
2821 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2822 continue;
2823 }
2824
0a1e94c7
JK
2825 ok = 0;
2826 break;
2827 }
2828 }
3e43a32a
MS
2829 else if (arch_size == 64
2830 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2831 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2832 {
2833 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2834 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2835 CORE_ADDR displacement = 0;
2836 int i;
2837
2838 /* DISPLACEMENT could be found more easily by the difference of
2839 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2840 already have enough information to compute that displacement
2841 with what we've read. */
2842
2843 for (i = 0; i < ehdr2->e_phnum; i++)
2844 if (phdr2[i].p_type == PT_LOAD)
2845 {
2846 Elf64_External_Phdr *phdrp;
2847 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2848 CORE_ADDR vaddr, paddr;
2849 CORE_ADDR displacement_vaddr = 0;
2850 CORE_ADDR displacement_paddr = 0;
2851
2852 phdrp = &((Elf64_External_Phdr *) buf)[i];
2853 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2854 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2855
2856 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2857 byte_order);
2858 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2859
2860 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2861 byte_order);
2862 displacement_paddr = paddr - phdr2[i].p_paddr;
2863
2864 if (displacement_vaddr == displacement_paddr)
2865 displacement = displacement_vaddr;
2866
2867 break;
2868 }
2869
2870 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2871
2872 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2873 {
2874 Elf64_External_Phdr *phdrp;
2875 Elf64_External_Phdr *phdr2p;
2876 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2877 CORE_ADDR vaddr, paddr;
43b8e241 2878 asection *plt2_asect;
0a1e94c7
JK
2879
2880 phdrp = &((Elf64_External_Phdr *) buf)[i];
2881 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2882 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2883 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2884
2885 /* PT_GNU_STACK is an exception by being never relocated by
2886 prelink as its addresses are always zero. */
2887
2888 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2889 continue;
2890
2891 /* Check also other adjustment combinations - PR 11786. */
2892
3e43a32a
MS
2893 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2894 byte_order);
0a1e94c7
JK
2895 vaddr -= displacement;
2896 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2897
3e43a32a
MS
2898 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2899 byte_order);
0a1e94c7
JK
2900 paddr -= displacement;
2901 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2902
2903 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2904 continue;
2905
204b5331
DE
2906 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2907 CentOS-5 has problems with filesz, memsz as well.
2908 See PR 11786. */
2909 if (phdr2[i].p_type == PT_GNU_RELRO)
2910 {
2911 Elf64_External_Phdr tmp_phdr = *phdrp;
2912 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2913
2914 memset (tmp_phdr.p_filesz, 0, 8);
2915 memset (tmp_phdr.p_memsz, 0, 8);
2916 memset (tmp_phdr.p_flags, 0, 4);
2917 memset (tmp_phdr.p_align, 0, 8);
2918 memset (tmp_phdr2.p_filesz, 0, 8);
2919 memset (tmp_phdr2.p_memsz, 0, 8);
2920 memset (tmp_phdr2.p_flags, 0, 4);
2921 memset (tmp_phdr2.p_align, 0, 8);
2922
2923 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2924 == 0)
2925 continue;
2926 }
2927
43b8e241
JK
2928 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2929 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2930 if (plt2_asect)
2931 {
2932 int content2;
2933 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2934 CORE_ADDR filesz;
2935
2936 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2937 & SEC_HAS_CONTENTS) != 0;
2938
2939 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2940 byte_order);
2941
2942 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2943 FILESZ is from the in-memory image. */
2944 if (content2)
2945 filesz += bfd_get_section_size (plt2_asect);
2946 else
2947 filesz -= bfd_get_section_size (plt2_asect);
2948
2949 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2950 filesz);
2951
2952 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2953 continue;
2954 }
2955
0a1e94c7
JK
2956 ok = 0;
2957 break;
2958 }
2959 }
2960 else
2961 ok = 0;
2962 }
09919ac2
JK
2963
2964 xfree (buf);
2965 xfree (buf2);
2966
2967 if (!ok)
2968 return 0;
2969 }
b8040f19 2970
ccf26247
JK
2971 if (info_verbose)
2972 {
2973 /* It can be printed repeatedly as there is no easy way to check
2974 the executable symbols/file has been already relocated to
2975 displacement. */
2976
2977 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2978 "displacement %s for \"%s\".\n"),
8f61baf8 2979 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2980 bfd_get_filename (exec_bfd));
2981 }
2982
8f61baf8 2983 *displacementp = exec_displacement;
01c30d6e 2984 return 1;
b8040f19
JK
2985}
2986
2987/* Relocate the main executable. This function should be called upon
c378eb4e 2988 stopping the inferior process at the entry point to the program.
b8040f19
JK
2989 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2990 different, the main executable is relocated by the proper amount. */
2991
2992static void
2993svr4_relocate_main_executable (void)
2994{
01c30d6e
JK
2995 CORE_ADDR displacement;
2996
4e5799b6
JK
2997 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2998 probably contains the offsets computed using the PIE displacement
2999 from the previous run, which of course are irrelevant for this run.
3000 So we need to determine the new PIE displacement and recompute the
3001 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
3002 already contains pre-computed offsets.
01c30d6e 3003
4e5799b6 3004 If we cannot compute the PIE displacement, either:
01c30d6e 3005
4e5799b6
JK
3006 - The executable is not PIE.
3007
3008 - SYMFILE_OBJFILE does not match the executable started in the target.
3009 This can happen for main executable symbols loaded at the host while
3010 `ld.so --ld-args main-executable' is loaded in the target.
3011
3012 Then we leave the section offsets untouched and use them as is for
3013 this run. Either:
3014
3015 - These section offsets were properly reset earlier, and thus
3016 already contain the correct values. This can happen for instance
3017 when reconnecting via the remote protocol to a target that supports
3018 the `qOffsets' packet.
3019
3020 - The section offsets were not reset earlier, and the best we can
c378eb4e 3021 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
3022
3023 if (! svr4_exec_displacement (&displacement))
3024 return;
b8040f19 3025
01c30d6e
JK
3026 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
3027 addresses. */
b8040f19
JK
3028
3029 if (symfile_objfile)
e2a44558 3030 {
e2a44558 3031 struct section_offsets *new_offsets;
b8040f19 3032 int i;
e2a44558 3033
224c3ddb
SM
3034 new_offsets = XALLOCAVEC (struct section_offsets,
3035 symfile_objfile->num_sections);
e2a44558 3036
b8040f19
JK
3037 for (i = 0; i < symfile_objfile->num_sections; i++)
3038 new_offsets->offsets[i] = displacement;
e2a44558 3039
b8040f19 3040 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 3041 }
51bee8e9
JK
3042 else if (exec_bfd)
3043 {
3044 asection *asect;
3045
3046 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
3047 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
3048 (bfd_section_vma (exec_bfd, asect)
3049 + displacement));
3050 }
e2a44558
KB
3051}
3052
7f86f058 3053/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
3054
3055 For SVR4 executables, this first instruction is either the first
3056 instruction in the dynamic linker (for dynamically linked
3057 executables) or the instruction at "start" for statically linked
3058 executables. For dynamically linked executables, the system
3059 first exec's /lib/libc.so.N, which contains the dynamic linker,
3060 and starts it running. The dynamic linker maps in any needed
3061 shared libraries, maps in the actual user executable, and then
3062 jumps to "start" in the user executable.
3063
7f86f058
PA
3064 We can arrange to cooperate with the dynamic linker to discover the
3065 names of shared libraries that are dynamically linked, and the base
3066 addresses to which they are linked.
13437d4b
KB
3067
3068 This function is responsible for discovering those names and
3069 addresses, and saving sufficient information about them to allow
d2e5c99a 3070 their symbols to be read at a later time. */
13437d4b 3071
e2a44558 3072static void
268a4a75 3073svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3074{
1a816a87
PA
3075 struct svr4_info *info;
3076
6c95b8df 3077 info = get_svr4_info ();
2020b7ab 3078
f9e14852
GB
3079 /* Clear the probes-based interface's state. */
3080 free_probes_table (info);
3081 free_solib_list (info);
3082
e2a44558 3083 /* Relocate the main executable if necessary. */
86e4bafc 3084 svr4_relocate_main_executable ();
e2a44558 3085
c91c8c16
PA
3086 /* No point setting a breakpoint in the dynamic linker if we can't
3087 hit it (e.g., a core file, or a trace file). */
3088 if (!target_has_execution)
3089 return;
3090
d5a921c9 3091 if (!svr4_have_link_map_offsets ())
513f5903 3092 return;
d5a921c9 3093
268a4a75 3094 if (!enable_break (info, from_tty))
542c95c2 3095 return;
13437d4b
KB
3096}
3097
3098static void
3099svr4_clear_solib (void)
3100{
6c95b8df
PA
3101 struct svr4_info *info;
3102
3103 info = get_svr4_info ();
3104 info->debug_base = 0;
3105 info->debug_loader_offset_p = 0;
3106 info->debug_loader_offset = 0;
3107 xfree (info->debug_loader_name);
3108 info->debug_loader_name = NULL;
13437d4b
KB
3109}
3110
6bb7be43
JB
3111/* Clear any bits of ADDR that wouldn't fit in a target-format
3112 data pointer. "Data pointer" here refers to whatever sort of
3113 address the dynamic linker uses to manage its sections. At the
3114 moment, we don't support shared libraries on any processors where
3115 code and data pointers are different sizes.
3116
3117 This isn't really the right solution. What we really need here is
3118 a way to do arithmetic on CORE_ADDR values that respects the
3119 natural pointer/address correspondence. (For example, on the MIPS,
3120 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3121 sign-extend the value. There, simply truncating the bits above
819844ad 3122 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3123 be a new gdbarch method or something. */
3124static CORE_ADDR
3125svr4_truncate_ptr (CORE_ADDR addr)
3126{
f5656ead 3127 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3128 /* We don't need to truncate anything, and the bit twiddling below
3129 will fail due to overflow problems. */
3130 return addr;
3131 else
f5656ead 3132 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3133}
3134
3135
749499cb
KB
3136static void
3137svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3138 struct target_section *sec)
749499cb 3139{
2b2848e2
DE
3140 bfd *abfd = sec->the_bfd_section->owner;
3141
3142 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3143 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3144}
4b188b9f 3145\f
749499cb 3146
4b188b9f 3147/* Architecture-specific operations. */
6bb7be43 3148
4b188b9f
MK
3149/* Per-architecture data key. */
3150static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3151
4b188b9f 3152struct solib_svr4_ops
e5e2b9ff 3153{
4b188b9f
MK
3154 /* Return a description of the layout of `struct link_map'. */
3155 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3156};
e5e2b9ff 3157
4b188b9f 3158/* Return a default for the architecture-specific operations. */
e5e2b9ff 3159
4b188b9f
MK
3160static void *
3161solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3162{
4b188b9f 3163 struct solib_svr4_ops *ops;
e5e2b9ff 3164
4b188b9f 3165 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3166 ops->fetch_link_map_offsets = NULL;
4b188b9f 3167 return ops;
e5e2b9ff
KB
3168}
3169
4b188b9f 3170/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3171 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3172
21479ded 3173void
e5e2b9ff
KB
3174set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3175 struct link_map_offsets *(*flmo) (void))
21479ded 3176{
19ba03f4
SM
3177 struct solib_svr4_ops *ops
3178 = (struct solib_svr4_ops *) gdbarch_data (gdbarch, solib_svr4_data);
4b188b9f
MK
3179
3180 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3181
3182 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3183}
3184
4b188b9f
MK
3185/* Fetch a link_map_offsets structure using the architecture-specific
3186 `struct link_map_offsets' fetcher. */
1c4dcb57 3187
4b188b9f
MK
3188static struct link_map_offsets *
3189svr4_fetch_link_map_offsets (void)
21479ded 3190{
19ba03f4
SM
3191 struct solib_svr4_ops *ops
3192 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3193 solib_svr4_data);
4b188b9f
MK
3194
3195 gdb_assert (ops->fetch_link_map_offsets);
3196 return ops->fetch_link_map_offsets ();
21479ded
KB
3197}
3198
4b188b9f
MK
3199/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3200
3201static int
3202svr4_have_link_map_offsets (void)
3203{
19ba03f4
SM
3204 struct solib_svr4_ops *ops
3205 = (struct solib_svr4_ops *) gdbarch_data (target_gdbarch (),
3206 solib_svr4_data);
433759f7 3207
4b188b9f
MK
3208 return (ops->fetch_link_map_offsets != NULL);
3209}
3210\f
3211
e4bbbda8
MK
3212/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3213 `struct r_debug' and a `struct link_map' that are binary compatible
3214 with the origional SVR4 implementation. */
3215
3216/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3217 for an ILP32 SVR4 system. */
d989b283 3218
e4bbbda8
MK
3219struct link_map_offsets *
3220svr4_ilp32_fetch_link_map_offsets (void)
3221{
3222 static struct link_map_offsets lmo;
3223 static struct link_map_offsets *lmp = NULL;
3224
3225 if (lmp == NULL)
3226 {
3227 lmp = &lmo;
3228
e4cd0d6a
MK
3229 lmo.r_version_offset = 0;
3230 lmo.r_version_size = 4;
e4bbbda8 3231 lmo.r_map_offset = 4;
7cd25cfc 3232 lmo.r_brk_offset = 8;
e4cd0d6a 3233 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3234
3235 /* Everything we need is in the first 20 bytes. */
3236 lmo.link_map_size = 20;
3237 lmo.l_addr_offset = 0;
e4bbbda8 3238 lmo.l_name_offset = 4;
cc10cae3 3239 lmo.l_ld_offset = 8;
e4bbbda8 3240 lmo.l_next_offset = 12;
e4bbbda8 3241 lmo.l_prev_offset = 16;
e4bbbda8
MK
3242 }
3243
3244 return lmp;
3245}
3246
3247/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3248 for an LP64 SVR4 system. */
d989b283 3249
e4bbbda8
MK
3250struct link_map_offsets *
3251svr4_lp64_fetch_link_map_offsets (void)
3252{
3253 static struct link_map_offsets lmo;
3254 static struct link_map_offsets *lmp = NULL;
3255
3256 if (lmp == NULL)
3257 {
3258 lmp = &lmo;
3259
e4cd0d6a
MK
3260 lmo.r_version_offset = 0;
3261 lmo.r_version_size = 4;
e4bbbda8 3262 lmo.r_map_offset = 8;
7cd25cfc 3263 lmo.r_brk_offset = 16;
e4cd0d6a 3264 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3265
3266 /* Everything we need is in the first 40 bytes. */
3267 lmo.link_map_size = 40;
3268 lmo.l_addr_offset = 0;
e4bbbda8 3269 lmo.l_name_offset = 8;
cc10cae3 3270 lmo.l_ld_offset = 16;
e4bbbda8 3271 lmo.l_next_offset = 24;
e4bbbda8 3272 lmo.l_prev_offset = 32;
e4bbbda8
MK
3273 }
3274
3275 return lmp;
3276}
3277\f
3278
7d522c90 3279struct target_so_ops svr4_so_ops;
13437d4b 3280
c378eb4e 3281/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3282 different rule for symbol lookup. The lookup begins here in the DSO, not in
3283 the main executable. */
3284
d12307c1 3285static struct block_symbol
efad9b6a 3286elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3287 const char *name,
21b556f4 3288 const domain_enum domain)
3a40aaa0 3289{
61f0d762
JK
3290 bfd *abfd;
3291
3292 if (objfile == symfile_objfile)
3293 abfd = exec_bfd;
3294 else
3295 {
3296 /* OBJFILE should have been passed as the non-debug one. */
3297 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3298
3299 abfd = objfile->obfd;
3300 }
3301
a738da3a 3302 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL, NULL) != 1)
d12307c1 3303 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3304
94af9270 3305 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3306}
3307
a78f21af
AC
3308extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3309
13437d4b
KB
3310void
3311_initialize_svr4_solib (void)
3312{
4b188b9f 3313 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3314 solib_svr4_pspace_data
8e260fc0 3315 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3316
749499cb 3317 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3318 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3319 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3320 svr4_so_ops.clear_solib = svr4_clear_solib;
3321 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
13437d4b
KB
3322 svr4_so_ops.current_sos = svr4_current_sos;
3323 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3324 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3325 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3326 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3327 svr4_so_ops.same = svr4_same;
de18c1d8 3328 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3329 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3330 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3331}
This page took 2.074486 seconds and 4 git commands to generate.