C++: dlsym casts in gdb/linux-thread-db.c and gdb/gdbserver/thread-db.c
[deliverable/binutils-gdb.git] / gdb / solib-svr4.c
CommitLineData
ab31aa69 1/* Handle SVR4 shared libraries for GDB, the GNU Debugger.
2f4950cd 2
32d0add0 3 Copyright (C) 1990-2015 Free Software Foundation, Inc.
13437d4b
KB
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
13437d4b
KB
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
13437d4b 19
13437d4b
KB
20#include "defs.h"
21
13437d4b 22#include "elf/external.h"
21479ded 23#include "elf/common.h"
f7856c8f 24#include "elf/mips.h"
13437d4b
KB
25
26#include "symtab.h"
27#include "bfd.h"
28#include "symfile.h"
29#include "objfiles.h"
30#include "gdbcore.h"
13437d4b 31#include "target.h"
13437d4b 32#include "inferior.h"
45741a9c 33#include "infrun.h"
fb14de7b 34#include "regcache.h"
2020b7ab 35#include "gdbthread.h"
1a816a87 36#include "observer.h"
13437d4b
KB
37
38#include "solist.h"
bba93f6c 39#include "solib.h"
13437d4b
KB
40#include "solib-svr4.h"
41
2f4950cd 42#include "bfd-target.h"
cc10cae3 43#include "elf-bfd.h"
2f4950cd 44#include "exec.h"
8d4e36ba 45#include "auxv.h"
695c3173 46#include "gdb_bfd.h"
f9e14852 47#include "probe.h"
2f4950cd 48
e5e2b9ff 49static struct link_map_offsets *svr4_fetch_link_map_offsets (void);
d5a921c9 50static int svr4_have_link_map_offsets (void);
9f2982ff 51static void svr4_relocate_main_executable (void);
f9e14852 52static void svr4_free_library_list (void *p_list);
1c4dcb57 53
c378eb4e 54/* Link map info to include in an allocated so_list entry. */
13437d4b
KB
55
56struct lm_info
57 {
cc10cae3 58 /* Amount by which addresses in the binary should be relocated to
3957565a
JK
59 match the inferior. The direct inferior value is L_ADDR_INFERIOR.
60 When prelinking is involved and the prelink base address changes,
61 we may need a different offset - the recomputed offset is in L_ADDR.
62 It is commonly the same value. It is cached as we want to warn about
63 the difference and compute it only once. L_ADDR is valid
64 iff L_ADDR_P. */
65 CORE_ADDR l_addr, l_addr_inferior;
66 unsigned int l_addr_p : 1;
93a57060
DJ
67
68 /* The target location of lm. */
69 CORE_ADDR lm_addr;
3957565a
JK
70
71 /* Values read in from inferior's fields of the same name. */
72 CORE_ADDR l_ld, l_next, l_prev, l_name;
13437d4b
KB
73 };
74
75/* On SVR4 systems, a list of symbols in the dynamic linker where
76 GDB can try to place a breakpoint to monitor shared library
77 events.
78
79 If none of these symbols are found, or other errors occur, then
80 SVR4 systems will fall back to using a symbol as the "startup
81 mapping complete" breakpoint address. */
82
bc043ef3 83static const char * const solib_break_names[] =
13437d4b
KB
84{
85 "r_debug_state",
86 "_r_debug_state",
87 "_dl_debug_state",
88 "rtld_db_dlactivity",
4c7dcb84 89 "__dl_rtld_db_dlactivity",
1f72e589 90 "_rtld_debug_state",
4c0122c8 91
13437d4b
KB
92 NULL
93};
13437d4b 94
bc043ef3 95static const char * const bkpt_names[] =
13437d4b 96{
13437d4b 97 "_start",
ad3dcc5c 98 "__start",
13437d4b
KB
99 "main",
100 NULL
101};
13437d4b 102
bc043ef3 103static const char * const main_name_list[] =
13437d4b
KB
104{
105 "main_$main",
106 NULL
107};
108
f9e14852
GB
109/* What to do when a probe stop occurs. */
110
111enum probe_action
112{
113 /* Something went seriously wrong. Stop using probes and
114 revert to using the older interface. */
115 PROBES_INTERFACE_FAILED,
116
117 /* No action is required. The shared object list is still
118 valid. */
119 DO_NOTHING,
120
121 /* The shared object list should be reloaded entirely. */
122 FULL_RELOAD,
123
124 /* Attempt to incrementally update the shared object list. If
125 the update fails or is not possible, fall back to reloading
126 the list in full. */
127 UPDATE_OR_RELOAD,
128};
129
130/* A probe's name and its associated action. */
131
132struct probe_info
133{
134 /* The name of the probe. */
135 const char *name;
136
137 /* What to do when a probe stop occurs. */
138 enum probe_action action;
139};
140
141/* A list of named probes and their associated actions. If all
142 probes are present in the dynamic linker then the probes-based
143 interface will be used. */
144
145static const struct probe_info probe_info[] =
146{
147 { "init_start", DO_NOTHING },
148 { "init_complete", FULL_RELOAD },
149 { "map_start", DO_NOTHING },
150 { "map_failed", DO_NOTHING },
151 { "reloc_complete", UPDATE_OR_RELOAD },
152 { "unmap_start", DO_NOTHING },
153 { "unmap_complete", FULL_RELOAD },
154};
155
156#define NUM_PROBES ARRAY_SIZE (probe_info)
157
4d7b2d5b
JB
158/* Return non-zero if GDB_SO_NAME and INFERIOR_SO_NAME represent
159 the same shared library. */
160
161static int
162svr4_same_1 (const char *gdb_so_name, const char *inferior_so_name)
163{
164 if (strcmp (gdb_so_name, inferior_so_name) == 0)
165 return 1;
166
167 /* On Solaris, when starting inferior we think that dynamic linker is
d989b283
PP
168 /usr/lib/ld.so.1, but later on, the table of loaded shared libraries
169 contains /lib/ld.so.1. Sometimes one file is a link to another, but
4d7b2d5b
JB
170 sometimes they have identical content, but are not linked to each
171 other. We don't restrict this check for Solaris, but the chances
172 of running into this situation elsewhere are very low. */
173 if (strcmp (gdb_so_name, "/usr/lib/ld.so.1") == 0
174 && strcmp (inferior_so_name, "/lib/ld.so.1") == 0)
175 return 1;
176
177 /* Similarly, we observed the same issue with sparc64, but with
178 different locations. */
179 if (strcmp (gdb_so_name, "/usr/lib/sparcv9/ld.so.1") == 0
180 && strcmp (inferior_so_name, "/lib/sparcv9/ld.so.1") == 0)
181 return 1;
182
183 return 0;
184}
185
186static int
187svr4_same (struct so_list *gdb, struct so_list *inferior)
188{
189 return (svr4_same_1 (gdb->so_original_name, inferior->so_original_name));
190}
191
3957565a
JK
192static struct lm_info *
193lm_info_read (CORE_ADDR lm_addr)
13437d4b 194{
4b188b9f 195 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
3957565a
JK
196 gdb_byte *lm;
197 struct lm_info *lm_info;
198 struct cleanup *back_to;
199
200 lm = xmalloc (lmo->link_map_size);
201 back_to = make_cleanup (xfree, lm);
202
203 if (target_read_memory (lm_addr, lm, lmo->link_map_size) != 0)
204 {
205 warning (_("Error reading shared library list entry at %s"),
f5656ead 206 paddress (target_gdbarch (), lm_addr)),
3957565a
JK
207 lm_info = NULL;
208 }
209 else
210 {
f5656ead 211 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
13437d4b 212
3957565a
JK
213 lm_info = xzalloc (sizeof (*lm_info));
214 lm_info->lm_addr = lm_addr;
215
216 lm_info->l_addr_inferior = extract_typed_address (&lm[lmo->l_addr_offset],
217 ptr_type);
218 lm_info->l_ld = extract_typed_address (&lm[lmo->l_ld_offset], ptr_type);
219 lm_info->l_next = extract_typed_address (&lm[lmo->l_next_offset],
220 ptr_type);
221 lm_info->l_prev = extract_typed_address (&lm[lmo->l_prev_offset],
222 ptr_type);
223 lm_info->l_name = extract_typed_address (&lm[lmo->l_name_offset],
224 ptr_type);
225 }
226
227 do_cleanups (back_to);
228
229 return lm_info;
13437d4b
KB
230}
231
cc10cae3 232static int
b23518f0 233has_lm_dynamic_from_link_map (void)
cc10cae3
AO
234{
235 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
236
cfaefc65 237 return lmo->l_ld_offset >= 0;
cc10cae3
AO
238}
239
cc10cae3 240static CORE_ADDR
f65ce5fb 241lm_addr_check (const struct so_list *so, bfd *abfd)
cc10cae3 242{
3957565a 243 if (!so->lm_info->l_addr_p)
cc10cae3
AO
244 {
245 struct bfd_section *dyninfo_sect;
28f34a8f 246 CORE_ADDR l_addr, l_dynaddr, dynaddr;
cc10cae3 247
3957565a 248 l_addr = so->lm_info->l_addr_inferior;
cc10cae3 249
b23518f0 250 if (! abfd || ! has_lm_dynamic_from_link_map ())
cc10cae3
AO
251 goto set_addr;
252
3957565a 253 l_dynaddr = so->lm_info->l_ld;
cc10cae3
AO
254
255 dyninfo_sect = bfd_get_section_by_name (abfd, ".dynamic");
256 if (dyninfo_sect == NULL)
257 goto set_addr;
258
259 dynaddr = bfd_section_vma (abfd, dyninfo_sect);
260
261 if (dynaddr + l_addr != l_dynaddr)
262 {
28f34a8f 263 CORE_ADDR align = 0x1000;
4e1fc9c9 264 CORE_ADDR minpagesize = align;
28f34a8f 265
cc10cae3
AO
266 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour)
267 {
268 Elf_Internal_Ehdr *ehdr = elf_tdata (abfd)->elf_header;
269 Elf_Internal_Phdr *phdr = elf_tdata (abfd)->phdr;
270 int i;
271
272 align = 1;
273
274 for (i = 0; i < ehdr->e_phnum; i++)
275 if (phdr[i].p_type == PT_LOAD && phdr[i].p_align > align)
276 align = phdr[i].p_align;
4e1fc9c9
JK
277
278 minpagesize = get_elf_backend_data (abfd)->minpagesize;
cc10cae3
AO
279 }
280
281 /* Turn it into a mask. */
282 align--;
283
284 /* If the changes match the alignment requirements, we
285 assume we're using a core file that was generated by the
286 same binary, just prelinked with a different base offset.
287 If it doesn't match, we may have a different binary, the
288 same binary with the dynamic table loaded at an unrelated
289 location, or anything, really. To avoid regressions,
290 don't adjust the base offset in the latter case, although
291 odds are that, if things really changed, debugging won't
5c0d192f
JK
292 quite work.
293
294 One could expect more the condition
295 ((l_addr & align) == 0 && ((l_dynaddr - dynaddr) & align) == 0)
296 but the one below is relaxed for PPC. The PPC kernel supports
297 either 4k or 64k page sizes. To be prepared for 64k pages,
298 PPC ELF files are built using an alignment requirement of 64k.
299 However, when running on a kernel supporting 4k pages, the memory
300 mapping of the library may not actually happen on a 64k boundary!
301
302 (In the usual case where (l_addr & align) == 0, this check is
4e1fc9c9
JK
303 equivalent to the possibly expected check above.)
304
305 Even on PPC it must be zero-aligned at least for MINPAGESIZE. */
5c0d192f 306
02835898
JK
307 l_addr = l_dynaddr - dynaddr;
308
4e1fc9c9
JK
309 if ((l_addr & (minpagesize - 1)) == 0
310 && (l_addr & align) == ((l_dynaddr - dynaddr) & align))
cc10cae3 311 {
701ed6dc 312 if (info_verbose)
ccf26247
JK
313 printf_unfiltered (_("Using PIC (Position Independent Code) "
314 "prelink displacement %s for \"%s\".\n"),
f5656ead 315 paddress (target_gdbarch (), l_addr),
ccf26247 316 so->so_name);
cc10cae3 317 }
79d4c408 318 else
02835898
JK
319 {
320 /* There is no way to verify the library file matches. prelink
321 can during prelinking of an unprelinked file (or unprelinking
322 of a prelinked file) shift the DYNAMIC segment by arbitrary
323 offset without any page size alignment. There is no way to
324 find out the ELF header and/or Program Headers for a limited
325 verification if it they match. One could do a verification
326 of the DYNAMIC segment. Still the found address is the best
327 one GDB could find. */
328
329 warning (_(".dynamic section for \"%s\" "
330 "is not at the expected address "
331 "(wrong library or version mismatch?)"), so->so_name);
332 }
cc10cae3
AO
333 }
334
335 set_addr:
336 so->lm_info->l_addr = l_addr;
3957565a 337 so->lm_info->l_addr_p = 1;
cc10cae3
AO
338 }
339
340 return so->lm_info->l_addr;
341}
342
6c95b8df 343/* Per pspace SVR4 specific data. */
13437d4b 344
1a816a87
PA
345struct svr4_info
346{
c378eb4e 347 CORE_ADDR debug_base; /* Base of dynamic linker structures. */
1a816a87
PA
348
349 /* Validity flag for debug_loader_offset. */
350 int debug_loader_offset_p;
351
352 /* Load address for the dynamic linker, inferred. */
353 CORE_ADDR debug_loader_offset;
354
355 /* Name of the dynamic linker, valid if debug_loader_offset_p. */
356 char *debug_loader_name;
357
358 /* Load map address for the main executable. */
359 CORE_ADDR main_lm_addr;
1a816a87 360
6c95b8df
PA
361 CORE_ADDR interp_text_sect_low;
362 CORE_ADDR interp_text_sect_high;
363 CORE_ADDR interp_plt_sect_low;
364 CORE_ADDR interp_plt_sect_high;
f9e14852
GB
365
366 /* Nonzero if the list of objects was last obtained from the target
367 via qXfer:libraries-svr4:read. */
368 int using_xfer;
369
370 /* Table of struct probe_and_action instances, used by the
371 probes-based interface to map breakpoint addresses to probes
372 and their associated actions. Lookup is performed using
373 probe_and_action->probe->address. */
374 htab_t probes_table;
375
376 /* List of objects loaded into the inferior, used by the probes-
377 based interface. */
378 struct so_list *solib_list;
6c95b8df 379};
1a816a87 380
6c95b8df
PA
381/* Per-program-space data key. */
382static const struct program_space_data *solib_svr4_pspace_data;
1a816a87 383
f9e14852
GB
384/* Free the probes table. */
385
386static void
387free_probes_table (struct svr4_info *info)
388{
389 if (info->probes_table == NULL)
390 return;
391
392 htab_delete (info->probes_table);
393 info->probes_table = NULL;
394}
395
396/* Free the solib list. */
397
398static void
399free_solib_list (struct svr4_info *info)
400{
401 svr4_free_library_list (&info->solib_list);
402 info->solib_list = NULL;
403}
404
6c95b8df
PA
405static void
406svr4_pspace_data_cleanup (struct program_space *pspace, void *arg)
1a816a87 407{
487ad57c 408 struct svr4_info *info = arg;
f9e14852
GB
409
410 free_probes_table (info);
411 free_solib_list (info);
412
6c95b8df 413 xfree (info);
1a816a87
PA
414}
415
6c95b8df
PA
416/* Get the current svr4 data. If none is found yet, add it now. This
417 function always returns a valid object. */
34439770 418
6c95b8df
PA
419static struct svr4_info *
420get_svr4_info (void)
1a816a87 421{
6c95b8df 422 struct svr4_info *info;
1a816a87 423
6c95b8df
PA
424 info = program_space_data (current_program_space, solib_svr4_pspace_data);
425 if (info != NULL)
426 return info;
34439770 427
41bf6aca 428 info = XCNEW (struct svr4_info);
6c95b8df
PA
429 set_program_space_data (current_program_space, solib_svr4_pspace_data, info);
430 return info;
1a816a87 431}
93a57060 432
13437d4b
KB
433/* Local function prototypes */
434
bc043ef3 435static int match_main (const char *);
13437d4b 436
97ec2c2f
UW
437/* Read program header TYPE from inferior memory. The header is found
438 by scanning the OS auxillary vector.
439
09919ac2
JK
440 If TYPE == -1, return the program headers instead of the contents of
441 one program header.
442
97ec2c2f
UW
443 Return a pointer to allocated memory holding the program header contents,
444 or NULL on failure. If sucessful, and unless P_SECT_SIZE is NULL, the
445 size of those contents is returned to P_SECT_SIZE. Likewise, the target
446 architecture size (32-bit or 64-bit) is returned to P_ARCH_SIZE. */
447
448static gdb_byte *
449read_program_header (int type, int *p_sect_size, int *p_arch_size)
450{
f5656ead 451 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
43136979 452 CORE_ADDR at_phdr, at_phent, at_phnum, pt_phdr = 0;
97ec2c2f
UW
453 int arch_size, sect_size;
454 CORE_ADDR sect_addr;
455 gdb_byte *buf;
43136979 456 int pt_phdr_p = 0;
97ec2c2f
UW
457
458 /* Get required auxv elements from target. */
459 if (target_auxv_search (&current_target, AT_PHDR, &at_phdr) <= 0)
460 return 0;
461 if (target_auxv_search (&current_target, AT_PHENT, &at_phent) <= 0)
462 return 0;
463 if (target_auxv_search (&current_target, AT_PHNUM, &at_phnum) <= 0)
464 return 0;
465 if (!at_phdr || !at_phnum)
466 return 0;
467
468 /* Determine ELF architecture type. */
469 if (at_phent == sizeof (Elf32_External_Phdr))
470 arch_size = 32;
471 else if (at_phent == sizeof (Elf64_External_Phdr))
472 arch_size = 64;
473 else
474 return 0;
475
09919ac2
JK
476 /* Find the requested segment. */
477 if (type == -1)
478 {
479 sect_addr = at_phdr;
480 sect_size = at_phent * at_phnum;
481 }
482 else if (arch_size == 32)
97ec2c2f
UW
483 {
484 Elf32_External_Phdr phdr;
485 int i;
486
487 /* Search for requested PHDR. */
488 for (i = 0; i < at_phnum; i++)
489 {
43136979
AR
490 int p_type;
491
97ec2c2f
UW
492 if (target_read_memory (at_phdr + i * sizeof (phdr),
493 (gdb_byte *)&phdr, sizeof (phdr)))
494 return 0;
495
43136979
AR
496 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
497 4, byte_order);
498
499 if (p_type == PT_PHDR)
500 {
501 pt_phdr_p = 1;
502 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
503 4, byte_order);
504 }
505
506 if (p_type == type)
97ec2c2f
UW
507 break;
508 }
509
510 if (i == at_phnum)
511 return 0;
512
513 /* Retrieve address and size. */
e17a4113
UW
514 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
515 4, byte_order);
516 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
517 4, byte_order);
97ec2c2f
UW
518 }
519 else
520 {
521 Elf64_External_Phdr phdr;
522 int i;
523
524 /* Search for requested PHDR. */
525 for (i = 0; i < at_phnum; i++)
526 {
43136979
AR
527 int p_type;
528
97ec2c2f
UW
529 if (target_read_memory (at_phdr + i * sizeof (phdr),
530 (gdb_byte *)&phdr, sizeof (phdr)))
531 return 0;
532
43136979
AR
533 p_type = extract_unsigned_integer ((gdb_byte *) phdr.p_type,
534 4, byte_order);
535
536 if (p_type == PT_PHDR)
537 {
538 pt_phdr_p = 1;
539 pt_phdr = extract_unsigned_integer ((gdb_byte *) phdr.p_vaddr,
540 8, byte_order);
541 }
542
543 if (p_type == type)
97ec2c2f
UW
544 break;
545 }
546
547 if (i == at_phnum)
548 return 0;
549
550 /* Retrieve address and size. */
e17a4113
UW
551 sect_addr = extract_unsigned_integer ((gdb_byte *)phdr.p_vaddr,
552 8, byte_order);
553 sect_size = extract_unsigned_integer ((gdb_byte *)phdr.p_memsz,
554 8, byte_order);
97ec2c2f
UW
555 }
556
43136979
AR
557 /* PT_PHDR is optional, but we really need it
558 for PIE to make this work in general. */
559
560 if (pt_phdr_p)
561 {
562 /* at_phdr is real address in memory. pt_phdr is what pheader says it is.
563 Relocation offset is the difference between the two. */
564 sect_addr = sect_addr + (at_phdr - pt_phdr);
565 }
566
97ec2c2f
UW
567 /* Read in requested program header. */
568 buf = xmalloc (sect_size);
569 if (target_read_memory (sect_addr, buf, sect_size))
570 {
571 xfree (buf);
572 return NULL;
573 }
574
575 if (p_arch_size)
576 *p_arch_size = arch_size;
577 if (p_sect_size)
578 *p_sect_size = sect_size;
579
580 return buf;
581}
582
583
584/* Return program interpreter string. */
001f13d8 585static char *
97ec2c2f
UW
586find_program_interpreter (void)
587{
588 gdb_byte *buf = NULL;
589
590 /* If we have an exec_bfd, use its section table. */
591 if (exec_bfd
592 && bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
593 {
594 struct bfd_section *interp_sect;
595
596 interp_sect = bfd_get_section_by_name (exec_bfd, ".interp");
597 if (interp_sect != NULL)
598 {
97ec2c2f
UW
599 int sect_size = bfd_section_size (exec_bfd, interp_sect);
600
601 buf = xmalloc (sect_size);
602 bfd_get_section_contents (exec_bfd, interp_sect, buf, 0, sect_size);
603 }
604 }
605
606 /* If we didn't find it, use the target auxillary vector. */
607 if (!buf)
608 buf = read_program_header (PT_INTERP, NULL, NULL);
609
001f13d8 610 return (char *) buf;
97ec2c2f
UW
611}
612
613
b6d7a4bf
SM
614/* Scan for DESIRED_DYNTAG in .dynamic section of ABFD. If DESIRED_DYNTAG is
615 found, 1 is returned and the corresponding PTR is set. */
3a40aaa0
UW
616
617static int
b6d7a4bf 618scan_dyntag (const int desired_dyntag, bfd *abfd, CORE_ADDR *ptr)
3a40aaa0
UW
619{
620 int arch_size, step, sect_size;
b6d7a4bf 621 long current_dyntag;
b381ea14 622 CORE_ADDR dyn_ptr, dyn_addr;
65728c26 623 gdb_byte *bufend, *bufstart, *buf;
3a40aaa0
UW
624 Elf32_External_Dyn *x_dynp_32;
625 Elf64_External_Dyn *x_dynp_64;
626 struct bfd_section *sect;
61f0d762 627 struct target_section *target_section;
3a40aaa0
UW
628
629 if (abfd == NULL)
630 return 0;
0763ab81
PA
631
632 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
633 return 0;
634
3a40aaa0
UW
635 arch_size = bfd_get_arch_size (abfd);
636 if (arch_size == -1)
0763ab81 637 return 0;
3a40aaa0
UW
638
639 /* Find the start address of the .dynamic section. */
640 sect = bfd_get_section_by_name (abfd, ".dynamic");
641 if (sect == NULL)
642 return 0;
61f0d762
JK
643
644 for (target_section = current_target_sections->sections;
645 target_section < current_target_sections->sections_end;
646 target_section++)
647 if (sect == target_section->the_bfd_section)
648 break;
b381ea14
JK
649 if (target_section < current_target_sections->sections_end)
650 dyn_addr = target_section->addr;
651 else
652 {
653 /* ABFD may come from OBJFILE acting only as a symbol file without being
654 loaded into the target (see add_symbol_file_command). This case is
655 such fallback to the file VMA address without the possibility of
656 having the section relocated to its actual in-memory address. */
657
658 dyn_addr = bfd_section_vma (abfd, sect);
659 }
3a40aaa0 660
65728c26
DJ
661 /* Read in .dynamic from the BFD. We will get the actual value
662 from memory later. */
3a40aaa0 663 sect_size = bfd_section_size (abfd, sect);
65728c26
DJ
664 buf = bufstart = alloca (sect_size);
665 if (!bfd_get_section_contents (abfd, sect,
666 buf, 0, sect_size))
667 return 0;
3a40aaa0
UW
668
669 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
670 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
671 : sizeof (Elf64_External_Dyn);
672 for (bufend = buf + sect_size;
673 buf < bufend;
674 buf += step)
675 {
676 if (arch_size == 32)
677 {
678 x_dynp_32 = (Elf32_External_Dyn *) buf;
b6d7a4bf 679 current_dyntag = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_tag);
3a40aaa0
UW
680 dyn_ptr = bfd_h_get_32 (abfd, (bfd_byte *) x_dynp_32->d_un.d_ptr);
681 }
65728c26 682 else
3a40aaa0
UW
683 {
684 x_dynp_64 = (Elf64_External_Dyn *) buf;
b6d7a4bf 685 current_dyntag = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_tag);
3a40aaa0
UW
686 dyn_ptr = bfd_h_get_64 (abfd, (bfd_byte *) x_dynp_64->d_un.d_ptr);
687 }
b6d7a4bf 688 if (current_dyntag == DT_NULL)
3a40aaa0 689 return 0;
b6d7a4bf 690 if (current_dyntag == desired_dyntag)
3a40aaa0 691 {
65728c26
DJ
692 /* If requested, try to read the runtime value of this .dynamic
693 entry. */
3a40aaa0 694 if (ptr)
65728c26 695 {
b6da22b0 696 struct type *ptr_type;
65728c26
DJ
697 gdb_byte ptr_buf[8];
698 CORE_ADDR ptr_addr;
699
f5656ead 700 ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b381ea14 701 ptr_addr = dyn_addr + (buf - bufstart) + arch_size / 8;
65728c26 702 if (target_read_memory (ptr_addr, ptr_buf, arch_size / 8) == 0)
b6da22b0 703 dyn_ptr = extract_typed_address (ptr_buf, ptr_type);
65728c26
DJ
704 *ptr = dyn_ptr;
705 }
706 return 1;
3a40aaa0
UW
707 }
708 }
709
710 return 0;
711}
712
b6d7a4bf
SM
713/* Scan for DESIRED_DYNTAG in .dynamic section of the target's main executable,
714 found by consulting the OS auxillary vector. If DESIRED_DYNTAG is found, 1
715 is returned and the corresponding PTR is set. */
97ec2c2f
UW
716
717static int
b6d7a4bf 718scan_dyntag_auxv (const int desired_dyntag, CORE_ADDR *ptr)
97ec2c2f 719{
f5656ead 720 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
97ec2c2f 721 int sect_size, arch_size, step;
b6d7a4bf 722 long current_dyntag;
97ec2c2f
UW
723 CORE_ADDR dyn_ptr;
724 gdb_byte *bufend, *bufstart, *buf;
725
726 /* Read in .dynamic section. */
727 buf = bufstart = read_program_header (PT_DYNAMIC, &sect_size, &arch_size);
728 if (!buf)
729 return 0;
730
731 /* Iterate over BUF and scan for DYNTAG. If found, set PTR and return. */
732 step = (arch_size == 32) ? sizeof (Elf32_External_Dyn)
733 : sizeof (Elf64_External_Dyn);
734 for (bufend = buf + sect_size;
735 buf < bufend;
736 buf += step)
737 {
738 if (arch_size == 32)
739 {
740 Elf32_External_Dyn *dynp = (Elf32_External_Dyn *) buf;
433759f7 741
b6d7a4bf 742 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
743 4, byte_order);
744 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
745 4, byte_order);
97ec2c2f
UW
746 }
747 else
748 {
749 Elf64_External_Dyn *dynp = (Elf64_External_Dyn *) buf;
433759f7 750
b6d7a4bf 751 current_dyntag = extract_unsigned_integer ((gdb_byte *) dynp->d_tag,
e17a4113
UW
752 8, byte_order);
753 dyn_ptr = extract_unsigned_integer ((gdb_byte *) dynp->d_un.d_ptr,
754 8, byte_order);
97ec2c2f 755 }
b6d7a4bf 756 if (current_dyntag == DT_NULL)
97ec2c2f
UW
757 break;
758
b6d7a4bf 759 if (current_dyntag == desired_dyntag)
97ec2c2f
UW
760 {
761 if (ptr)
762 *ptr = dyn_ptr;
763
764 xfree (bufstart);
765 return 1;
766 }
767 }
768
769 xfree (bufstart);
770 return 0;
771}
772
7f86f058
PA
773/* Locate the base address of dynamic linker structs for SVR4 elf
774 targets.
13437d4b
KB
775
776 For SVR4 elf targets the address of the dynamic linker's runtime
777 structure is contained within the dynamic info section in the
778 executable file. The dynamic section is also mapped into the
779 inferior address space. Because the runtime loader fills in the
780 real address before starting the inferior, we have to read in the
781 dynamic info section from the inferior address space.
782 If there are any errors while trying to find the address, we
7f86f058 783 silently return 0, otherwise the found address is returned. */
13437d4b
KB
784
785static CORE_ADDR
786elf_locate_base (void)
787{
3b7344d5 788 struct bound_minimal_symbol msymbol;
3a40aaa0 789 CORE_ADDR dyn_ptr;
13437d4b 790
65728c26
DJ
791 /* Look for DT_MIPS_RLD_MAP first. MIPS executables use this
792 instead of DT_DEBUG, although they sometimes contain an unused
793 DT_DEBUG. */
97ec2c2f
UW
794 if (scan_dyntag (DT_MIPS_RLD_MAP, exec_bfd, &dyn_ptr)
795 || scan_dyntag_auxv (DT_MIPS_RLD_MAP, &dyn_ptr))
3a40aaa0 796 {
f5656ead 797 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
3a40aaa0 798 gdb_byte *pbuf;
b6da22b0 799 int pbuf_size = TYPE_LENGTH (ptr_type);
433759f7 800
3a40aaa0
UW
801 pbuf = alloca (pbuf_size);
802 /* DT_MIPS_RLD_MAP contains a pointer to the address
803 of the dynamic link structure. */
804 if (target_read_memory (dyn_ptr, pbuf, pbuf_size))
e499d0f1 805 return 0;
b6da22b0 806 return extract_typed_address (pbuf, ptr_type);
e499d0f1
DJ
807 }
808
65728c26 809 /* Find DT_DEBUG. */
97ec2c2f
UW
810 if (scan_dyntag (DT_DEBUG, exec_bfd, &dyn_ptr)
811 || scan_dyntag_auxv (DT_DEBUG, &dyn_ptr))
65728c26
DJ
812 return dyn_ptr;
813
3a40aaa0
UW
814 /* This may be a static executable. Look for the symbol
815 conventionally named _r_debug, as a last resort. */
816 msymbol = lookup_minimal_symbol ("_r_debug", NULL, symfile_objfile);
3b7344d5 817 if (msymbol.minsym != NULL)
77e371c0 818 return BMSYMBOL_VALUE_ADDRESS (msymbol);
13437d4b
KB
819
820 /* DT_DEBUG entry not found. */
821 return 0;
822}
823
7f86f058 824/* Locate the base address of dynamic linker structs.
13437d4b
KB
825
826 For both the SunOS and SVR4 shared library implementations, if the
827 inferior executable has been linked dynamically, there is a single
828 address somewhere in the inferior's data space which is the key to
829 locating all of the dynamic linker's runtime structures. This
830 address is the value of the debug base symbol. The job of this
831 function is to find and return that address, or to return 0 if there
832 is no such address (the executable is statically linked for example).
833
834 For SunOS, the job is almost trivial, since the dynamic linker and
835 all of it's structures are statically linked to the executable at
836 link time. Thus the symbol for the address we are looking for has
837 already been added to the minimal symbol table for the executable's
838 objfile at the time the symbol file's symbols were read, and all we
839 have to do is look it up there. Note that we explicitly do NOT want
840 to find the copies in the shared library.
841
842 The SVR4 version is a bit more complicated because the address
843 is contained somewhere in the dynamic info section. We have to go
844 to a lot more work to discover the address of the debug base symbol.
845 Because of this complexity, we cache the value we find and return that
846 value on subsequent invocations. Note there is no copy in the
7f86f058 847 executable symbol tables. */
13437d4b
KB
848
849static CORE_ADDR
1a816a87 850locate_base (struct svr4_info *info)
13437d4b 851{
13437d4b
KB
852 /* Check to see if we have a currently valid address, and if so, avoid
853 doing all this work again and just return the cached address. If
854 we have no cached address, try to locate it in the dynamic info
d5a921c9
KB
855 section for ELF executables. There's no point in doing any of this
856 though if we don't have some link map offsets to work with. */
13437d4b 857
1a816a87 858 if (info->debug_base == 0 && svr4_have_link_map_offsets ())
0763ab81 859 info->debug_base = elf_locate_base ();
1a816a87 860 return info->debug_base;
13437d4b
KB
861}
862
e4cd0d6a 863/* Find the first element in the inferior's dynamic link map, and
6f992fbf
JB
864 return its address in the inferior. Return zero if the address
865 could not be determined.
13437d4b 866
e4cd0d6a
MK
867 FIXME: Perhaps we should validate the info somehow, perhaps by
868 checking r_version for a known version number, or r_state for
869 RT_CONSISTENT. */
13437d4b
KB
870
871static CORE_ADDR
1a816a87 872solib_svr4_r_map (struct svr4_info *info)
13437d4b 873{
4b188b9f 874 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 875 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
08597104 876 CORE_ADDR addr = 0;
13437d4b 877
492d29ea 878 TRY
08597104
JB
879 {
880 addr = read_memory_typed_address (info->debug_base + lmo->r_map_offset,
881 ptr_type);
882 }
492d29ea
PA
883 CATCH (ex, RETURN_MASK_ERROR)
884 {
885 exception_print (gdb_stderr, ex);
886 }
887 END_CATCH
888
08597104 889 return addr;
e4cd0d6a 890}
13437d4b 891
7cd25cfc
DJ
892/* Find r_brk from the inferior's debug base. */
893
894static CORE_ADDR
1a816a87 895solib_svr4_r_brk (struct svr4_info *info)
7cd25cfc
DJ
896{
897 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 898 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
7cd25cfc 899
1a816a87
PA
900 return read_memory_typed_address (info->debug_base + lmo->r_brk_offset,
901 ptr_type);
7cd25cfc
DJ
902}
903
e4cd0d6a
MK
904/* Find the link map for the dynamic linker (if it is not in the
905 normal list of loaded shared objects). */
13437d4b 906
e4cd0d6a 907static CORE_ADDR
1a816a87 908solib_svr4_r_ldsomap (struct svr4_info *info)
e4cd0d6a
MK
909{
910 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead
TT
911 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
912 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
416f679e
SDJ
913 ULONGEST version = 0;
914
915 TRY
916 {
917 /* Check version, and return zero if `struct r_debug' doesn't have
918 the r_ldsomap member. */
919 version
920 = read_memory_unsigned_integer (info->debug_base + lmo->r_version_offset,
921 lmo->r_version_size, byte_order);
922 }
923 CATCH (ex, RETURN_MASK_ERROR)
924 {
925 exception_print (gdb_stderr, ex);
926 }
927 END_CATCH
13437d4b 928
e4cd0d6a
MK
929 if (version < 2 || lmo->r_ldsomap_offset == -1)
930 return 0;
13437d4b 931
1a816a87 932 return read_memory_typed_address (info->debug_base + lmo->r_ldsomap_offset,
b6da22b0 933 ptr_type);
13437d4b
KB
934}
935
de18c1d8
JM
936/* On Solaris systems with some versions of the dynamic linker,
937 ld.so's l_name pointer points to the SONAME in the string table
938 rather than into writable memory. So that GDB can find shared
939 libraries when loading a core file generated by gcore, ensure that
940 memory areas containing the l_name string are saved in the core
941 file. */
942
943static int
944svr4_keep_data_in_core (CORE_ADDR vaddr, unsigned long size)
945{
946 struct svr4_info *info;
947 CORE_ADDR ldsomap;
fe978cb0 948 struct so_list *newobj;
de18c1d8 949 struct cleanup *old_chain;
74de0234 950 CORE_ADDR name_lm;
de18c1d8
JM
951
952 info = get_svr4_info ();
953
954 info->debug_base = 0;
955 locate_base (info);
956 if (!info->debug_base)
957 return 0;
958
959 ldsomap = solib_svr4_r_ldsomap (info);
960 if (!ldsomap)
961 return 0;
962
fe978cb0
PA
963 newobj = XCNEW (struct so_list);
964 old_chain = make_cleanup (xfree, newobj);
965 newobj->lm_info = lm_info_read (ldsomap);
966 make_cleanup (xfree, newobj->lm_info);
967 name_lm = newobj->lm_info ? newobj->lm_info->l_name : 0;
de18c1d8
JM
968 do_cleanups (old_chain);
969
74de0234 970 return (name_lm >= vaddr && name_lm < vaddr + size);
de18c1d8
JM
971}
972
7f86f058 973/* Implement the "open_symbol_file_object" target_so_ops method.
13437d4b 974
7f86f058
PA
975 If no open symbol file, attempt to locate and open the main symbol
976 file. On SVR4 systems, this is the first link map entry. If its
977 name is here, we can open it. Useful when attaching to a process
978 without first loading its symbol file. */
13437d4b
KB
979
980static int
981open_symbol_file_object (void *from_ttyp)
982{
983 CORE_ADDR lm, l_name;
984 char *filename;
985 int errcode;
986 int from_tty = *(int *)from_ttyp;
4b188b9f 987 struct link_map_offsets *lmo = svr4_fetch_link_map_offsets ();
f5656ead 988 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
b6da22b0 989 int l_name_size = TYPE_LENGTH (ptr_type);
cfaefc65 990 gdb_byte *l_name_buf = xmalloc (l_name_size);
b8c9b27d 991 struct cleanup *cleanups = make_cleanup (xfree, l_name_buf);
6c95b8df 992 struct svr4_info *info = get_svr4_info ();
13437d4b
KB
993
994 if (symfile_objfile)
9e2f0ad4 995 if (!query (_("Attempt to reload symbols from process? ")))
3bb47e8b
TT
996 {
997 do_cleanups (cleanups);
998 return 0;
999 }
13437d4b 1000
7cd25cfc 1001 /* Always locate the debug struct, in case it has moved. */
1a816a87
PA
1002 info->debug_base = 0;
1003 if (locate_base (info) == 0)
3bb47e8b
TT
1004 {
1005 do_cleanups (cleanups);
1006 return 0; /* failed somehow... */
1007 }
13437d4b
KB
1008
1009 /* First link map member should be the executable. */
1a816a87 1010 lm = solib_svr4_r_map (info);
e4cd0d6a 1011 if (lm == 0)
3bb47e8b
TT
1012 {
1013 do_cleanups (cleanups);
1014 return 0; /* failed somehow... */
1015 }
13437d4b
KB
1016
1017 /* Read address of name from target memory to GDB. */
cfaefc65 1018 read_memory (lm + lmo->l_name_offset, l_name_buf, l_name_size);
13437d4b 1019
cfaefc65 1020 /* Convert the address to host format. */
b6da22b0 1021 l_name = extract_typed_address (l_name_buf, ptr_type);
13437d4b 1022
13437d4b 1023 if (l_name == 0)
3bb47e8b
TT
1024 {
1025 do_cleanups (cleanups);
1026 return 0; /* No filename. */
1027 }
13437d4b
KB
1028
1029 /* Now fetch the filename from target memory. */
1030 target_read_string (l_name, &filename, SO_NAME_MAX_PATH_SIZE - 1, &errcode);
ea5bf0a1 1031 make_cleanup (xfree, filename);
13437d4b
KB
1032
1033 if (errcode)
1034 {
8a3fe4f8 1035 warning (_("failed to read exec filename from attached file: %s"),
13437d4b 1036 safe_strerror (errcode));
3bb47e8b 1037 do_cleanups (cleanups);
13437d4b
KB
1038 return 0;
1039 }
1040
13437d4b 1041 /* Have a pathname: read the symbol file. */
1adeb98a 1042 symbol_file_add_main (filename, from_tty);
13437d4b 1043
3bb47e8b 1044 do_cleanups (cleanups);
13437d4b
KB
1045 return 1;
1046}
13437d4b 1047
2268b414
JK
1048/* Data exchange structure for the XML parser as returned by
1049 svr4_current_sos_via_xfer_libraries. */
1050
1051struct svr4_library_list
1052{
1053 struct so_list *head, **tailp;
1054
1055 /* Inferior address of struct link_map used for the main executable. It is
1056 NULL if not known. */
1057 CORE_ADDR main_lm;
1058};
1059
93f2a35e
JK
1060/* Implementation for target_so_ops.free_so. */
1061
1062static void
1063svr4_free_so (struct so_list *so)
1064{
1065 xfree (so->lm_info);
1066}
1067
0892cb63
DE
1068/* Implement target_so_ops.clear_so. */
1069
1070static void
1071svr4_clear_so (struct so_list *so)
1072{
6dcc1893
PP
1073 if (so->lm_info != NULL)
1074 so->lm_info->l_addr_p = 0;
0892cb63
DE
1075}
1076
93f2a35e
JK
1077/* Free so_list built so far (called via cleanup). */
1078
1079static void
1080svr4_free_library_list (void *p_list)
1081{
1082 struct so_list *list = *(struct so_list **) p_list;
1083
1084 while (list != NULL)
1085 {
1086 struct so_list *next = list->next;
1087
3756ef7e 1088 free_so (list);
93f2a35e
JK
1089 list = next;
1090 }
1091}
1092
f9e14852
GB
1093/* Copy library list. */
1094
1095static struct so_list *
1096svr4_copy_library_list (struct so_list *src)
1097{
1098 struct so_list *dst = NULL;
1099 struct so_list **link = &dst;
1100
1101 while (src != NULL)
1102 {
fe978cb0 1103 struct so_list *newobj;
f9e14852 1104
fe978cb0
PA
1105 newobj = xmalloc (sizeof (struct so_list));
1106 memcpy (newobj, src, sizeof (struct so_list));
f9e14852 1107
fe978cb0
PA
1108 newobj->lm_info = xmalloc (sizeof (struct lm_info));
1109 memcpy (newobj->lm_info, src->lm_info, sizeof (struct lm_info));
f9e14852 1110
fe978cb0
PA
1111 newobj->next = NULL;
1112 *link = newobj;
1113 link = &newobj->next;
f9e14852
GB
1114
1115 src = src->next;
1116 }
1117
1118 return dst;
1119}
1120
2268b414
JK
1121#ifdef HAVE_LIBEXPAT
1122
1123#include "xml-support.h"
1124
1125/* Handle the start of a <library> element. Note: new elements are added
1126 at the tail of the list, keeping the list in order. */
1127
1128static void
1129library_list_start_library (struct gdb_xml_parser *parser,
1130 const struct gdb_xml_element *element,
1131 void *user_data, VEC(gdb_xml_value_s) *attributes)
1132{
1133 struct svr4_library_list *list = user_data;
1134 const char *name = xml_find_attribute (attributes, "name")->value;
1135 ULONGEST *lmp = xml_find_attribute (attributes, "lm")->value;
1136 ULONGEST *l_addrp = xml_find_attribute (attributes, "l_addr")->value;
1137 ULONGEST *l_ldp = xml_find_attribute (attributes, "l_ld")->value;
1138 struct so_list *new_elem;
1139
41bf6aca
TT
1140 new_elem = XCNEW (struct so_list);
1141 new_elem->lm_info = XCNEW (struct lm_info);
2268b414
JK
1142 new_elem->lm_info->lm_addr = *lmp;
1143 new_elem->lm_info->l_addr_inferior = *l_addrp;
1144 new_elem->lm_info->l_ld = *l_ldp;
1145
1146 strncpy (new_elem->so_name, name, sizeof (new_elem->so_name) - 1);
1147 new_elem->so_name[sizeof (new_elem->so_name) - 1] = 0;
1148 strcpy (new_elem->so_original_name, new_elem->so_name);
1149
1150 *list->tailp = new_elem;
1151 list->tailp = &new_elem->next;
1152}
1153
1154/* Handle the start of a <library-list-svr4> element. */
1155
1156static void
1157svr4_library_list_start_list (struct gdb_xml_parser *parser,
1158 const struct gdb_xml_element *element,
1159 void *user_data, VEC(gdb_xml_value_s) *attributes)
1160{
1161 struct svr4_library_list *list = user_data;
1162 const char *version = xml_find_attribute (attributes, "version")->value;
1163 struct gdb_xml_value *main_lm = xml_find_attribute (attributes, "main-lm");
1164
1165 if (strcmp (version, "1.0") != 0)
1166 gdb_xml_error (parser,
1167 _("SVR4 Library list has unsupported version \"%s\""),
1168 version);
1169
1170 if (main_lm)
1171 list->main_lm = *(ULONGEST *) main_lm->value;
1172}
1173
1174/* The allowed elements and attributes for an XML library list.
1175 The root element is a <library-list>. */
1176
1177static const struct gdb_xml_attribute svr4_library_attributes[] =
1178{
1179 { "name", GDB_XML_AF_NONE, NULL, NULL },
1180 { "lm", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1181 { "l_addr", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1182 { "l_ld", GDB_XML_AF_NONE, gdb_xml_parse_attr_ulongest, NULL },
1183 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1184};
1185
1186static const struct gdb_xml_element svr4_library_list_children[] =
1187{
1188 {
1189 "library", svr4_library_attributes, NULL,
1190 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
1191 library_list_start_library, NULL
1192 },
1193 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1194};
1195
1196static const struct gdb_xml_attribute svr4_library_list_attributes[] =
1197{
1198 { "version", GDB_XML_AF_NONE, NULL, NULL },
1199 { "main-lm", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
1200 { NULL, GDB_XML_AF_NONE, NULL, NULL }
1201};
1202
1203static const struct gdb_xml_element svr4_library_list_elements[] =
1204{
1205 { "library-list-svr4", svr4_library_list_attributes, svr4_library_list_children,
1206 GDB_XML_EF_NONE, svr4_library_list_start_list, NULL },
1207 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
1208};
1209
2268b414
JK
1210/* Parse qXfer:libraries:read packet into *SO_LIST_RETURN. Return 1 if
1211
1212 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1213 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
1214 empty, caller is responsible for freeing all its entries. */
1215
1216static int
1217svr4_parse_libraries (const char *document, struct svr4_library_list *list)
1218{
1219 struct cleanup *back_to = make_cleanup (svr4_free_library_list,
1220 &list->head);
1221
1222 memset (list, 0, sizeof (*list));
1223 list->tailp = &list->head;
2eca4a8d 1224 if (gdb_xml_parse_quick (_("target library list"), "library-list-svr4.dtd",
2268b414
JK
1225 svr4_library_list_elements, document, list) == 0)
1226 {
1227 /* Parsed successfully, keep the result. */
1228 discard_cleanups (back_to);
1229 return 1;
1230 }
1231
1232 do_cleanups (back_to);
1233 return 0;
1234}
1235
f9e14852 1236/* Attempt to get so_list from target via qXfer:libraries-svr4:read packet.
2268b414
JK
1237
1238 Return 0 if packet not supported, *SO_LIST_RETURN is not modified in such
1239 case. Return 1 if *SO_LIST_RETURN contains the library list, it may be
f9e14852
GB
1240 empty, caller is responsible for freeing all its entries.
1241
1242 Note that ANNEX must be NULL if the remote does not explicitly allow
1243 qXfer:libraries-svr4:read packets with non-empty annexes. Support for
1244 this can be checked using target_augmented_libraries_svr4_read (). */
2268b414
JK
1245
1246static int
f9e14852
GB
1247svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1248 const char *annex)
2268b414
JK
1249{
1250 char *svr4_library_document;
1251 int result;
1252 struct cleanup *back_to;
1253
f9e14852
GB
1254 gdb_assert (annex == NULL || target_augmented_libraries_svr4_read ());
1255
2268b414
JK
1256 /* Fetch the list of shared libraries. */
1257 svr4_library_document = target_read_stralloc (&current_target,
1258 TARGET_OBJECT_LIBRARIES_SVR4,
f9e14852 1259 annex);
2268b414
JK
1260 if (svr4_library_document == NULL)
1261 return 0;
1262
1263 back_to = make_cleanup (xfree, svr4_library_document);
1264 result = svr4_parse_libraries (svr4_library_document, list);
1265 do_cleanups (back_to);
1266
1267 return result;
1268}
1269
1270#else
1271
1272static int
f9e14852
GB
1273svr4_current_sos_via_xfer_libraries (struct svr4_library_list *list,
1274 const char *annex)
2268b414
JK
1275{
1276 return 0;
1277}
1278
1279#endif
1280
34439770
DJ
1281/* If no shared library information is available from the dynamic
1282 linker, build a fallback list from other sources. */
1283
1284static struct so_list *
1285svr4_default_sos (void)
1286{
6c95b8df 1287 struct svr4_info *info = get_svr4_info ();
fe978cb0 1288 struct so_list *newobj;
1a816a87 1289
8e5c319d
JK
1290 if (!info->debug_loader_offset_p)
1291 return NULL;
34439770 1292
fe978cb0 1293 newobj = XCNEW (struct so_list);
34439770 1294
fe978cb0 1295 newobj->lm_info = xzalloc (sizeof (struct lm_info));
34439770 1296
3957565a 1297 /* Nothing will ever check the other fields if we set l_addr_p. */
fe978cb0
PA
1298 newobj->lm_info->l_addr = info->debug_loader_offset;
1299 newobj->lm_info->l_addr_p = 1;
34439770 1300
fe978cb0
PA
1301 strncpy (newobj->so_name, info->debug_loader_name, SO_NAME_MAX_PATH_SIZE - 1);
1302 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1303 strcpy (newobj->so_original_name, newobj->so_name);
34439770 1304
fe978cb0 1305 return newobj;
34439770
DJ
1306}
1307
f9e14852
GB
1308/* Read the whole inferior libraries chain starting at address LM.
1309 Expect the first entry in the chain's previous entry to be PREV_LM.
1310 Add the entries to the tail referenced by LINK_PTR_PTR. Ignore the
1311 first entry if IGNORE_FIRST and set global MAIN_LM_ADDR according
1312 to it. Returns nonzero upon success. If zero is returned the
1313 entries stored to LINK_PTR_PTR are still valid although they may
1314 represent only part of the inferior library list. */
13437d4b 1315
f9e14852
GB
1316static int
1317svr4_read_so_list (CORE_ADDR lm, CORE_ADDR prev_lm,
1318 struct so_list ***link_ptr_ptr, int ignore_first)
13437d4b 1319{
c725e7b6 1320 CORE_ADDR first_l_name = 0;
f9e14852 1321 CORE_ADDR next_lm;
13437d4b 1322
cb08cc53 1323 for (; lm != 0; prev_lm = lm, lm = next_lm)
13437d4b 1324 {
fe978cb0 1325 struct so_list *newobj;
cb08cc53
JK
1326 struct cleanup *old_chain;
1327 int errcode;
1328 char *buffer;
13437d4b 1329
fe978cb0
PA
1330 newobj = XCNEW (struct so_list);
1331 old_chain = make_cleanup_free_so (newobj);
13437d4b 1332
fe978cb0
PA
1333 newobj->lm_info = lm_info_read (lm);
1334 if (newobj->lm_info == NULL)
3957565a
JK
1335 {
1336 do_cleanups (old_chain);
f9e14852 1337 return 0;
3957565a 1338 }
13437d4b 1339
fe978cb0 1340 next_lm = newobj->lm_info->l_next;
492928e4 1341
fe978cb0 1342 if (newobj->lm_info->l_prev != prev_lm)
492928e4 1343 {
2268b414 1344 warning (_("Corrupted shared library list: %s != %s"),
f5656ead 1345 paddress (target_gdbarch (), prev_lm),
fe978cb0 1346 paddress (target_gdbarch (), newobj->lm_info->l_prev));
cb08cc53 1347 do_cleanups (old_chain);
f9e14852 1348 return 0;
492928e4 1349 }
13437d4b
KB
1350
1351 /* For SVR4 versions, the first entry in the link map is for the
1352 inferior executable, so we must ignore it. For some versions of
1353 SVR4, it has no name. For others (Solaris 2.3 for example), it
1354 does have a name, so we can no longer use a missing name to
c378eb4e 1355 decide when to ignore it. */
fe978cb0 1356 if (ignore_first && newobj->lm_info->l_prev == 0)
93a57060 1357 {
cb08cc53
JK
1358 struct svr4_info *info = get_svr4_info ();
1359
fe978cb0
PA
1360 first_l_name = newobj->lm_info->l_name;
1361 info->main_lm_addr = newobj->lm_info->lm_addr;
cb08cc53
JK
1362 do_cleanups (old_chain);
1363 continue;
93a57060 1364 }
13437d4b 1365
cb08cc53 1366 /* Extract this shared object's name. */
fe978cb0 1367 target_read_string (newobj->lm_info->l_name, &buffer,
cb08cc53
JK
1368 SO_NAME_MAX_PATH_SIZE - 1, &errcode);
1369 if (errcode != 0)
1370 {
7d760051
UW
1371 /* If this entry's l_name address matches that of the
1372 inferior executable, then this is not a normal shared
1373 object, but (most likely) a vDSO. In this case, silently
1374 skip it; otherwise emit a warning. */
fe978cb0 1375 if (first_l_name == 0 || newobj->lm_info->l_name != first_l_name)
7d760051
UW
1376 warning (_("Can't read pathname for load map: %s."),
1377 safe_strerror (errcode));
cb08cc53
JK
1378 do_cleanups (old_chain);
1379 continue;
13437d4b
KB
1380 }
1381
fe978cb0
PA
1382 strncpy (newobj->so_name, buffer, SO_NAME_MAX_PATH_SIZE - 1);
1383 newobj->so_name[SO_NAME_MAX_PATH_SIZE - 1] = '\0';
1384 strcpy (newobj->so_original_name, newobj->so_name);
cb08cc53 1385 xfree (buffer);
492928e4 1386
cb08cc53
JK
1387 /* If this entry has no name, or its name matches the name
1388 for the main executable, don't include it in the list. */
fe978cb0 1389 if (! newobj->so_name[0] || match_main (newobj->so_name))
492928e4 1390 {
cb08cc53
JK
1391 do_cleanups (old_chain);
1392 continue;
492928e4 1393 }
e4cd0d6a 1394
13437d4b 1395 discard_cleanups (old_chain);
fe978cb0
PA
1396 newobj->next = 0;
1397 **link_ptr_ptr = newobj;
1398 *link_ptr_ptr = &newobj->next;
13437d4b 1399 }
f9e14852
GB
1400
1401 return 1;
cb08cc53
JK
1402}
1403
f9e14852
GB
1404/* Read the full list of currently loaded shared objects directly
1405 from the inferior, without referring to any libraries read and
1406 stored by the probes interface. Handle special cases relating
1407 to the first elements of the list. */
cb08cc53
JK
1408
1409static struct so_list *
f9e14852 1410svr4_current_sos_direct (struct svr4_info *info)
cb08cc53
JK
1411{
1412 CORE_ADDR lm;
1413 struct so_list *head = NULL;
1414 struct so_list **link_ptr = &head;
cb08cc53
JK
1415 struct cleanup *back_to;
1416 int ignore_first;
2268b414
JK
1417 struct svr4_library_list library_list;
1418
0c5bf5a9
JK
1419 /* Fall back to manual examination of the target if the packet is not
1420 supported or gdbserver failed to find DT_DEBUG. gdb.server/solib-list.exp
1421 tests a case where gdbserver cannot find the shared libraries list while
1422 GDB itself is able to find it via SYMFILE_OBJFILE.
1423
1424 Unfortunately statically linked inferiors will also fall back through this
1425 suboptimal code path. */
1426
f9e14852
GB
1427 info->using_xfer = svr4_current_sos_via_xfer_libraries (&library_list,
1428 NULL);
1429 if (info->using_xfer)
2268b414
JK
1430 {
1431 if (library_list.main_lm)
f9e14852 1432 info->main_lm_addr = library_list.main_lm;
2268b414
JK
1433
1434 return library_list.head ? library_list.head : svr4_default_sos ();
1435 }
cb08cc53 1436
cb08cc53
JK
1437 /* Always locate the debug struct, in case it has moved. */
1438 info->debug_base = 0;
1439 locate_base (info);
1440
1441 /* If we can't find the dynamic linker's base structure, this
1442 must not be a dynamically linked executable. Hmm. */
1443 if (! info->debug_base)
1444 return svr4_default_sos ();
1445
1446 /* Assume that everything is a library if the dynamic loader was loaded
1447 late by a static executable. */
1448 if (exec_bfd && bfd_get_section_by_name (exec_bfd, ".dynamic") == NULL)
1449 ignore_first = 0;
1450 else
1451 ignore_first = 1;
1452
1453 back_to = make_cleanup (svr4_free_library_list, &head);
1454
1455 /* Walk the inferior's link map list, and build our list of
1456 `struct so_list' nodes. */
1457 lm = solib_svr4_r_map (info);
1458 if (lm)
f9e14852 1459 svr4_read_so_list (lm, 0, &link_ptr, ignore_first);
cb08cc53
JK
1460
1461 /* On Solaris, the dynamic linker is not in the normal list of
1462 shared objects, so make sure we pick it up too. Having
1463 symbol information for the dynamic linker is quite crucial
1464 for skipping dynamic linker resolver code. */
1465 lm = solib_svr4_r_ldsomap (info);
1466 if (lm)
f9e14852 1467 svr4_read_so_list (lm, 0, &link_ptr, 0);
cb08cc53
JK
1468
1469 discard_cleanups (back_to);
13437d4b 1470
34439770
DJ
1471 if (head == NULL)
1472 return svr4_default_sos ();
1473
13437d4b
KB
1474 return head;
1475}
1476
8b9a549d
PA
1477/* Implement the main part of the "current_sos" target_so_ops
1478 method. */
f9e14852
GB
1479
1480static struct so_list *
8b9a549d 1481svr4_current_sos_1 (void)
f9e14852
GB
1482{
1483 struct svr4_info *info = get_svr4_info ();
1484
1485 /* If the solib list has been read and stored by the probes
1486 interface then we return a copy of the stored list. */
1487 if (info->solib_list != NULL)
1488 return svr4_copy_library_list (info->solib_list);
1489
1490 /* Otherwise obtain the solib list directly from the inferior. */
1491 return svr4_current_sos_direct (info);
1492}
1493
8b9a549d
PA
1494/* Implement the "current_sos" target_so_ops method. */
1495
1496static struct so_list *
1497svr4_current_sos (void)
1498{
1499 struct so_list *so_head = svr4_current_sos_1 ();
1500 struct mem_range vsyscall_range;
1501
1502 /* Filter out the vDSO module, if present. Its symbol file would
1503 not be found on disk. The vDSO/vsyscall's OBJFILE is instead
1504 managed by symfile-mem.c:add_vsyscall_page. */
1505 if (gdbarch_vsyscall_range (target_gdbarch (), &vsyscall_range)
1506 && vsyscall_range.length != 0)
1507 {
1508 struct so_list **sop;
1509
1510 sop = &so_head;
1511 while (*sop != NULL)
1512 {
1513 struct so_list *so = *sop;
1514
1515 /* We can't simply match the vDSO by starting address alone,
1516 because lm_info->l_addr_inferior (and also l_addr) do not
1517 necessarily represent the real starting address of the
1518 ELF if the vDSO's ELF itself is "prelinked". The l_ld
1519 field (the ".dynamic" section of the shared object)
1520 always points at the absolute/resolved address though.
1521 So check whether that address is inside the vDSO's
1522 mapping instead.
1523
1524 E.g., on Linux 3.16 (x86_64) the vDSO is a regular
1525 0-based ELF, and we see:
1526
1527 (gdb) info auxv
1528 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffb000
1529 (gdb) p/x *_r_debug.r_map.l_next
1530 $1 = {l_addr = 0x7ffff7ffb000, ..., l_ld = 0x7ffff7ffb318, ...}
1531
1532 And on Linux 2.6.32 (x86_64) we see:
1533
1534 (gdb) info auxv
1535 33 AT_SYSINFO_EHDR System-supplied DSO's ELF header 0x7ffff7ffe000
1536 (gdb) p/x *_r_debug.r_map.l_next
1537 $5 = {l_addr = 0x7ffff88fe000, ..., l_ld = 0x7ffff7ffe580, ... }
1538
1539 Dumping that vDSO shows:
1540
1541 (gdb) info proc mappings
1542 0x7ffff7ffe000 0x7ffff7fff000 0x1000 0 [vdso]
1543 (gdb) dump memory vdso.bin 0x7ffff7ffe000 0x7ffff7fff000
1544 # readelf -Wa vdso.bin
1545 [...]
1546 Entry point address: 0xffffffffff700700
1547 [...]
1548 Section Headers:
1549 [Nr] Name Type Address Off Size
1550 [ 0] NULL 0000000000000000 000000 000000
1551 [ 1] .hash HASH ffffffffff700120 000120 000038
1552 [ 2] .dynsym DYNSYM ffffffffff700158 000158 0000d8
1553 [...]
1554 [ 9] .dynamic DYNAMIC ffffffffff700580 000580 0000f0
1555 */
1556 if (address_in_mem_range (so->lm_info->l_ld, &vsyscall_range))
1557 {
1558 *sop = so->next;
1559 free_so (so);
1560 break;
1561 }
1562
1563 sop = &so->next;
1564 }
1565 }
1566
1567 return so_head;
1568}
1569
93a57060 1570/* Get the address of the link_map for a given OBJFILE. */
bc4a16ae
EZ
1571
1572CORE_ADDR
1573svr4_fetch_objfile_link_map (struct objfile *objfile)
1574{
93a57060 1575 struct so_list *so;
6c95b8df 1576 struct svr4_info *info = get_svr4_info ();
bc4a16ae 1577
93a57060 1578 /* Cause svr4_current_sos() to be run if it hasn't been already. */
1a816a87 1579 if (info->main_lm_addr == 0)
93a57060 1580 solib_add (NULL, 0, &current_target, auto_solib_add);
bc4a16ae 1581
93a57060
DJ
1582 /* svr4_current_sos() will set main_lm_addr for the main executable. */
1583 if (objfile == symfile_objfile)
1a816a87 1584 return info->main_lm_addr;
93a57060
DJ
1585
1586 /* The other link map addresses may be found by examining the list
1587 of shared libraries. */
1588 for (so = master_so_list (); so; so = so->next)
1589 if (so->objfile == objfile)
1590 return so->lm_info->lm_addr;
1591
1592 /* Not found! */
bc4a16ae
EZ
1593 return 0;
1594}
13437d4b
KB
1595
1596/* On some systems, the only way to recognize the link map entry for
1597 the main executable file is by looking at its name. Return
1598 non-zero iff SONAME matches one of the known main executable names. */
1599
1600static int
bc043ef3 1601match_main (const char *soname)
13437d4b 1602{
bc043ef3 1603 const char * const *mainp;
13437d4b
KB
1604
1605 for (mainp = main_name_list; *mainp != NULL; mainp++)
1606 {
1607 if (strcmp (soname, *mainp) == 0)
1608 return (1);
1609 }
1610
1611 return (0);
1612}
1613
13437d4b
KB
1614/* Return 1 if PC lies in the dynamic symbol resolution code of the
1615 SVR4 run time loader. */
13437d4b 1616
7d522c90 1617int
d7fa2ae2 1618svr4_in_dynsym_resolve_code (CORE_ADDR pc)
13437d4b 1619{
6c95b8df
PA
1620 struct svr4_info *info = get_svr4_info ();
1621
1622 return ((pc >= info->interp_text_sect_low
1623 && pc < info->interp_text_sect_high)
1624 || (pc >= info->interp_plt_sect_low
1625 && pc < info->interp_plt_sect_high)
3e5d3a5a 1626 || in_plt_section (pc)
0875794a 1627 || in_gnu_ifunc_stub (pc));
13437d4b 1628}
13437d4b 1629
2f4950cd
AC
1630/* Given an executable's ABFD and target, compute the entry-point
1631 address. */
1632
1633static CORE_ADDR
1634exec_entry_point (struct bfd *abfd, struct target_ops *targ)
1635{
8c2b9656
YQ
1636 CORE_ADDR addr;
1637
2f4950cd
AC
1638 /* KevinB wrote ... for most targets, the address returned by
1639 bfd_get_start_address() is the entry point for the start
1640 function. But, for some targets, bfd_get_start_address() returns
1641 the address of a function descriptor from which the entry point
1642 address may be extracted. This address is extracted by
1643 gdbarch_convert_from_func_ptr_addr(). The method
1644 gdbarch_convert_from_func_ptr_addr() is the merely the identify
1645 function for targets which don't use function descriptors. */
8c2b9656 1646 addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2f4950cd
AC
1647 bfd_get_start_address (abfd),
1648 targ);
8c2b9656 1649 return gdbarch_addr_bits_remove (target_gdbarch (), addr);
2f4950cd 1650}
13437d4b 1651
f9e14852
GB
1652/* A probe and its associated action. */
1653
1654struct probe_and_action
1655{
1656 /* The probe. */
1657 struct probe *probe;
1658
729662a5
TT
1659 /* The relocated address of the probe. */
1660 CORE_ADDR address;
1661
f9e14852
GB
1662 /* The action. */
1663 enum probe_action action;
1664};
1665
1666/* Returns a hash code for the probe_and_action referenced by p. */
1667
1668static hashval_t
1669hash_probe_and_action (const void *p)
1670{
1671 const struct probe_and_action *pa = p;
1672
729662a5 1673 return (hashval_t) pa->address;
f9e14852
GB
1674}
1675
1676/* Returns non-zero if the probe_and_actions referenced by p1 and p2
1677 are equal. */
1678
1679static int
1680equal_probe_and_action (const void *p1, const void *p2)
1681{
1682 const struct probe_and_action *pa1 = p1;
1683 const struct probe_and_action *pa2 = p2;
1684
729662a5 1685 return pa1->address == pa2->address;
f9e14852
GB
1686}
1687
1688/* Register a solib event probe and its associated action in the
1689 probes table. */
1690
1691static void
729662a5
TT
1692register_solib_event_probe (struct probe *probe, CORE_ADDR address,
1693 enum probe_action action)
f9e14852
GB
1694{
1695 struct svr4_info *info = get_svr4_info ();
1696 struct probe_and_action lookup, *pa;
1697 void **slot;
1698
1699 /* Create the probes table, if necessary. */
1700 if (info->probes_table == NULL)
1701 info->probes_table = htab_create_alloc (1, hash_probe_and_action,
1702 equal_probe_and_action,
1703 xfree, xcalloc, xfree);
1704
1705 lookup.probe = probe;
729662a5 1706 lookup.address = address;
f9e14852
GB
1707 slot = htab_find_slot (info->probes_table, &lookup, INSERT);
1708 gdb_assert (*slot == HTAB_EMPTY_ENTRY);
1709
1710 pa = XCNEW (struct probe_and_action);
1711 pa->probe = probe;
729662a5 1712 pa->address = address;
f9e14852
GB
1713 pa->action = action;
1714
1715 *slot = pa;
1716}
1717
1718/* Get the solib event probe at the specified location, and the
1719 action associated with it. Returns NULL if no solib event probe
1720 was found. */
1721
1722static struct probe_and_action *
1723solib_event_probe_at (struct svr4_info *info, CORE_ADDR address)
1724{
f9e14852
GB
1725 struct probe_and_action lookup;
1726 void **slot;
1727
729662a5 1728 lookup.address = address;
f9e14852
GB
1729 slot = htab_find_slot (info->probes_table, &lookup, NO_INSERT);
1730
1731 if (slot == NULL)
1732 return NULL;
1733
1734 return (struct probe_and_action *) *slot;
1735}
1736
1737/* Decide what action to take when the specified solib event probe is
1738 hit. */
1739
1740static enum probe_action
1741solib_event_probe_action (struct probe_and_action *pa)
1742{
1743 enum probe_action action;
1744 unsigned probe_argc;
08a6411c 1745 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1746
1747 action = pa->action;
1748 if (action == DO_NOTHING || action == PROBES_INTERFACE_FAILED)
1749 return action;
1750
1751 gdb_assert (action == FULL_RELOAD || action == UPDATE_OR_RELOAD);
1752
1753 /* Check that an appropriate number of arguments has been supplied.
1754 We expect:
1755 arg0: Lmid_t lmid (mandatory)
1756 arg1: struct r_debug *debug_base (mandatory)
1757 arg2: struct link_map *new (optional, for incremental updates) */
08a6411c 1758 probe_argc = get_probe_argument_count (pa->probe, frame);
f9e14852
GB
1759 if (probe_argc == 2)
1760 action = FULL_RELOAD;
1761 else if (probe_argc < 2)
1762 action = PROBES_INTERFACE_FAILED;
1763
1764 return action;
1765}
1766
1767/* Populate the shared object list by reading the entire list of
1768 shared objects from the inferior. Handle special cases relating
1769 to the first elements of the list. Returns nonzero on success. */
1770
1771static int
1772solist_update_full (struct svr4_info *info)
1773{
1774 free_solib_list (info);
1775 info->solib_list = svr4_current_sos_direct (info);
1776
1777 return 1;
1778}
1779
1780/* Update the shared object list starting from the link-map entry
1781 passed by the linker in the probe's third argument. Returns
1782 nonzero if the list was successfully updated, or zero to indicate
1783 failure. */
1784
1785static int
1786solist_update_incremental (struct svr4_info *info, CORE_ADDR lm)
1787{
1788 struct so_list *tail;
1789 CORE_ADDR prev_lm;
1790
1791 /* svr4_current_sos_direct contains logic to handle a number of
1792 special cases relating to the first elements of the list. To
1793 avoid duplicating this logic we defer to solist_update_full
1794 if the list is empty. */
1795 if (info->solib_list == NULL)
1796 return 0;
1797
1798 /* Fall back to a full update if we are using a remote target
1799 that does not support incremental transfers. */
1800 if (info->using_xfer && !target_augmented_libraries_svr4_read ())
1801 return 0;
1802
1803 /* Walk to the end of the list. */
1804 for (tail = info->solib_list; tail->next != NULL; tail = tail->next)
1805 /* Nothing. */;
1806 prev_lm = tail->lm_info->lm_addr;
1807
1808 /* Read the new objects. */
1809 if (info->using_xfer)
1810 {
1811 struct svr4_library_list library_list;
1812 char annex[64];
1813
1814 xsnprintf (annex, sizeof (annex), "start=%s;prev=%s",
1815 phex_nz (lm, sizeof (lm)),
1816 phex_nz (prev_lm, sizeof (prev_lm)));
1817 if (!svr4_current_sos_via_xfer_libraries (&library_list, annex))
1818 return 0;
1819
1820 tail->next = library_list.head;
1821 }
1822 else
1823 {
1824 struct so_list **link = &tail->next;
1825
1826 /* IGNORE_FIRST may safely be set to zero here because the
1827 above check and deferral to solist_update_full ensures
1828 that this call to svr4_read_so_list will never see the
1829 first element. */
1830 if (!svr4_read_so_list (lm, prev_lm, &link, 0))
1831 return 0;
1832 }
1833
1834 return 1;
1835}
1836
1837/* Disable the probes-based linker interface and revert to the
1838 original interface. We don't reset the breakpoints as the
1839 ones set up for the probes-based interface are adequate. */
1840
1841static void
1842disable_probes_interface_cleanup (void *arg)
1843{
1844 struct svr4_info *info = get_svr4_info ();
1845
1846 warning (_("Probes-based dynamic linker interface failed.\n"
1847 "Reverting to original interface.\n"));
1848
1849 free_probes_table (info);
1850 free_solib_list (info);
1851}
1852
1853/* Update the solib list as appropriate when using the
1854 probes-based linker interface. Do nothing if using the
1855 standard interface. */
1856
1857static void
1858svr4_handle_solib_event (void)
1859{
1860 struct svr4_info *info = get_svr4_info ();
1861 struct probe_and_action *pa;
1862 enum probe_action action;
1863 struct cleanup *old_chain, *usm_chain;
1864 struct value *val;
1865 CORE_ADDR pc, debug_base, lm = 0;
1866 int is_initial_ns;
08a6411c 1867 struct frame_info *frame = get_current_frame ();
f9e14852
GB
1868
1869 /* Do nothing if not using the probes interface. */
1870 if (info->probes_table == NULL)
1871 return;
1872
1873 /* If anything goes wrong we revert to the original linker
1874 interface. */
1875 old_chain = make_cleanup (disable_probes_interface_cleanup, NULL);
1876
1877 pc = regcache_read_pc (get_current_regcache ());
1878 pa = solib_event_probe_at (info, pc);
1879 if (pa == NULL)
1880 {
1881 do_cleanups (old_chain);
1882 return;
1883 }
1884
1885 action = solib_event_probe_action (pa);
1886 if (action == PROBES_INTERFACE_FAILED)
1887 {
1888 do_cleanups (old_chain);
1889 return;
1890 }
1891
1892 if (action == DO_NOTHING)
1893 {
1894 discard_cleanups (old_chain);
1895 return;
1896 }
1897
1898 /* evaluate_probe_argument looks up symbols in the dynamic linker
1899 using find_pc_section. find_pc_section is accelerated by a cache
1900 called the section map. The section map is invalidated every
1901 time a shared library is loaded or unloaded, and if the inferior
1902 is generating a lot of shared library events then the section map
1903 will be updated every time svr4_handle_solib_event is called.
1904 We called find_pc_section in svr4_create_solib_event_breakpoints,
1905 so we can guarantee that the dynamic linker's sections are in the
1906 section map. We can therefore inhibit section map updates across
1907 these calls to evaluate_probe_argument and save a lot of time. */
1908 inhibit_section_map_updates (current_program_space);
1909 usm_chain = make_cleanup (resume_section_map_updates_cleanup,
1910 current_program_space);
1911
08a6411c 1912 val = evaluate_probe_argument (pa->probe, 1, frame);
f9e14852
GB
1913 if (val == NULL)
1914 {
1915 do_cleanups (old_chain);
1916 return;
1917 }
1918
1919 debug_base = value_as_address (val);
1920 if (debug_base == 0)
1921 {
1922 do_cleanups (old_chain);
1923 return;
1924 }
1925
1926 /* Always locate the debug struct, in case it moved. */
1927 info->debug_base = 0;
1928 if (locate_base (info) == 0)
1929 {
1930 do_cleanups (old_chain);
1931 return;
1932 }
1933
1934 /* GDB does not currently support libraries loaded via dlmopen
1935 into namespaces other than the initial one. We must ignore
1936 any namespace other than the initial namespace here until
1937 support for this is added to GDB. */
1938 if (debug_base != info->debug_base)
1939 action = DO_NOTHING;
1940
1941 if (action == UPDATE_OR_RELOAD)
1942 {
08a6411c 1943 val = evaluate_probe_argument (pa->probe, 2, frame);
f9e14852
GB
1944 if (val != NULL)
1945 lm = value_as_address (val);
1946
1947 if (lm == 0)
1948 action = FULL_RELOAD;
1949 }
1950
1951 /* Resume section map updates. */
1952 do_cleanups (usm_chain);
1953
1954 if (action == UPDATE_OR_RELOAD)
1955 {
1956 if (!solist_update_incremental (info, lm))
1957 action = FULL_RELOAD;
1958 }
1959
1960 if (action == FULL_RELOAD)
1961 {
1962 if (!solist_update_full (info))
1963 {
1964 do_cleanups (old_chain);
1965 return;
1966 }
1967 }
1968
1969 discard_cleanups (old_chain);
1970}
1971
1972/* Helper function for svr4_update_solib_event_breakpoints. */
1973
1974static int
1975svr4_update_solib_event_breakpoint (struct breakpoint *b, void *arg)
1976{
1977 struct bp_location *loc;
1978
1979 if (b->type != bp_shlib_event)
1980 {
1981 /* Continue iterating. */
1982 return 0;
1983 }
1984
1985 for (loc = b->loc; loc != NULL; loc = loc->next)
1986 {
1987 struct svr4_info *info;
1988 struct probe_and_action *pa;
1989
1990 info = program_space_data (loc->pspace, solib_svr4_pspace_data);
1991 if (info == NULL || info->probes_table == NULL)
1992 continue;
1993
1994 pa = solib_event_probe_at (info, loc->address);
1995 if (pa == NULL)
1996 continue;
1997
1998 if (pa->action == DO_NOTHING)
1999 {
2000 if (b->enable_state == bp_disabled && stop_on_solib_events)
2001 enable_breakpoint (b);
2002 else if (b->enable_state == bp_enabled && !stop_on_solib_events)
2003 disable_breakpoint (b);
2004 }
2005
2006 break;
2007 }
2008
2009 /* Continue iterating. */
2010 return 0;
2011}
2012
2013/* Enable or disable optional solib event breakpoints as appropriate.
2014 Called whenever stop_on_solib_events is changed. */
2015
2016static void
2017svr4_update_solib_event_breakpoints (void)
2018{
2019 iterate_over_breakpoints (svr4_update_solib_event_breakpoint, NULL);
2020}
2021
2022/* Create and register solib event breakpoints. PROBES is an array
2023 of NUM_PROBES elements, each of which is vector of probes. A
2024 solib event breakpoint will be created and registered for each
2025 probe. */
2026
2027static void
2028svr4_create_probe_breakpoints (struct gdbarch *gdbarch,
729662a5
TT
2029 VEC (probe_p) **probes,
2030 struct objfile *objfile)
f9e14852
GB
2031{
2032 int i;
2033
2034 for (i = 0; i < NUM_PROBES; i++)
2035 {
2036 enum probe_action action = probe_info[i].action;
2037 struct probe *probe;
2038 int ix;
2039
2040 for (ix = 0;
2041 VEC_iterate (probe_p, probes[i], ix, probe);
2042 ++ix)
2043 {
729662a5
TT
2044 CORE_ADDR address = get_probe_address (probe, objfile);
2045
2046 create_solib_event_breakpoint (gdbarch, address);
2047 register_solib_event_probe (probe, address, action);
f9e14852
GB
2048 }
2049 }
2050
2051 svr4_update_solib_event_breakpoints ();
2052}
2053
2054/* Both the SunOS and the SVR4 dynamic linkers call a marker function
2055 before and after mapping and unmapping shared libraries. The sole
2056 purpose of this method is to allow debuggers to set a breakpoint so
2057 they can track these changes.
2058
2059 Some versions of the glibc dynamic linker contain named probes
2060 to allow more fine grained stopping. Given the address of the
2061 original marker function, this function attempts to find these
2062 probes, and if found, sets breakpoints on those instead. If the
2063 probes aren't found, a single breakpoint is set on the original
2064 marker function. */
2065
2066static void
2067svr4_create_solib_event_breakpoints (struct gdbarch *gdbarch,
2068 CORE_ADDR address)
2069{
2070 struct obj_section *os;
2071
2072 os = find_pc_section (address);
2073 if (os != NULL)
2074 {
2075 int with_prefix;
2076
2077 for (with_prefix = 0; with_prefix <= 1; with_prefix++)
2078 {
2079 VEC (probe_p) *probes[NUM_PROBES];
2080 int all_probes_found = 1;
25f9533e 2081 int checked_can_use_probe_arguments = 0;
f9e14852
GB
2082 int i;
2083
2084 memset (probes, 0, sizeof (probes));
2085 for (i = 0; i < NUM_PROBES; i++)
2086 {
2087 const char *name = probe_info[i].name;
25f9533e 2088 struct probe *p;
f9e14852
GB
2089 char buf[32];
2090
2091 /* Fedora 17 and Red Hat Enterprise Linux 6.2-6.4
2092 shipped with an early version of the probes code in
2093 which the probes' names were prefixed with "rtld_"
2094 and the "map_failed" probe did not exist. The
2095 locations of the probes are otherwise the same, so
2096 we check for probes with prefixed names if probes
2097 with unprefixed names are not present. */
2098 if (with_prefix)
2099 {
2100 xsnprintf (buf, sizeof (buf), "rtld_%s", name);
2101 name = buf;
2102 }
2103
2104 probes[i] = find_probes_in_objfile (os->objfile, "rtld", name);
2105
2106 /* The "map_failed" probe did not exist in early
2107 versions of the probes code in which the probes'
2108 names were prefixed with "rtld_". */
2109 if (strcmp (name, "rtld_map_failed") == 0)
2110 continue;
2111
2112 if (VEC_empty (probe_p, probes[i]))
2113 {
2114 all_probes_found = 0;
2115 break;
2116 }
25f9533e
SDJ
2117
2118 /* Ensure probe arguments can be evaluated. */
2119 if (!checked_can_use_probe_arguments)
2120 {
2121 p = VEC_index (probe_p, probes[i], 0);
2122 if (!can_evaluate_probe_arguments (p))
2123 {
2124 all_probes_found = 0;
2125 break;
2126 }
2127 checked_can_use_probe_arguments = 1;
2128 }
f9e14852
GB
2129 }
2130
2131 if (all_probes_found)
729662a5 2132 svr4_create_probe_breakpoints (gdbarch, probes, os->objfile);
f9e14852
GB
2133
2134 for (i = 0; i < NUM_PROBES; i++)
2135 VEC_free (probe_p, probes[i]);
2136
2137 if (all_probes_found)
2138 return;
2139 }
2140 }
2141
2142 create_solib_event_breakpoint (gdbarch, address);
2143}
2144
cb457ae2
YQ
2145/* Helper function for gdb_bfd_lookup_symbol. */
2146
2147static int
2148cmp_name_and_sec_flags (asymbol *sym, void *data)
2149{
2150 return (strcmp (sym->name, (const char *) data) == 0
2151 && (sym->section->flags & (SEC_CODE | SEC_DATA)) != 0);
2152}
7f86f058 2153/* Arrange for dynamic linker to hit breakpoint.
13437d4b
KB
2154
2155 Both the SunOS and the SVR4 dynamic linkers have, as part of their
2156 debugger interface, support for arranging for the inferior to hit
2157 a breakpoint after mapping in the shared libraries. This function
2158 enables that breakpoint.
2159
2160 For SunOS, there is a special flag location (in_debugger) which we
2161 set to 1. When the dynamic linker sees this flag set, it will set
2162 a breakpoint at a location known only to itself, after saving the
2163 original contents of that place and the breakpoint address itself,
2164 in it's own internal structures. When we resume the inferior, it
2165 will eventually take a SIGTRAP when it runs into the breakpoint.
2166 We handle this (in a different place) by restoring the contents of
2167 the breakpointed location (which is only known after it stops),
2168 chasing around to locate the shared libraries that have been
2169 loaded, then resuming.
2170
2171 For SVR4, the debugger interface structure contains a member (r_brk)
2172 which is statically initialized at the time the shared library is
2173 built, to the offset of a function (_r_debug_state) which is guaran-
2174 teed to be called once before mapping in a library, and again when
2175 the mapping is complete. At the time we are examining this member,
2176 it contains only the unrelocated offset of the function, so we have
2177 to do our own relocation. Later, when the dynamic linker actually
2178 runs, it relocates r_brk to be the actual address of _r_debug_state().
2179
2180 The debugger interface structure also contains an enumeration which
2181 is set to either RT_ADD or RT_DELETE prior to changing the mapping,
2182 depending upon whether or not the library is being mapped or unmapped,
7f86f058 2183 and then set to RT_CONSISTENT after the library is mapped/unmapped. */
13437d4b
KB
2184
2185static int
268a4a75 2186enable_break (struct svr4_info *info, int from_tty)
13437d4b 2187{
3b7344d5 2188 struct bound_minimal_symbol msymbol;
bc043ef3 2189 const char * const *bkpt_namep;
13437d4b 2190 asection *interp_sect;
001f13d8 2191 char *interp_name;
7cd25cfc 2192 CORE_ADDR sym_addr;
13437d4b 2193
6c95b8df
PA
2194 info->interp_text_sect_low = info->interp_text_sect_high = 0;
2195 info->interp_plt_sect_low = info->interp_plt_sect_high = 0;
13437d4b 2196
7cd25cfc
DJ
2197 /* If we already have a shared library list in the target, and
2198 r_debug contains r_brk, set the breakpoint there - this should
2199 mean r_brk has already been relocated. Assume the dynamic linker
2200 is the object containing r_brk. */
2201
268a4a75 2202 solib_add (NULL, from_tty, &current_target, auto_solib_add);
7cd25cfc 2203 sym_addr = 0;
1a816a87
PA
2204 if (info->debug_base && solib_svr4_r_map (info) != 0)
2205 sym_addr = solib_svr4_r_brk (info);
7cd25cfc
DJ
2206
2207 if (sym_addr != 0)
2208 {
2209 struct obj_section *os;
2210
b36ec657 2211 sym_addr = gdbarch_addr_bits_remove
f5656ead 2212 (target_gdbarch (), gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
3e43a32a
MS
2213 sym_addr,
2214 &current_target));
b36ec657 2215
48379de6
DE
2216 /* On at least some versions of Solaris there's a dynamic relocation
2217 on _r_debug.r_brk and SYM_ADDR may not be relocated yet, e.g., if
2218 we get control before the dynamic linker has self-relocated.
2219 Check if SYM_ADDR is in a known section, if it is assume we can
2220 trust its value. This is just a heuristic though, it could go away
2221 or be replaced if it's getting in the way.
2222
2223 On ARM we need to know whether the ISA of rtld_db_dlactivity (or
2224 however it's spelled in your particular system) is ARM or Thumb.
2225 That knowledge is encoded in the address, if it's Thumb the low bit
2226 is 1. However, we've stripped that info above and it's not clear
2227 what all the consequences are of passing a non-addr_bits_remove'd
f9e14852 2228 address to svr4_create_solib_event_breakpoints. The call to
48379de6
DE
2229 find_pc_section verifies we know about the address and have some
2230 hope of computing the right kind of breakpoint to use (via
2231 symbol info). It does mean that GDB needs to be pointed at a
2232 non-stripped version of the dynamic linker in order to obtain
2233 information it already knows about. Sigh. */
2234
7cd25cfc
DJ
2235 os = find_pc_section (sym_addr);
2236 if (os != NULL)
2237 {
2238 /* Record the relocated start and end address of the dynamic linker
2239 text and plt section for svr4_in_dynsym_resolve_code. */
2240 bfd *tmp_bfd;
2241 CORE_ADDR load_addr;
2242
2243 tmp_bfd = os->objfile->obfd;
2244 load_addr = ANOFFSET (os->objfile->section_offsets,
e03e6279 2245 SECT_OFF_TEXT (os->objfile));
7cd25cfc
DJ
2246
2247 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2248 if (interp_sect)
2249 {
6c95b8df 2250 info->interp_text_sect_low =
7cd25cfc 2251 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2252 info->interp_text_sect_high =
2253 info->interp_text_sect_low
2254 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2255 }
2256 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2257 if (interp_sect)
2258 {
6c95b8df 2259 info->interp_plt_sect_low =
7cd25cfc 2260 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2261 info->interp_plt_sect_high =
2262 info->interp_plt_sect_low
2263 + bfd_section_size (tmp_bfd, interp_sect);
7cd25cfc
DJ
2264 }
2265
f9e14852 2266 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
7cd25cfc
DJ
2267 return 1;
2268 }
2269 }
2270
97ec2c2f 2271 /* Find the program interpreter; if not found, warn the user and drop
13437d4b 2272 into the old breakpoint at symbol code. */
97ec2c2f
UW
2273 interp_name = find_program_interpreter ();
2274 if (interp_name)
13437d4b 2275 {
8ad2fcde
KB
2276 CORE_ADDR load_addr = 0;
2277 int load_addr_found = 0;
2ec9a4f8 2278 int loader_found_in_list = 0;
f8766ec1 2279 struct so_list *so;
e4f7b8c8 2280 bfd *tmp_bfd = NULL;
2f4950cd 2281 struct target_ops *tmp_bfd_target;
13437d4b 2282
7cd25cfc 2283 sym_addr = 0;
13437d4b
KB
2284
2285 /* Now we need to figure out where the dynamic linker was
2286 loaded so that we can load its symbols and place a breakpoint
2287 in the dynamic linker itself.
2288
2289 This address is stored on the stack. However, I've been unable
2290 to find any magic formula to find it for Solaris (appears to
2291 be trivial on GNU/Linux). Therefore, we have to try an alternate
2292 mechanism to find the dynamic linker's base address. */
e4f7b8c8 2293
492d29ea 2294 TRY
f1838a98 2295 {
97ec2c2f 2296 tmp_bfd = solib_bfd_open (interp_name);
f1838a98 2297 }
492d29ea
PA
2298 CATCH (ex, RETURN_MASK_ALL)
2299 {
2300 }
2301 END_CATCH
2302
13437d4b
KB
2303 if (tmp_bfd == NULL)
2304 goto bkpt_at_symbol;
2305
2f4950cd 2306 /* Now convert the TMP_BFD into a target. That way target, as
695c3173 2307 well as BFD operations can be used. */
2f4950cd 2308 tmp_bfd_target = target_bfd_reopen (tmp_bfd);
695c3173
TT
2309 /* target_bfd_reopen acquired its own reference, so we can
2310 release ours now. */
2311 gdb_bfd_unref (tmp_bfd);
2f4950cd 2312
f8766ec1
KB
2313 /* On a running target, we can get the dynamic linker's base
2314 address from the shared library table. */
f8766ec1
KB
2315 so = master_so_list ();
2316 while (so)
8ad2fcde 2317 {
97ec2c2f 2318 if (svr4_same_1 (interp_name, so->so_original_name))
8ad2fcde
KB
2319 {
2320 load_addr_found = 1;
2ec9a4f8 2321 loader_found_in_list = 1;
b23518f0 2322 load_addr = lm_addr_check (so, tmp_bfd);
8ad2fcde
KB
2323 break;
2324 }
f8766ec1 2325 so = so->next;
8ad2fcde
KB
2326 }
2327
8d4e36ba
JB
2328 /* If we were not able to find the base address of the loader
2329 from our so_list, then try using the AT_BASE auxilliary entry. */
2330 if (!load_addr_found)
2331 if (target_auxv_search (&current_target, AT_BASE, &load_addr) > 0)
ad3a0e5b 2332 {
f5656ead 2333 int addr_bit = gdbarch_addr_bit (target_gdbarch ());
ad3a0e5b
JK
2334
2335 /* Ensure LOAD_ADDR has proper sign in its possible upper bits so
2336 that `+ load_addr' will overflow CORE_ADDR width not creating
2337 invalid addresses like 0x101234567 for 32bit inferiors on 64bit
2338 GDB. */
2339
d182d057 2340 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
ad3a0e5b 2341 {
d182d057 2342 CORE_ADDR space_size = (CORE_ADDR) 1 << addr_bit;
ad3a0e5b
JK
2343 CORE_ADDR tmp_entry_point = exec_entry_point (tmp_bfd,
2344 tmp_bfd_target);
2345
2346 gdb_assert (load_addr < space_size);
2347
2348 /* TMP_ENTRY_POINT exceeding SPACE_SIZE would be for prelinked
2349 64bit ld.so with 32bit executable, it should not happen. */
2350
2351 if (tmp_entry_point < space_size
2352 && tmp_entry_point + load_addr >= space_size)
2353 load_addr -= space_size;
2354 }
2355
2356 load_addr_found = 1;
2357 }
8d4e36ba 2358
8ad2fcde
KB
2359 /* Otherwise we find the dynamic linker's base address by examining
2360 the current pc (which should point at the entry point for the
8d4e36ba
JB
2361 dynamic linker) and subtracting the offset of the entry point.
2362
2363 This is more fragile than the previous approaches, but is a good
2364 fallback method because it has actually been working well in
2365 most cases. */
8ad2fcde 2366 if (!load_addr_found)
fb14de7b 2367 {
c2250ad1 2368 struct regcache *regcache
f5656ead 2369 = get_thread_arch_regcache (inferior_ptid, target_gdbarch ());
433759f7 2370
fb14de7b
UW
2371 load_addr = (regcache_read_pc (regcache)
2372 - exec_entry_point (tmp_bfd, tmp_bfd_target));
2373 }
2ec9a4f8
DJ
2374
2375 if (!loader_found_in_list)
34439770 2376 {
1a816a87
PA
2377 info->debug_loader_name = xstrdup (interp_name);
2378 info->debug_loader_offset_p = 1;
2379 info->debug_loader_offset = load_addr;
268a4a75 2380 solib_add (NULL, from_tty, &current_target, auto_solib_add);
34439770 2381 }
13437d4b
KB
2382
2383 /* Record the relocated start and end address of the dynamic linker
d7fa2ae2 2384 text and plt section for svr4_in_dynsym_resolve_code. */
13437d4b
KB
2385 interp_sect = bfd_get_section_by_name (tmp_bfd, ".text");
2386 if (interp_sect)
2387 {
6c95b8df 2388 info->interp_text_sect_low =
13437d4b 2389 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2390 info->interp_text_sect_high =
2391 info->interp_text_sect_low
2392 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2393 }
2394 interp_sect = bfd_get_section_by_name (tmp_bfd, ".plt");
2395 if (interp_sect)
2396 {
6c95b8df 2397 info->interp_plt_sect_low =
13437d4b 2398 bfd_section_vma (tmp_bfd, interp_sect) + load_addr;
6c95b8df
PA
2399 info->interp_plt_sect_high =
2400 info->interp_plt_sect_low
2401 + bfd_section_size (tmp_bfd, interp_sect);
13437d4b
KB
2402 }
2403
2404 /* Now try to set a breakpoint in the dynamic linker. */
2405 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2406 {
cb457ae2
YQ
2407 sym_addr = gdb_bfd_lookup_symbol (tmp_bfd, cmp_name_and_sec_flags,
2408 (void *) *bkpt_namep);
13437d4b
KB
2409 if (sym_addr != 0)
2410 break;
2411 }
2412
2bbe3cc1
DJ
2413 if (sym_addr != 0)
2414 /* Convert 'sym_addr' from a function pointer to an address.
2415 Because we pass tmp_bfd_target instead of the current
2416 target, this will always produce an unrelocated value. */
f5656ead 2417 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
2bbe3cc1
DJ
2418 sym_addr,
2419 tmp_bfd_target);
2420
695c3173
TT
2421 /* We're done with both the temporary bfd and target. Closing
2422 the target closes the underlying bfd, because it holds the
2423 only remaining reference. */
460014f5 2424 target_close (tmp_bfd_target);
13437d4b
KB
2425
2426 if (sym_addr != 0)
2427 {
f9e14852
GB
2428 svr4_create_solib_event_breakpoints (target_gdbarch (),
2429 load_addr + sym_addr);
97ec2c2f 2430 xfree (interp_name);
13437d4b
KB
2431 return 1;
2432 }
2433
2434 /* For whatever reason we couldn't set a breakpoint in the dynamic
2435 linker. Warn and drop into the old code. */
2436 bkpt_at_symbol:
97ec2c2f 2437 xfree (interp_name);
82d03102
PG
2438 warning (_("Unable to find dynamic linker breakpoint function.\n"
2439 "GDB will be unable to debug shared library initializers\n"
2440 "and track explicitly loaded dynamic code."));
13437d4b 2441 }
13437d4b 2442
e499d0f1
DJ
2443 /* Scan through the lists of symbols, trying to look up the symbol and
2444 set a breakpoint there. Terminate loop when we/if we succeed. */
2445
2446 for (bkpt_namep = solib_break_names; *bkpt_namep != NULL; bkpt_namep++)
2447 {
2448 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2449 if ((msymbol.minsym != NULL)
77e371c0 2450 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
e499d0f1 2451 {
77e371c0 2452 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2453 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
de64a9ac
JM
2454 sym_addr,
2455 &current_target);
f9e14852 2456 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
e499d0f1
DJ
2457 return 1;
2458 }
2459 }
13437d4b 2460
fb139f32 2461 if (interp_name != NULL && !current_inferior ()->attach_flag)
13437d4b 2462 {
c6490bf2 2463 for (bkpt_namep = bkpt_names; *bkpt_namep != NULL; bkpt_namep++)
13437d4b 2464 {
c6490bf2 2465 msymbol = lookup_minimal_symbol (*bkpt_namep, NULL, symfile_objfile);
3b7344d5 2466 if ((msymbol.minsym != NULL)
77e371c0 2467 && (BMSYMBOL_VALUE_ADDRESS (msymbol) != 0))
c6490bf2 2468 {
77e371c0 2469 sym_addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
f5656ead 2470 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
c6490bf2
KB
2471 sym_addr,
2472 &current_target);
f9e14852 2473 svr4_create_solib_event_breakpoints (target_gdbarch (), sym_addr);
c6490bf2
KB
2474 return 1;
2475 }
13437d4b
KB
2476 }
2477 }
542c95c2 2478 return 0;
13437d4b
KB
2479}
2480
7f86f058 2481/* Implement the "special_symbol_handling" target_so_ops method. */
13437d4b
KB
2482
2483static void
2484svr4_special_symbol_handling (void)
2485{
7f86f058 2486 /* Nothing to do. */
13437d4b
KB
2487}
2488
09919ac2
JK
2489/* Read the ELF program headers from ABFD. Return the contents and
2490 set *PHDRS_SIZE to the size of the program headers. */
e2a44558 2491
09919ac2
JK
2492static gdb_byte *
2493read_program_headers_from_bfd (bfd *abfd, int *phdrs_size)
e2a44558 2494{
09919ac2
JK
2495 Elf_Internal_Ehdr *ehdr;
2496 gdb_byte *buf;
e2a44558 2497
09919ac2 2498 ehdr = elf_elfheader (abfd);
b8040f19 2499
09919ac2
JK
2500 *phdrs_size = ehdr->e_phnum * ehdr->e_phentsize;
2501 if (*phdrs_size == 0)
2502 return NULL;
2503
2504 buf = xmalloc (*phdrs_size);
2505 if (bfd_seek (abfd, ehdr->e_phoff, SEEK_SET) != 0
2506 || bfd_bread (buf, *phdrs_size, abfd) != *phdrs_size)
2507 {
2508 xfree (buf);
2509 return NULL;
2510 }
2511
2512 return buf;
b8040f19
JK
2513}
2514
01c30d6e
JK
2515/* Return 1 and fill *DISPLACEMENTP with detected PIE offset of inferior
2516 exec_bfd. Otherwise return 0.
2517
2518 We relocate all of the sections by the same amount. This
c378eb4e 2519 behavior is mandated by recent editions of the System V ABI.
b8040f19
JK
2520 According to the System V Application Binary Interface,
2521 Edition 4.1, page 5-5:
2522
2523 ... Though the system chooses virtual addresses for
2524 individual processes, it maintains the segments' relative
2525 positions. Because position-independent code uses relative
2526 addressesing between segments, the difference between
2527 virtual addresses in memory must match the difference
2528 between virtual addresses in the file. The difference
2529 between the virtual address of any segment in memory and
2530 the corresponding virtual address in the file is thus a
2531 single constant value for any one executable or shared
2532 object in a given process. This difference is the base
2533 address. One use of the base address is to relocate the
2534 memory image of the program during dynamic linking.
2535
2536 The same language also appears in Edition 4.0 of the System V
09919ac2
JK
2537 ABI and is left unspecified in some of the earlier editions.
2538
2539 Decide if the objfile needs to be relocated. As indicated above, we will
2540 only be here when execution is stopped. But during attachment PC can be at
2541 arbitrary address therefore regcache_read_pc can be misleading (contrary to
2542 the auxv AT_ENTRY value). Moreover for executable with interpreter section
2543 regcache_read_pc would point to the interpreter and not the main executable.
2544
2545 So, to summarize, relocations are necessary when the start address obtained
2546 from the executable is different from the address in auxv AT_ENTRY entry.
d989b283 2547
09919ac2
JK
2548 [ The astute reader will note that we also test to make sure that
2549 the executable in question has the DYNAMIC flag set. It is my
2550 opinion that this test is unnecessary (undesirable even). It
2551 was added to avoid inadvertent relocation of an executable
2552 whose e_type member in the ELF header is not ET_DYN. There may
2553 be a time in the future when it is desirable to do relocations
2554 on other types of files as well in which case this condition
2555 should either be removed or modified to accomodate the new file
2556 type. - Kevin, Nov 2000. ] */
b8040f19 2557
01c30d6e
JK
2558static int
2559svr4_exec_displacement (CORE_ADDR *displacementp)
b8040f19 2560{
41752192
JK
2561 /* ENTRY_POINT is a possible function descriptor - before
2562 a call to gdbarch_convert_from_func_ptr_addr. */
8f61baf8 2563 CORE_ADDR entry_point, exec_displacement;
b8040f19
JK
2564
2565 if (exec_bfd == NULL)
2566 return 0;
2567
09919ac2
JK
2568 /* Therefore for ELF it is ET_EXEC and not ET_DYN. Both shared libraries
2569 being executed themselves and PIE (Position Independent Executable)
2570 executables are ET_DYN. */
2571
2572 if ((bfd_get_file_flags (exec_bfd) & DYNAMIC) == 0)
2573 return 0;
2574
2575 if (target_auxv_search (&current_target, AT_ENTRY, &entry_point) <= 0)
2576 return 0;
2577
8f61baf8 2578 exec_displacement = entry_point - bfd_get_start_address (exec_bfd);
09919ac2 2579
8f61baf8 2580 /* Verify the EXEC_DISPLACEMENT candidate complies with the required page
09919ac2
JK
2581 alignment. It is cheaper than the program headers comparison below. */
2582
2583 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2584 {
2585 const struct elf_backend_data *elf = get_elf_backend_data (exec_bfd);
2586
2587 /* p_align of PT_LOAD segments does not specify any alignment but
2588 only congruency of addresses:
2589 p_offset % p_align == p_vaddr % p_align
2590 Kernel is free to load the executable with lower alignment. */
2591
8f61baf8 2592 if ((exec_displacement & (elf->minpagesize - 1)) != 0)
09919ac2
JK
2593 return 0;
2594 }
2595
2596 /* Verify that the auxilliary vector describes the same file as exec_bfd, by
2597 comparing their program headers. If the program headers in the auxilliary
2598 vector do not match the program headers in the executable, then we are
2599 looking at a different file than the one used by the kernel - for
2600 instance, "gdb program" connected to "gdbserver :PORT ld.so program". */
2601
2602 if (bfd_get_flavour (exec_bfd) == bfd_target_elf_flavour)
2603 {
2604 /* Be optimistic and clear OK only if GDB was able to verify the headers
2605 really do not match. */
2606 int phdrs_size, phdrs2_size, ok = 1;
2607 gdb_byte *buf, *buf2;
0a1e94c7 2608 int arch_size;
09919ac2 2609
0a1e94c7 2610 buf = read_program_header (-1, &phdrs_size, &arch_size);
09919ac2 2611 buf2 = read_program_headers_from_bfd (exec_bfd, &phdrs2_size);
0a1e94c7
JK
2612 if (buf != NULL && buf2 != NULL)
2613 {
f5656ead 2614 enum bfd_endian byte_order = gdbarch_byte_order (target_gdbarch ());
0a1e94c7
JK
2615
2616 /* We are dealing with three different addresses. EXEC_BFD
2617 represents current address in on-disk file. target memory content
2618 may be different from EXEC_BFD as the file may have been prelinked
2619 to a different address after the executable has been loaded.
2620 Moreover the address of placement in target memory can be
3e43a32a
MS
2621 different from what the program headers in target memory say -
2622 this is the goal of PIE.
0a1e94c7
JK
2623
2624 Detected DISPLACEMENT covers both the offsets of PIE placement and
2625 possible new prelink performed after start of the program. Here
2626 relocate BUF and BUF2 just by the EXEC_BFD vs. target memory
2627 content offset for the verification purpose. */
2628
2629 if (phdrs_size != phdrs2_size
2630 || bfd_get_arch_size (exec_bfd) != arch_size)
2631 ok = 0;
3e43a32a
MS
2632 else if (arch_size == 32
2633 && phdrs_size >= sizeof (Elf32_External_Phdr)
0a1e94c7
JK
2634 && phdrs_size % sizeof (Elf32_External_Phdr) == 0)
2635 {
2636 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2637 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2638 CORE_ADDR displacement = 0;
2639 int i;
2640
2641 /* DISPLACEMENT could be found more easily by the difference of
2642 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2643 already have enough information to compute that displacement
2644 with what we've read. */
2645
2646 for (i = 0; i < ehdr2->e_phnum; i++)
2647 if (phdr2[i].p_type == PT_LOAD)
2648 {
2649 Elf32_External_Phdr *phdrp;
2650 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2651 CORE_ADDR vaddr, paddr;
2652 CORE_ADDR displacement_vaddr = 0;
2653 CORE_ADDR displacement_paddr = 0;
2654
2655 phdrp = &((Elf32_External_Phdr *) buf)[i];
2656 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2657 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2658
2659 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2660 byte_order);
2661 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2662
2663 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2664 byte_order);
2665 displacement_paddr = paddr - phdr2[i].p_paddr;
2666
2667 if (displacement_vaddr == displacement_paddr)
2668 displacement = displacement_vaddr;
2669
2670 break;
2671 }
2672
2673 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2674
2675 for (i = 0; i < phdrs_size / sizeof (Elf32_External_Phdr); i++)
2676 {
2677 Elf32_External_Phdr *phdrp;
2678 Elf32_External_Phdr *phdr2p;
2679 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2680 CORE_ADDR vaddr, paddr;
43b8e241 2681 asection *plt2_asect;
0a1e94c7
JK
2682
2683 phdrp = &((Elf32_External_Phdr *) buf)[i];
2684 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2685 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2686 phdr2p = &((Elf32_External_Phdr *) buf2)[i];
2687
2688 /* PT_GNU_STACK is an exception by being never relocated by
2689 prelink as its addresses are always zero. */
2690
2691 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2692 continue;
2693
2694 /* Check also other adjustment combinations - PR 11786. */
2695
3e43a32a
MS
2696 vaddr = extract_unsigned_integer (buf_vaddr_p, 4,
2697 byte_order);
0a1e94c7
JK
2698 vaddr -= displacement;
2699 store_unsigned_integer (buf_vaddr_p, 4, byte_order, vaddr);
2700
3e43a32a
MS
2701 paddr = extract_unsigned_integer (buf_paddr_p, 4,
2702 byte_order);
0a1e94c7
JK
2703 paddr -= displacement;
2704 store_unsigned_integer (buf_paddr_p, 4, byte_order, paddr);
2705
2706 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2707 continue;
2708
204b5331
DE
2709 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2710 CentOS-5 has problems with filesz, memsz as well.
2711 See PR 11786. */
2712 if (phdr2[i].p_type == PT_GNU_RELRO)
2713 {
2714 Elf32_External_Phdr tmp_phdr = *phdrp;
2715 Elf32_External_Phdr tmp_phdr2 = *phdr2p;
2716
2717 memset (tmp_phdr.p_filesz, 0, 4);
2718 memset (tmp_phdr.p_memsz, 0, 4);
2719 memset (tmp_phdr.p_flags, 0, 4);
2720 memset (tmp_phdr.p_align, 0, 4);
2721 memset (tmp_phdr2.p_filesz, 0, 4);
2722 memset (tmp_phdr2.p_memsz, 0, 4);
2723 memset (tmp_phdr2.p_flags, 0, 4);
2724 memset (tmp_phdr2.p_align, 0, 4);
2725
2726 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2727 == 0)
2728 continue;
2729 }
2730
43b8e241
JK
2731 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2732 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2733 if (plt2_asect)
2734 {
2735 int content2;
2736 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2737 CORE_ADDR filesz;
2738
2739 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2740 & SEC_HAS_CONTENTS) != 0;
2741
2742 filesz = extract_unsigned_integer (buf_filesz_p, 4,
2743 byte_order);
2744
2745 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2746 FILESZ is from the in-memory image. */
2747 if (content2)
2748 filesz += bfd_get_section_size (plt2_asect);
2749 else
2750 filesz -= bfd_get_section_size (plt2_asect);
2751
2752 store_unsigned_integer (buf_filesz_p, 4, byte_order,
2753 filesz);
2754
2755 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2756 continue;
2757 }
2758
0a1e94c7
JK
2759 ok = 0;
2760 break;
2761 }
2762 }
3e43a32a
MS
2763 else if (arch_size == 64
2764 && phdrs_size >= sizeof (Elf64_External_Phdr)
0a1e94c7
JK
2765 && phdrs_size % sizeof (Elf64_External_Phdr) == 0)
2766 {
2767 Elf_Internal_Ehdr *ehdr2 = elf_tdata (exec_bfd)->elf_header;
2768 Elf_Internal_Phdr *phdr2 = elf_tdata (exec_bfd)->phdr;
2769 CORE_ADDR displacement = 0;
2770 int i;
2771
2772 /* DISPLACEMENT could be found more easily by the difference of
2773 ehdr2->e_entry. But we haven't read the ehdr yet, and we
2774 already have enough information to compute that displacement
2775 with what we've read. */
2776
2777 for (i = 0; i < ehdr2->e_phnum; i++)
2778 if (phdr2[i].p_type == PT_LOAD)
2779 {
2780 Elf64_External_Phdr *phdrp;
2781 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2782 CORE_ADDR vaddr, paddr;
2783 CORE_ADDR displacement_vaddr = 0;
2784 CORE_ADDR displacement_paddr = 0;
2785
2786 phdrp = &((Elf64_External_Phdr *) buf)[i];
2787 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2788 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2789
2790 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2791 byte_order);
2792 displacement_vaddr = vaddr - phdr2[i].p_vaddr;
2793
2794 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2795 byte_order);
2796 displacement_paddr = paddr - phdr2[i].p_paddr;
2797
2798 if (displacement_vaddr == displacement_paddr)
2799 displacement = displacement_vaddr;
2800
2801 break;
2802 }
2803
2804 /* Now compare BUF and BUF2 with optional DISPLACEMENT. */
2805
2806 for (i = 0; i < phdrs_size / sizeof (Elf64_External_Phdr); i++)
2807 {
2808 Elf64_External_Phdr *phdrp;
2809 Elf64_External_Phdr *phdr2p;
2810 gdb_byte *buf_vaddr_p, *buf_paddr_p;
2811 CORE_ADDR vaddr, paddr;
43b8e241 2812 asection *plt2_asect;
0a1e94c7
JK
2813
2814 phdrp = &((Elf64_External_Phdr *) buf)[i];
2815 buf_vaddr_p = (gdb_byte *) &phdrp->p_vaddr;
2816 buf_paddr_p = (gdb_byte *) &phdrp->p_paddr;
2817 phdr2p = &((Elf64_External_Phdr *) buf2)[i];
2818
2819 /* PT_GNU_STACK is an exception by being never relocated by
2820 prelink as its addresses are always zero. */
2821
2822 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2823 continue;
2824
2825 /* Check also other adjustment combinations - PR 11786. */
2826
3e43a32a
MS
2827 vaddr = extract_unsigned_integer (buf_vaddr_p, 8,
2828 byte_order);
0a1e94c7
JK
2829 vaddr -= displacement;
2830 store_unsigned_integer (buf_vaddr_p, 8, byte_order, vaddr);
2831
3e43a32a
MS
2832 paddr = extract_unsigned_integer (buf_paddr_p, 8,
2833 byte_order);
0a1e94c7
JK
2834 paddr -= displacement;
2835 store_unsigned_integer (buf_paddr_p, 8, byte_order, paddr);
2836
2837 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2838 continue;
2839
204b5331
DE
2840 /* Strip modifies the flags and alignment of PT_GNU_RELRO.
2841 CentOS-5 has problems with filesz, memsz as well.
2842 See PR 11786. */
2843 if (phdr2[i].p_type == PT_GNU_RELRO)
2844 {
2845 Elf64_External_Phdr tmp_phdr = *phdrp;
2846 Elf64_External_Phdr tmp_phdr2 = *phdr2p;
2847
2848 memset (tmp_phdr.p_filesz, 0, 8);
2849 memset (tmp_phdr.p_memsz, 0, 8);
2850 memset (tmp_phdr.p_flags, 0, 4);
2851 memset (tmp_phdr.p_align, 0, 8);
2852 memset (tmp_phdr2.p_filesz, 0, 8);
2853 memset (tmp_phdr2.p_memsz, 0, 8);
2854 memset (tmp_phdr2.p_flags, 0, 4);
2855 memset (tmp_phdr2.p_align, 0, 8);
2856
2857 if (memcmp (&tmp_phdr, &tmp_phdr2, sizeof (tmp_phdr))
2858 == 0)
2859 continue;
2860 }
2861
43b8e241
JK
2862 /* prelink can convert .plt SHT_NOBITS to SHT_PROGBITS. */
2863 plt2_asect = bfd_get_section_by_name (exec_bfd, ".plt");
2864 if (plt2_asect)
2865 {
2866 int content2;
2867 gdb_byte *buf_filesz_p = (gdb_byte *) &phdrp->p_filesz;
2868 CORE_ADDR filesz;
2869
2870 content2 = (bfd_get_section_flags (exec_bfd, plt2_asect)
2871 & SEC_HAS_CONTENTS) != 0;
2872
2873 filesz = extract_unsigned_integer (buf_filesz_p, 8,
2874 byte_order);
2875
2876 /* PLT2_ASECT is from on-disk file (exec_bfd) while
2877 FILESZ is from the in-memory image. */
2878 if (content2)
2879 filesz += bfd_get_section_size (plt2_asect);
2880 else
2881 filesz -= bfd_get_section_size (plt2_asect);
2882
2883 store_unsigned_integer (buf_filesz_p, 8, byte_order,
2884 filesz);
2885
2886 if (memcmp (phdrp, phdr2p, sizeof (*phdrp)) == 0)
2887 continue;
2888 }
2889
0a1e94c7
JK
2890 ok = 0;
2891 break;
2892 }
2893 }
2894 else
2895 ok = 0;
2896 }
09919ac2
JK
2897
2898 xfree (buf);
2899 xfree (buf2);
2900
2901 if (!ok)
2902 return 0;
2903 }
b8040f19 2904
ccf26247
JK
2905 if (info_verbose)
2906 {
2907 /* It can be printed repeatedly as there is no easy way to check
2908 the executable symbols/file has been already relocated to
2909 displacement. */
2910
2911 printf_unfiltered (_("Using PIE (Position Independent Executable) "
2912 "displacement %s for \"%s\".\n"),
8f61baf8 2913 paddress (target_gdbarch (), exec_displacement),
ccf26247
JK
2914 bfd_get_filename (exec_bfd));
2915 }
2916
8f61baf8 2917 *displacementp = exec_displacement;
01c30d6e 2918 return 1;
b8040f19
JK
2919}
2920
2921/* Relocate the main executable. This function should be called upon
c378eb4e 2922 stopping the inferior process at the entry point to the program.
b8040f19
JK
2923 The entry point from BFD is compared to the AT_ENTRY of AUXV and if they are
2924 different, the main executable is relocated by the proper amount. */
2925
2926static void
2927svr4_relocate_main_executable (void)
2928{
01c30d6e
JK
2929 CORE_ADDR displacement;
2930
4e5799b6
JK
2931 /* If we are re-running this executable, SYMFILE_OBJFILE->SECTION_OFFSETS
2932 probably contains the offsets computed using the PIE displacement
2933 from the previous run, which of course are irrelevant for this run.
2934 So we need to determine the new PIE displacement and recompute the
2935 section offsets accordingly, even if SYMFILE_OBJFILE->SECTION_OFFSETS
2936 already contains pre-computed offsets.
01c30d6e 2937
4e5799b6 2938 If we cannot compute the PIE displacement, either:
01c30d6e 2939
4e5799b6
JK
2940 - The executable is not PIE.
2941
2942 - SYMFILE_OBJFILE does not match the executable started in the target.
2943 This can happen for main executable symbols loaded at the host while
2944 `ld.so --ld-args main-executable' is loaded in the target.
2945
2946 Then we leave the section offsets untouched and use them as is for
2947 this run. Either:
2948
2949 - These section offsets were properly reset earlier, and thus
2950 already contain the correct values. This can happen for instance
2951 when reconnecting via the remote protocol to a target that supports
2952 the `qOffsets' packet.
2953
2954 - The section offsets were not reset earlier, and the best we can
c378eb4e 2955 hope is that the old offsets are still applicable to the new run. */
01c30d6e
JK
2956
2957 if (! svr4_exec_displacement (&displacement))
2958 return;
b8040f19 2959
01c30d6e
JK
2960 /* Even DISPLACEMENT 0 is a valid new difference of in-memory vs. in-file
2961 addresses. */
b8040f19
JK
2962
2963 if (symfile_objfile)
e2a44558 2964 {
e2a44558 2965 struct section_offsets *new_offsets;
b8040f19 2966 int i;
e2a44558 2967
b8040f19
JK
2968 new_offsets = alloca (symfile_objfile->num_sections
2969 * sizeof (*new_offsets));
e2a44558 2970
b8040f19
JK
2971 for (i = 0; i < symfile_objfile->num_sections; i++)
2972 new_offsets->offsets[i] = displacement;
e2a44558 2973
b8040f19 2974 objfile_relocate (symfile_objfile, new_offsets);
e2a44558 2975 }
51bee8e9
JK
2976 else if (exec_bfd)
2977 {
2978 asection *asect;
2979
2980 for (asect = exec_bfd->sections; asect != NULL; asect = asect->next)
2981 exec_set_section_address (bfd_get_filename (exec_bfd), asect->index,
2982 (bfd_section_vma (exec_bfd, asect)
2983 + displacement));
2984 }
e2a44558
KB
2985}
2986
7f86f058 2987/* Implement the "create_inferior_hook" target_solib_ops method.
13437d4b
KB
2988
2989 For SVR4 executables, this first instruction is either the first
2990 instruction in the dynamic linker (for dynamically linked
2991 executables) or the instruction at "start" for statically linked
2992 executables. For dynamically linked executables, the system
2993 first exec's /lib/libc.so.N, which contains the dynamic linker,
2994 and starts it running. The dynamic linker maps in any needed
2995 shared libraries, maps in the actual user executable, and then
2996 jumps to "start" in the user executable.
2997
7f86f058
PA
2998 We can arrange to cooperate with the dynamic linker to discover the
2999 names of shared libraries that are dynamically linked, and the base
3000 addresses to which they are linked.
13437d4b
KB
3001
3002 This function is responsible for discovering those names and
3003 addresses, and saving sufficient information about them to allow
d2e5c99a 3004 their symbols to be read at a later time. */
13437d4b 3005
e2a44558 3006static void
268a4a75 3007svr4_solib_create_inferior_hook (int from_tty)
13437d4b 3008{
1a816a87
PA
3009 struct svr4_info *info;
3010
6c95b8df 3011 info = get_svr4_info ();
2020b7ab 3012
f9e14852
GB
3013 /* Clear the probes-based interface's state. */
3014 free_probes_table (info);
3015 free_solib_list (info);
3016
e2a44558 3017 /* Relocate the main executable if necessary. */
86e4bafc 3018 svr4_relocate_main_executable ();
e2a44558 3019
c91c8c16
PA
3020 /* No point setting a breakpoint in the dynamic linker if we can't
3021 hit it (e.g., a core file, or a trace file). */
3022 if (!target_has_execution)
3023 return;
3024
d5a921c9 3025 if (!svr4_have_link_map_offsets ())
513f5903 3026 return;
d5a921c9 3027
268a4a75 3028 if (!enable_break (info, from_tty))
542c95c2 3029 return;
13437d4b
KB
3030}
3031
3032static void
3033svr4_clear_solib (void)
3034{
6c95b8df
PA
3035 struct svr4_info *info;
3036
3037 info = get_svr4_info ();
3038 info->debug_base = 0;
3039 info->debug_loader_offset_p = 0;
3040 info->debug_loader_offset = 0;
3041 xfree (info->debug_loader_name);
3042 info->debug_loader_name = NULL;
13437d4b
KB
3043}
3044
6bb7be43
JB
3045/* Clear any bits of ADDR that wouldn't fit in a target-format
3046 data pointer. "Data pointer" here refers to whatever sort of
3047 address the dynamic linker uses to manage its sections. At the
3048 moment, we don't support shared libraries on any processors where
3049 code and data pointers are different sizes.
3050
3051 This isn't really the right solution. What we really need here is
3052 a way to do arithmetic on CORE_ADDR values that respects the
3053 natural pointer/address correspondence. (For example, on the MIPS,
3054 converting a 32-bit pointer to a 64-bit CORE_ADDR requires you to
3055 sign-extend the value. There, simply truncating the bits above
819844ad 3056 gdbarch_ptr_bit, as we do below, is no good.) This should probably
6bb7be43
JB
3057 be a new gdbarch method or something. */
3058static CORE_ADDR
3059svr4_truncate_ptr (CORE_ADDR addr)
3060{
f5656ead 3061 if (gdbarch_ptr_bit (target_gdbarch ()) == sizeof (CORE_ADDR) * 8)
6bb7be43
JB
3062 /* We don't need to truncate anything, and the bit twiddling below
3063 will fail due to overflow problems. */
3064 return addr;
3065 else
f5656ead 3066 return addr & (((CORE_ADDR) 1 << gdbarch_ptr_bit (target_gdbarch ())) - 1);
6bb7be43
JB
3067}
3068
3069
749499cb
KB
3070static void
3071svr4_relocate_section_addresses (struct so_list *so,
0542c86d 3072 struct target_section *sec)
749499cb 3073{
2b2848e2
DE
3074 bfd *abfd = sec->the_bfd_section->owner;
3075
3076 sec->addr = svr4_truncate_ptr (sec->addr + lm_addr_check (so, abfd));
3077 sec->endaddr = svr4_truncate_ptr (sec->endaddr + lm_addr_check (so, abfd));
749499cb 3078}
4b188b9f 3079\f
749499cb 3080
4b188b9f 3081/* Architecture-specific operations. */
6bb7be43 3082
4b188b9f
MK
3083/* Per-architecture data key. */
3084static struct gdbarch_data *solib_svr4_data;
e5e2b9ff 3085
4b188b9f 3086struct solib_svr4_ops
e5e2b9ff 3087{
4b188b9f
MK
3088 /* Return a description of the layout of `struct link_map'. */
3089 struct link_map_offsets *(*fetch_link_map_offsets)(void);
3090};
e5e2b9ff 3091
4b188b9f 3092/* Return a default for the architecture-specific operations. */
e5e2b9ff 3093
4b188b9f
MK
3094static void *
3095solib_svr4_init (struct obstack *obstack)
e5e2b9ff 3096{
4b188b9f 3097 struct solib_svr4_ops *ops;
e5e2b9ff 3098
4b188b9f 3099 ops = OBSTACK_ZALLOC (obstack, struct solib_svr4_ops);
8d005789 3100 ops->fetch_link_map_offsets = NULL;
4b188b9f 3101 return ops;
e5e2b9ff
KB
3102}
3103
4b188b9f 3104/* Set the architecture-specific `struct link_map_offsets' fetcher for
7e3cb44c 3105 GDBARCH to FLMO. Also, install SVR4 solib_ops into GDBARCH. */
1c4dcb57 3106
21479ded 3107void
e5e2b9ff
KB
3108set_solib_svr4_fetch_link_map_offsets (struct gdbarch *gdbarch,
3109 struct link_map_offsets *(*flmo) (void))
21479ded 3110{
4b188b9f
MK
3111 struct solib_svr4_ops *ops = gdbarch_data (gdbarch, solib_svr4_data);
3112
3113 ops->fetch_link_map_offsets = flmo;
7e3cb44c
UW
3114
3115 set_solib_ops (gdbarch, &svr4_so_ops);
21479ded
KB
3116}
3117
4b188b9f
MK
3118/* Fetch a link_map_offsets structure using the architecture-specific
3119 `struct link_map_offsets' fetcher. */
1c4dcb57 3120
4b188b9f
MK
3121static struct link_map_offsets *
3122svr4_fetch_link_map_offsets (void)
21479ded 3123{
f5656ead 3124 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
4b188b9f
MK
3125
3126 gdb_assert (ops->fetch_link_map_offsets);
3127 return ops->fetch_link_map_offsets ();
21479ded
KB
3128}
3129
4b188b9f
MK
3130/* Return 1 if a link map offset fetcher has been defined, 0 otherwise. */
3131
3132static int
3133svr4_have_link_map_offsets (void)
3134{
f5656ead 3135 struct solib_svr4_ops *ops = gdbarch_data (target_gdbarch (), solib_svr4_data);
433759f7 3136
4b188b9f
MK
3137 return (ops->fetch_link_map_offsets != NULL);
3138}
3139\f
3140
e4bbbda8
MK
3141/* Most OS'es that have SVR4-style ELF dynamic libraries define a
3142 `struct r_debug' and a `struct link_map' that are binary compatible
3143 with the origional SVR4 implementation. */
3144
3145/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3146 for an ILP32 SVR4 system. */
d989b283 3147
e4bbbda8
MK
3148struct link_map_offsets *
3149svr4_ilp32_fetch_link_map_offsets (void)
3150{
3151 static struct link_map_offsets lmo;
3152 static struct link_map_offsets *lmp = NULL;
3153
3154 if (lmp == NULL)
3155 {
3156 lmp = &lmo;
3157
e4cd0d6a
MK
3158 lmo.r_version_offset = 0;
3159 lmo.r_version_size = 4;
e4bbbda8 3160 lmo.r_map_offset = 4;
7cd25cfc 3161 lmo.r_brk_offset = 8;
e4cd0d6a 3162 lmo.r_ldsomap_offset = 20;
e4bbbda8
MK
3163
3164 /* Everything we need is in the first 20 bytes. */
3165 lmo.link_map_size = 20;
3166 lmo.l_addr_offset = 0;
e4bbbda8 3167 lmo.l_name_offset = 4;
cc10cae3 3168 lmo.l_ld_offset = 8;
e4bbbda8 3169 lmo.l_next_offset = 12;
e4bbbda8 3170 lmo.l_prev_offset = 16;
e4bbbda8
MK
3171 }
3172
3173 return lmp;
3174}
3175
3176/* Fetch (and possibly build) an appropriate `struct link_map_offsets'
3177 for an LP64 SVR4 system. */
d989b283 3178
e4bbbda8
MK
3179struct link_map_offsets *
3180svr4_lp64_fetch_link_map_offsets (void)
3181{
3182 static struct link_map_offsets lmo;
3183 static struct link_map_offsets *lmp = NULL;
3184
3185 if (lmp == NULL)
3186 {
3187 lmp = &lmo;
3188
e4cd0d6a
MK
3189 lmo.r_version_offset = 0;
3190 lmo.r_version_size = 4;
e4bbbda8 3191 lmo.r_map_offset = 8;
7cd25cfc 3192 lmo.r_brk_offset = 16;
e4cd0d6a 3193 lmo.r_ldsomap_offset = 40;
e4bbbda8
MK
3194
3195 /* Everything we need is in the first 40 bytes. */
3196 lmo.link_map_size = 40;
3197 lmo.l_addr_offset = 0;
e4bbbda8 3198 lmo.l_name_offset = 8;
cc10cae3 3199 lmo.l_ld_offset = 16;
e4bbbda8 3200 lmo.l_next_offset = 24;
e4bbbda8 3201 lmo.l_prev_offset = 32;
e4bbbda8
MK
3202 }
3203
3204 return lmp;
3205}
3206\f
3207
7d522c90 3208struct target_so_ops svr4_so_ops;
13437d4b 3209
c378eb4e 3210/* Lookup global symbol for ELF DSOs linked with -Bsymbolic. Those DSOs have a
3a40aaa0
UW
3211 different rule for symbol lookup. The lookup begins here in the DSO, not in
3212 the main executable. */
3213
d12307c1 3214static struct block_symbol
efad9b6a 3215elf_lookup_lib_symbol (struct objfile *objfile,
3a40aaa0 3216 const char *name,
21b556f4 3217 const domain_enum domain)
3a40aaa0 3218{
61f0d762
JK
3219 bfd *abfd;
3220
3221 if (objfile == symfile_objfile)
3222 abfd = exec_bfd;
3223 else
3224 {
3225 /* OBJFILE should have been passed as the non-debug one. */
3226 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
3227
3228 abfd = objfile->obfd;
3229 }
3230
3231 if (abfd == NULL || scan_dyntag (DT_SYMBOLIC, abfd, NULL) != 1)
d12307c1 3232 return (struct block_symbol) {NULL, NULL};
3a40aaa0 3233
94af9270 3234 return lookup_global_symbol_from_objfile (objfile, name, domain);
3a40aaa0
UW
3235}
3236
a78f21af
AC
3237extern initialize_file_ftype _initialize_svr4_solib; /* -Wmissing-prototypes */
3238
13437d4b
KB
3239void
3240_initialize_svr4_solib (void)
3241{
4b188b9f 3242 solib_svr4_data = gdbarch_data_register_pre_init (solib_svr4_init);
6c95b8df 3243 solib_svr4_pspace_data
8e260fc0 3244 = register_program_space_data_with_cleanup (NULL, svr4_pspace_data_cleanup);
4b188b9f 3245
749499cb 3246 svr4_so_ops.relocate_section_addresses = svr4_relocate_section_addresses;
13437d4b 3247 svr4_so_ops.free_so = svr4_free_so;
0892cb63 3248 svr4_so_ops.clear_so = svr4_clear_so;
13437d4b
KB
3249 svr4_so_ops.clear_solib = svr4_clear_solib;
3250 svr4_so_ops.solib_create_inferior_hook = svr4_solib_create_inferior_hook;
3251 svr4_so_ops.special_symbol_handling = svr4_special_symbol_handling;
3252 svr4_so_ops.current_sos = svr4_current_sos;
3253 svr4_so_ops.open_symbol_file_object = open_symbol_file_object;
d7fa2ae2 3254 svr4_so_ops.in_dynsym_resolve_code = svr4_in_dynsym_resolve_code;
831a0c44 3255 svr4_so_ops.bfd_open = solib_bfd_open;
3a40aaa0 3256 svr4_so_ops.lookup_lib_global_symbol = elf_lookup_lib_symbol;
a7c02bc8 3257 svr4_so_ops.same = svr4_same;
de18c1d8 3258 svr4_so_ops.keep_data_in_core = svr4_keep_data_in_core;
f9e14852
GB
3259 svr4_so_ops.update_breakpoints = svr4_update_solib_event_breakpoints;
3260 svr4_so_ops.handle_event = svr4_handle_solib_event;
13437d4b 3261}
This page took 1.696929 seconds and 4 git commands to generate.